1 // SPDX-License-Identifier: GPL-2.0
2 /**
3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
4 *
5 * Copyright (c) 2019, Ericsson AB
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the names of the copyright holders nor the names of its
17 * contributors may be used to endorse or promote products derived from
18 * this software without specific prior written permission.
19 *
20 * Alternatively, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") version 2 as published by the Free
22 * Software Foundation.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 #include <crypto/aead.h>
38 #include <crypto/aes.h>
39 #include <crypto/rng.h>
40 #include "crypto.h"
41 #include "msg.h"
42 #include "bcast.h"
43
44 #define TIPC_TX_GRACE_PERIOD msecs_to_jiffies(5000) /* 5s */
45 #define TIPC_TX_LASTING_TIME msecs_to_jiffies(10000) /* 10s */
46 #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */
47 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(15000) /* 15s */
48
49 #define TIPC_MAX_TFMS_DEF 10
50 #define TIPC_MAX_TFMS_LIM 1000
51
52 #define TIPC_REKEYING_INTV_DEF (60 * 24) /* default: 1 day */
53
54 /**
55 * TIPC Key ids
56 */
57 enum {
58 KEY_MASTER = 0,
59 KEY_MIN = KEY_MASTER,
60 KEY_1 = 1,
61 KEY_2,
62 KEY_3,
63 KEY_MAX = KEY_3,
64 };
65
66 /**
67 * TIPC Crypto statistics
68 */
69 enum {
70 STAT_OK,
71 STAT_NOK,
72 STAT_ASYNC,
73 STAT_ASYNC_OK,
74 STAT_ASYNC_NOK,
75 STAT_BADKEYS, /* tx only */
76 STAT_BADMSGS = STAT_BADKEYS, /* rx only */
77 STAT_NOKEYS,
78 STAT_SWITCHES,
79
80 MAX_STATS,
81 };
82
83 /* TIPC crypto statistics' header */
84 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
85 "async_nok", "badmsgs", "nokeys",
86 "switches"};
87
88 /* Max TFMs number per key */
89 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
90 /* Key exchange switch, default: on */
91 int sysctl_tipc_key_exchange_enabled __read_mostly = 1;
92
93 /**
94 * struct tipc_key - TIPC keys' status indicator
95 *
96 * 7 6 5 4 3 2 1 0
97 * +-----+-----+-----+-----+-----+-----+-----+-----+
98 * key: | (reserved)|passive idx| active idx|pending idx|
99 * +-----+-----+-----+-----+-----+-----+-----+-----+
100 */
101 struct tipc_key {
102 #define KEY_BITS (2)
103 #define KEY_MASK ((1 << KEY_BITS) - 1)
104 union {
105 struct {
106 #if defined(__LITTLE_ENDIAN_BITFIELD)
107 u8 pending:2,
108 active:2,
109 passive:2, /* rx only */
110 reserved:2;
111 #elif defined(__BIG_ENDIAN_BITFIELD)
112 u8 reserved:2,
113 passive:2, /* rx only */
114 active:2,
115 pending:2;
116 #else
117 #error "Please fix <asm/byteorder.h>"
118 #endif
119 } __packed;
120 u8 keys;
121 };
122 };
123
124 /**
125 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
126 */
127 struct tipc_tfm {
128 struct crypto_aead *tfm;
129 struct list_head list;
130 };
131
132 /**
133 * struct tipc_aead - TIPC AEAD key structure
134 * @tfm_entry: per-cpu pointer to one entry in TFM list
135 * @crypto: TIPC crypto owns this key
136 * @cloned: reference to the source key in case cloning
137 * @users: the number of the key users (TX/RX)
138 * @salt: the key's SALT value
139 * @authsize: authentication tag size (max = 16)
140 * @mode: crypto mode is applied to the key
141 * @hint[]: a hint for user key
142 * @rcu: struct rcu_head
143 * @key: the aead key
144 * @gen: the key's generation
145 * @seqno: the key seqno (cluster scope)
146 * @refcnt: the key reference counter
147 */
148 struct tipc_aead {
149 #define TIPC_AEAD_HINT_LEN (5)
150 struct tipc_tfm * __percpu *tfm_entry;
151 struct tipc_crypto *crypto;
152 struct tipc_aead *cloned;
153 atomic_t users;
154 u32 salt;
155 u8 authsize;
156 u8 mode;
157 char hint[2 * TIPC_AEAD_HINT_LEN + 1];
158 struct rcu_head rcu;
159 struct tipc_aead_key *key;
160 u16 gen;
161
162 atomic64_t seqno ____cacheline_aligned;
163 refcount_t refcnt ____cacheline_aligned;
164
165 } ____cacheline_aligned;
166
167 /**
168 * struct tipc_crypto_stats - TIPC Crypto statistics
169 */
170 struct tipc_crypto_stats {
171 unsigned int stat[MAX_STATS];
172 };
173
174 /**
175 * struct tipc_crypto - TIPC TX/RX crypto structure
176 * @net: struct net
177 * @node: TIPC node (RX)
178 * @aead: array of pointers to AEAD keys for encryption/decryption
179 * @peer_rx_active: replicated peer RX active key index
180 * @key_gen: TX/RX key generation
181 * @key: the key states
182 * @skey_mode: session key's mode
183 * @skey: received session key
184 * @wq: common workqueue on TX crypto
185 * @work: delayed work sched for TX/RX
186 * @key_distr: key distributing state
187 * @rekeying_intv: rekeying interval (in minutes)
188 * @stats: the crypto statistics
189 * @name: the crypto name
190 * @sndnxt: the per-peer sndnxt (TX)
191 * @timer1: general timer 1 (jiffies)
192 * @timer2: general timer 2 (jiffies)
193 * @working: the crypto is working or not
194 * @key_master: flag indicates if master key exists
195 * @legacy_user: flag indicates if a peer joins w/o master key (for bwd comp.)
196 * @nokey: no key indication
197 * @lock: tipc_key lock
198 */
199 struct tipc_crypto {
200 struct net *net;
201 struct tipc_node *node;
202 struct tipc_aead __rcu *aead[KEY_MAX + 1];
203 atomic_t peer_rx_active;
204 u16 key_gen;
205 struct tipc_key key;
206 u8 skey_mode;
207 struct tipc_aead_key *skey;
208 struct workqueue_struct *wq;
209 struct delayed_work work;
210 #define KEY_DISTR_SCHED 1
211 #define KEY_DISTR_COMPL 2
212 atomic_t key_distr;
213 u32 rekeying_intv;
214
215 struct tipc_crypto_stats __percpu *stats;
216 char name[48];
217
218 atomic64_t sndnxt ____cacheline_aligned;
219 unsigned long timer1;
220 unsigned long timer2;
221 union {
222 struct {
223 u8 working:1;
224 u8 key_master:1;
225 u8 legacy_user:1;
226 u8 nokey: 1;
227 };
228 u8 flags;
229 };
230 spinlock_t lock; /* crypto lock */
231
232 } ____cacheline_aligned;
233
234 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
235 struct tipc_crypto_tx_ctx {
236 struct tipc_aead *aead;
237 struct tipc_bearer *bearer;
238 struct tipc_media_addr dst;
239 };
240
241 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
242 struct tipc_crypto_rx_ctx {
243 struct tipc_aead *aead;
244 struct tipc_bearer *bearer;
245 };
246
247 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
248 static inline void tipc_aead_put(struct tipc_aead *aead);
249 static void tipc_aead_free(struct rcu_head *rp);
250 static int tipc_aead_users(struct tipc_aead __rcu *aead);
251 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
252 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
253 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
254 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
255 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
256 u8 mode);
257 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
258 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
259 unsigned int crypto_ctx_size,
260 u8 **iv, struct aead_request **req,
261 struct scatterlist **sg, int nsg);
262 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
263 struct tipc_bearer *b,
264 struct tipc_media_addr *dst,
265 struct tipc_node *__dnode);
266 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
267 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
268 struct sk_buff *skb, struct tipc_bearer *b);
269 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
270 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
271 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
272 u8 tx_key, struct sk_buff *skb,
273 struct tipc_crypto *__rx);
274 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
275 u8 new_passive,
276 u8 new_active,
277 u8 new_pending);
278 static int tipc_crypto_key_attach(struct tipc_crypto *c,
279 struct tipc_aead *aead, u8 pos,
280 bool master_key);
281 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
282 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
283 struct tipc_crypto *rx,
284 struct sk_buff *skb,
285 u8 tx_key);
286 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb);
287 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
288 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
289 struct tipc_bearer *b,
290 struct tipc_media_addr *dst,
291 struct tipc_node *__dnode, u8 type);
292 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
293 struct tipc_bearer *b,
294 struct sk_buff **skb, int err);
295 static void tipc_crypto_do_cmd(struct net *net, int cmd);
296 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
297 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
298 char *buf);
299 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
300 u16 gen, u8 mode, u32 dnode);
301 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr);
302 static void tipc_crypto_work_tx(struct work_struct *work);
303 static void tipc_crypto_work_rx(struct work_struct *work);
304 static int tipc_aead_key_generate(struct tipc_aead_key *skey);
305
306 #define is_tx(crypto) (!(crypto)->node)
307 #define is_rx(crypto) (!is_tx(crypto))
308
309 #define key_next(cur) ((cur) % KEY_MAX + 1)
310
311 #define tipc_aead_rcu_ptr(rcu_ptr, lock) \
312 rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
313
314 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \
315 do { \
316 typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr), \
317 lockdep_is_held(lock)); \
318 rcu_assign_pointer((rcu_ptr), (ptr)); \
319 tipc_aead_put(__tmp); \
320 } while (0)
321
322 #define tipc_crypto_key_detach(rcu_ptr, lock) \
323 tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
324
325 /**
326 * tipc_aead_key_validate - Validate a AEAD user key
327 */
tipc_aead_key_validate(struct tipc_aead_key * ukey,struct genl_info * info)328 int tipc_aead_key_validate(struct tipc_aead_key *ukey, struct genl_info *info)
329 {
330 int keylen;
331
332 /* Check if algorithm exists */
333 if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
334 GENL_SET_ERR_MSG(info, "unable to load the algorithm (module existed?)");
335 return -ENODEV;
336 }
337
338 /* Currently, we only support the "gcm(aes)" cipher algorithm */
339 if (strcmp(ukey->alg_name, "gcm(aes)")) {
340 GENL_SET_ERR_MSG(info, "not supported yet the algorithm");
341 return -ENOTSUPP;
342 }
343
344 /* Check if key size is correct */
345 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
346 if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
347 keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
348 keylen != TIPC_AES_GCM_KEY_SIZE_256)) {
349 GENL_SET_ERR_MSG(info, "incorrect key length (20, 28 or 36 octets?)");
350 return -EKEYREJECTED;
351 }
352
353 return 0;
354 }
355
356 /**
357 * tipc_aead_key_generate - Generate new session key
358 * @skey: input/output key with new content
359 *
360 * Return: 0 in case of success, otherwise < 0
361 */
tipc_aead_key_generate(struct tipc_aead_key * skey)362 static int tipc_aead_key_generate(struct tipc_aead_key *skey)
363 {
364 int rc = 0;
365
366 /* Fill the key's content with a random value via RNG cipher */
367 rc = crypto_get_default_rng();
368 if (likely(!rc)) {
369 rc = crypto_rng_get_bytes(crypto_default_rng, skey->key,
