1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61
62 #include "cpu.h"
63
64 u32 elf_hwcap2 __read_mostly;
65
66 /* all of these masks are initialized in setup_cpu_local_masks() */
67 cpumask_var_t cpu_initialized_mask;
68 cpumask_var_t cpu_callout_mask;
69 cpumask_var_t cpu_callin_mask;
70
71 /* representing cpus for which sibling maps can be computed */
72 cpumask_var_t cpu_sibling_setup_mask;
73
74 /* Number of siblings per CPU package */
75 int smp_num_siblings = 1;
76 EXPORT_SYMBOL(smp_num_siblings);
77
78 /* Last level cache ID of each logical CPU */
79 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
80
81 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)82 void __init setup_cpu_local_masks(void)
83 {
84 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
85 alloc_bootmem_cpumask_var(&cpu_callin_mask);
86 alloc_bootmem_cpumask_var(&cpu_callout_mask);
87 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
88 }
89
default_init(struct cpuinfo_x86 * c)90 static void default_init(struct cpuinfo_x86 *c)
91 {
92 #ifdef CONFIG_X86_64
93 cpu_detect_cache_sizes(c);
94 #else
95 /* Not much we can do here... */
96 /* Check if at least it has cpuid */
97 if (c->cpuid_level == -1) {
98 /* No cpuid. It must be an ancient CPU */
99 if (c->x86 == 4)
100 strcpy(c->x86_model_id, "486");
101 else if (c->x86 == 3)
102 strcpy(c->x86_model_id, "386");
103 }
104 #endif
105 }
106
107 static const struct cpu_dev default_cpu = {
108 .c_init = default_init,
109 .c_vendor = "Unknown",
110 .c_x86_vendor = X86_VENDOR_UNKNOWN,
111 };
112
113 static const struct cpu_dev *this_cpu = &default_cpu;
114
115 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
116 #ifdef CONFIG_X86_64
117 /*
118 * We need valid kernel segments for data and code in long mode too
119 * IRET will check the segment types kkeil 2000/10/28
120 * Also sysret mandates a special GDT layout
121 *
122 * TLS descriptors are currently at a different place compared to i386.
123 * Hopefully nobody expects them at a fixed place (Wine?)
124 */
125 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
126 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
127 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
128 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
130 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
131 #else
132 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
133 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
135 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
136 /*
137 * Segments used for calling PnP BIOS have byte granularity.
138 * They code segments and data segments have fixed 64k limits,
139 * the transfer segment sizes are set at run time.
140 */
141 /* 32-bit code */
142 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 /* 16-bit code */
144 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 /* 16-bit data */
146 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
147 /* 16-bit data */
148 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
149 /* 16-bit data */
150 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
151 /*
152 * The APM segments have byte granularity and their bases
153 * are set at run time. All have 64k limits.
154 */
155 /* 32-bit code */
156 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
157 /* 16-bit code */
158 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
159 /* data */
160 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
161
162 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
164 GDT_STACK_CANARY_INIT
165 #endif
166 } };
167 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
168
169 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)170 static int __init x86_nopcid_setup(char *s)
171 {
172 /* nopcid doesn't accept parameters */
173 if (s)
174 return -EINVAL;
175
176 /* do not emit a message if the feature is not present */
177 if (!boot_cpu_has(X86_FEATURE_PCID))
178 return 0;
179
180 setup_clear_cpu_cap(X86_FEATURE_PCID);
181 pr_info("nopcid: PCID feature disabled\n");
182 return 0;
183 }
184 early_param("nopcid", x86_nopcid_setup);
185 #endif
186
x86_noinvpcid_setup(char * s)187 static int __init x86_noinvpcid_setup(char *s)
188 {
189 /* noinvpcid doesn't accept parameters */
190 if (s)
191 return -EINVAL;
192
193 /* do not emit a message if the feature is not present */
194 if (!boot_cpu_has(X86_FEATURE_INVPCID))
195 return 0;
196
197 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
198 pr_info("noinvpcid: INVPCID feature disabled\n");
199 return 0;
200 }
201 early_param("noinvpcid", x86_noinvpcid_setup);
202
203 #ifdef CONFIG_X86_32
204 static int cachesize_override = -1;
205 static int disable_x86_serial_nr = 1;
206
cachesize_setup(char * str)207 static int __init cachesize_setup(char *str)
208 {
209 get_option(&str, &cachesize_override);
210 return 1;
211 }
212 __setup("cachesize=", cachesize_setup);
213
x86_sep_setup(char * s)214 static int __init x86_sep_setup(char *s)
215 {
216 setup_clear_cpu_cap(X86_FEATURE_SEP);
217 return 1;
218 }
219 __setup("nosep", x86_sep_setup);
220
221 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)222 static inline int flag_is_changeable_p(u32 flag)
223 {
224 u32 f1, f2;
225
226 /*
227 * Cyrix and IDT cpus allow disabling of CPUID
228 * so the code below may return different results
229 * when it is executed before and after enabling
230 * the CPUID. Add "volatile" to not allow gcc to
231 * optimize the subsequent calls to this function.
232 */
233 asm volatile ("pushfl \n\t"
234 "pushfl \n\t"
235 "popl %0 \n\t"
236 "movl %0, %1 \n\t"
237 "xorl %2, %0 \n\t"
238 "pushl %0 \n\t"
239 "popfl \n\t"
240 "pushfl \n\t"
241 "popl %0 \n\t"
242 "popfl \n\t"
243
244 : "=&r" (f1), "=&r" (f2)
245 : "ir" (flag));
246
247 return ((f1^f2) & flag) != 0;
248 }
249
250 /* Probe for the CPUID instruction */
have_cpuid_p(void)251 int have_cpuid_p(void)
252 {
253 return flag_is_changeable_p(X86_EFLAGS_ID);
254 }
255
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)256 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
257 {
258 unsigned long lo, hi;
259
260 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
261 return;
262
263 /* Disable processor serial number: */
264
265 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266 lo |= 0x200000;
267 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268
269 pr_notice("CPU serial number disabled.\n");
270 clear_cpu_cap(c, X86_FEATURE_PN);
271
272 /* Disabling the serial number may affect the cpuid level */
273 c->cpuid_level = cpuid_eax(0);
274 }
275
x86_serial_nr_setup(char * s)276 static int __init x86_serial_nr_setup(char *s)
277 {
278 disable_x86_serial_nr = 0;
279 return 1;
280 }
281 __setup("serialnumber", x86_serial_nr_setup);
282 #else
flag_is_changeable_p(u32 flag)283 static inline int flag_is_changeable_p(u32 flag)
284 {
285 return 1;
286 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)287 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
288 {
289 }
290 #endif
291
setup_disable_smep(char * arg)292 static __init int setup_disable_smep(char *arg)
293 {
294 setup_clear_cpu_cap(X86_FEATURE_SMEP);
295 return 1;
296 }
297 __setup("nosmep", setup_disable_smep);
298
setup_smep(struct cpuinfo_x86 * c)299 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
300 {
301 if (cpu_has(c, X86_FEATURE_SMEP))
302 cr4_set_bits(X86_CR4_SMEP);
303 }
304
setup_disable_smap(char * arg)305 static __init int setup_disable_smap(char *arg)
306 {
307 setup_clear_cpu_cap(X86_FEATURE_SMAP);
308 return 1;
309 }
310 __setup("nosmap", setup_disable_smap);
311
setup_smap(struct cpuinfo_x86 * c)312 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
313 {
314 unsigned long eflags = native_save_fl();
315
316 /* This should have been cleared long ago */
317 BUG_ON(eflags & X86_EFLAGS_AC);
318
319 if (cpu_has(c, X86_FEATURE_SMAP)) {
320 #ifdef CONFIG_X86_SMAP
321 cr4_set_bits(X86_CR4_SMAP);
322 #else
323 cr4_clear_bits(X86_CR4_SMAP);
324 #endif
325 }
326 }
327
setup_umip(struct cpuinfo_x86 * c)328 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
329 {
330 /* Check the boot processor, plus build option for UMIP. */
331 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
332 goto out;
333
334 /* Check the current processor's cpuid bits. */
335 if (!cpu_has(c, X86_FEATURE_UMIP))
336 goto out;
337
338 cr4_set_bits(X86_CR4_UMIP);
339
340 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
341
342 return;
343
344 out:
345 /*
346 * Make sure UMIP is disabled in case it was enabled in a
347 * previous boot (e.g., via kexec).
