1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4 
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25 
26 #include <asm/cmdline.h>
27 #include <asm/stackprotector.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
43 #include <asm/apic.h>
44 #include <asm/desc.h>
45 #include <asm/fpu/internal.h>
46 #include <asm/mtrr.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
49 #include <asm/numa.h>
50 #include <asm/asm.h>
51 #include <asm/bugs.h>
52 #include <asm/cpu.h>
53 #include <asm/mce.h>
54 #include <asm/msr.h>
55 #include <asm/memtype.h>
56 #include <asm/microcode.h>
57 #include <asm/microcode_intel.h>
58 #include <asm/intel-family.h>
59 #include <asm/cpu_device_id.h>
60 #include <asm/uv/uv.h>
61 
62 #include "cpu.h"
63 
64 u32 elf_hwcap2 __read_mostly;
65 
66 /* all of these masks are initialized in setup_cpu_local_masks() */
67 cpumask_var_t cpu_initialized_mask;
68 cpumask_var_t cpu_callout_mask;
69 cpumask_var_t cpu_callin_mask;
70 
71 /* representing cpus for which sibling maps can be computed */
72 cpumask_var_t cpu_sibling_setup_mask;
73 
74 /* Number of siblings per CPU package */
75 int smp_num_siblings = 1;
76 EXPORT_SYMBOL(smp_num_siblings);
77 
78 /* Last level cache ID of each logical CPU */
79 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
80 
81 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)82 void __init setup_cpu_local_masks(void)
83 {
84 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
85 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
86 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
87 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
88 }
89 
default_init(struct cpuinfo_x86 * c)90 static void default_init(struct cpuinfo_x86 *c)
91 {
92 #ifdef CONFIG_X86_64
93 	cpu_detect_cache_sizes(c);
94 #else
95 	/* Not much we can do here... */
96 	/* Check if at least it has cpuid */
97 	if (c->cpuid_level == -1) {
98 		/* No cpuid. It must be an ancient CPU */
99 		if (c->x86 == 4)
100 			strcpy(c->x86_model_id, "486");
101 		else if (c->x86 == 3)
102 			strcpy(c->x86_model_id, "386");
103 	}
104 #endif
105 }
106 
107 static const struct cpu_dev default_cpu = {
108 	.c_init		= default_init,
109 	.c_vendor	= "Unknown",
110 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
111 };
112 
113 static const struct cpu_dev *this_cpu = &default_cpu;
114 
115 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
116 #ifdef CONFIG_X86_64
117 	/*
118 	 * We need valid kernel segments for data and code in long mode too
119 	 * IRET will check the segment types  kkeil 2000/10/28
120 	 * Also sysret mandates a special GDT layout
121 	 *
122 	 * TLS descriptors are currently at a different place compared to i386.
123 	 * Hopefully nobody expects them at a fixed place (Wine?)
124 	 */
125 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
126 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
127 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
128 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
129 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
130 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
131 #else
132 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
133 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
134 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
135 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
136 	/*
137 	 * Segments used for calling PnP BIOS have byte granularity.
138 	 * They code segments and data segments have fixed 64k limits,
139 	 * the transfer segment sizes are set at run time.
140 	 */
141 	/* 32-bit code */
142 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
143 	/* 16-bit code */
144 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
145 	/* 16-bit data */
146 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
147 	/* 16-bit data */
148 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
149 	/* 16-bit data */
150 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
151 	/*
152 	 * The APM segments have byte granularity and their bases
153 	 * are set at run time.  All have 64k limits.
154 	 */
155 	/* 32-bit code */
156 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
157 	/* 16-bit code */
158 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
159 	/* data */
160 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
161 
162 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
163 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
164 	GDT_STACK_CANARY_INIT
165 #endif
166 } };
167 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
168 
169 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)170 static int __init x86_nopcid_setup(char *s)
171 {
172 	/* nopcid doesn't accept parameters */
173 	if (s)
174 		return -EINVAL;
175 
176 	/* do not emit a message if the feature is not present */
177 	if (!boot_cpu_has(X86_FEATURE_PCID))
178 		return 0;
179 
180 	setup_clear_cpu_cap(X86_FEATURE_PCID);
181 	pr_info("nopcid: PCID feature disabled\n");
182 	return 0;
183 }
184 early_param("nopcid", x86_nopcid_setup);
185 #endif
186 
x86_noinvpcid_setup(char * s)187 static int __init x86_noinvpcid_setup(char *s)
188 {
189 	/* noinvpcid doesn't accept parameters */
190 	if (s)
191 		return -EINVAL;
192 
193 	/* do not emit a message if the feature is not present */
194 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
195 		return 0;
196 
197 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
198 	pr_info("noinvpcid: INVPCID feature disabled\n");
199 	return 0;
200 }
201 early_param("noinvpcid", x86_noinvpcid_setup);
202 
203 #ifdef CONFIG_X86_32
204 static int cachesize_override = -1;
205 static int disable_x86_serial_nr = 1;
206 
cachesize_setup(char * str)207 static int __init cachesize_setup(char *str)
208 {
209 	get_option(&str, &cachesize_override);
210 	return 1;
211 }
212 __setup("cachesize=", cachesize_setup);
213 
x86_sep_setup(char * s)214 static int __init x86_sep_setup(char *s)
215 {
216 	setup_clear_cpu_cap(X86_FEATURE_SEP);
217 	return 1;
218 }
219 __setup("nosep", x86_sep_setup);
220 
221 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)222 static inline int flag_is_changeable_p(u32 flag)
223 {
224 	u32 f1, f2;
225 
226 	/*
227 	 * Cyrix and IDT cpus allow disabling of CPUID
228 	 * so the code below may return different results
229 	 * when it is executed before and after enabling
230 	 * the CPUID. Add "volatile" to not allow gcc to
231 	 * optimize the subsequent calls to this function.
232 	 */
233 	asm volatile ("pushfl		\n\t"
234 		      "pushfl		\n\t"
235 		      "popl %0		\n\t"
236 		      "movl %0, %1	\n\t"
237 		      "xorl %2, %0	\n\t"
238 		      "pushl %0		\n\t"
239 		      "popfl		\n\t"
240 		      "pushfl		\n\t"
241 		      "popl %0		\n\t"
242 		      "popfl		\n\t"
243 
244 		      : "=&r" (f1), "=&r" (f2)
245 		      : "ir" (flag));
246 
247 	return ((f1^f2) & flag) != 0;
248 }
249 
250 /* Probe for the CPUID instruction */
have_cpuid_p(void)251 int have_cpuid_p(void)
252 {
253 	return flag_is_changeable_p(X86_EFLAGS_ID);
254 }
255 
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)256 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
257 {
258 	unsigned long lo, hi;
259 
260 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
261 		return;
262 
263 	/* Disable processor serial number: */
264 
265 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266 	lo |= 0x200000;
267 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
268 
269 	pr_notice("CPU serial number disabled.\n");
270 	clear_cpu_cap(c, X86_FEATURE_PN);
271 
272 	/* Disabling the serial number may affect the cpuid level */
273 	c->cpuid_level = cpuid_eax(0);
274 }
275 
x86_serial_nr_setup(char * s)276 static int __init x86_serial_nr_setup(char *s)
277 {
278 	disable_x86_serial_nr = 0;
279 	return 1;
280 }
281 __setup("serialnumber", x86_serial_nr_setup);
282 #else
flag_is_changeable_p(u32 flag)283 static inline int flag_is_changeable_p(u32 flag)
284 {
285 	return 1;
286 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)287 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
288 {
289 }
290 #endif
291 
setup_disable_smep(char * arg)292 static __init int setup_disable_smep(char *arg)
293 {
294 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
295 	return 1;
296 }
297 __setup("nosmep", setup_disable_smep);
298 
setup_smep(struct cpuinfo_x86 * c)299 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
300 {
301 	if (cpu_has(c, X86_FEATURE_SMEP))
302 		cr4_set_bits(X86_CR4_SMEP);
303 }
304 
setup_disable_smap(char * arg)305 static __init int setup_disable_smap(char *arg)
306 {
307 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
308 	return 1;
309 }
310 __setup("nosmap", setup_disable_smap);
311 
setup_smap(struct cpuinfo_x86 * c)312 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
313 {
314 	unsigned long eflags = native_save_fl();
315 
316 	/* This should have been cleared long ago */
317 	BUG_ON(eflags & X86_EFLAGS_AC);
318 
319 	if (cpu_has(c, X86_FEATURE_SMAP)) {
320 #ifdef CONFIG_X86_SMAP
321 		cr4_set_bits(X86_CR4_SMAP);
322 #else
323 		cr4_clear_bits(X86_CR4_SMAP);
324 #endif
325 	}
326 }
327 
setup_umip(struct cpuinfo_x86 * c)328 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
329 {
330 	/* Check the boot processor, plus build option for UMIP. */
331 	if (!cpu_feature_enabled(X86_FEATURE_UMIP))
332 		goto out;
333 
334 	/* Check the current processor's cpuid bits. */
335 	if (!cpu_has(c, X86_FEATURE_UMIP))
336 		goto out;
337 
338 	cr4_set_bits(X86_CR4_UMIP);
339 
340 	pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
341 
342 	return;
343 
344 out:
345 	/*
346 	 * Make sure UMIP is disabled in case it was enabled in a
347 	 * previous boot (e.g., via kexec).
