1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kcov.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/mm_types_task.h>
31 #include <linux/task_io_accounting.h>
32 #include <linux/posix-timers.h>
33 #include <linux/rseq.h>
34
35 /* task_struct member predeclarations (sorted alphabetically): */
36 struct audit_context;
37 struct backing_dev_info;
38 struct bio_list;
39 struct blk_plug;
40 struct capture_control;
41 struct cfs_rq;
42 struct fs_struct;
43 struct futex_pi_state;
44 struct io_context;
45 struct mempolicy;
46 struct nameidata;
47 struct nsproxy;
48 struct perf_event_context;
49 struct pid_namespace;
50 struct pipe_inode_info;
51 struct rcu_node;
52 struct reclaim_state;
53 struct robust_list_head;
54 struct root_domain;
55 struct rq;
56 struct sched_attr;
57 struct sched_param;
58 struct seq_file;
59 struct sighand_struct;
60 struct signal_struct;
61 struct task_delay_info;
62 struct task_group;
63
64 /*
65 * Task state bitmask. NOTE! These bits are also
66 * encoded in fs/proc/array.c: get_task_state().
67 *
68 * We have two separate sets of flags: task->state
69 * is about runnability, while task->exit_state are
70 * about the task exiting. Confusing, but this way
71 * modifying one set can't modify the other one by
72 * mistake.
73 */
74
75 /* Used in tsk->state: */
76 #define TASK_RUNNING 0x0000
77 #define TASK_INTERRUPTIBLE 0x0001
78 #define TASK_UNINTERRUPTIBLE 0x0002
79 #define __TASK_STOPPED 0x0004
80 #define __TASK_TRACED 0x0008
81 /* Used in tsk->exit_state: */
82 #define EXIT_DEAD 0x0010
83 #define EXIT_ZOMBIE 0x0020
84 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
85 /* Used in tsk->state again: */
86 #define TASK_PARKED 0x0040
87 #define TASK_DEAD 0x0080
88 #define TASK_WAKEKILL 0x0100
89 #define TASK_WAKING 0x0200
90 #define TASK_NOLOAD 0x0400
91 #define TASK_NEW 0x0800
92 #define TASK_STATE_MAX 0x1000
93
94 /* Convenience macros for the sake of set_current_state: */
95 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
96 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
97 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
98
99 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
100
101 /* Convenience macros for the sake of wake_up(): */
102 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
103
104 /* get_task_state(): */
105 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
108 TASK_PARKED)
109
110 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
111
112 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
113
114 #define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
115
116 #define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
117 (task->flags & PF_FROZEN) == 0 && \
118 (task->state & TASK_NOLOAD) == 0)
119
120 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
121
122 /*
123 * Special states are those that do not use the normal wait-loop pattern. See
124 * the comment with set_special_state().
125 */
126 #define is_special_task_state(state) \
127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
128
129 #define __set_current_state(state_value) \
130 do { \
131 WARN_ON_ONCE(is_special_task_state(state_value));\
132 current->task_state_change = _THIS_IP_; \
133 current->state = (state_value); \
134 } while (0)
135
136 #define set_current_state(state_value) \
137 do { \
138 WARN_ON_ONCE(is_special_task_state(state_value));\
139 current->task_state_change = _THIS_IP_; \
140 smp_store_mb(current->state, (state_value)); \
141 } while (0)
142
143 #define set_special_state(state_value) \
144 do { \
145 unsigned long flags; /* may shadow */ \
146 WARN_ON_ONCE(!is_special_task_state(state_value)); \
147 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
148 current->task_state_change = _THIS_IP_; \
149 current->state = (state_value); \
150 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
151 } while (0)
152 #else
153 /*
154 * set_current_state() includes a barrier so that the write of current->state
155 * is correctly serialised wrt the caller's subsequent test of whether to
156 * actually sleep:
157 *
158 * for (;;) {
159 * set_current_state(TASK_UNINTERRUPTIBLE);
160 * if (!need_sleep)
161 * break;
162 *
163 * schedule();
164 * }
165 * __set_current_state(TASK_RUNNING);
166 *
167 * If the caller does not need such serialisation (because, for instance, the
168 * condition test and condition change and wakeup are under the same lock) then
169 * use __set_current_state().
170 *
171 * The above is typically ordered against the wakeup, which does:
172 *
173 * need_sleep = false;
174 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
175 *
176 * where wake_up_state() executes a full memory barrier before accessing the
177 * task state.
178 *
179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
182 *
183 * However, with slightly different timing the wakeup TASK_RUNNING store can
184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
185 * a problem either because that will result in one extra go around the loop
186 * and our @cond test will save the day.
187 *
188 * Also see the comments of try_to_wake_up().
189 */
190 #define __set_current_state(state_value) \
191 current->state = (state_value)
192
193 #define set_current_state(state_value) \
194 smp_store_mb(current->state, (state_value))
195
196 /*
197 * set_special_state() should be used for those states when the blocking task
198 * can not use the regular condition based wait-loop. In that case we must
199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
200 * will not collide with our state change.
201 */
202 #define set_special_state(state_value) \
203 do { \
204 unsigned long flags; /* may shadow */ \
205 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
206 current->state = (state_value); \
207 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
208 } while (0)
209
210 #endif
211
212 /* Task command name length: */
213 #define TASK_COMM_LEN 16
214
215 extern void scheduler_tick(void);
216
217 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
218
219 extern long schedule_timeout(long timeout);
220 extern long schedule_timeout_interruptible(long timeout);
221 extern long schedule_timeout_killable(long timeout);
222 extern long schedule_timeout_uninterruptible(long timeout);
223 extern long schedule_timeout_idle(long timeout);
224 asmlinkage void schedule(void);
225 extern void schedule_preempt_disabled(void);
226 asmlinkage void preempt_schedule_irq(void);
227
228 extern int __must_check io_schedule_prepare(void);
229 extern void io_schedule_finish(int token);
230 extern long io_schedule_timeout(long timeout);
231 extern void io_schedule(void);
232
233 /**
234 * struct prev_cputime - snapshot of system and user cputime
235 * @utime: time spent in user mode
236 * @stime: time spent in system mode
237 * @lock: protects the above two fields
238 *
239 * Stores previous user/system time values such that we can guarantee
240 * monotonicity.
241 */
242 struct prev_cputime {
243 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
244 u64 utime;
245 u64 stime;
246 raw_spinlock_t lock;
247 #endif
248 };
249
250 enum vtime_state {
251 /* Task is sleeping or running in a CPU with VTIME inactive: */
252 VTIME_INACTIVE = 0,
253 /* Task runs in userspace in a CPU with VTIME active: */
254 VTIME_USER,
255 /* Task runs in kernelspace in a CPU with VTIME active: */
256 VTIME_SYS,
257 };
258
259 struct vtime {
260 seqcount_t seqcount;
261 unsigned long long starttime;
262 enum vtime_state state;
263 u64 utime;
264 u64 stime;
265 u64 gtime;
266 };
267
268 /*
269 * Utilization clamp constraints.
