1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <linux/mm.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/preempt.h>
17 #include <linux/msi.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 #include <linux/rcupdate.h>
21 #include <linux/ratelimit.h>
22 #include <linux/err.h>
23 #include <linux/irqflags.h>
24 #include <linux/context_tracking.h>
25 #include <linux/irqbypass.h>
26 #include <linux/swait.h>
27 #include <linux/refcount.h>
28 #include <linux/nospec.h>
29 #include <asm/signal.h>
30
31 #include <linux/kvm.h>
32 #include <linux/kvm_para.h>
33
34 #include <linux/kvm_types.h>
35
36 #include <asm/kvm_host.h>
37
38 #ifndef KVM_MAX_VCPU_ID
39 #define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40 #endif
41
42 /*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47 #define KVM_MEMSLOT_INVALID (1UL << 16)
48
49 /*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70 /* Two fragments for cross MMIO pages. */
71 #define KVM_MAX_MMIO_FRAGMENTS 2
72
73 #ifndef KVM_ADDRESS_SPACE_NUM
74 #define KVM_ADDRESS_SPACE_NUM 1
75 #endif
76
77 /*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84 #define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90 /*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
is_error_pfn(kvm_pfn_t pfn)94 static inline bool is_error_pfn(kvm_pfn_t pfn)
95 {
96 return !!(pfn & KVM_PFN_ERR_MASK);
97 }
98
99 /*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
is_error_noslot_pfn(kvm_pfn_t pfn)104 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105 {
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107 }
108
109 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)110 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111 {
112 return pfn == KVM_PFN_NOSLOT;
113 }
114
115 /*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119 #ifndef KVM_HVA_ERR_BAD
120
121 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
kvm_is_error_hva(unsigned long addr)124 static inline bool kvm_is_error_hva(unsigned long addr)
125 {
126 return addr >= PAGE_OFFSET;
127 }
128
129 #endif
130
131 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
is_error_page(struct page * page)133 static inline bool is_error_page(struct page *page)
134 {
135 return IS_ERR(page);
136 }
137
138 #define KVM_REQUEST_MASK GENMASK(7,0)
139 #define KVM_REQUEST_NO_WAKEUP BIT(8)
140 #define KVM_REQUEST_WAIT BIT(9)
141 /*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146 #define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147 #define KVM_REQ_PENDING_TIMER 2
148 #define KVM_REQ_UNHALT 3
149 #define KVM_REQUEST_ARCH_BASE 8
150
151 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 BUILD_BUG_ON((unsigned)(nr) >= (FIELD_SIZEOF(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154 })
155 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
156
157 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
158 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
159
160 extern struct kmem_cache *kvm_vcpu_cache;
161
162 extern struct mutex kvm_lock;
163 extern struct list_head vm_list;
164
165 struct kvm_io_range {
166 gpa_t addr;
167 int len;
168 struct kvm_io_device *dev;
169 };
170
171 #define NR_IOBUS_DEVS 1000
172
173 struct kvm_io_bus {
174 int dev_count;
175 int ioeventfd_count;
176 struct kvm_io_range range[];
177 };
178
179 enum kvm_bus {
180 KVM_MMIO_BUS,
181 KVM_PIO_BUS,
182 KVM_VIRTIO_CCW_NOTIFY_BUS,
183 KVM_FAST_MMIO_BUS,
184 KVM_NR_BUSES
185 };
186
187 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
188 int len, const void *val);
189 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
190 gpa_t addr, int len, const void *val, long cookie);
191 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
192 int len, void *val);
193 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
194 int len, struct kvm_io_device *dev);
195 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 struct kvm_io_device *dev);
197 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
198 gpa_t addr);
199
200 #ifdef CONFIG_KVM_ASYNC_PF
201 struct kvm_async_pf {
202 struct work_struct work;
203 struct list_head link;
204 struct list_head queue;
205 struct kvm_vcpu *vcpu;
206 struct mm_struct *mm;
207 gva_t gva;
208 unsigned long addr;
209 struct kvm_arch_async_pf arch;
210 bool wakeup_all;
211 };
212
213 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
214 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
215 int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, unsigned long hva,
216 struct kvm_arch_async_pf *arch);
217 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
218 #endif
219
220 enum {
221 OUTSIDE_GUEST_MODE,
222 IN_GUEST_MODE,
223 EXITING_GUEST_MODE,
224 READING_SHADOW_PAGE_TABLES,
225 };
226
227 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
228
229 struct kvm_host_map {
230 /*
231 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
232 * a 'struct page' for it. When using mem= kernel parameter some memory
233 * can be used as guest memory but they are not managed by host
234 * kernel).