370 skey->keylen);
371 crypto_put_default_rng();
372 }
373
374 return rc;
375 }
376
tipc_aead_get(struct tipc_aead __rcu * aead)377 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
378 {
379 struct tipc_aead *tmp;
380
381 rcu_read_lock();
382 tmp = rcu_dereference(aead);
383 if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
384 tmp = NULL;
385 rcu_read_unlock();
386
387 return tmp;
388 }
389
tipc_aead_put(struct tipc_aead * aead)390 static inline void tipc_aead_put(struct tipc_aead *aead)
391 {
392 if (aead && refcount_dec_and_test(&aead->refcnt))
393 call_rcu(&aead->rcu, tipc_aead_free);
394 }
395
396 /**
397 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
398 * @rp: rcu head pointer
399 */
tipc_aead_free(struct rcu_head * rp)400 static void tipc_aead_free(struct rcu_head *rp)
401 {
402 struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
403 struct tipc_tfm *tfm_entry, *head, *tmp;
404
405 if (aead->cloned) {
406 tipc_aead_put(aead->cloned);
407 } else {
408 head = *get_cpu_ptr(aead->tfm_entry);
409 put_cpu_ptr(aead->tfm_entry);
410 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
411 crypto_free_aead(tfm_entry->tfm);
412 list_del(&tfm_entry->list);
413 kfree(tfm_entry);
414 }
415 /* Free the head */
416 crypto_free_aead(head->tfm);
417 list_del(&head->list);
418 kfree(head);
419 }
420 free_percpu(aead->tfm_entry);
421 kfree_sensitive(aead->key);
422 kfree(aead);
423 }
424
tipc_aead_users(struct tipc_aead __rcu * aead)425 static int tipc_aead_users(struct tipc_aead __rcu *aead)
426 {
427 struct tipc_aead *tmp;
428 int users = 0;
429
430 rcu_read_lock();
431 tmp = rcu_dereference(aead);
432 if (tmp)
433 users = atomic_read(&tmp->users);
434 rcu_read_unlock();
435
436 return users;
437 }
438
tipc_aead_users_inc(struct tipc_aead __rcu * aead,int lim)439 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
440 {
441 struct tipc_aead *tmp;
442
443 rcu_read_lock();
444 tmp = rcu_dereference(aead);
445 if (tmp)
446 atomic_add_unless(&tmp->users, 1, lim);
447 rcu_read_unlock();
448 }
449
tipc_aead_users_dec(struct tipc_aead __rcu * aead,int lim)450 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
451 {
452 struct tipc_aead *tmp;
453
454 rcu_read_lock();
455 tmp = rcu_dereference(aead);
456 if (tmp)
457 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
458 rcu_read_unlock();
459 }
460
tipc_aead_users_set(struct tipc_aead __rcu * aead,int val)461 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
462 {
463 struct tipc_aead *tmp;
464 int cur;
465
466 rcu_read_lock();
467 tmp = rcu_dereference(aead);
468 if (tmp) {
469 do {
470 cur = atomic_read(&tmp->users);
471 if (cur == val)
472 break;
473 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
474 }
475 rcu_read_unlock();
476 }
477
478 /**
479 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
480 */
tipc_aead_tfm_next(struct tipc_aead * aead)481 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
482 {
483 struct tipc_tfm **tfm_entry;
484 struct crypto_aead *tfm;
485
486 tfm_entry = get_cpu_ptr(aead->tfm_entry);
487 *tfm_entry = list_next_entry(*tfm_entry, list);
488 tfm = (*tfm_entry)->tfm;
489 put_cpu_ptr(tfm_entry);
490
491 return tfm;
492 }
493
494 /**
495 * tipc_aead_init - Initiate TIPC AEAD
496 * @aead: returned new TIPC AEAD key handle pointer
497 * @ukey: pointer to user key data
498 * @mode: the key mode
499 *
500 * Allocate a (list of) new cipher transformation (TFM) with the specific user
501 * key data if valid. The number of the allocated TFMs can be set via the sysfs
502 * "net/tipc/max_tfms" first.
503 * Also, all the other AEAD data are also initialized.
504 *
505 * Return: 0 if the initiation is successful, otherwise: < 0
506 */
tipc_aead_init(struct tipc_aead ** aead,struct tipc_aead_key * ukey,u8 mode)507 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
508 u8 mode)
509 {
510 struct tipc_tfm *tfm_entry, *head;
511 struct crypto_aead *tfm;
512 struct tipc_aead *tmp;
513 int keylen, err, cpu;
514 int tfm_cnt = 0;
515
516 if (unlikely(*aead))
517 return -EEXIST;
518
519 /* Allocate a new AEAD */
520 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
521 if (unlikely(!tmp))
522 return -ENOMEM;
523
524 /* The key consists of two parts: [AES-KEY][SALT] */
525 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
526
527 /* Allocate per-cpu TFM entry pointer */
528 tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
529 if (!tmp->tfm_entry) {
530 kfree_sensitive(tmp);
531 return -ENOMEM;
532 }
533
534 /* Make a list of TFMs with the user key data */
535 do {
536 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
537 if (IS_ERR(tfm)) {
538 err = PTR_ERR(tfm);
539 break;
540 }
541
542 if (unlikely(!tfm_cnt &&
543 crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
544 crypto_free_aead(tfm);
545 err = -ENOTSUPP;
546 break;
547 }
548
549 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
550 err |= crypto_aead_setkey(tfm, ukey->key, keylen);
551 if (unlikely(err)) {
552 crypto_free_aead(tfm);
553 break;
554 }
555
556 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
557 if (unlikely(!tfm_entry)) {
558 crypto_free_aead(tfm);
559 err = -ENOMEM;
560 break;
561 }
562 INIT_LIST_HEAD(&tfm_entry->list);
563 tfm_entry->tfm = tfm;
564
565 /* First entry? */
566 if (!tfm_cnt) {
567 head = tfm_entry;
568 for_each_possible_cpu(cpu) {
569 *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
570 }
571 } else {
572 list_add_tail(&tfm_entry->list, &head->list);
573 }
574
575 } while (++tfm_cnt < sysctl_tipc_max_tfms);
576
577 /* Not any TFM is allocated? */
578 if (!tfm_cnt) {
579 free_percpu(tmp->tfm_entry);
580 kfree_sensitive(tmp);
581 return err;
582 }
583
584 /* Form a hex string of some last bytes as the key's hint */
585 bin2hex(tmp->hint, ukey->key + keylen - TIPC_AEAD_HINT_LEN,
586 TIPC_AEAD_HINT_LEN);
587
588 /* Initialize the other data */
589 tmp->mode = mode;
590 tmp->cloned = NULL;
591 tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
592 tmp->key = kmemdup(ukey, tipc_aead_key_size(ukey), GFP_KERNEL);
593 memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
594 atomic_set(&tmp->users, 0);
595 atomic64_set(&tmp->seqno, 0);
596 refcount_set(&tmp->refcnt, 1);
597
598 *aead = tmp;
599 return 0;
600 }
601
602 /**
603 * tipc_aead_clone - Clone a TIPC AEAD key
604 * @dst: dest key for the cloning
605 * @src: source key to clone from
606 *
607 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
608 * common for the keys.
609 * A reference to the source is hold in the "cloned" pointer for the later
610 * freeing purposes.
611 *
612 * Note: this must be done in cluster-key mode only!
613 * Return: 0 in case of success, otherwise < 0
614 */
tipc_aead_clone(struct tipc_aead ** dst,struct tipc_aead * src)615 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
616 {
617 struct tipc_aead *aead;
618 int cpu;
619
620 if (!src)
621 return -ENOKEY;
622
623 if (src->mode != CLUSTER_KEY)
624 return -EINVAL;
625
626 if (unlikely(*dst))
627 return -EEXIST;
628
629 aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
630 if (unlikely(!aead))
631 return -ENOMEM;
632
633 aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
634 if (unlikely(!aead->tfm_entry)) {
635 kfree_sensitive(aead);
636 return -ENOMEM;
637 }
638
639 for_each_possible_cpu(cpu) {
640 *per_cpu_ptr(aead->tfm_entry, cpu) =
641 *per_cpu_ptr(src->tfm_entry, cpu);
642 }
643
644 memcpy(aead->hint, src->hint, sizeof(src->hint));
645 aead->mode = src->mode;
646 aead->salt = src->salt;
647 aead->authsize = src->authsize;
648 atomic_set(&aead->users, 0);
649 atomic64_set(&aead->seqno, 0);
650 refcount_set(&aead->refcnt, 1);
651
652 WARN_ON(!refcount_inc_not_zero(&src->refcnt));
653 aead->cloned = src;
654
655 *dst = aead;
656 return 0;
657 }
658
659 /**
660 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
661 * @tfm: cipher handle to be registered with the request
662 * @crypto_ctx_size: size of crypto context for callback
663 * @iv: returned pointer to IV data
664 * @req: returned pointer to AEAD request data
665 * @sg: returned pointer to SG lists
666 * @nsg: number of SG lists to be allocated
667 *
668 * Allocate memory to store the crypto context data, AEAD request, IV and SG
669 * lists, the memory layout is as follows:
670 * crypto_ctx || iv || aead_req || sg[]
671 *
672 * Return: the pointer to the memory areas in case of success, otherwise NULL
673 */
tipc_aead_mem_alloc(struct crypto_aead * tfm,unsigned int crypto_ctx_size,u8 ** iv,struct aead_request ** req,struct scatterlist ** sg,int nsg)674 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
675 unsigned int crypto_ctx_size,
676 u8 **iv, struct aead_request **req,
677 struct scatterlist **sg, int nsg)
678 {
679 unsigned int iv_size, req_size;
680 unsigned int len;
681 u8 *mem;
682
683 iv_size = crypto_aead_ivsize(tfm);
684 req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
685
686 len = crypto_ctx_size;
687 len += iv_size;
688 len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
689 len = ALIGN(len, crypto_tfm_ctx_alignment());
690 len += req_size;
691 len = ALIGN(len, __alignof__(struct scatterlist));
692 len += nsg * sizeof(**sg);
693
694 mem = kmalloc(len, GFP_ATOMIC);
695 if (!mem)
696 return NULL;
697
698 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
699 crypto_aead_alignmask(tfm) + 1);
700 *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
701 crypto_tfm_ctx_alignment());
702 *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
703 __alignof__(struct scatterlist));
704
705 return (void *)mem;
706 }
707
708 /**
709 * tipc_aead_encrypt - Encrypt a message
710 * @aead: TIPC AEAD key for the message encryption
711 * @skb: the input/output skb
712 * @b: TIPC bearer where the message will be delivered after the encryption
713 * @dst: the destination media address
714 * @__dnode: TIPC dest node if "known"
715 *
716 * Return:
717 * 0 : if the encryption has completed
718 * -EINPROGRESS/-EBUSY : if a callback will be performed
719 * < 0 : the encryption has failed
720 */
tipc_aead_encrypt(struct tipc_aead * aead,struct sk_buff * skb,struct tipc_bearer * b,struct tipc_media_addr * dst,struct tipc_node * __dnode)721 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
722 struct tipc_bearer *b,
723 struct tipc_media_addr *dst,
724 struct tipc_node *__dnode)
725 {
726 struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
727 struct tipc_crypto_tx_ctx *tx_ctx;
728 struct aead_request *req;
729 struct sk_buff *trailer;
730 struct scatterlist *sg;
731 struct tipc_ehdr *ehdr;
732 int ehsz, len, tailen, nsg, rc;
733 void *ctx;
734 u32 salt;
735 u8 *iv;
736
737 /* Make sure message len at least 4-byte aligned */
738 len = ALIGN(skb->len, 4);
739 tailen = len - skb->len + aead->authsize;
740
741 /* Expand skb tail for authentication tag:
742 * As for simplicity, we'd have made sure skb having enough tailroom
743 * for authentication tag @skb allocation. Even when skb is nonlinear
744 * but there is no frag_list, it should be still fine!
