1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25 
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29 
30 #define TK_CLEAR_NTP		(1 << 0)
31 #define TK_MIRROR		(1 << 1)
32 #define TK_CLOCK_WAS_SET	(1 << 2)
33 
34 enum timekeeping_adv_mode {
35 	/* Update timekeeper when a tick has passed */
36 	TK_ADV_TICK,
37 
38 	/* Update timekeeper on a direct frequency change */
39 	TK_ADV_FREQ
40 };
41 
42 /*
43  * The most important data for readout fits into a single 64 byte
44  * cache line.
45  */
46 static struct {
47 	seqcount_t		seq;
48 	struct timekeeper	timekeeper;
49 } tk_core ____cacheline_aligned = {
50 	.seq = SEQCNT_ZERO(tk_core.seq),
51 };
52 
53 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
54 static struct timekeeper shadow_timekeeper;
55 
56 /**
57  * struct tk_fast - NMI safe timekeeper
58  * @seq:	Sequence counter for protecting updates. The lowest bit
59  *		is the index for the tk_read_base array
60  * @base:	tk_read_base array. Access is indexed by the lowest bit of
61  *		@seq.
62  *
63  * See @update_fast_timekeeper() below.
64  */
65 struct tk_fast {
66 	seqcount_t		seq;
67 	struct tk_read_base	base[2];
68 };
69 
70 /* Suspend-time cycles value for halted fast timekeeper. */
71 static u64 cycles_at_suspend;
72 
dummy_clock_read(struct clocksource * cs)73 static u64 dummy_clock_read(struct clocksource *cs)
74 {
75 	return cycles_at_suspend;
76 }
77 
78 static struct clocksource dummy_clock = {
79 	.read = dummy_clock_read,
80 };
81 
82 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
83 	.base[0] = { .clock = &dummy_clock, },
84 	.base[1] = { .clock = &dummy_clock, },
85 };
86 
87 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
88 	.base[0] = { .clock = &dummy_clock, },
89 	.base[1] = { .clock = &dummy_clock, },
90 };
91 
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
94 
tk_normalize_xtime(struct timekeeper * tk)95 static inline void tk_normalize_xtime(struct timekeeper *tk)
96 {
97 	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
98 		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
99 		tk->xtime_sec++;
100 	}
101 	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
102 		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
103 		tk->raw_sec++;
104 	}
105 }
106 
tk_xtime(const struct timekeeper * tk)107 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
108 {
109 	struct timespec64 ts;
110 
111 	ts.tv_sec = tk->xtime_sec;
112 	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
113 	return ts;
114 }
115 
tk_set_xtime(struct timekeeper * tk,const struct timespec64 * ts)116 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
117 {
118 	tk->xtime_sec = ts->tv_sec;
119 	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
120 }
121 
tk_xtime_add(struct timekeeper * tk,const struct timespec64 * ts)122 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
123 {
124 	tk->xtime_sec += ts->tv_sec;
125 	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
126 	tk_normalize_xtime(tk);
127 }
128 
tk_set_wall_to_mono(struct timekeeper * tk,struct timespec64 wtm)129 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
130 {
131 	struct timespec64 tmp;
132 
133 	/*
134 	 * Verify consistency of: offset_real = -wall_to_monotonic
135 	 * before modifying anything
136 	 */
137 	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
138 					-tk->wall_to_monotonic.tv_nsec);
139 	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
140 	tk->wall_to_monotonic = wtm;
141 	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
142 	tk->offs_real = timespec64_to_ktime(tmp);
143 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
144 }
145 
tk_update_sleep_time(struct timekeeper * tk,ktime_t delta)146 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
147 {
148 	tk->offs_boot = ktime_add(tk->offs_boot, delta);
149 	/*
150 	 * Timespec representation for VDSO update to avoid 64bit division
151 	 * on every update.
152 	 */
153 	tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
154 }
155 
156 /*
157  * tk_clock_read - atomic clocksource read() helper
158  *
159  * This helper is necessary to use in the read paths because, while the
160  * seqlock ensures we don't return a bad value while structures are updated,
161  * it doesn't protect from potential crashes. There is the possibility that
162  * the tkr's clocksource may change between the read reference, and the
163  * clock reference passed to the read function.  This can cause crashes if
164  * the wrong clocksource is passed to the wrong read function.
165  * This isn't necessary to use when holding the timekeeper_lock or doing
166  * a read of the fast-timekeeper tkrs (which is protected by its own locking
167  * and update logic).
168  */
tk_clock_read(const struct tk_read_base * tkr)169 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
170 {
171 	struct clocksource *clock = READ_ONCE(tkr->clock);
172 
173 	return clock->read(clock);
174 }
175 
176 #ifdef CONFIG_DEBUG_TIMEKEEPING
177 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
178 
timekeeping_check_update(struct timekeeper * tk,u64 offset)179 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
180 {
181 
182 	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
183 	const char *name = tk->tkr_mono.clock->name;
184 
185 	if (offset > max_cycles) {
186 		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
187 				offset, name, max_cycles);
188 		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
189 	} else {
190 		if (offset > (max_cycles >> 1)) {
191 			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
192 					offset, name, max_cycles >> 1);
193 			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
194 		}
195 	}
196 
197 	if (tk->underflow_seen) {
198 		if (jiffies - tk->last_warning > WARNING_FREQ) {
199 			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
200 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
201 			printk_deferred("         Your kernel is probably still fine.\n");
202 			tk->last_warning = jiffies;
203 		}
204 		tk->underflow_seen = 0;
205 	}
206 
207 	if (tk->overflow_seen) {
208 		if (jiffies - tk->last_warning > WARNING_FREQ) {
209 			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
210 			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
211 			printk_deferred("         Your kernel is probably still fine.\n");
212 			tk->last_warning = jiffies;
213 		}
214 		tk->overflow_seen = 0;
215 	}
216 }
217 
timekeeping_get_delta(const struct tk_read_base * tkr)218 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
219 {
220 	struct timekeeper *tk = &tk_core.timekeeper;
221 	u64 now, last, mask, max, delta;
222 	unsigned int seq;
223 
224 	/*
225 	 * Since we're called holding a seqlock, the data may shift
226 	 * under us while we're doing the calculation. This can cause
227 	 * false positives, since we'd note a problem but throw the
228 	 * results away. So nest another seqlock here to atomically
229 	 * grab the points we are checking with.
230 	 */
231 	do {
232 		seq = read_seqcount_begin(&tk_core.seq);
233 		now = tk_clock_read(tkr);
234 		last = tkr->cycle_last;
235 		mask = tkr->mask;
236 		max = tkr->clock->max_cycles;
237 	} while (read_seqcount_retry(&tk_core.seq, seq));
238 
239 	delta = clocksource_delta(now, last, mask);
240 
241 	/*
242 	 * Try to catch underflows by checking if we are seeing small
243 	 * mask-relative negative values.
244 	 */
245 	if (unlikely((~delta & mask) < (mask >> 3))) {
246 		tk->underflow_seen = 1;
247 		delta = 0;
248 	}
249 
250 	/* Cap delta value to the max_cycles values to avoid mult overflows */
251 	if (unlikely(delta > max)) {
252 		tk->overflow_seen = 1;
253 		delta = tkr->clock->max_cycles;
254 	}
255 
256 	return delta;
257 }
258 #else
timekeeping_check_update(struct timekeeper * tk,u64 offset)259 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
260 {
261 }
timekeeping_get_delta(const struct tk_read_base * tkr)262 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
263 {
264 	u64 cycle_now, delta;
265 
266 	/* read clocksource */
267 	cycle_now = tk_clock_read(tkr);
268 
269 	/* calculate the delta since the last update_wall_time */
270 	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
271 
272 	return delta;
273 }
274 #endif
275 
276 /**
277  * tk_setup_internals - Set up internals to use clocksource clock.
278  *
279  * @tk:		The target timekeeper to setup.
280  * @clock:		Pointer to clocksource.
281  *
282  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
283  * pair and interval request.
284  *
285  * Unless you're the timekeeping code, you should not be using this!
286  */
tk_setup_internals(struct timekeeper * tk,struct clocksource * clock)287 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
288 {
289 	u64 interval;
290 	u64 tmp, ntpinterval;
291 	struct clocksource *old_clock;
292 
293 	++tk->cs_was_changed_seq;
294 	old_clock = tk->tkr_mono.clock;
295 	tk->tkr_mono.clock = clock;
296 	tk->tkr_mono.mask = clock->mask;
297 	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
298 
299 	tk->tkr_raw.clock = clock;
300 	tk->tkr_raw.mask = clock->mask;
301 	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
302 
303 	/* Do the ns -> cycle conversion first, using original mult */
304 	tmp = NTP_INTERVAL_LENGTH;
305 	tmp <<= clock->shift;
306 	ntpinterval = tmp;
307 	tmp += clock->mult/2;
308 	do_div(tmp, clock->mult);
309 	if (tmp == 0)
310 		tmp = 1;
311 
312 	interval = (u64) tmp;
313 	tk->cycle_interval = interval;
314 
315 	/* Go back from cycles -> shifted ns */
316 	tk->xtime_interval = interval * clock->mult;
317 	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
318 	tk->raw_interval = interval * clock->mult;
319 
320 	 /* if changing clocks, convert xtime_nsec shift units */
321 	if (old_clock) {
322 		int shift_change = clock->shift - old_clock->shift;
323 		if (shift_change < 0) {
324 			tk->tkr_mono.xtime_nsec >>= -shift_change;
325 			tk->tkr_raw.xtime_nsec >>= -shift_change;
326 		} else {
327 			tk->tkr_mono.xtime_nsec <<= shift_change;
328 			tk->tkr_raw.xtime_nsec <<= shift_change;
329 		}
330 	}
331 
332 	tk->tkr_mono.shift = clock->shift;
333 	tk->tkr_raw.shift = clock->shift;
334 
335 	tk->ntp_error = 0;
336 	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
337 	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
338 
339 	/*
340 	 * The timekeeper keeps its own mult values for the currently
341 	 * active clocksource. These value will be adjusted via NTP
342 	 * to counteract clock drifting.