235 * If 'pfn' is not managed by the host kernel, this field is
236 * initialized to KVM_UNMAPPED_PAGE.
237 */
238 struct page *page;
239 void *hva;
240 kvm_pfn_t pfn;
241 kvm_pfn_t gfn;
242 };
243
244 /*
245 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
246 * directly to check for that.
247 */
kvm_vcpu_mapped(struct kvm_host_map * map)248 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
249 {
250 return !!map->hva;
251 }
252
253 /*
254 * Sometimes a large or cross-page mmio needs to be broken up into separate
255 * exits for userspace servicing.
256 */
257 struct kvm_mmio_fragment {
258 gpa_t gpa;
259 void *data;
260 unsigned len;
261 };
262
263 struct kvm_vcpu {
264 struct kvm *kvm;
265 #ifdef CONFIG_PREEMPT_NOTIFIERS
266 struct preempt_notifier preempt_notifier;
267 #endif
268 int cpu;
269 int vcpu_id;
270 int srcu_idx;
271 int mode;
272 u64 requests;
273 unsigned long guest_debug;
274
275 int pre_pcpu;
276 struct list_head blocked_vcpu_list;
277
278 struct mutex mutex;
279 struct kvm_run *run;
280
281 int guest_xcr0_loaded;
282 struct swait_queue_head wq;
283 struct pid __rcu *pid;
284 int sigset_active;
285 sigset_t sigset;
286 struct kvm_vcpu_stat stat;
287 unsigned int halt_poll_ns;
288 bool valid_wakeup;
289
290 #ifdef CONFIG_HAS_IOMEM
291 int mmio_needed;
292 int mmio_read_completed;
293 int mmio_is_write;
294 int mmio_cur_fragment;
295 int mmio_nr_fragments;
296 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
297 #endif
298
299 #ifdef CONFIG_KVM_ASYNC_PF
300 struct {
301 u32 queued;
302 struct list_head queue;
303 struct list_head done;
304 spinlock_t lock;
305 } async_pf;
306 #endif
307
308 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
309 /*
310 * Cpu relax intercept or pause loop exit optimization
311 * in_spin_loop: set when a vcpu does a pause loop exit
312 * or cpu relax intercepted.
313 * dy_eligible: indicates whether vcpu is eligible for directed yield.
314 */
315 struct {
316 bool in_spin_loop;
317 bool dy_eligible;
318 } spin_loop;
319 #endif
320 bool preempted;
321 bool ready;
322 struct kvm_vcpu_arch arch;
323 struct dentry *debugfs_dentry;
324 };
325
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)326 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
327 {
328 /*
329 * The memory barrier ensures a previous write to vcpu->requests cannot
330 * be reordered with the read of vcpu->mode. It pairs with the general
331 * memory barrier following the write of vcpu->mode in VCPU RUN.
332 */
333 smp_mb__before_atomic();
334 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
335 }
336
337 /*
338 * Some of the bitops functions do not support too long bitmaps.
339 * This number must be determined not to exceed such limits.
340 */
341 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
342
343 struct kvm_memory_slot {
344 gfn_t base_gfn;
345 unsigned long npages;
346 unsigned long *dirty_bitmap;
347 struct kvm_arch_memory_slot arch;
348 unsigned long userspace_addr;
349 u32 flags;
350 short id;
351 };
352
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)353 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
354 {
355 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
356 }
357
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)358 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
359 {
360 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
361
362 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
363 }
364
365 struct kvm_s390_adapter_int {
366 u64 ind_addr;
367 u64 summary_addr;
368 u64 ind_offset;
369 u32 summary_offset;
370 u32 adapter_id;
371 };
372
373 struct kvm_hv_sint {
374 u32 vcpu;
375 u32 sint;
376 };
377
378 struct kvm_kernel_irq_routing_entry {
379 u32 gsi;
380 u32 type;
381 int (*set)(struct kvm_kernel_irq_routing_entry *e,
382 struct kvm *kvm, int irq_source_id, int level,
383 bool line_status);
384 union {
385 struct {
386 unsigned irqchip;
387 unsigned pin;
388 } irqchip;
389 struct {
390 u32 address_lo;
391 u32 address_hi;
392 u32 data;
393 u32 flags;
394 u32 devid;
395 } msi;
396 struct kvm_s390_adapter_int adapter;
397 struct kvm_hv_sint hv_sint;
398 };
399 struct hlist_node link;
400 };
401
402 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
403 struct kvm_irq_routing_table {
404 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
405 u32 nr_rt_entries;
406 /*
407 * Array indexed by gsi. Each entry contains list of irq chips
408 * the gsi is connected to.
