1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Common time routines among all ppc machines.
4 *
5 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
6 * Paul Mackerras' version and mine for PReP and Pmac.
7 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
8 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
9 *
10 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
11 * to make clock more stable (2.4.0-test5). The only thing
12 * that this code assumes is that the timebases have been synchronized
13 * by firmware on SMP and are never stopped (never do sleep
14 * on SMP then, nap and doze are OK).
15 *
16 * Speeded up do_gettimeofday by getting rid of references to
17 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
18 *
19 * TODO (not necessarily in this file):
20 * - improve precision and reproducibility of timebase frequency
21 * measurement at boot time.
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 */
29
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/sched.h>
33 #include <linux/sched/clock.h>
34 #include <linux/kernel.h>
35 #include <linux/param.h>
36 #include <linux/string.h>
37 #include <linux/mm.h>
38 #include <linux/interrupt.h>
39 #include <linux/timex.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/time.h>
42 #include <linux/init.h>
43 #include <linux/profile.h>
44 #include <linux/cpu.h>
45 #include <linux/security.h>
46 #include <linux/percpu.h>
47 #include <linux/rtc.h>
48 #include <linux/jiffies.h>
49 #include <linux/posix-timers.h>
50 #include <linux/irq.h>
51 #include <linux/delay.h>
52 #include <linux/irq_work.h>
53 #include <linux/of_clk.h>
54 #include <linux/suspend.h>
55 #include <linux/sched/cputime.h>
56 #include <linux/processor.h>
57 #include <asm/trace.h>
58
59 #include <asm/io.h>
60 #include <asm/nvram.h>
61 #include <asm/cache.h>
62 #include <asm/machdep.h>
63 #include <linux/uaccess.h>
64 #include <asm/time.h>
65 #include <asm/prom.h>
66 #include <asm/irq.h>
67 #include <asm/div64.h>
68 #include <asm/smp.h>
69 #include <asm/vdso_datapage.h>
70 #include <asm/firmware.h>
71 #include <asm/asm-prototypes.h>
72
73 /* powerpc clocksource/clockevent code */
74
75 #include <linux/clockchips.h>
76 #include <linux/timekeeper_internal.h>
77
78 static u64 timebase_read(struct clocksource *);
79 static struct clocksource clocksource_timebase = {
80 .name = "timebase",
81 .rating = 400,
82 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
83 .mask = CLOCKSOURCE_MASK(64),
84 .read = timebase_read,
85 };
86
87 #define DECREMENTER_DEFAULT_MAX 0x7FFFFFFF
88 u64 decrementer_max = DECREMENTER_DEFAULT_MAX;
89
90 static int decrementer_set_next_event(unsigned long evt,
91 struct clock_event_device *dev);
92 static int decrementer_shutdown(struct clock_event_device *evt);
93
94 struct clock_event_device decrementer_clockevent = {
95 .name = "decrementer",
96 .rating = 200,
97 .irq = 0,
98 .set_next_event = decrementer_set_next_event,
99 .set_state_oneshot_stopped = decrementer_shutdown,
100 .set_state_shutdown = decrementer_shutdown,
101 .tick_resume = decrementer_shutdown,
102 .features = CLOCK_EVT_FEAT_ONESHOT |
103 CLOCK_EVT_FEAT_C3STOP,
104 };
105 EXPORT_SYMBOL(decrementer_clockevent);
106
107 DEFINE_PER_CPU(u64, decrementers_next_tb);
108 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
109
110 #define XSEC_PER_SEC (1024*1024)
111
112 #ifdef CONFIG_PPC64
113 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
114 #else
115 /* compute ((xsec << 12) * max) >> 32 */
116 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
117 #endif
118
119 unsigned long tb_ticks_per_jiffy;
120 unsigned long tb_ticks_per_usec = 100; /* sane default */
121 EXPORT_SYMBOL(tb_ticks_per_usec);
122 unsigned long tb_ticks_per_sec;
123 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
124
125 DEFINE_SPINLOCK(rtc_lock);
126 EXPORT_SYMBOL_GPL(rtc_lock);
127
128 static u64 tb_to_ns_scale __read_mostly;
129 static unsigned tb_to_ns_shift __read_mostly;
130 static u64 boot_tb __read_mostly;
131
132 extern struct timezone sys_tz;
133 static long timezone_offset;
134
135 unsigned long ppc_proc_freq;
136 EXPORT_SYMBOL_GPL(ppc_proc_freq);
137 unsigned long ppc_tb_freq;
138 EXPORT_SYMBOL_GPL(ppc_tb_freq);
139
140 bool tb_invalid;
141
142 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
143 /*
144 * Factor for converting from cputime_t (timebase ticks) to
145 * microseconds. This is stored as 0.64 fixed-point binary fraction.