348 	 */
349 	cr4_clear_bits(X86_CR4_UMIP);
350 }
351 
352 /* These bits should not change their value after CPU init is finished. */
353 static const unsigned long cr4_pinned_mask =
354 	X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP | X86_CR4_FSGSBASE;
355 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
356 static unsigned long cr4_pinned_bits __ro_after_init;
357 
native_write_cr0(unsigned long val)358 void native_write_cr0(unsigned long val)
359 {
360 	unsigned long bits_missing = 0;
361 
362 set_register:
363 	asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
364 
365 	if (static_branch_likely(&cr_pinning)) {
366 		if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
367 			bits_missing = X86_CR0_WP;
368 			val |= bits_missing;
369 			goto set_register;
370 		}
371 		/* Warn after we've set the missing bits. */
372 		WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
373 	}
374 }
375 EXPORT_SYMBOL(native_write_cr0);
376 
native_write_cr4(unsigned long val)377 void native_write_cr4(unsigned long val)
378 {
379 	unsigned long bits_changed = 0;
380 
381 set_register:
382 	asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
383 
384 	if (static_branch_likely(&cr_pinning)) {
385 		if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
386 			bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
387 			val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
388 			goto set_register;
389 		}
390 		/* Warn after we've corrected the changed bits. */
391 		WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
392 			  bits_changed);
393 	}
394 }
395 #if IS_MODULE(CONFIG_LKDTM)
396 EXPORT_SYMBOL_GPL(native_write_cr4);
397 #endif
398 
cr4_update_irqsoff(unsigned long set,unsigned long clear)399 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
400 {
401 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
402 
403 	lockdep_assert_irqs_disabled();
404 
405 	newval = (cr4 & ~clear) | set;
406 	if (newval != cr4) {
407 		this_cpu_write(cpu_tlbstate.cr4, newval);
408 		__write_cr4(newval);
409 	}
410 }
411 EXPORT_SYMBOL(cr4_update_irqsoff);
412 
413 /* Read the CR4 shadow. */
cr4_read_shadow(void)414 unsigned long cr4_read_shadow(void)
415 {
416 	return this_cpu_read(cpu_tlbstate.cr4);
417 }
418 EXPORT_SYMBOL_GPL(cr4_read_shadow);
419 
cr4_init(void)420 void cr4_init(void)
421 {
422 	unsigned long cr4 = __read_cr4();
423 
424 	if (boot_cpu_has(X86_FEATURE_PCID))
425 		cr4 |= X86_CR4_PCIDE;
426 	if (static_branch_likely(&cr_pinning))
427 		cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
428 
429 	__write_cr4(cr4);
430 
431 	/* Initialize cr4 shadow for this CPU. */
432 	this_cpu_write(cpu_tlbstate.cr4, cr4);
433 }
434 
435 /*
436  * Once CPU feature detection is finished (and boot params have been
437  * parsed), record any of the sensitive CR bits that are set, and
438  * enable CR pinning.
439  */
setup_cr_pinning(void)440 static void __init setup_cr_pinning(void)
441 {
442 	cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
443 	static_key_enable(&cr_pinning.key);
444 }
445 
x86_nofsgsbase_setup(char * arg)446 static __init int x86_nofsgsbase_setup(char *arg)
447 {
448 	/* Require an exact match without trailing characters. */
449 	if (strlen(arg))
450 		return 0;
451 
452 	/* Do not emit a message if the feature is not present. */
453 	if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
454 		return 1;
455 
456 	setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
457 	pr_info("FSGSBASE disabled via kernel command line\n");
458 	return 1;
459 }
460 __setup("nofsgsbase", x86_nofsgsbase_setup);
461 
462 /*
463  * Protection Keys are not available in 32-bit mode.
464  */
465 static bool pku_disabled;
466 
setup_pku(struct cpuinfo_x86 * c)467 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
468 {
469 	struct pkru_state *pk;
470 
471 	/* check the boot processor, plus compile options for PKU: */
472 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
473 		return;
474 	/* checks the actual processor's cpuid bits: */
475 	if (!cpu_has(c, X86_FEATURE_PKU))
476 		return;
477 	if (pku_disabled)
478 		return;
479 
480 	cr4_set_bits(X86_CR4_PKE);
481 	pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
482 	if (pk)
483 		pk->pkru = init_pkru_value;
484 	/*
485 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
486 	 * cpuid bit to be set.  We need to ensure that we
487 	 * update that bit in this CPU's "cpu_info".
488 	 */
489 	set_cpu_cap(c, X86_FEATURE_OSPKE);
490 }
491 
492 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)493 static __init int setup_disable_pku(char *arg)
494 {
495 	/*
496 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
497 	 * runtime checks are against OSPKE so clearing the
498 	 * bit does nothing.
499 	 *
500 	 * This way, we will see "pku" in cpuinfo, but not
501 	 * "ospke", which is exactly what we want.  It shows
502 	 * that the CPU has PKU, but the OS has not enabled it.
503 	 * This happens to be exactly how a system would look
504 	 * if we disabled the config option.
505 	 */
506 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
507 	pku_disabled = true;
508 	return 1;
509 }
510 __setup("nopku", setup_disable_pku);
511 #endif /* CONFIG_X86_64 */
512 
513 /*
514  * Some CPU features depend on higher CPUID levels, which may not always
515  * be available due to CPUID level capping or broken virtualization
516  * software.  Add those features to this table to auto-disable them.
517  */
518 struct cpuid_dependent_feature {
519 	u32 feature;
520 	u32 level;
521 };
522 
523 static const struct cpuid_dependent_feature
524 cpuid_dependent_features[] = {
525 	{ X86_FEATURE_MWAIT,		0x00000005 },
526 	{ X86_FEATURE_DCA,		0x00000009 },
527 	{ X86_FEATURE_XSAVE,		0x0000000d },
528 	{ 0, 0 }
529 };
530 
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)531 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
532 {
533 	const struct cpuid_dependent_feature *df;
534 
535 	for (df = cpuid_dependent_features; df->feature; df++) {
536 
537 		if (!cpu_has(c, df->feature))
538 			continue;
539 		/*
540 		 * Note: cpuid_level is set to -1 if unavailable, but
541 		 * extended_extended_level is set to 0 if unavailable
542 		 * and the legitimate extended levels are all negative
543 		 * when signed; hence the weird messing around with
544 		 * signs here...
545 		 */
546 		if (!((s32)df->level < 0 ?