270 * @UCLAMP_MIN: Minimum utilization
271 * @UCLAMP_MAX: Maximum utilization
272 * @UCLAMP_CNT: Utilization clamp constraints count
273 */
274 enum uclamp_id {
275 UCLAMP_MIN = 0,
276 UCLAMP_MAX,
277 UCLAMP_CNT
278 };
279
280 #ifdef CONFIG_SMP
281 extern struct root_domain def_root_domain;
282 extern struct mutex sched_domains_mutex;
283 #endif
284
285 struct sched_info {
286 #ifdef CONFIG_SCHED_INFO
287 /* Cumulative counters: */
288
289 /* # of times we have run on this CPU: */
290 unsigned long pcount;
291
292 /* Time spent waiting on a runqueue: */
293 unsigned long long run_delay;
294
295 /* Timestamps: */
296
297 /* When did we last run on a CPU? */
298 unsigned long long last_arrival;
299
300 /* When were we last queued to run? */
301 unsigned long long last_queued;
302
303 #endif /* CONFIG_SCHED_INFO */
304 };
305
306 /*
307 * Integer metrics need fixed point arithmetic, e.g., sched/fair
308 * has a few: load, load_avg, util_avg, freq, and capacity.
309 *
310 * We define a basic fixed point arithmetic range, and then formalize
311 * all these metrics based on that basic range.
312 */
313 # define SCHED_FIXEDPOINT_SHIFT 10
314 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
315
316 /* Increase resolution of cpu_capacity calculations */
317 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
318 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
319
320 struct load_weight {
321 unsigned long weight;
322 u32 inv_weight;
323 };
324
325 /**
326 * struct util_est - Estimation utilization of FAIR tasks
327 * @enqueued: instantaneous estimated utilization of a task/cpu
328 * @ewma: the Exponential Weighted Moving Average (EWMA)
329 * utilization of a task
330 *
331 * Support data structure to track an Exponential Weighted Moving Average
332 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
333 * average each time a task completes an activation. Sample's weight is chosen
334 * so that the EWMA will be relatively insensitive to transient changes to the
335 * task's workload.
336 *
337 * The enqueued attribute has a slightly different meaning for tasks and cpus:
338 * - task: the task's util_avg at last task dequeue time
339 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
340 * Thus, the util_est.enqueued of a task represents the contribution on the
341 * estimated utilization of the CPU where that task is currently enqueued.
342 *
343 * Only for tasks we track a moving average of the past instantaneous
344 * estimated utilization. This allows to absorb sporadic drops in utilization
345 * of an otherwise almost periodic task.
346 */
347 struct util_est {
348 unsigned int enqueued;
349 unsigned int ewma;
350 #define UTIL_EST_WEIGHT_SHIFT 2
351 } __attribute__((__aligned__(sizeof(u64))));
352
353 /*
354 * The load_avg/util_avg accumulates an infinite geometric series
355 * (see __update_load_avg() in kernel/sched/fair.c).
356 *
357 * [load_avg definition]
358 *
359 * load_avg = runnable% * scale_load_down(load)
360 *
361 * where runnable% is the time ratio that a sched_entity is runnable.
362 * For cfs_rq, it is the aggregated load_avg of all runnable and
363 * blocked sched_entities.
364 *
365 * [util_avg definition]
366 *
367 * util_avg = running% * SCHED_CAPACITY_SCALE
368 *
369 * where running% is the time ratio that a sched_entity is running on
370 * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable
371 * and blocked sched_entities.
372 *
373 * load_avg and util_avg don't direcly factor frequency scaling and CPU
374 * capacity scaling. The scaling is done through the rq_clock_pelt that
375 * is used for computing those signals (see update_rq_clock_pelt())
376 *
377 * N.B., the above ratios (runnable% and running%) themselves are in the
378 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
379 * to as large a range as necessary. This is for example reflected by
380 * util_avg's SCHED_CAPACITY_SCALE.
381 *
382 * [Overflow issue]
383 *
384 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
385 * with the highest load (=88761), always runnable on a single cfs_rq,
386 * and should not overflow as the number already hits PID_MAX_LIMIT.
387 *
388 * For all other cases (including 32-bit kernels), struct load_weight's
389 * weight will overflow first before we do, because:
390 *
391 * Max(load_avg) <= Max(load.weight)
392 *
393 * Then it is the load_weight's responsibility to consider overflow
394 * issues.
395 */
396 struct sched_avg {
397 u64 last_update_time;
398 u64 load_sum;
399 u64 runnable_load_sum;
400 u32 util_sum;
401 u32 period_contrib;
402 unsigned long load_avg;
403 unsigned long runnable_load_avg;
404 unsigned long util_avg;
405 struct util_est util_est;
406 } ____cacheline_aligned;
407
408 struct sched_statistics {
409 #ifdef CONFIG_SCHEDSTATS
410 u64 wait_start;
411 u64 wait_max;
412 u64 wait_count;
413 u64 wait_sum;
414 u64 iowait_count;
415 u64 iowait_sum;
416
417 u64 sleep_start;
418 u64 sleep_max;
419 s64 sum_sleep_runtime;
420
421 u64 block_start;
422 u64 block_max;
423 u64 exec_max;
424 u64 slice_max;
425
426 u64 nr_migrations_cold;
427 u64 nr_failed_migrations_affine;
428 u64 nr_failed_migrations_running;
429 u64 nr_failed_migrations_hot;
430 u64 nr_forced_migrations;
431
432 u64 nr_wakeups;
433 u64 nr_wakeups_sync;
434 u64 nr_wakeups_migrate;
435 u64 nr_wakeups_local;
436 u64 nr_wakeups_remote;
437 u64 nr_wakeups_affine;
438 u64 nr_wakeups_affine_attempts;
439 u64 nr_wakeups_passive;
440 u64 nr_wakeups_idle;
441 #endif
442 };
443
444 struct sched_entity {
445 /* For load-balancing: */
446 struct load_weight load;
447 unsigned long runnable_weight;
448 struct rb_node run_node;
449 struct list_head group_node;
450 unsigned int on_rq;
451
452 u64 exec_start;
453 u64 sum_exec_runtime;
454 u64 vruntime;
455 u64 prev_sum_exec_runtime;
456
457 u64 nr_migrations;
458
459 struct sched_statistics statistics;
460
461 #ifdef CONFIG_FAIR_GROUP_SCHED
462 int depth;
463 struct sched_entity *parent;
464 /* rq on which this entity is (to be) queued: */
465 struct cfs_rq *cfs_rq;
466 /* rq "owned" by this entity/group: */
467 struct cfs_rq *my_q;
468 #endif
469
470 #ifdef CONFIG_SMP
471 /*
472 * Per entity load average tracking.
473 *
474 * Put into separate cache line so it does not
475 * collide with read-mostly values above.
476 */
477 struct sched_avg avg;
478 #endif
479 };
480
481 struct sched_rt_entity {
482 struct list_head run_list;
483 unsigned long timeout;
484 unsigned long watchdog_stamp;
485 unsigned int time_slice;
486 unsigned short on_rq;
487 unsigned short on_list;
488
489 struct sched_rt_entity *back;
490 #ifdef CONFIG_RT_GROUP_SCHED
491 struct sched_rt_entity *parent;
492 /* rq on which this entity is (to be) queued: */
493 struct rt_rq *rt_rq;
494 /* rq "owned" by this entity/group: */
495 struct rt_rq *my_q;
496 #endif
497 } __randomize_layout;
498
499 struct sched_dl_entity {
500 struct rb_node rb_node;
501
502 /*
503 * Original scheduling parameters. Copied here from sched_attr
504 * during sched_setattr(), they will remain the same until
505 * the next sched_setattr().
506 */
507 u64 dl_runtime; /* Maximum runtime for each instance */
508 u64 dl_deadline; /* Relative deadline of each instance */
509 u64 dl_period; /* Separation of two instances (period) */
510 u64 dl_bw; /* dl_runtime / dl_period */
511 u64 dl_density; /* dl_runtime / dl_deadline */
512
513 /*
514 * Actual scheduling parameters. Initialized with the values above,
515 * they are continuously updated during task execution. Note that
516 * the remaining runtime could be < 0 in case we are in overrun.