343 	 */
344 	tk->tkr_mono.mult = clock->mult;
345 	tk->tkr_raw.mult = clock->mult;
346 	tk->ntp_err_mult = 0;
347 	tk->skip_second_overflow = 0;
348 }
349 
350 /* Timekeeper helper functions. */
351 
352 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
default_arch_gettimeoffset(void)353 static u32 default_arch_gettimeoffset(void) { return 0; }
354 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
355 #else
arch_gettimeoffset(void)356 static inline u32 arch_gettimeoffset(void) { return 0; }
357 #endif
358 
timekeeping_delta_to_ns(const struct tk_read_base * tkr,u64 delta)359 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
360 {
361 	u64 nsec;
362 
363 	nsec = delta * tkr->mult + tkr->xtime_nsec;
364 	nsec >>= tkr->shift;
365 
366 	/* If arch requires, add in get_arch_timeoffset() */
367 	return nsec + arch_gettimeoffset();
368 }
369 
timekeeping_get_ns(const struct tk_read_base * tkr)370 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
371 {
372 	u64 delta;
373 
374 	delta = timekeeping_get_delta(tkr);
375 	return timekeeping_delta_to_ns(tkr, delta);
376 }
377 
timekeeping_cycles_to_ns(const struct tk_read_base * tkr,u64 cycles)378 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
379 {
380 	u64 delta;
381 
382 	/* calculate the delta since the last update_wall_time */
383 	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
384 	return timekeeping_delta_to_ns(tkr, delta);
385 }
386 
387 /**
388  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
389  * @tkr: Timekeeping readout base from which we take the update
390  *
391  * We want to use this from any context including NMI and tracing /
392  * instrumenting the timekeeping code itself.
393  *
394  * Employ the latch technique; see @raw_write_seqcount_latch.
395  *
396  * So if a NMI hits the update of base[0] then it will use base[1]
397  * which is still consistent. In the worst case this can result is a
398  * slightly wrong timestamp (a few nanoseconds). See
399  * @ktime_get_mono_fast_ns.
400  */
update_fast_timekeeper(const struct tk_read_base * tkr,struct tk_fast * tkf)401 static void update_fast_timekeeper(const struct tk_read_base *tkr,
402 				   struct tk_fast *tkf)
403 {
404 	struct tk_read_base *base = tkf->base;
405 
406 	/* Force readers off to base[1] */
407 	raw_write_seqcount_latch(&tkf->seq);
408 
409 	/* Update base[0] */
410 	memcpy(base, tkr, sizeof(*base));
411 
412 	/* Force readers back to base[0] */
413 	raw_write_seqcount_latch(&tkf->seq);
414 
415 	/* Update base[1] */
416 	memcpy(base + 1, base, sizeof(*base));
417 }
418 
419 /**
420  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
421  *
422  * This timestamp is not guaranteed to be monotonic across an update.
423  * The timestamp is calculated by:
424  *
425  *	now = base_mono + clock_delta * slope
426  *
427  * So if the update lowers the slope, readers who are forced to the
428  * not yet updated second array are still using the old steeper slope.
429  *
430  * tmono
431  * ^
432  * |    o  n
433  * |   o n
434  * |  u
435  * | o
436  * |o
437  * |12345678---> reader order
438  *
439  * o = old slope
440  * u = update
441  * n = new slope
442  *
443  * So reader 6 will observe time going backwards versus reader 5.
444  *
445  * While other CPUs are likely to be able observe that, the only way
446  * for a CPU local observation is when an NMI hits in the middle of
447  * the update. Timestamps taken from that NMI context might be ahead
448  * of the following timestamps. Callers need to be aware of that and
449  * deal with it.
450  */
__ktime_get_fast_ns(struct tk_fast * tkf)451 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
452 {
453 	struct tk_read_base *tkr;
454 	unsigned int seq;
455 	u64 now;
456 
457 	do {
458 		seq = raw_read_seqcount_latch(&tkf->seq);
459 		tkr = tkf->base + (seq & 0x01);
460 		now = ktime_to_ns(tkr->base);
461 
462 		now += timekeeping_delta_to_ns(tkr,
463 				clocksource_delta(
464 					tk_clock_read(tkr),
465 					tkr->cycle_last,
466 					tkr->mask));
467 	} while (read_seqcount_retry(&tkf->seq, seq));
468 
469 	return now;
470 }
471 
ktime_get_mono_fast_ns(void)472 u64 ktime_get_mono_fast_ns(void)
473 {
474 	return __ktime_get_fast_ns(&tk_fast_mono);
475 }
476 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
477 
ktime_get_raw_fast_ns(void)478 u64 ktime_get_raw_fast_ns(void)
479 {
480 	return __ktime_get_fast_ns(&tk_fast_raw);
481 }
482 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
483 
484 /**
485  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
486  *
487  * To keep it NMI safe since we're accessing from tracing, we're not using a
488  * separate timekeeper with updates to monotonic clock and boot offset
489  * protected with seqlocks. This has the following minor side effects:
490  *
491  * (1) Its possible that a timestamp be taken after the boot offset is updated
492  * but before the timekeeper is updated. If this happens, the new boot offset
493  * is added to the old timekeeping making the clock appear to update slightly
494  * earlier:
495  *    CPU 0                                        CPU 1
496  *    timekeeping_inject_sleeptime64()
497  *    __timekeeping_inject_sleeptime(tk, delta);
498  *                                                 timestamp();
499  *    timekeeping_update(tk, TK_CLEAR_NTP...);
500  *
501  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
502  * partially updated.  Since the tk->offs_boot update is a rare event, this
503  * should be a rare occurrence which postprocessing should be able to handle.
504  */
ktime_get_boot_fast_ns(void)505 u64 notrace ktime_get_boot_fast_ns(void)
506 {
507 	struct timekeeper *tk = &tk_core.timekeeper;
508 
509 	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
510 }
511 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
512 
513 
514 /*
515  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
516  */
__ktime_get_real_fast_ns(struct tk_fast * tkf)517 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
518 {
519 	struct tk_read_base *tkr;
520 	unsigned int seq;
521 	u64 now;
522 
523 	do {
524 		seq = raw_read_seqcount_latch(&tkf->seq);
525 		tkr = tkf->base + (seq & 0x01);
526 		now = ktime_to_ns(tkr->base_real);
527 
528 		now += timekeeping_delta_to_ns(tkr,
529 				clocksource_delta(
530 					tk_clock_read(tkr),
531 					tkr->cycle_last,
532 					tkr->mask));
533 	} while (read_seqcount_retry(&tkf->seq, seq));
534 
535 	return now;
536 }
537 
538 /**
539  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
540  */
ktime_get_real_fast_ns(void)541 u64 ktime_get_real_fast_ns(void)
542 {
543 	return __ktime_get_real_fast_ns(&tk_fast_mono);
544 }
545 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
546 
547 /**
548  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
549  * @tk: Timekeeper to snapshot.
550  *
551  * It generally is unsafe to access the clocksource after timekeeping has been
552  * suspended, so take a snapshot of the readout base of @tk and use it as the
553  * fast timekeeper's readout base while suspended.  It will return the same
554  * number of cycles every time until timekeeping is resumed at which time the
555  * proper readout base for the fast timekeeper will be restored automatically.
556  */
halt_fast_timekeeper(const struct timekeeper * tk)557 static void halt_fast_timekeeper(const struct timekeeper *tk)
558 {
559 	static struct tk_read_base tkr_dummy;
560 	const struct tk_read_base *tkr = &tk->tkr_mono;
561 
562 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
563 	cycles_at_suspend = tk_clock_read(tkr);
564 	tkr_dummy.clock = &dummy_clock;
565 	tkr_dummy.base_real = tkr->base + tk->offs_real;
566 	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
567 
568 	tkr = &tk->tkr_raw;
569 	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
570 	tkr_dummy.clock = &dummy_clock;
571 	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
572 }
573 
574 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
575 
update_pvclock_gtod(struct timekeeper * tk,bool was_set)576 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
577 {
578 	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
579 }
580 
581 /**
582  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
583  */
pvclock_gtod_register_notifier(struct notifier_block * nb)584 int pvclock_gtod_register_notifier(struct notifier_block *nb)
585 {
586 	struct timekeeper *tk = &tk_core.timekeeper;
587 	unsigned long flags;
588 	int ret;
589 
590 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
591 	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
592 	update_pvclock_gtod(tk, true);
593 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
594 
595 	return ret;
596 }
597 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
598 
599 /**
600  * pvclock_gtod_unregister_notifier - unregister a pvclock
601  * timedata update listener
602  */
pvclock_gtod_unregister_notifier(struct notifier_block * nb)603 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
604 {
605 	unsigned long flags;
606 	int ret;
607 
608 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
609 	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
610 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
611 
612 	return ret;
613 }
614 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
615 
616 /*
617  * tk_update_leap_state - helper to update the next_leap_ktime
618  */
tk_update_leap_state(struct timekeeper * tk)619 static inline void tk_update_leap_state(struct timekeeper *tk)
620 {
621 	tk->next_leap_ktime = ntp_get_next_leap();
622 	if (tk->next_leap_ktime != KTIME_MAX)
623 		/* Convert to monotonic time */
624 		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
625 }
626 
627 /*
628  * Update the ktime_t based scalar nsec members of the timekeeper
629  */
tk_update_ktime_data(struct timekeeper * tk)630 static inline void tk_update_ktime_data(struct timekeeper *tk)
631 {
632 	u64 seconds;
633 	u32 nsec;
634 
635 	/*
636 	 * The xtime based monotonic readout is:
637 	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
638 	 * The ktime based monotonic readout is:
639 	 *	nsec = base_mono + now();
640 	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
641 	 */
642 	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
643 	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
644 	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
645 
646 	/*
647 	 * The sum of the nanoseconds portions of xtime and
648 	 * wall_to_monotonic can be greater/equal one second. Take
649 	 * this into account before updating tk->ktime_sec.