745 * Otherwise, we must cow it to be a writable buffer with the tailroom.
746 */
747 SKB_LINEAR_ASSERT(skb);
748 if (tailen > skb_tailroom(skb)) {
749 pr_debug("TX(): skb tailroom is not enough: %d, requires: %d\n",
750 skb_tailroom(skb), tailen);
751 }
752
753 if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
754 nsg = 1;
755 trailer = skb;
756 } else {
757 /* TODO: We could avoid skb_cow_data() if skb has no frag_list
758 * e.g. by skb_fill_page_desc() to add another page to the skb
759 * with the wanted tailen... However, page skbs look not often,
760 * so take it easy now!
761 * Cloned skbs e.g. from link_xmit() seems no choice though :(
762 */
763 nsg = skb_cow_data(skb, tailen, &trailer);
764 if (unlikely(nsg < 0)) {
765 pr_err("TX: skb_cow_data() returned %d\n", nsg);
766 return nsg;
767 }
768 }
769
770 pskb_put(skb, trailer, tailen);
771
772 /* Allocate memory for the AEAD operation */
773 ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
774 if (unlikely(!ctx))
775 return -ENOMEM;
776 TIPC_SKB_CB(skb)->crypto_ctx = ctx;
777
778 /* Map skb to the sg lists */
779 sg_init_table(sg, nsg);
780 rc = skb_to_sgvec(skb, sg, 0, skb->len);
781 if (unlikely(rc < 0)) {
782 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
783 goto exit;
784 }
785
786 /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
787 * In case we're in cluster-key mode, SALT is varied by xor-ing with
788 * the source address (or w0 of id), otherwise with the dest address
789 * if dest is known.
790 */
791 ehdr = (struct tipc_ehdr *)skb->data;
792 salt = aead->salt;
793 if (aead->mode == CLUSTER_KEY)
794 salt ^= ehdr->addr; /* __be32 */
795 else if (__dnode)
796 salt ^= tipc_node_get_addr(__dnode);
797 memcpy(iv, &salt, 4);
798 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
799
800 /* Prepare request */
801 ehsz = tipc_ehdr_size(ehdr);
802 aead_request_set_tfm(req, tfm);
803 aead_request_set_ad(req, ehsz);
804 aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
805
806 /* Set callback function & data */
807 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
808 tipc_aead_encrypt_done, skb);
809 tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
810 tx_ctx->aead = aead;
811 tx_ctx->bearer = b;
812 memcpy(&tx_ctx->dst, dst, sizeof(*dst));
813
814 /* Hold bearer */
815 if (unlikely(!tipc_bearer_hold(b))) {
816 rc = -ENODEV;
817 goto exit;
818 }
819
820 /* Now, do encrypt */
821 rc = crypto_aead_encrypt(req);
822 if (rc == -EINPROGRESS || rc == -EBUSY)
823 return rc;
824
825 tipc_bearer_put(b);
826
827 exit:
828 kfree(ctx);
829 TIPC_SKB_CB(skb)->crypto_ctx = NULL;
830 return rc;
831 }
832
tipc_aead_encrypt_done(struct crypto_async_request * base,int err)833 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
834 {
835 struct sk_buff *skb = base->data;
836 struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
837 struct tipc_bearer *b = tx_ctx->bearer;
838 struct tipc_aead *aead = tx_ctx->aead;
839 struct tipc_crypto *tx = aead->crypto;
840 struct net *net = tx->net;
841
842 switch (err) {
843 case 0:
844 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
845 rcu_read_lock();
846 if (likely(test_bit(0, &b->up)))
847 b->media->send_msg(net, skb, b, &tx_ctx->dst);
848 else
849 kfree_skb(skb);
850 rcu_read_unlock();
851 break;
852 case -EINPROGRESS:
853 return;
854 default:
855 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
856 kfree_skb(skb);
857 break;
858 }
859
860 kfree(tx_ctx);
861 tipc_bearer_put(b);
862 tipc_aead_put(aead);
863 }
864
865 /**
866 * tipc_aead_decrypt - Decrypt an encrypted message
867 * @net: struct net
868 * @aead: TIPC AEAD for the message decryption
869 * @skb: the input/output skb
870 * @b: TIPC bearer where the message has been received
871 *
872 * Return:
873 * 0 : if the decryption has completed
874 * -EINPROGRESS/-EBUSY : if a callback will be performed
875 * < 0 : the decryption has failed
876 */
tipc_aead_decrypt(struct net * net,struct tipc_aead * aead,struct sk_buff * skb,struct tipc_bearer * b)877 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
878 struct sk_buff *skb, struct tipc_bearer *b)
879 {
880 struct tipc_crypto_rx_ctx *rx_ctx;
881 struct aead_request *req;
882 struct crypto_aead *tfm;
883 struct sk_buff *unused;
884 struct scatterlist *sg;
885 struct tipc_ehdr *ehdr;
886 int ehsz, nsg, rc;
887 void *ctx;
888 u32 salt;
889 u8 *iv;
890
891 if (unlikely(!aead))
892 return -ENOKEY;
893
894 /* Cow skb data if needed */
895 if (likely(!skb_cloned(skb) &&
896 (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) {
897 nsg = 1 + skb_shinfo(skb)->nr_frags;
898 } else {
899 nsg = skb_cow_data(skb, 0, &unused);
900 if (unlikely(nsg < 0)) {
901 pr_err("RX: skb_cow_data() returned %d\n", nsg);
902 return nsg;
903 }
904 }
905
906 /* Allocate memory for the AEAD operation */
907 tfm = tipc_aead_tfm_next(aead);
908 ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
909 if (unlikely(!ctx))
910 return -ENOMEM;
911 TIPC_SKB_CB(skb)->crypto_ctx = ctx;
912
913 /* Map skb to the sg lists */
914 sg_init_table(sg, nsg);
915 rc = skb_to_sgvec(skb, sg, 0, skb->len);
916 if (unlikely(rc < 0)) {
917 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
918 goto exit;
919 }
920
921 /* Reconstruct IV: */
922 ehdr = (struct tipc_ehdr *)skb->data;
923 salt = aead->salt;
924 if (aead->mode == CLUSTER_KEY)
925 salt ^= ehdr->addr; /* __be32 */
926 else if (ehdr->destined)
927 salt ^= tipc_own_addr(net);
928 memcpy(iv, &salt, 4);
929 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
930
931 /* Prepare request */
932 ehsz = tipc_ehdr_size(ehdr);
933 aead_request_set_tfm(req, tfm);
934 aead_request_set_ad(req, ehsz);
935 aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
936
937 /* Set callback function & data */
938 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
939 tipc_aead_decrypt_done, skb);
940 rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
941 rx_ctx->aead = aead;
942 rx_ctx->bearer = b;
943
944 /* Hold bearer */
945 if (unlikely(!tipc_bearer_hold(b))) {
946 rc = -ENODEV;
947 goto exit;
948 }
949
950 /* Now, do decrypt */
951 rc = crypto_aead_decrypt(req);
952 if (rc == -EINPROGRESS || rc == -EBUSY)
953 return rc;
954
955 tipc_bearer_put(b);
956
957 exit:
958 kfree(ctx);
959 TIPC_SKB_CB(skb)->crypto_ctx = NULL;
960 return rc;
961 }
962
tipc_aead_decrypt_done(struct crypto_async_request * base,int err)963 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
964 {
965 struct sk_buff *skb = base->data;
966 struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
967 struct tipc_bearer *b = rx_ctx->bearer;
968 struct tipc_aead *aead = rx_ctx->aead;
969 struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
970 struct net *net = aead->crypto->net;
971
972 switch (err) {
973 case 0:
974 this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
975 break;
976 case -EINPROGRESS:
977 return;
978 default:
979 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
980 break;
981 }
982
983 kfree(rx_ctx);
984 tipc_crypto_rcv_complete(net, aead, b, &skb, err);
985 if (likely(skb)) {
986 if (likely(test_bit(0, &b->up)))
987 tipc_rcv(net, skb, b);
988 else
989 kfree_skb(skb);
990 }
991
992 tipc_bearer_put(b);
993 }
994
tipc_ehdr_size(struct tipc_ehdr * ehdr)995 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
996 {
997 return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
998 }
999
1000 /**
1001 * tipc_ehdr_validate - Validate an encryption message
1002 * @skb: the message buffer
1003 *
1004 * Returns "true" if this is a valid encryption message, otherwise "false"
1005 */
tipc_ehdr_validate(struct sk_buff * skb)1006 bool tipc_ehdr_validate(struct sk_buff *skb)
1007 {
1008 struct tipc_ehdr *ehdr;
1009 int ehsz;
1010
1011 if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
1012 return false;
1013
1014 ehdr = (struct tipc_ehdr *)skb->data;
1015 if (unlikely(ehdr->version != TIPC_EVERSION))
1016 return false;
1017 ehsz = tipc_ehdr_size(ehdr);
1018 if (unlikely(!pskb_may_pull(skb, ehsz)))
1019 return false;
1020 if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
1021 return false;
1022
1023 return true;
1024 }
1025
1026 /**
1027 * tipc_ehdr_build - Build TIPC encryption message header
1028 * @net: struct net
1029 * @aead: TX AEAD key to be used for the message encryption
1030 * @tx_key: key id used for the message encryption
1031 * @skb: input/output message skb
1032 * @__rx: RX crypto handle if dest is "known"
1033 *
1034 * Return: the header size if the building is successful, otherwise < 0
1035 */
tipc_ehdr_build(struct net * net,struct tipc_aead * aead,u8 tx_key,struct sk_buff * skb,struct tipc_crypto * __rx)1036 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
1037 u8 tx_key, struct sk_buff *skb,
1038 struct tipc_crypto *__rx)
1039 {
1040 struct tipc_msg *hdr = buf_msg(skb);
1041 struct tipc_ehdr *ehdr;
1042 u32 user = msg_user(hdr);
1043 u64 seqno;
1044 int ehsz;
1045
1046 /* Make room for encryption header */
1047 ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
1048 WARN_ON(skb_headroom(skb) < ehsz);
1049 ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
1050
1051 /* Obtain a seqno first:
1052 * Use the key seqno (= cluster wise) if dest is unknown or we're in
1053 * cluster key mode, otherwise it's better for a per-peer seqno!