348 */
349 cr4_clear_bits(X86_CR4_UMIP);
350 }
351
352 /* These bits should not change their value after CPU init is finished. */
353 static const unsigned long cr4_pinned_mask =
354 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
355 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
356 static unsigned long cr4_pinned_bits __ro_after_init;
357
native_write_cr0(unsigned long val)358 void native_write_cr0(unsigned long val)
359 {
360 unsigned long bits_missing = 0;
361
362 set_register:
363 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
364
365 if (static_branch_likely(&cr_pinning)) {
366 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
367 bits_missing = X86_CR0_WP;
368 val |= bits_missing;
369 goto set_register;
370 }
371 /* Warn after we've set the missing bits. */
372 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
373 }
374 }
375 EXPORT_SYMBOL(native_write_cr0);
376
native_write_cr4(unsigned long val)377 void native_write_cr4(unsigned long val)
378 {
379 unsigned long bits_changed = 0;
380
381 set_register:
382 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
383
384 if (static_branch_likely(&cr_pinning)) {
385 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
386 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
387 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
388 goto set_register;
389 }
390 /* Warn after we've corrected the changed bits. */
391 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
392 bits_changed);
393 }
394 }
395 #if IS_MODULE(CONFIG_LKDTM)
396 EXPORT_SYMBOL_GPL(native_write_cr4);
397 #endif
398
cr4_update_irqsoff(unsigned long set,unsigned long clear)399 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
400 {
401 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
402
403 lockdep_assert_irqs_disabled();
404
405 newval = (cr4 & ~clear) | set;
406 if (newval != cr4) {
407 this_cpu_write(cpu_tlbstate.cr4, newval);
408 __write_cr4(newval);
409 }
410 }
411 EXPORT_SYMBOL(cr4_update_irqsoff);
412
413 /* Read the CR4 shadow. */
cr4_read_shadow(void)414 unsigned long cr4_read_shadow(void)
415 {
416 return this_cpu_read(cpu_tlbstate.cr4);
417 }
418 EXPORT_SYMBOL_GPL(cr4_read_shadow);
419
cr4_init(void)420 void cr4_init(void)
421 {
422 unsigned long cr4 = __read_cr4();
423
424 if (boot_cpu_has(X86_FEATURE_PCID))
425 cr4 |= X86_CR4_PCIDE;
426 if (static_branch_likely(&cr_pinning))
427 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
428
429 __write_cr4(cr4);
430
431 /* Initialize cr4 shadow for this CPU. */
432 this_cpu_write(cpu_tlbstate.cr4, cr4);
433 }
434
435 /*
436 * Once CPU feature detection is finished (and boot params have been
437 * parsed), record any of the sensitive CR bits that are set, and
438 * enable CR pinning.
439 */
setup_cr_pinning(void)440 static void __init setup_cr_pinning(void)
441 {
442 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
443 static_key_enable(&cr_pinning.key);
444 }
445
x86_nofsgsbase_setup(char * arg)446 static __init int x86_nofsgsbase_setup(char *arg)
447 {
448 /* Require an exact match without trailing characters. */
449 if (strlen(arg))
450 return 0;
451
452 /* Do not emit a message if the feature is not present. */
453 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
454 return 1;
455
456 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
457 pr_info("FSGSBASE disabled via kernel command line\n");
458 return 1;
459 }
460 __setup("nofsgsbase", x86_nofsgsbase_setup);
461
462 /*
463 * Protection Keys are not available in 32-bit mode.
464 */
465 static bool pku_disabled;
466
setup_pku(struct cpuinfo_x86 * c)467 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
468 {
469 struct pkru_state *pk;
470
471 /* check the boot processor, plus compile options for PKU: */
472 if (!cpu_feature_enabled(X86_FEATURE_PKU))
473 return;
474 /* checks the actual processor's cpuid bits: */
475 if (!cpu_has(c, X86_FEATURE_PKU))
476 return;
477 if (pku_disabled)
478 return;
479
480 cr4_set_bits(X86_CR4_PKE);
481 pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
482 if (pk)
483 pk->pkru = init_pkru_value;
484 /*
485 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
486 * cpuid bit to be set. We need to ensure that we
487 * update that bit in this CPU's "cpu_info".
488 */
489 set_cpu_cap(c, X86_FEATURE_OSPKE);
490 }
491
492 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)493 static __init int setup_disable_pku(char *arg)
494 {
495 /*
496 * Do not clear the X86_FEATURE_PKU bit. All of the
497 * runtime checks are against OSPKE so clearing the
498 * bit does nothing.
499 *
500 * This way, we will see "pku" in cpuinfo, but not
501 * "ospke", which is exactly what we want. It shows
502 * that the CPU has PKU, but the OS has not enabled it.
503 * This happens to be exactly how a system would look
504 * if we disabled the config option.
505 */
506 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
507 pku_disabled = true;
508 return 1;
509 }
510 __setup("nopku", setup_disable_pku);
511 #endif /* CONFIG_X86_64 */
512
513 /*
514 * Some CPU features depend on higher CPUID levels, which may not always
515 * be available due to CPUID level capping or broken virtualization
516 * software. Add those features to this table to auto-disable them.
517 */
518 struct cpuid_dependent_feature {
519 u32 feature;
520 u32 level;
521 };
522
523 static const struct cpuid_dependent_feature
524 cpuid_dependent_features[] = {
525 { X86_FEATURE_MWAIT, 0x00000005 },
526 { X86_FEATURE_DCA, 0x00000009 },
527 { X86_FEATURE_XSAVE, 0x0000000d },
528 { 0, 0 }
529 };
530
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)531 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
532 {
533 const struct cpuid_dependent_feature *df;
534
535 for (df = cpuid_dependent_features; df->feature; df++) {
536
537 if (!cpu_has(c, df->feature))
538 continue;
539 /*
540 * Note: cpuid_level is set to -1 if unavailable, but
541 * extended_extended_level is set to 0 if unavailable
542 * and the legitimate extended levels are all negative
543 * when signed; hence the weird messing around with
544 * signs here...
545 */
546 if (!((s32)df->level < 0 ?
