1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <trace/events/power.h>
19 
20 #include <asm/irq_regs.h>
21 
22 #include "tick-internal.h"
23 
24 /*
25  * Tick devices
26  */
27 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
28 /*
29  * Tick next event: keeps track of the tick time
30  */
31 ktime_t tick_next_period;
32 ktime_t tick_period;
33 
34 /*
35  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
36  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
37  * variable has two functions:
38  *
39  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
40  *    timekeeping lock all at once. Only the CPU which is assigned to do the
41  *    update is handling it.
42  *
43  * 2) Hand off the duty in the NOHZ idle case by setting the value to
44  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
45  *    at it will take over and keep the time keeping alive.  The handover
46  *    procedure also covers cpu hotplug.
47  */
48 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
49 #ifdef CONFIG_NO_HZ_FULL
50 /*
51  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
52  * tick_do_timer_cpu and it should be taken over by an eligible secondary
53  * when one comes online.
54  */
55 static int tick_do_timer_boot_cpu __read_mostly = -1;
56 #endif
57 
58 /*
59  * Debugging: see timer_list.c
60  */
tick_get_device(int cpu)61 struct tick_device *tick_get_device(int cpu)
62 {
63 	return &per_cpu(tick_cpu_device, cpu);
64 }
65 
66 /**
67  * tick_is_oneshot_available - check for a oneshot capable event device
68  */
tick_is_oneshot_available(void)69 int tick_is_oneshot_available(void)
70 {
71 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
72 
73 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
74 		return 0;
75 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
76 		return 1;
77 	return tick_broadcast_oneshot_available();
78 }
79 
80 /*
81  * Periodic tick
82  */
tick_periodic(int cpu)83 static void tick_periodic(int cpu)
84 {
85 	if (tick_do_timer_cpu == cpu) {
86 		write_seqlock(&jiffies_lock);
87 
88 		/* Keep track of the next tick event */
89 		tick_next_period = ktime_add(tick_next_period, tick_period);
90 
91 		do_timer(1);
92 		write_sequnlock(&jiffies_lock);
93 		update_wall_time();
94 	}
95 
96 	update_process_times(user_mode(get_irq_regs()));
97 	profile_tick(CPU_PROFILING);
98 }
99 
100 /*
101  * Event handler for periodic ticks
102  */
tick_handle_periodic(struct clock_event_device * dev)103 void tick_handle_periodic(struct clock_event_device *dev)
104 {
105 	int cpu = smp_processor_id();
106 	ktime_t next = dev->next_event;
107 
108 	tick_periodic(cpu);
109 
110 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
111 	/*
112 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
113 	 * update_process_times() -> run_local_timers() ->
114 	 * hrtimer_run_queues().
115 	 */
116 	if (dev->event_handler != tick_handle_periodic)
117 		return;
118 #endif
119 
120 	if (!clockevent_state_oneshot(dev))
121 		return;
122 	for (;;) {
123 		/*
124 		 * Setup the next period for devices, which do not have
125 		 * periodic mode:
126 		 */
127 		next = ktime_add(next, tick_period);
128 
129 		if (!clockevents_program_event(dev, next, false))
130 			return;
131 		/*
132 		 * Have to be careful here. If we're in oneshot mode,
133 		 * before we call tick_periodic() in a loop, we need
134 		 * to be sure we're using a real hardware clocksource.
135 		 * Otherwise we could get trapped in an infinite
136 		 * loop, as the tick_periodic() increments jiffies,
137 		 * which then will increment time, possibly causing
138 		 * the loop to trigger again and again.