146 */
147 u64 __cputime_usec_factor;
148 EXPORT_SYMBOL(__cputime_usec_factor);
149
150 #ifdef CONFIG_PPC_SPLPAR
151 void (*dtl_consumer)(struct dtl_entry *, u64);
152 #endif
153
calc_cputime_factors(void)154 static void calc_cputime_factors(void)
155 {
156 struct div_result res;
157
158 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
159 __cputime_usec_factor = res.result_low;
160 }
161
162 /*
163 * Read the SPURR on systems that have it, otherwise the PURR,
164 * or if that doesn't exist return the timebase value passed in.
165 */
read_spurr(unsigned long tb)166 static inline unsigned long read_spurr(unsigned long tb)
167 {
168 if (cpu_has_feature(CPU_FTR_SPURR))
169 return mfspr(SPRN_SPURR);
170 if (cpu_has_feature(CPU_FTR_PURR))
171 return mfspr(SPRN_PURR);
172 return tb;
173 }
174
175 #ifdef CONFIG_PPC_SPLPAR
176
177 #include <asm/dtl.h>
178
179 /*
180 * Scan the dispatch trace log and count up the stolen time.
181 * Should be called with interrupts disabled.
182 */
scan_dispatch_log(u64 stop_tb)183 static u64 scan_dispatch_log(u64 stop_tb)
184 {
185 u64 i = local_paca->dtl_ridx;
186 struct dtl_entry *dtl = local_paca->dtl_curr;
187 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
188 struct lppaca *vpa = local_paca->lppaca_ptr;
189 u64 tb_delta;
190 u64 stolen = 0;
191 u64 dtb;
192
193 if (!dtl)
194 return 0;
195
196 if (i == be64_to_cpu(vpa->dtl_idx))
197 return 0;
198 while (i < be64_to_cpu(vpa->dtl_idx)) {
199 dtb = be64_to_cpu(dtl->timebase);
200 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
201 be32_to_cpu(dtl->ready_to_enqueue_time);
202 barrier();
203 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
204 /* buffer has overflowed */
205 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
206 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
207 continue;
208 }
209 if (dtb > stop_tb)
210 break;
211 if (dtl_consumer)
212 dtl_consumer(dtl, i);
213 stolen += tb_delta;
214 ++i;
215 ++dtl;
216 if (dtl == dtl_end)
217 dtl = local_paca->dispatch_log;
218 }
219 local_paca->dtl_ridx = i;
220 local_paca->dtl_curr = dtl;
221 return stolen;
222 }
223
224 /*
225 * Accumulate stolen time by scanning the dispatch trace log.
226 * Called on entry from user mode.
227 */
accumulate_stolen_time(void)228 void notrace accumulate_stolen_time(void)
229 {
230 u64 sst, ust;
231 unsigned long save_irq_soft_mask = irq_soft_mask_return();
232 struct cpu_accounting_data *acct = &local_paca->accounting;
233
234 /* We are called early in the exception entry, before
235 * soft/hard_enabled are sync'ed to the expected state
236 * for the exception. We are hard disabled but the PACA
237 * needs to reflect that so various debug stuff doesn't
238 * complain
239 */
240 irq_soft_mask_set(IRQS_DISABLED);
241
242 sst = scan_dispatch_log(acct->starttime_user);
243 ust = scan_dispatch_log(acct->starttime);
244 acct->stime -= sst;
245 acct->utime -= ust;
246 acct->steal_time += ust + sst;
247
248 irq_soft_mask_set(save_irq_soft_mask);
249 }
250
calculate_stolen_time(u64 stop_tb)251 static inline u64 calculate_stolen_time(u64 stop_tb)
252 {
253 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
254 return 0;
255
256 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx))
257 return scan_dispatch_log(stop_tb);
258
259 return 0;
260 }
261
262 #else /* CONFIG_PPC_SPLPAR */
calculate_stolen_time(u64 stop_tb)263 static inline u64 calculate_stolen_time(u64 stop_tb)
264 {
265 return 0;
266 }
267
268 #endif /* CONFIG_PPC_SPLPAR */
269
270 /*
271 * Account time for a transition between system, hard irq
272 * or soft irq state.
273 */
vtime_delta_scaled(struct cpu_accounting_data * acct,unsigned long now,unsigned long stime)274 static unsigned long vtime_delta_scaled(struct cpu_accounting_data *acct,
275 unsigned long now, unsigned long stime)
276 {
277 unsigned long stime_scaled = 0;
278 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
279 unsigned long nowscaled, deltascaled;
280 unsigned long utime, utime_scaled;
281
282 nowscaled = read_spurr(now);
283 deltascaled = nowscaled - acct->startspurr;
284 acct->startspurr = nowscaled;
285 utime = acct->utime - acct->utime_sspurr;
286 acct->utime_sspurr = acct->utime;
287
288 /*
289 * Because we don't read the SPURR on every kernel entry/exit,
290 * deltascaled includes both user and system SPURR ticks.
291 * Apportion these ticks to system SPURR ticks and user
292 * SPURR ticks in the same ratio as the system time (delta)
293 * and user time (udelta) values obtained from the timebase
294 * over the same interval. The system ticks get accounted here;
295 * the user ticks get saved up in paca->user_time_scaled to be
296 * used by account_process_tick.
