1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMU_NOTIFIER_H
3 #define _LINUX_MMU_NOTIFIER_H
4 
5 #include <linux/list.h>
6 #include <linux/spinlock.h>
7 #include <linux/mm_types.h>
8 #include <linux/srcu.h>
9 
10 struct mmu_notifier;
11 struct mmu_notifier_ops;
12 
13 /**
14  * enum mmu_notifier_event - reason for the mmu notifier callback
15  * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that
16  * move the range
17  *
18  * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like
19  * madvise() or replacing a page by another one, ...).
20  *
21  * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range
22  * ie using the vma access permission (vm_page_prot) to update the whole range
23  * is enough no need to inspect changes to the CPU page table (mprotect()
24  * syscall)
25  *
26  * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for
27  * pages in the range so to mirror those changes the user must inspect the CPU
28  * page table (from the end callback).
29  *
30  * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same
31  * access flags). User should soft dirty the page in the end callback to make
32  * sure that anyone relying on soft dirtyness catch pages that might be written
33  * through non CPU mappings.
34  */
35 enum mmu_notifier_event {
36 	MMU_NOTIFY_UNMAP = 0,
37 	MMU_NOTIFY_CLEAR,
38 	MMU_NOTIFY_PROTECTION_VMA,
39 	MMU_NOTIFY_PROTECTION_PAGE,
40 	MMU_NOTIFY_SOFT_DIRTY,
41 };
42 
43 #ifdef CONFIG_MMU_NOTIFIER
44 
45 #ifdef CONFIG_LOCKDEP
46 extern struct lockdep_map __mmu_notifier_invalidate_range_start_map;
47 #endif
48 
49 /*
50  * The mmu notifier_mm structure is allocated and installed in
51  * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
52  * critical section and it's released only when mm_count reaches zero
53  * in mmdrop().
54  */
55 struct mmu_notifier_mm {
56 	/* all mmu notifiers registerd in this mm are queued in this list */
57 	struct hlist_head list;
58 	/* to serialize the list modifications and hlist_unhashed */
59 	spinlock_t lock;
60 };
61 
62 #define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0)
63 
64 struct mmu_notifier_range {
65 	struct vm_area_struct *vma;
66 	struct mm_struct *mm;
67 	unsigned long start;
68 	unsigned long end;
69 	unsigned flags;
70 	enum mmu_notifier_event event;
71 };
72 
73 struct mmu_notifier_ops {
74 	/*
75 	 * Called either by mmu_notifier_unregister or when the mm is
76 	 * being destroyed by exit_mmap, always before all pages are
77 	 * freed. This can run concurrently with other mmu notifier
78 	 * methods (the ones invoked outside the mm context) and it
79 	 * should tear down all secondary mmu mappings and freeze the
80 	 * secondary mmu. If this method isn't implemented you've to
81 	 * be sure that nothing could possibly write to the pages
82 	 * through the secondary mmu by the time the last thread with
83 	 * tsk->mm == mm exits.
84 	 *
85 	 * As side note: the pages freed after ->release returns could
86 	 * be immediately reallocated by the gart at an alias physical
87 	 * address with a different cache model, so if ->release isn't
88 	 * implemented because all _software_ driven memory accesses
89 	 * through the secondary mmu are terminated by the time the
90 	 * last thread of this mm quits, you've also to be sure that
91 	 * speculative _hardware_ operations can't allocate dirty
92 	 * cachelines in the cpu that could not be snooped and made
93 	 * coherent with the other read and write operations happening
94 	 * through the gart alias address, so leading to memory
95 	 * corruption.
96 	 */
97 	void (*release)(struct mmu_notifier *mn,
98 			struct mm_struct *mm);
99 
100 	/*
101 	 * clear_flush_young is called after the VM is
102 	 * test-and-clearing the young/accessed bitflag in the
103 	 * pte. This way the VM will provide proper aging to the
104 	 * accesses to the page through the secondary MMUs and not
105 	 * only to the ones through the Linux pte.
106 	 * Start-end is necessary in case the secondary MMU is mapping the page
107 	 * at a smaller granularity than the primary MMU.
108 	 */
109 	int (*clear_flush_young)(struct mmu_notifier *mn,
110 				 struct mm_struct *mm,
111 				 unsigned long start,
112 				 unsigned long end);
113 
114 	/*
115 	 * clear_young is a lightweight version of clear_flush_young. Like the
116 	 * latter, it is supposed to test-and-clear the young/accessed bitflag
117 	 * in the secondary pte, but it may omit flushing the secondary tlb.