517 */
518 s64 runtime; /* Remaining runtime for this instance */
519 u64 deadline; /* Absolute deadline for this instance */
520 unsigned int flags; /* Specifying the scheduler behaviour */
521
522 /*
523 * Some bool flags:
524 *
525 * @dl_throttled tells if we exhausted the runtime. If so, the
526 * task has to wait for a replenishment to be performed at the
527 * next firing of dl_timer.
528 *
529 * @dl_boosted tells if we are boosted due to DI. If so we are
530 * outside bandwidth enforcement mechanism (but only until we
531 * exit the critical section);
532 *
533 * @dl_yielded tells if task gave up the CPU before consuming
534 * all its available runtime during the last job.
535 *
536 * @dl_non_contending tells if the task is inactive while still
537 * contributing to the active utilization. In other words, it
538 * indicates if the inactive timer has been armed and its handler
539 * has not been executed yet. This flag is useful to avoid race
540 * conditions between the inactive timer handler and the wakeup
541 * code.
542 *
543 * @dl_overrun tells if the task asked to be informed about runtime
544 * overruns.
545 */
546 unsigned int dl_throttled : 1;
547 unsigned int dl_boosted : 1;
548 unsigned int dl_yielded : 1;
549 unsigned int dl_non_contending : 1;
550 unsigned int dl_overrun : 1;
551
552 /*
553 * Bandwidth enforcement timer. Each -deadline task has its
554 * own bandwidth to be enforced, thus we need one timer per task.
555 */
556 struct hrtimer dl_timer;
557
558 /*
559 * Inactive timer, responsible for decreasing the active utilization
560 * at the "0-lag time". When a -deadline task blocks, it contributes
561 * to GRUB's active utilization until the "0-lag time", hence a
562 * timer is needed to decrease the active utilization at the correct
563 * time.
564 */
565 struct hrtimer inactive_timer;
566 };
567
568 #ifdef CONFIG_UCLAMP_TASK
569 /* Number of utilization clamp buckets (shorter alias) */
570 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
571
572 /*
573 * Utilization clamp for a scheduling entity
574 * @value: clamp value "assigned" to a se
575 * @bucket_id: bucket index corresponding to the "assigned" value
576 * @active: the se is currently refcounted in a rq's bucket
577 * @user_defined: the requested clamp value comes from user-space
578 *
579 * The bucket_id is the index of the clamp bucket matching the clamp value
580 * which is pre-computed and stored to avoid expensive integer divisions from
581 * the fast path.
582 *
583 * The active bit is set whenever a task has got an "effective" value assigned,
584 * which can be different from the clamp value "requested" from user-space.
585 * This allows to know a task is refcounted in the rq's bucket corresponding
586 * to the "effective" bucket_id.
587 *
588 * The user_defined bit is set whenever a task has got a task-specific clamp
589 * value requested from userspace, i.e. the system defaults apply to this task
590 * just as a restriction. This allows to relax default clamps when a less
591 * restrictive task-specific value has been requested, thus allowing to
592 * implement a "nice" semantic. For example, a task running with a 20%
593 * default boost can still drop its own boosting to 0%.
594 */
595 struct uclamp_se {
596 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
597 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
598 unsigned int active : 1;
599 unsigned int user_defined : 1;
600 };
601 #endif /* CONFIG_UCLAMP_TASK */
602
603 union rcu_special {
604 struct {
605 u8 blocked;
606 u8 need_qs;
607 u8 exp_hint; /* Hint for performance. */
608 u8 deferred_qs;
609 } b; /* Bits. */
610 u32 s; /* Set of bits. */
611 };
612
613 enum perf_event_task_context {
614 perf_invalid_context = -1,
615 perf_hw_context = 0,
616 perf_sw_context,
617 perf_nr_task_contexts,
618 };
619
620 struct wake_q_node {
621 struct wake_q_node *next;
622 };
623
624 struct task_struct {
625 #ifdef CONFIG_THREAD_INFO_IN_TASK
626 /*
627 * For reasons of header soup (see current_thread_info()), this
628 * must be the first element of task_struct.
629 */
630 struct thread_info thread_info;
631 #endif
632 /* -1 unrunnable, 0 runnable, >0 stopped: */
633 volatile long state;
634
635 /*
636 * This begins the randomizable portion of task_struct. Only
637 * scheduling-critical items should be added above here.
638 */
639 randomized_struct_fields_start
640
641 void *stack;
642 refcount_t usage;
643 /* Per task flags (PF_*), defined further below: */
644 unsigned int flags;
645 unsigned int ptrace;
646
647 #ifdef CONFIG_SMP
648 struct llist_node wake_entry;
649 int on_cpu;
650 #ifdef CONFIG_THREAD_INFO_IN_TASK
651 /* Current CPU: */
652 unsigned int cpu;
653 #endif
654 unsigned int wakee_flips;
655 unsigned long wakee_flip_decay_ts;
656 struct task_struct *last_wakee;
657
658 /*
659 * recent_used_cpu is initially set as the last CPU used by a task
660 * that wakes affine another task. Waker/wakee relationships can
661 * push tasks around a CPU where each wakeup moves to the next one.
662 * Tracking a recently used CPU allows a quick search for a recently
663 * used CPU that may be idle.