547 		     (u32)df->level > (u32)c->extended_cpuid_level :
548 		     (s32)df->level > (s32)c->cpuid_level))
549 			continue;
550 
551 		clear_cpu_cap(c, df->feature);
552 		if (!warn)
553 			continue;
554 
555 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
556 			x86_cap_flag(df->feature), df->level);
557 	}
558 }
559 
560 /*
561  * Naming convention should be: <Name> [(<Codename>)]
562  * This table only is used unless init_<vendor>() below doesn't set it;
563  * in particular, if CPUID levels 0x80000002..4 are supported, this
564  * isn't used
565  */
566 
567 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)568 static const char *table_lookup_model(struct cpuinfo_x86 *c)
569 {
570 #ifdef CONFIG_X86_32
571 	const struct legacy_cpu_model_info *info;
572 
573 	if (c->x86_model >= 16)
574 		return NULL;	/* Range check */
575 
576 	if (!this_cpu)
577 		return NULL;
578 
579 	info = this_cpu->legacy_models;
580 
581 	while (info->family) {
582 		if (info->family == c->x86)
583 			return info->model_names[c->x86_model];
584 		info++;
585 	}
586 #endif
587 	return NULL;		/* Not found */
588 }
589 
590 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
591 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
592 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
593 
load_percpu_segment(int cpu)594 void load_percpu_segment(int cpu)
595 {
596 #ifdef CONFIG_X86_32
597 	loadsegment(fs, __KERNEL_PERCPU);
598 #else
599 	__loadsegment_simple(gs, 0);
600 	wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
601 #endif
602 	load_stack_canary_segment();
603 }
604 
605 #ifdef CONFIG_X86_32
606 /* The 32-bit entry code needs to find cpu_entry_area. */
607 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
608 #endif
609 
610 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)611 void load_direct_gdt(int cpu)
612 {
613 	struct desc_ptr gdt_descr;
614 
615 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
616 	gdt_descr.size = GDT_SIZE - 1;
617 	load_gdt(&gdt_descr);
618 }
619 EXPORT_SYMBOL_GPL(load_direct_gdt);
620 
621 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)622 void load_fixmap_gdt(int cpu)
623 {
624 	struct desc_ptr gdt_descr;
625 
626 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
627 	gdt_descr.size = GDT_SIZE - 1;
628 	load_gdt(&gdt_descr);
629 }
630 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
631 
632 /*
633  * Current gdt points %fs at the "master" per-cpu area: after this,
634  * it's on the real one.
635  */
switch_to_new_gdt(int cpu)636 void switch_to_new_gdt(int cpu)
637 {
638 	/* Load the original GDT */
639 	load_direct_gdt(cpu);
640 	/* Reload the per-cpu base */
641 	load_percpu_segment(cpu);
642 }
643 
644 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
645 
get_model_name(struct cpuinfo_x86 * c)646 static void get_model_name(struct cpuinfo_x86 *c)
647 {
648 	unsigned int *v;
649 	char *p, *q, *s;
650 
651 	if (c->extended_cpuid_level < 0x80000004)
652 		return;
653 
654 	v = (unsigned int *)c->x86_model_id;
655 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
656 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
657 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
658 	c->x86_model_id[48] = 0;
659 
660 	/* Trim whitespace */
661 	p = q = s = &c->x86_model_id[0];
662 
663 	while (*p == ' ')
664 		p++;
665 
666 	while (*p) {
667 		/* Note the last non-whitespace index */
668 		if (!isspace(*p))
669 			s = q;
670 
671 		*q++ = *p++;
672 	}
673 
674 	*(s + 1) = '\0';
675 }
676 
detect_num_cpu_cores(struct cpuinfo_x86 * c)677 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
678 {
679 	unsigned int eax, ebx, ecx, edx;
680 
681 	c->x86_max_cores = 1;
682 	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
683 		return;
684 
685 	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
686 	if (eax & 0x1f)
687 		c->x86_max_cores = (eax >> 26) + 1;
688 }
689 
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)690 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
691 {
692 	unsigned int n, dummy, ebx, ecx, edx, l2size;
693 
694 	n = c->extended_cpuid_level;
695 
696 	if (n >= 0x80000005) {
697 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
698 		c->x86_cache_size = (ecx>>24) + (edx>>24);
699 #ifdef CONFIG_X86_64
700 		/* On K8 L1 TLB is inclusive, so don't count it */
701 		c->x86_tlbsize = 0;
702 #endif
703 	}
704 
705 	if (n < 0x80000006)	/* Some chips just has a large L1. */
706 		return;
707 
708 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
709 	l2size = ecx >> 16;
710 
711 #ifdef CONFIG_X86_64
712 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
713 #else
714 	/* do processor-specific cache resizing */
715 	if (this_cpu->legacy_cache_size)
716 		l2size = this_cpu->legacy_cache_size(c, l2size);
717 
718 	/* Allow user to override all this if necessary. */
719 	if (cachesize_override != -1)
720 		l2size = cachesize_override;
721 
722 	if (l2size == 0)
723 		return;		/* Again, no L2 cache is possible */
724 #endif
725 
726 	c->x86_cache_size = l2size;
727 }
728 
729 u16 __read_mostly tlb_lli_4k[NR_INFO];
730 u16 __read_mostly tlb_lli_2m[NR_INFO];
731 u16 __read_mostly tlb_lli_4m[NR_INFO];
732 u16 __read_mostly tlb_lld_4k[NR_INFO];
733 u16 __read_mostly tlb_lld_2m[NR_INFO];
734 u16 __read_mostly tlb_lld_4m[NR_INFO];
735 u16 __read_mostly tlb_lld_1g[NR_INFO];
736 
cpu_detect_tlb(struct cpuinfo_x86 * c)737 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
738 {
739 	if (this_cpu->c_detect_tlb)
740 		this_cpu->c_detect_tlb(c);
741 
742 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
743 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
744 		tlb_lli_4m[ENTRIES]);
745 
746 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
747 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
748 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
749 }
750 
detect_ht_early(struct cpuinfo_x86 * c)751 int detect_ht_early(struct cpuinfo_x86 *c)
752 {
753 #ifdef CONFIG_SMP
754 	u32 eax, ebx, ecx, edx;
755 
756 	if (!cpu_has(c, X86_FEATURE_HT))
757 		return -1;
758 
759 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
760 		return -1;
761 
762 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
763 		return -1;
764 
765 	cpuid(1, &eax, &ebx, &ecx, &edx);
766 
767 	smp_num_siblings = (ebx & 0xff0000) >> 16;
768 	if (smp_num_siblings == 1)
769 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
770 #endif
771 	return 0;
772 }
773 
detect_ht(struct cpuinfo_x86 * c)774 void detect_ht(struct cpuinfo_x86 *c)
775 {
776 #ifdef CONFIG_SMP
777 	int index_msb, core_bits;
778 
779 	if (detect_ht_early(c) < 0)
780 		return;
781 
782 	index_msb = get_count_order(smp_num_siblings);
783 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
784 
785 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
786 
787 	index_msb = get_count_order(smp_num_siblings);
788 
789 	core_bits = get_count_order(c->x86_max_cores);
790 
791 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
792 				       ((1 << core_bits) - 1);
793 #endif
794 }
795 
get_cpu_vendor(struct cpuinfo_x86 * c)796 static void get_cpu_vendor(struct cpuinfo_x86 *c)
797 {
798 	char *v = c->x86_vendor_id;
799 	int i;
800 
801 	for (i = 0; i < X86_VENDOR_NUM; i++) {
802 		if (!cpu_devs[i])
803 			break;
804 
805 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
806 		    (cpu_devs[i]->c_ident[1] &&
807 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
808 
809 			this_cpu = cpu_devs[i];
810 			c->x86_vendor = this_cpu->c_x86_vendor;
811 			return;
812 		}
813 	}
814 
815 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
816 		    "CPU: Your system may be unstable.\n", v);
817 
818 	c->x86_vendor = X86_VENDOR_UNKNOWN;
819 	this_cpu = &default_cpu;
820 }
821 
cpu_detect(struct cpuinfo_x86 * c)822 void cpu_detect(struct cpuinfo_x86 *c)
823 {
824 	/* Get vendor name */
825 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
826 	      (unsigned int *)&c->x86_vendor_id[0],
827 	      (unsigned int *)&c->x86_vendor_id[8],
828 	      (unsigned int *)&c->x86_vendor_id[4]);
829 
830 	c->x86 = 4;
831 	/* Intel-defined flags: level 0x00000001 */
832 	if (c->cpuid_level >= 0x00000001) {
833 		u32 junk, tfms, cap0, misc;
834 
835 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
836 		c->x86		= x86_family(tfms);
837 		c->x86_model	= x86_model(tfms);
838 		c->x86_stepping	= x86_stepping(tfms);
839 
840 		if (cap0 & (1<<19)) {
841 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
842 			c->x86_cache_alignment = c->x86_clflush_size;
843 		}
844 	}
845 }
846 
apply_forced_caps(struct cpuinfo_x86 * c)847 static void apply_forced_caps(struct cpuinfo_x86 *c)
848 {
849 	int i;
850 
851 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
852 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
853 		c->x86_capability[i] |= cpu_caps_set[i];
854 	}
855 }
856 
init_speculation_control(struct cpuinfo_x86 * c)857 static void init_speculation_control(struct cpuinfo_x86 *c)
858 {
859 	/*
860 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
861 	 * and they also have a different bit for STIBP support. Also,
862 	 * a hypervisor might have set the individual AMD bits even on
863 	 * Intel CPUs, for finer-grained selection of what's available.