118 	 */
119 	int (*clear_young)(struct mmu_notifier *mn,
120 			   struct mm_struct *mm,
121 			   unsigned long start,
122 			   unsigned long end);
123 
124 	/*
125 	 * test_young is called to check the young/accessed bitflag in
126 	 * the secondary pte. This is used to know if the page is
127 	 * frequently used without actually clearing the flag or tearing
128 	 * down the secondary mapping on the page.
129 	 */
130 	int (*test_young)(struct mmu_notifier *mn,
131 			  struct mm_struct *mm,
132 			  unsigned long address);
133 
134 	/*
135 	 * change_pte is called in cases that pte mapping to page is changed:
136 	 * for example, when ksm remaps pte to point to a new shared page.
137 	 */
138 	void (*change_pte)(struct mmu_notifier *mn,
139 			   struct mm_struct *mm,
140 			   unsigned long address,
141 			   pte_t pte);
142 
143 	/*
144 	 * invalidate_range_start() and invalidate_range_end() must be
145 	 * paired and are called only when the mmap_sem and/or the
146 	 * locks protecting the reverse maps are held. If the subsystem
147 	 * can't guarantee that no additional references are taken to
148 	 * the pages in the range, it has to implement the
149 	 * invalidate_range() notifier to remove any references taken
150 	 * after invalidate_range_start().
151 	 *
152 	 * Invalidation of multiple concurrent ranges may be
153 	 * optionally permitted by the driver. Either way the
154 	 * establishment of sptes is forbidden in the range passed to
155 	 * invalidate_range_begin/end for the whole duration of the
156 	 * invalidate_range_begin/end critical section.
157 	 *
158 	 * invalidate_range_start() is called when all pages in the
159 	 * range are still mapped and have at least a refcount of one.
160 	 *
161 	 * invalidate_range_end() is called when all pages in the
162 	 * range have been unmapped and the pages have been freed by
163 	 * the VM.
164 	 *
165 	 * The VM will remove the page table entries and potentially
166 	 * the page between invalidate_range_start() and
167 	 * invalidate_range_end(). If the page must not be freed
168 	 * because of pending I/O or other circumstances then the
169 	 * invalidate_range_start() callback (or the initial mapping
170 	 * by the driver) must make sure that the refcount is kept
171 	 * elevated.
172 	 *
173 	 * If the driver increases the refcount when the pages are
174 	 * initially mapped into an address space then either
175 	 * invalidate_range_start() or invalidate_range_end() may
176 	 * decrease the refcount. If the refcount is decreased on
177 	 * invalidate_range_start() then the VM can free pages as page
178 	 * table entries are removed.  If the refcount is only
179 	 * droppped on invalidate_range_end() then the driver itself
180 	 * will drop the last refcount but it must take care to flush
181 	 * any secondary tlb before doing the final free on the
182 	 * page. Pages will no longer be referenced by the linux
183 	 * address space but may still be referenced by sptes until
184 	 * the last refcount is dropped.
185 	 *
186 	 * If blockable argument is set to false then the callback cannot
187 	 * sleep and has to return with -EAGAIN. 0 should be returned
188 	 * otherwise. Please note that if invalidate_range_start approves
189 	 * a non-blocking behavior then the same applies to
190 	 * invalidate_range_end.
191 	 *
192 	 */
193 	int (*invalidate_range_start)(struct mmu_notifier *mn,
194 				      const struct mmu_notifier_range *range);
195 	void (*invalidate_range_end)(struct mmu_notifier *mn,
196 				     const struct mmu_notifier_range *range);
197 
198 	/*
199 	 * invalidate_range() is either called between
200 	 * invalidate_range_start() and invalidate_range_end() when the
201 	 * VM has to free pages that where unmapped, but before the
202 	 * pages are actually freed, or outside of _start()/_end() when
203 	 * a (remote) TLB is necessary.
204 	 *
205 	 * If invalidate_range() is used to manage a non-CPU TLB with
206 	 * shared page-tables, it not necessary to implement the
207 	 * invalidate_range_start()/end() notifiers, as
208 	 * invalidate_range() alread catches the points in time when an
209 	 * external TLB range needs to be flushed. For more in depth
210 	 * discussion on this see Documentation/vm/mmu_notifier.rst
211 	 *
212 	 * Note that this function might be called with just a sub-range
213 	 * of what was passed to invalidate_range_start()/end(), if
214 	 * called between those functions.
215 	 */
216 	void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm,
217 				 unsigned long start, unsigned long end);
218 
219 	/*
220 	 * These callbacks are used with the get/put interface to manage the
221 	 * lifetime of the mmu_notifier memory. alloc_notifier() returns a new
222 	 * notifier for use with the mm.