664 */
665 int recent_used_cpu;
666 int wake_cpu;
667 #endif
668 int on_rq;
669
670 int prio;
671 int static_prio;
672 int normal_prio;
673 unsigned int rt_priority;
674
675 const struct sched_class *sched_class;
676 struct sched_entity se;
677 struct sched_rt_entity rt;
678 #ifdef CONFIG_CGROUP_SCHED
679 struct task_group *sched_task_group;
680 #endif
681 struct sched_dl_entity dl;
682
683 #ifdef CONFIG_UCLAMP_TASK
684 /* Clamp values requested for a scheduling entity */
685 struct uclamp_se uclamp_req[UCLAMP_CNT];
686 /* Effective clamp values used for a scheduling entity */
687 struct uclamp_se uclamp[UCLAMP_CNT];
688 #endif
689
690 #ifdef CONFIG_PREEMPT_NOTIFIERS
691 /* List of struct preempt_notifier: */
692 struct hlist_head preempt_notifiers;
693 #endif
694
695 #ifdef CONFIG_BLK_DEV_IO_TRACE
696 unsigned int btrace_seq;
697 #endif
698
699 unsigned int policy;
700 int nr_cpus_allowed;
701 const cpumask_t *cpus_ptr;
702 cpumask_t cpus_mask;
703
704 #ifdef CONFIG_PREEMPT_RCU
705 int rcu_read_lock_nesting;
706 union rcu_special rcu_read_unlock_special;
707 struct list_head rcu_node_entry;
708 struct rcu_node *rcu_blocked_node;
709 #endif /* #ifdef CONFIG_PREEMPT_RCU */
710
711 #ifdef CONFIG_TASKS_RCU
712 unsigned long rcu_tasks_nvcsw;
713 u8 rcu_tasks_holdout;
714 u8 rcu_tasks_idx;
715 int rcu_tasks_idle_cpu;
716 struct list_head rcu_tasks_holdout_list;
717 #endif /* #ifdef CONFIG_TASKS_RCU */
718
719 struct sched_info sched_info;
720
721 struct list_head tasks;
722 #ifdef CONFIG_SMP
723 struct plist_node pushable_tasks;
724 struct rb_node pushable_dl_tasks;
725 #endif
726
727 struct mm_struct *mm;
728 struct mm_struct *active_mm;
729
730 /* Per-thread vma caching: */
731 struct vmacache vmacache;
732
733 #ifdef SPLIT_RSS_COUNTING
734 struct task_rss_stat rss_stat;
735 #endif
736 int exit_state;
737 int exit_code;
738 int exit_signal;
739 /* The signal sent when the parent dies: */
740 int pdeath_signal;
741 /* JOBCTL_*, siglock protected: */
742 unsigned long jobctl;
743
744 /* Used for emulating ABI behavior of previous Linux versions: */
745 unsigned int personality;
746
747 /* Scheduler bits, serialized by scheduler locks: */
748 unsigned sched_reset_on_fork:1;
749 unsigned sched_contributes_to_load:1;
750 unsigned sched_migrated:1;
751 unsigned sched_remote_wakeup:1;
752 #ifdef CONFIG_PSI
753 unsigned sched_psi_wake_requeue:1;
754 #endif
755
756 /* Force alignment to the next boundary: */
757 unsigned :0;
758
759 /* Unserialized, strictly 'current' */
760
761 /* Bit to tell LSMs we're in execve(): */
762 unsigned in_execve:1;
763 unsigned in_iowait:1;
764 #ifndef TIF_RESTORE_SIGMASK
765 unsigned restore_sigmask:1;
766 #endif
767 #ifdef CONFIG_MEMCG
768 unsigned in_user_fault:1;
769 #endif
770 #ifdef CONFIG_COMPAT_BRK
771 unsigned brk_randomized:1;
772 #endif
773 #ifdef CONFIG_CGROUPS
774 /* disallow userland-initiated cgroup migration */
775 unsigned no_cgroup_migration:1;
776 /* task is frozen/stopped (used by the cgroup freezer) */
777 unsigned frozen:1;
778 #endif
779 #ifdef CONFIG_BLK_CGROUP
780 /* to be used once the psi infrastructure lands upstream. */
781 unsigned use_memdelay:1;
782 #endif
783
784 unsigned long atomic_flags; /* Flags requiring atomic access. */
785
786 struct restart_block restart_block;
787
788 pid_t pid;
789 pid_t tgid;
790
791 #ifdef CONFIG_STACKPROTECTOR
792 /* Canary value for the -fstack-protector GCC feature: */
793 unsigned long stack_canary;
794 #endif
795 /*
796 * Pointers to the (original) parent process, youngest child, younger sibling,
797 * older sibling, respectively. (p->father can be replaced with
798 * p->real_parent->pid)
799 */
800
801 /* Real parent process: */
802 struct task_struct __rcu *real_parent;
803
804 /* Recipient of SIGCHLD, wait4() reports: */
805 struct task_struct __rcu *parent;
806
807 /*
808 * Children/sibling form the list of natural children:
809 */
810 struct list_head children;
811 struct list_head sibling;
812 struct task_struct *group_leader;
813
814 /*
815 * 'ptraced' is the list of tasks this task is using ptrace() on.
816 *
817 * This includes both natural children and PTRACE_ATTACH targets.
818 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
819 */
820 struct list_head ptraced;
821 struct list_head ptrace_entry;
822
823 /* PID/PID hash table linkage. */
824 struct pid *thread_pid;
825 struct hlist_node pid_links[PIDTYPE_MAX];
826 struct list_head thread_group;
827 struct list_head thread_node;
828
829 struct completion *vfork_done;
830
831 /* CLONE_CHILD_SETTID: */
832 int __user *set_child_tid;
833
834 /* CLONE_CHILD_CLEARTID: */
835 int __user *clear_child_tid;
836
837 u64 utime;
838 u64 stime;
839 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
840 u64 utimescaled;
841 u64 stimescaled;
842 #endif
843 u64 gtime;
844 struct prev_cputime prev_cputime;
845 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
846 struct vtime vtime;
847 #endif
848
849 #ifdef CONFIG_NO_HZ_FULL
850 atomic_t tick_dep_mask;
851 #endif
852 /* Context switch counts: */
853 unsigned long nvcsw;
854 unsigned long nivcsw;
855
856 /* Monotonic time in nsecs: */
857 u64 start_time;
858
859 /* Boot based time in nsecs: */
860 u64 real_start_time;
861
862 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
863 unsigned long min_flt;
864 unsigned long maj_flt;
865
866 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
867 struct posix_cputimers posix_cputimers;
868
869 /* Process credentials: */
870
871 /* Tracer's credentials at attach: */
872 const struct cred __rcu *ptracer_cred;
873
874 /* Objective and real subjective task credentials (COW): */
875 const struct cred __rcu *real_cred;
876
877 /* Effective (overridable) subjective task credentials (COW): */
878 const struct cred __rcu *cred;
879
880 #ifdef CONFIG_KEYS
881 /* Cached requested key. */
882 struct key *cached_requested_key;
883 #endif
884
885 /*
886 * executable name, excluding path.
887 *
888 * - normally initialized setup_new_exec()
889 * - access it with [gs]et_task_comm()
890 * - lock it with task_lock()
891 */
892 char comm[TASK_COMM_LEN];
893
894 struct nameidata *nameidata;
895
896 #ifdef CONFIG_SYSVIPC
897 struct sysv_sem sysvsem;
898 struct sysv_shm sysvshm;
899 #endif
900 #ifdef CONFIG_DETECT_HUNG_TASK
901 unsigned long last_switch_count;
902 unsigned long last_switch_time;
903 #endif
904 /* Filesystem information: */
905 struct fs_struct *fs;
906
907 /* Open file information: */
908 struct files_struct *files;
909
910 /* Namespaces: */
911 struct nsproxy *nsproxy;
912
913 /* Signal handlers: */
914 struct signal_struct *signal;
915 struct sighand_struct *sighand;
916 sigset_t blocked;
917 sigset_t real_blocked;
918 /* Restored if set_restore_sigmask() was used: */
919 sigset_t saved_sigmask;
920 struct sigpending pending;
921 unsigned long sas_ss_sp;
922 size_t sas_ss_size;
923 unsigned int sas_ss_flags;
924
925 struct callback_head *task_works;
926
927 #ifdef CONFIG_AUDIT
928 #ifdef CONFIG_AUDITSYSCALL
929 struct audit_context *audit_context;
930 #endif
931 kuid_t loginuid;