409 */
410 struct hlist_head map[0];
411 };
412 #endif
413
414 #ifndef KVM_PRIVATE_MEM_SLOTS
415 #define KVM_PRIVATE_MEM_SLOTS 0
416 #endif
417
418 #ifndef KVM_MEM_SLOTS_NUM
419 #define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
420 #endif
421
422 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)423 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
424 {
425 return 0;
426 }
427 #endif
428
429 /*
430 * Note:
431 * memslots are not sorted by id anymore, please use id_to_memslot()
432 * to get the memslot by its id.
433 */
434 struct kvm_memslots {
435 u64 generation;
436 struct kvm_memory_slot memslots[KVM_MEM_SLOTS_NUM];
437 /* The mapping table from slot id to the index in memslots[]. */
438 short id_to_index[KVM_MEM_SLOTS_NUM];
439 atomic_t lru_slot;
440 int used_slots;
441 };
442
443 struct kvm {
444 spinlock_t mmu_lock;
445 struct mutex slots_lock;
446 struct mm_struct *mm; /* userspace tied to this vm */
447 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
448 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
449
450 /*
451 * created_vcpus is protected by kvm->lock, and is incremented
452 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
453 * incremented after storing the kvm_vcpu pointer in vcpus,
454 * and is accessed atomically.
455 */
456 atomic_t online_vcpus;
457 int created_vcpus;
458 int last_boosted_vcpu;
459 struct list_head vm_list;
460 struct mutex lock;
461 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
462 #ifdef CONFIG_HAVE_KVM_EVENTFD
463 struct {
464 spinlock_t lock;
465 struct list_head items;
466 struct list_head resampler_list;
467 struct mutex resampler_lock;
468 } irqfds;
469 struct list_head ioeventfds;
470 #endif
471 struct kvm_vm_stat stat;
472 struct kvm_arch arch;
473 refcount_t users_count;
474 #ifdef CONFIG_KVM_MMIO
475 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
476 spinlock_t ring_lock;
477 struct list_head coalesced_zones;
478 #endif
479
480 struct mutex irq_lock;
481 #ifdef CONFIG_HAVE_KVM_IRQCHIP
482 /*
483 * Update side is protected by irq_lock.
484 */
485 struct kvm_irq_routing_table __rcu *irq_routing;
486 #endif
487 #ifdef CONFIG_HAVE_KVM_IRQFD
488 struct hlist_head irq_ack_notifier_list;
489 #endif
490
491 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
492 struct mmu_notifier mmu_notifier;
493 unsigned long mmu_notifier_seq;
494 long mmu_notifier_count;
495 #endif
496 long tlbs_dirty;
497 struct list_head devices;
498 bool manual_dirty_log_protect;
499 struct dentry *debugfs_dentry;
500 struct kvm_stat_data **debugfs_stat_data;
501 struct srcu_struct srcu;
502 struct srcu_struct irq_srcu;
503 pid_t userspace_pid;
504 };
505
506 #define kvm_err(fmt, ...) \
507 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
508 #define kvm_info(fmt, ...) \
509 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
510 #define kvm_debug(fmt, ...) \
511 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
512 #define kvm_debug_ratelimited(fmt, ...) \
513 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
514 ## __VA_ARGS__)
515 #define kvm_pr_unimpl(fmt, ...) \
516 pr_err_ratelimited("kvm [%i]: " fmt, \
517 task_tgid_nr(current), ## __VA_ARGS__)
518
519 /* The guest did something we don't support. */
520 #define vcpu_unimpl(vcpu, fmt, ...) \
521 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
522 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
523
524 #define vcpu_debug(vcpu, fmt, ...) \
525 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
526 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
527 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
528 ## __VA_ARGS__)
529 #define vcpu_err(vcpu, fmt, ...) \
530 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
531
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)532 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
533 {
534 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
535 lockdep_is_held(&kvm->slots_lock) ||
536 !refcount_read(&kvm->users_count));
537 }
538
kvm_get_vcpu(struct kvm * kvm,int i)539 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
540 {
541 int num_vcpus = atomic_read(&kvm->online_vcpus);
542 i = array_index_nospec(i, num_vcpus);
543
544 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
545 smp_rmb();
546 return kvm->vcpus[i];
547 }
548
549 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
550 for (idx = 0; \
551 idx < atomic_read(&kvm->online_vcpus) && \
552 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
553 idx++)
554
kvm_get_vcpu_by_id(struct kvm * kvm,int id)555 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
556 {
557 struct kvm_vcpu *vcpu = NULL;
558 int i;
559
560 if (id < 0)
561 return NULL;
562 if (id < KVM_MAX_VCPUS)
563 vcpu = kvm_get_vcpu(kvm, id);
564 if (vcpu && vcpu->vcpu_id == id)
565 return vcpu;
566 kvm_for_each_vcpu(i, vcpu, kvm)
567 if (vcpu->vcpu_id == id)
568 return vcpu;
569 return NULL;
570 }
571
kvm_vcpu_get_idx(struct kvm_vcpu * vcpu)572 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
573 {
574 struct kvm_vcpu *tmp;
575 int idx;
576
577 kvm_for_each_vcpu(idx, tmp, vcpu->kvm)
578 if (tmp == vcpu)
579 return idx;
580 BUG();
581 }
582
583 #define kvm_for_each_memslot(memslot, slots) \
584 for (memslot = &slots->memslots[0]; \
585 memslot < slots->memslots + KVM_MEM_SLOTS_NUM && memslot->npages;\
586 memslot++)
587
588 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id);
589 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu);
590
591 void vcpu_load(struct kvm_vcpu *vcpu);
592 void vcpu_put(struct kvm_vcpu *vcpu);
593
594 #ifdef __KVM_HAVE_IOAPIC