223 	 *
224 	 * free_notifier() is only called after the mmu_notifier has been
225 	 * fully put, calls to any ops callback are prevented and no ops
226 	 * callbacks are currently running. It is called from a SRCU callback
227 	 * and cannot sleep.
228 	 */
229 	struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm);
230 	void (*free_notifier)(struct mmu_notifier *mn);
231 };
232 
233 /*
234  * The notifier chains are protected by mmap_sem and/or the reverse map
235  * semaphores. Notifier chains are only changed when all reverse maps and
236  * the mmap_sem locks are taken.
237  *
238  * Therefore notifier chains can only be traversed when either
239  *
240  * 1. mmap_sem is held.
241  * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
242  * 3. No other concurrent thread can access the list (release)
243  */
244 struct mmu_notifier {
245 	struct hlist_node hlist;
246 	const struct mmu_notifier_ops *ops;
247 	struct mm_struct *mm;
248 	struct rcu_head rcu;
249 	unsigned int users;
250 };
251 
mm_has_notifiers(struct mm_struct * mm)252 static inline int mm_has_notifiers(struct mm_struct *mm)
253 {
254 	return unlikely(mm->mmu_notifier_mm);
255 }
256 
257 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
258 					     struct mm_struct *mm);
259 static inline struct mmu_notifier *
mmu_notifier_get(const struct mmu_notifier_ops * ops,struct mm_struct * mm)260 mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm)
261 {
262 	struct mmu_notifier *ret;
263 
264 	down_write(&mm->mmap_sem);
265 	ret = mmu_notifier_get_locked(ops, mm);
266 	up_write(&mm->mmap_sem);
267 	return ret;
268 }
269 void mmu_notifier_put(struct mmu_notifier *mn);
270 void mmu_notifier_synchronize(void);
271 
272 extern int mmu_notifier_register(struct mmu_notifier *mn,
273 				 struct mm_struct *mm);
274 extern int __mmu_notifier_register(struct mmu_notifier *mn,
275 				   struct mm_struct *mm);
276 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
277 				    struct mm_struct *mm);
278 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
279 extern void __mmu_notifier_release(struct mm_struct *mm);
280 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
281 					  unsigned long start,
282 					  unsigned long end);
283 extern int __mmu_notifier_clear_young(struct mm_struct *mm,
284 				      unsigned long start,
285 				      unsigned long end);
286 extern int __mmu_notifier_test_young(struct mm_struct *mm,
287 				     unsigned long address);
288 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
289 				      unsigned long address, pte_t pte);
290 extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
291 extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r,
292 				  bool only_end);
293 extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
294 				  unsigned long start, unsigned long end);
295 extern bool
296 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range);
297 
298 static inline bool
mmu_notifier_range_blockable(const struct mmu_notifier_range * range)299 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
300 {
301 	return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE);
302 }
303 
mmu_notifier_release(struct mm_struct * mm)304 static inline void mmu_notifier_release(struct mm_struct *mm)
305 {
306 	if (mm_has_notifiers(mm))
307 		__mmu_notifier_release(mm);
308 }
309 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)310 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
311 					  unsigned long start,
312 					  unsigned long end)
313 {
314 	if (mm_has_notifiers(mm))
315 		return __mmu_notifier_clear_flush_young(mm, start, end);
316 	return 0;
317 }
318 
mmu_notifier_clear_young(struct mm_struct * mm,unsigned long start,unsigned long end)319 static inline int mmu_notifier_clear_young(struct mm_struct *mm,
320 					   unsigned long start,
321 					   unsigned long end)
322 {
323 	if (mm_has_notifiers(mm))
324 		return __mmu_notifier_clear_young(mm, start, end);
325 	return 0;
326 }
327 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)328 static inline int mmu_notifier_test_young(struct mm_struct *mm,
329 					  unsigned long address)
330 {
331 	if (mm_has_notifiers(mm))
332 		return __mmu_notifier_test_young(mm, address);
333 	return 0;
334 }
335 
mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)336 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
337 					   unsigned long address, pte_t pte)
338 {
339 	if (mm_has_notifiers(mm))
340 		__mmu_notifier_change_pte(mm, address, pte);
341 }
342 
343 static inline void
mmu_notifier_invalidate_range_start(struct mmu_notifier_range * range)344 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
345 {
346 	might_sleep();
347 
348 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
349 	if (mm_has_notifiers(range->mm)) {
350 		range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE;
351 		__mmu_notifier_invalidate_range_start(range);
352 	}
353 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
354 }
355 
356 static inline int
mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range * range)357 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
358 {
359 	int ret = 0;
360 
361 	lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