297 */
298 stime_scaled = stime;
299 utime_scaled = utime;
300 if (deltascaled != stime + utime) {
301 if (utime) {
302 stime_scaled = deltascaled * stime / (stime + utime);
303 utime_scaled = deltascaled - stime_scaled;
304 } else {
305 stime_scaled = deltascaled;
306 }
307 }
308 acct->utime_scaled += utime_scaled;
309 #endif
310
311 return stime_scaled;
312 }
313
vtime_delta(struct task_struct * tsk,unsigned long * stime_scaled,unsigned long * steal_time)314 static unsigned long vtime_delta(struct task_struct *tsk,
315 unsigned long *stime_scaled,
316 unsigned long *steal_time)
317 {
318 unsigned long now, stime;
319 struct cpu_accounting_data *acct = get_accounting(tsk);
320
321 WARN_ON_ONCE(!irqs_disabled());
322
323 now = mftb();
324 stime = now - acct->starttime;
325 acct->starttime = now;
326
327 *stime_scaled = vtime_delta_scaled(acct, now, stime);
328
329 *steal_time = calculate_stolen_time(now);
330
331 return stime;
332 }
333
vtime_account_kernel(struct task_struct * tsk)334 void vtime_account_kernel(struct task_struct *tsk)
335 {
336 unsigned long stime, stime_scaled, steal_time;
337 struct cpu_accounting_data *acct = get_accounting(tsk);
338
339 stime = vtime_delta(tsk, &stime_scaled, &steal_time);
340
341 stime -= min(stime, steal_time);
342 acct->steal_time += steal_time;
343
344 if ((tsk->flags & PF_VCPU) && !irq_count()) {
345 acct->gtime += stime;
346 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
347 acct->utime_scaled += stime_scaled;
348 #endif
349 } else {
350 if (hardirq_count())
351 acct->hardirq_time += stime;
352 else if (in_serving_softirq())
353 acct->softirq_time += stime;
354 else
355 acct->stime += stime;
356
357 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
358 acct->stime_scaled += stime_scaled;
359 #endif
360 }
361 }
362 EXPORT_SYMBOL_GPL(vtime_account_kernel);
363
vtime_account_idle(struct task_struct * tsk)364 void vtime_account_idle(struct task_struct *tsk)
365 {
366 unsigned long stime, stime_scaled, steal_time;
367 struct cpu_accounting_data *acct = get_accounting(tsk);
368
369 stime = vtime_delta(tsk, &stime_scaled, &steal_time);
370 acct->idle_time += stime + steal_time;
371 }
372
vtime_flush_scaled(struct task_struct * tsk,struct cpu_accounting_data * acct)373 static void vtime_flush_scaled(struct task_struct *tsk,
374 struct cpu_accounting_data *acct)
375 {
376 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
377 if (acct->utime_scaled)
378 tsk->utimescaled += cputime_to_nsecs(acct->utime_scaled);
379 if (acct->stime_scaled)
380 tsk->stimescaled += cputime_to_nsecs(acct->stime_scaled);
381
382 acct->utime_scaled = 0;
383 acct->utime_sspurr = 0;
384 acct->stime_scaled = 0;
385 #endif
386 }
387
388 /*
389 * Account the whole cputime accumulated in the paca
390 * Must be called with interrupts disabled.
391 * Assumes that vtime_account_kernel/idle() has been called
392 * recently (i.e. since the last entry from usermode) so that
393 * get_paca()->user_time_scaled is up to date.
394 */
vtime_flush(struct task_struct * tsk)395 void vtime_flush(struct task_struct *tsk)
396 {
397 struct cpu_accounting_data *acct = get_accounting(tsk);
398
399 if (acct->utime)
400 account_user_time(tsk, cputime_to_nsecs(acct->utime));
401
402 if (acct->gtime)
403 account_guest_time(tsk, cputime_to_nsecs(acct->gtime));
404
405 if (IS_ENABLED(CONFIG_PPC_SPLPAR) && acct->steal_time) {
406 account_steal_time(cputime_to_nsecs(acct->steal_time));
407 acct->steal_time = 0;
408 }
409
410 if (acct->idle_time)
411 account_idle_time(cputime_to_nsecs(acct->idle_time));
412
413 if (acct->stime)
414 account_system_index_time(tsk, cputime_to_nsecs(acct->stime),
415 CPUTIME_SYSTEM);
416
417 if (acct->hardirq_time)
418 account_system_index_time(tsk, cputime_to_nsecs(acct->hardirq_time),
419 CPUTIME_IRQ);
420 if (acct->softirq_time)
421 account_system_index_time(tsk, cputime_to_nsecs(acct->softirq_time),
422 CPUTIME_SOFTIRQ);
423
424 vtime_flush_scaled(tsk, acct);
425
426 acct->utime = 0;
427 acct->gtime = 0;
428 acct->idle_time = 0;
429 acct->stime = 0;
430 acct->hardirq_time = 0;
431 acct->softirq_time = 0;
432 }
433
434 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
435 #define calc_cputime_factors()
436 #endif
437
__delay(unsigned long loops)438 void __delay(unsigned long loops)
439 {
440 unsigned long start;
441
442 spin_begin();
443 if (tb_invalid) {
444 /*
445 * TB is in error state and isn't ticking anymore.