1054 */
1055 if (!__rx || aead->mode == CLUSTER_KEY)
1056 seqno = atomic64_inc_return(&aead->seqno);
1057 else
1058 seqno = atomic64_inc_return(&__rx->sndnxt);
1059
1060 /* Revoke the key if seqno is wrapped around */
1061 if (unlikely(!seqno))
1062 return tipc_crypto_key_revoke(net, tx_key);
1063
1064 /* Word 1-2 */
1065 ehdr->seqno = cpu_to_be64(seqno);
1066
1067 /* Words 0, 3- */
1068 ehdr->version = TIPC_EVERSION;
1069 ehdr->user = 0;
1070 ehdr->keepalive = 0;
1071 ehdr->tx_key = tx_key;
1072 ehdr->destined = (__rx) ? 1 : 0;
1073 ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
1074 ehdr->rx_nokey = (__rx) ? __rx->nokey : 0;
1075 ehdr->master_key = aead->crypto->key_master;
1076 ehdr->reserved_1 = 0;
1077 ehdr->reserved_2 = 0;
1078
1079 switch (user) {
1080 case LINK_CONFIG:
1081 ehdr->user = LINK_CONFIG;
1082 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
1083 break;
1084 default:
1085 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1086 ehdr->user = LINK_PROTOCOL;
1087 ehdr->keepalive = msg_is_keepalive(hdr);
1088 }
1089 ehdr->addr = hdr->hdr[3];
1090 break;
1091 }
1092
1093 return ehsz;
1094 }
1095
tipc_crypto_key_set_state(struct tipc_crypto * c,u8 new_passive,u8 new_active,u8 new_pending)1096 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1097 u8 new_passive,
1098 u8 new_active,
1099 u8 new_pending)
1100 {
1101 struct tipc_key old = c->key;
1102 char buf[32];
1103
1104 c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1105 ((new_active & KEY_MASK) << (KEY_BITS)) |
1106 ((new_pending & KEY_MASK));
1107
1108 pr_debug("%s: key changing %s ::%pS\n", c->name,
1109 tipc_key_change_dump(old, c->key, buf),
1110 __builtin_return_address(0));
1111 }
1112
1113 /**
1114 * tipc_crypto_key_init - Initiate a new user / AEAD key
1115 * @c: TIPC crypto to which new key is attached
1116 * @ukey: the user key
1117 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1118 * @master_key: specify this is a cluster master key
1119 *
1120 * A new TIPC AEAD key will be allocated and initiated with the specified user
1121 * key, then attached to the TIPC crypto.
1122 *
1123 * Return: new key id in case of success, otherwise: < 0
1124 */
tipc_crypto_key_init(struct tipc_crypto * c,struct tipc_aead_key * ukey,u8 mode,bool master_key)1125 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1126 u8 mode, bool master_key)
1127 {
1128 struct tipc_aead *aead = NULL;
1129 int rc = 0;
1130
1131 /* Initiate with the new user key */
1132 rc = tipc_aead_init(&aead, ukey, mode);
1133
1134 /* Attach it to the crypto */
1135 if (likely(!rc)) {
1136 rc = tipc_crypto_key_attach(c, aead, 0, master_key);
1137 if (rc < 0)
1138 tipc_aead_free(&aead->rcu);
1139 }
1140
1141 return rc;
1142 }
1143
1144 /**
1145 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1146 * @c: TIPC crypto to which the new AEAD key is attached
1147 * @aead: the new AEAD key pointer
1148 * @pos: desired slot in the crypto key array, = 0 if any!
1149 * @master_key: specify this is a cluster master key
1150 *
1151 * Return: new key id in case of success, otherwise: -EBUSY
1152 */
tipc_crypto_key_attach(struct tipc_crypto * c,struct tipc_aead * aead,u8 pos,bool master_key)1153 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1154 struct tipc_aead *aead, u8 pos,
1155 bool master_key)
1156 {
1157 struct tipc_key key;
1158 int rc = -EBUSY;
1159 u8 new_key;
1160
1161 spin_lock_bh(&c->lock);
1162 key = c->key;
1163 if (master_key) {
1164 new_key = KEY_MASTER;
1165 goto attach;
1166 }
1167 if (key.active && key.passive)
1168 goto exit;
1169 if (key.pending) {
1170 if (tipc_aead_users(c->aead[key.pending]) > 0)
1171 goto exit;
1172 /* if (pos): ok with replacing, will be aligned when needed */
1173 /* Replace it */
1174 new_key = key.pending;
1175 } else {
1176 if (pos) {
1177 if (key.active && pos != key_next(key.active)) {
1178 key.passive = pos;
1179 new_key = pos;
1180 goto attach;
1181 } else if (!key.active && !key.passive) {
1182 key.pending = pos;
1183 new_key = pos;
1184 goto attach;
1185 }
1186 }
1187 key.pending = key_next(key.active ?: key.passive);
1188 new_key = key.pending;
1189 }
1190
1191 attach:
1192 aead->crypto = c;
1193 aead->gen = (is_tx(c)) ? ++c->key_gen : c->key_gen;
1194 tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1195 if (likely(c->key.keys != key.keys))
1196 tipc_crypto_key_set_state(c, key.passive, key.active,
1197 key.pending);
1198 c->working = 1;
1199 c->nokey = 0;
1200 c->key_master |= master_key;
1201 rc = new_key;
1202
1203 exit:
1204 spin_unlock_bh(&c->lock);
1205 return rc;
1206 }
1207
tipc_crypto_key_flush(struct tipc_crypto * c)1208 void tipc_crypto_key_flush(struct tipc_crypto *c)
1209 {
1210 struct tipc_crypto *tx, *rx;
1211 int k;
1212
1213 spin_lock_bh(&c->lock);
1214 if (is_rx(c)) {
1215 /* Try to cancel pending work */
1216 rx = c;
1217 tx = tipc_net(rx->net)->crypto_tx;
1218 if (cancel_delayed_work(&rx->work)) {
1219 kfree(rx->skey);
1220 rx->skey = NULL;
1221 atomic_xchg(&rx->key_distr, 0);
1222 tipc_node_put(rx->node);
1223 }
1224 /* RX stopping => decrease TX key users if any */
1225 k = atomic_xchg(&rx->peer_rx_active, 0);
1226 if (k) {
1227 tipc_aead_users_dec(tx->aead[k], 0);
1228 /* Mark the point TX key users changed */
1229 tx->timer1 = jiffies;
1230 }
1231 }
1232
1233 c->flags = 0;
1234 tipc_crypto_key_set_state(c, 0, 0, 0);
1235 for (k = KEY_MIN; k <= KEY_MAX; k++)
1236 tipc_crypto_key_detach(c->aead[k], &c->lock);
1237 atomic64_set(&c->sndnxt, 0);
1238 spin_unlock_bh(&c->lock);
1239 }
1240
1241 /**
1242 * tipc_crypto_key_try_align - Align RX keys if possible
1243 * @rx: RX crypto handle
1244 * @new_pending: new pending slot if aligned (= TX key from peer)
1245 *
1246 * Peer has used an unknown key slot, this only happens when peer has left and
1247 * rejoned, or we are newcomer.
1248 * That means, there must be no active key but a pending key at unaligned slot.
1249 * If so, we try to move the pending key to the new slot.
1250 * Note: A potential passive key can exist, it will be shifted correspondingly!
1251 *
1252 * Return: "true" if key is successfully aligned, otherwise "false"
1253 */
tipc_crypto_key_try_align(struct tipc_crypto * rx,u8 new_pending)1254 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1255 {
1256 struct tipc_aead *tmp1, *tmp2 = NULL;
1257 struct tipc_key key;
1258 bool aligned = false;
1259 u8 new_passive = 0;
1260 int x;
1261
1262 spin_lock(&rx->lock);
1263 key = rx->key;
1264 if (key.pending == new_pending) {
1265 aligned = true;
1266 goto exit;
1267 }
1268 if (key.active)
1269 goto exit;
1270 if (!key.pending)
1271 goto exit;
1272 if (tipc_aead_users(rx->aead[key.pending]) > 0)
1273 goto exit;
1274
1275 /* Try to "isolate" this pending key first */
1276 tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1277 if (!refcount_dec_if_one(&tmp1->refcnt))
1278 goto exit;
1279 rcu_assign_pointer(rx->aead[key.pending], NULL);
1280
1281 /* Move passive key if any */
1282 if (key.passive) {
1283 tmp2 = rcu_replace_pointer(rx->aead[key.passive], tmp2, lockdep_is_held(&rx->lock));
1284 x = (key.passive - key.pending + new_pending) % KEY_MAX;
1285 new_passive = (x <= 0) ? x + KEY_MAX : x;
1286 }
1287
1288 /* Re-allocate the key(s) */
1289 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1290 rcu_assign_pointer(rx->aead[new_pending], tmp1);
1291 if (new_passive)
1292 rcu_assign_pointer(rx->aead[new_passive], tmp2);
1293 refcount_set(&tmp1->refcnt, 1);
1294 aligned = true;
1295 pr_info_ratelimited("%s: key[%d] -> key[%d]\n", rx->name, key.pending,
1296 new_pending);
1297
1298 exit:
1299 spin_unlock(&rx->lock);
1300 return aligned;
1301 }
1302
1303 /**
1304 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1305 * @tx: TX crypto handle
1306 * @rx: RX crypto handle (can be NULL)
1307 * @skb: the message skb which will be decrypted later
1308 * @tx_key: peer TX key id
1309 *
1310 * This function looks up the existing TX keys and pick one which is suitable
1311 * for the message decryption, that must be a cluster key and not used before
1312 * on the same message (i.e. recursive).
