1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
4  *
5  *
6  *  The parts for function graph printing was taken and modified from the
7  *  Linux Kernel that were written by
8  *    - Copyright (C) 2009  Frederic Weisbecker,
9  *  Frederic Weisbecker gave his permission to relicense the code to
10  *  the Lesser General Public License.
11  */
12 #include <inttypes.h>
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <stdarg.h>
17 #include <ctype.h>
18 #include <errno.h>
19 #include <stdint.h>
20 #include <limits.h>
21 #include <linux/string.h>
22 #include <linux/time64.h>
23 
24 #include <netinet/in.h>
25 #include "event-parse.h"
26 #include "event-utils.h"
27 
28 static const char *input_buf;
29 static unsigned long long input_buf_ptr;
30 static unsigned long long input_buf_siz;
31 
32 static int is_flag_field;
33 static int is_symbolic_field;
34 
35 static int show_warning = 1;
36 
37 #define do_warning(fmt, ...)				\
38 	do {						\
39 		if (show_warning)			\
40 			warning(fmt, ##__VA_ARGS__);	\
41 	} while (0)
42 
43 #define do_warning_event(event, fmt, ...)			\
44 	do {							\
45 		if (!show_warning)				\
46 			continue;				\
47 								\
48 		if (event)					\
49 			warning("[%s:%s] " fmt, event->system,	\
50 				event->name, ##__VA_ARGS__);	\
51 		else						\
52 			warning(fmt, ##__VA_ARGS__);		\
53 	} while (0)
54 
init_input_buf(const char * buf,unsigned long long size)55 static void init_input_buf(const char *buf, unsigned long long size)
56 {
57 	input_buf = buf;
58 	input_buf_siz = size;
59 	input_buf_ptr = 0;
60 }
61 
tep_get_input_buf(void)62 const char *tep_get_input_buf(void)
63 {
64 	return input_buf;
65 }
66 
tep_get_input_buf_ptr(void)67 unsigned long long tep_get_input_buf_ptr(void)
68 {
69 	return input_buf_ptr;
70 }
71 
72 struct event_handler {
73 	struct event_handler		*next;
74 	int				id;
75 	const char			*sys_name;
76 	const char			*event_name;
77 	tep_event_handler_func		func;
78 	void				*context;
79 };
80 
81 struct func_params {
82 	struct func_params	*next;
83 	enum tep_func_arg_type	type;
84 };
85 
86 struct tep_function_handler {
87 	struct tep_function_handler	*next;
88 	enum tep_func_arg_type		ret_type;
89 	char				*name;
90 	tep_func_handler		func;
91 	struct func_params		*params;
92 	int				nr_args;
93 };
94 
95 static unsigned long long
96 process_defined_func(struct trace_seq *s, void *data, int size,
97 		     struct event_format *event, struct print_arg *arg);
98 
99 static void free_func_handle(struct tep_function_handler *func);
100 
101 /**
102  * tep_buffer_init - init buffer for parsing
103  * @buf: buffer to parse
104  * @size: the size of the buffer
105  *
106  * For use with tep_read_token(), this initializes the internal
107  * buffer that tep_read_token() will parse.
108  */
tep_buffer_init(const char * buf,unsigned long long size)109 void tep_buffer_init(const char *buf, unsigned long long size)
110 {
111 	init_input_buf(buf, size);
112 }
113 
breakpoint(void)114 void breakpoint(void)
115 {
116 	static int x;
117 	x++;
118 }
119 
alloc_arg(void)120 struct print_arg *alloc_arg(void)
121 {
122 	return calloc(1, sizeof(struct print_arg));
123 }
124 
125 struct cmdline {
126 	char *comm;
127 	int pid;
128 };
129 
cmdline_cmp(const void * a,const void * b)130 static int cmdline_cmp(const void *a, const void *b)
131 {
132 	const struct cmdline *ca = a;
133 	const struct cmdline *cb = b;
134 
135 	if (ca->pid < cb->pid)
136 		return -1;
137 	if (ca->pid > cb->pid)
138 		return 1;
139 
140 	return 0;
141 }
142 
143 struct cmdline_list {
144 	struct cmdline_list	*next;
145 	char			*comm;
146 	int			pid;
147 };
148 
cmdline_init(struct tep_handle * pevent)149 static int cmdline_init(struct tep_handle *pevent)
150 {
151 	struct cmdline_list *cmdlist = pevent->cmdlist;
152 	struct cmdline_list *item;
153 	struct cmdline *cmdlines;
154 	int i;
155 
156 	cmdlines = malloc(sizeof(*cmdlines) * pevent->cmdline_count);
157 	if (!cmdlines)
158 		return -1;
159 
160 	i = 0;
161 	while (cmdlist) {
162 		cmdlines[i].pid = cmdlist->pid;
163 		cmdlines[i].comm = cmdlist->comm;
164 		i++;
165 		item = cmdlist;
166 		cmdlist = cmdlist->next;
167 		free(item);
168 	}
169 
170 	qsort(cmdlines, pevent->cmdline_count, sizeof(*cmdlines), cmdline_cmp);
171 
172 	pevent->cmdlines = cmdlines;
173 	pevent->cmdlist = NULL;
174 
175 	return 0;
176 }
177 
find_cmdline(struct tep_handle * pevent,int pid)178 static const char *find_cmdline(struct tep_handle *pevent, int pid)
179 {
180 	const struct cmdline *comm;
181 	struct cmdline key;
182 
183 	if (!pid)
184 		return "<idle>";
185 
186 	if (!pevent->cmdlines && cmdline_init(pevent))
187 		return "<not enough memory for cmdlines!>";
188 
189 	key.pid = pid;
190 
191 	comm = bsearch(&key, pevent->cmdlines, pevent->cmdline_count,
192 		       sizeof(*pevent->cmdlines), cmdline_cmp);
193 
194 	if (comm)
195 		return comm->comm;
196 	return "<...>";
197 }
198 
199 /**
200  * tep_pid_is_registered - return if a pid has a cmdline registered
201  * @pevent: handle for the pevent
202  * @pid: The pid to check if it has a cmdline registered with.
203  *
204  * Returns 1 if the pid has a cmdline mapped to it
205  * 0 otherwise.
206  */
tep_pid_is_registered(struct tep_handle * pevent,int pid)207 int tep_pid_is_registered(struct tep_handle *pevent, int pid)
208 {
209 	const struct cmdline *comm;
210 	struct cmdline key;
211 
212 	if (!pid)
213 		return 1;
214 
215 	if (!pevent->cmdlines && cmdline_init(pevent))
216 		return 0;
217 
218 	key.pid = pid;
219 
220 	comm = bsearch(&key, pevent->cmdlines, pevent->cmdline_count,
221 		       sizeof(*pevent->cmdlines), cmdline_cmp);
222 
223 	if (comm)
224 		return 1;
225 	return 0;
226 }
227 
228 /*
229  * If the command lines have been converted to an array, then
230  * we must add this pid. This is much slower than when cmdlines
231  * are added before the array is initialized.
232  */
add_new_comm(struct tep_handle * pevent,const char * comm,int pid)233 static int add_new_comm(struct tep_handle *pevent, const char *comm, int pid)
234 {
235 	struct cmdline *cmdlines = pevent->cmdlines;
236 	const struct cmdline *cmdline;
237 	struct cmdline key;
238 
239 	if (!pid)
240 		return 0;
241 
242 	/* avoid duplicates */
243 	key.pid = pid;
244 
245 	cmdline = bsearch(&key, pevent->cmdlines, pevent->cmdline_count,
246 		       sizeof(*pevent->cmdlines), cmdline_cmp);
247 	if (cmdline) {
248 		errno = EEXIST;
249 		return -1;
250 	}
251 
252 	cmdlines = realloc(cmdlines, sizeof(*cmdlines) * (pevent->cmdline_count + 1));
253 	if (!cmdlines) {
254 		errno = ENOMEM;
255 		return -1;
256 	}
257 
258 	cmdlines[pevent->cmdline_count].comm = strdup(comm);
259 	if (!cmdlines[pevent->cmdline_count].comm) {
260 		free(cmdlines);
261 		errno = ENOMEM;
262 		return -1;
263 	}
264 
265 	cmdlines[pevent->cmdline_count].pid = pid;
266 
267 	if (cmdlines[pevent->cmdline_count].comm)
268 		pevent->cmdline_count++;
269 
270 	qsort(cmdlines, pevent->cmdline_count, sizeof(*cmdlines), cmdline_cmp);
271 	pevent->cmdlines = cmdlines;
272 
273 	return 0;
274 }
275 
276 /**
277  * tep_register_comm - register a pid / comm mapping
278  * @pevent: handle for the pevent
279  * @comm: the command line to register
280  * @pid: the pid to map the command line to
281  *
282  * This adds a mapping to search for command line names with
283  * a given pid. The comm is duplicated.
284  */
tep_register_comm(struct tep_handle * pevent,const char * comm,int pid)285 int tep_register_comm(struct tep_handle *pevent, const char *comm, int pid)
286 {
287 	struct cmdline_list *item;
288 
289 	if (pevent->cmdlines)
290 		return add_new_comm(pevent, comm, pid);
291 
292 	item = malloc(sizeof(*item));
293 	if (!item)
294 		return -1;
295 
296 	if (comm)
297 		item->comm = strdup(comm);
298 	else
299 		item->comm = strdup("<...>");
300 	if (!item->comm) {
301 		free(item);
302 		return -1;
303 	}
304 	item->pid = pid;
305 	item->next = pevent->cmdlist;
306 
307 	pevent->cmdlist = item;
308 	pevent->cmdline_count++;
309 
310 	return 0;
311 }
312 
tep_register_trace_clock(struct tep_handle * pevent,const char * trace_clock)313 int tep_register_trace_clock(struct tep_handle *pevent, const char *trace_clock)
314 {
315 	pevent->trace_clock = strdup(trace_clock);
316 	if (!pevent->trace_clock) {
317 		errno = ENOMEM;
318 		return -1;
319 	}
320 	return 0;
321 }
322 
323 struct func_map {
324 	unsigned long long		addr;
325 	char				*func;
326 	char				*mod;
327 };
328 
329 struct func_list {
330 	struct func_list	*next;
331 	unsigned long long	addr;
332 	char			*func;
333 	char			*mod;
334 };
335 
func_cmp(const void * a,const void * b)336 static int func_cmp(const void *a, const void *b)
337 {
338 	const struct func_map *fa = a;
339 	const struct func_map *fb = b;
340 
341 	if (fa->addr < fb->addr)
342 		return -1;
343 	if (fa->addr > fb->addr)
344 		return 1;
345 
346 	return 0;
347 }
348 
349 /*
350  * We are searching for a record in between, not an exact
351  * match.
352  */
func_bcmp(const void * a,const void * b)353 static int func_bcmp(const void *a, const void *b)
354 {
355 	const struct func_map *fa = a;
356 	const struct func_map *fb = b;
357 
358 	if ((fa->addr == fb->addr) ||
359 
360 	    (fa->addr > fb->addr &&
361 	     fa->addr < (fb+1)->addr))
362 		return 0;
363 
364 	if (fa->addr < fb->addr)
365 		return -1;
366 
367 	return 1;
368 }
369 
func_map_init(struct tep_handle * pevent)370 static int func_map_init(struct tep_handle *pevent)
371 {
372 	struct func_list *funclist;
373 	struct func_list *item;
374 	struct func_map *func_map;
375 	int i;
376 
377 	func_map = malloc(sizeof(*func_map) * (pevent->func_count + 1));
378 	if (!func_map)
379 		return -1;
380 
381 	funclist = pevent->funclist;
382 
383 	i = 0;
384 	while (funclist) {
385 		func_map[i].func = funclist->func;
386 		func_map[i].addr = funclist->addr;
387 		func_map[i].mod = funclist->mod;
388 		i++;
389 		item = funclist;
390 		funclist = funclist->next;
391 		free(item);
392 	}
393 
394 	qsort(func_map, pevent->func_count, sizeof(*func_map), func_cmp);
395 
396 	/*
397 	 * Add a special record at the end.
398 	 */
399 	func_map[pevent->func_count].func = NULL;
400 	func_map[pevent->func_count].addr = 0;
401 	func_map[pevent->func_count].mod = NULL;
402 
403 	pevent->func_map = func_map;
404 	pevent->funclist = NULL;
405 
406 	return 0;
407 }
408 
409 static struct func_map *
__find_func(struct tep_handle * pevent,unsigned long long addr)410 __find_func(struct tep_handle *pevent, unsigned long long addr)
411 {
412 	struct func_map *func;
413 	struct func_map key;
414 
415 	if (!pevent->func_map)
416 		func_map_init(pevent);
417 
418 	key.addr = addr;
419 
420 	func = bsearch(&key, pevent->func_map, pevent->func_count,
421 		       sizeof(*pevent->func_map), func_bcmp);
422 
423 	return func;
424 }
425 
426 struct func_resolver {
427 	tep_func_resolver_t	*func;
428 	void			*priv;
429 	struct func_map		map;
430 };
431 
432 /**
433  * tep_set_function_resolver - set an alternative function resolver
434  * @pevent: handle for the pevent
435  * @resolver: function to be used
436  * @priv: resolver function private state.
437  *
438  * Some tools may have already a way to resolve kernel functions, allow them to
439  * keep using it instead of duplicating all the entries inside
440  * pevent->funclist.
441  */
tep_set_function_resolver(struct tep_handle * pevent,tep_func_resolver_t * func,void * priv)442 int tep_set_function_resolver(struct tep_handle *pevent,
443 			      tep_func_resolver_t *func, void *priv)
444 {
445 	struct func_resolver *resolver = malloc(sizeof(*resolver));
446 
447 	if (resolver == NULL)
448 		return -1;
449 
450 	resolver->func = func;
451 	resolver->priv = priv;
452 
453 	free(pevent->func_resolver);
454 	pevent->func_resolver = resolver;
455 
456 	return 0;
457 }
458 
459 /**
460  * tep_reset_function_resolver - reset alternative function resolver
461  * @pevent: handle for the pevent
462  *
463  * Stop using whatever alternative resolver was set, use the default
464  * one instead.
465  */
tep_reset_function_resolver(struct tep_handle * pevent)466 void tep_reset_function_resolver(struct tep_handle *pevent)
467 {
468 	free(pevent->func_resolver);
469 	pevent->func_resolver = NULL;
470 }
471 
472 static struct func_map *
find_func(struct tep_handle * pevent,unsigned long long addr)473 find_func(struct tep_handle *pevent, unsigned long long addr)
474 {
475 	struct func_map *map;
476 
477 	if (!pevent->func_resolver)
478 		return __find_func(pevent, addr);
479 
480 	map = &pevent->func_resolver->map;
481 	map->mod  = NULL;
482 	map->addr = addr;
483 	map->func = pevent->func_resolver->func(pevent->func_resolver->priv,
484 						&map->addr, &map->mod);
485 	if (map->func == NULL)
486 		return NULL;
487 
488 	return map;
489 }
490 
491 /**
492  * tep_find_function - find a function by a given address
493  * @pevent: handle for the pevent
494  * @addr: the address to find the function with
495  *
496  * Returns a pointer to the function stored that has the given
497  * address. Note, the address does not have to be exact, it
498  * will select the function that would contain the address.