864 	 */
865 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
866 		set_cpu_cap(c, X86_FEATURE_IBRS);
867 		set_cpu_cap(c, X86_FEATURE_IBPB);
868 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
869 	}
870 
871 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
872 		set_cpu_cap(c, X86_FEATURE_STIBP);
873 
874 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
875 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
876 		set_cpu_cap(c, X86_FEATURE_SSBD);
877 
878 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
879 		set_cpu_cap(c, X86_FEATURE_IBRS);
880 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
881 	}
882 
883 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
884 		set_cpu_cap(c, X86_FEATURE_IBPB);
885 
886 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
887 		set_cpu_cap(c, X86_FEATURE_STIBP);
888 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
889 	}
890 
891 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
892 		set_cpu_cap(c, X86_FEATURE_SSBD);
893 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
894 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
895 	}
896 }
897 
get_cpu_cap(struct cpuinfo_x86 * c)898 void get_cpu_cap(struct cpuinfo_x86 *c)
899 {
900 	u32 eax, ebx, ecx, edx;
901 
902 	/* Intel-defined flags: level 0x00000001 */
903 	if (c->cpuid_level >= 0x00000001) {
904 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
905 
906 		c->x86_capability[CPUID_1_ECX] = ecx;
907 		c->x86_capability[CPUID_1_EDX] = edx;
908 	}
909 
910 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
911 	if (c->cpuid_level >= 0x00000006)
912 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
913 
914 	/* Additional Intel-defined flags: level 0x00000007 */
915 	if (c->cpuid_level >= 0x00000007) {
916 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
917 		c->x86_capability[CPUID_7_0_EBX] = ebx;
918 		c->x86_capability[CPUID_7_ECX] = ecx;
919 		c->x86_capability[CPUID_7_EDX] = edx;
920 
921 		/* Check valid sub-leaf index before accessing it */
922 		if (eax >= 1) {
923 			cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
924 			c->x86_capability[CPUID_7_1_EAX] = eax;
925 		}
926 	}
927 
928 	/* Extended state features: level 0x0000000d */
929 	if (c->cpuid_level >= 0x0000000d) {
930 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
931 
932 		c->x86_capability[CPUID_D_1_EAX] = eax;
933 	}
934 
935 	/* AMD-defined flags: level 0x80000001 */
936 	eax = cpuid_eax(0x80000000);
937 	c->extended_cpuid_level = eax;
938 
939 	if ((eax & 0xffff0000) == 0x80000000) {
940 		if (eax >= 0x80000001) {
941 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
942 
943 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
944 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
945 		}
946 	}
947 
948 	if (c->extended_cpuid_level >= 0x80000007) {
949 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
950 
951 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
952 		c->x86_power = edx;
953 	}
954 
955 	if (c->extended_cpuid_level >= 0x80000008) {
956 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
957 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
958 	}
959 
960 	if (c->extended_cpuid_level >= 0x8000000a)
961 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
962 
963 	init_scattered_cpuid_features(c);
964 	init_speculation_control(c);
965 
966 	/*
967 	 * Clear/Set all flags overridden by options, after probe.
968 	 * This needs to happen each time we re-probe, which may happen
969 	 * several times during CPU initialization.
970 	 */
971 	apply_forced_caps(c);
972 }
973 
get_cpu_address_sizes(struct cpuinfo_x86 * c)974 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
975 {
976 	u32 eax, ebx, ecx, edx;
977 
978 	if (c->extended_cpuid_level >= 0x80000008) {
979 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
980 
981 		c->x86_virt_bits = (eax >> 8) & 0xff;
982 		c->x86_phys_bits = eax & 0xff;
983 	}
984 #ifdef CONFIG_X86_32
985 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
986 		c->x86_phys_bits = 36;
987 #endif
988 	c->x86_cache_bits = c->x86_phys_bits;
989 }
990 
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)991 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
992 {
993 #ifdef CONFIG_X86_32
994 	int i;
995 
996 	/*
997 	 * First of all, decide if this is a 486 or higher
998 	 * It's a 486 if we can modify the AC flag
999 	 */
1000 	if (flag_is_changeable_p(X86_EFLAGS_AC))
1001 		c->x86 = 4;
1002 	else
1003 		c->x86 = 3;
1004 
1005 	for (i = 0; i < X86_VENDOR_NUM; i++)
1006 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1007 			c->x86_vendor_id[0] = 0;
1008 			cpu_devs[i]->c_identify(c);
1009 			if (c->x86_vendor_id[0]) {
1010 				get_cpu_vendor(c);
1011 				break;
1012 			}
1013 		}
1014 #endif
1015 }
1016 
1017 #define NO_SPECULATION		BIT(0)
1018 #define NO_MELTDOWN		BIT(1)
1019 #define NO_SSB			BIT(2)
1020 #define NO_L1TF			BIT(3)
1021 #define NO_MDS			BIT(4)
1022 #define MSBDS_ONLY		BIT(5)
1023 #define NO_SWAPGS		BIT(6)
1024 #define NO_ITLB_MULTIHIT	BIT(7)
1025 #define NO_SPECTRE_V2		BIT(8)
1026 
1027 #define VULNWL(vendor, family, model, whitelist)	\
1028 	X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1029 
1030 #define VULNWL_INTEL(model, whitelist)		\
1031 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1032 
1033 #define VULNWL_AMD(family, whitelist)		\
1034 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1035 
1036 #define VULNWL_HYGON(family, whitelist)		\
1037 	VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1038 
1039 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1040 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
1041 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
1042 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
1043 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
1044 
1045 	/* Intel Family 6 */
1046 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1047 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
1048 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1049 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1050 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
1051 
1052 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1053 	VULNWL_INTEL(ATOM_SILVERMONT_D,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058 
1059 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
1060 
1061 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1062 	VULNWL_INTEL(ATOM_AIRMONT_NP,		NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063 
1064 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065 	VULNWL_INTEL(ATOM_GOLDMONT_D,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067 
1068 	/*
1069 	 * Technically, swapgs isn't serializing on AMD (despite it previously
1070 	 * being documented as such in the APM).  But according to AMD, %gs is
1071 	 * updated non-speculatively, and the issuing of %gs-relative memory
1072 	 * operands will be blocked until the %gs update completes, which is
1073 	 * good enough for our purposes.