595 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
596 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
597 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)598 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
599 {
600 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)601 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
602 {
603 }
604 #endif
605
606 #ifdef CONFIG_HAVE_KVM_IRQFD
607 int kvm_irqfd_init(void);
608 void kvm_irqfd_exit(void);
609 #else
kvm_irqfd_init(void)610 static inline int kvm_irqfd_init(void)
611 {
612 return 0;
613 }
614
kvm_irqfd_exit(void)615 static inline void kvm_irqfd_exit(void)
616 {
617 }
618 #endif
619 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
620 struct module *module);
621 void kvm_exit(void);
622
623 void kvm_get_kvm(struct kvm *kvm);
624 void kvm_put_kvm(struct kvm *kvm);
625
__kvm_memslots(struct kvm * kvm,int as_id)626 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
627 {
628 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
629 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
630 lockdep_is_held(&kvm->slots_lock) ||
631 !refcount_read(&kvm->users_count));
632 }
633
kvm_memslots(struct kvm * kvm)634 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
635 {
636 return __kvm_memslots(kvm, 0);
637 }
638
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)639 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
640 {
641 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
642
643 return __kvm_memslots(vcpu->kvm, as_id);
644 }
645
646 static inline struct kvm_memory_slot *
id_to_memslot(struct kvm_memslots * slots,int id)647 id_to_memslot(struct kvm_memslots *slots, int id)
648 {
649 int index = slots->id_to_index[id];
650 struct kvm_memory_slot *slot;
651
652 slot = &slots->memslots[index];
653
654 WARN_ON(slot->id != id);
655 return slot;
656 }
657
658 /*
659 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
660 * - create a new memory slot
661 * - delete an existing memory slot
662 * - modify an existing memory slot
663 * -- move it in the guest physical memory space
664 * -- just change its flags
665 *
666 * Since flags can be changed by some of these operations, the following
667 * differentiation is the best we can do for __kvm_set_memory_region():
668 */
669 enum kvm_mr_change {
670 KVM_MR_CREATE,
671 KVM_MR_DELETE,
672 KVM_MR_MOVE,
673 KVM_MR_FLAGS_ONLY,
674 };
675
676 int kvm_set_memory_region(struct kvm *kvm,
677 const struct kvm_userspace_memory_region *mem);
678 int __kvm_set_memory_region(struct kvm *kvm,
679 const struct kvm_userspace_memory_region *mem);
680 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
681 struct kvm_memory_slot *dont);
682 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
683 unsigned long npages);
684 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
685 int kvm_arch_prepare_memory_region(struct kvm *kvm,
686 struct kvm_memory_slot *memslot,
687 const struct kvm_userspace_memory_region *mem,
688 enum kvm_mr_change change);
689 void kvm_arch_commit_memory_region(struct kvm *kvm,
690 const struct kvm_userspace_memory_region *mem,
691 const struct kvm_memory_slot *old,
692 const struct kvm_memory_slot *new,
693 enum kvm_mr_change change);
694 bool kvm_largepages_enabled(void);
695 void kvm_disable_largepages(void);
696 /* flush all memory translations */
697 void kvm_arch_flush_shadow_all(struct kvm *kvm);
698 /* flush memory translations pointing to 'slot' */
699 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
700 struct kvm_memory_slot *slot);
701
702 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
703 struct page **pages, int nr_pages);
704
705 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
706 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
707 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
708 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
709 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
710 bool *writable);
711 void kvm_release_page_clean(struct page *page);
712 void kvm_release_page_dirty(struct page *page);
713 void kvm_set_page_accessed(struct page *page);
714
715 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn);
716 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
717 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
718 bool *writable);
719 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
720 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
721 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
722 bool atomic, bool *async, bool write_fault,
723 bool *writable);
724
725 void kvm_release_pfn_clean(kvm_pfn_t pfn);
726 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
727 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
728 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
729 void kvm_get_pfn(kvm_pfn_t pfn);
730
731 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
732 int len);
733 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
734 unsigned long len);
735 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
736 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
737 void *data, unsigned long len);
738 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
739 int offset, int len);
740 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
741 unsigned long len);
742 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
743 void *data, unsigned long len);
744 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
745 void *data, unsigned int offset,
746 unsigned long len);
747 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
748 gpa_t gpa, unsigned long len);