499  */
tep_find_function(struct tep_handle * pevent,unsigned long long addr)500 const char *tep_find_function(struct tep_handle *pevent, unsigned long long addr)
501 {
502 	struct func_map *map;
503 
504 	map = find_func(pevent, addr);
505 	if (!map)
506 		return NULL;
507 
508 	return map->func;
509 }
510 
511 /**
512  * tep_find_function_address - find a function address by a given address
513  * @pevent: handle for the pevent
514  * @addr: the address to find the function with
515  *
516  * Returns the address the function starts at. This can be used in
517  * conjunction with tep_find_function to print both the function
518  * name and the function offset.
519  */
520 unsigned long long
tep_find_function_address(struct tep_handle * pevent,unsigned long long addr)521 tep_find_function_address(struct tep_handle *pevent, unsigned long long addr)
522 {
523 	struct func_map *map;
524 
525 	map = find_func(pevent, addr);
526 	if (!map)
527 		return 0;
528 
529 	return map->addr;
530 }
531 
532 /**
533  * tep_register_function - register a function with a given address
534  * @pevent: handle for the pevent
535  * @function: the function name to register
536  * @addr: the address the function starts at
537  * @mod: the kernel module the function may be in (NULL for none)
538  *
539  * This registers a function name with an address and module.
540  * The @func passed in is duplicated.
541  */
tep_register_function(struct tep_handle * pevent,char * func,unsigned long long addr,char * mod)542 int tep_register_function(struct tep_handle *pevent, char *func,
543 			  unsigned long long addr, char *mod)
544 {
545 	struct func_list *item = malloc(sizeof(*item));
546 
547 	if (!item)
548 		return -1;
549 
550 	item->next = pevent->funclist;
551 	item->func = strdup(func);
552 	if (!item->func)
553 		goto out_free;
554 
555 	if (mod) {
556 		item->mod = strdup(mod);
557 		if (!item->mod)
558 			goto out_free_func;
559 	} else
560 		item->mod = NULL;
561 	item->addr = addr;
562 
563 	pevent->funclist = item;
564 	pevent->func_count++;
565 
566 	return 0;
567 
568 out_free_func:
569 	free(item->func);
570 	item->func = NULL;
571 out_free:
572 	free(item);
573 	errno = ENOMEM;
574 	return -1;
575 }
576 
577 /**
578  * tep_print_funcs - print out the stored functions
579  * @pevent: handle for the pevent
580  *
581  * This prints out the stored functions.
582  */
tep_print_funcs(struct tep_handle * pevent)583 void tep_print_funcs(struct tep_handle *pevent)
584 {
585 	int i;
586 
587 	if (!pevent->func_map)
588 		func_map_init(pevent);
589 
590 	for (i = 0; i < (int)pevent->func_count; i++) {
591 		printf("%016llx %s",
592 		       pevent->func_map[i].addr,
593 		       pevent->func_map[i].func);
594 		if (pevent->func_map[i].mod)
595 			printf(" [%s]\n", pevent->func_map[i].mod);
596 		else
597 			printf("\n");
598 	}
599 }
600 
601 struct printk_map {
602 	unsigned long long		addr;
603 	char				*printk;
604 };
605 
606 struct printk_list {
607 	struct printk_list	*next;
608 	unsigned long long	addr;
609 	char			*printk;
610 };
611 
printk_cmp(const void * a,const void * b)612 static int printk_cmp(const void *a, const void *b)
613 {
614 	const struct printk_map *pa = a;
615 	const struct printk_map *pb = b;
616 
617 	if (pa->addr < pb->addr)
618 		return -1;
619 	if (pa->addr > pb->addr)
620 		return 1;
621 
622 	return 0;
623 }
624 
printk_map_init(struct tep_handle * pevent)625 static int printk_map_init(struct tep_handle *pevent)
626 {
627 	struct printk_list *printklist;
628 	struct printk_list *item;
629 	struct printk_map *printk_map;
630 	int i;
631 
632 	printk_map = malloc(sizeof(*printk_map) * (pevent->printk_count + 1));
633 	if (!printk_map)
634 		return -1;
635 
636 	printklist = pevent->printklist;
637 
638 	i = 0;
639 	while (printklist) {
640 		printk_map[i].printk = printklist->printk;
641 		printk_map[i].addr = printklist->addr;
642 		i++;
643 		item = printklist;
644 		printklist = printklist->next;
645 		free(item);
646 	}
647 
648 	qsort(printk_map, pevent->printk_count, sizeof(*printk_map), printk_cmp);
649 
650 	pevent->printk_map = printk_map;
651 	pevent->printklist = NULL;
652 
653 	return 0;
654 }
655 
656 static struct printk_map *
find_printk(struct tep_handle * pevent,unsigned long long addr)657 find_printk(struct tep_handle *pevent, unsigned long long addr)
658 {
659 	struct printk_map *printk;
660 	struct printk_map key;
661 
662 	if (!pevent->printk_map && printk_map_init(pevent))
663 		return NULL;
664 
665 	key.addr = addr;
666 
667 	printk = bsearch(&key, pevent->printk_map, pevent->printk_count,
668 			 sizeof(*pevent->printk_map), printk_cmp);
669 
670 	return printk;
671 }
672 
673 /**
674  * tep_register_print_string - register a string by its address
675  * @pevent: handle for the pevent
676  * @fmt: the string format to register
677  * @addr: the address the string was located at
678  *
679  * This registers a string by the address it was stored in the kernel.
680  * The @fmt passed in is duplicated.
681  */
tep_register_print_string(struct tep_handle * pevent,const char * fmt,unsigned long long addr)682 int tep_register_print_string(struct tep_handle *pevent, const char *fmt,
683 			      unsigned long long addr)
684 {
685 	struct printk_list *item = malloc(sizeof(*item));
686 	char *p;
687 
688 	if (!item)
689 		return -1;
690 
691 	item->next = pevent->printklist;
692 	item->addr = addr;
693 
694 	/* Strip off quotes and '\n' from the end */
695 	if (fmt[0] == '"')
696 		fmt++;
697 	item->printk = strdup(fmt);
698 	if (!item->printk)
699 		goto out_free;
700 
701 	p = item->printk + strlen(item->printk) - 1;
702 	if (*p == '"')
703 		*p = 0;
704 
705 	p -= 2;
706 	if (strcmp(p, "\\n") == 0)
707 		*p = 0;
708 
709 	pevent->printklist = item;
710 	pevent->printk_count++;
711 
712 	return 0;
713 
714 out_free:
715 	free(item);
716 	errno = ENOMEM;
717 	return -1;
718 }
719 
720 /**
721  * tep_print_printk - print out the stored strings
722  * @pevent: handle for the pevent
723  *
724  * This prints the string formats that were stored.
725  */
tep_print_printk(struct tep_handle * pevent)726 void tep_print_printk(struct tep_handle *pevent)
727 {
728 	int i;
729 
730 	if (!pevent->printk_map)
731 		printk_map_init(pevent);
732 
733 	for (i = 0; i < (int)pevent->printk_count; i++) {
734 		printf("%016llx %s\n",
735 		       pevent->printk_map[i].addr,
736 		       pevent->printk_map[i].printk);
737 	}
738 }
739 
alloc_event(void)740 static struct event_format *alloc_event(void)
741 {
742 	return calloc(1, sizeof(struct event_format));
743 }
744 
add_event(struct tep_handle * pevent,struct event_format * event)745 static int add_event(struct tep_handle *pevent, struct event_format *event)
746 {
747 	int i;
748 	struct event_format **events = realloc(pevent->events, sizeof(event) *
749 					       (pevent->nr_events + 1));
750 	if (!events)
751 		return -1;
752 
753 	pevent->events = events;
754 
755 	for (i = 0; i < pevent->nr_events; i++) {
756 		if (pevent->events[i]->id > event->id)
757 			break;
758 	}
759 	if (i < pevent->nr_events)
760 		memmove(&pevent->events[i + 1],
761 			&pevent->events[i],
762 			sizeof(event) * (pevent->nr_events - i));
763 
764 	pevent->events[i] = event;
765 	pevent->nr_events++;
766 
767 	event->pevent = pevent;
768 
769 	return 0;
770 }
771 
event_item_type(enum event_type type)772 static int event_item_type(enum event_type type)
773 {
774 	switch (type) {
775 	case EVENT_ITEM ... EVENT_SQUOTE:
776 		return 1;
777 	case EVENT_ERROR ... EVENT_DELIM:
778 	default:
779 		return 0;
780 	}
781 }
782 
free_flag_sym(struct print_flag_sym * fsym)783 static void free_flag_sym(struct print_flag_sym *fsym)
784 {
785 	struct print_flag_sym *next;
786 
787 	while (fsym) {
788 		next = fsym->next;
789 		free(fsym->value);
790 		free(fsym->str);
791 		free(fsym);
792 		fsym = next;
793 	}
794 }
795 
free_arg(struct print_arg * arg)796 static void free_arg(struct print_arg *arg)
797 {
798 	struct print_arg *farg;
799 
800 	if (!arg)
801 		return;
802 
803 	switch (arg->type) {
804 	case PRINT_ATOM:
805 		free(arg->atom.atom);
806 		break;
807 	case PRINT_FIELD:
808 		free(arg->field.name);
809 		break;
810 	case PRINT_FLAGS:
811 		free_arg(arg->flags.field);
812 		free(arg->flags.delim);
813 		free_flag_sym(arg->flags.flags);
814 		break;
815 	case PRINT_SYMBOL:
816 		free_arg(arg->symbol.field);
817 		free_flag_sym(arg->symbol.symbols);
818 		break;
819 	case PRINT_HEX:
820 	case PRINT_HEX_STR:
821 		free_arg(arg->hex.field);
822 		free_arg(arg->hex.size);
823 		break;
824 	case PRINT_INT_ARRAY:
825 		free_arg(arg->int_array.field);
826 		free_arg(arg->int_array.count);
827 		free_arg(arg->int_array.el_size);
828 		break;
829 	case PRINT_TYPE:
830 		free(arg->typecast.type);
831 		free_arg(arg->typecast.item);
832 		break;
833 	case PRINT_STRING:
834 	case PRINT_BSTRING:
835 		free(arg->string.string);
836 		break;
837 	case PRINT_BITMASK:
838 		free(arg->bitmask.bitmask);
839 		break;
840 	case PRINT_DYNAMIC_ARRAY:
841 	case PRINT_DYNAMIC_ARRAY_LEN:
842 		free(arg->dynarray.index);
843 		break;
844 	case PRINT_OP:
845 		free(arg->op.op);
846 		free_arg(arg->op.left);
847 		free_arg(arg->op.right);
848 		break;
849 	case PRINT_FUNC:
850 		while (arg->func.args) {
851 			farg = arg->func.args;
852 			arg->func.args = farg->next;
853 			free_arg(farg);
854 		}
855 		break;
856 
857 	case PRINT_NULL:
858 	default:
859 		break;
860 	}
861 
862 	free(arg);
863 }
864 
get_type(int ch)865 static enum event_type get_type(int ch)
866 {
867 	if (ch == '\n')
868 		return EVENT_NEWLINE;
869 	if (isspace(ch))
870 		return EVENT_SPACE;
871 	if (isalnum(ch) || ch == '_')
872 		return EVENT_ITEM;
873 	if (ch == '\'')
874 		return EVENT_SQUOTE;
875 	if (ch == '"')
876 		return EVENT_DQUOTE;
877 	if (!isprint(ch))
878 		return EVENT_NONE;
879 	if (ch == '(' || ch == ')' || ch == ',')
880 		return EVENT_DELIM;
881 
882 	return EVENT_OP;
883 }
884 
__read_char(void)885 static int __read_char(void)
886 {
887 	if (input_buf_ptr >= input_buf_siz)
888 		return -1;
889 
890 	return input_buf[input_buf_ptr++];
891 }
892 
__peek_char(void)893 static int __peek_char(void)
894 {
895 	if (input_buf_ptr >= input_buf_siz)
896 		return -1;
897 
898 	return input_buf[input_buf_ptr];
899 }
900 
901 /**
902  * tep_peek_char - peek at the next character that will be read
903  *
904  * Returns the next character read, or -1 if end of buffer.
905  */
tep_peek_char(void)906 int tep_peek_char(void)
907 {
908 	return __peek_char();
909 }
910 
extend_token(char ** tok,char * buf,int size)911 static int extend_token(char **tok, char *buf, int size)
912 {
913 	char *newtok = realloc(*tok, size);
914 
915 	if (!newtok) {
916 		free(*tok);
917 		*tok = NULL;
918 		return -1;
919 	}
920 
921 	if (!*tok)
922 		strcpy(newtok, buf);
923 	else
924 		strcat(newtok, buf);
925 	*tok = newtok;
926 
927 	return 0;
928 }
929 
930 static enum event_type force_token(const char *str, char **tok);
931 
__read_token(char ** tok)932 static enum event_type __read_token(char **tok)
933 {
934 	char buf[BUFSIZ];
935 	int ch, last_ch, quote_ch, next_ch;
936 	int i = 0;
937 	int tok_size = 0;
938 	enum event_type type;
939 
940 	*tok = NULL;
941 
942 
943 	ch = __read_char();
944 	if (ch < 0)
945 		return EVENT_NONE;
946 
947 	type = get_type(ch);
948 	if (type == EVENT_NONE)
949 		return type;
950 
951 	buf[i++] = ch;
952 
953 	switch (type) {
954 	case EVENT_NEWLINE:
955 	case EVENT_DELIM:
956 		if (asprintf(tok, "%c", ch) < 0)
957 			return EVENT_ERROR;
958 
959 		return type;
960 
961 	case EVENT_OP:
962 		switch (ch) {
963 		case '-':
964 			next_ch = __peek_char();
965 			if (next_ch == '>') {
966 				buf[i++] = __read_char();
967 				break;
968 			}
969 			/* fall through */
970 		case '+':
971 		case '|':
972 		case '&':
973 		case '>':
974 		case '<':
975 			last_ch = ch;
976 			ch = __peek_char();
977 			if (ch != last_ch)
978 				goto test_equal;
979 			buf[i++] = __read_char();
980 			switch (last_ch) {
981 			case '>':
982 			case '<':
983 				goto test_equal;
984 			default:
985 				break;
986 			}
987 			break;
988 		case '!':
989 		case '=':
990 			goto test_equal;
991 		default: /* what should we do instead? */
992 			break;
993 		}
994 		buf[i] = 0;
995 		*tok = strdup(buf);
996 		return type;
997 
998  test_equal:
999 		ch = __peek_char();
1000 		if (ch == '=')
1001 			buf[i++] = __read_char();
1002 		goto out;
1003 
1004 	case EVENT_DQUOTE:
1005 	case EVENT_SQUOTE:
1006 		/* don't keep quotes */
1007 		i--;
1008 		quote_ch = ch;
1009 		last_ch = 0;
1010  concat:
1011 		do {
1012 			if (i == (BUFSIZ - 1)) {
1013 				buf[i] = 0;
1014 				tok_size += BUFSIZ;
1015 
1016 				if (extend_token(tok, buf, tok_size) < 0)
1017 					return EVENT_NONE;
1018 				i = 0;
1019 			}
1020 			last_ch = ch;
1021 			ch = __read_char();
1022 			buf[i++] = ch;
1023 			/* the '\' '\' will cancel itself */
1024 			if (ch == '\\' && last_ch == '\\')
1025 				last_ch = 0;
1026 		} while (ch != quote_ch || last_ch == '\\');
1027 		/* remove the last quote */
1028 		i--;
1029 
1030 		/*
1031 		 * For strings (double quotes) check the next token.