1074 	 */
1075 
1076 	VULNWL_INTEL(ATOM_TREMONT_D,		NO_ITLB_MULTIHIT),
1077 
1078 	/* AMD Family 0xf - 0x12 */
1079 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1080 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083 
1084 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1085 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1086 	VULNWL_HYGON(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087 
1088 	/* Zhaoxin Family 7 */
1089 	VULNWL(CENTAUR,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1090 	VULNWL(ZHAOXIN,	7, X86_MODEL_ANY,	NO_SPECTRE_V2 | NO_SWAPGS),
1091 	{}
1092 };
1093 
1094 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)		   \
1095 	X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,		   \
1096 					    INTEL_FAM6_##model, steppings, \
1097 					    X86_FEATURE_ANY, issues)
1098 
1099 #define SRBDS		BIT(0)
1100 
1101 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1102 	VULNBL_INTEL_STEPPINGS(IVYBRIDGE,	X86_STEPPING_ANY,		SRBDS),
1103 	VULNBL_INTEL_STEPPINGS(HASWELL,		X86_STEPPING_ANY,		SRBDS),
1104 	VULNBL_INTEL_STEPPINGS(HASWELL_L,	X86_STEPPING_ANY,		SRBDS),
1105 	VULNBL_INTEL_STEPPINGS(HASWELL_G,	X86_STEPPING_ANY,		SRBDS),
1106 	VULNBL_INTEL_STEPPINGS(BROADWELL_G,	X86_STEPPING_ANY,		SRBDS),
1107 	VULNBL_INTEL_STEPPINGS(BROADWELL,	X86_STEPPING_ANY,		SRBDS),
1108 	VULNBL_INTEL_STEPPINGS(SKYLAKE_L,	X86_STEPPING_ANY,		SRBDS),
1109 	VULNBL_INTEL_STEPPINGS(SKYLAKE,		X86_STEPPING_ANY,		SRBDS),
1110 	VULNBL_INTEL_STEPPINGS(KABYLAKE_L,	X86_STEPPINGS(0x0, 0xC),	SRBDS),
1111 	VULNBL_INTEL_STEPPINGS(KABYLAKE,	X86_STEPPINGS(0x0, 0xD),	SRBDS),
1112 	{}
1113 };
1114 
cpu_matches(const struct x86_cpu_id * table,unsigned long which)1115 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1116 {
1117 	const struct x86_cpu_id *m = x86_match_cpu(table);
1118 
1119 	return m && !!(m->driver_data & which);
1120 }
1121 
x86_read_arch_cap_msr(void)1122 u64 x86_read_arch_cap_msr(void)
1123 {
1124 	u64 ia32_cap = 0;
1125 
1126 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1127 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1128 
1129 	return ia32_cap;
1130 }
1131 
cpu_set_bug_bits(struct cpuinfo_x86 * c)1132 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1133 {
1134 	u64 ia32_cap = x86_read_arch_cap_msr();
1135 
1136 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1137 	if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1138 	    !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1139 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1140 
1141 	if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1142 		return;
1143 
1144 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1145 
1146 	if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1147 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1148 
1149 	if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1150 	    !(ia32_cap & ARCH_CAP_SSB_NO) &&
1151 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1152 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1153 
1154 	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1155 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1156 
1157 	if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1158 	    !(ia32_cap & ARCH_CAP_MDS_NO)) {
1159 		setup_force_cpu_bug(X86_BUG_MDS);
1160 		if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1161 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1162 	}
1163 
1164 	if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1165 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1166 
1167 	/*
1168 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1169 	 *	- TSX is supported or
1170 	 *	- TSX_CTRL is present
1171 	 *
1172 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1173 	 * the kernel boot e.g. kexec.
1174 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1175 	 * update is not present or running as guest that don't get TSX_CTRL.
1176 	 */
1177 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1178 	    (cpu_has(c, X86_FEATURE_RTM) ||
1179 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1180 		setup_force_cpu_bug(X86_BUG_TAA);
1181 
1182 	/*
1183 	 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1184 	 * in the vulnerability blacklist.
1185 	 */
1186 	if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1187 	     cpu_has(c, X86_FEATURE_RDSEED)) &&
1188 	    cpu_matches(cpu_vuln_blacklist, SRBDS))
1189 		    setup_force_cpu_bug(X86_BUG_SRBDS);
1190 
1191 	if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1192 		return;
1193 
1194 	/* Rogue Data Cache Load? No! */
1195 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1196 		return;
1197 
1198 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1199 
1200 	if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1201 		return;
1202 
1203 	setup_force_cpu_bug(X86_BUG_L1TF);
1204 }
1205 
1206 /*
1207  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1208  * unfortunately, that's not true in practice because of early VIA
1209  * chips and (more importantly) broken virtualizers that are not easy
1210  * to detect. In the latter case it doesn't even *fail* reliably, so
1211  * probing for it doesn't even work. Disable it completely on 32-bit
1212  * unless we can find a reliable way to detect all the broken cases.
1213  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1214  */
detect_nopl(void)1215 static void detect_nopl(void)
1216 {
1217 #ifdef CONFIG_X86_32
1218 	setup_clear_cpu_cap(X86_FEATURE_NOPL);
1219 #else
1220 	setup_force_cpu_cap(X86_FEATURE_NOPL);
1221 #endif
1222 }
1223 
1224 /*
1225  * We parse cpu parameters early because fpu__init_system() is executed
1226  * before parse_early_param().
1227  */
cpu_parse_early_param(void)1228 static void __init cpu_parse_early_param(void)
1229 {
1230 	char arg[128];
1231 	char *argptr = arg;
1232 	int arglen, res, bit;
1233 
1234 #ifdef CONFIG_X86_32
1235 	if (cmdline_find_option_bool(boot_command_line, "no387"))
1236 #ifdef CONFIG_MATH_EMULATION
1237 		setup_clear_cpu_cap(X86_FEATURE_FPU);
1238 #else
1239 		pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1240 #endif
1241 
1242 	if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1243 		setup_clear_cpu_cap(X86_FEATURE_FXSR);
1244 #endif
1245 
1246 	if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1247 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1248 
1249 	if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1250 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1251 
1252 	if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1253 		setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1254 
1255 	arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1256 	if (arglen <= 0)
1257 		return;
1258 
1259 	pr_info("Clearing CPUID bits:");
1260 	do {
1261 		res = get_option(&argptr, &bit);
1262 		if (res == 0 || res == 3)
1263 			break;
1264 
1265 		/* If the argument was too long, the last bit may be cut off */
1266 		if (res == 1 && arglen >= sizeof(arg))
1267 			break;
1268 
1269 		if (bit >= 0 && bit < NCAPINTS * 32) {
1270 			pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1271 			setup_clear_cpu_cap(bit);
1272 		}
1273 	} while (res == 2);
1274 	pr_cont("\n");
1275 }
1276 
1277 /*
1278  * Do minimum CPU detection early.
1279  * Fields really needed: vendor, cpuid_level, family, model, mask,
1280  * cache alignment.
1281  * The others are not touched to avoid unwanted side effects.
1282  *
1283  * WARNING: this function is only called on the boot CPU.  Don't add code
1284  * here that is supposed to run on all CPUs.
1285  */
early_identify_cpu(struct cpuinfo_x86 * c)1286 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1287 {
1288 #ifdef CONFIG_X86_64
1289 	c->x86_clflush_size = 64;
1290 	c->x86_phys_bits = 36;
1291 	c->x86_virt_bits = 48;
1292 #else
1293 	c->x86_clflush_size = 32;
1294 	c->x86_phys_bits = 32;
1295 	c->x86_virt_bits = 32;
1296 #endif
1297 	c->x86_cache_alignment = c->x86_clflush_size;
1298 
1299 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1300 	c->extended_cpuid_level = 0;
1301 
1302 	if (!have_cpuid_p())
1303 		identify_cpu_without_cpuid(c);
1304 
1305 	/* cyrix could have cpuid enabled via c_identify()*/
1306 	if (have_cpuid_p()) {
1307 		cpu_detect(c);
1308 		get_cpu_vendor(c);
1309 		get_cpu_cap(c);
1310 		get_cpu_address_sizes(c);
1311 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1312 		cpu_parse_early_param();
1313 
1314 		if (this_cpu->c_early_init)
1315 			this_cpu->c_early_init(c);
1316 
1317 		c->cpu_index = 0;
1318 		filter_cpuid_features(c, false);
1319 
1320 		if (this_cpu->c_bsp_init)
1321 			this_cpu->c_bsp_init(c);
1322 	} else {
1323 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1324 	}
1325 
1326 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1327 
1328 	cpu_set_bug_bits(c);
1329 
1330 	cpu_set_core_cap_bits(c);
1331 
1332 	fpu__init_system(c);
1333 
1334 #ifdef CONFIG_X86_32
1335 	/*
1336 	 * Regardless of whether PCID is enumerated, the SDM says
1337 	 * that it can't be enabled in 32-bit mode.