446 * HMI handler was unable to recover from TB error.
447 * Return immediately, so that kernel won't get stuck here.
448 */
449 spin_cpu_relax();
450 } else {
451 start = mftb();
452 while (mftb() - start < loops)
453 spin_cpu_relax();
454 }
455 spin_end();
456 }
457 EXPORT_SYMBOL(__delay);
458
udelay(unsigned long usecs)459 void udelay(unsigned long usecs)
460 {
461 __delay(tb_ticks_per_usec * usecs);
462 }
463 EXPORT_SYMBOL(udelay);
464
465 #ifdef CONFIG_SMP
profile_pc(struct pt_regs * regs)466 unsigned long profile_pc(struct pt_regs *regs)
467 {
468 unsigned long pc = instruction_pointer(regs);
469
470 if (in_lock_functions(pc))
471 return regs->link;
472
473 return pc;
474 }
475 EXPORT_SYMBOL(profile_pc);
476 #endif
477
478 #ifdef CONFIG_IRQ_WORK
479
480 /*
481 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
482 */
483 #ifdef CONFIG_PPC64
test_irq_work_pending(void)484 static inline unsigned long test_irq_work_pending(void)
485 {
486 unsigned long x;
487
488 asm volatile("lbz %0,%1(13)"
489 : "=r" (x)
490 : "i" (offsetof(struct paca_struct, irq_work_pending)));
491 return x;
492 }
493
set_irq_work_pending_flag(void)494 static inline void set_irq_work_pending_flag(void)
495 {
496 asm volatile("stb %0,%1(13)" : :
497 "r" (1),
498 "i" (offsetof(struct paca_struct, irq_work_pending)));
499 }
500
clear_irq_work_pending(void)501 static inline void clear_irq_work_pending(void)
502 {
503 asm volatile("stb %0,%1(13)" : :
504 "r" (0),
505 "i" (offsetof(struct paca_struct, irq_work_pending)));
506 }
507
508 #else /* 32-bit */
509
510 DEFINE_PER_CPU(u8, irq_work_pending);
511
512 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
513 #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
514 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
515
516 #endif /* 32 vs 64 bit */
517
arch_irq_work_raise(void)518 void arch_irq_work_raise(void)
519 {
520 /*
521 * 64-bit code that uses irq soft-mask can just cause an immediate
522 * interrupt here that gets soft masked, if this is called under
523 * local_irq_disable(). It might be possible to prevent that happening
524 * by noticing interrupts are disabled and setting decrementer pending
525 * to be replayed when irqs are enabled. The problem there is that
526 * tracing can call irq_work_raise, including in code that does low
527 * level manipulations of irq soft-mask state (e.g., trace_hardirqs_on)
528 * which could get tangled up if we're messing with the same state
529 * here.
530 */
531 preempt_disable();
532 set_irq_work_pending_flag();
533 set_dec(1);
534 preempt_enable();
535 }
536
537 #else /* CONFIG_IRQ_WORK */
538
539 #define test_irq_work_pending() 0
540 #define clear_irq_work_pending()
541
542 #endif /* CONFIG_IRQ_WORK */
543
544 /*
545 * timer_interrupt - gets called when the decrementer overflows,
546 * with interrupts disabled.
547 */
timer_interrupt(struct pt_regs * regs)548 void timer_interrupt(struct pt_regs *regs)
549 {
550 struct clock_event_device *evt = this_cpu_ptr(&decrementers);
551 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
552 struct pt_regs *old_regs;
553 u64 now;
554
555 /* Some implementations of hotplug will get timer interrupts while
556 * offline, just ignore these and we also need to set
557 * decrementers_next_tb as MAX to make sure __check_irq_replay
558 * don't replay timer interrupt when return, otherwise we'll trap
559 * here infinitely :(
560 */
561 if (unlikely(!cpu_online(smp_processor_id()))) {
562 *next_tb = ~(u64)0;
563 set_dec(decrementer_max);
564 return;
565 }
566
567 /* Ensure a positive value is written to the decrementer, or else
568 * some CPUs will continue to take decrementer exceptions. When the
569 * PPC_WATCHDOG (decrementer based) is configured, keep this at most
570 * 31 bits, which is about 4 seconds on most systems, which gives
571 * the watchdog a chance of catching timer interrupt hard lockups.