139 		 */
140 		if (timekeeping_valid_for_hres())
141 			tick_periodic(cpu);
142 	}
143 }
144 
145 /*
146  * Setup the device for a periodic tick
147  */
tick_setup_periodic(struct clock_event_device * dev,int broadcast)148 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
149 {
150 	tick_set_periodic_handler(dev, broadcast);
151 
152 	/* Broadcast setup ? */
153 	if (!tick_device_is_functional(dev))
154 		return;
155 
156 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
157 	    !tick_broadcast_oneshot_active()) {
158 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
159 	} else {
160 		unsigned int seq;
161 		ktime_t next;
162 
163 		do {
164 			seq = read_seqbegin(&jiffies_lock);
165 			next = tick_next_period;
166 		} while (read_seqretry(&jiffies_lock, seq));
167 
168 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
169 
170 		for (;;) {
171 			if (!clockevents_program_event(dev, next, false))
172 				return;
173 			next = ktime_add(next, tick_period);
174 		}
175 	}
176 }
177 
178 #ifdef CONFIG_NO_HZ_FULL
giveup_do_timer(void * info)179 static void giveup_do_timer(void *info)
180 {
181 	int cpu = *(unsigned int *)info;
182 
183 	WARN_ON(tick_do_timer_cpu != smp_processor_id());
184 
185 	tick_do_timer_cpu = cpu;
186 }
187 
tick_take_do_timer_from_boot(void)188 static void tick_take_do_timer_from_boot(void)
189 {
190 	int cpu = smp_processor_id();
191 	int from = tick_do_timer_boot_cpu;
192 
193 	if (from >= 0 && from != cpu)
194 		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
195 }
196 #endif
197 
198 /*
199  * Setup the tick device
200  */
tick_setup_device(struct tick_device * td,struct clock_event_device * newdev,int cpu,const struct cpumask * cpumask)201 static void tick_setup_device(struct tick_device *td,
202 			      struct clock_event_device *newdev, int cpu,
203 			      const struct cpumask *cpumask)
204 {
205 	void (*handler)(struct clock_event_device *) = NULL;
206 	ktime_t next_event = 0;
207 
208 	/*
209 	 * First device setup ?
210 	 */
211 	if (!td->evtdev) {
212 		/*
213 		 * If no cpu took the do_timer update, assign it to
214 		 * this cpu:
215 		 */
216 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
217 			tick_do_timer_cpu = cpu;
218 
219 			tick_next_period = ktime_get();
220 			tick_period = NSEC_PER_SEC / HZ;
221 #ifdef CONFIG_NO_HZ_FULL
222 			/*
223 			 * The boot CPU may be nohz_full, in which case set
224 			 * tick_do_timer_boot_cpu so the first housekeeping
225 			 * secondary that comes up will take do_timer from
226 			 * us.
227 			 */
228 			if (tick_nohz_full_cpu(cpu))
229 				tick_do_timer_boot_cpu = cpu;
230 
231 		} else if (tick_do_timer_boot_cpu != -1 &&
232 						!tick_nohz_full_cpu(cpu)) {
233 			tick_take_do_timer_from_boot();
234 			tick_do_timer_boot_cpu = -1;
235 			WARN_ON(tick_do_timer_cpu != cpu);
236 #endif
237 		}
238 
239 		/*
240 		 * Startup in periodic mode first.
241 		 */
242 		td->mode = TICKDEV_MODE_PERIODIC;
243 	} else {
244 		handler = td->evtdev->event_handler;
245 		next_event = td->evtdev->next_event;
246 		td->evtdev->event_handler = clockevents_handle_noop;
247 	}
248 
249 	td->evtdev = newdev;
250 
251 	/*
252 	 * When the device is not per cpu, pin the interrupt to the
253 	 * current cpu:
254 	 */
255 	if (!cpumask_equal(newdev->cpumask, cpumask))
256 		irq_set_affinity(newdev->irq, cpumask);
257 
258 	/*
259 	 * When global broadcasting is active, check if the current
260 	 * device is registered as a placeholder for broadcast mode.
261 	 * This allows us to handle this x86 misfeature in a generic
262 	 * way. This function also returns !=0 when we keep the
263 	 * current active broadcast state for this CPU.
264 	 */
265 	if (tick_device_uses_broadcast(newdev, cpu))
266 		return;
267 
268 	if (td->mode == TICKDEV_MODE_PERIODIC)
269 		tick_setup_periodic(newdev, 0);
270 	else
271 		tick_setup_oneshot(newdev, handler, next_event);
272 }
273 
tick_install_replacement(struct clock_event_device * newdev)274 void tick_install_replacement(struct clock_event_device *newdev)
275 {
276 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
277 	int cpu = smp_processor_id();
278 
279 	clockevents_exchange_device(td->evtdev, newdev);
280 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
281 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
282 		tick_oneshot_notify();
283 }
284 
tick_check_percpu(struct clock_event_device * curdev,struct clock_event_device * newdev,int cpu)285 static bool tick_check_percpu(struct clock_event_device *curdev,
286 			      struct clock_event_device *newdev, int cpu)
287 {
288 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
289 		return false;
290 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
291 		return true;
292 	/* Check if irq affinity can be set */
293 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
294 		return false;
295 	/* Prefer an existing cpu local device */
296 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
297 		return false;
298 	return true;
299 }
300 
tick_check_preferred(struct clock_event_device * curdev,struct clock_event_device * newdev)301 static bool tick_check_preferred(struct clock_event_device *curdev,
302 				 struct clock_event_device *newdev)
303 {
304 	/* Prefer oneshot capable device */
305 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
306 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
307 			return false;
308 		if (tick_oneshot_mode_active())
309 			return false;
310 	}
311 
312 	/*
313 	 * Use the higher rated one, but prefer a CPU local device with a lower
314 	 * rating than a non-CPU local device
315 	 */
316 	return !curdev ||
317 		newdev->rating > curdev->rating ||
318 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
319 }
320 
321 /*
322  * Check whether the new device is a better fit than curdev. curdev
323  * can be NULL !