1338 	 */
1339 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1340 #endif
1341 
1342 	/*
1343 	 * Later in the boot process pgtable_l5_enabled() relies on
1344 	 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1345 	 * enabled by this point we need to clear the feature bit to avoid
1346 	 * false-positives at the later stage.
1347 	 *
1348 	 * pgtable_l5_enabled() can be false here for several reasons:
1349 	 *  - 5-level paging is disabled compile-time;
1350 	 *  - it's 32-bit kernel;
1351 	 *  - machine doesn't support 5-level paging;
1352 	 *  - user specified 'no5lvl' in kernel command line.
1353 	 */
1354 	if (!pgtable_l5_enabled())
1355 		setup_clear_cpu_cap(X86_FEATURE_LA57);
1356 
1357 	detect_nopl();
1358 }
1359 
early_cpu_init(void)1360 void __init early_cpu_init(void)
1361 {
1362 	const struct cpu_dev *const *cdev;
1363 	int count = 0;
1364 
1365 #ifdef CONFIG_PROCESSOR_SELECT
1366 	pr_info("KERNEL supported cpus:\n");
1367 #endif
1368 
1369 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1370 		const struct cpu_dev *cpudev = *cdev;
1371 
1372 		if (count >= X86_VENDOR_NUM)
1373 			break;
1374 		cpu_devs[count] = cpudev;
1375 		count++;
1376 
1377 #ifdef CONFIG_PROCESSOR_SELECT
1378 		{
1379 			unsigned int j;
1380 
1381 			for (j = 0; j < 2; j++) {
1382 				if (!cpudev->c_ident[j])
1383 					continue;
1384 				pr_info("  %s %s\n", cpudev->c_vendor,
1385 					cpudev->c_ident[j]);
1386 			}
1387 		}
1388 #endif
1389 	}
1390 	early_identify_cpu(&boot_cpu_data);
1391 }
1392 
detect_null_seg_behavior(struct cpuinfo_x86 * c)1393 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1394 {
1395 #ifdef CONFIG_X86_64
1396 	/*
1397 	 * Empirically, writing zero to a segment selector on AMD does
1398 	 * not clear the base, whereas writing zero to a segment
1399 	 * selector on Intel does clear the base.  Intel's behavior
1400 	 * allows slightly faster context switches in the common case
1401 	 * where GS is unused by the prev and next threads.
1402 	 *
1403 	 * Since neither vendor documents this anywhere that I can see,
1404 	 * detect it directly instead of hardcoding the choice by
1405 	 * vendor.
1406 	 *
1407 	 * I've designated AMD's behavior as the "bug" because it's
1408 	 * counterintuitive and less friendly.
1409 	 */
1410 
1411 	unsigned long old_base, tmp;
1412 	rdmsrl(MSR_FS_BASE, old_base);
1413 	wrmsrl(MSR_FS_BASE, 1);
1414 	loadsegment(fs, 0);
1415 	rdmsrl(MSR_FS_BASE, tmp);
1416 	if (tmp != 0)
1417 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1418 	wrmsrl(MSR_FS_BASE, old_base);
1419 #endif
1420 }
1421 
generic_identify(struct cpuinfo_x86 * c)1422 static void generic_identify(struct cpuinfo_x86 *c)
1423 {
1424 	c->extended_cpuid_level = 0;
1425 
1426 	if (!have_cpuid_p())
1427 		identify_cpu_without_cpuid(c);
1428 
1429 	/* cyrix could have cpuid enabled via c_identify()*/
1430 	if (!have_cpuid_p())
1431 		return;
1432 
1433 	cpu_detect(c);
1434 
1435 	get_cpu_vendor(c);
1436 
1437 	get_cpu_cap(c);
1438 
1439 	get_cpu_address_sizes(c);
1440 
1441 	if (c->cpuid_level >= 0x00000001) {
1442 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1443 #ifdef CONFIG_X86_32
1444 # ifdef CONFIG_SMP
1445 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1446 # else
1447 		c->apicid = c->initial_apicid;
1448 # endif
1449 #endif
1450 		c->phys_proc_id = c->initial_apicid;
1451 	}
1452 
1453 	get_model_name(c); /* Default name */
1454 
1455 	detect_null_seg_behavior(c);
1456 
1457 	/*
1458 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1459 	 * systems that run Linux at CPL > 0 may or may not have the
1460 	 * issue, but, even if they have the issue, there's absolutely
1461 	 * nothing we can do about it because we can't use the real IRET
1462 	 * instruction.
1463 	 *
1464 	 * NB: For the time being, only 32-bit kernels support
1465 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1466 	 * whether to apply espfix using paravirt hooks.  If any
1467 	 * non-paravirt system ever shows up that does *not* have the
1468 	 * ESPFIX issue, we can change this.
1469 	 */
1470 #ifdef CONFIG_X86_32
1471 	set_cpu_bug(c, X86_BUG_ESPFIX);
1472 #endif
1473 }
1474 
1475 /*
1476  * Validate that ACPI/mptables have the same information about the
1477  * effective APIC id and update the package map.
1478  */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1479 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1480 {
1481 #ifdef CONFIG_SMP
1482 	unsigned int apicid, cpu = smp_processor_id();
1483 
1484 	apicid = apic->cpu_present_to_apicid(cpu);
1485 
1486 	if (apicid != c->apicid) {
1487 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1488 		       cpu, apicid, c->initial_apicid);
1489 	}
1490 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1491 	BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1492 #else
1493 	c->logical_proc_id = 0;
1494 #endif
1495 }
1496 
1497 /*
1498  * This does the hard work of actually picking apart the CPU stuff...
1499  */
identify_cpu(struct cpuinfo_x86 * c)1500 static void identify_cpu(struct cpuinfo_x86 *c)
1501 {
1502 	int i;
1503 
1504 	c->loops_per_jiffy = loops_per_jiffy;
1505 	c->x86_cache_size = 0;
1506 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1507 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1508 	c->x86_vendor_id[0] = '\0'; /* Unset */
1509 	c->x86_model_id[0] = '\0';  /* Unset */
1510 	c->x86_max_cores = 1;
1511 	c->x86_coreid_bits = 0;
1512 	c->cu_id = 0xff;
1513 #ifdef CONFIG_X86_64
1514 	c->x86_clflush_size = 64;
1515 	c->x86_phys_bits = 36;
1516 	c->x86_virt_bits = 48;
1517 #else
1518 	c->cpuid_level = -1;	/* CPUID not detected */
1519 	c->x86_clflush_size = 32;
1520 	c->x86_phys_bits = 32;
1521 	c->x86_virt_bits = 32;
1522 #endif
1523 	c->x86_cache_alignment = c->x86_clflush_size;
1524 	memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1525 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1526 	memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1527 #endif
1528 
1529 	generic_identify(c);
1530 
1531 	if (this_cpu->c_identify)
1532 		this_cpu->c_identify(c);
1533 
1534 	/* Clear/Set all flags overridden by options, after probe */
1535 	apply_forced_caps(c);
1536 
1537 #ifdef CONFIG_X86_64
1538 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1539 #endif
1540 
1541 	/*
1542 	 * Vendor-specific initialization.  In this section we
1543 	 * canonicalize the feature flags, meaning if there are
1544 	 * features a certain CPU supports which CPUID doesn't
1545 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1546 	 * we handle them here.