547 (u32)df->level > (u32)c->extended_cpuid_level :
548 (s32)df->level > (s32)c->cpuid_level))
549 continue;
550
551 clear_cpu_cap(c, df->feature);
552 if (!warn)
553 continue;
554
555 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
556 x86_cap_flag(df->feature), df->level);
557 }
558 }
559
560 /*
561 * Naming convention should be: <Name> [(<Codename>)]
562 * This table only is used unless init_<vendor>() below doesn't set it;
563 * in particular, if CPUID levels 0x80000002..4 are supported, this
564 * isn't used
565 */
566
567 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)568 static const char *table_lookup_model(struct cpuinfo_x86 *c)
569 {
570 #ifdef CONFIG_X86_32
571 const struct legacy_cpu_model_info *info;
572
573 if (c->x86_model >= 16)
574 return NULL; /* Range check */
575
576 if (!this_cpu)
577 return NULL;
578
579 info = this_cpu->legacy_models;
580
581 while (info->family) {
582 if (info->family == c->x86)
583 return info->model_names[c->x86_model];
584 info++;
585 }
586 #endif
587 return NULL; /* Not found */
588 }
589
590 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
591 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
592 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
593
load_percpu_segment(int cpu)594 void load_percpu_segment(int cpu)
595 {
596 #ifdef CONFIG_X86_32
597 loadsegment(fs, __KERNEL_PERCPU);
598 #else
599 __loadsegment_simple(gs, 0);
600 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
601 #endif
602 load_stack_canary_segment();
603 }
604
605 #ifdef CONFIG_X86_32
606 /* The 32-bit entry code needs to find cpu_entry_area. */
607 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
608 #endif
609
610 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)611 void load_direct_gdt(int cpu)
612 {
613 struct desc_ptr gdt_descr;
614
615 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
616 gdt_descr.size = GDT_SIZE - 1;
617 load_gdt(&gdt_descr);
618 }
619 EXPORT_SYMBOL_GPL(load_direct_gdt);
620
621 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)622 void load_fixmap_gdt(int cpu)
623 {
624 struct desc_ptr gdt_descr;
625
626 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
627 gdt_descr.size = GDT_SIZE - 1;
628 load_gdt(&gdt_descr);
629 }
630 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
631
632 /*
633 * Current gdt points %fs at the "master" per-cpu area: after this,
634 * it's on the real one.
635 */
switch_to_new_gdt(int cpu)636 void switch_to_new_gdt(int cpu)
637 {
638 /* Load the original GDT */
639 load_direct_gdt(cpu);
640 /* Reload the per-cpu base */
641 load_percpu_segment(cpu);
642 }
643
644 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
645
get_model_name(struct cpuinfo_x86 * c)646 static void get_model_name(struct cpuinfo_x86 *c)
647 {
648 unsigned int *v;
649 char *p, *q, *s;
650
651 if (c->extended_cpuid_level < 0x80000004)
652 return;
653
654 v = (unsigned int *)c->x86_model_id;
655 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
656 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
657 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
658 c->x86_model_id[48] = 0;
659
660 /* Trim whitespace */
661 p = q = s = &c->x86_model_id[0];
662
663 while (*p == ' ')
664 p++;
665
666 while (*p) {
667 /* Note the last non-whitespace index */
668 if (!isspace(*p))
669 s = q;
670
671 *q++ = *p++;
672 }
673
674 *(s + 1) = '\0';
675 }
676
detect_num_cpu_cores(struct cpuinfo_x86 * c)677 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
678 {
679 unsigned int eax, ebx, ecx, edx;
680
681 c->x86_max_cores = 1;
682 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
683 return;
684
685 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
686 if (eax & 0x1f)
687 c->x86_max_cores = (eax >> 26) + 1;
688 }
689
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)690 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
691 {
692 unsigned int n, dummy, ebx, ecx, edx, l2size;
693
694 n = c->extended_cpuid_level;
695
696 if (n >= 0x80000005) {
697 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
698 c->x86_cache_size = (ecx>>24) + (edx>>24);
699 #ifdef CONFIG_X86_64
700 /* On K8 L1 TLB is inclusive, so don't count it */
701 c->x86_tlbsize = 0;
702 #endif
703 }
704
705 if (n < 0x80000006) /* Some chips just has a large L1. */
706 return;
707
708 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
709 l2size = ecx >> 16;
710
711 #ifdef CONFIG_X86_64
712 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
713 #else
714 /* do processor-specific cache resizing */
715 if (this_cpu->legacy_cache_size)
716 l2size = this_cpu->legacy_cache_size(c, l2size);
717
718 /* Allow user to override all this if necessary. */
719 if (cachesize_override != -1)
720 l2size = cachesize_override;
721
722 if (l2size == 0)
723 return; /* Again, no L2 cache is possible */
724 #endif
725
726 c->x86_cache_size = l2size;
727 }
728
729 u16 __read_mostly tlb_lli_4k[NR_INFO];
730 u16 __read_mostly tlb_lli_2m[NR_INFO];
731 u16 __read_mostly tlb_lli_4m[NR_INFO];
732 u16 __read_mostly tlb_lld_4k[NR_INFO];
733 u16 __read_mostly tlb_lld_2m[NR_INFO];
734 u16 __read_mostly tlb_lld_4m[NR_INFO];
735 u16 __read_mostly tlb_lld_1g[NR_INFO];
736
cpu_detect_tlb(struct cpuinfo_x86 * c)737 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
738 {
739 if (this_cpu->c_detect_tlb)
740 this_cpu->c_detect_tlb(c);
741
742 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
743 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
744 tlb_lli_4m[ENTRIES]);
745
746 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
747 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
748 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
749 }
750
detect_ht_early(struct cpuinfo_x86 * c)751 int detect_ht_early(struct cpuinfo_x86 *c)
752 {
753 #ifdef CONFIG_SMP
754 u32 eax, ebx, ecx, edx;
755
756 if (!cpu_has(c, X86_FEATURE_HT))
757 return -1;
758
759 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
760 return -1;
761
762 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
763 return -1;
764
765 cpuid(1, &eax, &ebx, &ecx, &edx);
766
767 smp_num_siblings = (ebx & 0xff0000) >> 16;
768 if (smp_num_siblings == 1)
769 pr_info_once("CPU0: Hyper-Threading is disabled\n");
770 #endif
771 return 0;
772 }
773
detect_ht(struct cpuinfo_x86 * c)774 void detect_ht(struct cpuinfo_x86 *c)
775 {
776 #ifdef CONFIG_SMP
777 int index_msb, core_bits;
778
779 if (detect_ht_early(c) < 0)
780 return;
781
782 index_msb = get_count_order(smp_num_siblings);
783 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
784
785 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
786
787 index_msb = get_count_order(smp_num_siblings);
788
789 core_bits = get_count_order(c->x86_max_cores);
790
791 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
792 ((1 << core_bits) - 1);
793 #endif
794 }
795
get_cpu_vendor(struct cpuinfo_x86 * c)796 static void get_cpu_vendor(struct cpuinfo_x86 *c)
797 {
798 char *v = c->x86_vendor_id;
799 int i;
800
801 for (i = 0; i < X86_VENDOR_NUM; i++) {
802 if (!cpu_devs[i])
803 break;
804
805 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
806 (cpu_devs[i]->c_ident[1] &&
807 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
808
809 this_cpu = cpu_devs[i];
810 c->x86_vendor = this_cpu->c_x86_vendor;
811 return;
812 }
813 }
814
815 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
816 "CPU: Your system may be unstable.\n", v);
817
818 c->x86_vendor = X86_VENDOR_UNKNOWN;
819 this_cpu = &default_cpu;
820 }
821
cpu_detect(struct cpuinfo_x86 * c)822 void cpu_detect(struct cpuinfo_x86 *c)
823 {
824 /* Get vendor name */
825 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
826 (unsigned int *)&c->x86_vendor_id[0],
827 (unsigned int *)&c->x86_vendor_id[8],
828 (unsigned int *)&c->x86_vendor_id[4]);
829
830 c->x86 = 4;
831 /* Intel-defined flags: level 0x00000001 */
832 if (c->cpuid_level >= 0x00000001) {
833 u32 junk, tfms, cap0, misc;
834
835 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
836 c->x86 = x86_family(tfms);
837 c->x86_model = x86_model(tfms);
838 c->x86_stepping = x86_stepping(tfms);
839
840 if (cap0 & (1<<19)) {
841 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
842 c->x86_cache_alignment = c->x86_clflush_size;
843 }
844 }
845 }
846
apply_forced_caps(struct cpuinfo_x86 * c)847 static void apply_forced_caps(struct cpuinfo_x86 *c)
848 {
849 int i;
850
851 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
852 c->x86_capability[i] &= ~cpu_caps_cleared[i];
853 c->x86_capability[i] |= cpu_caps_set[i];
854 }
855 }
856
init_speculation_control(struct cpuinfo_x86 * c)857 static void init_speculation_control(struct cpuinfo_x86 *c)
858 {
859 /*
860 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
861 * and they also have a different bit for STIBP support. Also,
862 * a hypervisor might have set the individual AMD bits even on
863 * Intel CPUs, for finer-grained selection of what's available.