1032 		 * If it is another string, concatinate the two.
1033 		 */
1034 		if (type == EVENT_DQUOTE) {
1035 			unsigned long long save_input_buf_ptr = input_buf_ptr;
1036 
1037 			do {
1038 				ch = __read_char();
1039 			} while (isspace(ch));
1040 			if (ch == '"')
1041 				goto concat;
1042 			input_buf_ptr = save_input_buf_ptr;
1043 		}
1044 
1045 		goto out;
1046 
1047 	case EVENT_ERROR ... EVENT_SPACE:
1048 	case EVENT_ITEM:
1049 	default:
1050 		break;
1051 	}
1052 
1053 	while (get_type(__peek_char()) == type) {
1054 		if (i == (BUFSIZ - 1)) {
1055 			buf[i] = 0;
1056 			tok_size += BUFSIZ;
1057 
1058 			if (extend_token(tok, buf, tok_size) < 0)
1059 				return EVENT_NONE;
1060 			i = 0;
1061 		}
1062 		ch = __read_char();
1063 		buf[i++] = ch;
1064 	}
1065 
1066  out:
1067 	buf[i] = 0;
1068 	if (extend_token(tok, buf, tok_size + i + 1) < 0)
1069 		return EVENT_NONE;
1070 
1071 	if (type == EVENT_ITEM) {
1072 		/*
1073 		 * Older versions of the kernel has a bug that
1074 		 * creates invalid symbols and will break the mac80211
1075 		 * parsing. This is a work around to that bug.
1076 		 *
1077 		 * See Linux kernel commit:
1078 		 *  811cb50baf63461ce0bdb234927046131fc7fa8b
1079 		 */
1080 		if (strcmp(*tok, "LOCAL_PR_FMT") == 0) {
1081 			free(*tok);
1082 			*tok = NULL;
1083 			return force_token("\"%s\" ", tok);
1084 		} else if (strcmp(*tok, "STA_PR_FMT") == 0) {
1085 			free(*tok);
1086 			*tok = NULL;
1087 			return force_token("\" sta:%pM\" ", tok);
1088 		} else if (strcmp(*tok, "VIF_PR_FMT") == 0) {
1089 			free(*tok);
1090 			*tok = NULL;
1091 			return force_token("\" vif:%p(%d)\" ", tok);
1092 		}
1093 	}
1094 
1095 	return type;
1096 }
1097 
force_token(const char * str,char ** tok)1098 static enum event_type force_token(const char *str, char **tok)
1099 {
1100 	const char *save_input_buf;
1101 	unsigned long long save_input_buf_ptr;
1102 	unsigned long long save_input_buf_siz;
1103 	enum event_type type;
1104 
1105 	/* save off the current input pointers */
1106 	save_input_buf = input_buf;
1107 	save_input_buf_ptr = input_buf_ptr;
1108 	save_input_buf_siz = input_buf_siz;
1109 
1110 	init_input_buf(str, strlen(str));
1111 
1112 	type = __read_token(tok);
1113 
1114 	/* reset back to original token */
1115 	input_buf = save_input_buf;
1116 	input_buf_ptr = save_input_buf_ptr;
1117 	input_buf_siz = save_input_buf_siz;
1118 
1119 	return type;
1120 }
1121 
free_token(char * tok)1122 static void free_token(char *tok)
1123 {
1124 	if (tok)
1125 		free(tok);
1126 }
1127 
read_token(char ** tok)1128 static enum event_type read_token(char **tok)
1129 {
1130 	enum event_type type;
1131 
1132 	for (;;) {
1133 		type = __read_token(tok);
1134 		if (type != EVENT_SPACE)
1135 			return type;
1136 
1137 		free_token(*tok);
1138 	}
1139 
1140 	/* not reached */
1141 	*tok = NULL;
1142 	return EVENT_NONE;
1143 }
1144 
1145 /**
1146  * tep_read_token - access to utilites to use the pevent parser
1147  * @tok: The token to return
1148  *
1149  * This will parse tokens from the string given by
1150  * tep_init_data().
1151  *
1152  * Returns the token type.
1153  */
tep_read_token(char ** tok)1154 enum event_type tep_read_token(char **tok)
1155 {
1156 	return read_token(tok);
1157 }
1158 
1159 /**
1160  * tep_free_token - free a token returned by tep_read_token
1161  * @token: the token to free
1162  */
tep_free_token(char * token)1163 void tep_free_token(char *token)
1164 {
1165 	free_token(token);
1166 }
1167 
1168 /* no newline */
read_token_item(char ** tok)1169 static enum event_type read_token_item(char **tok)
1170 {
1171 	enum event_type type;
1172 
1173 	for (;;) {
1174 		type = __read_token(tok);
1175 		if (type != EVENT_SPACE && type != EVENT_NEWLINE)
1176 			return type;
1177 		free_token(*tok);
1178 		*tok = NULL;
1179 	}
1180 
1181 	/* not reached */
1182 	*tok = NULL;
1183 	return EVENT_NONE;
1184 }
1185 
test_type(enum event_type type,enum event_type expect)1186 static int test_type(enum event_type type, enum event_type expect)
1187 {
1188 	if (type != expect) {
1189 		do_warning("Error: expected type %d but read %d",
1190 		    expect, type);
1191 		return -1;
1192 	}
1193 	return 0;
1194 }
1195 
test_type_token(enum event_type type,const char * token,enum event_type expect,const char * expect_tok)1196 static int test_type_token(enum event_type type, const char *token,
1197 		    enum event_type expect, const char *expect_tok)
1198 {
1199 	if (type != expect) {
1200 		do_warning("Error: expected type %d but read %d",
1201 		    expect, type);
1202 		return -1;
1203 	}
1204 
1205 	if (strcmp(token, expect_tok) != 0) {
1206 		do_warning("Error: expected '%s' but read '%s'",
1207 		    expect_tok, token);
1208 		return -1;
1209 	}
1210 	return 0;
1211 }
1212 
__read_expect_type(enum event_type expect,char ** tok,int newline_ok)1213 static int __read_expect_type(enum event_type expect, char **tok, int newline_ok)
1214 {
1215 	enum event_type type;
1216 
1217 	if (newline_ok)
1218 		type = read_token(tok);
1219 	else
1220 		type = read_token_item(tok);
1221 	return test_type(type, expect);
1222 }
1223 
read_expect_type(enum event_type expect,char ** tok)1224 static int read_expect_type(enum event_type expect, char **tok)
1225 {
1226 	return __read_expect_type(expect, tok, 1);
1227 }
1228 
__read_expected(enum event_type expect,const char * str,int newline_ok)1229 static int __read_expected(enum event_type expect, const char *str,
1230 			   int newline_ok)
1231 {
1232 	enum event_type type;
1233 	char *token;
1234 	int ret;
1235 
1236 	if (newline_ok)
1237 		type = read_token(&token);
1238 	else
1239 		type = read_token_item(&token);
1240 
1241 	ret = test_type_token(type, token, expect, str);
1242 
1243 	free_token(token);
1244 
1245 	return ret;
1246 }
1247 
read_expected(enum event_type expect,const char * str)1248 static int read_expected(enum event_type expect, const char *str)
1249 {
1250 	return __read_expected(expect, str, 1);
1251 }
1252 
read_expected_item(enum event_type expect,const char * str)1253 static int read_expected_item(enum event_type expect, const char *str)
1254 {
1255 	return __read_expected(expect, str, 0);
1256 }
1257 
event_read_name(void)1258 static char *event_read_name(void)
1259 {
1260 	char *token;
1261 
1262 	if (read_expected(EVENT_ITEM, "name") < 0)
1263 		return NULL;
1264 
1265 	if (read_expected(EVENT_OP, ":") < 0)
1266 		return NULL;
1267 
1268 	if (read_expect_type(EVENT_ITEM, &token) < 0)
1269 		goto fail;
1270 
1271 	return token;
1272 
1273  fail:
1274 	free_token(token);
1275 	return NULL;
1276 }
1277 
event_read_id(void)1278 static int event_read_id(void)
1279 {
1280 	char *token;
1281 	int id;
1282 
1283 	if (read_expected_item(EVENT_ITEM, "ID") < 0)
1284 		return -1;
1285 
1286 	if (read_expected(EVENT_OP, ":") < 0)
1287 		return -1;
1288 
1289 	if (read_expect_type(EVENT_ITEM, &token) < 0)
1290 		goto fail;
1291 
1292 	id = strtoul(token, NULL, 0);
1293 	free_token(token);
1294 	return id;
1295 
1296  fail:
1297 	free_token(token);
1298 	return -1;
1299 }
1300 
field_is_string(struct format_field * field)1301 static int field_is_string(struct format_field *field)
1302 {
1303 	if ((field->flags & FIELD_IS_ARRAY) &&
1304 	    (strstr(field->type, "char") || strstr(field->type, "u8") ||
1305 	     strstr(field->type, "s8")))
1306 		return 1;
1307 
1308 	return 0;
1309 }
1310 
field_is_dynamic(struct format_field * field)1311 static int field_is_dynamic(struct format_field *field)
1312 {
1313 	if (strncmp(field->type, "__data_loc", 10) == 0)
1314 		return 1;
1315 
1316 	return 0;
1317 }
1318 
field_is_long(struct format_field * field)1319 static int field_is_long(struct format_field *field)
1320 {
1321 	/* includes long long */
1322 	if (strstr(field->type, "long"))
1323 		return 1;
1324 
1325 	return 0;
1326 }
1327 
type_size(const char * name)1328 static unsigned int type_size(const char *name)
1329 {
1330 	/* This covers all FIELD_IS_STRING types. */
1331 	static struct {
1332 		const char *type;
1333 		unsigned int size;
1334 	} table[] = {
1335 		{ "u8",   1 },
1336 		{ "u16",  2 },
1337 		{ "u32",  4 },
1338 		{ "u64",  8 },
1339 		{ "s8",   1 },
1340 		{ "s16",  2 },
1341 		{ "s32",  4 },
1342 		{ "s64",  8 },
1343 		{ "char", 1 },
1344 		{ },
1345 	};
1346 	int i;
1347 
1348 	for (i = 0; table[i].type; i++) {
1349 		if (!strcmp(table[i].type, name))
1350 			return table[i].size;
1351 	}
1352 
1353 	return 0;
1354 }
1355 
event_read_fields(struct event_format * event,struct format_field ** fields)1356 static int event_read_fields(struct event_format *event, struct format_field **fields)
1357 {
1358 	struct format_field *field = NULL;
1359 	enum event_type type;
1360 	char *token;
1361 	char *last_token;
1362 	int count = 0;
1363 
1364 	do {
1365 		unsigned int size_dynamic = 0;
1366 
1367 		type = read_token(&token);
1368 		if (type == EVENT_NEWLINE) {
1369 			free_token(token);
1370 			return count;
1371 		}
1372 
1373 		count++;
1374 
1375 		if (test_type_token(type, token, EVENT_ITEM, "field"))
1376 			goto fail;
1377 		free_token(token);
1378 
1379 		type = read_token(&token);
1380 		/*
1381 		 * The ftrace fields may still use the "special" name.
1382 		 * Just ignore it.
1383 		 */
1384 		if (event->flags & EVENT_FL_ISFTRACE &&
1385 		    type == EVENT_ITEM && strcmp(token, "special") == 0) {
1386 			free_token(token);
1387 			type = read_token(&token);
1388 		}
1389 
1390 		if (test_type_token(type, token, EVENT_OP, ":") < 0)
1391 			goto fail;
1392 
1393 		free_token(token);
1394 		if (read_expect_type(EVENT_ITEM, &token) < 0)
1395 			goto fail;
1396 
1397 		last_token = token;
1398 
1399 		field = calloc(1, sizeof(*field));
1400 		if (!field)
1401 			goto fail;
1402 
1403 		field->event = event;
1404 
1405 		/* read the rest of the type */
1406 		for (;;) {
1407 			type = read_token(&token);
1408 			if (type == EVENT_ITEM ||
1409 			    (type == EVENT_OP && strcmp(token, "*") == 0) ||
1410 			    /*
1411 			     * Some of the ftrace fields are broken and have
1412 			     * an illegal "." in them.