650 	 */
651 	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
652 	if (nsec >= NSEC_PER_SEC)
653 		seconds++;
654 	tk->ktime_sec = seconds;
655 
656 	/* Update the monotonic raw base */
657 	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
658 }
659 
660 /* must hold timekeeper_lock */
timekeeping_update(struct timekeeper * tk,unsigned int action)661 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
662 {
663 	if (action & TK_CLEAR_NTP) {
664 		tk->ntp_error = 0;
665 		ntp_clear();
666 	}
667 
668 	tk_update_leap_state(tk);
669 	tk_update_ktime_data(tk);
670 
671 	update_vsyscall(tk);
672 	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
673 
674 	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
675 	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
676 	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
677 
678 	if (action & TK_CLOCK_WAS_SET)
679 		tk->clock_was_set_seq++;
680 	/*
681 	 * The mirroring of the data to the shadow-timekeeper needs
682 	 * to happen last here to ensure we don't over-write the
683 	 * timekeeper structure on the next update with stale data
684 	 */
685 	if (action & TK_MIRROR)
686 		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
687 		       sizeof(tk_core.timekeeper));
688 }
689 
690 /**
691  * timekeeping_forward_now - update clock to the current time
692  *
693  * Forward the current clock to update its state since the last call to
694  * update_wall_time(). This is useful before significant clock changes,
695  * as it avoids having to deal with this time offset explicitly.
696  */
timekeeping_forward_now(struct timekeeper * tk)697 static void timekeeping_forward_now(struct timekeeper *tk)
698 {
699 	u64 cycle_now, delta;
700 
701 	cycle_now = tk_clock_read(&tk->tkr_mono);
702 	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
703 	tk->tkr_mono.cycle_last = cycle_now;
704 	tk->tkr_raw.cycle_last  = cycle_now;
705 
706 	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
707 
708 	/* If arch requires, add in get_arch_timeoffset() */
709 	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
710 
711 
712 	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
713 
714 	/* If arch requires, add in get_arch_timeoffset() */
715 	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
716 
717 	tk_normalize_xtime(tk);
718 }
719 
720 /**
721  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
722  * @ts:		pointer to the timespec to be set
723  *
724  * Returns the time of day in a timespec64 (WARN if suspended).
725  */
ktime_get_real_ts64(struct timespec64 * ts)726 void ktime_get_real_ts64(struct timespec64 *ts)
727 {
728 	struct timekeeper *tk = &tk_core.timekeeper;
729 	unsigned int seq;
730 	u64 nsecs;
731 
732 	WARN_ON(timekeeping_suspended);
733 
734 	do {
735 		seq = read_seqcount_begin(&tk_core.seq);
736 
737 		ts->tv_sec = tk->xtime_sec;
738 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
739 
740 	} while (read_seqcount_retry(&tk_core.seq, seq));
741 
742 	ts->tv_nsec = 0;
743 	timespec64_add_ns(ts, nsecs);
744 }
745 EXPORT_SYMBOL(ktime_get_real_ts64);
746 
ktime_get(void)747 ktime_t ktime_get(void)
748 {
749 	struct timekeeper *tk = &tk_core.timekeeper;
750 	unsigned int seq;
751 	ktime_t base;
752 	u64 nsecs;
753 
754 	WARN_ON(timekeeping_suspended);
755 
756 	do {
757 		seq = read_seqcount_begin(&tk_core.seq);
758 		base = tk->tkr_mono.base;
759 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
760 
761 	} while (read_seqcount_retry(&tk_core.seq, seq));
762 
763 	return ktime_add_ns(base, nsecs);
764 }
765 EXPORT_SYMBOL_GPL(ktime_get);
766 
ktime_get_resolution_ns(void)767 u32 ktime_get_resolution_ns(void)
768 {
769 	struct timekeeper *tk = &tk_core.timekeeper;
770 	unsigned int seq;
771 	u32 nsecs;
772 
773 	WARN_ON(timekeeping_suspended);
774 
775 	do {
776 		seq = read_seqcount_begin(&tk_core.seq);
777 		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
778 	} while (read_seqcount_retry(&tk_core.seq, seq));
779 
780 	return nsecs;
781 }
782 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
783 
784 static ktime_t *offsets[TK_OFFS_MAX] = {
785 	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
786 	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
787 	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
788 };
789 
ktime_get_with_offset(enum tk_offsets offs)790 ktime_t ktime_get_with_offset(enum tk_offsets offs)
791 {
792 	struct timekeeper *tk = &tk_core.timekeeper;
793 	unsigned int seq;
794 	ktime_t base, *offset = offsets[offs];
795 	u64 nsecs;
796 
797 	WARN_ON(timekeeping_suspended);
798 
799 	do {
800 		seq = read_seqcount_begin(&tk_core.seq);
801 		base = ktime_add(tk->tkr_mono.base, *offset);
802 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
803 
804 	} while (read_seqcount_retry(&tk_core.seq, seq));
805 
806 	return ktime_add_ns(base, nsecs);
807 
808 }
809 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
810 
ktime_get_coarse_with_offset(enum tk_offsets offs)811 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
812 {
813 	struct timekeeper *tk = &tk_core.timekeeper;
814 	unsigned int seq;
815 	ktime_t base, *offset = offsets[offs];
816 	u64 nsecs;
817 
818 	WARN_ON(timekeeping_suspended);
819 
820 	do {
821 		seq = read_seqcount_begin(&tk_core.seq);
822 		base = ktime_add(tk->tkr_mono.base, *offset);
823 		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
824 
825 	} while (read_seqcount_retry(&tk_core.seq, seq));
826 
827 	return ktime_add_ns(base, nsecs);
828 }
829 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
830 
831 /**
832  * ktime_mono_to_any() - convert mononotic time to any other time
833  * @tmono:	time to convert.
834  * @offs:	which offset to use
835  */
ktime_mono_to_any(ktime_t tmono,enum tk_offsets offs)836 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
837 {
838 	ktime_t *offset = offsets[offs];
839 	unsigned int seq;
840 	ktime_t tconv;
841 
842 	do {
843 		seq = read_seqcount_begin(&tk_core.seq);
844 		tconv = ktime_add(tmono, *offset);
845 	} while (read_seqcount_retry(&tk_core.seq, seq));
846 
847 	return tconv;
848 }
849 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
850 
851 /**
852  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
853  */
ktime_get_raw(void)854 ktime_t ktime_get_raw(void)
855 {
856 	struct timekeeper *tk = &tk_core.timekeeper;
857 	unsigned int seq;
858 	ktime_t base;
859 	u64 nsecs;
860 
861 	do {
862 		seq = read_seqcount_begin(&tk_core.seq);
863 		base = tk->tkr_raw.base;
864 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
865 
866 	} while (read_seqcount_retry(&tk_core.seq, seq));
867 
868 	return ktime_add_ns(base, nsecs);
869 }
870 EXPORT_SYMBOL_GPL(ktime_get_raw);
871 
872 /**
873  * ktime_get_ts64 - get the monotonic clock in timespec64 format
874  * @ts:		pointer to timespec variable
875  *
876  * The function calculates the monotonic clock from the realtime
877  * clock and the wall_to_monotonic offset and stores the result
878  * in normalized timespec64 format in the variable pointed to by @ts.
879  */
ktime_get_ts64(struct timespec64 * ts)880 void ktime_get_ts64(struct timespec64 *ts)
881 {
882 	struct timekeeper *tk = &tk_core.timekeeper;
883 	struct timespec64 tomono;
884 	unsigned int seq;
885 	u64 nsec;
886 
887 	WARN_ON(timekeeping_suspended);
888 
889 	do {
890 		seq = read_seqcount_begin(&tk_core.seq);
891 		ts->tv_sec = tk->xtime_sec;
892 		nsec = timekeeping_get_ns(&tk->tkr_mono);
893 		tomono = tk->wall_to_monotonic;
894 
895 	} while (read_seqcount_retry(&tk_core.seq, seq));
896 
897 	ts->tv_sec += tomono.tv_sec;
898 	ts->tv_nsec = 0;
899 	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
900 }
901 EXPORT_SYMBOL_GPL(ktime_get_ts64);
902 
903 /**
904  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
905  *
906  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
907  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
908  * works on both 32 and 64 bit systems. On 32 bit systems the readout
909  * covers ~136 years of uptime which should be enough to prevent
910  * premature wrap arounds.
911  */
ktime_get_seconds(void)912 time64_t ktime_get_seconds(void)
913 {
914 	struct timekeeper *tk = &tk_core.timekeeper;
915 
916 	WARN_ON(timekeeping_suspended);
917 	return tk->ktime_sec;
918 }
919 EXPORT_SYMBOL_GPL(ktime_get_seconds);
920 
921 /**
922  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
923  *
924  * Returns the wall clock seconds since 1970. This replaces the
925  * get_seconds() interface which is not y2038 safe on 32bit systems.
926  *
927  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
928  * 32bit systems the access must be protected with the sequence
929  * counter to provide "atomic" access to the 64bit tk->xtime_sec
930  * value.
931  */
ktime_get_real_seconds(void)932 time64_t ktime_get_real_seconds(void)
933 {
934 	struct timekeeper *tk = &tk_core.timekeeper;
935 	time64_t seconds;
936 	unsigned int seq;
937 
938 	if (IS_ENABLED(CONFIG_64BIT))
939 		return tk->xtime_sec;
940 
941 	do {
942 		seq = read_seqcount_begin(&tk_core.seq);
943 		seconds = tk->xtime_sec;
944 
945 	} while (read_seqcount_retry(&tk_core.seq, seq));
946 
947 	return seconds;
948 }
949 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
950 
951 /**
952  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
953  * but without the sequence counter protect. This internal function
954  * is called just when timekeeping lock is already held.