864 */
865 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
866 set_cpu_cap(c, X86_FEATURE_IBRS);
867 set_cpu_cap(c, X86_FEATURE_IBPB);
868 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
869 }
870
871 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
872 set_cpu_cap(c, X86_FEATURE_STIBP);
873
874 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
875 cpu_has(c, X86_FEATURE_VIRT_SSBD))
876 set_cpu_cap(c, X86_FEATURE_SSBD);
877
878 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
879 set_cpu_cap(c, X86_FEATURE_IBRS);
880 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
881 }
882
883 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
884 set_cpu_cap(c, X86_FEATURE_IBPB);
885
886 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
887 set_cpu_cap(c, X86_FEATURE_STIBP);
888 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
889 }
890
891 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
892 set_cpu_cap(c, X86_FEATURE_SSBD);
893 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
894 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
895 }
896 }
897
get_cpu_cap(struct cpuinfo_x86 * c)898 void get_cpu_cap(struct cpuinfo_x86 *c)
899 {
900 u32 eax, ebx, ecx, edx;
901
902 /* Intel-defined flags: level 0x00000001 */
903 if (c->cpuid_level >= 0x00000001) {
904 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
905
906 c->x86_capability[CPUID_1_ECX] = ecx;
907 c->x86_capability[CPUID_1_EDX] = edx;
908 }
909
910 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
911 if (c->cpuid_level >= 0x00000006)
912 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
913
914 /* Additional Intel-defined flags: level 0x00000007 */
915 if (c->cpuid_level >= 0x00000007) {
916 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
917 c->x86_capability[CPUID_7_0_EBX] = ebx;
918 c->x86_capability[CPUID_7_ECX] = ecx;
919 c->x86_capability[CPUID_7_EDX] = edx;
920
921 /* Check valid sub-leaf index before accessing it */
922 if (eax >= 1) {
923 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
924 c->x86_capability[CPUID_7_1_EAX] = eax;
925 }
926 }
927
928 /* Extended state features: level 0x0000000d */
929 if (c->cpuid_level >= 0x0000000d) {
930 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
931
932 c->x86_capability[CPUID_D_1_EAX] = eax;
933 }
934
935 /* AMD-defined flags: level 0x80000001 */
936 eax = cpuid_eax(0x80000000);
937 c->extended_cpuid_level = eax;
938
939 if ((eax & 0xffff0000) == 0x80000000) {
940 if (eax >= 0x80000001) {
941 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
942
943 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
944 c->x86_capability[CPUID_8000_0001_EDX] = edx;
945 }
946 }
947
948 if (c->extended_cpuid_level >= 0x80000007) {
949 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
950
951 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
952 c->x86_power = edx;
953 }
954
955 if (c->extended_cpuid_level >= 0x80000008) {
956 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
957 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
958 }
959
960 if (c->extended_cpuid_level >= 0x8000000a)
961 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
962
963 init_scattered_cpuid_features(c);
964 init_speculation_control(c);
965
966 /*
967 * Clear/Set all flags overridden by options, after probe.
968 * This needs to happen each time we re-probe, which may happen
969 * several times during CPU initialization.
970 */
971 apply_forced_caps(c);
972 }
973
get_cpu_address_sizes(struct cpuinfo_x86 * c)974 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
975 {
976 u32 eax, ebx, ecx, edx;
977
978 if (c->extended_cpuid_level >= 0x80000008) {
979 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
980
981 c->x86_virt_bits = (eax >> 8) & 0xff;
982 c->x86_phys_bits = eax & 0xff;
983 }
984 #ifdef CONFIG_X86_32
985 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
986 c->x86_phys_bits = 36;
987 #endif
988 c->x86_cache_bits = c->x86_phys_bits;
989 }
990
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)991 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
992 {
993 #ifdef CONFIG_X86_32
994 int i;
995
996 /*
997 * First of all, decide if this is a 486 or higher
998 * It's a 486 if we can modify the AC flag
999 */
1000 if (flag_is_changeable_p(X86_EFLAGS_AC))
1001 c->x86 = 4;
1002 else
1003 c->x86 = 3;
1004
1005 for (i = 0; i < X86_VENDOR_NUM; i++)
1006 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1007 c->x86_vendor_id[0] = 0;
1008 cpu_devs[i]->c_identify(c);
1009 if (c->x86_vendor_id[0]) {
1010 get_cpu_vendor(c);
1011 break;
1012 }
1013 }
1014 #endif
1015 }
1016
1017 #define NO_SPECULATION BIT(0)
1018 #define NO_MELTDOWN BIT(1)
1019 #define NO_SSB BIT(2)
1020 #define NO_L1TF BIT(3)
1021 #define NO_MDS BIT(4)
1022 #define MSBDS_ONLY BIT(5)
1023 #define NO_SWAPGS BIT(6)
1024 #define NO_ITLB_MULTIHIT BIT(7)
1025 #define NO_SPECTRE_V2 BIT(8)
1026
1027 #define VULNWL(vendor, family, model, whitelist) \
1028 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1029
1030 #define VULNWL_INTEL(model, whitelist) \
1031 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1032
1033 #define VULNWL_AMD(family, whitelist) \
1034 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1035
1036 #define VULNWL_HYGON(family, whitelist) \
1037 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1038
1039 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1040 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1041 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1042 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1043 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1044
1045 /* Intel Family 6 */
1046 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1047 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1048 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1049 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1050 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1051
1052 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058
1059 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1060
1061 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063
1064 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067
1068 /*
1069 * Technically, swapgs isn't serializing on AMD (despite it previously
1070 * being documented as such in the APM). But according to AMD, %gs is
1071 * updated non-speculatively, and the issuing of %gs-relative memory
1072 * operands will be blocked until the %gs update completes, which is
1073 * good enough for our purposes.