1413 			     */
1414 			    (event->flags & EVENT_FL_ISFTRACE &&
1415 			     type == EVENT_OP && strcmp(token, ".") == 0)) {
1416 
1417 				if (strcmp(token, "*") == 0)
1418 					field->flags |= FIELD_IS_POINTER;
1419 
1420 				if (field->type) {
1421 					char *new_type;
1422 					new_type = realloc(field->type,
1423 							   strlen(field->type) +
1424 							   strlen(last_token) + 2);
1425 					if (!new_type) {
1426 						free(last_token);
1427 						goto fail;
1428 					}
1429 					field->type = new_type;
1430 					strcat(field->type, " ");
1431 					strcat(field->type, last_token);
1432 					free(last_token);
1433 				} else
1434 					field->type = last_token;
1435 				last_token = token;
1436 				continue;
1437 			}
1438 
1439 			break;
1440 		}
1441 
1442 		if (!field->type) {
1443 			do_warning_event(event, "%s: no type found", __func__);
1444 			goto fail;
1445 		}
1446 		field->name = field->alias = last_token;
1447 
1448 		if (test_type(type, EVENT_OP))
1449 			goto fail;
1450 
1451 		if (strcmp(token, "[") == 0) {
1452 			enum event_type last_type = type;
1453 			char *brackets = token;
1454 			char *new_brackets;
1455 			int len;
1456 
1457 			field->flags |= FIELD_IS_ARRAY;
1458 
1459 			type = read_token(&token);
1460 
1461 			if (type == EVENT_ITEM)
1462 				field->arraylen = strtoul(token, NULL, 0);
1463 			else
1464 				field->arraylen = 0;
1465 
1466 		        while (strcmp(token, "]") != 0) {
1467 				if (last_type == EVENT_ITEM &&
1468 				    type == EVENT_ITEM)
1469 					len = 2;
1470 				else
1471 					len = 1;
1472 				last_type = type;
1473 
1474 				new_brackets = realloc(brackets,
1475 						       strlen(brackets) +
1476 						       strlen(token) + len);
1477 				if (!new_brackets) {
1478 					free(brackets);
1479 					goto fail;
1480 				}
1481 				brackets = new_brackets;
1482 				if (len == 2)
1483 					strcat(brackets, " ");
1484 				strcat(brackets, token);
1485 				/* We only care about the last token */
1486 				field->arraylen = strtoul(token, NULL, 0);
1487 				free_token(token);
1488 				type = read_token(&token);
1489 				if (type == EVENT_NONE) {
1490 					do_warning_event(event, "failed to find token");
1491 					goto fail;
1492 				}
1493 			}
1494 
1495 			free_token(token);
1496 
1497 			new_brackets = realloc(brackets, strlen(brackets) + 2);
1498 			if (!new_brackets) {
1499 				free(brackets);
1500 				goto fail;
1501 			}
1502 			brackets = new_brackets;
1503 			strcat(brackets, "]");
1504 
1505 			/* add brackets to type */
1506 
1507 			type = read_token(&token);
1508 			/*
1509 			 * If the next token is not an OP, then it is of
1510 			 * the format: type [] item;
1511 			 */
1512 			if (type == EVENT_ITEM) {
1513 				char *new_type;
1514 				new_type = realloc(field->type,
1515 						   strlen(field->type) +
1516 						   strlen(field->name) +
1517 						   strlen(brackets) + 2);
1518 				if (!new_type) {
1519 					free(brackets);
1520 					goto fail;
1521 				}
1522 				field->type = new_type;
1523 				strcat(field->type, " ");
1524 				strcat(field->type, field->name);
1525 				size_dynamic = type_size(field->name);
1526 				free_token(field->name);
1527 				strcat(field->type, brackets);
1528 				field->name = field->alias = token;
1529 				type = read_token(&token);
1530 			} else {
1531 				char *new_type;
1532 				new_type = realloc(field->type,
1533 						   strlen(field->type) +
1534 						   strlen(brackets) + 1);
1535 				if (!new_type) {
1536 					free(brackets);
1537 					goto fail;
1538 				}
1539 				field->type = new_type;
1540 				strcat(field->type, brackets);
1541 			}
1542 			free(brackets);
1543 		}
1544 
1545 		if (field_is_string(field))
1546 			field->flags |= FIELD_IS_STRING;
1547 		if (field_is_dynamic(field))
1548 			field->flags |= FIELD_IS_DYNAMIC;
1549 		if (field_is_long(field))
1550 			field->flags |= FIELD_IS_LONG;
1551 
1552 		if (test_type_token(type, token,  EVENT_OP, ";"))
1553 			goto fail;
1554 		free_token(token);
1555 
1556 		if (read_expected(EVENT_ITEM, "offset") < 0)
1557 			goto fail_expect;
1558 
1559 		if (read_expected(EVENT_OP, ":") < 0)
1560 			goto fail_expect;
1561 
1562 		if (read_expect_type(EVENT_ITEM, &token))
1563 			goto fail;
1564 		field->offset = strtoul(token, NULL, 0);
1565 		free_token(token);
1566 
1567 		if (read_expected(EVENT_OP, ";") < 0)
1568 			goto fail_expect;
1569 
1570 		if (read_expected(EVENT_ITEM, "size") < 0)
1571 			goto fail_expect;
1572 
1573 		if (read_expected(EVENT_OP, ":") < 0)
1574 			goto fail_expect;
1575 
1576 		if (read_expect_type(EVENT_ITEM, &token))
1577 			goto fail;
1578 		field->size = strtoul(token, NULL, 0);
1579 		free_token(token);
1580 
1581 		if (read_expected(EVENT_OP, ";") < 0)
1582 			goto fail_expect;
1583 
1584 		type = read_token(&token);
1585 		if (type != EVENT_NEWLINE) {
1586 			/* newer versions of the kernel have a "signed" type */
1587 			if (test_type_token(type, token, EVENT_ITEM, "signed"))
1588 				goto fail;
1589 
1590 			free_token(token);
1591 
1592 			if (read_expected(EVENT_OP, ":") < 0)
1593 				goto fail_expect;
1594 
1595 			if (read_expect_type(EVENT_ITEM, &token))
1596 				goto fail;
1597 
1598 			if (strtoul(token, NULL, 0))
1599 				field->flags |= FIELD_IS_SIGNED;
1600 
1601 			free_token(token);
1602 			if (read_expected(EVENT_OP, ";") < 0)
1603 				goto fail_expect;
1604 
1605 			if (read_expect_type(EVENT_NEWLINE, &token))
1606 				goto fail;
1607 		}
1608 
1609 		free_token(token);
1610 
1611 		if (field->flags & FIELD_IS_ARRAY) {
1612 			if (field->arraylen)
1613 				field->elementsize = field->size / field->arraylen;
1614 			else if (field->flags & FIELD_IS_DYNAMIC)
1615 				field->elementsize = size_dynamic;
1616 			else if (field->flags & FIELD_IS_STRING)
1617 				field->elementsize = 1;
1618 			else if (field->flags & FIELD_IS_LONG)
1619 				field->elementsize = event->pevent ?
1620 						     event->pevent->long_size :
1621 						     sizeof(long);
1622 		} else
1623 			field->elementsize = field->size;
1624 
1625 		*fields = field;
1626 		fields = &field->next;
1627 
1628 	} while (1);
1629 
1630 	return 0;
1631 
1632 fail:
1633 	free_token(token);
1634 fail_expect:
1635 	if (field) {
1636 		free(field->type);
1637 		free(field->name);
1638 		free(field);
1639 	}
1640 	return -1;
1641 }
1642 
event_read_format(struct event_format * event)1643 static int event_read_format(struct event_format *event)
1644 {
1645 	char *token;
1646 	int ret;
1647 
1648 	if (read_expected_item(EVENT_ITEM, "format") < 0)
1649 		return -1;
1650 
1651 	if (read_expected(EVENT_OP, ":") < 0)
1652 		return -1;
1653 
1654 	if (read_expect_type(EVENT_NEWLINE, &token))
1655 		goto fail;
1656 	free_token(token);
1657 
1658 	ret = event_read_fields(event, &event->format.common_fields);
1659 	if (ret < 0)
1660 		return ret;
1661 	event->format.nr_common = ret;
1662 
1663 	ret = event_read_fields(event, &event->format.fields);
1664 	if (ret < 0)
1665 		return ret;
1666 	event->format.nr_fields = ret;
1667 
1668 	return 0;
1669 
1670  fail:
1671 	free_token(token);
1672 	return -1;
1673 }
1674 
1675 static enum event_type
1676 process_arg_token(struct event_format *event, struct print_arg *arg,
1677 		  char **tok, enum event_type type);
1678 
1679 static enum event_type
process_arg(struct event_format * event,struct print_arg * arg,char ** tok)1680 process_arg(struct event_format *event, struct print_arg *arg, char **tok)
1681 {
1682 	enum event_type type;
1683 	char *token;
1684 
1685 	type = read_token(&token);
1686 	*tok = token;
1687 
1688 	return process_arg_token(event, arg, tok, type);
1689 }
1690 
1691 static enum event_type
1692 process_op(struct event_format *event, struct print_arg *arg, char **tok);
1693 
1694 /*
1695  * For __print_symbolic() and __print_flags, we need to completely
1696  * evaluate the first argument, which defines what to print next.
1697  */
1698 static enum event_type
process_field_arg(struct event_format * event,struct print_arg * arg,char ** tok)1699 process_field_arg(struct event_format *event, struct print_arg *arg, char **tok)
1700 {
1701 	enum event_type type;
1702 
1703 	type = process_arg(event, arg, tok);
1704 
1705 	while (type == EVENT_OP) {
1706 		type = process_op(event, arg, tok);
1707 	}
1708 
1709 	return type;
1710 }
1711 
1712 static enum event_type
process_cond(struct event_format * event,struct print_arg * top,char ** tok)1713 process_cond(struct event_format *event, struct print_arg *top, char **tok)
1714 {
1715 	struct print_arg *arg, *left, *right;
1716 	enum event_type type;
1717 	char *token = NULL;
1718 
1719 	arg = alloc_arg();
1720 	left = alloc_arg();
1721 	right = alloc_arg();
1722 
1723 	if (!arg || !left || !right) {
1724 		do_warning_event(event, "%s: not enough memory!", __func__);
1725 		/* arg will be freed at out_free */
1726 		free_arg(left);
1727 		free_arg(right);
1728 		goto out_free;
1729 	}
1730 
1731 	arg->type = PRINT_OP;
1732 	arg->op.left = left;
1733 	arg->op.right = right;
1734 
1735 	*tok = NULL;
1736 	type = process_arg(event, left, &token);
1737 
1738  again:
1739 	if (type == EVENT_ERROR)
1740 		goto out_free;
1741 
1742 	/* Handle other operations in the arguments */
1743 	if (type == EVENT_OP && strcmp(token, ":") != 0) {
1744 		type = process_op(event, left, &token);
1745 		goto again;
1746 	}
1747 
1748 	if (test_type_token(type, token, EVENT_OP, ":"))
1749 		goto out_free;
1750 
1751 	arg->op.op = token;
1752 
1753 	type = process_arg(event, right, &token);
1754 
1755 	top->op.right = arg;
1756 
1757 	*tok = token;
1758 	return type;
1759 
1760 out_free:
1761 	/* Top may point to itself */
1762 	top->op.right = NULL;
1763 	free_token(token);
1764 	free_arg(arg);
1765 	return EVENT_ERROR;
1766 }
1767 
1768 static enum event_type
process_array(struct event_format * event,struct print_arg * top,char ** tok)1769 process_array(struct event_format *event, struct print_arg *top, char **tok)
1770 {
1771 	struct print_arg *arg;
1772 	enum event_type type;
1773 	char *token = NULL;
1774 
1775 	arg = alloc_arg();
1776 	if (!arg) {
1777 		do_warning_event(event, "%s: not enough memory!", __func__);
1778 		/* '*tok' is set to top->op.op.  No need to free. */
1779 		*tok = NULL;
1780 		return EVENT_ERROR;
1781 	}
1782 
1783 	*tok = NULL;
1784 	type = process_arg(event, arg, &token);
1785 	if (test_type_token(type, token, EVENT_OP, "]"))
1786 		goto out_free;
1787 
1788 	top->op.right = arg;
1789 
1790 	free_token(token);
1791 	type = read_token_item(&token);
1792 	*tok = token;
1793 
1794 	return type;
1795 
1796 out_free:
1797 	free_token(token);
1798 	free_arg(arg);
1799 	return EVENT_ERROR;
1800 }
1801 
get_op_prio(char * op)1802 static int get_op_prio(char *op)
1803 {
1804 	if (!op[1]) {
1805 		switch (op[0]) {
1806 		case '~':
1807 		case '!':
1808 			return 4;
1809 		case '*':
1810 		case '/':
1811 		case '%':
1812 			return 6;
1813 		case '+':
1814 		case '-':
1815 			return 7;
1816 			/* '>>' and '<<' are 8 */
1817 		case '<':
1818 		case '>':
1819 			return 9;
1820 			/* '==' and '!=' are 10 */
1821 		case '&':
1822 			return 11;
1823 		case '^':
1824 			return 12;
1825 		case '|':
1826 			return 13;
1827 		case '?':
1828 			return 16;
1829 		default:
1830 			do_warning("unknown op '%c'", op[0]);
1831 			return -1;
1832 		}
1833 	} else {
1834 		if (strcmp(op, "++") == 0 ||
1835 		    strcmp(op, "--") == 0) {
1836 			return 3;
1837 		} else if (strcmp(op, ">>") == 0 ||
1838 			   strcmp(op, "<<") == 0) {
1839 			return 8;
1840 		} else if (strcmp(op, ">=") == 0 ||
1841 			   strcmp(op, "<=") == 0) {
1842 			return 9;
1843 		} else if (strcmp(op, "==") == 0 ||
1844 			   strcmp(op, "!=") == 0) {
1845 			return 10;
1846 		} else if (strcmp(op, "&&") == 0) {
1847 			return 14;
1848 		} else if (strcmp(op, "||") == 0) {
1849 			return 15;
1850 		} else {
1851 			do_warning("unknown op '%s'", op);
1852 			return -1;
1853 		}
1854 	}
1855 }
1856 
set_op_prio(struct print_arg * arg)1857 static int set_op_prio(struct print_arg *arg)
1858 {
1859 
1860 	/* single ops are the greatest */
1861 	if (!arg->op.left || arg->op.left->type == PRINT_NULL)
1862 		arg->op.prio = 0;
1863 	else
1864 		arg->op.prio = get_op_prio(arg->op.op);
1865 
1866 	return arg->op.prio;
1867 }
1868 
1869 /* Note, *tok does not get freed, but will most likely be saved */
1870 static enum event_type