955  */
__ktime_get_real_seconds(void)956 time64_t __ktime_get_real_seconds(void)
957 {
958 	struct timekeeper *tk = &tk_core.timekeeper;
959 
960 	return tk->xtime_sec;
961 }
962 
963 /**
964  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
965  * @systime_snapshot:	pointer to struct receiving the system time snapshot
966  */
ktime_get_snapshot(struct system_time_snapshot * systime_snapshot)967 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
968 {
969 	struct timekeeper *tk = &tk_core.timekeeper;
970 	unsigned int seq;
971 	ktime_t base_raw;
972 	ktime_t base_real;
973 	u64 nsec_raw;
974 	u64 nsec_real;
975 	u64 now;
976 
977 	WARN_ON_ONCE(timekeeping_suspended);
978 
979 	do {
980 		seq = read_seqcount_begin(&tk_core.seq);
981 		now = tk_clock_read(&tk->tkr_mono);
982 		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
983 		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
984 		base_real = ktime_add(tk->tkr_mono.base,
985 				      tk_core.timekeeper.offs_real);
986 		base_raw = tk->tkr_raw.base;
987 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
988 		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
989 	} while (read_seqcount_retry(&tk_core.seq, seq));
990 
991 	systime_snapshot->cycles = now;
992 	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
993 	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
994 }
995 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
996 
997 /* Scale base by mult/div checking for overflow */
scale64_check_overflow(u64 mult,u64 div,u64 * base)998 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
999 {
1000 	u64 tmp, rem;
1001 
1002 	tmp = div64_u64_rem(*base, div, &rem);
1003 
1004 	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1005 	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1006 		return -EOVERFLOW;
1007 	tmp *= mult;
1008 	rem *= mult;
1009 
1010 	do_div(rem, div);
1011 	*base = tmp + rem;
1012 	return 0;
1013 }
1014 
1015 /**
1016  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1017  * @history:			Snapshot representing start of history
1018  * @partial_history_cycles:	Cycle offset into history (fractional part)
1019  * @total_history_cycles:	Total history length in cycles
1020  * @discontinuity:		True indicates clock was set on history period
1021  * @ts:				Cross timestamp that should be adjusted using
1022  *	partial/total ratio
1023  *
1024  * Helper function used by get_device_system_crosststamp() to correct the
1025  * crosstimestamp corresponding to the start of the current interval to the
1026  * system counter value (timestamp point) provided by the driver. The
1027  * total_history_* quantities are the total history starting at the provided
1028  * reference point and ending at the start of the current interval. The cycle
1029  * count between the driver timestamp point and the start of the current
1030  * interval is partial_history_cycles.
1031  */
adjust_historical_crosststamp(struct system_time_snapshot * history,u64 partial_history_cycles,u64 total_history_cycles,bool discontinuity,struct system_device_crosststamp * ts)1032 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1033 					 u64 partial_history_cycles,
1034 					 u64 total_history_cycles,
1035 					 bool discontinuity,
1036 					 struct system_device_crosststamp *ts)
1037 {
1038 	struct timekeeper *tk = &tk_core.timekeeper;
1039 	u64 corr_raw, corr_real;
1040 	bool interp_forward;
1041 	int ret;
1042 
1043 	if (total_history_cycles == 0 || partial_history_cycles == 0)
1044 		return 0;
1045 
1046 	/* Interpolate shortest distance from beginning or end of history */
1047 	interp_forward = partial_history_cycles > total_history_cycles / 2;
1048 	partial_history_cycles = interp_forward ?
1049 		total_history_cycles - partial_history_cycles :
1050 		partial_history_cycles;
1051 
1052 	/*
1053 	 * Scale the monotonic raw time delta by:
1054 	 *	partial_history_cycles / total_history_cycles
1055 	 */
1056 	corr_raw = (u64)ktime_to_ns(
1057 		ktime_sub(ts->sys_monoraw, history->raw));
1058 	ret = scale64_check_overflow(partial_history_cycles,
1059 				     total_history_cycles, &corr_raw);
1060 	if (ret)
1061 		return ret;
1062 
1063 	/*
1064 	 * If there is a discontinuity in the history, scale monotonic raw
1065 	 *	correction by:
1066 	 *	mult(real)/mult(raw) yielding the realtime correction
1067 	 * Otherwise, calculate the realtime correction similar to monotonic
1068 	 *	raw calculation
1069 	 */
1070 	if (discontinuity) {
1071 		corr_real = mul_u64_u32_div
1072 			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1073 	} else {
1074 		corr_real = (u64)ktime_to_ns(
1075 			ktime_sub(ts->sys_realtime, history->real));
1076 		ret = scale64_check_overflow(partial_history_cycles,
1077 					     total_history_cycles, &corr_real);
1078 		if (ret)
1079 			return ret;
1080 	}
1081 
1082 	/* Fixup monotonic raw and real time time values */
1083 	if (interp_forward) {
1084 		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1085 		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1086 	} else {
1087 		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1088 		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 /*
1095  * cycle_between - true if test occurs chronologically between before and after
1096  */
cycle_between(u64 before,u64 test,u64 after)1097 static bool cycle_between(u64 before, u64 test, u64 after)
1098 {
1099 	if (test > before && test < after)
1100 		return true;
1101 	if (test < before && before > after)
1102 		return true;
1103 	return false;
1104 }
1105 
1106 /**
1107  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1108  * @get_time_fn:	Callback to get simultaneous device time and
1109  *	system counter from the device driver
1110  * @ctx:		Context passed to get_time_fn()
1111  * @history_begin:	Historical reference point used to interpolate system
1112  *	time when counter provided by the driver is before the current interval
1113  * @xtstamp:		Receives simultaneously captured system and device time
1114  *
1115  * Reads a timestamp from a device and correlates it to system time
1116  */
get_device_system_crosststamp(int (* get_time_fn)(ktime_t * device_time,struct system_counterval_t * sys_counterval,void * ctx),void * ctx,struct system_time_snapshot * history_begin,struct system_device_crosststamp * xtstamp)1117 int get_device_system_crosststamp(int (*get_time_fn)
1118 				  (ktime_t *device_time,
1119 				   struct system_counterval_t *sys_counterval,
1120 				   void *ctx),
1121 				  void *ctx,
1122 				  struct system_time_snapshot *history_begin,
1123 				  struct system_device_crosststamp *xtstamp)
1124 {
1125 	struct system_counterval_t system_counterval;
1126 	struct timekeeper *tk = &tk_core.timekeeper;
1127 	u64 cycles, now, interval_start;
1128 	unsigned int clock_was_set_seq = 0;
1129 	ktime_t base_real, base_raw;
1130 	u64 nsec_real, nsec_raw;
1131 	u8 cs_was_changed_seq;
1132 	unsigned int seq;
1133 	bool do_interp;
1134 	int ret;
1135 
1136 	do {
1137 		seq = read_seqcount_begin(&tk_core.seq);
1138 		/*
1139 		 * Try to synchronously capture device time and a system
1140 		 * counter value calling back into the device driver
1141 		 */
1142 		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1143 		if (ret)
1144 			return ret;
1145 
1146 		/*
1147 		 * Verify that the clocksource associated with the captured
1148 		 * system counter value is the same as the currently installed
1149 		 * timekeeper clocksource
1150 		 */
1151 		if (tk->tkr_mono.clock != system_counterval.cs)
1152 			return -ENODEV;
1153 		cycles = system_counterval.cycles;
1154 
1155 		/*
1156 		 * Check whether the system counter value provided by the
1157 		 * device driver is on the current timekeeping interval.
1158 		 */
1159 		now = tk_clock_read(&tk->tkr_mono);
1160 		interval_start = tk->tkr_mono.cycle_last;
1161 		if (!cycle_between(interval_start, cycles, now)) {
1162 			clock_was_set_seq = tk->clock_was_set_seq;
1163 			cs_was_changed_seq = tk->cs_was_changed_seq;
1164 			cycles = interval_start;
1165 			do_interp = true;
1166 		} else {
1167 			do_interp = false;
1168 		}
1169 
1170 		base_real = ktime_add(tk->tkr_mono.base,
1171 				      tk_core.timekeeper.offs_real);
1172 		base_raw = tk->tkr_raw.base;
1173 
1174 		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1175 						     system_counterval.cycles);
1176 		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1177 						    system_counterval.cycles);
1178 	} while (read_seqcount_retry(&tk_core.seq, seq));
1179 
1180 	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1181 	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1182 
1183 	/*
1184 	 * Interpolate if necessary, adjusting back from the start of the
1185 	 * current interval
1186 	 */
1187 	if (do_interp) {
1188 		u64 partial_history_cycles, total_history_cycles;
1189 		bool discontinuity;
1190 
1191 		/*
1192 		 * Check that the counter value occurs after the provided
1193 		 * history reference and that the history doesn't cross a
1194 		 * clocksource change
1195 		 */
1196 		if (!history_begin ||
1197 		    !cycle_between(history_begin->cycles,
1198 				   system_counterval.cycles, cycles) ||
1199 		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1200 			return -EINVAL;
1201 		partial_history_cycles = cycles - system_counterval.cycles;
1202 		total_history_cycles = cycles - history_begin->cycles;
1203 		discontinuity =
1204 			history_begin->clock_was_set_seq != clock_was_set_seq;
1205 
1206 		ret = adjust_historical_crosststamp(history_begin,
1207 						    partial_history_cycles,
1208 						    total_history_cycles,
1209 						    discontinuity, xtstamp);
1210 		if (ret)
1211 			return ret;
1212 	}
1213 
1214 	return 0;
1215 }
1216 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1217 
1218 /**
1219  * do_settimeofday64 - Sets the time of day.
1220  * @ts:     pointer to the timespec64 variable containing the new time
1221  *
1222  * Sets the time of day to the new time and update NTP and notify hrtimers
1223  */
do_settimeofday64(const struct timespec64 * ts)1224 int do_settimeofday64(const struct timespec64 *ts)
1225 {
1226 	struct timekeeper *tk = &tk_core.timekeeper;
1227 	struct timespec64 ts_delta, xt;
1228 	unsigned long flags;
1229 	int ret = 0;
1230 
1231 	if (!timespec64_valid_settod(ts))
1232 		return -EINVAL;
1233 
1234 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1235 	write_seqcount_begin(&tk_core.seq);
1236 
1237 	timekeeping_forward_now(tk);
1238 
1239 	xt = tk_xtime(tk);
1240 	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1241 	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1242 
1243 	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1244 		ret = -EINVAL;
1245 		goto out;
1246 	}
1247 
1248 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1249 
1250 	tk_set_xtime(tk, ts);
1251 out:
1252 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1253 
1254 	write_seqcount_end(&tk_core.seq);
1255 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1256 
1257 	/* signal hrtimers about time change */
1258 	clock_was_set();
1259 
1260 	if (!ret)
1261 		audit_tk_injoffset(ts_delta);
1262 
1263 	return ret;
1264 }
1265 EXPORT_SYMBOL(do_settimeofday64);
1266 
1267 /**
1268  * timekeeping_inject_offset - Adds or subtracts from the current time.