1313 *
1314 * Return: the TX AEAD key handle in case of success, otherwise NULL
1315 */
tipc_crypto_key_pick_tx(struct tipc_crypto * tx,struct tipc_crypto * rx,struct sk_buff * skb,u8 tx_key)1316 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1317 struct tipc_crypto *rx,
1318 struct sk_buff *skb,
1319 u8 tx_key)
1320 {
1321 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1322 struct tipc_aead *aead = NULL;
1323 struct tipc_key key = tx->key;
1324 u8 k, i = 0;
1325
1326 /* Initialize data if not yet */
1327 if (!skb_cb->tx_clone_deferred) {
1328 skb_cb->tx_clone_deferred = 1;
1329 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1330 }
1331
1332 skb_cb->tx_clone_ctx.rx = rx;
1333 if (++skb_cb->tx_clone_ctx.recurs > 2)
1334 return NULL;
1335
1336 /* Pick one TX key */
1337 spin_lock(&tx->lock);
1338 if (tx_key == KEY_MASTER) {
1339 aead = tipc_aead_rcu_ptr(tx->aead[KEY_MASTER], &tx->lock);
1340 goto done;
1341 }
1342 do {
1343 k = (i == 0) ? key.pending :
1344 ((i == 1) ? key.active : key.passive);
1345 if (!k)
1346 continue;
1347 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1348 if (!aead)
1349 continue;
1350 if (aead->mode != CLUSTER_KEY ||
1351 aead == skb_cb->tx_clone_ctx.last) {
1352 aead = NULL;
1353 continue;
1354 }
1355 /* Ok, found one cluster key */
1356 skb_cb->tx_clone_ctx.last = aead;
1357 WARN_ON(skb->next);
1358 skb->next = skb_clone(skb, GFP_ATOMIC);
1359 if (unlikely(!skb->next))
1360 pr_warn("Failed to clone skb for next round if any\n");
1361 break;
1362 } while (++i < 3);
1363
1364 done:
1365 if (likely(aead))
1366 WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1367 spin_unlock(&tx->lock);
1368
1369 return aead;
1370 }
1371
1372 /**
1373 * tipc_crypto_key_synch: Synch own key data according to peer key status
1374 * @rx: RX crypto handle
1375 * @skb: TIPCv2 message buffer (incl. the ehdr from peer)
1376 *
1377 * This function updates the peer node related data as the peer RX active key
1378 * has changed, so the number of TX keys' users on this node are increased and
1379 * decreased correspondingly.
1380 *
1381 * It also considers if peer has no key, then we need to make own master key
1382 * (if any) taking over i.e. starting grace period and also trigger key
1383 * distributing process.
1384 *
1385 * The "per-peer" sndnxt is also reset when the peer key has switched.
1386 */
tipc_crypto_key_synch(struct tipc_crypto * rx,struct sk_buff * skb)1387 static void tipc_crypto_key_synch(struct tipc_crypto *rx, struct sk_buff *skb)
1388 {
1389 struct tipc_ehdr *ehdr = (struct tipc_ehdr *)skb_network_header(skb);
1390 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
1391 struct tipc_msg *hdr = buf_msg(skb);
1392 u32 self = tipc_own_addr(rx->net);
1393 u8 cur, new;
1394 unsigned long delay;
1395
1396 /* Update RX 'key_master' flag according to peer, also mark "legacy" if
1397 * a peer has no master key.
1398 */
1399 rx->key_master = ehdr->master_key;
1400 if (!rx->key_master)
1401 tx->legacy_user = 1;
1402
1403 /* For later cases, apply only if message is destined to this node */
1404 if (!ehdr->destined || msg_short(hdr) || msg_destnode(hdr) != self)
1405 return;
1406
1407 /* Case 1: Peer has no keys, let's make master key take over */
1408 if (ehdr->rx_nokey) {
1409 /* Set or extend grace period */
1410 tx->timer2 = jiffies;
1411 /* Schedule key distributing for the peer if not yet */
1412 if (tx->key.keys &&
1413 !atomic_cmpxchg(&rx->key_distr, 0, KEY_DISTR_SCHED)) {
1414 get_random_bytes(&delay, 2);
1415 delay %= 5;
1416 delay = msecs_to_jiffies(500 * ++delay);
1417 if (queue_delayed_work(tx->wq, &rx->work, delay))
1418 tipc_node_get(rx->node);
1419 }
1420 } else {
1421 /* Cancel a pending key distributing if any */
1422 atomic_xchg(&rx->key_distr, 0);
1423 }
1424
1425 /* Case 2: Peer RX active key has changed, let's update own TX users */
1426 cur = atomic_read(&rx->peer_rx_active);
1427 new = ehdr->rx_key_active;
1428 if (tx->key.keys &&
1429 cur != new &&
1430 atomic_cmpxchg(&rx->peer_rx_active, cur, new) == cur) {
1431 if (new)
1432 tipc_aead_users_inc(tx->aead[new], INT_MAX);
1433 if (cur)
1434 tipc_aead_users_dec(tx->aead[cur], 0);
1435
1436 atomic64_set(&rx->sndnxt, 0);
1437 /* Mark the point TX key users changed */
1438 tx->timer1 = jiffies;
1439
1440 pr_debug("%s: key users changed %d-- %d++, peer %s\n",
1441 tx->name, cur, new, rx->name);
1442 }
1443 }
1444
tipc_crypto_key_revoke(struct net * net,u8 tx_key)1445 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1446 {
1447 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1448 struct tipc_key key;
1449
1450 spin_lock(&tx->lock);
1451 key = tx->key;
1452 WARN_ON(!key.active || tx_key != key.active);
1453
1454 /* Free the active key */
1455 tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1456 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1457 spin_unlock(&tx->lock);
1458
1459 pr_warn("%s: key is revoked\n", tx->name);
1460 return -EKEYREVOKED;
1461 }
1462
tipc_crypto_start(struct tipc_crypto ** crypto,struct net * net,struct tipc_node * node)1463 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1464 struct tipc_node *node)
1465 {
1466 struct tipc_crypto *c;
1467
1468 if (*crypto)
1469 return -EEXIST;
1470
1471 /* Allocate crypto */
1472 c = kzalloc(sizeof(*c), GFP_ATOMIC);
1473 if (!c)
1474 return -ENOMEM;
1475
1476 /* Allocate workqueue on TX */
1477 if (!node) {
1478 c->wq = alloc_ordered_workqueue("tipc_crypto", 0);
1479 if (!c->wq) {
1480 kfree(c);
1481 return -ENOMEM;
1482 }
1483 }
1484
1485 /* Allocate statistic structure */
1486 c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1487 if (!c->stats) {
1488 kfree_sensitive(c);
1489 return -ENOMEM;
1490 }
1491
1492 c->flags = 0;
1493 c->net = net;
1494 c->node = node;
1495 get_random_bytes(&c->key_gen, 2);
1496 tipc_crypto_key_set_state(c, 0, 0, 0);
1497 atomic_set(&c->key_distr, 0);
1498 atomic_set(&c->peer_rx_active, 0);
1499 atomic64_set(&c->sndnxt, 0);
1500 c->timer1 = jiffies;
1501 c->timer2 = jiffies;
1502 c->rekeying_intv = TIPC_REKEYING_INTV_DEF;
1503 spin_lock_init(&c->lock);
1504 scnprintf(c->name, 48, "%s(%s)", (is_rx(c)) ? "RX" : "TX",
1505 (is_rx(c)) ? tipc_node_get_id_str(c->node) :
1506 tipc_own_id_string(c->net));
1507
1508 if (is_rx(c))
1509 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_rx);
1510 else
1511 INIT_DELAYED_WORK(&c->work, tipc_crypto_work_tx);
1512
1513 *crypto = c;
1514 return 0;
1515 }
1516
tipc_crypto_stop(struct tipc_crypto ** crypto)1517 void tipc_crypto_stop(struct tipc_crypto **crypto)
1518 {
1519 struct tipc_crypto *c = *crypto;
1520 u8 k;
1521
1522 if (!c)
1523 return;
1524
1525 /* Flush any queued works & destroy wq */
1526 if (is_tx(c)) {
1527 c->rekeying_intv = 0;
1528 cancel_delayed_work_sync(&c->work);
1529 destroy_workqueue(c->wq);
1530 }
1531
1532 /* Release AEAD keys */
1533 rcu_read_lock();
1534 for (k = KEY_MIN; k <= KEY_MAX; k++)
1535 tipc_aead_put(rcu_dereference(c->aead[k]));
1536 rcu_read_unlock();
1537 pr_debug("%s: has been stopped\n", c->name);
1538
1539 /* Free this crypto statistics */
1540 free_percpu(c->stats);
1541
1542 *crypto = NULL;
1543 kfree_sensitive(c);
1544 }
1545
tipc_crypto_timeout(struct tipc_crypto * rx)1546 void tipc_crypto_timeout(struct tipc_crypto *rx)
1547 {
1548 struct tipc_net *tn = tipc_net(rx->net);
1549 struct tipc_crypto *tx = tn->crypto_tx;
1550 struct tipc_key key;
1551 int cmd;
1552
1553 /* TX pending: taking all users & stable -> active */
1554 spin_lock(&tx->lock);
1555 key = tx->key;
1556 if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1557 goto s1;
1558 if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1559 goto s1;
1560 if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_TIME))
1561 goto s1;
1562
1563 tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1564 if (key.active)
1565 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1566 this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1567 pr_info("%s: key[%d] is activated\n", tx->name, key.pending);
1568
1569 s1:
1570 spin_unlock(&tx->lock);
1571
1572 /* RX pending: having user -> active */
1573 spin_lock(&rx->lock);
1574 key = rx->key;
1575 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1576 goto s2;
1577
1578 if (key.active)
1579 key.passive = key.active;
1580 key.active = key.pending;
1581 rx->timer2 = jiffies;
1582 tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1583 this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1584 pr_info("%s: key[%d] is activated\n", rx->name, key.pending);
1585 goto s5;
1586
1587 s2:
1588 /* RX pending: not working -> remove */
1589 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -10)
1590 goto s3;
1591
1592 tipc_crypto_key_set_state(rx, key.passive, key.active, 0);
1593 tipc_crypto_key_detach(rx->aead[key.pending], &rx->lock);
1594 pr_debug("%s: key[%d] is removed\n", rx->name, key.pending);
1595 goto s5;
1596
1597 s3:
1598 /* RX active: timed out or no user -> pending */
1599 if (!key.active)
1600 goto s4;
1601 if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM) &&
1602 tipc_aead_users(rx->aead[key.active]) > 0)
1603 goto s4;
1604
1605 if (key.pending)
1606 key.passive = key.active;
1607 else
1608 key.pending = key.active;
1609 rx->timer2 = jiffies;
1610 tipc_crypto_key_set_state(rx, key.passive, 0, key.pending);
1611 tipc_aead_users_set(rx->aead[key.pending], 0);
1612 pr_debug("%s: key[%d] is deactivated\n", rx->name, key.active);
1613 goto s5;
1614
1615 s4:
1616 /* RX passive: outdated or not working -> free */
1617 if (!key.passive)
1618 goto s5;
1619 if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM) &&
1620 tipc_aead_users(rx->aead[key.passive]) > -10)
1621 goto s5;
1622
1623 tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1624 tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1625 pr_debug("%s: key[%d] is freed\n", rx->name, key.passive);
1626
1627 s5:
1628 spin_unlock(&rx->lock);
1629
1630 /* Relax it here, the flag will be set again if it really is, but only
1631 * when we are not in grace period for safety!