749 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
750 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
751 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
752 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
753 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn);
754 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
755
756 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
757 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
758 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
759 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
760 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
761 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
762 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
763 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
764 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
765 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
766 int len);
767 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
768 unsigned long len);
769 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
770 unsigned long len);
771 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
772 int offset, int len);
773 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
774 unsigned long len);
775 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
776
777 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
778 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
779
780 void kvm_vcpu_block(struct kvm_vcpu *vcpu);
781 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
782 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
783 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
784 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
785 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
786 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
787
788 void kvm_flush_remote_tlbs(struct kvm *kvm);
789 void kvm_reload_remote_mmus(struct kvm *kvm);
790
791 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
792 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
793 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
794
795 long kvm_arch_dev_ioctl(struct file *filp,
796 unsigned int ioctl, unsigned long arg);
797 long kvm_arch_vcpu_ioctl(struct file *filp,
798 unsigned int ioctl, unsigned long arg);
799 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
800
801 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
802
803 int kvm_get_dirty_log(struct kvm *kvm,
804 struct kvm_dirty_log *log, int *is_dirty);
805
806 int kvm_get_dirty_log_protect(struct kvm *kvm,
807 struct kvm_dirty_log *log, bool *flush);
808 int kvm_clear_dirty_log_protect(struct kvm *kvm,
809 struct kvm_clear_dirty_log *log, bool *flush);
810
811 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
812 struct kvm_memory_slot *slot,
813 gfn_t gfn_offset,
814 unsigned long mask);
815
816 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
817 struct kvm_dirty_log *log);
818 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
819 struct kvm_clear_dirty_log *log);
820
821 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
822 bool line_status);
823 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
824 struct kvm_enable_cap *cap);
825 long kvm_arch_vm_ioctl(struct file *filp,
826 unsigned int ioctl, unsigned long arg);
827
828 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
829 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
830
831 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
832 struct kvm_translation *tr);
833
834 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
835 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
836 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
837 struct kvm_sregs *sregs);
838 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
839 struct kvm_sregs *sregs);
840 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
841 struct kvm_mp_state *mp_state);
842 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
843 struct kvm_mp_state *mp_state);
844 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
845 struct kvm_guest_debug *dbg);
846 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run);
847
848 int kvm_arch_init(void *opaque);
849 void kvm_arch_exit(void);
850
851 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu);
852 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu);
853
854 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
855
856 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu);
857 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
858 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
859 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id);
860 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu);
861 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
862 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
863
864 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
865 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu);
866 #endif
867
868 int kvm_arch_hardware_enable(void);
869 void kvm_arch_hardware_disable(void);
870 int kvm_arch_hardware_setup(void);
871 void kvm_arch_hardware_unsetup(void);
872 int kvm_arch_check_processor_compat(void);
873 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
874 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
875 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
876 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
877
878 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
879 /*
880 * All architectures that want to use vzalloc currently also
881 * need their own kvm_arch_alloc_vm implementation.