324  */
tick_check_replacement(struct clock_event_device * curdev,struct clock_event_device * newdev)325 bool tick_check_replacement(struct clock_event_device *curdev,
326 			    struct clock_event_device *newdev)
327 {
328 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
329 		return false;
330 
331 	return tick_check_preferred(curdev, newdev);
332 }
333 
334 /*
335  * Check, if the new registered device should be used. Called with
336  * clockevents_lock held and interrupts disabled.
337  */
tick_check_new_device(struct clock_event_device * newdev)338 void tick_check_new_device(struct clock_event_device *newdev)
339 {
340 	struct clock_event_device *curdev;
341 	struct tick_device *td;
342 	int cpu;
343 
344 	cpu = smp_processor_id();
345 	td = &per_cpu(tick_cpu_device, cpu);
346 	curdev = td->evtdev;
347 
348 	/* cpu local device ? */
349 	if (!tick_check_percpu(curdev, newdev, cpu))
350 		goto out_bc;
351 
352 	/* Preference decision */
353 	if (!tick_check_preferred(curdev, newdev))
354 		goto out_bc;
355 
356 	if (!try_module_get(newdev->owner))
357 		return;
358 
359 	/*
360 	 * Replace the eventually existing device by the new
361 	 * device. If the current device is the broadcast device, do
362 	 * not give it back to the clockevents layer !
363 	 */
364 	if (tick_is_broadcast_device(curdev)) {
365 		clockevents_shutdown(curdev);
366 		curdev = NULL;
367 	}
368 	clockevents_exchange_device(curdev, newdev);
369 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
370 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
371 		tick_oneshot_notify();
372 	return;
373 
374 out_bc:
375 	/*
376 	 * Can the new device be used as a broadcast device ?
377 	 */
378 	tick_install_broadcast_device(newdev);
379 }
380 
381 /**
382  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
383  * @state:	The target state (enter/exit)
384  *
385  * The system enters/leaves a state, where affected devices might stop
386  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
387  *
388  * Called with interrupts disabled, so clockevents_lock is not
389  * required here because the local clock event device cannot go away
390  * under us.
391  */
tick_broadcast_oneshot_control(enum tick_broadcast_state state)392 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
393 {
394 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
395 
396 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
397 		return 0;
398 
399 	return __tick_broadcast_oneshot_control(state);
400 }
401 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
402 
403 #ifdef CONFIG_HOTPLUG_CPU
404 /*
405  * Transfer the do_timer job away from a dying cpu.
406  *
407  * Called with interrupts disabled. Not locking required. If
408  * tick_do_timer_cpu is owned by this cpu, nothing can change it.
409  */
tick_handover_do_timer(void)410 void tick_handover_do_timer(void)
411 {
412 	if (tick_do_timer_cpu == smp_processor_id()) {
413 		int cpu = cpumask_first(cpu_online_mask);
414 
415 		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
416 			TICK_DO_TIMER_NONE;
417 	}
418 }
419 
420 /*
421  * Shutdown an event device on a given cpu:
422  *
423  * This is called on a life CPU, when a CPU is dead. So we cannot
424  * access the hardware device itself.
425  * We just set the mode and remove it from the lists.
426  */
tick_shutdown(unsigned int cpu)427 void tick_shutdown(unsigned int cpu)
428 {
429 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
430 	struct clock_event_device *dev = td->evtdev;
431 
432 	td->mode = TICKDEV_MODE_PERIODIC;
433 	if (dev) {
434 		/*
435 		 * Prevent that the clock events layer tries to call
436 		 * the set mode function!