1632 */
1633 if (time_after(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD))
1634 tx->legacy_user = 0;
1635
1636 /* Limit max_tfms & do debug commands if needed */
1637 if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1638 return;
1639
1640 cmd = sysctl_tipc_max_tfms;
1641 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1642 tipc_crypto_do_cmd(rx->net, cmd);
1643 }
1644
tipc_crypto_clone_msg(struct net * net,struct sk_buff * _skb,struct tipc_bearer * b,struct tipc_media_addr * dst,struct tipc_node * __dnode,u8 type)1645 static inline void tipc_crypto_clone_msg(struct net *net, struct sk_buff *_skb,
1646 struct tipc_bearer *b,
1647 struct tipc_media_addr *dst,
1648 struct tipc_node *__dnode, u8 type)
1649 {
1650 struct sk_buff *skb;
1651
1652 skb = skb_clone(_skb, GFP_ATOMIC);
1653 if (skb) {
1654 TIPC_SKB_CB(skb)->xmit_type = type;
1655 tipc_crypto_xmit(net, &skb, b, dst, __dnode);
1656 if (skb)
1657 b->media->send_msg(net, skb, b, dst);
1658 }
1659 }
1660
1661 /**
1662 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1663 * @net: struct net
1664 * @skb: input/output message skb pointer
1665 * @b: bearer used for xmit later
1666 * @dst: destination media address
1667 * @__dnode: destination node for reference if any
1668 *
1669 * First, build an encryption message header on the top of the message, then
1670 * encrypt the original TIPC message by using the pending, master or active
1671 * key with this preference order.
1672 * If the encryption is successful, the encrypted skb is returned directly or
1673 * via the callback.
1674 * Otherwise, the skb is freed!
1675 *
1676 * Return:
1677 * 0 : the encryption has succeeded (or no encryption)
1678 * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1679 * -ENOKEK : the encryption has failed due to no key
1680 * -EKEYREVOKED : the encryption has failed due to key revoked
1681 * -ENOMEM : the encryption has failed due to no memory
1682 * < 0 : the encryption has failed due to other reasons
1683 */
tipc_crypto_xmit(struct net * net,struct sk_buff ** skb,struct tipc_bearer * b,struct tipc_media_addr * dst,struct tipc_node * __dnode)1684 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1685 struct tipc_bearer *b, struct tipc_media_addr *dst,
1686 struct tipc_node *__dnode)
1687 {
1688 struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1689 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1690 struct tipc_crypto_stats __percpu *stats = tx->stats;
1691 struct tipc_msg *hdr = buf_msg(*skb);
1692 struct tipc_key key = tx->key;
1693 struct tipc_aead *aead = NULL;
1694 u32 user = msg_user(hdr);
1695 u32 type = msg_type(hdr);
1696 int rc = -ENOKEY;
1697 u8 tx_key = 0;
1698
1699 /* No encryption? */
1700 if (!tx->working)
1701 return 0;
1702
1703 /* Pending key if peer has active on it or probing time */
1704 if (unlikely(key.pending)) {
1705 tx_key = key.pending;
1706 if (!tx->key_master && !key.active)
1707 goto encrypt;
1708 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1709 goto encrypt;
1710 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_PROBING) {
1711 pr_debug("%s: probing for key[%d]\n", tx->name,
1712 key.pending);
1713 goto encrypt;
1714 }
1715 if (user == LINK_CONFIG || user == LINK_PROTOCOL)
1716 tipc_crypto_clone_msg(net, *skb, b, dst, __dnode,
1717 SKB_PROBING);
1718 }
1719
1720 /* Master key if this is a *vital* message or in grace period */
1721 if (tx->key_master) {
1722 tx_key = KEY_MASTER;
1723 if (!key.active)
1724 goto encrypt;
1725 if (TIPC_SKB_CB(*skb)->xmit_type == SKB_GRACING) {
1726 pr_debug("%s: gracing for msg (%d %d)\n", tx->name,
1727 user, type);
1728 goto encrypt;
1729 }
1730 if (user == LINK_CONFIG ||
1731 (user == LINK_PROTOCOL && type == RESET_MSG) ||
1732 (user == MSG_CRYPTO && type == KEY_DISTR_MSG) ||
1733 time_before(jiffies, tx->timer2 + TIPC_TX_GRACE_PERIOD)) {
1734 if (__rx && __rx->key_master &&
1735 !atomic_read(&__rx->peer_rx_active))
1736 goto encrypt;
1737 if (!__rx) {
1738 if (likely(!tx->legacy_user))
1739 goto encrypt;
1740 tipc_crypto_clone_msg(net, *skb, b, dst,
1741 __dnode, SKB_GRACING);
1742 }
1743 }
1744 }
1745
1746 /* Else, use the active key if any */
1747 if (likely(key.active)) {
1748 tx_key = key.active;
1749 goto encrypt;
1750 }
1751
1752 goto exit;
1753
1754 encrypt:
1755 aead = tipc_aead_get(tx->aead[tx_key]);
1756 if (unlikely(!aead))
1757 goto exit;
1758 rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1759 if (likely(rc > 0))
1760 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1761
1762 exit:
1763 switch (rc) {
1764 case 0:
1765 this_cpu_inc(stats->stat[STAT_OK]);
1766 break;
1767 case -EINPROGRESS:
1768 case -EBUSY:
1769 this_cpu_inc(stats->stat[STAT_ASYNC]);
1770 *skb = NULL;
1771 return rc;
1772 default:
1773 this_cpu_inc(stats->stat[STAT_NOK]);
1774 if (rc == -ENOKEY)
1775 this_cpu_inc(stats->stat[STAT_NOKEYS]);
1776 else if (rc == -EKEYREVOKED)
1777 this_cpu_inc(stats->stat[STAT_BADKEYS]);
1778 kfree_skb(*skb);
1779 *skb = NULL;
1780 break;
1781 }
1782
1783 tipc_aead_put(aead);
1784 return rc;
1785 }
1786
1787 /**
1788 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1789 * @net: struct net
1790 * @rx: RX crypto handle
1791 * @skb: input/output message skb pointer
1792 * @b: bearer where the message has been received
1793 *
1794 * If the decryption is successful, the decrypted skb is returned directly or
1795 * as the callback, the encryption header and auth tag will be trimed out
1796 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1797 * Otherwise, the skb will be freed!
1798 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1799 * cluster key(s) can be taken for decryption (- recursive).
1800 *
1801 * Return:
1802 * 0 : the decryption has successfully completed
1803 * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1804 * -ENOKEY : the decryption has failed due to no key
1805 * -EBADMSG : the decryption has failed due to bad message
1806 * -ENOMEM : the decryption has failed due to no memory
1807 * < 0 : the decryption has failed due to other reasons
1808 */
tipc_crypto_rcv(struct net * net,struct tipc_crypto * rx,struct sk_buff ** skb,struct tipc_bearer * b)1809 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1810 struct sk_buff **skb, struct tipc_bearer *b)
1811 {
1812 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1813 struct tipc_crypto_stats __percpu *stats;
1814 struct tipc_aead *aead = NULL;
1815 struct tipc_key key;
1816 int rc = -ENOKEY;
1817 u8 tx_key, n;
1818
1819 tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1820
1821 /* New peer?
1822 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1823 */
1824 if (unlikely(!rx || tx_key == KEY_MASTER))
1825 goto pick_tx;
1826
1827 /* Pick RX key according to TX key if any */
1828 key = rx->key;
1829 if (tx_key == key.active || tx_key == key.pending ||
1830 tx_key == key.passive)
1831 goto decrypt;
1832
1833 /* Unknown key, let's try to align RX key(s) */
1834 if (tipc_crypto_key_try_align(rx, tx_key))
1835 goto decrypt;
1836
1837 pick_tx:
1838 /* No key suitable? Try to pick one from TX... */
1839 aead = tipc_crypto_key_pick_tx(tx, rx, *skb, tx_key);
1840 if (aead)
1841 goto decrypt;
1842 goto exit;
1843
1844 decrypt:
1845 rcu_read_lock();
1846 if (!aead)
1847 aead = tipc_aead_get(rx->aead[tx_key]);
1848 rc = tipc_aead_decrypt(net, aead, *skb, b);
1849 rcu_read_unlock();
1850
1851 exit:
1852 stats = ((rx) ?: tx)->stats;
1853 switch (rc) {
1854 case 0:
1855 this_cpu_inc(stats->stat[STAT_OK]);
1856 break;
1857 case -EINPROGRESS:
1858 case -EBUSY:
1859 this_cpu_inc(stats->stat[STAT_ASYNC]);
1860 *skb = NULL;
1861 return rc;
1862 default:
1863 this_cpu_inc(stats->stat[STAT_NOK]);
1864 if (rc == -ENOKEY) {
1865 kfree_skb(*skb);
1866 *skb = NULL;
1867 if (rx) {
1868 /* Mark rx->nokey only if we dont have a
1869 * pending received session key, nor a newer
1870 * one i.e. in the next slot.