362 	if (mm_has_notifiers(range->mm)) {
363 		range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE;
364 		ret = __mmu_notifier_invalidate_range_start(range);
365 	}
366 	lock_map_release(&__mmu_notifier_invalidate_range_start_map);
367 	return ret;
368 }
369 
370 static inline void
mmu_notifier_invalidate_range_end(struct mmu_notifier_range * range)371 mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
372 {
373 	if (mmu_notifier_range_blockable(range))
374 		might_sleep();
375 
376 	if (mm_has_notifiers(range->mm))
377 		__mmu_notifier_invalidate_range_end(range, false);
378 }
379 
380 static inline void
mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range * range)381 mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
382 {
383 	if (mm_has_notifiers(range->mm))
384 		__mmu_notifier_invalidate_range_end(range, true);
385 }
386 
mmu_notifier_invalidate_range(struct mm_struct * mm,unsigned long start,unsigned long end)387 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
388 				  unsigned long start, unsigned long end)
389 {
390 	if (mm_has_notifiers(mm))
391 		__mmu_notifier_invalidate_range(mm, start, end);
392 }
393 
mmu_notifier_mm_init(struct mm_struct * mm)394 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
395 {
396 	mm->mmu_notifier_mm = NULL;
397 }
398 
mmu_notifier_mm_destroy(struct mm_struct * mm)399 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
400 {
401 	if (mm_has_notifiers(mm))
402 		__mmu_notifier_mm_destroy(mm);
403 }
404 
405 
mmu_notifier_range_init(struct mmu_notifier_range * range,enum mmu_notifier_event event,unsigned flags,struct vm_area_struct * vma,struct mm_struct * mm,unsigned long start,unsigned long end)406 static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
407 					   enum mmu_notifier_event event,
408 					   unsigned flags,
409 					   struct vm_area_struct *vma,
410 					   struct mm_struct *mm,
411 					   unsigned long start,
412 					   unsigned long end)
413 {
414 	range->vma = vma;
415 	range->event = event;
416 	range->mm = mm;
417 	range->start = start;
418 	range->end = end;
419 	range->flags = flags;
420 }
421 
422 #define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
423 ({									\
424 	int __young;							\
425 	struct vm_area_struct *___vma = __vma;				\
426 	unsigned long ___address = __address;				\
427 	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
428 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
429 						  ___address,		\
430 						  ___address +		\
431 							PAGE_SIZE);	\
432 	__young;							\
433 })
434 
435 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)		\
436 ({									\
437 	int __young;							\
438 	struct vm_area_struct *___vma = __vma;				\
439 	unsigned long ___address = __address;				\
440 	__young = pmdp_clear_flush_young(___vma, ___address, __pmdp);	\
441 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
442 						  ___address,		\
443 						  ___address +		\
444 							PMD_SIZE);	\
445 	__young;							\
446 })
447 
448 #define ptep_clear_young_notify(__vma, __address, __ptep)		\
449 ({									\
450 	int __young;							\
451 	struct vm_area_struct *___vma = __vma;				\
452 	unsigned long ___address = __address;				\
453 	__young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
454 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
455 					    ___address + PAGE_SIZE);	\
456 	__young;							\
457 })
458 
459 #define pmdp_clear_young_notify(__vma, __address, __pmdp)		\
460 ({									\
461 	int __young;							\
462 	struct vm_area_struct *___vma = __vma;				\
463 	unsigned long ___address = __address;				\
464 	__young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
465 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
466 					    ___address + PMD_SIZE);	\
467 	__young;							\
468 })
469 
470 #define	ptep_clear_flush_notify(__vma, __address, __ptep)		\
471 ({									\
472 	unsigned long ___addr = __address & PAGE_MASK;			\
473 	struct mm_struct *___mm = (__vma)->vm_mm;			\
474 	pte_t ___pte;							\
475 									\
476 	___pte = ptep_clear_flush(__vma, __address, __ptep);		\
477 	mmu_notifier_invalidate_range(___mm, ___addr,			\
478 					___addr + PAGE_SIZE);		\
479 									\
480 	___pte;								\
481 })
482 
483 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd)		\
484 ({									\
485 	unsigned long ___haddr = __haddr & HPAGE_PMD_MASK;		\
486 	struct mm_struct *___mm = (__vma)->vm_mm;			\
487 	pmd_t ___pmd;							\
488 									\
489 	___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd);		\
490 	mmu_notifier_invalidate_range(___mm, ___haddr,			\
491 				      ___haddr + HPAGE_PMD_SIZE);	\
492 									\
493 	___pmd;								\
494 })
495 
496 #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud)		\
497 ({									\
498 	unsigned long ___haddr = __haddr & HPAGE_PUD_MASK;		\
499 	struct mm_struct *___mm = (__vma)->vm_mm;			\
500 	pud_t ___pud;							\
501 									\
502 	___pud = pudp_huge_clear_flush(__vma, __haddr, __pud);		\
503 	mmu_notifier_invalidate_range(___mm, ___haddr,			\
504 				      ___haddr + HPAGE_PUD_SIZE);	\
505 									\
506 	___pud;								\
507 })
508 
509 /*
510  * set_pte_at_notify() sets the pte _after_ running the notifier.