1547 	 *
1548 	 * At the end of this section, c->x86_capability better
1549 	 * indicate the features this CPU genuinely supports!
1550 	 */
1551 	if (this_cpu->c_init)
1552 		this_cpu->c_init(c);
1553 
1554 	/* Disable the PN if appropriate */
1555 	squash_the_stupid_serial_number(c);
1556 
1557 	/* Set up SMEP/SMAP/UMIP */
1558 	setup_smep(c);
1559 	setup_smap(c);
1560 	setup_umip(c);
1561 
1562 	/* Enable FSGSBASE instructions if available. */
1563 	if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1564 		cr4_set_bits(X86_CR4_FSGSBASE);
1565 		elf_hwcap2 |= HWCAP2_FSGSBASE;
1566 	}
1567 
1568 	/*
1569 	 * The vendor-specific functions might have changed features.
1570 	 * Now we do "generic changes."
1571 	 */
1572 
1573 	/* Filter out anything that depends on CPUID levels we don't have */
1574 	filter_cpuid_features(c, true);
1575 
1576 	/* If the model name is still unset, do table lookup. */
1577 	if (!c->x86_model_id[0]) {
1578 		const char *p;
1579 		p = table_lookup_model(c);
1580 		if (p)
1581 			strcpy(c->x86_model_id, p);
1582 		else
1583 			/* Last resort... */
1584 			sprintf(c->x86_model_id, "%02x/%02x",
1585 				c->x86, c->x86_model);
1586 	}
1587 
1588 #ifdef CONFIG_X86_64
1589 	detect_ht(c);
1590 #endif
1591 
1592 	x86_init_rdrand(c);
1593 	setup_pku(c);
1594 
1595 	/*
1596 	 * Clear/Set all flags overridden by options, need do it
1597 	 * before following smp all cpus cap AND.
1598 	 */
1599 	apply_forced_caps(c);
1600 
1601 	/*
1602 	 * On SMP, boot_cpu_data holds the common feature set between
1603 	 * all CPUs; so make sure that we indicate which features are
1604 	 * common between the CPUs.  The first time this routine gets
1605 	 * executed, c == &boot_cpu_data.
1606 	 */
1607 	if (c != &boot_cpu_data) {
1608 		/* AND the already accumulated flags with these */
1609 		for (i = 0; i < NCAPINTS; i++)
1610 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1611 
1612 		/* OR, i.e. replicate the bug flags */
1613 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1614 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1615 	}
1616 
1617 	/* Init Machine Check Exception if available. */
1618 	mcheck_cpu_init(c);
1619 
1620 	select_idle_routine(c);
1621 
1622 #ifdef CONFIG_NUMA
1623 	numa_add_cpu(smp_processor_id());
1624 #endif
1625 }
1626 
1627 /*
1628  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1629  * on 32-bit kernels:
1630  */
1631 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1632 void enable_sep_cpu(void)
1633 {
1634 	struct tss_struct *tss;
1635 	int cpu;
1636 
1637 	if (!boot_cpu_has(X86_FEATURE_SEP))
1638 		return;
1639 
1640 	cpu = get_cpu();
1641 	tss = &per_cpu(cpu_tss_rw, cpu);
1642 
1643 	/*
1644 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1645 	 * see the big comment in struct x86_hw_tss's definition.
1646 	 */
1647 
1648 	tss->x86_tss.ss1 = __KERNEL_CS;
1649 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1650 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1651 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1652 
1653 	put_cpu();
1654 }
1655 #endif
1656 
identify_boot_cpu(void)1657 void __init identify_boot_cpu(void)
1658 {
1659 	identify_cpu(&boot_cpu_data);
1660 #ifdef CONFIG_X86_32
1661 	sysenter_setup();
1662 	enable_sep_cpu();
1663 #endif
1664 	cpu_detect_tlb(&boot_cpu_data);
1665 	setup_cr_pinning();
1666 
1667 	tsx_init();
1668 }
1669 
identify_secondary_cpu(struct cpuinfo_x86 * c)1670 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1671 {
1672 	BUG_ON(c == &boot_cpu_data);
1673 	identify_cpu(c);
1674 #ifdef CONFIG_X86_32
1675 	enable_sep_cpu();
1676 #endif
1677 	mtrr_ap_init();
1678 	validate_apic_and_package_id(c);
1679 	x86_spec_ctrl_setup_ap();
1680 	update_srbds_msr();
1681 }
1682 
setup_noclflush(char * arg)1683 static __init int setup_noclflush(char *arg)
1684 {
1685 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1686 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1687 	return 1;
1688 }
1689 __setup("noclflush", setup_noclflush);
1690 
print_cpu_info(struct cpuinfo_x86 * c)1691 void print_cpu_info(struct cpuinfo_x86 *c)
1692 {
1693 	const char *vendor = NULL;
1694 
1695 	if (c->x86_vendor < X86_VENDOR_NUM) {
1696 		vendor = this_cpu->c_vendor;
1697 	} else {
1698 		if (c->cpuid_level >= 0)
1699 			vendor = c->x86_vendor_id;
1700 	}
1701 
1702 	if (vendor && !strstr(c->x86_model_id, vendor))
1703 		pr_cont("%s ", vendor);
1704 
1705 	if (c->x86_model_id[0])
1706 		pr_cont("%s", c->x86_model_id);
1707 	else
1708 		pr_cont("%d86", c->x86);
1709 
1710 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1711 
1712 	if (c->x86_stepping || c->cpuid_level >= 0)
1713 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1714 	else
1715 		pr_cont(")\n");
1716 }
1717 
1718 /*
1719  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1720  * But we need to keep a dummy __setup around otherwise it would
1721  * show up as an environment variable for init.
1722  */
setup_clearcpuid(char * arg)1723 static __init int setup_clearcpuid(char *arg)
1724 {
1725 	return 1;
1726 }
1727 __setup("clearcpuid=", setup_clearcpuid);
1728 
1729 #ifdef CONFIG_X86_64
1730 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1731 		     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1732 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1733 
1734 /*
1735  * The following percpu variables are hot.  Align current_task to
1736  * cacheline size such that they fall in the same cacheline.
1737  */
1738 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1739 	&init_task;
1740 EXPORT_PER_CPU_SYMBOL(current_task);
1741 
1742 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1743 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1744 
1745 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1746 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1747 
1748 /* May not be marked __init: used by software suspend */
syscall_init(void)1749 void syscall_init(void)
1750 {
1751 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1752 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1753 
1754 #ifdef CONFIG_IA32_EMULATION
1755 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1756 	/*
1757 	 * This only works on Intel CPUs.
1758 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1759 	 * This does not cause SYSENTER to jump to the wrong location, because
1760 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1761 	 */
1762 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1763 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1764 		    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1765 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1766 #else
1767 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1768 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1769 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1770 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1771 #endif
1772 
1773 	/* Flags to clear on syscall */
1774 	wrmsrl(MSR_SYSCALL_MASK,
1775 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1776 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1777 }
1778 
1779 #else	/* CONFIG_X86_64 */
1780 
1781 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1782 EXPORT_PER_CPU_SYMBOL(current_task);
1783 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1784 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1785 
1786 /*
1787  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1788  * the top of the kernel stack.  Use an extra percpu variable to track the
1789  * top of the kernel stack directly.
1790  */
1791 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1792 	(unsigned long)&init_thread_union + THREAD_SIZE;
1793 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1794 
1795 #ifdef CONFIG_STACKPROTECTOR
1796 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1797 #endif
1798 
1799 #endif	/* CONFIG_X86_64 */
1800 
1801 /*
1802  * Clear all 6 debug registers:
1803  */
clear_all_debug_regs(void)1804 static void clear_all_debug_regs(void)
1805 {
1806 	int i;
1807 
1808 	for (i = 0; i < 8; i++) {
1809 		/* Ignore db4, db5 */
1810 		if ((i == 4) || (i == 5))
1811 			continue;
1812 
1813 		set_debugreg(0, i);
1814 	}
1815 }
1816 
1817 #ifdef CONFIG_KGDB
1818 /*
1819  * Restore debug regs if using kgdbwait and you have a kernel debugger
1820  * connection established.