932 unsigned int sessionid;
933 #endif
934 struct seccomp seccomp;
935
936 /* Thread group tracking: */
937 u32 parent_exec_id;
938 u32 self_exec_id;
939
940 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
941 spinlock_t alloc_lock;
942
943 /* Protection of the PI data structures: */
944 raw_spinlock_t pi_lock;
945
946 struct wake_q_node wake_q;
947
948 #ifdef CONFIG_RT_MUTEXES
949 /* PI waiters blocked on a rt_mutex held by this task: */
950 struct rb_root_cached pi_waiters;
951 /* Updated under owner's pi_lock and rq lock */
952 struct task_struct *pi_top_task;
953 /* Deadlock detection and priority inheritance handling: */
954 struct rt_mutex_waiter *pi_blocked_on;
955 #endif
956
957 #ifdef CONFIG_DEBUG_MUTEXES
958 /* Mutex deadlock detection: */
959 struct mutex_waiter *blocked_on;
960 #endif
961
962 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
963 int non_block_count;
964 #endif
965
966 #ifdef CONFIG_TRACE_IRQFLAGS
967 unsigned int irq_events;
968 unsigned long hardirq_enable_ip;
969 unsigned long hardirq_disable_ip;
970 unsigned int hardirq_enable_event;
971 unsigned int hardirq_disable_event;
972 int hardirqs_enabled;
973 int hardirq_context;
974 unsigned long softirq_disable_ip;
975 unsigned long softirq_enable_ip;
976 unsigned int softirq_disable_event;
977 unsigned int softirq_enable_event;
978 int softirqs_enabled;
979 int softirq_context;
980 #endif
981
982 #ifdef CONFIG_LOCKDEP
983 # define MAX_LOCK_DEPTH 48UL
984 u64 curr_chain_key;
985 int lockdep_depth;
986 unsigned int lockdep_recursion;
987 struct held_lock held_locks[MAX_LOCK_DEPTH];
988 #endif
989
990 #ifdef CONFIG_UBSAN
991 unsigned int in_ubsan;
992 #endif
993
994 /* Journalling filesystem info: */
995 void *journal_info;
996
997 /* Stacked block device info: */
998 struct bio_list *bio_list;
999
1000 #ifdef CONFIG_BLOCK
1001 /* Stack plugging: */
1002 struct blk_plug *plug;
1003 #endif
1004
1005 /* VM state: */
1006 struct reclaim_state *reclaim_state;
1007
1008 struct backing_dev_info *backing_dev_info;
1009
1010 struct io_context *io_context;
1011
1012 #ifdef CONFIG_COMPACTION
1013 struct capture_control *capture_control;
1014 #endif
1015 /* Ptrace state: */
1016 unsigned long ptrace_message;
1017 kernel_siginfo_t *last_siginfo;
1018
1019 struct task_io_accounting ioac;
1020 #ifdef CONFIG_PSI
1021 /* Pressure stall state */
1022 unsigned int psi_flags;
1023 #endif
1024 #ifdef CONFIG_TASK_XACCT
1025 /* Accumulated RSS usage: */
1026 u64 acct_rss_mem1;
1027 /* Accumulated virtual memory usage: */
1028 u64 acct_vm_mem1;
1029 /* stime + utime since last update: */
1030 u64 acct_timexpd;
1031 #endif
1032 #ifdef CONFIG_CPUSETS
1033 /* Protected by ->alloc_lock: */
1034 nodemask_t mems_allowed;
1035 /* Seqence number to catch updates: */
1036 seqcount_t mems_allowed_seq;
1037 int cpuset_mem_spread_rotor;
1038 int cpuset_slab_spread_rotor;
1039 #endif
1040 #ifdef CONFIG_CGROUPS
1041 /* Control Group info protected by css_set_lock: */
1042 struct css_set __rcu *cgroups;
1043 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1044 struct list_head cg_list;
1045 #endif
1046 #ifdef CONFIG_X86_CPU_RESCTRL
1047 u32 closid;
1048 u32 rmid;
1049 #endif
1050 #ifdef CONFIG_FUTEX
1051 struct robust_list_head __user *robust_list;
1052 #ifdef CONFIG_COMPAT
1053 struct compat_robust_list_head __user *compat_robust_list;
1054 #endif
1055 struct list_head pi_state_list;
1056 struct futex_pi_state *pi_state_cache;
1057 #endif
1058 #ifdef CONFIG_PERF_EVENTS
1059 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1060 struct mutex perf_event_mutex;
1061 struct list_head perf_event_list;
1062 #endif
1063 #ifdef CONFIG_DEBUG_PREEMPT
1064 unsigned long preempt_disable_ip;
1065 #endif
1066 #ifdef CONFIG_NUMA
1067 /* Protected by alloc_lock: */
1068 struct mempolicy *mempolicy;
1069 short il_prev;
1070 short pref_node_fork;
1071 #endif
1072 #ifdef CONFIG_NUMA_BALANCING
1073 int numa_scan_seq;
1074 unsigned int numa_scan_period;
1075 unsigned int numa_scan_period_max;
1076 int numa_preferred_nid;
1077 unsigned long numa_migrate_retry;
1078 /* Migration stamp: */
1079 u64 node_stamp;
1080 u64 last_task_numa_placement;
1081 u64 last_sum_exec_runtime;
1082 struct callback_head numa_work;
1083
1084 /*
1085 * This pointer is only modified for current in syscall and
1086 * pagefault context (and for tasks being destroyed), so it can be read
1087 * from any of the following contexts:
1088 * - RCU read-side critical section
1089 * - current->numa_group from everywhere
1090 * - task's runqueue locked, task not running
1091 */
1092 struct numa_group __rcu *numa_group;
1093
1094 /*
1095 * numa_faults is an array split into four regions:
1096 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1097 * in this precise order.
1098 *
1099 * faults_memory: Exponential decaying average of faults on a per-node
1100 * basis. Scheduling placement decisions are made based on these
1101 * counts. The values remain static for the duration of a PTE scan.
1102 * faults_cpu: Track the nodes the process was running on when a NUMA
1103 * hinting fault was incurred.
1104 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1105 * during the current scan window. When the scan completes, the counts
1106 * in faults_memory and faults_cpu decay and these values are copied.
1107 */
1108 unsigned long *numa_faults;
1109 unsigned long total_numa_faults;
1110
1111 /*
1112 * numa_faults_locality tracks if faults recorded during the last
1113 * scan window were remote/local or failed to migrate. The task scan
1114 * period is adapted based on the locality of the faults with different
1115 * weights depending on whether they were shared or private faults
1116 */
1117 unsigned long numa_faults_locality[3];
1118
1119 unsigned long numa_pages_migrated;
1120 #endif /* CONFIG_NUMA_BALANCING */
1121
1122 #ifdef CONFIG_RSEQ
1123 struct rseq __user *rseq;
1124 u32 rseq_sig;
1125 /*
1126 * RmW on rseq_event_mask must be performed atomically
1127 * with respect to preemption.
1128 */
1129 unsigned long rseq_event_mask;
1130 #endif
1131
1132 struct tlbflush_unmap_batch tlb_ubc;
1133
1134 union {
1135 refcount_t rcu_users;
1136 struct rcu_head rcu;
1137 };
1138
1139 /* Cache last used pipe for splice(): */
1140 struct pipe_inode_info *splice_pipe;
1141
1142 struct page_frag task_frag;
1143
1144 #ifdef CONFIG_TASK_DELAY_ACCT
1145 struct task_delay_info *delays;
1146 #endif
1147
1148 #ifdef CONFIG_FAULT_INJECTION
1149 int make_it_fail;
1150 unsigned int fail_nth;
1151 #endif
1152 /*
1153 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1154 * balance_dirty_pages() for a dirty throttling pause:
1155 */
1156 int nr_dirtied;
1157 int nr_dirtied_pause;
1158 /* Start of a write-and-pause period: */
1159 unsigned long dirty_paused_when;
1160
1161 #ifdef CONFIG_LATENCYTOP
1162 int latency_record_count;
1163 struct latency_record latency_record[LT_SAVECOUNT];
1164 #endif
1165 /*
1166 * Time slack values; these are used to round up poll() and
1167 * select() etc timeout values. These are in nanoseconds.