1074 */
1075
1076 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT),
1077
1078 /* AMD Family 0xf - 0x12 */
1079 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083
1084 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1085 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087
1088 /* Zhaoxin Family 7 */
1089 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1090 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS),
1091 {}
1092 };
1093
1094 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1095 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1096 INTEL_FAM6_##model, steppings, \
1097 X86_FEATURE_ANY, issues)
1098
1099 #define SRBDS BIT(0)
1100
1101 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1102 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1103 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1104 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1105 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1106 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1107 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1108 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS),
1109 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS),
1110 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPINGS(0x0, 0xC), SRBDS),
1111 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPINGS(0x0, 0xD), SRBDS),
1112 {}
1113 };
1114
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1115 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1116 {
1117 const struct x86_cpu_id *m = x86_match_cpu(table);
1118
1119 return m && !!(m->driver_data & which);
1120 }
1121
x86_read_arch_cap_msr(void)1122 u64 x86_read_arch_cap_msr(void)
1123 {
1124 u64 ia32_cap = 0;
1125
1126 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1127 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1128
1129 return ia32_cap;
1130 }
1131
cpu_set_bug_bits(struct cpuinfo_x86 * c)1132 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1133 {
1134 u64 ia32_cap = x86_read_arch_cap_msr();
1135
1136 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1137 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1138 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1139 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1140
1141 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1142 return;
1143
1144 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1145
1146 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1147 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1148
1149 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1150 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1151 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1152 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1153
1154 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1155 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1156
1157 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1158 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1159 setup_force_cpu_bug(X86_BUG_MDS);
1160 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1161 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1162 }
1163
1164 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1165 setup_force_cpu_bug(X86_BUG_SWAPGS);
1166
1167 /*
1168 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1169 * - TSX is supported or
1170 * - TSX_CTRL is present
1171 *
1172 * TSX_CTRL check is needed for cases when TSX could be disabled before
1173 * the kernel boot e.g. kexec.
1174 * TSX_CTRL check alone is not sufficient for cases when the microcode
1175 * update is not present or running as guest that don't get TSX_CTRL.
1176 */
1177 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1178 (cpu_has(c, X86_FEATURE_RTM) ||
1179 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1180 setup_force_cpu_bug(X86_BUG_TAA);
1181
1182 /*
1183 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1184 * in the vulnerability blacklist.
1185 */
1186 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1187 cpu_has(c, X86_FEATURE_RDSEED)) &&
1188 cpu_matches(cpu_vuln_blacklist, SRBDS))
1189 setup_force_cpu_bug(X86_BUG_SRBDS);
1190
1191 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1192 return;
1193
1194 /* Rogue Data Cache Load? No! */
1195 if (ia32_cap & ARCH_CAP_RDCL_NO)
1196 return;
1197
1198 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1199
1200 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1201 return;
1202
1203 setup_force_cpu_bug(X86_BUG_L1TF);
1204 }
1205
1206 /*
1207 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1208 * unfortunately, that's not true in practice because of early VIA
1209 * chips and (more importantly) broken virtualizers that are not easy
1210 * to detect. In the latter case it doesn't even *fail* reliably, so
1211 * probing for it doesn't even work. Disable it completely on 32-bit
1212 * unless we can find a reliable way to detect all the broken cases.
1213 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1214 */
detect_nopl(void)1215 static void detect_nopl(void)
1216 {
1217 #ifdef CONFIG_X86_32
1218 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1219 #else
1220 setup_force_cpu_cap(X86_FEATURE_NOPL);
1221 #endif
1222 }
1223
1224 /*
1225 * We parse cpu parameters early because fpu__init_system() is executed
1226 * before parse_early_param().
1227 */
cpu_parse_early_param(void)1228 static void __init cpu_parse_early_param(void)
1229 {
1230 char arg[128];
1231 char *argptr = arg;
1232 int arglen, res, bit;
1233
1234 #ifdef CONFIG_X86_32
1235 if (cmdline_find_option_bool(boot_command_line, "no387"))
1236 #ifdef CONFIG_MATH_EMULATION
1237 setup_clear_cpu_cap(X86_FEATURE_FPU);
1238 #else
1239 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1240 #endif
1241
1242 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1243 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1244 #endif
1245
1246 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1247 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1248
1249 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1250 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1251
1252 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1253 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1254
1255 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1256 if (arglen <= 0)
1257 return;
1258
1259 pr_info("Clearing CPUID bits:");
1260 do {
1261 res = get_option(&argptr, &bit);
1262 if (res == 0 || res == 3)
1263 break;
1264
1265 /* If the argument was too long, the last bit may be cut off */
1266 if (res == 1 && arglen >= sizeof(arg))
1267 break;
1268
1269 if (bit >= 0 && bit < NCAPINTS * 32) {
1270 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1271 setup_clear_cpu_cap(bit);
1272 }
1273 } while (res == 2);
1274 pr_cont("\n");
1275 }
1276
1277 /*
1278 * Do minimum CPU detection early.
1279 * Fields really needed: vendor, cpuid_level, family, model, mask,
1280 * cache alignment.
1281 * The others are not touched to avoid unwanted side effects.
1282 *
1283 * WARNING: this function is only called on the boot CPU. Don't add code
1284 * here that is supposed to run on all CPUs.
1285 */
early_identify_cpu(struct cpuinfo_x86 * c)1286 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1287 {
1288 #ifdef CONFIG_X86_64
1289 c->x86_clflush_size = 64;
1290 c->x86_phys_bits = 36;
1291 c->x86_virt_bits = 48;
1292 #else
1293 c->x86_clflush_size = 32;
1294 c->x86_phys_bits = 32;
1295 c->x86_virt_bits = 32;
1296 #endif
1297 c->x86_cache_alignment = c->x86_clflush_size;
1298
1299 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1300 c->extended_cpuid_level = 0;
1301
1302 if (!have_cpuid_p())
1303 identify_cpu_without_cpuid(c);
1304
1305 /* cyrix could have cpuid enabled via c_identify()*/
1306 if (have_cpuid_p()) {
1307 cpu_detect(c);
1308 get_cpu_vendor(c);
1309 get_cpu_cap(c);
1310 get_cpu_address_sizes(c);
1311 setup_force_cpu_cap(X86_FEATURE_CPUID);
1312 cpu_parse_early_param();
1313
1314 if (this_cpu->c_early_init)
1315 this_cpu->c_early_init(c);
1316
1317 c->cpu_index = 0;
1318 filter_cpuid_features(c, false);
1319
1320 if (this_cpu->c_bsp_init)
1321 this_cpu->c_bsp_init(c);
1322 } else {
1323 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1324 }
1325
1326 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1327
1328 cpu_set_bug_bits(c);
1329
1330 cpu_set_core_cap_bits(c);
1331
1332 fpu__init_system(c);
1333
1334 #ifdef CONFIG_X86_32
1335 /*
1336 * Regardless of whether PCID is enumerated, the SDM says
1337 * that it can't be enabled in 32-bit mode.