437 		 */
438 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
439 		clockevents_exchange_device(dev, NULL);
440 		dev->event_handler = clockevents_handle_noop;
441 		td->evtdev = NULL;
442 	}
443 }
444 #endif
445 
446 /**
447  * tick_suspend_local - Suspend the local tick device
448  *
449  * Called from the local cpu for freeze with interrupts disabled.
450  *
451  * No locks required. Nothing can change the per cpu device.
452  */
tick_suspend_local(void)453 void tick_suspend_local(void)
454 {
455 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
456 
457 	clockevents_shutdown(td->evtdev);
458 }
459 
460 /**
461  * tick_resume_local - Resume the local tick device
462  *
463  * Called from the local CPU for unfreeze or XEN resume magic.
464  *
465  * No locks required. Nothing can change the per cpu device.
466  */
tick_resume_local(void)467 void tick_resume_local(void)
468 {
469 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
470 	bool broadcast = tick_resume_check_broadcast();
471 
472 	clockevents_tick_resume(td->evtdev);
473 	if (!broadcast) {
474 		if (td->mode == TICKDEV_MODE_PERIODIC)
475 			tick_setup_periodic(td->evtdev, 0);
476 		else
477 			tick_resume_oneshot();
478 	}
479 }
480 
481 /**
482  * tick_suspend - Suspend the tick and the broadcast device
483  *
484  * Called from syscore_suspend() via timekeeping_suspend with only one
485  * CPU online and interrupts disabled or from tick_unfreeze() under
486  * tick_freeze_lock.
487  *
488  * No locks required. Nothing can change the per cpu device.
489  */
tick_suspend(void)490 void tick_suspend(void)
491 {
492 	tick_suspend_local();
493 	tick_suspend_broadcast();
494 }
495 
496 /**
497  * tick_resume - Resume the tick and the broadcast device
498  *
499  * Called from syscore_resume() via timekeeping_resume with only one
500  * CPU online and interrupts disabled.
501  *
502  * No locks required. Nothing can change the per cpu device.
503  */
tick_resume(void)504 void tick_resume(void)
505 {
506 	tick_resume_broadcast();
507 	tick_resume_local();
508 }
509 
510 #ifdef CONFIG_SUSPEND
511 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
512 static unsigned int tick_freeze_depth;
513 
514 /**
515  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
516  *
517  * Check if this is the last online CPU executing the function and if so,
518  * suspend timekeeping.  Otherwise suspend the local tick.
519  *
520  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
521  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
522  */
tick_freeze(void)523 void tick_freeze(void)
524 {
525 	raw_spin_lock(&tick_freeze_lock);
526 
527 	tick_freeze_depth++;
528 	if (tick_freeze_depth == num_online_cpus()) {
529 		trace_suspend_resume(TPS("timekeeping_freeze"),
530 				     smp_processor_id(), true);
531 		system_state = SYSTEM_SUSPEND;
532 		sched_clock_suspend();
533 		timekeeping_suspend();
534 	} else {
535 		tick_suspend_local();
536 	}
537 
538 	raw_spin_unlock(&tick_freeze_lock);
539 }
540 
541 /**
542  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
543  *
544  * Check if this is the first CPU executing the function and if so, resume
545  * timekeeping.  Otherwise resume the local tick.
546  *
547  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
548  * Interrupts must not be enabled after the preceding %tick_freeze().
549  */
tick_unfreeze(void)550 void tick_unfreeze(void)
551 {
552 	raw_spin_lock(&tick_freeze_lock);
553 
554 	if (tick_freeze_depth == num_online_cpus()) {
555 		timekeeping_resume();
556 		sched_clock_resume();
557 		system_state = SYSTEM_RUNNING;
558 		trace_suspend_resume(TPS("timekeeping_freeze"),
559 				     smp_processor_id(), false);
560 	} else {
561 		tick_resume_local();
562 	}
563 
564 	tick_freeze_depth--;
565 
566 	raw_spin_unlock(&tick_freeze_lock);
567 }
568 #endif /* CONFIG_SUSPEND */
569 
570 /**
571  * tick_init - initialize the tick control
572  */
tick_init(void)573 void __init tick_init(void)
574 {
575 	tick_broadcast_init();
576 	tick_nohz_init();
577 }
578