1168 */
1169 u64 timer_slack_ns;
1170 u64 default_timer_slack_ns;
1171
1172 #ifdef CONFIG_KASAN
1173 unsigned int kasan_depth;
1174 #endif
1175
1176 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1177 /* Index of current stored address in ret_stack: */
1178 int curr_ret_stack;
1179 int curr_ret_depth;
1180
1181 /* Stack of return addresses for return function tracing: */
1182 struct ftrace_ret_stack *ret_stack;
1183
1184 /* Timestamp for last schedule: */
1185 unsigned long long ftrace_timestamp;
1186
1187 /*
1188 * Number of functions that haven't been traced
1189 * because of depth overrun:
1190 */
1191 atomic_t trace_overrun;
1192
1193 /* Pause tracing: */
1194 atomic_t tracing_graph_pause;
1195 #endif
1196
1197 #ifdef CONFIG_TRACING
1198 /* State flags for use by tracers: */
1199 unsigned long trace;
1200
1201 /* Bitmask and counter of trace recursion: */
1202 unsigned long trace_recursion;
1203 #endif /* CONFIG_TRACING */
1204
1205 #ifdef CONFIG_KCOV
1206 /* Coverage collection mode enabled for this task (0 if disabled): */
1207 unsigned int kcov_mode;
1208
1209 /* Size of the kcov_area: */
1210 unsigned int kcov_size;
1211
1212 /* Buffer for coverage collection: */
1213 void *kcov_area;
1214
1215 /* KCOV descriptor wired with this task or NULL: */
1216 struct kcov *kcov;
1217 #endif
1218
1219 #ifdef CONFIG_MEMCG
1220 struct mem_cgroup *memcg_in_oom;
1221 gfp_t memcg_oom_gfp_mask;
1222 int memcg_oom_order;
1223
1224 /* Number of pages to reclaim on returning to userland: */
1225 unsigned int memcg_nr_pages_over_high;
1226
1227 /* Used by memcontrol for targeted memcg charge: */
1228 struct mem_cgroup *active_memcg;
1229 #endif
1230
1231 #ifdef CONFIG_BLK_CGROUP
1232 struct request_queue *throttle_queue;
1233 #endif
1234
1235 #ifdef CONFIG_UPROBES
1236 struct uprobe_task *utask;
1237 #endif
1238 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1239 unsigned int sequential_io;
1240 unsigned int sequential_io_avg;
1241 #endif
1242 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1243 unsigned long task_state_change;
1244 #endif
1245 int pagefault_disabled;
1246 #ifdef CONFIG_MMU
1247 struct task_struct *oom_reaper_list;
1248 #endif
1249 #ifdef CONFIG_VMAP_STACK
1250 struct vm_struct *stack_vm_area;
1251 #endif
1252 #ifdef CONFIG_THREAD_INFO_IN_TASK
1253 /* A live task holds one reference: */
1254 refcount_t stack_refcount;
1255 #endif
1256 #ifdef CONFIG_LIVEPATCH
1257 int patch_state;
1258 #endif
1259 #ifdef CONFIG_SECURITY
1260 /* Used by LSM modules for access restriction: */
1261 void *security;
1262 #endif
1263
1264 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1265 unsigned long lowest_stack;
1266 unsigned long prev_lowest_stack;
1267 #endif
1268
1269 /*
1270 * New fields for task_struct should be added above here, so that
1271 * they are included in the randomized portion of task_struct.
1272 */
1273 randomized_struct_fields_end
1274
1275 /* CPU-specific state of this task: */
1276 struct thread_struct thread;
1277
1278 /*
1279 * WARNING: on x86, 'thread_struct' contains a variable-sized
1280 * structure. It *MUST* be at the end of 'task_struct'.
1281 *
1282 * Do not put anything below here!
1283 */
1284 };
1285
task_pid(struct task_struct * task)1286 static inline struct pid *task_pid(struct task_struct *task)
1287 {
1288 return task->thread_pid;
1289 }
1290
1291 /*
1292 * the helpers to get the task's different pids as they are seen
1293 * from various namespaces
1294 *
1295 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1296 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1297 * current.
1298 * task_xid_nr_ns() : id seen from the ns specified;
1299 *
1300 * see also pid_nr() etc in include/linux/pid.h
1301 */
1302 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1303
task_pid_nr(struct task_struct * tsk)1304 static inline pid_t task_pid_nr(struct task_struct *tsk)
1305 {
1306 return tsk->pid;
1307 }
1308
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1309 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1310 {
1311 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1312 }
1313
task_pid_vnr(struct task_struct * tsk)1314 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1315 {
1316 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1317 }
1318
1319
task_tgid_nr(struct task_struct * tsk)1320 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1321 {
1322 return tsk->tgid;
1323 }
1324
1325 /**
1326 * pid_alive - check that a task structure is not stale
1327 * @p: Task structure to be checked.
1328 *
1329 * Test if a process is not yet dead (at most zombie state)
1330 * If pid_alive fails, then pointers within the task structure
1331 * can be stale and must not be dereferenced.
1332 *
1333 * Return: 1 if the process is alive. 0 otherwise.
1334 */
pid_alive(const struct task_struct * p)1335 static inline int pid_alive(const struct task_struct *p)
1336 {
1337 return p->thread_pid != NULL;
1338 }
1339
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1340 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1341 {
1342 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1343 }
1344
task_pgrp_vnr(struct task_struct * tsk)1345 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1346 {
1347 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1348 }
1349
1350
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1351 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1352 {
1353 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1354 }
1355
task_session_vnr(struct task_struct * tsk)1356 static inline pid_t task_session_vnr(struct task_struct *tsk)
1357 {
1358 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1359 }
1360
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1361 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1362 {
1363 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1364 }
1365
task_tgid_vnr(struct task_struct * tsk)1366 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1367 {
1368 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1369 }
1370
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1371 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1372 {
1373 pid_t pid = 0;
1374
1375 rcu_read_lock();
1376 if (pid_alive(tsk))
1377 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1378 rcu_read_unlock();
1379
1380 return pid;
1381 }
1382
task_ppid_nr(const struct task_struct * tsk)1383 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1384 {
1385 return task_ppid_nr_ns(tsk, &init_pid_ns);
1386 }
1387
1388 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1389 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1390 {
1391 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1392 }
1393
1394 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1395 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1396
task_state_index(struct task_struct * tsk)1397 static inline unsigned int task_state_index(struct task_struct *tsk)
1398 {
1399 unsigned int tsk_state = READ_ONCE(tsk->state);
1400 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1401
1402 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1403
1404 if (tsk_state == TASK_IDLE)
1405 state = TASK_REPORT_IDLE;
1406
1407 return fls(state);
1408 }
1409
task_index_to_char(unsigned int state)1410 static inline char task_index_to_char(unsigned int state)
1411 {
1412 static const char state_char[] = "RSDTtXZPI";
1413
1414 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1415
1416 return state_char[state];
1417 }
1418
task_state_to_char(struct task_struct * tsk)1419 static inline char task_state_to_char(struct task_struct *tsk)
1420 {
1421 return task_index_to_char(task_state_index(tsk));
1422 }
1423
1424 /**
1425 * is_global_init - check if a task structure is init. Since init
1426 * is free to have sub-threads we need to check tgid.
1427 * @tsk: Task structure to be checked.
1428 *
1429 * Check if a task structure is the first user space task the kernel created.
1430 *
1431 * Return: 1 if the task structure is init. 0 otherwise.