1338 */
1339 setup_clear_cpu_cap(X86_FEATURE_PCID);
1340 #endif
1341
1342 /*
1343 * Later in the boot process pgtable_l5_enabled() relies on
1344 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1345 * enabled by this point we need to clear the feature bit to avoid
1346 * false-positives at the later stage.
1347 *
1348 * pgtable_l5_enabled() can be false here for several reasons:
1349 * - 5-level paging is disabled compile-time;
1350 * - it's 32-bit kernel;
1351 * - machine doesn't support 5-level paging;
1352 * - user specified 'no5lvl' in kernel command line.
1353 */
1354 if (!pgtable_l5_enabled())
1355 setup_clear_cpu_cap(X86_FEATURE_LA57);
1356
1357 detect_nopl();
1358 }
1359
early_cpu_init(void)1360 void __init early_cpu_init(void)
1361 {
1362 const struct cpu_dev *const *cdev;
1363 int count = 0;
1364
1365 #ifdef CONFIG_PROCESSOR_SELECT
1366 pr_info("KERNEL supported cpus:\n");
1367 #endif
1368
1369 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1370 const struct cpu_dev *cpudev = *cdev;
1371
1372 if (count >= X86_VENDOR_NUM)
1373 break;
1374 cpu_devs[count] = cpudev;
1375 count++;
1376
1377 #ifdef CONFIG_PROCESSOR_SELECT
1378 {
1379 unsigned int j;
1380
1381 for (j = 0; j < 2; j++) {
1382 if (!cpudev->c_ident[j])
1383 continue;
1384 pr_info(" %s %s\n", cpudev->c_vendor,
1385 cpudev->c_ident[j]);
1386 }
1387 }
1388 #endif
1389 }
1390 early_identify_cpu(&boot_cpu_data);
1391 }
1392
detect_null_seg_behavior(struct cpuinfo_x86 * c)1393 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1394 {
1395 #ifdef CONFIG_X86_64
1396 /*
1397 * Empirically, writing zero to a segment selector on AMD does
1398 * not clear the base, whereas writing zero to a segment
1399 * selector on Intel does clear the base. Intel's behavior
1400 * allows slightly faster context switches in the common case
1401 * where GS is unused by the prev and next threads.
1402 *
1403 * Since neither vendor documents this anywhere that I can see,
1404 * detect it directly instead of hardcoding the choice by
1405 * vendor.
1406 *
1407 * I've designated AMD's behavior as the "bug" because it's
1408 * counterintuitive and less friendly.
1409 */
1410
1411 unsigned long old_base, tmp;
1412 rdmsrl(MSR_FS_BASE, old_base);
1413 wrmsrl(MSR_FS_BASE, 1);
1414 loadsegment(fs, 0);
1415 rdmsrl(MSR_FS_BASE, tmp);
1416 if (tmp != 0)
1417 set_cpu_bug(c, X86_BUG_NULL_SEG);
1418 wrmsrl(MSR_FS_BASE, old_base);
1419 #endif
1420 }
1421
generic_identify(struct cpuinfo_x86 * c)1422 static void generic_identify(struct cpuinfo_x86 *c)
1423 {
1424 c->extended_cpuid_level = 0;
1425
1426 if (!have_cpuid_p())
1427 identify_cpu_without_cpuid(c);
1428
1429 /* cyrix could have cpuid enabled via c_identify()*/
1430 if (!have_cpuid_p())
1431 return;
1432
1433 cpu_detect(c);
1434
1435 get_cpu_vendor(c);
1436
1437 get_cpu_cap(c);
1438
1439 get_cpu_address_sizes(c);
1440
1441 if (c->cpuid_level >= 0x00000001) {
1442 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1443 #ifdef CONFIG_X86_32
1444 # ifdef CONFIG_SMP
1445 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1446 # else
1447 c->apicid = c->initial_apicid;
1448 # endif
1449 #endif
1450 c->phys_proc_id = c->initial_apicid;
1451 }
1452
1453 get_model_name(c); /* Default name */
1454
1455 detect_null_seg_behavior(c);
1456
1457 /*
1458 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1459 * systems that run Linux at CPL > 0 may or may not have the
1460 * issue, but, even if they have the issue, there's absolutely
1461 * nothing we can do about it because we can't use the real IRET
1462 * instruction.
1463 *
1464 * NB: For the time being, only 32-bit kernels support
1465 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1466 * whether to apply espfix using paravirt hooks. If any
1467 * non-paravirt system ever shows up that does *not* have the
1468 * ESPFIX issue, we can change this.
1469 */
1470 #ifdef CONFIG_X86_32
1471 set_cpu_bug(c, X86_BUG_ESPFIX);
1472 #endif
1473 }
1474
1475 /*
1476 * Validate that ACPI/mptables have the same information about the
1477 * effective APIC id and update the package map.
1478 */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1479 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1480 {
1481 #ifdef CONFIG_SMP
1482 unsigned int apicid, cpu = smp_processor_id();
1483
1484 apicid = apic->cpu_present_to_apicid(cpu);
1485
1486 if (apicid != c->apicid) {
1487 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1488 cpu, apicid, c->initial_apicid);
1489 }
1490 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1491 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1492 #else
1493 c->logical_proc_id = 0;
1494 #endif
1495 }
1496
1497 /*
1498 * This does the hard work of actually picking apart the CPU stuff...
1499 */
identify_cpu(struct cpuinfo_x86 * c)1500 static void identify_cpu(struct cpuinfo_x86 *c)
1501 {
1502 int i;
1503
1504 c->loops_per_jiffy = loops_per_jiffy;
1505 c->x86_cache_size = 0;
1506 c->x86_vendor = X86_VENDOR_UNKNOWN;
1507 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1508 c->x86_vendor_id[0] = '\0'; /* Unset */
1509 c->x86_model_id[0] = '\0'; /* Unset */
1510 c->x86_max_cores = 1;
1511 c->x86_coreid_bits = 0;
1512 c->cu_id = 0xff;
1513 #ifdef CONFIG_X86_64
1514 c->x86_clflush_size = 64;
1515 c->x86_phys_bits = 36;
1516 c->x86_virt_bits = 48;
1517 #else
1518 c->cpuid_level = -1; /* CPUID not detected */
1519 c->x86_clflush_size = 32;
1520 c->x86_phys_bits = 32;
1521 c->x86_virt_bits = 32;
1522 #endif
1523 c->x86_cache_alignment = c->x86_clflush_size;
1524 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1525 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1526 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1527 #endif
1528
1529 generic_identify(c);
1530
1531 if (this_cpu->c_identify)
1532 this_cpu->c_identify(c);
1533
1534 /* Clear/Set all flags overridden by options, after probe */
1535 apply_forced_caps(c);
1536
1537 #ifdef CONFIG_X86_64
1538 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1539 #endif
1540
1541 /*
1542 * Vendor-specific initialization. In this section we
1543 * canonicalize the feature flags, meaning if there are
1544 * features a certain CPU supports which CPUID doesn't
1545 * tell us, CPUID claiming incorrect flags, or other bugs,
1546 * we handle them here.
1547 *
1548 * At the end of this section, c->x86_capability better
1549 * indicate the features this CPU genuinely supports!