process_op(struct event_format * event,struct print_arg * arg,char ** tok)1871 process_op(struct event_format *event, struct print_arg *arg, char **tok)
1872 {
1873 	struct print_arg *left, *right = NULL;
1874 	enum event_type type;
1875 	char *token;
1876 
1877 	/* the op is passed in via tok */
1878 	token = *tok;
1879 
1880 	if (arg->type == PRINT_OP && !arg->op.left) {
1881 		/* handle single op */
1882 		if (token[1]) {
1883 			do_warning_event(event, "bad op token %s", token);
1884 			goto out_free;
1885 		}
1886 		switch (token[0]) {
1887 		case '~':
1888 		case '!':
1889 		case '+':
1890 		case '-':
1891 			break;
1892 		default:
1893 			do_warning_event(event, "bad op token %s", token);
1894 			goto out_free;
1895 
1896 		}
1897 
1898 		/* make an empty left */
1899 		left = alloc_arg();
1900 		if (!left)
1901 			goto out_warn_free;
1902 
1903 		left->type = PRINT_NULL;
1904 		arg->op.left = left;
1905 
1906 		right = alloc_arg();
1907 		if (!right)
1908 			goto out_warn_free;
1909 
1910 		arg->op.right = right;
1911 
1912 		/* do not free the token, it belongs to an op */
1913 		*tok = NULL;
1914 		type = process_arg(event, right, tok);
1915 
1916 	} else if (strcmp(token, "?") == 0) {
1917 
1918 		left = alloc_arg();
1919 		if (!left)
1920 			goto out_warn_free;
1921 
1922 		/* copy the top arg to the left */
1923 		*left = *arg;
1924 
1925 		arg->type = PRINT_OP;
1926 		arg->op.op = token;
1927 		arg->op.left = left;
1928 		arg->op.prio = 0;
1929 
1930 		/* it will set arg->op.right */
1931 		type = process_cond(event, arg, tok);
1932 
1933 	} else if (strcmp(token, ">>") == 0 ||
1934 		   strcmp(token, "<<") == 0 ||
1935 		   strcmp(token, "&") == 0 ||
1936 		   strcmp(token, "|") == 0 ||
1937 		   strcmp(token, "&&") == 0 ||
1938 		   strcmp(token, "||") == 0 ||
1939 		   strcmp(token, "-") == 0 ||
1940 		   strcmp(token, "+") == 0 ||
1941 		   strcmp(token, "*") == 0 ||
1942 		   strcmp(token, "^") == 0 ||
1943 		   strcmp(token, "/") == 0 ||
1944 		   strcmp(token, "%") == 0 ||
1945 		   strcmp(token, "<") == 0 ||
1946 		   strcmp(token, ">") == 0 ||
1947 		   strcmp(token, "<=") == 0 ||
1948 		   strcmp(token, ">=") == 0 ||
1949 		   strcmp(token, "==") == 0 ||
1950 		   strcmp(token, "!=") == 0) {
1951 
1952 		left = alloc_arg();
1953 		if (!left)
1954 			goto out_warn_free;
1955 
1956 		/* copy the top arg to the left */
1957 		*left = *arg;
1958 
1959 		arg->type = PRINT_OP;
1960 		arg->op.op = token;
1961 		arg->op.left = left;
1962 		arg->op.right = NULL;
1963 
1964 		if (set_op_prio(arg) == -1) {
1965 			event->flags |= EVENT_FL_FAILED;
1966 			/* arg->op.op (= token) will be freed at out_free */
1967 			arg->op.op = NULL;
1968 			goto out_free;
1969 		}
1970 
1971 		type = read_token_item(&token);
1972 		*tok = token;
1973 
1974 		/* could just be a type pointer */
1975 		if ((strcmp(arg->op.op, "*") == 0) &&
1976 		    type == EVENT_DELIM && (strcmp(token, ")") == 0)) {
1977 			char *new_atom;
1978 
1979 			if (left->type != PRINT_ATOM) {
1980 				do_warning_event(event, "bad pointer type");
1981 				goto out_free;
1982 			}
1983 			new_atom = realloc(left->atom.atom,
1984 					    strlen(left->atom.atom) + 3);
1985 			if (!new_atom)
1986 				goto out_warn_free;
1987 
1988 			left->atom.atom = new_atom;
1989 			strcat(left->atom.atom, " *");
1990 			free(arg->op.op);
1991 			*arg = *left;
1992 			free(left);
1993 
1994 			return type;
1995 		}
1996 
1997 		right = alloc_arg();
1998 		if (!right)
1999 			goto out_warn_free;
2000 
2001 		type = process_arg_token(event, right, tok, type);
2002 		if (type == EVENT_ERROR) {
2003 			free_arg(right);
2004 			/* token was freed in process_arg_token() via *tok */
2005 			token = NULL;
2006 			goto out_free;
2007 		}
2008 
2009 		if (right->type == PRINT_OP &&
2010 		    get_op_prio(arg->op.op) < get_op_prio(right->op.op)) {
2011 			struct print_arg tmp;
2012 
2013 			/* rotate ops according to the priority */
2014 			arg->op.right = right->op.left;
2015 
2016 			tmp = *arg;
2017 			*arg = *right;
2018 			*right = tmp;
2019 
2020 			arg->op.left = right;
2021 		} else {
2022 			arg->op.right = right;
2023 		}
2024 
2025 	} else if (strcmp(token, "[") == 0) {
2026 
2027 		left = alloc_arg();
2028 		if (!left)
2029 			goto out_warn_free;
2030 
2031 		*left = *arg;
2032 
2033 		arg->type = PRINT_OP;
2034 		arg->op.op = token;
2035 		arg->op.left = left;
2036 
2037 		arg->op.prio = 0;
2038 
2039 		/* it will set arg->op.right */
2040 		type = process_array(event, arg, tok);
2041 
2042 	} else {
2043 		do_warning_event(event, "unknown op '%s'", token);
2044 		event->flags |= EVENT_FL_FAILED;
2045 		/* the arg is now the left side */
2046 		goto out_free;
2047 	}
2048 
2049 	if (type == EVENT_OP && strcmp(*tok, ":") != 0) {
2050 		int prio;
2051 
2052 		/* higher prios need to be closer to the root */
2053 		prio = get_op_prio(*tok);
2054 
2055 		if (prio > arg->op.prio)
2056 			return process_op(event, arg, tok);
2057 
2058 		return process_op(event, right, tok);
2059 	}
2060 
2061 	return type;
2062 
2063 out_warn_free:
2064 	do_warning_event(event, "%s: not enough memory!", __func__);
2065 out_free:
2066 	free_token(token);
2067 	*tok = NULL;
2068 	return EVENT_ERROR;
2069 }
2070 
2071 static enum event_type
process_entry(struct event_format * event __maybe_unused,struct print_arg * arg,char ** tok)2072 process_entry(struct event_format *event __maybe_unused, struct print_arg *arg,
2073 	      char **tok)
2074 {
2075 	enum event_type type;
2076 	char *field;
2077 	char *token;
2078 
2079 	if (read_expected(EVENT_OP, "->") < 0)
2080 		goto out_err;
2081 
2082 	if (read_expect_type(EVENT_ITEM, &token) < 0)
2083 		goto out_free;
2084 	field = token;
2085 
2086 	arg->type = PRINT_FIELD;
2087 	arg->field.name = field;
2088 
2089 	if (is_flag_field) {
2090 		arg->field.field = tep_find_any_field(event, arg->field.name);
2091 		arg->field.field->flags |= FIELD_IS_FLAG;
2092 		is_flag_field = 0;
2093 	} else if (is_symbolic_field) {
2094 		arg->field.field = tep_find_any_field(event, arg->field.name);
2095 		arg->field.field->flags |= FIELD_IS_SYMBOLIC;
2096 		is_symbolic_field = 0;
2097 	}
2098 
2099 	type = read_token(&token);
2100 	*tok = token;
2101 
2102 	return type;
2103 
2104  out_free:
2105 	free_token(token);
2106  out_err:
2107 	*tok = NULL;
2108 	return EVENT_ERROR;
2109 }
2110 
alloc_and_process_delim(struct event_format * event,char * next_token,struct print_arg ** print_arg)2111 static int alloc_and_process_delim(struct event_format *event, char *next_token,
2112 				   struct print_arg **print_arg)
2113 {
2114 	struct print_arg *field;
2115 	enum event_type type;
2116 	char *token;
2117 	int ret = 0;
2118 
2119 	field = alloc_arg();
2120 	if (!field) {
2121 		do_warning_event(event, "%s: not enough memory!", __func__);
2122 		errno = ENOMEM;
2123 		return -1;
2124 	}
2125 
2126 	type = process_arg(event, field, &token);
2127 
2128 	if (test_type_token(type, token, EVENT_DELIM, next_token)) {
2129 		errno = EINVAL;
2130 		ret = -1;
2131 		free_arg(field);
2132 		goto out_free_token;
2133 	}
2134 
2135 	*print_arg = field;
2136 
2137 out_free_token:
2138 	free_token(token);
2139 
2140 	return ret;
2141 }
2142 
2143 static char *arg_eval (struct print_arg *arg);
2144 
2145 static unsigned long long
eval_type_str(unsigned long long val,const char * type,int pointer)2146 eval_type_str(unsigned long long val, const char *type, int pointer)
2147 {
2148 	int sign = 0;
2149 	char *ref;
2150 	int len;
2151 
2152 	len = strlen(type);
2153 
2154 	if (pointer) {
2155 
2156 		if (type[len-1] != '*') {
2157 			do_warning("pointer expected with non pointer type");
2158 			return val;
2159 		}
2160 
2161 		ref = malloc(len);
2162 		if (!ref) {
2163 			do_warning("%s: not enough memory!", __func__);
2164 			return val;
2165 		}
2166 		memcpy(ref, type, len);
2167 
2168 		/* chop off the " *" */
2169 		ref[len - 2] = 0;
2170 
2171 		val = eval_type_str(val, ref, 0);
2172 		free(ref);
2173 		return val;
2174 	}
2175 
2176 	/* check if this is a pointer */
2177 	if (type[len - 1] == '*')
2178 		return val;
2179 
2180 	/* Try to figure out the arg size*/
2181 	if (strncmp(type, "struct", 6) == 0)
2182 		/* all bets off */
2183 		return val;
2184 
2185 	if (strcmp(type, "u8") == 0)
2186 		return val & 0xff;
2187 
2188 	if (strcmp(type, "u16") == 0)
2189 		return val & 0xffff;
2190 
2191 	if (strcmp(type, "u32") == 0)
2192 		return val & 0xffffffff;
2193 
2194 	if (strcmp(type, "u64") == 0 ||
2195 	    strcmp(type, "s64"))
2196 		return val;
2197 
2198 	if (strcmp(type, "s8") == 0)
2199 		return (unsigned long long)(char)val & 0xff;
2200 
2201 	if (strcmp(type, "s16") == 0)
2202 		return (unsigned long long)(short)val & 0xffff;
2203 
2204 	if (strcmp(type, "s32") == 0)
2205 		return (unsigned long long)(int)val & 0xffffffff;
2206 
2207 	if (strncmp(type, "unsigned ", 9) == 0) {
2208 		sign = 0;
2209 		type += 9;
2210 	}
2211 
2212 	if (strcmp(type, "char") == 0) {
2213 		if (sign)
2214 			return (unsigned long long)(char)val & 0xff;
2215 		else
2216 			return val & 0xff;
2217 	}
2218 
2219 	if (strcmp(type, "short") == 0) {
2220 		if (sign)
2221 			return (unsigned long long)(short)val & 0xffff;
2222 		else
2223 			return val & 0xffff;
2224 	}
2225 
2226 	if (strcmp(type, "int") == 0) {
2227 		if (sign)
2228 			return (unsigned long long)(int)val & 0xffffffff;
2229 		else
2230 			return val & 0xffffffff;
2231 	}
2232 
2233 	return val;
2234 }
2235 
2236 /*
2237  * Try to figure out the type.
2238  */
2239 static unsigned long long
eval_type(unsigned long long val,struct print_arg * arg,int pointer)2240 eval_type(unsigned long long val, struct print_arg *arg, int pointer)
2241 {
2242 	if (arg->type != PRINT_TYPE) {
2243 		do_warning("expected type argument");
2244 		return 0;
2245 	}
2246 
2247 	return eval_type_str(val, arg->typecast.type, pointer);
2248 }
2249 
arg_num_eval(struct print_arg * arg,long long * val)2250 static int arg_num_eval(struct print_arg *arg, long long *val)
2251 {
2252 	long long left, right;
2253 	int ret = 1;
2254 
2255 	switch (arg->type) {
2256 	case PRINT_ATOM:
2257 		*val = strtoll(arg->atom.atom, NULL, 0);
2258 		break;
2259 	case PRINT_TYPE:
2260 		ret = arg_num_eval(arg->typecast.item, val);
2261 		if (!ret)
2262 			break;
2263 		*val = eval_type(*val, arg, 0);
2264 		break;
2265 	case PRINT_OP:
2266 		switch (arg->op.op[0]) {
2267 		case '|':
2268 			ret = arg_num_eval(arg->op.left, &left);
2269 			if (!ret)
2270 				break;
2271 			ret = arg_num_eval(arg->op.right, &right);
2272 			if (!ret)
2273 				break;
2274 			if (arg->op.op[1])
2275 				*val = left || right;
2276 			else
2277 				*val = left | right;
2278 			break;
2279 		case '&':
2280 			ret = arg_num_eval(arg->op.left, &left);
2281 			if (!ret)
2282 				break;
2283 			ret = arg_num_eval(arg->op.right, &right);
2284 			if (!ret)
2285 				break;
2286 			if (arg->op.op[1])
2287 				*val = left && right;
2288 			else
2289 				*val = left & right;
2290 			break;
2291 		case '<':
2292 			ret = arg_num_eval(arg->op.left, &left);
2293 			if (!ret)
2294 				break;
2295 			ret = arg_num_eval(arg->op.right, &right);
2296 			if (!ret)
2297 				break;
2298 			switch (arg->op.op[1]) {
2299 			case 0:
2300 				*val = left < right;
2301 				break;
2302 			case '<':
2303 				*val = left << right;
2304 				break;
2305 			case '=':
2306 				*val = left <= right;
2307 				break;
2308 			default:
2309 				do_warning("unknown op '%s'", arg->op.op);
2310 				ret = 0;
2311 			}
2312 			break;
2313 		case '>':
2314 			ret = arg_num_eval(arg->op.left, &left);
2315 			if (!ret)
2316 				break;
2317 			ret = arg_num_eval(arg->op.right, &right);
2318 			if (!ret)
2319 				break;
2320 			switch (arg->op.op[1]) {
2321 			case 0:
2322 				*val = left > right;
2323 				break;
2324 			case '>':
2325 				*val = left >> right;
2326 				break;
2327 			case '=':
2328 				*val = left >= right;
2329 				break;
2330 			default:
2331 				do_warning("unknown op '%s'", arg->op.op);
2332 				ret = 0;
2333 			}
2334 			break;
2335 		case '=':
2336 			ret = arg_num_eval(arg->op.left, &left);
2337 			if (!ret)
2338 				break;
2339 			ret = arg_num_eval(arg->op.right, &right);
2340 			if (!ret)
2341 				break;
2342 
2343 			if (arg->op.op[1] != '=') {
2344 				do_warning("unknown op '%s'", arg->op.op);
2345 				ret = 0;
2346 			} else
2347 				*val = left == right;
2348 			break;