572 */
573 if (IS_ENABLED(CONFIG_PPC_WATCHDOG))
574 set_dec(0x7fffffff);
575 else
576 set_dec(decrementer_max);
577
578 /* Conditionally hard-enable interrupts now that the DEC has been
579 * bumped to its maximum value
580 */
581 may_hard_irq_enable();
582
583
584 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
585 if (atomic_read(&ppc_n_lost_interrupts) != 0)
586 do_IRQ(regs);
587 #endif
588
589 old_regs = set_irq_regs(regs);
590 irq_enter();
591 trace_timer_interrupt_entry(regs);
592
593 if (test_irq_work_pending()) {
594 clear_irq_work_pending();
595 irq_work_run();
596 }
597
598 now = get_tb();
599 if (now >= *next_tb) {
600 *next_tb = ~(u64)0;
601 if (evt->event_handler)
602 evt->event_handler(evt);
603 __this_cpu_inc(irq_stat.timer_irqs_event);
604 } else {
605 now = *next_tb - now;
606 if (now <= decrementer_max)
607 set_dec(now);
608 /* We may have raced with new irq work */
609 if (test_irq_work_pending())
610 set_dec(1);
611 __this_cpu_inc(irq_stat.timer_irqs_others);
612 }
613
614 trace_timer_interrupt_exit(regs);
615 irq_exit();
616 set_irq_regs(old_regs);
617 }
618 EXPORT_SYMBOL(timer_interrupt);
619
620 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
timer_broadcast_interrupt(void)621 void timer_broadcast_interrupt(void)
622 {
623 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
624
625 *next_tb = ~(u64)0;
626 tick_receive_broadcast();
627 __this_cpu_inc(irq_stat.broadcast_irqs_event);
628 }
629 #endif
630
631 #ifdef CONFIG_SUSPEND
generic_suspend_disable_irqs(void)632 static void generic_suspend_disable_irqs(void)
633 {
634 /* Disable the decrementer, so that it doesn't interfere
635 * with suspending.
636 */
637
638 set_dec(decrementer_max);
639 local_irq_disable();
640 set_dec(decrementer_max);
641 }
642
generic_suspend_enable_irqs(void)643 static void generic_suspend_enable_irqs(void)
644 {
645 local_irq_enable();
646 }
647
648 /* Overrides the weak version in kernel/power/main.c */
arch_suspend_disable_irqs(void)649 void arch_suspend_disable_irqs(void)
650 {
651 if (ppc_md.suspend_disable_irqs)
652 ppc_md.suspend_disable_irqs();
653 generic_suspend_disable_irqs();
654 }
655
656 /* Overrides the weak version in kernel/power/main.c */
arch_suspend_enable_irqs(void)657 void arch_suspend_enable_irqs(void)
658 {
659 generic_suspend_enable_irqs();
660 if (ppc_md.suspend_enable_irqs)
661 ppc_md.suspend_enable_irqs();
662 }
663 #endif
664
tb_to_ns(unsigned long long ticks)665 unsigned long long tb_to_ns(unsigned long long ticks)
666 {
667 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
668 }
669 EXPORT_SYMBOL_GPL(tb_to_ns);
670
671 /*
672 * Scheduler clock - returns current time in nanosec units.
673 *
674 * Note: mulhdu(a, b) (multiply high double unsigned) returns
675 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
676 * are 64-bit unsigned numbers.
677 */
sched_clock(void)678 notrace unsigned long long sched_clock(void)
679 {
680 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
681 }
682
683
684 #ifdef CONFIG_PPC_PSERIES
685
686 /*
687 * Running clock - attempts to give a view of time passing for a virtualised
688 * kernels.
689 * Uses the VTB register if available otherwise a next best guess.
690 */
running_clock(void)691 unsigned long long running_clock(void)
692 {
693 /*
694 * Don't read the VTB as a host since KVM does not switch in host
695 * timebase into the VTB when it takes a guest off the CPU, reading the
696 * VTB would result in reading 'last switched out' guest VTB.
697 *
698 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
699 * would be unsafe to rely only on the #ifdef above.
700 */
701 if (firmware_has_feature(FW_FEATURE_LPAR) &&
702 cpu_has_feature(CPU_FTR_ARCH_207S))
703 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
704
705 /*
706 * This is a next best approximation without a VTB.
707 * On a host which is running bare metal there should never be any stolen
708 * time and on a host which doesn't do any virtualisation TB *should* equal
709 * VTB so it makes no difference anyway.
710 */
711 return local_clock() - kcpustat_this_cpu->cpustat[CPUTIME_STEAL];
712 }
713 #endif
714
get_freq(char * name,int cells,unsigned long * val)715 static int __init get_freq(char *name, int cells, unsigned long *val)
716 {
717 struct device_node *cpu;
718 const __be32 *fp;
719 int found = 0;
720
721 /* The cpu node should have timebase and clock frequency properties */
722 cpu = of_find_node_by_type(NULL, "cpu");
723
724 if (cpu) {
725 fp = of_get_property(cpu, name, NULL);
726 if (fp) {
727 found = 1;
728 *val = of_read_ulong(fp, cells);
729 }
730
731 of_node_put(cpu);
732 }
733
734 return found;
735 }
736
start_cpu_decrementer(void)737 static void start_cpu_decrementer(void)
738 {
739 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
740 unsigned int tcr;
741
742 /* Clear any pending timer interrupts */
743 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
744
745 tcr = mfspr(SPRN_TCR);
746 /*
747 * The watchdog may have already been enabled by u-boot. So leave
748 * TRC[WP] (Watchdog Period) alone.