1550 */
1551 if (this_cpu->c_init)
1552 this_cpu->c_init(c);
1553
1554 /* Disable the PN if appropriate */
1555 squash_the_stupid_serial_number(c);
1556
1557 /* Set up SMEP/SMAP/UMIP */
1558 setup_smep(c);
1559 setup_smap(c);
1560 setup_umip(c);
1561
1562 /* Enable FSGSBASE instructions if available. */
1563 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1564 cr4_set_bits(X86_CR4_FSGSBASE);
1565 elf_hwcap2 |= HWCAP2_FSGSBASE;
1566 }
1567
1568 /*
1569 * The vendor-specific functions might have changed features.
1570 * Now we do "generic changes."
1571 */
1572
1573 /* Filter out anything that depends on CPUID levels we don't have */
1574 filter_cpuid_features(c, true);
1575
1576 /* If the model name is still unset, do table lookup. */
1577 if (!c->x86_model_id[0]) {
1578 const char *p;
1579 p = table_lookup_model(c);
1580 if (p)
1581 strcpy(c->x86_model_id, p);
1582 else
1583 /* Last resort... */
1584 sprintf(c->x86_model_id, "%02x/%02x",
1585 c->x86, c->x86_model);
1586 }
1587
1588 #ifdef CONFIG_X86_64
1589 detect_ht(c);
1590 #endif
1591
1592 x86_init_rdrand(c);
1593 setup_pku(c);
1594
1595 /*
1596 * Clear/Set all flags overridden by options, need do it
1597 * before following smp all cpus cap AND.
1598 */
1599 apply_forced_caps(c);
1600
1601 /*
1602 * On SMP, boot_cpu_data holds the common feature set between
1603 * all CPUs; so make sure that we indicate which features are
1604 * common between the CPUs. The first time this routine gets
1605 * executed, c == &boot_cpu_data.
1606 */
1607 if (c != &boot_cpu_data) {
1608 /* AND the already accumulated flags with these */
1609 for (i = 0; i < NCAPINTS; i++)
1610 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1611
1612 /* OR, i.e. replicate the bug flags */
1613 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1614 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1615 }
1616
1617 /* Init Machine Check Exception if available. */
1618 mcheck_cpu_init(c);
1619
1620 select_idle_routine(c);
1621
1622 #ifdef CONFIG_NUMA
1623 numa_add_cpu(smp_processor_id());
1624 #endif
1625 }
1626
1627 /*
1628 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1629 * on 32-bit kernels:
1630 */
1631 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1632 void enable_sep_cpu(void)
1633 {
1634 struct tss_struct *tss;
1635 int cpu;
1636
1637 if (!boot_cpu_has(X86_FEATURE_SEP))
1638 return;
1639
1640 cpu = get_cpu();
1641 tss = &per_cpu(cpu_tss_rw, cpu);
1642
1643 /*
1644 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1645 * see the big comment in struct x86_hw_tss's definition.
1646 */
1647
1648 tss->x86_tss.ss1 = __KERNEL_CS;
1649 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1650 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1651 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1652
1653 put_cpu();
1654 }
1655 #endif
1656
identify_boot_cpu(void)1657 void __init identify_boot_cpu(void)
1658 {
1659 identify_cpu(&boot_cpu_data);
1660 #ifdef CONFIG_X86_32
1661 sysenter_setup();
1662 enable_sep_cpu();
1663 #endif
1664 cpu_detect_tlb(&boot_cpu_data);
1665 setup_cr_pinning();
1666
1667 tsx_init();
1668 }
1669
identify_secondary_cpu(struct cpuinfo_x86 * c)1670 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1671 {
1672 BUG_ON(c == &boot_cpu_data);
1673 identify_cpu(c);
1674 #ifdef CONFIG_X86_32
1675 enable_sep_cpu();
1676 #endif
1677 mtrr_ap_init();
1678 validate_apic_and_package_id(c);
1679 x86_spec_ctrl_setup_ap();
1680 update_srbds_msr();
1681 }
1682
setup_noclflush(char * arg)1683 static __init int setup_noclflush(char *arg)
1684 {
1685 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1686 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1687 return 1;
1688 }
1689 __setup("noclflush", setup_noclflush);
1690
print_cpu_info(struct cpuinfo_x86 * c)1691 void print_cpu_info(struct cpuinfo_x86 *c)
1692 {
1693 const char *vendor = NULL;
1694
1695 if (c->x86_vendor < X86_VENDOR_NUM) {
1696 vendor = this_cpu->c_vendor;
1697 } else {
1698 if (c->cpuid_level >= 0)
1699 vendor = c->x86_vendor_id;
1700 }
1701
1702 if (vendor && !strstr(c->x86_model_id, vendor))
1703 pr_cont("%s ", vendor);
1704
1705 if (c->x86_model_id[0])
1706 pr_cont("%s", c->x86_model_id);
1707 else
1708 pr_cont("%d86", c->x86);
1709
1710 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1711
1712 if (c->x86_stepping || c->cpuid_level >= 0)
1713 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1714 else
1715 pr_cont(")\n");
1716 }
1717
1718 /*
1719 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1720 * But we need to keep a dummy __setup around otherwise it would
1721 * show up as an environment variable for init.
1722 */
setup_clearcpuid(char * arg)1723 static __init int setup_clearcpuid(char *arg)
1724 {
1725 return 1;
1726 }
1727 __setup("clearcpuid=", setup_clearcpuid);
1728
1729 #ifdef CONFIG_X86_64
1730 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1731 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1732 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1733
1734 /*
1735 * The following percpu variables are hot. Align current_task to
1736 * cacheline size such that they fall in the same cacheline.
1737 */
1738 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1739 &init_task;
1740 EXPORT_PER_CPU_SYMBOL(current_task);
1741
1742 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1743 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1744
1745 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1746 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1747
1748 /* May not be marked __init: used by software suspend */
syscall_init(void)1749 void syscall_init(void)
1750 {
1751 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1752 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1753
1754 #ifdef CONFIG_IA32_EMULATION
1755 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1756 /*
1757 * This only works on Intel CPUs.
1758 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1759 * This does not cause SYSENTER to jump to the wrong location, because
1760 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1761 */
1762 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1763 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1764 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1765 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1766 #else
1767 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1768 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1769 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1770 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1771 #endif
1772
1773 /* Flags to clear on syscall */
1774 wrmsrl(MSR_SYSCALL_MASK,
1775 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1776 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1777 }
1778
1779 #else /* CONFIG_X86_64 */
1780
1781 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1782 EXPORT_PER_CPU_SYMBOL(current_task);
1783 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1784 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1785
1786 /*
1787 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1788 * the top of the kernel stack. Use an extra percpu variable to track the
1789 * top of the kernel stack directly.
1790 */
1791 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1792 (unsigned long)&init_thread_union + THREAD_SIZE;
1793 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1794
1795 #ifdef CONFIG_STACKPROTECTOR
1796 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1797 #endif
1798
1799 #endif /* CONFIG_X86_64 */
1800
1801 /*
1802 * Clear all 6 debug registers:
1803 */
clear_all_debug_regs(void)1804 static void clear_all_debug_regs(void)
1805 {
1806 int i;
1807
1808 for (i = 0; i < 8; i++) {
1809 /* Ignore db4, db5 */
1810 if ((i == 4) || (i == 5))
1811 continue;
1812
1813 set_debugreg(0, i);
1814 }
1815 }
1816
1817 #ifdef CONFIG_KGDB
1818 /*
1819 * Restore debug regs if using kgdbwait and you have a kernel debugger
1820 * connection established.