882 */
kvm_arch_alloc_vm(void)883 static inline struct kvm *kvm_arch_alloc_vm(void)
884 {
885 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
886 }
887
kvm_arch_free_vm(struct kvm * kvm)888 static inline void kvm_arch_free_vm(struct kvm *kvm)
889 {
890 kfree(kvm);
891 }
892 #endif
893
894 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)895 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
896 {
897 return -ENOTSUPP;
898 }
899 #endif
900
901 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
902 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
903 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
904 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
905 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)906 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
907 {
908 }
909
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)910 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
911 {
912 }
913
kvm_arch_has_noncoherent_dma(struct kvm * kvm)914 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
915 {
916 return false;
917 }
918 #endif
919 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
920 void kvm_arch_start_assignment(struct kvm *kvm);
921 void kvm_arch_end_assignment(struct kvm *kvm);
922 bool kvm_arch_has_assigned_device(struct kvm *kvm);
923 #else
kvm_arch_start_assignment(struct kvm * kvm)924 static inline void kvm_arch_start_assignment(struct kvm *kvm)
925 {
926 }
927
kvm_arch_end_assignment(struct kvm * kvm)928 static inline void kvm_arch_end_assignment(struct kvm *kvm)
929 {
930 }
931
kvm_arch_has_assigned_device(struct kvm * kvm)932 static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
933 {
934 return false;
935 }
936 #endif
937
kvm_arch_vcpu_wq(struct kvm_vcpu * vcpu)938 static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu)
939 {
940 #ifdef __KVM_HAVE_ARCH_WQP
941 return vcpu->arch.wqp;
942 #else
943 return &vcpu->wq;
944 #endif
945 }
946
947 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
948 /*
949 * returns true if the virtual interrupt controller is initialized and
950 * ready to accept virtual IRQ. On some architectures the virtual interrupt
951 * controller is dynamically instantiated and this is not always true.
952 */
953 bool kvm_arch_intc_initialized(struct kvm *kvm);
954 #else
kvm_arch_intc_initialized(struct kvm * kvm)955 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
956 {
957 return true;
958 }
959 #endif
960
961 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
962 void kvm_arch_destroy_vm(struct kvm *kvm);
963 void kvm_arch_sync_events(struct kvm *kvm);
964
965 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
966 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
967
968 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
969 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
970
971 struct kvm_irq_ack_notifier {
972 struct hlist_node link;
973 unsigned gsi;
974 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
975 };
976
977 int kvm_irq_map_gsi(struct kvm *kvm,
978 struct kvm_kernel_irq_routing_entry *entries, int gsi);
979 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
980
981 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
982 bool line_status);
983 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
984 int irq_source_id, int level, bool line_status);
985 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
986 struct kvm *kvm, int irq_source_id,
987 int level, bool line_status);
988 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
989 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
990 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
991 void kvm_register_irq_ack_notifier(struct kvm *kvm,
992 struct kvm_irq_ack_notifier *kian);
993 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
994 struct kvm_irq_ack_notifier *kian);
995 int kvm_request_irq_source_id(struct kvm *kvm);
996 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
997 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
998
999 /*
1000 * search_memslots() and __gfn_to_memslot() are here because they are
1001 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1002 * gfn_to_memslot() itself isn't here as an inline because that would
1003 * bloat other code too much.
1004 */
1005 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn)1006 search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1007 {
1008 int start = 0, end = slots->used_slots;
1009 int slot = atomic_read(&slots->lru_slot);
1010 struct kvm_memory_slot *memslots = slots->memslots;
1011
1012 if (gfn >= memslots[slot].base_gfn &&
1013 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1014 return &memslots[slot];
1015
1016 while (start < end) {
1017 slot = start + (end - start) / 2;
1018
1019 if (gfn >= memslots[slot].base_gfn)
1020 end = slot;
1021 else
1022 start = slot + 1;
1023 }
1024
1025 if (gfn >= memslots[start].base_gfn &&
1026 gfn < memslots[start].base_gfn + memslots[start].npages) {
1027 atomic_set(&slots->lru_slot, start);
1028 return &memslots[start];
1029 }
1030
1031 return NULL;
1032 }
1033
1034 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1035 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1036 {
1037 return search_memslots(slots, gfn);
1038 }
1039
1040 static inline unsigned long
__gfn_to_hva_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1041 __gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1042 {
1043 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1044 }
1045
memslot_id(struct kvm * kvm,gfn_t gfn)1046 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1047 {
1048 return gfn_to_memslot(kvm, gfn)->id;
1049 }