1269  * @tv:		pointer to the timespec variable containing the offset
1270  *
1271  * Adds or subtracts an offset value from the current time.
1272  */
timekeeping_inject_offset(const struct timespec64 * ts)1273 static int timekeeping_inject_offset(const struct timespec64 *ts)
1274 {
1275 	struct timekeeper *tk = &tk_core.timekeeper;
1276 	unsigned long flags;
1277 	struct timespec64 tmp;
1278 	int ret = 0;
1279 
1280 	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1281 		return -EINVAL;
1282 
1283 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1284 	write_seqcount_begin(&tk_core.seq);
1285 
1286 	timekeeping_forward_now(tk);
1287 
1288 	/* Make sure the proposed value is valid */
1289 	tmp = timespec64_add(tk_xtime(tk), *ts);
1290 	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1291 	    !timespec64_valid_settod(&tmp)) {
1292 		ret = -EINVAL;
1293 		goto error;
1294 	}
1295 
1296 	tk_xtime_add(tk, ts);
1297 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1298 
1299 error: /* even if we error out, we forwarded the time, so call update */
1300 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1301 
1302 	write_seqcount_end(&tk_core.seq);
1303 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1304 
1305 	/* signal hrtimers about time change */
1306 	clock_was_set();
1307 
1308 	return ret;
1309 }
1310 
1311 /*
1312  * Indicates if there is an offset between the system clock and the hardware
1313  * clock/persistent clock/rtc.
1314  */
1315 int persistent_clock_is_local;
1316 
1317 /*
1318  * Adjust the time obtained from the CMOS to be UTC time instead of
1319  * local time.
1320  *
1321  * This is ugly, but preferable to the alternatives.  Otherwise we
1322  * would either need to write a program to do it in /etc/rc (and risk
1323  * confusion if the program gets run more than once; it would also be
1324  * hard to make the program warp the clock precisely n hours)  or
1325  * compile in the timezone information into the kernel.  Bad, bad....
1326  *
1327  *						- TYT, 1992-01-01
1328  *
1329  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1330  * as real UNIX machines always do it. This avoids all headaches about
1331  * daylight saving times and warping kernel clocks.
1332  */
timekeeping_warp_clock(void)1333 void timekeeping_warp_clock(void)
1334 {
1335 	if (sys_tz.tz_minuteswest != 0) {
1336 		struct timespec64 adjust;
1337 
1338 		persistent_clock_is_local = 1;
1339 		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1340 		adjust.tv_nsec = 0;
1341 		timekeeping_inject_offset(&adjust);
1342 	}
1343 }
1344 
1345 /**
1346  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1347  *
1348  */
__timekeeping_set_tai_offset(struct timekeeper * tk,s32 tai_offset)1349 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1350 {
1351 	tk->tai_offset = tai_offset;
1352 	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1353 }
1354 
1355 /**
1356  * change_clocksource - Swaps clocksources if a new one is available
1357  *
1358  * Accumulates current time interval and initializes new clocksource
1359  */
change_clocksource(void * data)1360 static int change_clocksource(void *data)
1361 {
1362 	struct timekeeper *tk = &tk_core.timekeeper;
1363 	struct clocksource *new, *old;
1364 	unsigned long flags;
1365 
1366 	new = (struct clocksource *) data;
1367 
1368 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1369 	write_seqcount_begin(&tk_core.seq);
1370 
1371 	timekeeping_forward_now(tk);
1372 	/*
1373 	 * If the cs is in module, get a module reference. Succeeds
1374 	 * for built-in code (owner == NULL) as well.
1375 	 */
1376 	if (try_module_get(new->owner)) {
1377 		if (!new->enable || new->enable(new) == 0) {
1378 			old = tk->tkr_mono.clock;
1379 			tk_setup_internals(tk, new);
1380 			if (old->disable)
1381 				old->disable(old);
1382 			module_put(old->owner);
1383 		} else {
1384 			module_put(new->owner);
1385 		}
1386 	}
1387 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1388 
1389 	write_seqcount_end(&tk_core.seq);
1390 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1391 
1392 	return 0;
1393 }
1394 
1395 /**
1396  * timekeeping_notify - Install a new clock source
1397  * @clock:		pointer to the clock source
1398  *
1399  * This function is called from clocksource.c after a new, better clock
1400  * source has been registered. The caller holds the clocksource_mutex.
1401  */
timekeeping_notify(struct clocksource * clock)1402 int timekeeping_notify(struct clocksource *clock)
1403 {
1404 	struct timekeeper *tk = &tk_core.timekeeper;
1405 
1406 	if (tk->tkr_mono.clock == clock)
1407 		return 0;
1408 	stop_machine(change_clocksource, clock, NULL);
1409 	tick_clock_notify();
1410 	return tk->tkr_mono.clock == clock ? 0 : -1;
1411 }
1412 
1413 /**
1414  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1415  * @ts:		pointer to the timespec64 to be set
1416  *
1417  * Returns the raw monotonic time (completely un-modified by ntp)
1418  */
ktime_get_raw_ts64(struct timespec64 * ts)1419 void ktime_get_raw_ts64(struct timespec64 *ts)
1420 {
1421 	struct timekeeper *tk = &tk_core.timekeeper;
1422 	unsigned int seq;
1423 	u64 nsecs;
1424 
1425 	do {
1426 		seq = read_seqcount_begin(&tk_core.seq);
1427 		ts->tv_sec = tk->raw_sec;
1428 		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1429 
1430 	} while (read_seqcount_retry(&tk_core.seq, seq));
1431 
1432 	ts->tv_nsec = 0;
1433 	timespec64_add_ns(ts, nsecs);
1434 }
1435 EXPORT_SYMBOL(ktime_get_raw_ts64);
1436 
1437 
1438 /**
1439  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1440  */
timekeeping_valid_for_hres(void)1441 int timekeeping_valid_for_hres(void)
1442 {
1443 	struct timekeeper *tk = &tk_core.timekeeper;
1444 	unsigned int seq;
1445 	int ret;
1446 
1447 	do {
1448 		seq = read_seqcount_begin(&tk_core.seq);
1449 
1450 		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1451 
1452 	} while (read_seqcount_retry(&tk_core.seq, seq));
1453 
1454 	return ret;
1455 }
1456 
1457 /**
1458  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1459  */
timekeeping_max_deferment(void)1460 u64 timekeeping_max_deferment(void)
1461 {
1462 	struct timekeeper *tk = &tk_core.timekeeper;
1463 	unsigned int seq;
1464 	u64 ret;
1465 
1466 	do {
1467 		seq = read_seqcount_begin(&tk_core.seq);
1468 
1469 		ret = tk->tkr_mono.clock->max_idle_ns;
1470 
1471 	} while (read_seqcount_retry(&tk_core.seq, seq));
1472 
1473 	return ret;
1474 }
1475 
1476 /**
1477  * read_persistent_clock64 -  Return time from the persistent clock.
1478  *
1479  * Weak dummy function for arches that do not yet support it.
1480  * Reads the time from the battery backed persistent clock.
1481  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1482  *
1483  *  XXX - Do be sure to remove it once all arches implement it.
1484  */
read_persistent_clock64(struct timespec64 * ts)1485 void __weak read_persistent_clock64(struct timespec64 *ts)
1486 {
1487 	ts->tv_sec = 0;
1488 	ts->tv_nsec = 0;
1489 }
1490 
1491 /**
1492  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1493  *                                        from the boot.
1494  *
1495  * Weak dummy function for arches that do not yet support it.
1496  * wall_time	- current time as returned by persistent clock
1497  * boot_offset	- offset that is defined as wall_time - boot_time
1498  * The default function calculates offset based on the current value of
1499  * local_clock(). This way architectures that support sched_clock() but don't
1500  * support dedicated boot time clock will provide the best estimate of the
1501  * boot time.
1502  */
1503 void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)1504 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1505 				     struct timespec64 *boot_offset)
1506 {
1507 	read_persistent_clock64(wall_time);
1508 	*boot_offset = ns_to_timespec64(local_clock());
1509 }
1510 
1511 /*
1512  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1513  *
1514  * The flag starts of false and is only set when a suspend reaches
1515  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1516  * timekeeper clocksource is not stopping across suspend and has been
1517  * used to update sleep time. If the timekeeper clocksource has stopped
1518  * then the flag stays true and is used by the RTC resume code to decide
1519  * whether sleeptime must be injected and if so the flag gets false then.
1520  *
1521  * If a suspend fails before reaching timekeeping_resume() then the flag
1522  * stays false and prevents erroneous sleeptime injection.
1523  */
1524 static bool suspend_timing_needed;
1525 
1526 /* Flag for if there is a persistent clock on this platform */
1527 static bool persistent_clock_exists;
1528 
1529 /*
1530  * timekeeping_init - Initializes the clocksource and common timekeeping values
1531  */
timekeeping_init(void)1532 void __init timekeeping_init(void)
1533 {
1534 	struct timespec64 wall_time, boot_offset, wall_to_mono;
1535 	struct timekeeper *tk = &tk_core.timekeeper;
1536 	struct clocksource *clock;
1537 	unsigned long flags;
1538 
1539 	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1540 	if (timespec64_valid_settod(&wall_time) &&
1541 	    timespec64_to_ns(&wall_time) > 0) {
1542 		persistent_clock_exists = true;
1543 	} else if (timespec64_to_ns(&wall_time) != 0) {
1544 		pr_warn("Persistent clock returned invalid value");
1545 		wall_time = (struct timespec64){0};
1546 	}
1547 
1548 	if (timespec64_compare(&wall_time, &boot_offset) < 0)
1549 		boot_offset = (struct timespec64){0};
1550 
1551 	/*
1552 	 * We want set wall_to_mono, so the following is true:
1553 	 * wall time + wall_to_mono = boot time
1554 	 */
1555 	wall_to_mono = timespec64_sub(boot_offset, wall_time);
1556 
1557 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1558 	write_seqcount_begin(&tk_core.seq);
1559 	ntp_init();
1560 
1561 	clock = clocksource_default_clock();
1562 	if (clock->enable)
1563 		clock->enable(clock);
1564 	tk_setup_internals(tk, clock);
1565 
1566 	tk_set_xtime(tk, &wall_time);
1567 	tk->raw_sec = 0;
1568 
1569 	tk_set_wall_to_mono(tk, wall_to_mono);
1570 
1571 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1572 
1573 	write_seqcount_end(&tk_core.seq);
1574 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1575 }
1576 
1577 /* time in seconds when suspend began for persistent clock */
1578 static struct timespec64 timekeeping_suspend_time;
1579 
1580 /**
1581  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1582  * @delta: pointer to a timespec delta value
1583  *
1584  * Takes a timespec offset measuring a suspend interval and properly
1585  * adds the sleep offset to the timekeeping variables.