2349 		case '!':
2350 			ret = arg_num_eval(arg->op.left, &left);
2351 			if (!ret)
2352 				break;
2353 			ret = arg_num_eval(arg->op.right, &right);
2354 			if (!ret)
2355 				break;
2356 
2357 			switch (arg->op.op[1]) {
2358 			case '=':
2359 				*val = left != right;
2360 				break;
2361 			default:
2362 				do_warning("unknown op '%s'", arg->op.op);
2363 				ret = 0;
2364 			}
2365 			break;
2366 		case '-':
2367 			/* check for negative */
2368 			if (arg->op.left->type == PRINT_NULL)
2369 				left = 0;
2370 			else
2371 				ret = arg_num_eval(arg->op.left, &left);
2372 			if (!ret)
2373 				break;
2374 			ret = arg_num_eval(arg->op.right, &right);
2375 			if (!ret)
2376 				break;
2377 			*val = left - right;
2378 			break;
2379 		case '+':
2380 			if (arg->op.left->type == PRINT_NULL)
2381 				left = 0;
2382 			else
2383 				ret = arg_num_eval(arg->op.left, &left);
2384 			if (!ret)
2385 				break;
2386 			ret = arg_num_eval(arg->op.right, &right);
2387 			if (!ret)
2388 				break;
2389 			*val = left + right;
2390 			break;
2391 		case '~':
2392 			ret = arg_num_eval(arg->op.right, &right);
2393 			if (!ret)
2394 				break;
2395 			*val = ~right;
2396 			break;
2397 		default:
2398 			do_warning("unknown op '%s'", arg->op.op);
2399 			ret = 0;
2400 		}
2401 		break;
2402 
2403 	case PRINT_NULL:
2404 	case PRINT_FIELD ... PRINT_SYMBOL:
2405 	case PRINT_STRING:
2406 	case PRINT_BSTRING:
2407 	case PRINT_BITMASK:
2408 	default:
2409 		do_warning("invalid eval type %d", arg->type);
2410 		ret = 0;
2411 
2412 	}
2413 	return ret;
2414 }
2415 
arg_eval(struct print_arg * arg)2416 static char *arg_eval (struct print_arg *arg)
2417 {
2418 	long long val;
2419 	static char buf[20];
2420 
2421 	switch (arg->type) {
2422 	case PRINT_ATOM:
2423 		return arg->atom.atom;
2424 	case PRINT_TYPE:
2425 		return arg_eval(arg->typecast.item);
2426 	case PRINT_OP:
2427 		if (!arg_num_eval(arg, &val))
2428 			break;
2429 		sprintf(buf, "%lld", val);
2430 		return buf;
2431 
2432 	case PRINT_NULL:
2433 	case PRINT_FIELD ... PRINT_SYMBOL:
2434 	case PRINT_STRING:
2435 	case PRINT_BSTRING:
2436 	case PRINT_BITMASK:
2437 	default:
2438 		do_warning("invalid eval type %d", arg->type);
2439 		break;
2440 	}
2441 
2442 	return NULL;
2443 }
2444 
2445 static enum event_type
process_fields(struct event_format * event,struct print_flag_sym ** list,char ** tok)2446 process_fields(struct event_format *event, struct print_flag_sym **list, char **tok)
2447 {
2448 	enum event_type type;
2449 	struct print_arg *arg = NULL;
2450 	struct print_flag_sym *field;
2451 	char *token = *tok;
2452 	char *value;
2453 
2454 	do {
2455 		free_token(token);
2456 		type = read_token_item(&token);
2457 		if (test_type_token(type, token, EVENT_OP, "{"))
2458 			break;
2459 
2460 		arg = alloc_arg();
2461 		if (!arg)
2462 			goto out_free;
2463 
2464 		free_token(token);
2465 		type = process_arg(event, arg, &token);
2466 
2467 		if (type == EVENT_OP)
2468 			type = process_op(event, arg, &token);
2469 
2470 		if (type == EVENT_ERROR)
2471 			goto out_free;
2472 
2473 		if (test_type_token(type, token, EVENT_DELIM, ","))
2474 			goto out_free;
2475 
2476 		field = calloc(1, sizeof(*field));
2477 		if (!field)
2478 			goto out_free;
2479 
2480 		value = arg_eval(arg);
2481 		if (value == NULL)
2482 			goto out_free_field;
2483 		field->value = strdup(value);
2484 		if (field->value == NULL)
2485 			goto out_free_field;
2486 
2487 		free_arg(arg);
2488 		arg = alloc_arg();
2489 		if (!arg)
2490 			goto out_free;
2491 
2492 		free_token(token);
2493 		type = process_arg(event, arg, &token);
2494 		if (test_type_token(type, token, EVENT_OP, "}"))
2495 			goto out_free_field;
2496 
2497 		value = arg_eval(arg);
2498 		if (value == NULL)
2499 			goto out_free_field;
2500 		field->str = strdup(value);
2501 		if (field->str == NULL)
2502 			goto out_free_field;
2503 		free_arg(arg);
2504 		arg = NULL;
2505 
2506 		*list = field;
2507 		list = &field->next;
2508 
2509 		free_token(token);
2510 		type = read_token_item(&token);
2511 	} while (type == EVENT_DELIM && strcmp(token, ",") == 0);
2512 
2513 	*tok = token;
2514 	return type;
2515 
2516 out_free_field:
2517 	free_flag_sym(field);
2518 out_free:
2519 	free_arg(arg);
2520 	free_token(token);
2521 	*tok = NULL;
2522 
2523 	return EVENT_ERROR;
2524 }
2525 
2526 static enum event_type
process_flags(struct event_format * event,struct print_arg * arg,char ** tok)2527 process_flags(struct event_format *event, struct print_arg *arg, char **tok)
2528 {
2529 	struct print_arg *field;
2530 	enum event_type type;
2531 	char *token = NULL;
2532 
2533 	memset(arg, 0, sizeof(*arg));
2534 	arg->type = PRINT_FLAGS;
2535 
2536 	field = alloc_arg();
2537 	if (!field) {
2538 		do_warning_event(event, "%s: not enough memory!", __func__);
2539 		goto out_free;
2540 	}
2541 
2542 	type = process_field_arg(event, field, &token);
2543 
2544 	/* Handle operations in the first argument */
2545 	while (type == EVENT_OP)
2546 		type = process_op(event, field, &token);
2547 
2548 	if (test_type_token(type, token, EVENT_DELIM, ","))
2549 		goto out_free_field;
2550 	free_token(token);
2551 
2552 	arg->flags.field = field;
2553 
2554 	type = read_token_item(&token);
2555 	if (event_item_type(type)) {
2556 		arg->flags.delim = token;
2557 		type = read_token_item(&token);
2558 	}
2559 
2560 	if (test_type_token(type, token, EVENT_DELIM, ","))
2561 		goto out_free;
2562 
2563 	type = process_fields(event, &arg->flags.flags, &token);
2564 	if (test_type_token(type, token, EVENT_DELIM, ")"))
2565 		goto out_free;
2566 
2567 	free_token(token);
2568 	type = read_token_item(tok);
2569 	return type;
2570 
2571 out_free_field:
2572 	free_arg(field);
2573 out_free:
2574 	free_token(token);
2575 	*tok = NULL;
2576 	return EVENT_ERROR;
2577 }
2578 
2579 static enum event_type
process_symbols(struct event_format * event,struct print_arg * arg,char ** tok)2580 process_symbols(struct event_format *event, struct print_arg *arg, char **tok)
2581 {
2582 	struct print_arg *field;
2583 	enum event_type type;
2584 	char *token = NULL;
2585 
2586 	memset(arg, 0, sizeof(*arg));
2587 	arg->type = PRINT_SYMBOL;
2588 
2589 	field = alloc_arg();
2590 	if (!field) {
2591 		do_warning_event(event, "%s: not enough memory!", __func__);
2592 		goto out_free;
2593 	}
2594 
2595 	type = process_field_arg(event, field, &token);
2596 
2597 	if (test_type_token(type, token, EVENT_DELIM, ","))
2598 		goto out_free_field;
2599 
2600 	arg->symbol.field = field;
2601 
2602 	type = process_fields(event, &arg->symbol.symbols, &token);
2603 	if (test_type_token(type, token, EVENT_DELIM, ")"))
2604 		goto out_free;
2605 
2606 	free_token(token);
2607 	type = read_token_item(tok);
2608 	return type;
2609 
2610 out_free_field:
2611 	free_arg(field);
2612 out_free:
2613 	free_token(token);
2614 	*tok = NULL;
2615 	return EVENT_ERROR;
2616 }
2617 
2618 static enum event_type
process_hex_common(struct event_format * event,struct print_arg * arg,char ** tok,enum print_arg_type type)2619 process_hex_common(struct event_format *event, struct print_arg *arg,
2620 		   char **tok, enum print_arg_type type)
2621 {
2622 	memset(arg, 0, sizeof(*arg));
2623 	arg->type = type;
2624 
2625 	if (alloc_and_process_delim(event, ",", &arg->hex.field))
2626 		goto out;
2627 
2628 	if (alloc_and_process_delim(event, ")", &arg->hex.size))
2629 		goto free_field;
2630 
2631 	return read_token_item(tok);
2632 
2633 free_field:
2634 	free_arg(arg->hex.field);
2635 	arg->hex.field = NULL;
2636 out:
2637 	*tok = NULL;
2638 	return EVENT_ERROR;
2639 }
2640 
2641 static enum event_type
process_hex(struct event_format * event,struct print_arg * arg,char ** tok)2642 process_hex(struct event_format *event, struct print_arg *arg, char **tok)
2643 {
2644 	return process_hex_common(event, arg, tok, PRINT_HEX);
2645 }
2646 
2647 static enum event_type
process_hex_str(struct event_format * event,struct print_arg * arg,char ** tok)2648 process_hex_str(struct event_format *event, struct print_arg *arg,
2649 		char **tok)
2650 {
2651 	return process_hex_common(event, arg, tok, PRINT_HEX_STR);
2652 }
2653 
2654 static enum event_type
process_int_array(struct event_format * event,struct print_arg * arg,char ** tok)2655 process_int_array(struct event_format *event, struct print_arg *arg, char **tok)
2656 {
2657 	memset(arg, 0, sizeof(*arg));
2658 	arg->type = PRINT_INT_ARRAY;
2659 
2660 	if (alloc_and_process_delim(event, ",", &arg->int_array.field))
2661 		goto out;
2662 
2663 	if (alloc_and_process_delim(event, ",", &arg->int_array.count))
2664 		goto free_field;
2665 
2666 	if (alloc_and_process_delim(event, ")", &arg->int_array.el_size))
2667 		goto free_size;
2668 
2669 	return read_token_item(tok);
2670 
2671 free_size:
2672 	free_arg(arg->int_array.count);
2673 	arg->int_array.count = NULL;
2674 free_field:
2675 	free_arg(arg->int_array.field);
2676 	arg->int_array.field = NULL;
2677 out:
2678 	*tok = NULL;
2679 	return EVENT_ERROR;
2680 }
2681 
2682 static enum event_type
process_dynamic_array(struct event_format * event,struct print_arg * arg,char ** tok)2683 process_dynamic_array(struct event_format *event, struct print_arg *arg, char **tok)
2684 {
2685 	struct format_field *field;
2686 	enum event_type type;
2687 	char *token;
2688 
2689 	memset(arg, 0, sizeof(*arg));
2690 	arg->type = PRINT_DYNAMIC_ARRAY;
2691 
2692 	/*
2693 	 * The item within the parenthesis is another field that holds
2694 	 * the index into where the array starts.
2695 	 */
2696 	type = read_token(&token);
2697 	*tok = token;
2698 	if (type != EVENT_ITEM)
2699 		goto out_free;
2700 
2701 	/* Find the field */
2702 
2703 	field = tep_find_field(event, token);
2704 	if (!field)
2705 		goto out_free;
2706 
2707 	arg->dynarray.field = field;
2708 	arg->dynarray.index = 0;
2709 
2710 	if (read_expected(EVENT_DELIM, ")") < 0)
2711 		goto out_free;
2712 
2713 	free_token(token);
2714 	type = read_token_item(&token);
2715 	*tok = token;
2716 	if (type != EVENT_OP || strcmp(token, "[") != 0)
2717 		return type;
2718 
2719 	free_token(token);
2720 	arg = alloc_arg();
2721 	if (!arg) {
2722 		do_warning_event(event, "%s: not enough memory!", __func__);
2723 		*tok = NULL;
2724 		return EVENT_ERROR;
2725 	}
2726 
2727 	type = process_arg(event, arg, &token);
2728 	if (type == EVENT_ERROR)
2729 		goto out_free_arg;
2730 
2731 	if (!test_type_token(type, token, EVENT_OP, "]"))
2732 		goto out_free_arg;
2733 
2734 	free_token(token);
2735 	type = read_token_item(tok);
2736 	return type;
2737 
2738  out_free_arg:
2739 	free_arg(arg);
2740  out_free:
2741 	free_token(token);
2742 	*tok = NULL;
2743 	return EVENT_ERROR;
2744 }
2745 
2746 static enum event_type
process_dynamic_array_len(struct event_format * event,struct print_arg * arg,char ** tok)2747 process_dynamic_array_len(struct event_format *event, struct print_arg *arg,
2748 			  char **tok)
2749 {
2750 	struct format_field *field;
2751 	enum event_type type;
2752 	char *token;
2753 
2754 	if (read_expect_type(EVENT_ITEM, &token) < 0)
2755 		goto out_free;
2756 
2757 	arg->type = PRINT_DYNAMIC_ARRAY_LEN;
2758 
2759 	/* Find the field */
2760 	field = tep_find_field(event, token);
2761 	if (!field)
2762 		goto out_free;
2763 
2764 	arg->dynarray.field = field;
2765 	arg->dynarray.index = 0;
2766 
2767 	if (read_expected(EVENT_DELIM, ")") < 0)
2768 		goto out_err;
2769 
2770 	type = read_token(&token);
2771 	*tok = token;
2772 
2773 	return type;
2774 
2775  out_free:
2776 	free_token(token);
2777  out_err:
2778 	*tok = NULL;
2779 	return EVENT_ERROR;
2780 }
2781 
2782 static enum event_type
process_paren(struct event_format * event,struct print_arg * arg,char ** tok)2783 process_paren(struct event_format *event, struct print_arg *arg, char **tok)
2784 {
2785 	struct print_arg *item_arg;
2786 	enum event_type type;
2787 	char *token;
2788 
2789 	type = process_arg(event, arg, &token);
2790 
2791 	if (type == EVENT_ERROR)
2792 		goto out_free;
2793 
2794 	if (type == EVENT_OP)
2795 		type = process_op(event, arg, &token);
2796 
2797 	if (type == EVENT_ERROR)
2798 		goto out_free;
2799 
2800 	if (test_type_token(type, token, EVENT_DELIM, ")"))
2801 		goto out_free;
2802 
2803 	free_token(token);
2804 	type = read_token_item(&token);
2805 
2806 	/*
2807 	 * If the next token is an item or another open paren, then
2808 	 * this was a typecast.