1050
1051 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1052 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1053 {
1054 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1055
1056 return slot->base_gfn + gfn_offset;
1057 }
1058
gfn_to_gpa(gfn_t gfn)1059 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1060 {
1061 return (gpa_t)gfn << PAGE_SHIFT;
1062 }
1063
gpa_to_gfn(gpa_t gpa)1064 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1065 {
1066 return (gfn_t)(gpa >> PAGE_SHIFT);
1067 }
1068
pfn_to_hpa(kvm_pfn_t pfn)1069 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1070 {
1071 return (hpa_t)pfn << PAGE_SHIFT;
1072 }
1073
kvm_vcpu_gpa_to_page(struct kvm_vcpu * vcpu,gpa_t gpa)1074 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1075 gpa_t gpa)
1076 {
1077 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1078 }
1079
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1080 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1081 {
1082 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1083
1084 return kvm_is_error_hva(hva);
1085 }
1086
1087 enum kvm_stat_kind {
1088 KVM_STAT_VM,
1089 KVM_STAT_VCPU,
1090 };
1091
1092 struct kvm_stat_data {
1093 int offset;
1094 int mode;
1095 struct kvm *kvm;
1096 };
1097
1098 struct kvm_stats_debugfs_item {
1099 const char *name;
1100 int offset;
1101 enum kvm_stat_kind kind;
1102 int mode;
1103 };
1104 extern struct kvm_stats_debugfs_item debugfs_entries[];
1105 extern struct dentry *kvm_debugfs_dir;
1106
1107 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_retry(struct kvm * kvm,unsigned long mmu_seq)1108 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1109 {
1110 if (unlikely(kvm->mmu_notifier_count))
1111 return 1;
1112 /*
1113 * Ensure the read of mmu_notifier_count happens before the read
1114 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1115 * mmu_notifier_invalidate_range_end to make sure that the caller
1116 * either sees the old (non-zero) value of mmu_notifier_count or
1117 * the new (incremented) value of mmu_notifier_seq.
1118 * PowerPC Book3s HV KVM calls this under a per-page lock
1119 * rather than under kvm->mmu_lock, for scalability, so
1120 * can't rely on kvm->mmu_lock to keep things ordered.
1121 */
1122 smp_rmb();
1123 if (kvm->mmu_notifier_seq != mmu_seq)
1124 return 1;
1125 return 0;
1126 }
1127 #endif
1128
1129 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1130
1131 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1132
1133 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1134 int kvm_set_irq_routing(struct kvm *kvm,
1135 const struct kvm_irq_routing_entry *entries,
1136 unsigned nr,
1137 unsigned flags);
1138 int kvm_set_routing_entry(struct kvm *kvm,
1139 struct kvm_kernel_irq_routing_entry *e,
1140 const struct kvm_irq_routing_entry *ue);
1141 void kvm_free_irq_routing(struct kvm *kvm);
1142
1143 #else
1144
kvm_free_irq_routing(struct kvm * kvm)1145 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1146
1147 #endif
1148
1149 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1150
1151 #ifdef CONFIG_HAVE_KVM_EVENTFD
1152
1153 void kvm_eventfd_init(struct kvm *kvm);
1154 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1155
1156 #ifdef CONFIG_HAVE_KVM_IRQFD
1157 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1158 void kvm_irqfd_release(struct kvm *kvm);
1159 void kvm_irq_routing_update(struct kvm *);
1160 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1161 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1162 {
1163 return -EINVAL;
1164 }
1165
kvm_irqfd_release(struct kvm * kvm)1166 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1167 #endif
1168
1169 #else
1170
kvm_eventfd_init(struct kvm * kvm)1171 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1172
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1173 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1174 {
1175 return -EINVAL;
1176 }
1177
kvm_irqfd_release(struct kvm * kvm)1178 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1179
1180 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)1181 static inline void kvm_irq_routing_update(struct kvm *kvm)
1182 {
1183 }
1184 #endif
1185
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)1186 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1187 {
1188 return -ENOSYS;
1189 }
1190
1191 #endif /* CONFIG_HAVE_KVM_EVENTFD */
1192
1193 void kvm_arch_irq_routing_update(struct kvm *kvm);
1194
kvm_make_request(int req,struct kvm_vcpu * vcpu)1195 static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1196 {
1197 /*
1198 * Ensure the rest of the request is published to kvm_check_request's
1199 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1200 */
1201 smp_wmb();
1202 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1203 }
1204
kvm_request_pending(struct kvm_vcpu * vcpu)1205 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1206 {
1207 return READ_ONCE(vcpu->requests);
1208 }
1209
kvm_test_request(int req,struct kvm_vcpu * vcpu)1210 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1211 {
1212 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1213 }
1214
kvm_clear_request(int req,struct kvm_vcpu * vcpu)1215 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1216 {
1217 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1218 }
1219
kvm_check_request(int req,struct kvm_vcpu * vcpu)1220 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1221 {
1222 if (kvm_test_request(req, vcpu)) {
1223 kvm_clear_request(req, vcpu);
1224
1225 /*
1226 * Ensure the rest of the request is visible to kvm_check_request's
1227 * caller. Paired with the smp_wmb in kvm_make_request.