1432 */
is_global_init(struct task_struct * tsk)1433 static inline int is_global_init(struct task_struct *tsk)
1434 {
1435 return task_tgid_nr(tsk) == 1;
1436 }
1437
1438 extern struct pid *cad_pid;
1439
1440 /*
1441 * Per process flags
1442 */
1443 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1444 #define PF_EXITING 0x00000004 /* Getting shut down */
1445 #define PF_EXITPIDONE 0x00000008 /* PI exit done on shut down */
1446 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1447 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1448 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1449 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1450 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1451 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1452 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1453 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1454 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1455 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1456 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1457 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1458 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1459 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1460 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1461 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1462 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1463 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1464 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1465 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1466 #define PF_MEMSTALL 0x01000000 /* Stalled due to lack of memory */
1467 #define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
1468 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1469 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1470 #define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1471 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1472 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1473
1474 /*
1475 * Only the _current_ task can read/write to tsk->flags, but other
1476 * tasks can access tsk->flags in readonly mode for example
1477 * with tsk_used_math (like during threaded core dumping).
1478 * There is however an exception to this rule during ptrace
1479 * or during fork: the ptracer task is allowed to write to the
1480 * child->flags of its traced child (same goes for fork, the parent
1481 * can write to the child->flags), because we're guaranteed the
1482 * child is not running and in turn not changing child->flags
1483 * at the same time the parent does it.
1484 */
1485 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1486 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1487 #define clear_used_math() clear_stopped_child_used_math(current)
1488 #define set_used_math() set_stopped_child_used_math(current)
1489
1490 #define conditional_stopped_child_used_math(condition, child) \
1491 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1492
1493 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1494
1495 #define copy_to_stopped_child_used_math(child) \
1496 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1497
1498 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1499 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1500 #define used_math() tsk_used_math(current)
1501
is_percpu_thread(void)1502 static inline bool is_percpu_thread(void)
1503 {
1504 #ifdef CONFIG_SMP
1505 return (current->flags & PF_NO_SETAFFINITY) &&
1506 (current->nr_cpus_allowed == 1);
1507 #else
1508 return true;
1509 #endif
1510 }
1511
1512 /* Per-process atomic flags. */
1513 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1514 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1515 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1516 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1517 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1518 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1519 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1520 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1521
1522 #define TASK_PFA_TEST(name, func) \
1523 static inline bool task_##func(struct task_struct *p) \
1524 { return test_bit(PFA_##name, &p->atomic_flags); }
1525
1526 #define TASK_PFA_SET(name, func) \
1527 static inline void task_set_##func(struct task_struct *p) \
1528 { set_bit(PFA_##name, &p->atomic_flags); }
1529
1530 #define TASK_PFA_CLEAR(name, func) \
1531 static inline void task_clear_##func(struct task_struct *p) \
1532 { clear_bit(PFA_##name, &p->atomic_flags); }
1533
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1534 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1535 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1536
1537 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1538 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1539 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1540
1541 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1542 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1543 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1544
1545 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1546 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1547 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1548
1549 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1550 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1551 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1552
1553 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1554 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1555
1556 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1557 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1558 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1559
1560 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1561 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1562
1563 static inline void
1564 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1565 {
1566 current->flags &= ~flags;
1567 current->flags |= orig_flags & flags;
1568 }
1569
1570 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1571 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1572 #ifdef CONFIG_SMP
1573 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1574 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1575 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1576 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1577 {
1578 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1579 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1580 {
1581 if (!cpumask_test_cpu(0, new_mask))
1582 return -EINVAL;
1583 return 0;
1584 }
1585 #endif
1586
1587 extern int yield_to(struct task_struct *p, bool preempt);
1588 extern void set_user_nice(struct task_struct *p, long nice);
1589 extern int task_prio(const struct task_struct *p);
1590
1591 /**
1592 * task_nice - return the nice value of a given task.
1593 * @p: the task in question.
1594 *
1595 * Return: The nice value [ -20 ... 0 ... 19 ].
1596 */
task_nice(const struct task_struct * p)1597 static inline int task_nice(const struct task_struct *p)
1598 {
1599 return PRIO_TO_NICE((p)->static_prio);
1600 }
1601
1602 extern int can_nice(const struct task_struct *p, const int nice);
1603 extern int task_curr(const struct task_struct *p);
1604 extern int idle_cpu(int cpu);
1605 extern int available_idle_cpu(int cpu);
1606 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1607 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1608 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1609 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1610 extern struct task_struct *idle_task(int cpu);
1611
1612 /**
1613 * is_idle_task - is the specified task an idle task?
1614 * @p: the task in question.
1615 *
1616 * Return: 1 if @p is an idle task. 0 otherwise.
1617 */
is_idle_task(const struct task_struct * p)1618 static inline bool is_idle_task(const struct task_struct *p)
1619 {
1620 return !!(p->flags & PF_IDLE);
1621 }
1622
1623 extern struct task_struct *curr_task(int cpu);
1624 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1625
1626 void yield(void);
1627
1628 union thread_union {
1629 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1630 struct task_struct task;
1631 #endif
1632 #ifndef CONFIG_THREAD_INFO_IN_TASK
1633 struct thread_info thread_info;
1634 #endif
1635 unsigned long stack[THREAD_SIZE/sizeof(long)];
1636 };
1637
1638 #ifndef CONFIG_THREAD_INFO_IN_TASK
1639 extern struct thread_info init_thread_info;
1640 #endif
1641
1642 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1643
1644 #ifdef CONFIG_THREAD_INFO_IN_TASK
task_thread_info(struct task_struct * task)1645 static inline struct thread_info *task_thread_info(struct task_struct *task)
1646 {
1647 return &task->thread_info;
1648 }
1649 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1650 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1651 #endif
1652
1653 /*
1654 * find a task by one of its numerical ids
1655 *
1656 * find_task_by_pid_ns():
1657 * finds a task by its pid in the specified namespace
1658 * find_task_by_vpid():
1659 * finds a task by its virtual pid
1660 *
1661 * see also find_vpid() etc in include/linux/pid.h
1662 */
1663
1664 extern struct task_struct *find_task_by_vpid(pid_t nr);
1665 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1666
1667 /*
1668 * find a task by its virtual pid and get the task struct
1669 */
1670 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1671
1672 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1673 extern int wake_up_process(struct task_struct *tsk);
1674 extern void wake_up_new_task(struct task_struct *tsk);
1675
1676 #ifdef CONFIG_SMP
1677 extern void kick_process(struct task_struct *tsk);
1678 #else
kick_process(struct task_struct * tsk)1679 static inline void kick_process(struct task_struct *tsk) { }
1680 #endif
1681
1682 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1683
set_task_comm(struct task_struct * tsk,const char * from)1684 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1685 {
1686 __set_task_comm(tsk, from, false);
1687 }
1688
1689 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1690 #define get_task_comm(buf, tsk) ({ \
1691 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1692 __get_task_comm(buf, sizeof(buf), tsk); \
1693 })
1694
1695 #ifdef CONFIG_SMP
1696 void scheduler_ipi(void);
1697 extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1698 #else
scheduler_ipi(void)1699 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,long match_state)1700 static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1701 {
1702 return 1;
1703 }
1704 #endif
1705
1706 /*
1707 * Set thread flags in other task's structures.
1708 * See asm/thread_info.h for TIF_xxxx flags available:
1709 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)1710 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1711 {
1712 set_ti_thread_flag(task_thread_info(tsk), flag);
1713 }
1714
clear_tsk_thread_flag(struct task_struct * tsk,int flag)1715 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1716 {
1717 clear_ti_thread_flag(task_thread_info(tsk), flag);
1718 }
1719
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)1720 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1721 bool value)
1722 {
1723 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1724 }
1725
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)1726 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1727 {
1728 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1729 }
1730
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)1731 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1732 {
1733 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1734 }
1735
test_tsk_thread_flag(struct task_struct * tsk,int flag)1736 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1737 {
1738 return test_ti_thread_flag(task_thread_info(tsk), flag);
1739 }
1740
set_tsk_need_resched(struct task_struct * tsk)1741 static inline void set_tsk_need_resched(struct task_struct *tsk)
1742 {
1743 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1744 }
1745
clear_tsk_need_resched(struct task_struct * tsk)1746 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1747 {
1748 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1749 }
1750
test_tsk_need_resched(struct task_struct * tsk)1751 static inline int test_tsk_need_resched(struct task_struct *tsk)
1752 {
1753 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1754 }
1755
1756 /*
1757 * cond_resched() and cond_resched_lock(): latency reduction via
1758 * explicit rescheduling in places that are safe. The return
1759 * value indicates whether a reschedule was done in fact.