749 */
750 tcr &= TCR_WP_MASK; /* Clear all bits except for TCR[WP] */
751 tcr |= TCR_DIE; /* Enable decrementer */
752 mtspr(SPRN_TCR, tcr);
753 #endif
754 }
755
generic_calibrate_decr(void)756 void __init generic_calibrate_decr(void)
757 {
758 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
759
760 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
761 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
762
763 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
764 "(not found)\n");
765 }
766
767 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
768
769 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
770 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
771
772 printk(KERN_ERR "WARNING: Estimating processor frequency "
773 "(not found)\n");
774 }
775 }
776
update_persistent_clock64(struct timespec64 now)777 int update_persistent_clock64(struct timespec64 now)
778 {
779 struct rtc_time tm;
780
781 if (!ppc_md.set_rtc_time)
782 return -ENODEV;
783
784 rtc_time64_to_tm(now.tv_sec + 1 + timezone_offset, &tm);
785
786 return ppc_md.set_rtc_time(&tm);
787 }
788
__read_persistent_clock(struct timespec64 * ts)789 static void __read_persistent_clock(struct timespec64 *ts)
790 {
791 struct rtc_time tm;
792 static int first = 1;
793
794 ts->tv_nsec = 0;
795 /* XXX this is a litle fragile but will work okay in the short term */
796 if (first) {
797 first = 0;
798 if (ppc_md.time_init)
799 timezone_offset = ppc_md.time_init();
800
801 /* get_boot_time() isn't guaranteed to be safe to call late */
802 if (ppc_md.get_boot_time) {
803 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
804 return;
805 }
806 }
807 if (!ppc_md.get_rtc_time) {
808 ts->tv_sec = 0;
809 return;
810 }
811 ppc_md.get_rtc_time(&tm);
812
813 ts->tv_sec = rtc_tm_to_time64(&tm);
814 }
815
read_persistent_clock64(struct timespec64 * ts)816 void read_persistent_clock64(struct timespec64 *ts)
817 {
818 __read_persistent_clock(ts);
819
820 /* Sanitize it in case real time clock is set below EPOCH */
821 if (ts->tv_sec < 0) {
822 ts->tv_sec = 0;
823 ts->tv_nsec = 0;
824 }
825
826 }
827
828 /* clocksource code */
timebase_read(struct clocksource * cs)829 static notrace u64 timebase_read(struct clocksource *cs)
830 {
831 return (u64)get_tb();
832 }
833
834
update_vsyscall(struct timekeeper * tk)835 void update_vsyscall(struct timekeeper *tk)
836 {
837 struct timespec64 xt;
838 struct clocksource *clock = tk->tkr_mono.clock;
839 u32 mult = tk->tkr_mono.mult;
840 u32 shift = tk->tkr_mono.shift;
841 u64 cycle_last = tk->tkr_mono.cycle_last;
842 u64 new_tb_to_xs, new_stamp_xsec;
843 u64 frac_sec;
844
845 if (clock != &clocksource_timebase)
846 return;
847
848 xt.tv_sec = tk->xtime_sec;
849 xt.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
850
851 /* Make userspace gettimeofday spin until we're done. */
852 ++vdso_data->tb_update_count;
853 smp_mb();
854
855 /*
856 * This computes ((2^20 / 1e9) * mult) >> shift as a
857 * 0.64 fixed-point fraction.
858 * The computation in the else clause below won't overflow
859 * (as long as the timebase frequency is >= 1.049 MHz)
860 * but loses precision because we lose the low bits of the constant
861 * in the shift. Note that 19342813113834067 ~= 2^(20+64) / 1e9.
862 * For a shift of 24 the error is about 0.5e-9, or about 0.5ns
863 * over a second. (Shift values are usually 22, 23 or 24.)
864 * For high frequency clocks such as the 512MHz timebase clock
865 * on POWER[6789], the mult value is small (e.g. 32768000)
866 * and so we can shift the constant by 16 initially
867 * (295147905179 ~= 2^(20+64-16) / 1e9) and then do the
868 * remaining shifts after the multiplication, which gives a
869 * more accurate result (e.g. with mult = 32768000, shift = 24,
870 * the error is only about 1.2e-12, or 0.7ns over 10 minutes).
871 */
872 if (mult <= 62500000 && clock->shift >= 16)
873 new_tb_to_xs = ((u64) mult * 295147905179ULL) >> (clock->shift - 16);
874 else
875 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
876
877 /*
878 * Compute the fractional second in units of 2^-32 seconds.
879 * The fractional second is tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift
880 * in nanoseconds, so multiplying that by 2^32 / 1e9 gives
881 * it in units of 2^-32 seconds.
882 * We assume shift <= 32 because clocks_calc_mult_shift()
883 * generates shift values in the range 0 - 32.
884 */
885 frac_sec = tk->tkr_mono.xtime_nsec << (32 - shift);
886 do_div(frac_sec, NSEC_PER_SEC);
887
888 /*
889 * Work out new stamp_xsec value for any legacy users of systemcfg.
890 * stamp_xsec is in units of 2^-20 seconds.