1871 */
1872 n = key_next(tx_key);
1873 rx->nokey = !(rx->skey ||
1874 rcu_access_pointer(rx->aead[n]));
1875 pr_debug_ratelimited("%s: nokey %d, key %d/%x\n",
1876 rx->name, rx->nokey,
1877 tx_key, rx->key.keys);
1878 tipc_node_put(rx->node);
1879 }
1880 this_cpu_inc(stats->stat[STAT_NOKEYS]);
1881 return rc;
1882 } else if (rc == -EBADMSG) {
1883 this_cpu_inc(stats->stat[STAT_BADMSGS]);
1884 }
1885 break;
1886 }
1887
1888 tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1889 return rc;
1890 }
1891
tipc_crypto_rcv_complete(struct net * net,struct tipc_aead * aead,struct tipc_bearer * b,struct sk_buff ** skb,int err)1892 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1893 struct tipc_bearer *b,
1894 struct sk_buff **skb, int err)
1895 {
1896 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1897 struct tipc_crypto *rx = aead->crypto;
1898 struct tipc_aead *tmp = NULL;
1899 struct tipc_ehdr *ehdr;
1900 struct tipc_node *n;
1901
1902 /* Is this completed by TX? */
1903 if (unlikely(is_tx(aead->crypto))) {
1904 rx = skb_cb->tx_clone_ctx.rx;
1905 pr_debug("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1906 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1907 (*skb)->next, skb_cb->flags);
1908 pr_debug("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1909 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1910 aead->crypto->aead[1], aead->crypto->aead[2],
1911 aead->crypto->aead[3]);
1912 if (unlikely(err)) {
1913 if (err == -EBADMSG && (*skb)->next)
1914 tipc_rcv(net, (*skb)->next, b);
1915 goto free_skb;
1916 }
1917
1918 if (likely((*skb)->next)) {
1919 kfree_skb((*skb)->next);
1920 (*skb)->next = NULL;
1921 }
1922 ehdr = (struct tipc_ehdr *)(*skb)->data;
1923 if (!rx) {
1924 WARN_ON(ehdr->user != LINK_CONFIG);
1925 n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1926 true);
1927 rx = tipc_node_crypto_rx(n);
1928 if (unlikely(!rx))
1929 goto free_skb;
1930 }
1931
1932 /* Ignore cloning if it was TX master key */
1933 if (ehdr->tx_key == KEY_MASTER)
1934 goto rcv;
1935 if (tipc_aead_clone(&tmp, aead) < 0)
1936 goto rcv;
1937 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key, false) < 0) {
1938 tipc_aead_free(&tmp->rcu);
1939 goto rcv;
1940 }
1941 tipc_aead_put(aead);
1942 aead = tipc_aead_get(tmp);
1943 }
1944
1945 if (unlikely(err)) {
1946 tipc_aead_users_dec(aead, INT_MIN);
1947 goto free_skb;
1948 }
1949
1950 /* Set the RX key's user */
1951 tipc_aead_users_set(aead, 1);
1952
1953 /* Mark this point, RX works */
1954 rx->timer1 = jiffies;
1955
1956 rcv:
1957 /* Remove ehdr & auth. tag prior to tipc_rcv() */
1958 ehdr = (struct tipc_ehdr *)(*skb)->data;
1959
1960 /* Mark this point, RX passive still works */
1961 if (rx->key.passive && ehdr->tx_key == rx->key.passive)
1962 rx->timer2 = jiffies;
1963
1964 skb_reset_network_header(*skb);
1965 skb_pull(*skb, tipc_ehdr_size(ehdr));
1966 pskb_trim(*skb, (*skb)->len - aead->authsize);
1967
1968 /* Validate TIPCv2 message */
1969 if (unlikely(!tipc_msg_validate(skb))) {
1970 pr_err_ratelimited("Packet dropped after decryption!\n");
1971 goto free_skb;
1972 }
1973
1974 /* Ok, everything's fine, try to synch own keys according to peers' */
1975 tipc_crypto_key_synch(rx, *skb);
1976
1977 /* Mark skb decrypted */
1978 skb_cb->decrypted = 1;
1979
1980 /* Clear clone cxt if any */
1981 if (likely(!skb_cb->tx_clone_deferred))
1982 goto exit;
1983 skb_cb->tx_clone_deferred = 0;
1984 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1985 goto exit;
1986
1987 free_skb:
1988 kfree_skb(*skb);
1989 *skb = NULL;
1990
1991 exit:
1992 tipc_aead_put(aead);
1993 if (rx)
1994 tipc_node_put(rx->node);
1995 }
1996
tipc_crypto_do_cmd(struct net * net,int cmd)1997 static void tipc_crypto_do_cmd(struct net *net, int cmd)
1998 {
1999 struct tipc_net *tn = tipc_net(net);
2000 struct tipc_crypto *tx = tn->crypto_tx, *rx;
2001 struct list_head *p;
2002 unsigned int stat;
2003 int i, j, cpu;
2004 char buf[200];
2005
2006 /* Currently only one command is supported */
2007 switch (cmd) {
2008 case 0xfff1:
2009 goto print_stats;
2010 default:
2011 return;
2012 }
2013
2014 print_stats:
2015 /* Print a header */
2016 pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
2017
2018 /* Print key status */
2019 pr_info("Key status:\n");
2020 pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
2021 tipc_crypto_key_dump(tx, buf));
2022
2023 rcu_read_lock();
2024 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2025 rx = tipc_node_crypto_rx_by_list(p);
2026 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
2027 tipc_crypto_key_dump(rx, buf));
2028 }
2029 rcu_read_unlock();
2030
2031 /* Print crypto statistics */
2032 for (i = 0, j = 0; i < MAX_STATS; i++)
2033 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
2034 pr_info("Counter %s", buf);
2035
2036 memset(buf, '-', 115);
2037 buf[115] = '\0';
2038 pr_info("%s\n", buf);
2039
2040 j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
2041 for_each_possible_cpu(cpu) {
2042 for (i = 0; i < MAX_STATS; i++) {
2043 stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
2044 j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
2045 }
2046 pr_info("%s", buf);
2047 j = scnprintf(buf, 200, "%12s", " ");
2048 }
2049
2050 rcu_read_lock();
2051 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
2052 rx = tipc_node_crypto_rx_by_list(p);
2053 j = scnprintf(buf, 200, "RX(%7.7s) ",
2054 tipc_node_get_id_str(rx->node));
2055 for_each_possible_cpu(cpu) {
2056 for (i = 0; i < MAX_STATS; i++) {
2057 stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
2058 j += scnprintf(buf + j, 200 - j, "|%11d ",
2059 stat);
2060 }
2061 pr_info("%s", buf);
2062 j = scnprintf(buf, 200, "%12s", " ");
2063 }
2064 }
2065 rcu_read_unlock();
2066
2067 pr_info("\n======================== Done ========================\n");
2068 }
2069
tipc_crypto_key_dump(struct tipc_crypto * c,char * buf)2070 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
2071 {
2072 struct tipc_key key = c->key;
2073 struct tipc_aead *aead;
2074 int k, i = 0;
2075 char *s;
2076
2077 for (k = KEY_MIN; k <= KEY_MAX; k++) {
2078 if (k == KEY_MASTER) {
2079 if (is_rx(c))
2080 continue;
2081 if (time_before(jiffies,
2082 c->timer2 + TIPC_TX_GRACE_PERIOD))
2083 s = "ACT";
2084 else
2085 s = "PAS";
2086 } else {
2087 if (k == key.passive)
2088 s = "PAS";
2089 else if (k == key.active)
2090 s = "ACT";
2091 else if (k == key.pending)
2092 s = "PEN";
2093 else
2094 s = "-";
2095 }
2096 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
2097
2098 rcu_read_lock();
2099 aead = rcu_dereference(c->aead[k]);
2100 if (aead)
2101 i += scnprintf(buf + i, 200 - i,
2102 "{\"0x...%s\", \"%s\"}/%d:%d",
2103 aead->hint,
2104 (aead->mode == CLUSTER_KEY) ? "c" : "p",
2105 atomic_read(&aead->users),
2106 refcount_read(&aead->refcnt));
2107 rcu_read_unlock();
2108 i += scnprintf(buf + i, 200 - i, "\n");
2109 }
2110
2111 if (is_rx(c))
2112 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
2113 atomic_read(&c->peer_rx_active));
2114
2115 return buf;
2116 }
2117
tipc_key_change_dump(struct tipc_key old,struct tipc_key new,char * buf)2118 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
2119 char *buf)
2120 {
2121 struct tipc_key *key = &old;
2122 int k, i = 0;
2123 char *s;
2124
2125 /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
2126 again:
2127 i += scnprintf(buf + i, 32 - i, "[");
2128 for (k = KEY_1; k <= KEY_3; k++) {
2129 if (k == key->passive)
2130 s = "pas";
2131 else if (k == key->active)
2132 s = "act";
2133 else if (k == key->pending)
2134 s = "pen";
2135 else
2136 s = "-";
2137 i += scnprintf(buf + i, 32 - i,
2138 (k != KEY_3) ? "%s " : "%s", s);
2139 }
2140 if (key != &new) {
2141 i += scnprintf(buf + i, 32 - i, "] -> ");
2142 key = &new;
2143 goto again;
2144 }
2145 i += scnprintf(buf + i, 32 - i, "]");
2146 return buf;
2147 }
2148
2149 /**
2150 * tipc_crypto_msg_rcv - Common 'MSG_CRYPTO' processing point
2151 * @net: the struct net
2152 * @skb: the receiving message buffer
2153 */
tipc_crypto_msg_rcv(struct net * net,struct sk_buff * skb)2154 void tipc_crypto_msg_rcv(struct net *net, struct sk_buff *skb)
2155 {
2156 struct tipc_crypto *rx;
2157 struct tipc_msg *hdr;
2158
2159 if (unlikely(skb_linearize(skb)))
2160 goto exit;
2161
2162 hdr = buf_msg(skb);
2163 rx = tipc_node_crypto_rx_by_addr(net, msg_prevnode(hdr));
2164 if (unlikely(!rx))
2165 goto exit;
2166
2167 switch (msg_type(hdr)) {
2168 case KEY_DISTR_MSG:
2169 if (tipc_crypto_key_rcv(rx, hdr))
2170 goto exit;
2171 break;
2172 default:
2173 break;
2174 }
2175
2176 tipc_node_put(rx->node);
2177
2178 exit:
2179 kfree_skb(skb);
2180 }
2181
2182 /**
2183 * tipc_crypto_key_distr - Distribute a TX key
2184 * @tx: the TX crypto
2185 * @key: the key's index
2186 * @dest: the destination tipc node, = NULL if distributing to all nodes
2187 *
2188 * Return: 0 in case of success, otherwise < 0
2189 */
tipc_crypto_key_distr(struct tipc_crypto * tx,u8 key,struct tipc_node * dest)2190 int tipc_crypto_key_distr(struct tipc_crypto *tx, u8 key,
2191 struct tipc_node *dest)
2192 {
2193 struct tipc_aead *aead;
2194 u32 dnode = tipc_node_get_addr(dest);
2195 int rc = -ENOKEY;
2196
2197 if (!sysctl_tipc_key_exchange_enabled)
2198 return 0;
2199
2200 if (key) {
2201 rcu_read_lock();
2202 aead = tipc_aead_get(tx->aead[key]);
2203 if (likely(aead)) {
2204 rc = tipc_crypto_key_xmit(tx->net, aead->key,
2205 aead->gen, aead->mode,
2206 dnode);
2207 tipc_aead_put(aead);
2208 }
2209 rcu_read_unlock();
2210 }
2211
2212 return rc;
2213 }
2214
2215 /**
2216 * tipc_crypto_key_xmit - Send a session key
2217 * @net: the struct net
2218 * @skey: the session key to be sent
2219 * @gen: the key's generation
2220 * @mode: the key's mode
2221 * @dnode: the destination node address, = 0 if broadcasting to all nodes
2222 *
2223 * The session key 'skey' is packed in a TIPC v2 'MSG_CRYPTO/KEY_DISTR_MSG'
2224 * as its data section, then xmit-ed through the uc/bc link.