1228 */
1229 smp_mb__after_atomic();
1230 return true;
1231 } else {
1232 return false;
1233 }
1234 }
1235
1236 extern bool kvm_rebooting;
1237
1238 extern unsigned int halt_poll_ns;
1239 extern unsigned int halt_poll_ns_grow;
1240 extern unsigned int halt_poll_ns_grow_start;
1241 extern unsigned int halt_poll_ns_shrink;
1242
1243 struct kvm_device {
1244 struct kvm_device_ops *ops;
1245 struct kvm *kvm;
1246 void *private;
1247 struct list_head vm_node;
1248 };
1249
1250 /* create, destroy, and name are mandatory */
1251 struct kvm_device_ops {
1252 const char *name;
1253
1254 /*
1255 * create is called holding kvm->lock and any operations not suitable
1256 * to do while holding the lock should be deferred to init (see
1257 * below).
1258 */
1259 int (*create)(struct kvm_device *dev, u32 type);
1260
1261 /*
1262 * init is called after create if create is successful and is called
1263 * outside of holding kvm->lock.
1264 */
1265 void (*init)(struct kvm_device *dev);
1266
1267 /*
1268 * Destroy is responsible for freeing dev.
1269 *
1270 * Destroy may be called before or after destructors are called
1271 * on emulated I/O regions, depending on whether a reference is
1272 * held by a vcpu or other kvm component that gets destroyed
1273 * after the emulated I/O.
1274 */
1275 void (*destroy)(struct kvm_device *dev);
1276
1277 /*
1278 * Release is an alternative method to free the device. It is
1279 * called when the device file descriptor is closed. Once
1280 * release is called, the destroy method will not be called
1281 * anymore as the device is removed from the device list of
1282 * the VM. kvm->lock is held.
1283 */
1284 void (*release)(struct kvm_device *dev);
1285
1286 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1287 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1288 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1289 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1290 unsigned long arg);
1291 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1292 };
1293
1294 void kvm_device_get(struct kvm_device *dev);
1295 void kvm_device_put(struct kvm_device *dev);
1296 struct kvm_device *kvm_device_from_filp(struct file *filp);
1297 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type);
1298 void kvm_unregister_device_ops(u32 type);
1299
1300 extern struct kvm_device_ops kvm_mpic_ops;
1301 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1302 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1303
1304 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1305
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1306 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1307 {
1308 vcpu->spin_loop.in_spin_loop = val;
1309 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1310 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1311 {
1312 vcpu->spin_loop.dy_eligible = val;
1313 }
1314
1315 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1316
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)1317 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1318 {
1319 }
1320
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)1321 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1322 {
1323 }
1324 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1325
1326 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1327 bool kvm_arch_has_irq_bypass(void);
1328 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1329 struct irq_bypass_producer *);
1330 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1331 struct irq_bypass_producer *);
1332 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1333 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1334 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1335 uint32_t guest_irq, bool set);
1336 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1337
1338 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1339 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1340 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1341 {
1342 return vcpu->valid_wakeup;
1343 }
1344
1345 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)1346 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1347 {
1348 return true;
1349 }
1350 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1351
1352 #ifdef CONFIG_HAVE_KVM_NO_POLL
1353 /* Callback that tells if we must not poll */
1354 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1355 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)1356 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1357 {
1358 return false;
1359 }
1360 #endif /* CONFIG_HAVE_KVM_NO_POLL */
1361
1362 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1363 long kvm_arch_vcpu_async_ioctl(struct file *filp,
1364 unsigned int ioctl, unsigned long arg);
1365 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1366 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1367 unsigned int ioctl,
1368 unsigned long arg)
1369 {
1370 return -ENOIOCTLCMD;
1371 }
1372 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1373
1374 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1375 unsigned long start, unsigned long end, bool blockable);
1376
1377 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1378 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1379 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)1380 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1381 {
1382 return 0;
1383 }
1384 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1385
1386 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1387
1388 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1389 uintptr_t data, const char *name,
1390 struct task_struct **thread_ptr);
1391
1392 #endif
1393