891 */
892 new_stamp_xsec = frac_sec >> 12;
893 new_stamp_xsec += tk->xtime_sec * XSEC_PER_SEC;
894
895 /*
896 * tb_update_count is used to allow the userspace gettimeofday code
897 * to assure itself that it sees a consistent view of the tb_to_xs and
898 * stamp_xsec variables. It reads the tb_update_count, then reads
899 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
900 * the two values of tb_update_count match and are even then the
901 * tb_to_xs and stamp_xsec values are consistent. If not, then it
902 * loops back and reads them again until this criteria is met.
903 */
904 vdso_data->tb_orig_stamp = cycle_last;
905 vdso_data->stamp_xsec = new_stamp_xsec;
906 vdso_data->tb_to_xs = new_tb_to_xs;
907 vdso_data->wtom_clock_sec = tk->wall_to_monotonic.tv_sec;
908 vdso_data->wtom_clock_nsec = tk->wall_to_monotonic.tv_nsec;
909 vdso_data->stamp_xtime_sec = xt.tv_sec;
910 vdso_data->stamp_xtime_nsec = xt.tv_nsec;
911 vdso_data->stamp_sec_fraction = frac_sec;
912 vdso_data->hrtimer_res = hrtimer_resolution;
913 smp_wmb();
914 ++(vdso_data->tb_update_count);
915 }
916
update_vsyscall_tz(void)917 void update_vsyscall_tz(void)
918 {
919 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
920 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
921 }
922
clocksource_init(void)923 static void __init clocksource_init(void)
924 {
925 struct clocksource *clock = &clocksource_timebase;
926
927 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
928 printk(KERN_ERR "clocksource: %s is already registered\n",
929 clock->name);
930 return;
931 }
932
933 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
934 clock->name, clock->mult, clock->shift);
935 }
936
decrementer_set_next_event(unsigned long evt,struct clock_event_device * dev)937 static int decrementer_set_next_event(unsigned long evt,
938 struct clock_event_device *dev)
939 {
940 __this_cpu_write(decrementers_next_tb, get_tb() + evt);
941 set_dec(evt);
942
943 /* We may have raced with new irq work */
944 if (test_irq_work_pending())
945 set_dec(1);
946
947 return 0;
948 }
949
decrementer_shutdown(struct clock_event_device * dev)950 static int decrementer_shutdown(struct clock_event_device *dev)
951 {
952 decrementer_set_next_event(decrementer_max, dev);
953 return 0;
954 }
955
register_decrementer_clockevent(int cpu)956 static void register_decrementer_clockevent(int cpu)
957 {
958 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
959
960 *dec = decrementer_clockevent;
961 dec->cpumask = cpumask_of(cpu);
962
963 clockevents_config_and_register(dec, ppc_tb_freq, 2, decrementer_max);
964
965 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
966 dec->name, dec->mult, dec->shift, cpu);
967
968 /* Set values for KVM, see kvm_emulate_dec() */
969 decrementer_clockevent.mult = dec->mult;
970 decrementer_clockevent.shift = dec->shift;
971 }
972
enable_large_decrementer(void)973 static void enable_large_decrementer(void)
974 {
975 if (!cpu_has_feature(CPU_FTR_ARCH_300))
976 return;
977
978 if (decrementer_max <= DECREMENTER_DEFAULT_MAX)
979 return;
980
981 /*
982 * If we're running as the hypervisor we need to enable the LD manually
983 * otherwise firmware should have done it for us.
984 */
985 if (cpu_has_feature(CPU_FTR_HVMODE))
986 mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_LD);
987 }
988
set_decrementer_max(void)989 static void __init set_decrementer_max(void)
990 {
991 struct device_node *cpu;
992 u32 bits = 32;
993
994 /* Prior to ISAv3 the decrementer is always 32 bit */
995 if (!cpu_has_feature(CPU_FTR_ARCH_300))
996 return;
997
998 cpu = of_find_node_by_type(NULL, "cpu");
999
1000 if (of_property_read_u32(cpu, "ibm,dec-bits", &bits) == 0) {
1001 if (bits > 64 || bits < 32) {
1002 pr_warn("time_init: firmware supplied invalid ibm,dec-bits");
1003 bits = 32;
1004 }
1005
1006 /* calculate the signed maximum given this many bits */
1007 decrementer_max = (1ul << (bits - 1)) - 1;
1008 }
1009
1010 of_node_put(cpu);
1011
1012 pr_info("time_init: %u bit decrementer (max: %llx)\n",
1013 bits, decrementer_max);
1014 }
1015
init_decrementer_clockevent(void)1016 static void __init init_decrementer_clockevent(void)
1017 {
1018 register_decrementer_clockevent(smp_processor_id());
1019 }
1020
secondary_cpu_time_init(void)1021 void secondary_cpu_time_init(void)
1022 {
1023 /* Enable and test the large decrementer for this cpu */
1024 enable_large_decrementer();
1025
1026 /* Start the decrementer on CPUs that have manual control
1027 * such as BookE
1028 */
1029 start_cpu_decrementer();
1030
1031 /* FIME: Should make unrelatred change to move snapshot_timebase
1032 * call here ! */
1033 register_decrementer_clockevent(smp_processor_id());
1034 }
1035
1036 /* This function is only called on the boot processor */
time_init(void)1037 void __init time_init(void)
1038 {
1039 struct div_result res;
1040 u64 scale;
1041 unsigned shift;
1042
1043 /* Normal PowerPC with timebase register */
1044 ppc_md.calibrate_decr();
1045 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
1046 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
1047 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
1048 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
1049
1050 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
1051 tb_ticks_per_sec = ppc_tb_freq;
1052 tb_ticks_per_usec = ppc_tb_freq / 1000000;
1053 calc_cputime_factors();
1054
1055 /*
1056 * Compute scale factor for sched_clock.