2225 *
2226 * Return: 0 in case of success, otherwise < 0
2227 */
tipc_crypto_key_xmit(struct net * net,struct tipc_aead_key * skey,u16 gen,u8 mode,u32 dnode)2228 static int tipc_crypto_key_xmit(struct net *net, struct tipc_aead_key *skey,
2229 u16 gen, u8 mode, u32 dnode)
2230 {
2231 struct sk_buff_head pkts;
2232 struct tipc_msg *hdr;
2233 struct sk_buff *skb;
2234 u16 size, cong_link_cnt;
2235 u8 *data;
2236 int rc;
2237
2238 size = tipc_aead_key_size(skey);
2239 skb = tipc_buf_acquire(INT_H_SIZE + size, GFP_ATOMIC);
2240 if (!skb)
2241 return -ENOMEM;
2242
2243 hdr = buf_msg(skb);
2244 tipc_msg_init(tipc_own_addr(net), hdr, MSG_CRYPTO, KEY_DISTR_MSG,
2245 INT_H_SIZE, dnode);
2246 msg_set_size(hdr, INT_H_SIZE + size);
2247 msg_set_key_gen(hdr, gen);
2248 msg_set_key_mode(hdr, mode);
2249
2250 data = msg_data(hdr);
2251 *((__be32 *)(data + TIPC_AEAD_ALG_NAME)) = htonl(skey->keylen);
2252 memcpy(data, skey->alg_name, TIPC_AEAD_ALG_NAME);
2253 memcpy(data + TIPC_AEAD_ALG_NAME + sizeof(__be32), skey->key,
2254 skey->keylen);
2255
2256 __skb_queue_head_init(&pkts);
2257 __skb_queue_tail(&pkts, skb);
2258 if (dnode)
2259 rc = tipc_node_xmit(net, &pkts, dnode, 0);
2260 else
2261 rc = tipc_bcast_xmit(net, &pkts, &cong_link_cnt);
2262
2263 return rc;
2264 }
2265
2266 /**
2267 * tipc_crypto_key_rcv - Receive a session key
2268 * @rx: the RX crypto
2269 * @hdr: the TIPC v2 message incl. the receiving session key in its data
2270 *
2271 * This function retrieves the session key in the message from peer, then
2272 * schedules a RX work to attach the key to the corresponding RX crypto.
2273 *
2274 * Return: "true" if the key has been scheduled for attaching, otherwise
2275 * "false".
2276 */
tipc_crypto_key_rcv(struct tipc_crypto * rx,struct tipc_msg * hdr)2277 static bool tipc_crypto_key_rcv(struct tipc_crypto *rx, struct tipc_msg *hdr)
2278 {
2279 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2280 struct tipc_aead_key *skey = NULL;
2281 u16 key_gen = msg_key_gen(hdr);
2282 u16 size = msg_data_sz(hdr);
2283 u8 *data = msg_data(hdr);
2284
2285 spin_lock(&rx->lock);
2286 if (unlikely(rx->skey || (key_gen == rx->key_gen && rx->key.keys))) {
2287 pr_err("%s: key existed <%p>, gen %d vs %d\n", rx->name,
2288 rx->skey, key_gen, rx->key_gen);
2289 goto exit;
2290 }
2291
2292 /* Allocate memory for the key */
2293 skey = kmalloc(size, GFP_ATOMIC);
2294 if (unlikely(!skey)) {
2295 pr_err("%s: unable to allocate memory for skey\n", rx->name);
2296 goto exit;
2297 }
2298
2299 /* Copy key from msg data */
2300 skey->keylen = ntohl(*((__be32 *)(data + TIPC_AEAD_ALG_NAME)));
2301 memcpy(skey->alg_name, data, TIPC_AEAD_ALG_NAME);
2302 memcpy(skey->key, data + TIPC_AEAD_ALG_NAME + sizeof(__be32),
2303 skey->keylen);
2304
2305 /* Sanity check */
2306 if (unlikely(size != tipc_aead_key_size(skey))) {
2307 kfree(skey);
2308 skey = NULL;
2309 goto exit;
2310 }
2311
2312 rx->key_gen = key_gen;
2313 rx->skey_mode = msg_key_mode(hdr);
2314 rx->skey = skey;
2315 rx->nokey = 0;
2316 mb(); /* for nokey flag */
2317
2318 exit:
2319 spin_unlock(&rx->lock);
2320
2321 /* Schedule the key attaching on this crypto */
2322 if (likely(skey && queue_delayed_work(tx->wq, &rx->work, 0)))
2323 return true;
2324
2325 return false;
2326 }
2327
2328 /**
2329 * tipc_crypto_work_rx - Scheduled RX works handler
2330 * @work: the struct RX work
2331 *
2332 * The function processes the previous scheduled works i.e. distributing TX key
2333 * or attaching a received session key on RX crypto.
2334 */
tipc_crypto_work_rx(struct work_struct * work)2335 static void tipc_crypto_work_rx(struct work_struct *work)
2336 {
2337 struct delayed_work *dwork = to_delayed_work(work);
2338 struct tipc_crypto *rx = container_of(dwork, struct tipc_crypto, work);
2339 struct tipc_crypto *tx = tipc_net(rx->net)->crypto_tx;
2340 unsigned long delay = msecs_to_jiffies(5000);
2341 bool resched = false;
2342 u8 key;
2343 int rc;
2344
2345 /* Case 1: Distribute TX key to peer if scheduled */
2346 if (atomic_cmpxchg(&rx->key_distr,
2347 KEY_DISTR_SCHED,
2348 KEY_DISTR_COMPL) == KEY_DISTR_SCHED) {
2349 /* Always pick the newest one for distributing */
2350 key = tx->key.pending ?: tx->key.active;
2351 rc = tipc_crypto_key_distr(tx, key, rx->node);
2352 if (unlikely(rc))
2353 pr_warn("%s: unable to distr key[%d] to %s, err %d\n",
2354 tx->name, key, tipc_node_get_id_str(rx->node),
2355 rc);
2356
2357 /* Sched for key_distr releasing */
2358 resched = true;
2359 } else {
2360 atomic_cmpxchg(&rx->key_distr, KEY_DISTR_COMPL, 0);
2361 }
2362
2363 /* Case 2: Attach a pending received session key from peer if any */
2364 if (rx->skey) {
2365 rc = tipc_crypto_key_init(rx, rx->skey, rx->skey_mode, false);
2366 if (unlikely(rc < 0))
2367 pr_warn("%s: unable to attach received skey, err %d\n",
2368 rx->name, rc);
2369 switch (rc) {
2370 case -EBUSY:
2371 case -ENOMEM:
2372 /* Resched the key attaching */
2373 resched = true;
2374 break;
2375 default:
2376 synchronize_rcu();
2377 kfree(rx->skey);
2378 rx->skey = NULL;
2379 break;
2380 }
2381 }
2382
2383 if (resched && queue_delayed_work(tx->wq, &rx->work, delay))
2384 return;
2385
2386 tipc_node_put(rx->node);
2387 }
2388
2389 /**
2390 * tipc_crypto_rekeying_sched - (Re)schedule rekeying w/o new interval
2391 * @tx: TX crypto
2392 * @changed: if the rekeying needs to be rescheduled with new interval
2393 * @new_intv: new rekeying interval (when "changed" = true)
2394 */
tipc_crypto_rekeying_sched(struct tipc_crypto * tx,bool changed,u32 new_intv)2395 void tipc_crypto_rekeying_sched(struct tipc_crypto *tx, bool changed,
2396 u32 new_intv)
2397 {
2398 unsigned long delay;
2399 bool now = false;
2400
2401 if (changed) {
2402 if (new_intv == TIPC_REKEYING_NOW)
2403 now = true;
2404 else
2405 tx->rekeying_intv = new_intv;
2406 cancel_delayed_work_sync(&tx->work);
2407 }
2408
2409 if (tx->rekeying_intv || now) {
2410 delay = (now) ? 0 : tx->rekeying_intv * 60 * 1000;
2411 queue_delayed_work(tx->wq, &tx->work, msecs_to_jiffies(delay));
2412 }
2413 }
2414
2415 /**
2416 * tipc_crypto_work_tx - Scheduled TX works handler
2417 * @work: the struct TX work
2418 *
2419 * The function processes the previous scheduled work, i.e. key rekeying, by
2420 * generating a new session key based on current one, then attaching it to the
2421 * TX crypto and finally distributing it to peers. It also re-schedules the
2422 * rekeying if needed.
2423 */
tipc_crypto_work_tx(struct work_struct * work)2424 static void tipc_crypto_work_tx(struct work_struct *work)
2425 {
2426 struct delayed_work *dwork = to_delayed_work(work);
2427 struct tipc_crypto *tx = container_of(dwork, struct tipc_crypto, work);
2428 struct tipc_aead_key *skey = NULL;
2429 struct tipc_key key = tx->key;
2430 struct tipc_aead *aead;
2431 int rc = -ENOMEM;
2432
2433 if (unlikely(key.pending))
2434 goto resched;
2435
2436 /* Take current key as a template */
2437 rcu_read_lock();
2438 aead = rcu_dereference(tx->aead[key.active ?: KEY_MASTER]);
2439 if (unlikely(!aead)) {
2440 rcu_read_unlock();
2441 /* At least one key should exist for securing */
2442 return;
2443 }
2444
2445 /* Lets duplicate it first */
2446 skey = kmemdup(aead->key, tipc_aead_key_size(aead->key), GFP_ATOMIC);
2447 rcu_read_unlock();
2448
2449 /* Now, generate new key, initiate & distribute it */
2450 if (likely(skey)) {
2451 rc = tipc_aead_key_generate(skey) ?:
2452 tipc_crypto_key_init(tx, skey, PER_NODE_KEY, false);
2453 if (likely(rc > 0))
2454 rc = tipc_crypto_key_distr(tx, rc, NULL);
2455 kfree_sensitive(skey);
2456 }
2457
2458 if (unlikely(rc))
2459 pr_warn_ratelimited("%s: rekeying returns %d\n", tx->name, rc);
2460
2461 resched:
2462 /* Re-schedule rekeying if any */
2463 tipc_crypto_rekeying_sched(tx, false, 0);
2464 }
2465