1586  */
__timekeeping_inject_sleeptime(struct timekeeper * tk,const struct timespec64 * delta)1587 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1588 					   const struct timespec64 *delta)
1589 {
1590 	if (!timespec64_valid_strict(delta)) {
1591 		printk_deferred(KERN_WARNING
1592 				"__timekeeping_inject_sleeptime: Invalid "
1593 				"sleep delta value!\n");
1594 		return;
1595 	}
1596 	tk_xtime_add(tk, delta);
1597 	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1598 	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1599 	tk_debug_account_sleep_time(delta);
1600 }
1601 
1602 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1603 /**
1604  * We have three kinds of time sources to use for sleep time
1605  * injection, the preference order is:
1606  * 1) non-stop clocksource
1607  * 2) persistent clock (ie: RTC accessible when irqs are off)
1608  * 3) RTC
1609  *
1610  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1611  * If system has neither 1) nor 2), 3) will be used finally.
1612  *
1613  *
1614  * If timekeeping has injected sleeptime via either 1) or 2),
1615  * 3) becomes needless, so in this case we don't need to call
1616  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1617  * means.
1618  */
timekeeping_rtc_skipresume(void)1619 bool timekeeping_rtc_skipresume(void)
1620 {
1621 	return !suspend_timing_needed;
1622 }
1623 
1624 /**
1625  * 1) can be determined whether to use or not only when doing
1626  * timekeeping_resume() which is invoked after rtc_suspend(),
1627  * so we can't skip rtc_suspend() surely if system has 1).
1628  *
1629  * But if system has 2), 2) will definitely be used, so in this
1630  * case we don't need to call rtc_suspend(), and this is what
1631  * timekeeping_rtc_skipsuspend() means.
1632  */
timekeeping_rtc_skipsuspend(void)1633 bool timekeeping_rtc_skipsuspend(void)
1634 {
1635 	return persistent_clock_exists;
1636 }
1637 
1638 /**
1639  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1640  * @delta: pointer to a timespec64 delta value
1641  *
1642  * This hook is for architectures that cannot support read_persistent_clock64
1643  * because their RTC/persistent clock is only accessible when irqs are enabled.
1644  * and also don't have an effective nonstop clocksource.
1645  *
1646  * This function should only be called by rtc_resume(), and allows
1647  * a suspend offset to be injected into the timekeeping values.
1648  */
timekeeping_inject_sleeptime64(const struct timespec64 * delta)1649 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1650 {
1651 	struct timekeeper *tk = &tk_core.timekeeper;
1652 	unsigned long flags;
1653 
1654 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1655 	write_seqcount_begin(&tk_core.seq);
1656 
1657 	suspend_timing_needed = false;
1658 
1659 	timekeeping_forward_now(tk);
1660 
1661 	__timekeeping_inject_sleeptime(tk, delta);
1662 
1663 	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1664 
1665 	write_seqcount_end(&tk_core.seq);
1666 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1667 
1668 	/* signal hrtimers about time change */
1669 	clock_was_set();
1670 }
1671 #endif
1672 
1673 /**
1674  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1675  */
timekeeping_resume(void)1676 void timekeeping_resume(void)
1677 {
1678 	struct timekeeper *tk = &tk_core.timekeeper;
1679 	struct clocksource *clock = tk->tkr_mono.clock;
1680 	unsigned long flags;
1681 	struct timespec64 ts_new, ts_delta;
1682 	u64 cycle_now, nsec;
1683 	bool inject_sleeptime = false;
1684 
1685 	read_persistent_clock64(&ts_new);
1686 
1687 	clockevents_resume();
1688 	clocksource_resume();
1689 
1690 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1691 	write_seqcount_begin(&tk_core.seq);
1692 
1693 	/*
1694 	 * After system resumes, we need to calculate the suspended time and
1695 	 * compensate it for the OS time. There are 3 sources that could be
1696 	 * used: Nonstop clocksource during suspend, persistent clock and rtc
1697 	 * device.
1698 	 *
1699 	 * One specific platform may have 1 or 2 or all of them, and the
1700 	 * preference will be:
1701 	 *	suspend-nonstop clocksource -> persistent clock -> rtc
1702 	 * The less preferred source will only be tried if there is no better
1703 	 * usable source. The rtc part is handled separately in rtc core code.
1704 	 */
1705 	cycle_now = tk_clock_read(&tk->tkr_mono);
1706 	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1707 	if (nsec > 0) {
1708 		ts_delta = ns_to_timespec64(nsec);
1709 		inject_sleeptime = true;
1710 	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1711 		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1712 		inject_sleeptime = true;
1713 	}
1714 
1715 	if (inject_sleeptime) {
1716 		suspend_timing_needed = false;
1717 		__timekeeping_inject_sleeptime(tk, &ts_delta);
1718 	}
1719 
1720 	/* Re-base the last cycle value */
1721 	tk->tkr_mono.cycle_last = cycle_now;
1722 	tk->tkr_raw.cycle_last  = cycle_now;
1723 
1724 	tk->ntp_error = 0;
1725 	timekeeping_suspended = 0;
1726 	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1727 	write_seqcount_end(&tk_core.seq);
1728 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1729 
1730 	touch_softlockup_watchdog();
1731 
1732 	tick_resume();
1733 	hrtimers_resume();
1734 }
1735 
timekeeping_suspend(void)1736 int timekeeping_suspend(void)
1737 {
1738 	struct timekeeper *tk = &tk_core.timekeeper;
1739 	unsigned long flags;
1740 	struct timespec64		delta, delta_delta;
1741 	static struct timespec64	old_delta;
1742 	struct clocksource *curr_clock;
1743 	u64 cycle_now;
1744 
1745 	read_persistent_clock64(&timekeeping_suspend_time);
1746 
1747 	/*
1748 	 * On some systems the persistent_clock can not be detected at
1749 	 * timekeeping_init by its return value, so if we see a valid
1750 	 * value returned, update the persistent_clock_exists flag.
1751 	 */
1752 	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1753 		persistent_clock_exists = true;
1754 
1755 	suspend_timing_needed = true;
1756 
1757 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1758 	write_seqcount_begin(&tk_core.seq);
1759 	timekeeping_forward_now(tk);
1760 	timekeeping_suspended = 1;
1761 
1762 	/*
1763 	 * Since we've called forward_now, cycle_last stores the value
1764 	 * just read from the current clocksource. Save this to potentially
1765 	 * use in suspend timing.
1766 	 */
1767 	curr_clock = tk->tkr_mono.clock;
1768 	cycle_now = tk->tkr_mono.cycle_last;
1769 	clocksource_start_suspend_timing(curr_clock, cycle_now);
1770 
1771 	if (persistent_clock_exists) {
1772 		/*
1773 		 * To avoid drift caused by repeated suspend/resumes,
1774 		 * which each can add ~1 second drift error,
1775 		 * try to compensate so the difference in system time
1776 		 * and persistent_clock time stays close to constant.
1777 		 */
1778 		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1779 		delta_delta = timespec64_sub(delta, old_delta);
1780 		if (abs(delta_delta.tv_sec) >= 2) {
1781 			/*
1782 			 * if delta_delta is too large, assume time correction
1783 			 * has occurred and set old_delta to the current delta.
1784 			 */
1785 			old_delta = delta;
1786 		} else {
1787 			/* Otherwise try to adjust old_system to compensate */
1788 			timekeeping_suspend_time =
1789 				timespec64_add(timekeeping_suspend_time, delta_delta);
1790 		}
1791 	}
1792 
1793 	timekeeping_update(tk, TK_MIRROR);
1794 	halt_fast_timekeeper(tk);
1795 	write_seqcount_end(&tk_core.seq);
1796 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1797 
1798 	tick_suspend();
1799 	clocksource_suspend();
1800 	clockevents_suspend();
1801 
1802 	return 0;
1803 }
1804 
1805 /* sysfs resume/suspend bits for timekeeping */
1806 static struct syscore_ops timekeeping_syscore_ops = {
1807 	.resume		= timekeeping_resume,
1808 	.suspend	= timekeeping_suspend,
1809 };
1810 
timekeeping_init_ops(void)1811 static int __init timekeeping_init_ops(void)
1812 {
1813 	register_syscore_ops(&timekeeping_syscore_ops);
1814 	return 0;
1815 }
1816 device_initcall(timekeeping_init_ops);
1817 
1818 /*
1819  * Apply a multiplier adjustment to the timekeeper
1820  */
timekeeping_apply_adjustment(struct timekeeper * tk,s64 offset,s32 mult_adj)1821 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1822 							 s64 offset,
1823 							 s32 mult_adj)
1824 {
1825 	s64 interval = tk->cycle_interval;
1826 
1827 	if (mult_adj == 0) {
1828 		return;
1829 	} else if (mult_adj == -1) {
1830 		interval = -interval;
1831 		offset = -offset;
1832 	} else if (mult_adj != 1) {
1833 		interval *= mult_adj;
1834 		offset *= mult_adj;
1835 	}
1836 
1837 	/*
1838 	 * So the following can be confusing.
1839 	 *
1840 	 * To keep things simple, lets assume mult_adj == 1 for now.
1841 	 *
1842 	 * When mult_adj != 1, remember that the interval and offset values
1843 	 * have been appropriately scaled so the math is the same.