1057 * The calibrate_decr() function has set tb_ticks_per_sec,
1058 * which is the timebase frequency.
1059 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
1060 * the 128-bit result as a 64.64 fixed-point number.
1061 * We then shift that number right until it is less than 1.0,
1062 * giving us the scale factor and shift count to use in
1063 * sched_clock().
1064 */
1065 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1066 scale = res.result_low;
1067 for (shift = 0; res.result_high != 0; ++shift) {
1068 scale = (scale >> 1) | (res.result_high << 63);
1069 res.result_high >>= 1;
1070 }
1071 tb_to_ns_scale = scale;
1072 tb_to_ns_shift = shift;
1073 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
1074 boot_tb = get_tb();
1075
1076 /* If platform provided a timezone (pmac), we correct the time */
1077 if (timezone_offset) {
1078 sys_tz.tz_minuteswest = -timezone_offset / 60;
1079 sys_tz.tz_dsttime = 0;
1080 }
1081
1082 vdso_data->tb_update_count = 0;
1083 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1084
1085 /* initialise and enable the large decrementer (if we have one) */
1086 set_decrementer_max();
1087 enable_large_decrementer();
1088
1089 /* Start the decrementer on CPUs that have manual control
1090 * such as BookE
1091 */
1092 start_cpu_decrementer();
1093
1094 /* Register the clocksource */
1095 clocksource_init();
1096
1097 init_decrementer_clockevent();
1098 tick_setup_hrtimer_broadcast();
1099
1100 of_clk_init(NULL);
1101 }
1102
1103 /*
1104 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1105 * result.
1106 */
div128_by_32(u64 dividend_high,u64 dividend_low,unsigned divisor,struct div_result * dr)1107 void div128_by_32(u64 dividend_high, u64 dividend_low,
1108 unsigned divisor, struct div_result *dr)
1109 {
1110 unsigned long a, b, c, d;
1111 unsigned long w, x, y, z;
1112 u64 ra, rb, rc;
1113
1114 a = dividend_high >> 32;
1115 b = dividend_high & 0xffffffff;
1116 c = dividend_low >> 32;
1117 d = dividend_low & 0xffffffff;
1118
1119 w = a / divisor;
1120 ra = ((u64)(a - (w * divisor)) << 32) + b;
1121
1122 rb = ((u64) do_div(ra, divisor) << 32) + c;
1123 x = ra;
1124
1125 rc = ((u64) do_div(rb, divisor) << 32) + d;
1126 y = rb;
1127
1128 do_div(rc, divisor);
1129 z = rc;
1130
1131 dr->result_high = ((u64)w << 32) + x;
1132 dr->result_low = ((u64)y << 32) + z;
1133
1134 }
1135
1136 /* We don't need to calibrate delay, we use the CPU timebase for that */
calibrate_delay(void)1137 void calibrate_delay(void)
1138 {
1139 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1140 * as the number of __delay(1) in a jiffy, so make it so
1141 */
1142 loops_per_jiffy = tb_ticks_per_jiffy;
1143 }
1144
1145 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
rtc_generic_get_time(struct device * dev,struct rtc_time * tm)1146 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
1147 {
1148 ppc_md.get_rtc_time(tm);
1149 return 0;
1150 }
1151
rtc_generic_set_time(struct device * dev,struct rtc_time * tm)1152 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
1153 {
1154 if (!ppc_md.set_rtc_time)
1155 return -EOPNOTSUPP;
1156
1157 if (ppc_md.set_rtc_time(tm) < 0)
1158 return -EOPNOTSUPP;
1159
1160 return 0;
1161 }
1162
1163 static const struct rtc_class_ops rtc_generic_ops = {
1164 .read_time = rtc_generic_get_time,
1165 .set_time = rtc_generic_set_time,
1166 };
1167
rtc_init(void)1168 static int __init rtc_init(void)
1169 {
1170 struct platform_device *pdev;
1171
1172 if (!ppc_md.get_rtc_time)
1173 return -ENODEV;
1174
1175 pdev = platform_device_register_data(NULL, "rtc-generic", -1,
1176 &rtc_generic_ops,
1177 sizeof(rtc_generic_ops));
1178
1179 return PTR_ERR_OR_ZERO(pdev);
1180 }
1181
1182 device_initcall(rtc_init);
1183 #endif
1184