1821 */
dbg_restore_debug_regs(void)1822 static void dbg_restore_debug_regs(void)
1823 {
1824 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1825 arch_kgdb_ops.correct_hw_break();
1826 }
1827 #else /* ! CONFIG_KGDB */
1828 #define dbg_restore_debug_regs()
1829 #endif /* ! CONFIG_KGDB */
1830
wait_for_master_cpu(int cpu)1831 static void wait_for_master_cpu(int cpu)
1832 {
1833 #ifdef CONFIG_SMP
1834 /*
1835 * wait for ACK from master CPU before continuing
1836 * with AP initialization
1837 */
1838 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1839 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1840 cpu_relax();
1841 #endif
1842 }
1843
1844 #ifdef CONFIG_X86_64
setup_getcpu(int cpu)1845 static inline void setup_getcpu(int cpu)
1846 {
1847 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1848 struct desc_struct d = { };
1849
1850 if (boot_cpu_has(X86_FEATURE_RDTSCP))
1851 write_rdtscp_aux(cpudata);
1852
1853 /* Store CPU and node number in limit. */
1854 d.limit0 = cpudata;
1855 d.limit1 = cpudata >> 16;
1856
1857 d.type = 5; /* RO data, expand down, accessed */
1858 d.dpl = 3; /* Visible to user code */
1859 d.s = 1; /* Not a system segment */
1860 d.p = 1; /* Present */
1861 d.d = 1; /* 32-bit */
1862
1863 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1864 }
1865
ucode_cpu_init(int cpu)1866 static inline void ucode_cpu_init(int cpu)
1867 {
1868 if (cpu)
1869 load_ucode_ap();
1870 }
1871
tss_setup_ist(struct tss_struct * tss)1872 static inline void tss_setup_ist(struct tss_struct *tss)
1873 {
1874 /* Set up the per-CPU TSS IST stacks */
1875 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1876 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1877 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1878 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1879 /* Only mapped when SEV-ES is active */
1880 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1881 }
1882
1883 #else /* CONFIG_X86_64 */
1884
setup_getcpu(int cpu)1885 static inline void setup_getcpu(int cpu) { }
1886
ucode_cpu_init(int cpu)1887 static inline void ucode_cpu_init(int cpu)
1888 {
1889 show_ucode_info_early();
1890 }
1891
tss_setup_ist(struct tss_struct * tss)1892 static inline void tss_setup_ist(struct tss_struct *tss) { }
1893
1894 #endif /* !CONFIG_X86_64 */
1895
tss_setup_io_bitmap(struct tss_struct * tss)1896 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1897 {
1898 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1899
1900 #ifdef CONFIG_X86_IOPL_IOPERM
1901 tss->io_bitmap.prev_max = 0;
1902 tss->io_bitmap.prev_sequence = 0;
1903 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1904 /*
1905 * Invalidate the extra array entry past the end of the all
1906 * permission bitmap as required by the hardware.
1907 */
1908 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1909 #endif
1910 }
1911
1912 /*
1913 * Setup everything needed to handle exceptions from the IDT, including the IST
1914 * exceptions which use paranoid_entry().
1915 */
cpu_init_exception_handling(void)1916 void cpu_init_exception_handling(void)
1917 {
1918 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1919 int cpu = raw_smp_processor_id();
1920
1921 /* paranoid_entry() gets the CPU number from the GDT */
1922 setup_getcpu(cpu);
1923
1924 /* IST vectors need TSS to be set up. */
1925 tss_setup_ist(tss);
1926 tss_setup_io_bitmap(tss);
1927 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1928
1929 load_TR_desc();
1930
1931 /* Finally load the IDT */
1932 load_current_idt();
1933 }
1934
1935 /*
1936 * cpu_init() initializes state that is per-CPU. Some data is already
1937 * initialized (naturally) in the bootstrap process, such as the GDT
1938 * and IDT. We reload them nevertheless, this function acts as a
1939 * 'CPU state barrier', nothing should get across.
1940 */
cpu_init(void)1941 void cpu_init(void)
1942 {
1943 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1944 struct task_struct *cur = current;
1945 int cpu = raw_smp_processor_id();
1946
1947 wait_for_master_cpu(cpu);
1948
1949 ucode_cpu_init(cpu);
1950
1951 #ifdef CONFIG_NUMA
1952 if (this_cpu_read(numa_node) == 0 &&
1953 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1954 set_numa_node(early_cpu_to_node(cpu));
1955 #endif
1956 setup_getcpu(cpu);
1957
1958 pr_debug("Initializing CPU#%d\n", cpu);
1959
1960 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1961 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1962 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1963
1964 /*
1965 * Initialize the per-CPU GDT with the boot GDT,
1966 * and set up the GDT descriptor:
1967 */
1968 switch_to_new_gdt(cpu);
1969 load_current_idt();
1970
1971 if (IS_ENABLED(CONFIG_X86_64)) {
1972 loadsegment(fs, 0);
1973 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1974 syscall_init();
1975
1976 wrmsrl(MSR_FS_BASE, 0);
1977 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1978 barrier();
1979
1980 x2apic_setup();
1981 }
1982
1983 mmgrab(&init_mm);
1984 cur->active_mm = &init_mm;
1985 BUG_ON(cur->mm);
1986 initialize_tlbstate_and_flush();
1987 enter_lazy_tlb(&init_mm, cur);
1988
1989 /* Initialize the TSS. */
1990 tss_setup_ist(tss);
1991 tss_setup_io_bitmap(tss);
1992 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1993
1994 load_TR_desc();
1995 /*
1996 * sp0 points to the entry trampoline stack regardless of what task
1997 * is running.
1998 */
1999 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2000
2001 load_mm_ldt(&init_mm);
2002
2003 clear_all_debug_regs();
2004 dbg_restore_debug_regs();
2005
2006 doublefault_init_cpu_tss();
2007
2008 fpu__init_cpu();
2009
2010 if (is_uv_system())
2011 uv_cpu_init();
2012
2013 load_fixmap_gdt(cpu);
2014 }
2015
2016 /*
2017 * The microcode loader calls this upon late microcode load to recheck features,
2018 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2019 * hotplug lock.
2020 */
microcode_check(void)2021 void microcode_check(void)
2022 {
2023 struct cpuinfo_x86 info;
2024
2025 perf_check_microcode();
2026
2027 /* Reload CPUID max function as it might've changed. */
2028 info.cpuid_level = cpuid_eax(0);
2029
2030 /*
2031 * Copy all capability leafs to pick up the synthetic ones so that
2032 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2033 * get overwritten in get_cpu_cap().
2034 */
2035 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2036
2037 get_cpu_cap(&info);
2038
2039 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2040 return;
2041
2042 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2043 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2044 }
2045
2046 /*
2047 * Invoked from core CPU hotplug code after hotplug operations
2048 */
arch_smt_update(void)2049 void arch_smt_update(void)
2050 {
2051 /* Handle the speculative execution misfeatures */
2052 cpu_bugs_smt_update();
2053 /* Check whether IPI broadcasting can be enabled */
2054 apic_smt_update();
2055 }
2056