1844 	 *
1845 	 * The basic idea here is that we're increasing the multiplier
1846 	 * by one, this causes the xtime_interval to be incremented by
1847 	 * one cycle_interval. This is because:
1848 	 *	xtime_interval = cycle_interval * mult
1849 	 * So if mult is being incremented by one:
1850 	 *	xtime_interval = cycle_interval * (mult + 1)
1851 	 * Its the same as:
1852 	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
1853 	 * Which can be shortened to:
1854 	 *	xtime_interval += cycle_interval
1855 	 *
1856 	 * So offset stores the non-accumulated cycles. Thus the current
1857 	 * time (in shifted nanoseconds) is:
1858 	 *	now = (offset * adj) + xtime_nsec
1859 	 * Now, even though we're adjusting the clock frequency, we have
1860 	 * to keep time consistent. In other words, we can't jump back
1861 	 * in time, and we also want to avoid jumping forward in time.
1862 	 *
1863 	 * So given the same offset value, we need the time to be the same
1864 	 * both before and after the freq adjustment.
1865 	 *	now = (offset * adj_1) + xtime_nsec_1
1866 	 *	now = (offset * adj_2) + xtime_nsec_2
1867 	 * So:
1868 	 *	(offset * adj_1) + xtime_nsec_1 =
1869 	 *		(offset * adj_2) + xtime_nsec_2
1870 	 * And we know:
1871 	 *	adj_2 = adj_1 + 1
1872 	 * So:
1873 	 *	(offset * adj_1) + xtime_nsec_1 =
1874 	 *		(offset * (adj_1+1)) + xtime_nsec_2
1875 	 *	(offset * adj_1) + xtime_nsec_1 =
1876 	 *		(offset * adj_1) + offset + xtime_nsec_2
1877 	 * Canceling the sides:
1878 	 *	xtime_nsec_1 = offset + xtime_nsec_2
1879 	 * Which gives us:
1880 	 *	xtime_nsec_2 = xtime_nsec_1 - offset
1881 	 * Which simplfies to:
1882 	 *	xtime_nsec -= offset
1883 	 */
1884 	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1885 		/* NTP adjustment caused clocksource mult overflow */
1886 		WARN_ON_ONCE(1);
1887 		return;
1888 	}
1889 
1890 	tk->tkr_mono.mult += mult_adj;
1891 	tk->xtime_interval += interval;
1892 	tk->tkr_mono.xtime_nsec -= offset;
1893 }
1894 
1895 /*
1896  * Adjust the timekeeper's multiplier to the correct frequency
1897  * and also to reduce the accumulated error value.
1898  */
timekeeping_adjust(struct timekeeper * tk,s64 offset)1899 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1900 {
1901 	u32 mult;
1902 
1903 	/*
1904 	 * Determine the multiplier from the current NTP tick length.
1905 	 * Avoid expensive division when the tick length doesn't change.
1906 	 */
1907 	if (likely(tk->ntp_tick == ntp_tick_length())) {
1908 		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1909 	} else {
1910 		tk->ntp_tick = ntp_tick_length();
1911 		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1912 				 tk->xtime_remainder, tk->cycle_interval);
1913 	}
1914 
1915 	/*
1916 	 * If the clock is behind the NTP time, increase the multiplier by 1
1917 	 * to catch up with it. If it's ahead and there was a remainder in the
1918 	 * tick division, the clock will slow down. Otherwise it will stay
1919 	 * ahead until the tick length changes to a non-divisible value.
1920 	 */
1921 	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1922 	mult += tk->ntp_err_mult;
1923 
1924 	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1925 
1926 	if (unlikely(tk->tkr_mono.clock->maxadj &&
1927 		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1928 			> tk->tkr_mono.clock->maxadj))) {
1929 		printk_once(KERN_WARNING
1930 			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1931 			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1932 			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1933 	}
1934 
1935 	/*
1936 	 * It may be possible that when we entered this function, xtime_nsec
1937 	 * was very small.  Further, if we're slightly speeding the clocksource
1938 	 * in the code above, its possible the required corrective factor to
1939 	 * xtime_nsec could cause it to underflow.
1940 	 *
1941 	 * Now, since we have already accumulated the second and the NTP
1942 	 * subsystem has been notified via second_overflow(), we need to skip
1943 	 * the next update.
1944 	 */
1945 	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1946 		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1947 							tk->tkr_mono.shift;
1948 		tk->xtime_sec--;
1949 		tk->skip_second_overflow = 1;
1950 	}
1951 }
1952 
1953 /**
1954  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1955  *
1956  * Helper function that accumulates the nsecs greater than a second
1957  * from the xtime_nsec field to the xtime_secs field.
1958  * It also calls into the NTP code to handle leapsecond processing.
1959  *
1960  */
accumulate_nsecs_to_secs(struct timekeeper * tk)1961 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1962 {
1963 	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1964 	unsigned int clock_set = 0;
1965 
1966 	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1967 		int leap;
1968 
1969 		tk->tkr_mono.xtime_nsec -= nsecps;
1970 		tk->xtime_sec++;
1971 
1972 		/*
1973 		 * Skip NTP update if this second was accumulated before,
1974 		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1975 		 */
1976 		if (unlikely(tk->skip_second_overflow)) {
1977 			tk->skip_second_overflow = 0;
1978 			continue;
1979 		}
1980 
1981 		/* Figure out if its a leap sec and apply if needed */
1982 		leap = second_overflow(tk->xtime_sec);
1983 		if (unlikely(leap)) {
1984 			struct timespec64 ts;
1985 
1986 			tk->xtime_sec += leap;
1987 
1988 			ts.tv_sec = leap;
1989 			ts.tv_nsec = 0;
1990 			tk_set_wall_to_mono(tk,
1991 				timespec64_sub(tk->wall_to_monotonic, ts));
1992 
1993 			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1994 
1995 			clock_set = TK_CLOCK_WAS_SET;
1996 		}
1997 	}
1998 	return clock_set;
1999 }
2000 
2001 /**
2002  * logarithmic_accumulation - shifted accumulation of cycles
2003  *
2004  * This functions accumulates a shifted interval of cycles into
2005  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2006  * loop.
2007  *
2008  * Returns the unconsumed cycles.
2009  */
logarithmic_accumulation(struct timekeeper * tk,u64 offset,u32 shift,unsigned int * clock_set)2010 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2011 				    u32 shift, unsigned int *clock_set)
2012 {
2013 	u64 interval = tk->cycle_interval << shift;
2014 	u64 snsec_per_sec;
2015 
2016 	/* If the offset is smaller than a shifted interval, do nothing */
2017 	if (offset < interval)
2018 		return offset;
2019 
2020 	/* Accumulate one shifted interval */
2021 	offset -= interval;
2022 	tk->tkr_mono.cycle_last += interval;
2023 	tk->tkr_raw.cycle_last  += interval;
2024 
2025 	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2026 	*clock_set |= accumulate_nsecs_to_secs(tk);
2027 
2028 	/* Accumulate raw time */
2029 	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2030 	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2031 	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2032 		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2033 		tk->raw_sec++;
2034 	}
2035 
2036 	/* Accumulate error between NTP and clock interval */
2037 	tk->ntp_error += tk->ntp_tick << shift;
2038 	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2039 						(tk->ntp_error_shift + shift);
2040 
2041 	return offset;
2042 }
2043 
2044 /*
2045  * timekeeping_advance - Updates the timekeeper to the current time and
2046  * current NTP tick length
2047  */
timekeeping_advance(enum timekeeping_adv_mode mode)2048 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2049 {
2050 	struct timekeeper *real_tk = &tk_core.timekeeper;
2051 	struct timekeeper *tk = &shadow_timekeeper;
2052 	u64 offset;
2053 	int shift = 0, maxshift;
2054 	unsigned int clock_set = 0;
2055 	unsigned long flags;
2056 
2057 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2058 
2059 	/* Make sure we're fully resumed: */
2060 	if (unlikely(timekeeping_suspended))
2061 		goto out;
2062 
2063 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2064 	offset = real_tk->cycle_interval;
2065 
2066 	if (mode != TK_ADV_TICK)
2067 		goto out;
2068 #else
2069 	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2070 				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2071 
2072 	/* Check if there's really nothing to do */
2073 	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2074 		goto out;
2075 #endif
2076 
2077 	/* Do some additional sanity checking */
2078 	timekeeping_check_update(tk, offset);
2079 
2080 	/*
2081 	 * With NO_HZ we may have to accumulate many cycle_intervals
2082 	 * (think "ticks") worth of time at once. To do this efficiently,
2083 	 * we calculate the largest doubling multiple of cycle_intervals
2084 	 * that is smaller than the offset.  We then accumulate that
2085 	 * chunk in one go, and then try to consume the next smaller
2086 	 * doubled multiple.
2087 	 */
2088 	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2089 	shift = max(0, shift);
2090 	/* Bound shift to one less than what overflows tick_length */
2091 	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2092 	shift = min(shift, maxshift);
2093 	while (offset >= tk->cycle_interval) {
2094 		offset = logarithmic_accumulation(tk, offset, shift,
2095 							&clock_set);
2096 		if (offset < tk->cycle_interval<<shift)
2097 			shift--;
2098 	}
2099 
2100 	/* Adjust the multiplier to correct NTP error */
2101 	timekeeping_adjust(tk, offset);
2102 
2103 	/*
2104 	 * Finally, make sure that after the rounding
2105 	 * xtime_nsec isn't larger than NSEC_PER_SEC
2106 	 */
2107 	clock_set |= accumulate_nsecs_to_secs(tk);
2108 
2109 	write_seqcount_begin(&tk_core.seq);
2110 	/*
2111 	 * Update the real timekeeper.
2112 	 *
2113 	 * We could avoid this memcpy by switching pointers, but that
2114 	 * requires changes to all other timekeeper usage sites as
2115 	 * well, i.e. move the timekeeper pointer getter into the
2116 	 * spinlocked/seqcount protected sections. And we trade this
2117 	 * memcpy under the tk_core.seq against one before we start
2118 	 * updating.