511  * This is safe to start by updating the secondary MMUs, because the primary MMU
512  * pte invalidate must have already happened with a ptep_clear_flush() before
513  * set_pte_at_notify() has been invoked.  Updating the secondary MMUs first is
514  * required when we change both the protection of the mapping from read-only to
515  * read-write and the pfn (like during copy on write page faults). Otherwise the
516  * old page would remain mapped readonly in the secondary MMUs after the new
517  * page is already writable by some CPU through the primary MMU.
518  */
519 #define set_pte_at_notify(__mm, __address, __ptep, __pte)		\
520 ({									\
521 	struct mm_struct *___mm = __mm;					\
522 	unsigned long ___address = __address;				\
523 	pte_t ___pte = __pte;						\
524 									\
525 	mmu_notifier_change_pte(___mm, ___address, ___pte);		\
526 	set_pte_at(___mm, ___address, __ptep, ___pte);			\
527 })
528 
529 #else /* CONFIG_MMU_NOTIFIER */
530 
531 struct mmu_notifier_range {
532 	unsigned long start;
533 	unsigned long end;
534 };
535 
_mmu_notifier_range_init(struct mmu_notifier_range * range,unsigned long start,unsigned long end)536 static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
537 					    unsigned long start,
538 					    unsigned long end)
539 {
540 	range->start = start;
541 	range->end = end;
542 }
543 
544 #define mmu_notifier_range_init(range,event,flags,vma,mm,start,end)  \
545 	_mmu_notifier_range_init(range, start, end)
546 
547 static inline bool
mmu_notifier_range_blockable(const struct mmu_notifier_range * range)548 mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
549 {
550 	return true;
551 }
552 
mm_has_notifiers(struct mm_struct * mm)553 static inline int mm_has_notifiers(struct mm_struct *mm)
554 {
555 	return 0;
556 }
557 
mmu_notifier_release(struct mm_struct * mm)558 static inline void mmu_notifier_release(struct mm_struct *mm)
559 {
560 }
561 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)562 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
563 					  unsigned long start,
564 					  unsigned long end)
565 {
566 	return 0;
567 }
568 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)569 static inline int mmu_notifier_test_young(struct mm_struct *mm,
570 					  unsigned long address)
571 {
572 	return 0;
573 }
574 
mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)575 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
576 					   unsigned long address, pte_t pte)
577 {
578 }
579 
580 static inline void
mmu_notifier_invalidate_range_start(struct mmu_notifier_range * range)581 mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
582 {
583 }
584 
585 static inline int
mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range * range)586 mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
587 {
588 	return 0;
589 }
590 
591 static inline
mmu_notifier_invalidate_range_end(struct mmu_notifier_range * range)592 void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
593 {
594 }
595 
596 static inline void
mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range * range)597 mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
598 {
599 }
600 
mmu_notifier_invalidate_range(struct mm_struct * mm,unsigned long start,unsigned long end)601 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
602 				  unsigned long start, unsigned long end)
603 {
604 }
605 
mmu_notifier_mm_init(struct mm_struct * mm)606 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
607 {
608 }
609 
mmu_notifier_mm_destroy(struct mm_struct * mm)610 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
611 {
612 }
613 
614 #define mmu_notifier_range_update_to_read_only(r) false
615 
616 #define ptep_clear_flush_young_notify ptep_clear_flush_young
617 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
618 #define ptep_clear_young_notify ptep_test_and_clear_young
619 #define pmdp_clear_young_notify pmdp_test_and_clear_young
620 #define	ptep_clear_flush_notify ptep_clear_flush
621 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
622 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush
623 #define set_pte_at_notify set_pte_at
624 
mmu_notifier_synchronize(void)625 static inline void mmu_notifier_synchronize(void)
626 {
627 }
628 
629 #endif /* CONFIG_MMU_NOTIFIER */
630 
631 #endif /* _LINUX_MMU_NOTIFIER_H */
632