1821  */
dbg_restore_debug_regs(void)1822 static void dbg_restore_debug_regs(void)
1823 {
1824 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1825 		arch_kgdb_ops.correct_hw_break();
1826 }
1827 #else /* ! CONFIG_KGDB */
1828 #define dbg_restore_debug_regs()
1829 #endif /* ! CONFIG_KGDB */
1830 
wait_for_master_cpu(int cpu)1831 static void wait_for_master_cpu(int cpu)
1832 {
1833 #ifdef CONFIG_SMP
1834 	/*
1835 	 * wait for ACK from master CPU before continuing
1836 	 * with AP initialization
1837 	 */
1838 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1839 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1840 		cpu_relax();
1841 #endif
1842 }
1843 
1844 #ifdef CONFIG_X86_64
setup_getcpu(int cpu)1845 static inline void setup_getcpu(int cpu)
1846 {
1847 	unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1848 	struct desc_struct d = { };
1849 
1850 	if (boot_cpu_has(X86_FEATURE_RDTSCP))
1851 		write_rdtscp_aux(cpudata);
1852 
1853 	/* Store CPU and node number in limit. */
1854 	d.limit0 = cpudata;
1855 	d.limit1 = cpudata >> 16;
1856 
1857 	d.type = 5;		/* RO data, expand down, accessed */
1858 	d.dpl = 3;		/* Visible to user code */
1859 	d.s = 1;		/* Not a system segment */
1860 	d.p = 1;		/* Present */
1861 	d.d = 1;		/* 32-bit */
1862 
1863 	write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1864 }
1865 
ucode_cpu_init(int cpu)1866 static inline void ucode_cpu_init(int cpu)
1867 {
1868 	if (cpu)
1869 		load_ucode_ap();
1870 }
1871 
tss_setup_ist(struct tss_struct * tss)1872 static inline void tss_setup_ist(struct tss_struct *tss)
1873 {
1874 	/* Set up the per-CPU TSS IST stacks */
1875 	tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1876 	tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1877 	tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1878 	tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1879 	/* Only mapped when SEV-ES is active */
1880 	tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
1881 }
1882 
1883 #else /* CONFIG_X86_64 */
1884 
setup_getcpu(int cpu)1885 static inline void setup_getcpu(int cpu) { }
1886 
ucode_cpu_init(int cpu)1887 static inline void ucode_cpu_init(int cpu)
1888 {
1889 	show_ucode_info_early();
1890 }
1891 
tss_setup_ist(struct tss_struct * tss)1892 static inline void tss_setup_ist(struct tss_struct *tss) { }
1893 
1894 #endif /* !CONFIG_X86_64 */
1895 
tss_setup_io_bitmap(struct tss_struct * tss)1896 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1897 {
1898 	tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1899 
1900 #ifdef CONFIG_X86_IOPL_IOPERM
1901 	tss->io_bitmap.prev_max = 0;
1902 	tss->io_bitmap.prev_sequence = 0;
1903 	memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1904 	/*
1905 	 * Invalidate the extra array entry past the end of the all
1906 	 * permission bitmap as required by the hardware.
1907 	 */
1908 	tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1909 #endif
1910 }
1911 
1912 /*
1913  * Setup everything needed to handle exceptions from the IDT, including the IST
1914  * exceptions which use paranoid_entry().
1915  */
cpu_init_exception_handling(void)1916 void cpu_init_exception_handling(void)
1917 {
1918 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1919 	int cpu = raw_smp_processor_id();
1920 
1921 	/* paranoid_entry() gets the CPU number from the GDT */
1922 	setup_getcpu(cpu);
1923 
1924 	/* IST vectors need TSS to be set up. */
1925 	tss_setup_ist(tss);
1926 	tss_setup_io_bitmap(tss);
1927 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1928 
1929 	load_TR_desc();
1930 
1931 	/* Finally load the IDT */
1932 	load_current_idt();
1933 }
1934 
1935 /*
1936  * cpu_init() initializes state that is per-CPU. Some data is already
1937  * initialized (naturally) in the bootstrap process, such as the GDT
1938  * and IDT. We reload them nevertheless, this function acts as a
1939  * 'CPU state barrier', nothing should get across.
1940  */
cpu_init(void)1941 void cpu_init(void)
1942 {
1943 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1944 	struct task_struct *cur = current;
1945 	int cpu = raw_smp_processor_id();
1946 
1947 	wait_for_master_cpu(cpu);
1948 
1949 	ucode_cpu_init(cpu);
1950 
1951 #ifdef CONFIG_NUMA
1952 	if (this_cpu_read(numa_node) == 0 &&
1953 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1954 		set_numa_node(early_cpu_to_node(cpu));
1955 #endif
1956 	setup_getcpu(cpu);
1957 
1958 	pr_debug("Initializing CPU#%d\n", cpu);
1959 
1960 	if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1961 	    boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1962 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1963 
1964 	/*
1965 	 * Initialize the per-CPU GDT with the boot GDT,
1966 	 * and set up the GDT descriptor:
1967 	 */
1968 	switch_to_new_gdt(cpu);
1969 	load_current_idt();
1970 
1971 	if (IS_ENABLED(CONFIG_X86_64)) {
1972 		loadsegment(fs, 0);
1973 		memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1974 		syscall_init();
1975 
1976 		wrmsrl(MSR_FS_BASE, 0);
1977 		wrmsrl(MSR_KERNEL_GS_BASE, 0);
1978 		barrier();
1979 
1980 		x2apic_setup();
1981 	}
1982 
1983 	mmgrab(&init_mm);
1984 	cur->active_mm = &init_mm;
1985 	BUG_ON(cur->mm);
1986 	initialize_tlbstate_and_flush();
1987 	enter_lazy_tlb(&init_mm, cur);
1988 
1989 	/* Initialize the TSS. */
1990 	tss_setup_ist(tss);
1991 	tss_setup_io_bitmap(tss);
1992 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1993 
1994 	load_TR_desc();
1995 	/*
1996 	 * sp0 points to the entry trampoline stack regardless of what task
1997 	 * is running.
1998 	 */
1999 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2000 
2001 	load_mm_ldt(&init_mm);
2002 
2003 	clear_all_debug_regs();
2004 	dbg_restore_debug_regs();
2005 
2006 	doublefault_init_cpu_tss();
2007 
2008 	fpu__init_cpu();
2009 
2010 	if (is_uv_system())
2011 		uv_cpu_init();
2012 
2013 	load_fixmap_gdt(cpu);
2014 }
2015 
2016 /*
2017  * The microcode loader calls this upon late microcode load to recheck features,
2018  * only when microcode has been updated. Caller holds microcode_mutex and CPU
2019  * hotplug lock.
2020  */
microcode_check(void)2021 void microcode_check(void)
2022 {
2023 	struct cpuinfo_x86 info;
2024 
2025 	perf_check_microcode();
2026 
2027 	/* Reload CPUID max function as it might've changed. */
2028 	info.cpuid_level = cpuid_eax(0);
2029 
2030 	/*
2031 	 * Copy all capability leafs to pick up the synthetic ones so that
2032 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2033 	 * get overwritten in get_cpu_cap().
2034 	 */
2035 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2036 
2037 	get_cpu_cap(&info);
2038 
2039 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2040 		return;
2041 
2042 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2043 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2044 }
2045 
2046 /*
2047  * Invoked from core CPU hotplug code after hotplug operations
2048  */
arch_smt_update(void)2049 void arch_smt_update(void)
2050 {
2051 	/* Handle the speculative execution misfeatures */
2052 	cpu_bugs_smt_update();
2053 	/* Check whether IPI broadcasting can be enabled */
2054 	apic_smt_update();
2055 }
2056