1760 * cond_resched_lock() will drop the spinlock before scheduling,
1761 */
1762 #ifndef CONFIG_PREEMPTION
1763 extern int _cond_resched(void);
1764 #else
_cond_resched(void)1765 static inline int _cond_resched(void) { return 0; }
1766 #endif
1767
1768 #define cond_resched() ({ \
1769 ___might_sleep(__FILE__, __LINE__, 0); \
1770 _cond_resched(); \
1771 })
1772
1773 extern int __cond_resched_lock(spinlock_t *lock);
1774
1775 #define cond_resched_lock(lock) ({ \
1776 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1777 __cond_resched_lock(lock); \
1778 })
1779
cond_resched_rcu(void)1780 static inline void cond_resched_rcu(void)
1781 {
1782 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1783 rcu_read_unlock();
1784 cond_resched();
1785 rcu_read_lock();
1786 #endif
1787 }
1788
1789 /*
1790 * Does a critical section need to be broken due to another
1791 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1792 * but a general need for low latency)
1793 */
spin_needbreak(spinlock_t * lock)1794 static inline int spin_needbreak(spinlock_t *lock)
1795 {
1796 #ifdef CONFIG_PREEMPTION
1797 return spin_is_contended(lock);
1798 #else
1799 return 0;
1800 #endif
1801 }
1802
need_resched(void)1803 static __always_inline bool need_resched(void)
1804 {
1805 return unlikely(tif_need_resched());
1806 }
1807
1808 /*
1809 * Wrappers for p->thread_info->cpu access. No-op on UP.
1810 */
1811 #ifdef CONFIG_SMP
1812
task_cpu(const struct task_struct * p)1813 static inline unsigned int task_cpu(const struct task_struct *p)
1814 {
1815 #ifdef CONFIG_THREAD_INFO_IN_TASK
1816 return READ_ONCE(p->cpu);
1817 #else
1818 return READ_ONCE(task_thread_info(p)->cpu);
1819 #endif
1820 }
1821
1822 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1823
1824 #else
1825
task_cpu(const struct task_struct * p)1826 static inline unsigned int task_cpu(const struct task_struct *p)
1827 {
1828 return 0;
1829 }
1830
set_task_cpu(struct task_struct * p,unsigned int cpu)1831 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1832 {
1833 }
1834
1835 #endif /* CONFIG_SMP */
1836
1837 /*
1838 * In order to reduce various lock holder preemption latencies provide an
1839 * interface to see if a vCPU is currently running or not.
1840 *
1841 * This allows us to terminate optimistic spin loops and block, analogous to
1842 * the native optimistic spin heuristic of testing if the lock owner task is
1843 * running or not.
1844 */
1845 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)1846 static inline bool vcpu_is_preempted(int cpu)
1847 {
1848 return false;
1849 }
1850 #endif
1851
1852 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1853 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1854
1855 #ifndef TASK_SIZE_OF
1856 #define TASK_SIZE_OF(tsk) TASK_SIZE
1857 #endif
1858
1859 #ifdef CONFIG_RSEQ
1860
1861 /*
1862 * Map the event mask on the user-space ABI enum rseq_cs_flags
1863 * for direct mask checks.
1864 */
1865 enum rseq_event_mask_bits {
1866 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1867 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1868 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1869 };
1870
1871 enum rseq_event_mask {
1872 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1873 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1874 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1875 };
1876
rseq_set_notify_resume(struct task_struct * t)1877 static inline void rseq_set_notify_resume(struct task_struct *t)
1878 {
1879 if (t->rseq)
1880 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1881 }
1882
1883 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1884
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)1885 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1886 struct pt_regs *regs)
1887 {
1888 if (current->rseq)
1889 __rseq_handle_notify_resume(ksig, regs);
1890 }
1891
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)1892 static inline void rseq_signal_deliver(struct ksignal *ksig,
1893 struct pt_regs *regs)
1894 {
1895 preempt_disable();
1896 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
1897 preempt_enable();
1898 rseq_handle_notify_resume(ksig, regs);
1899 }
1900
1901 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)1902 static inline void rseq_preempt(struct task_struct *t)
1903 {
1904 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1905 rseq_set_notify_resume(t);
1906 }
1907
1908 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)1909 static inline void rseq_migrate(struct task_struct *t)
1910 {
1911 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1912 rseq_set_notify_resume(t);
1913 }
1914
1915 /*
1916 * If parent process has a registered restartable sequences area, the
1917 * child inherits. Only applies when forking a process, not a thread.
1918 */
rseq_fork(struct task_struct * t,unsigned long clone_flags)1919 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1920 {
1921 if (clone_flags & CLONE_THREAD) {
1922 t->rseq = NULL;
1923 t->rseq_sig = 0;
1924 t->rseq_event_mask = 0;
1925 } else {
1926 t->rseq = current->rseq;
1927 t->rseq_sig = current->rseq_sig;
1928 t->rseq_event_mask = current->rseq_event_mask;
1929 }
1930 }
1931
rseq_execve(struct task_struct * t)1932 static inline void rseq_execve(struct task_struct *t)
1933 {
1934 t->rseq = NULL;
1935 t->rseq_sig = 0;
1936 t->rseq_event_mask = 0;
1937 }
1938
1939 #else
1940
rseq_set_notify_resume(struct task_struct * t)1941 static inline void rseq_set_notify_resume(struct task_struct *t)
1942 {
1943 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)1944 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1945 struct pt_regs *regs)
1946 {
1947 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)1948 static inline void rseq_signal_deliver(struct ksignal *ksig,
1949 struct pt_regs *regs)
1950 {
1951 }
rseq_preempt(struct task_struct * t)1952 static inline void rseq_preempt(struct task_struct *t)
1953 {
1954 }
rseq_migrate(struct task_struct * t)1955 static inline void rseq_migrate(struct task_struct *t)
1956 {
1957 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)1958 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1959 {
1960 }
rseq_execve(struct task_struct * t)1961 static inline void rseq_execve(struct task_struct *t)
1962 {
1963 }
1964
1965 #endif
1966
1967 void __exit_umh(struct task_struct *tsk);
1968
exit_umh(struct task_struct * tsk)1969 static inline void exit_umh(struct task_struct *tsk)
1970 {
1971 if (unlikely(tsk->flags & PF_UMH))
1972 __exit_umh(tsk);
1973 }
1974
1975 #ifdef CONFIG_DEBUG_RSEQ
1976
1977 void rseq_syscall(struct pt_regs *regs);
1978
1979 #else
1980
rseq_syscall(struct pt_regs * regs)1981 static inline void rseq_syscall(struct pt_regs *regs)
1982 {
1983 }
1984
1985 #endif
1986
1987 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
1988 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
1989 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
1990
1991 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
1992 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
1993 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
1994
1995 int sched_trace_rq_cpu(struct rq *rq);
1996
1997 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
1998
1999 #endif
2000