2809 	 */
2810 	if (event_item_type(type) ||
2811 	    (type == EVENT_DELIM && strcmp(token, "(") == 0)) {
2812 
2813 		/* make this a typecast and contine */
2814 
2815 		/* prevous must be an atom */
2816 		if (arg->type != PRINT_ATOM) {
2817 			do_warning_event(event, "previous needed to be PRINT_ATOM");
2818 			goto out_free;
2819 		}
2820 
2821 		item_arg = alloc_arg();
2822 		if (!item_arg) {
2823 			do_warning_event(event, "%s: not enough memory!",
2824 					 __func__);
2825 			goto out_free;
2826 		}
2827 
2828 		arg->type = PRINT_TYPE;
2829 		arg->typecast.type = arg->atom.atom;
2830 		arg->typecast.item = item_arg;
2831 		type = process_arg_token(event, item_arg, &token, type);
2832 
2833 	}
2834 
2835 	*tok = token;
2836 	return type;
2837 
2838  out_free:
2839 	free_token(token);
2840 	*tok = NULL;
2841 	return EVENT_ERROR;
2842 }
2843 
2844 
2845 static enum event_type
process_str(struct event_format * event __maybe_unused,struct print_arg * arg,char ** tok)2846 process_str(struct event_format *event __maybe_unused, struct print_arg *arg,
2847 	    char **tok)
2848 {
2849 	enum event_type type;
2850 	char *token;
2851 
2852 	if (read_expect_type(EVENT_ITEM, &token) < 0)
2853 		goto out_free;
2854 
2855 	arg->type = PRINT_STRING;
2856 	arg->string.string = token;
2857 	arg->string.offset = -1;
2858 
2859 	if (read_expected(EVENT_DELIM, ")") < 0)
2860 		goto out_err;
2861 
2862 	type = read_token(&token);
2863 	*tok = token;
2864 
2865 	return type;
2866 
2867  out_free:
2868 	free_token(token);
2869  out_err:
2870 	*tok = NULL;
2871 	return EVENT_ERROR;
2872 }
2873 
2874 static enum event_type
process_bitmask(struct event_format * event __maybe_unused,struct print_arg * arg,char ** tok)2875 process_bitmask(struct event_format *event __maybe_unused, struct print_arg *arg,
2876 	    char **tok)
2877 {
2878 	enum event_type type;
2879 	char *token;
2880 
2881 	if (read_expect_type(EVENT_ITEM, &token) < 0)
2882 		goto out_free;
2883 
2884 	arg->type = PRINT_BITMASK;
2885 	arg->bitmask.bitmask = token;
2886 	arg->bitmask.offset = -1;
2887 
2888 	if (read_expected(EVENT_DELIM, ")") < 0)
2889 		goto out_err;
2890 
2891 	type = read_token(&token);
2892 	*tok = token;
2893 
2894 	return type;
2895 
2896  out_free:
2897 	free_token(token);
2898  out_err:
2899 	*tok = NULL;
2900 	return EVENT_ERROR;
2901 }
2902 
2903 static struct tep_function_handler *
find_func_handler(struct tep_handle * pevent,char * func_name)2904 find_func_handler(struct tep_handle *pevent, char *func_name)
2905 {
2906 	struct tep_function_handler *func;
2907 
2908 	if (!pevent)
2909 		return NULL;
2910 
2911 	for (func = pevent->func_handlers; func; func = func->next) {
2912 		if (strcmp(func->name, func_name) == 0)
2913 			break;
2914 	}
2915 
2916 	return func;
2917 }
2918 
remove_func_handler(struct tep_handle * pevent,char * func_name)2919 static void remove_func_handler(struct tep_handle *pevent, char *func_name)
2920 {
2921 	struct tep_function_handler *func;
2922 	struct tep_function_handler **next;
2923 
2924 	next = &pevent->func_handlers;
2925 	while ((func = *next)) {
2926 		if (strcmp(func->name, func_name) == 0) {
2927 			*next = func->next;
2928 			free_func_handle(func);
2929 			break;
2930 		}
2931 		next = &func->next;
2932 	}
2933 }
2934 
2935 static enum event_type
process_func_handler(struct event_format * event,struct tep_function_handler * func,struct print_arg * arg,char ** tok)2936 process_func_handler(struct event_format *event, struct tep_function_handler *func,
2937 		     struct print_arg *arg, char **tok)
2938 {
2939 	struct print_arg **next_arg;
2940 	struct print_arg *farg;
2941 	enum event_type type;
2942 	char *token;
2943 	int i;
2944 
2945 	arg->type = PRINT_FUNC;
2946 	arg->func.func = func;
2947 
2948 	*tok = NULL;
2949 
2950 	next_arg = &(arg->func.args);
2951 	for (i = 0; i < func->nr_args; i++) {
2952 		farg = alloc_arg();
2953 		if (!farg) {
2954 			do_warning_event(event, "%s: not enough memory!",
2955 					 __func__);
2956 			return EVENT_ERROR;
2957 		}
2958 
2959 		type = process_arg(event, farg, &token);
2960 		if (i < (func->nr_args - 1)) {
2961 			if (type != EVENT_DELIM || strcmp(token, ",") != 0) {
2962 				do_warning_event(event,
2963 					"Error: function '%s()' expects %d arguments but event %s only uses %d",
2964 					func->name, func->nr_args,
2965 					event->name, i + 1);
2966 				goto err;
2967 			}
2968 		} else {
2969 			if (type != EVENT_DELIM || strcmp(token, ")") != 0) {
2970 				do_warning_event(event,
2971 					"Error: function '%s()' only expects %d arguments but event %s has more",
2972 					func->name, func->nr_args, event->name);
2973 				goto err;
2974 			}
2975 		}
2976 
2977 		*next_arg = farg;
2978 		next_arg = &(farg->next);
2979 		free_token(token);
2980 	}
2981 
2982 	type = read_token(&token);
2983 	*tok = token;
2984 
2985 	return type;
2986 
2987 err:
2988 	free_arg(farg);
2989 	free_token(token);
2990 	return EVENT_ERROR;
2991 }
2992 
2993 static enum event_type
process_function(struct event_format * event,struct print_arg * arg,char * token,char ** tok)2994 process_function(struct event_format *event, struct print_arg *arg,
2995 		 char *token, char **tok)
2996 {
2997 	struct tep_function_handler *func;
2998 
2999 	if (strcmp(token, "__print_flags") == 0) {
3000 		free_token(token);
3001 		is_flag_field = 1;
3002 		return process_flags(event, arg, tok);
3003 	}
3004 	if (strcmp(token, "__print_symbolic") == 0) {
3005 		free_token(token);
3006 		is_symbolic_field = 1;
3007 		return process_symbols(event, arg, tok);
3008 	}
3009 	if (strcmp(token, "__print_hex") == 0) {
3010 		free_token(token);
3011 		return process_hex(event, arg, tok);
3012 	}
3013 	if (strcmp(token, "__print_hex_str") == 0) {
3014 		free_token(token);
3015 		return process_hex_str(event, arg, tok);
3016 	}
3017 	if (strcmp(token, "__print_array") == 0) {
3018 		free_token(token);
3019 		return process_int_array(event, arg, tok);
3020 	}
3021 	if (strcmp(token, "__get_str") == 0) {
3022 		free_token(token);
3023 		return process_str(event, arg, tok);
3024 	}
3025 	if (strcmp(token, "__get_bitmask") == 0) {
3026 		free_token(token);
3027 		return process_bitmask(event, arg, tok);
3028 	}
3029 	if (strcmp(token, "__get_dynamic_array") == 0) {
3030 		free_token(token);
3031 		return process_dynamic_array(event, arg, tok);
3032 	}
3033 	if (strcmp(token, "__get_dynamic_array_len") == 0) {
3034 		free_token(token);
3035 		return process_dynamic_array_len(event, arg, tok);
3036 	}
3037 
3038 	func = find_func_handler(event->pevent, token);
3039 	if (func) {
3040 		free_token(token);
3041 		return process_func_handler(event, func, arg, tok);
3042 	}
3043 
3044 	do_warning_event(event, "function %s not defined", token);
3045 	free_token(token);
3046 	return EVENT_ERROR;
3047 }
3048 
3049 static enum event_type
process_arg_token(struct event_format * event,struct print_arg * arg,char ** tok,enum event_type type)3050 process_arg_token(struct event_format *event, struct print_arg *arg,
3051 		  char **tok, enum event_type type)
3052 {
3053 	char *token;
3054 	char *atom;
3055 
3056 	token = *tok;
3057 
3058 	switch (type) {
3059 	case EVENT_ITEM:
3060 		if (strcmp(token, "REC") == 0) {
3061 			free_token(token);
3062 			type = process_entry(event, arg, &token);
3063 			break;
3064 		}
3065 		atom = token;
3066 		/* test the next token */
3067 		type = read_token_item(&token);
3068 
3069 		/*
3070 		 * If the next token is a parenthesis, then this
3071 		 * is a function.
3072 		 */
3073 		if (type == EVENT_DELIM && strcmp(token, "(") == 0) {
3074 			free_token(token);
3075 			token = NULL;
3076 			/* this will free atom. */
3077 			type = process_function(event, arg, atom, &token);
3078 			break;
3079 		}
3080 		/* atoms can be more than one token long */
3081 		while (type == EVENT_ITEM) {
3082 			char *new_atom;
3083 			new_atom = realloc(atom,
3084 					   strlen(atom) + strlen(token) + 2);
3085 			if (!new_atom) {
3086 				free(atom);
3087 				*tok = NULL;
3088 				free_token(token);
3089 				return EVENT_ERROR;
3090 			}
3091 			atom = new_atom;
3092 			strcat(atom, " ");
3093 			strcat(atom, token);
3094 			free_token(token);
3095 			type = read_token_item(&token);
3096 		}
3097 
3098 		arg->type = PRINT_ATOM;
3099 		arg->atom.atom = atom;
3100 		break;
3101 
3102 	case EVENT_DQUOTE:
3103 	case EVENT_SQUOTE:
3104 		arg->type = PRINT_ATOM;
3105 		arg->atom.atom = token;
3106 		type = read_token_item(&token);
3107 		break;
3108 	case EVENT_DELIM:
3109 		if (strcmp(token, "(") == 0) {
3110 			free_token(token);
3111 			type = process_paren(event, arg, &token);
3112 			break;
3113 		}
3114 	case EVENT_OP:
3115 		/* handle single ops */
3116 		arg->type = PRINT_OP;
3117 		arg->op.op = token;
3118 		arg->op.left = NULL;
3119 		type = process_op(event, arg, &token);
3120 
3121 		/* On error, the op is freed */
3122 		if (type == EVENT_ERROR)
3123 			arg->op.op = NULL;
3124 
3125 		/* return error type if errored */
3126 		break;
3127 
3128 	case EVENT_ERROR ... EVENT_NEWLINE:
3129 	default:
3130 		do_warning_event(event, "unexpected type %d", type);
3131 		return EVENT_ERROR;
3132 	}
3133 	*tok = token;
3134 
3135 	return type;
3136 }
3137 
event_read_print_args(struct event_format * event,struct print_arg ** list)3138 static int event_read_print_args(struct event_format *event, struct print_arg **list)
3139 {
3140 	enum event_type type = EVENT_ERROR;
3141 	struct print_arg *arg;
3142 	char *token;
3143 	int args = 0;
3144 
3145 	do {
3146 		if (type == EVENT_NEWLINE) {
3147 			type = read_token_item(&token);
3148 			continue;
3149 		}
3150 
3151 		arg = alloc_arg();
3152 		if (!arg) {
3153 			do_warning_event(event, "%s: not enough memory!",
3154 					 __func__);
3155 			return -1;
3156 		}
3157 
3158 		type = process_arg(event, arg, &token);
3159 
3160 		if (type == EVENT_ERROR) {
3161 			free_token(token);
3162 			free_arg(arg);
3163 			return -1;
3164 		}
3165 
3166 		*list = arg;
3167 		args++;
3168 
3169 		if (type == EVENT_OP) {
3170 			type = process_op(event, arg, &token);
3171 			free_token(token);
3172 			if (type == EVENT_ERROR) {
3173 				*list = NULL;
3174 				free_arg(arg);
3175 				return -1;
3176 			}
3177 			list = &arg->next;
3178 			continue;
3179 		}
3180 
3181 		if (type == EVENT_DELIM && strcmp(token, ",") == 0) {
3182 			free_token(token);
3183 			*list = arg;
3184 			list = &arg->next;
3185 			continue;
3186 		}
3187 		break;
3188 	} while (type != EVENT_NONE);
3189 
3190 	if (type != EVENT_NONE && type != EVENT_ERROR)
3191 		free_token(token);
3192 
3193 	return args;
3194 }
3195 
event_read_print(struct event_format * event)3196 static int event_read_print(struct event_format *event)
3197 {
3198 	enum event_type type;
3199 	char *token;
3200 	int ret;
3201 
3202 	if (read_expected_item(EVENT_ITEM, "print") < 0)
3203 		return -1;
3204 
3205 	if (read_expected(EVENT_ITEM, "fmt") < 0)
3206 		return -1;
3207 
3208 	if (read_expected(EVENT_OP, ":") < 0)
3209 		return -1;
3210 
3211 	if (read_expect_type(EVENT_DQUOTE, &token) < 0)
3212 		goto fail;
3213 
3214  concat:
3215 	event->print_fmt.format = token;
3216 	event->print_fmt.args = NULL;
3217 
3218 	/* ok to have no arg */
3219 	type = read_token_item(&token);
3220 
3221 	if (type == EVENT_NONE)
3222 		return 0;
3223 
3224 	/* Handle concatenation of print lines */
3225 	if (type == EVENT_DQUOTE) {
3226 		char *cat;
3227 
3228 		if (asprintf(&cat, "%s%s", event->print_fmt.format, token) < 0)
3229 			goto fail;
3230 		free_token(token);
3231 		free_token(event->print_fmt.format);
3232 		event->print_fmt.format = NULL;
3233 		token = cat;
3234 		goto concat;
3235 	}
3236 
3237 	if (test_type_token(type, token, EVENT_DELIM, ","))
3238 		goto fail;
3239 
3240 	free_token(token);
3241 
3242 	ret = event_read_print_args(event, &event->print_fmt.args);
3243 	if (ret < 0)
3244 		return -1;
3245 
3246 	return ret;
3247 
3248  fail:
3249 	free_token(token);
3250 	return -1;
3251 }
3252 
3253 /**
3254  * tep_find_common_field - return a common field by event
3255  * @event: handle for the event
3256  * @name: the name of the common field to return
3257  *
3258  * Returns a common field from the event by the given @name.
3259  * This only searchs the common fields and not all field.
3260  */
3261 struct format_field *
tep_find_common_field(struct event_format * event,const char * name)3262 tep_find_common_field(struct event_format *event, const char *name)
3263 {
3264 	struct format_field *format;
3265 
3266 	for (format = event->format.common_fields;
3267 	     format; format = format->next) {
3268 		if (strcmp(format->name, name) == 0)
3269 			break;
3270 	}
3271 
3272 	return format;
3273 }
3274 
3275 /**
3276  * tep_find_field - find a non-common field
3277  * @event: handle for the event
3278  * @name: the name of the non-common field
3279  *
3280  * Returns a non-common field by the given @name.
3281  * This does not search common fields.
3282  */
3283 struct format_field *
tep_find_field(struct event_format * event,const char * name)3284 tep_find_field(struct event_format *event, const char *name)
3285 {
3286 	struct format_field *format;
3287 
3288 	for (format = event->format.fields;
3289 	     format; format = format->next) {
3290 		if (strcmp(format->name, name) == 0)
3291 			break;
3292 	}
3293 
3294 	return format;
3295 }
3296 
3297 /**
3298  * tep_find_any_field - find any field by name
3299  * @event: handle for the event
3300  * @name: the name of the field
3301  *
3302  * Returns a field by the given @name.
3303  * This searchs the common field names first, then
3304  * the non-common ones if a common one was not found.
3305  */
3306 struct format_field *
tep_find_any_field(struct event_format * event,const char * name)3307 tep_find_any_field(struct event_format *event, const char *name)
3308 {
3309 	struct format_field *format;
3310 
3311 	format = tep_find_common_field(event, name);
3312 	if (format)
3313 		return format;
3314 	return tep_find_field(event, name);
3315 }
3316 
3317 /**
3318  * tep_read_number - read a number from data
3319  * @pevent: handle for the pevent
3320  * @ptr: the raw data
3321  * @size: the size of the data that holds the number
3322  *
3323  * Returns the number (converted to host) from the
3324  * raw data.