2119 	 */
2120 	timekeeping_update(tk, clock_set);
2121 	memcpy(real_tk, tk, sizeof(*tk));
2122 	/* The memcpy must come last. Do not put anything here! */
2123 	write_seqcount_end(&tk_core.seq);
2124 out:
2125 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2126 	if (clock_set)
2127 		/* Have to call _delayed version, since in irq context*/
2128 		clock_was_set_delayed();
2129 }
2130 
2131 /**
2132  * update_wall_time - Uses the current clocksource to increment the wall time
2133  *
2134  */
update_wall_time(void)2135 void update_wall_time(void)
2136 {
2137 	timekeeping_advance(TK_ADV_TICK);
2138 }
2139 
2140 /**
2141  * getboottime64 - Return the real time of system boot.
2142  * @ts:		pointer to the timespec64 to be set
2143  *
2144  * Returns the wall-time of boot in a timespec64.
2145  *
2146  * This is based on the wall_to_monotonic offset and the total suspend
2147  * time. Calls to settimeofday will affect the value returned (which
2148  * basically means that however wrong your real time clock is at boot time,
2149  * you get the right time here).
2150  */
getboottime64(struct timespec64 * ts)2151 void getboottime64(struct timespec64 *ts)
2152 {
2153 	struct timekeeper *tk = &tk_core.timekeeper;
2154 	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2155 
2156 	*ts = ktime_to_timespec64(t);
2157 }
2158 EXPORT_SYMBOL_GPL(getboottime64);
2159 
ktime_get_coarse_real_ts64(struct timespec64 * ts)2160 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2161 {
2162 	struct timekeeper *tk = &tk_core.timekeeper;
2163 	unsigned int seq;
2164 
2165 	do {
2166 		seq = read_seqcount_begin(&tk_core.seq);
2167 
2168 		*ts = tk_xtime(tk);
2169 	} while (read_seqcount_retry(&tk_core.seq, seq));
2170 }
2171 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2172 
ktime_get_coarse_ts64(struct timespec64 * ts)2173 void ktime_get_coarse_ts64(struct timespec64 *ts)
2174 {
2175 	struct timekeeper *tk = &tk_core.timekeeper;
2176 	struct timespec64 now, mono;
2177 	unsigned int seq;
2178 
2179 	do {
2180 		seq = read_seqcount_begin(&tk_core.seq);
2181 
2182 		now = tk_xtime(tk);
2183 		mono = tk->wall_to_monotonic;
2184 	} while (read_seqcount_retry(&tk_core.seq, seq));
2185 
2186 	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2187 				now.tv_nsec + mono.tv_nsec);
2188 }
2189 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2190 
2191 /*
2192  * Must hold jiffies_lock
2193  */
do_timer(unsigned long ticks)2194 void do_timer(unsigned long ticks)
2195 {
2196 	jiffies_64 += ticks;
2197 	calc_global_load(ticks);
2198 }
2199 
2200 /**
2201  * ktime_get_update_offsets_now - hrtimer helper
2202  * @cwsseq:	pointer to check and store the clock was set sequence number
2203  * @offs_real:	pointer to storage for monotonic -> realtime offset
2204  * @offs_boot:	pointer to storage for monotonic -> boottime offset
2205  * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2206  *
2207  * Returns current monotonic time and updates the offsets if the
2208  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2209  * different.
2210  *
2211  * Called from hrtimer_interrupt() or retrigger_next_event()
2212  */
ktime_get_update_offsets_now(unsigned int * cwsseq,ktime_t * offs_real,ktime_t * offs_boot,ktime_t * offs_tai)2213 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2214 				     ktime_t *offs_boot, ktime_t *offs_tai)
2215 {
2216 	struct timekeeper *tk = &tk_core.timekeeper;
2217 	unsigned int seq;
2218 	ktime_t base;
2219 	u64 nsecs;
2220 
2221 	do {
2222 		seq = read_seqcount_begin(&tk_core.seq);
2223 
2224 		base = tk->tkr_mono.base;
2225 		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2226 		base = ktime_add_ns(base, nsecs);
2227 
2228 		if (*cwsseq != tk->clock_was_set_seq) {
2229 			*cwsseq = tk->clock_was_set_seq;
2230 			*offs_real = tk->offs_real;
2231 			*offs_boot = tk->offs_boot;
2232 			*offs_tai = tk->offs_tai;
2233 		}
2234 
2235 		/* Handle leapsecond insertion adjustments */
2236 		if (unlikely(base >= tk->next_leap_ktime))
2237 			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2238 
2239 	} while (read_seqcount_retry(&tk_core.seq, seq));
2240 
2241 	return base;
2242 }
2243 
2244 /**
2245  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2246  */
timekeeping_validate_timex(const struct __kernel_timex * txc)2247 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2248 {
2249 	if (txc->modes & ADJ_ADJTIME) {
2250 		/* singleshot must not be used with any other mode bits */
2251 		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2252 			return -EINVAL;
2253 		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2254 		    !capable(CAP_SYS_TIME))
2255 			return -EPERM;
2256 	} else {
2257 		/* In order to modify anything, you gotta be super-user! */
2258 		if (txc->modes && !capable(CAP_SYS_TIME))
2259 			return -EPERM;
2260 		/*
2261 		 * if the quartz is off by more than 10% then
2262 		 * something is VERY wrong!
2263 		 */
2264 		if (txc->modes & ADJ_TICK &&
2265 		    (txc->tick <  900000/USER_HZ ||
2266 		     txc->tick > 1100000/USER_HZ))
2267 			return -EINVAL;
2268 	}
2269 
2270 	if (txc->modes & ADJ_SETOFFSET) {
2271 		/* In order to inject time, you gotta be super-user! */
2272 		if (!capable(CAP_SYS_TIME))
2273 			return -EPERM;
2274 
2275 		/*
2276 		 * Validate if a timespec/timeval used to inject a time
2277 		 * offset is valid.  Offsets can be postive or negative, so
2278 		 * we don't check tv_sec. The value of the timeval/timespec
2279 		 * is the sum of its fields,but *NOTE*:
2280 		 * The field tv_usec/tv_nsec must always be non-negative and
2281 		 * we can't have more nanoseconds/microseconds than a second.
2282 		 */
2283 		if (txc->time.tv_usec < 0)
2284 			return -EINVAL;
2285 
2286 		if (txc->modes & ADJ_NANO) {
2287 			if (txc->time.tv_usec >= NSEC_PER_SEC)
2288 				return -EINVAL;
2289 		} else {
2290 			if (txc->time.tv_usec >= USEC_PER_SEC)
2291 				return -EINVAL;
2292 		}
2293 	}
2294 
2295 	/*
2296 	 * Check for potential multiplication overflows that can
2297 	 * only happen on 64-bit systems:
2298 	 */
2299 	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2300 		if (LLONG_MIN / PPM_SCALE > txc->freq)
2301 			return -EINVAL;
2302 		if (LLONG_MAX / PPM_SCALE < txc->freq)
2303 			return -EINVAL;
2304 	}
2305 
2306 	return 0;
2307 }
2308 
2309 
2310 /**
2311  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2312  */
do_adjtimex(struct __kernel_timex * txc)2313 int do_adjtimex(struct __kernel_timex *txc)
2314 {
2315 	struct timekeeper *tk = &tk_core.timekeeper;
2316 	struct audit_ntp_data ad;
2317 	unsigned long flags;
2318 	struct timespec64 ts;
2319 	s32 orig_tai, tai;
2320 	int ret;
2321 
2322 	/* Validate the data before disabling interrupts */
2323 	ret = timekeeping_validate_timex(txc);
2324 	if (ret)
2325 		return ret;
2326 
2327 	if (txc->modes & ADJ_SETOFFSET) {
2328 		struct timespec64 delta;
2329 		delta.tv_sec  = txc->time.tv_sec;
2330 		delta.tv_nsec = txc->time.tv_usec;
2331 		if (!(txc->modes & ADJ_NANO))
2332 			delta.tv_nsec *= 1000;
2333 		ret = timekeeping_inject_offset(&delta);
2334 		if (ret)
2335 			return ret;
2336 
2337 		audit_tk_injoffset(delta);
2338 	}
2339 
2340 	audit_ntp_init(&ad);
2341 
2342 	ktime_get_real_ts64(&ts);
2343 
2344 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2345 	write_seqcount_begin(&tk_core.seq);
2346 
2347 	orig_tai = tai = tk->tai_offset;
2348 	ret = __do_adjtimex(txc, &ts, &tai, &ad);
2349 
2350 	if (tai != orig_tai) {
2351 		__timekeeping_set_tai_offset(tk, tai);
2352 		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2353 	}
2354 	tk_update_leap_state(tk);
2355 
2356 	write_seqcount_end(&tk_core.seq);
2357 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2358 
2359 	audit_ntp_log(&ad);
2360 
2361 	/* Update the multiplier immediately if frequency was set directly */
2362 	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2363 		timekeeping_advance(TK_ADV_FREQ);
2364 
2365 	if (tai != orig_tai)
2366 		clock_was_set();
2367 
2368 	ntp_notify_cmos_timer();
2369 
2370 	return ret;
2371 }
2372 
2373 #ifdef CONFIG_NTP_PPS
2374 /**
2375  * hardpps() - Accessor function to NTP __hardpps function
2376  */
hardpps(const struct timespec64 * phase_ts,const struct timespec64 * raw_ts)2377 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2378 {
2379 	unsigned long flags;
2380 
2381 	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2382 	write_seqcount_begin(&tk_core.seq);
2383 
2384 	__hardpps(phase_ts, raw_ts);
2385 
2386 	write_seqcount_end(&tk_core.seq);
2387 	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2388 }
2389 EXPORT_SYMBOL(hardpps);
2390 #endif /* CONFIG_NTP_PPS */
2391 
2392 /**
2393  * xtime_update() - advances the timekeeping infrastructure
2394  * @ticks:	number of ticks, that have elapsed since the last call.
2395  *
2396  * Must be called with interrupts disabled.
2397  */
xtime_update(unsigned long ticks)2398 void xtime_update(unsigned long ticks)
2399 {
2400 	write_seqlock(&jiffies_lock);
2401 	do_timer(ticks);
2402 	write_sequnlock(&jiffies_lock);
2403 	update_wall_time();
2404 }
2405