3325  */
tep_read_number(struct tep_handle * pevent,const void * ptr,int size)3326 unsigned long long tep_read_number(struct tep_handle *pevent,
3327 				   const void *ptr, int size)
3328 {
3329 	switch (size) {
3330 	case 1:
3331 		return *(unsigned char *)ptr;
3332 	case 2:
3333 		return data2host2(pevent, ptr);
3334 	case 4:
3335 		return data2host4(pevent, ptr);
3336 	case 8:
3337 		return data2host8(pevent, ptr);
3338 	default:
3339 		/* BUG! */
3340 		return 0;
3341 	}
3342 }
3343 
3344 /**
3345  * tep_read_number_field - read a number from data
3346  * @field: a handle to the field
3347  * @data: the raw data to read
3348  * @value: the value to place the number in
3349  *
3350  * Reads raw data according to a field offset and size,
3351  * and translates it into @value.
3352  *
3353  * Returns 0 on success, -1 otherwise.
3354  */
tep_read_number_field(struct format_field * field,const void * data,unsigned long long * value)3355 int tep_read_number_field(struct format_field *field, const void *data,
3356 			  unsigned long long *value)
3357 {
3358 	if (!field)
3359 		return -1;
3360 	switch (field->size) {
3361 	case 1:
3362 	case 2:
3363 	case 4:
3364 	case 8:
3365 		*value = tep_read_number(field->event->pevent,
3366 					 data + field->offset, field->size);
3367 		return 0;
3368 	default:
3369 		return -1;
3370 	}
3371 }
3372 
get_common_info(struct tep_handle * pevent,const char * type,int * offset,int * size)3373 static int get_common_info(struct tep_handle *pevent,
3374 			   const char *type, int *offset, int *size)
3375 {
3376 	struct event_format *event;
3377 	struct format_field *field;
3378 
3379 	/*
3380 	 * All events should have the same common elements.
3381 	 * Pick any event to find where the type is;
3382 	 */
3383 	if (!pevent->events) {
3384 		do_warning("no event_list!");
3385 		return -1;
3386 	}
3387 
3388 	event = pevent->events[0];
3389 	field = tep_find_common_field(event, type);
3390 	if (!field)
3391 		return -1;
3392 
3393 	*offset = field->offset;
3394 	*size = field->size;
3395 
3396 	return 0;
3397 }
3398 
__parse_common(struct tep_handle * pevent,void * data,int * size,int * offset,const char * name)3399 static int __parse_common(struct tep_handle *pevent, void *data,
3400 			  int *size, int *offset, const char *name)
3401 {
3402 	int ret;
3403 
3404 	if (!*size) {
3405 		ret = get_common_info(pevent, name, offset, size);
3406 		if (ret < 0)
3407 			return ret;
3408 	}
3409 	return tep_read_number(pevent, data + *offset, *size);
3410 }
3411 
trace_parse_common_type(struct tep_handle * pevent,void * data)3412 static int trace_parse_common_type(struct tep_handle *pevent, void *data)
3413 {
3414 	return __parse_common(pevent, data,
3415 			      &pevent->type_size, &pevent->type_offset,
3416 			      "common_type");
3417 }
3418 
parse_common_pid(struct tep_handle * pevent,void * data)3419 static int parse_common_pid(struct tep_handle *pevent, void *data)
3420 {
3421 	return __parse_common(pevent, data,
3422 			      &pevent->pid_size, &pevent->pid_offset,
3423 			      "common_pid");
3424 }
3425 
parse_common_pc(struct tep_handle * pevent,void * data)3426 static int parse_common_pc(struct tep_handle *pevent, void *data)
3427 {
3428 	return __parse_common(pevent, data,
3429 			      &pevent->pc_size, &pevent->pc_offset,
3430 			      "common_preempt_count");
3431 }
3432 
parse_common_flags(struct tep_handle * pevent,void * data)3433 static int parse_common_flags(struct tep_handle *pevent, void *data)
3434 {
3435 	return __parse_common(pevent, data,
3436 			      &pevent->flags_size, &pevent->flags_offset,
3437 			      "common_flags");
3438 }
3439 
parse_common_lock_depth(struct tep_handle * pevent,void * data)3440 static int parse_common_lock_depth(struct tep_handle *pevent, void *data)
3441 {
3442 	return __parse_common(pevent, data,
3443 			      &pevent->ld_size, &pevent->ld_offset,
3444 			      "common_lock_depth");
3445 }
3446 
parse_common_migrate_disable(struct tep_handle * pevent,void * data)3447 static int parse_common_migrate_disable(struct tep_handle *pevent, void *data)
3448 {
3449 	return __parse_common(pevent, data,
3450 			      &pevent->ld_size, &pevent->ld_offset,
3451 			      "common_migrate_disable");
3452 }
3453 
3454 static int events_id_cmp(const void *a, const void *b);
3455 
3456 /**
3457  * tep_find_event - find an event by given id
3458  * @pevent: a handle to the pevent
3459  * @id: the id of the event
3460  *
3461  * Returns an event that has a given @id.
3462  */
tep_find_event(struct tep_handle * pevent,int id)3463 struct event_format *tep_find_event(struct tep_handle *pevent, int id)
3464 {
3465 	struct event_format **eventptr;
3466 	struct event_format key;
3467 	struct event_format *pkey = &key;
3468 
3469 	/* Check cache first */
3470 	if (pevent->last_event && pevent->last_event->id == id)
3471 		return pevent->last_event;
3472 
3473 	key.id = id;
3474 
3475 	eventptr = bsearch(&pkey, pevent->events, pevent->nr_events,
3476 			   sizeof(*pevent->events), events_id_cmp);
3477 
3478 	if (eventptr) {
3479 		pevent->last_event = *eventptr;
3480 		return *eventptr;
3481 	}
3482 
3483 	return NULL;
3484 }
3485 
3486 /**
3487  * tep_find_event_by_name - find an event by given name
3488  * @pevent: a handle to the pevent
3489  * @sys: the system name to search for
3490  * @name: the name of the event to search for
3491  *
3492  * This returns an event with a given @name and under the system
3493  * @sys. If @sys is NULL the first event with @name is returned.
3494  */
3495 struct event_format *
tep_find_event_by_name(struct tep_handle * pevent,const char * sys,const char * name)3496 tep_find_event_by_name(struct tep_handle *pevent,
3497 		       const char *sys, const char *name)
3498 {
3499 	struct event_format *event;
3500 	int i;
3501 
3502 	if (pevent->last_event &&
3503 	    strcmp(pevent->last_event->name, name) == 0 &&
3504 	    (!sys || strcmp(pevent->last_event->system, sys) == 0))
3505 		return pevent->last_event;
3506 
3507 	for (i = 0; i < pevent->nr_events; i++) {
3508 		event = pevent->events[i];
3509 		if (strcmp(event->name, name) == 0) {
3510 			if (!sys)
3511 				break;
3512 			if (strcmp(event->system, sys) == 0)
3513 				break;
3514 		}
3515 	}
3516 	if (i == pevent->nr_events)
3517 		event = NULL;
3518 
3519 	pevent->last_event = event;
3520 	return event;
3521 }
3522 
3523 static unsigned long long
eval_num_arg(void * data,int size,struct event_format * event,struct print_arg * arg)3524 eval_num_arg(void *data, int size, struct event_format *event, struct print_arg *arg)
3525 {
3526 	struct tep_handle *pevent = event->pevent;
3527 	unsigned long long val = 0;
3528 	unsigned long long left, right;
3529 	struct print_arg *typearg = NULL;
3530 	struct print_arg *larg;
3531 	unsigned long offset;
3532 	unsigned int field_size;
3533 
3534 	switch (arg->type) {
3535 	case PRINT_NULL:
3536 		/* ?? */
3537 		return 0;
3538 	case PRINT_ATOM:
3539 		return strtoull(arg->atom.atom, NULL, 0);
3540 	case PRINT_FIELD:
3541 		if (!arg->field.field) {
3542 			arg->field.field = tep_find_any_field(event, arg->field.name);
3543 			if (!arg->field.field)
3544 				goto out_warning_field;
3545 
3546 		}
3547 		/* must be a number */
3548 		val = tep_read_number(pevent, data + arg->field.field->offset,
3549 				      arg->field.field->size);
3550 		break;
3551 	case PRINT_FLAGS:
3552 	case PRINT_SYMBOL:
3553 	case PRINT_INT_ARRAY:
3554 	case PRINT_HEX:
3555 	case PRINT_HEX_STR:
3556 		break;
3557 	case PRINT_TYPE:
3558 		val = eval_num_arg(data, size, event, arg->typecast.item);
3559 		return eval_type(val, arg, 0);
3560 	case PRINT_STRING:
3561 	case PRINT_BSTRING:
3562 	case PRINT_BITMASK:
3563 		return 0;
3564 	case PRINT_FUNC: {
3565 		struct trace_seq s;
3566 		trace_seq_init(&s);
3567 		val = process_defined_func(&s, data, size, event, arg);
3568 		trace_seq_destroy(&s);
3569 		return val;
3570 	}
3571 	case PRINT_OP:
3572 		if (strcmp(arg->op.op, "[") == 0) {
3573 			/*
3574 			 * Arrays are special, since we don't want
3575 			 * to read the arg as is.
3576 			 */
3577 			right = eval_num_arg(data, size, event, arg->op.right);
3578 
3579 			/* handle typecasts */
3580 			larg = arg->op.left;
3581 			while (larg->type == PRINT_TYPE) {
3582 				if (!typearg)
3583 					typearg = larg;
3584 				larg = larg->typecast.item;
3585 			}
3586 
3587 			/* Default to long size */
3588 			field_size = pevent->long_size;
3589 
3590 			switch (larg->type) {
3591 			case PRINT_DYNAMIC_ARRAY:
3592 				offset = tep_read_number(pevent,
3593 						   data + larg->dynarray.field->offset,
3594 						   larg->dynarray.field->size);
3595 				if (larg->dynarray.field->elementsize)
3596 					field_size = larg->dynarray.field->elementsize;
3597 				/*
3598 				 * The actual length of the dynamic array is stored
3599 				 * in the top half of the field, and the offset
3600 				 * is in the bottom half of the 32 bit field.
3601 				 */
3602 				offset &= 0xffff;
3603 				offset += right;
3604 				break;
3605 			case PRINT_FIELD:
3606 				if (!larg->field.field) {
3607 					larg->field.field =
3608 						tep_find_any_field(event, larg->field.name);
3609 					if (!larg->field.field) {
3610 						arg = larg;
3611 						goto out_warning_field;
3612 					}
3613 				}
3614 				field_size = larg->field.field->elementsize;
3615 				offset = larg->field.field->offset +
3616 					right * larg->field.field->elementsize;
3617 				break;
3618 			default:
3619 				goto default_op; /* oops, all bets off */
3620 			}
3621 			val = tep_read_number(pevent,
3622 					      data + offset, field_size);
3623 			if (typearg)
3624 				val = eval_type(val, typearg, 1);
3625 			break;
3626 		} else if (strcmp(arg->op.op, "?") == 0) {
3627 			left = eval_num_arg(data, size, event, arg->op.left);
3628 			arg = arg->op.right;
3629 			if (left)
3630 				val = eval_num_arg(data, size, event, arg->op.left);
3631 			else
3632 				val = eval_num_arg(data, size, event, arg->op.right);
3633 			break;
3634 		}
3635  default_op:
3636 		left = eval_num_arg(data, size, event, arg->op.left);
3637 		right = eval_num_arg(data, size, event, arg->op.right);
3638 		switch (arg->op.op[0]) {
3639 		case '!':
3640 			switch (arg->op.op[1]) {
3641 			case 0:
3642 				val = !right;
3643 				break;
3644 			case '=':
3645 				val = left != right;
3646 				break;
3647 			default:
3648 				goto out_warning_op;
3649 			}
3650 			break;
3651 		case '~':
3652 			val = ~right;
3653 			break;
3654 		case '|':
3655 			if (arg->op.op[1])
3656 				val = left || right;
3657 			else
3658 				val = left | right;
3659 			break;
3660 		case '&':
3661 			if (arg->op.op[1])
3662 				val = left && right;
3663 			else
3664 				val = left & right;
3665 			break;
3666 		case '<':
3667 			switch (arg->op.op[1]) {
3668 			case 0:
3669 				val = left < right;
3670 				break;
3671 			case '<':
3672 				val = left << right;
3673 				break;
3674 			case '=':
3675 				val = left <= right;
3676 				break;
3677 			default:
3678 				goto out_warning_op;
3679 			}
3680 			break;
3681 		case '>':
3682 			switch (arg->op.op[1]) {
3683 			case 0:
3684 				val = left > right;
3685 				break;
3686 			case '>':
3687 				val = left >> right;
3688 				break;
3689 			case '=':
3690 				val = left >= right;
3691 				break;
3692 			default:
3693 				goto out_warning_op;
3694 			}
3695 			break;
3696 		case '=':
3697 			if (arg->op.op[1] != '=')
3698 				goto out_warning_op;
3699 
3700 			val = left == right;
3701 			break;
3702 		case '-':
3703 			val = left - right;
3704 			break;
3705 		case '+':
3706 			val = left + right;
3707 			break;
3708 		case '/':
3709 			val = left / right;
3710 			break;
3711 		case '%':
3712 			val = left % right;
3713 			break;
3714 		case '*':
3715 			val = left * right;
3716 			break;
3717 		default:
3718 			goto out_warning_op;
3719 		}
3720 		break;
3721 	case PRINT_DYNAMIC_ARRAY_LEN:
3722 		offset = tep_read_number(pevent,
3723 					 data + arg->dynarray.field->offset,
3724 					 arg->dynarray.field->size);
3725 		/*
3726 		 * The total allocated length of the dynamic array is
3727 		 * stored in the top half of the field, and the offset
3728 		 * is in the bottom half of the 32 bit field.
3729 		 */
3730 		val = (unsigned long long)(offset >> 16);
3731 		break;
3732 	case PRINT_DYNAMIC_ARRAY:
3733 		/* Without [], we pass the address to the dynamic data */
3734 		offset = tep_read_number(pevent,
3735 					 data + arg->dynarray.field->offset,
3736 					 arg->dynarray.field->size);
3737 		/*
3738 		 * The total allocated length of the dynamic array is
3739 		 * stored in the top half of the field, and the offset
3740 		 * is in the bottom half of the 32 bit field.
3741 		 */
3742 		offset &= 0xffff;
3743 		val = (unsigned long long)((unsigned long)data + offset);
3744 		break;
3745 	default: /* not sure what to do there */
3746 		return 0;
3747 	}
3748 	return val;
3749 
3750 out_warning_op:
3751 	do_warning_event(event, "%s: unknown op '%s'", __func__, arg->op.op);
3752 	return 0;
3753 
3754 out_warning_field:
3755 	do_warning_event(event, "%s: field %s not found",
3756 			 __func__, arg->field.name);
3757 	return 0;
3758 }
3759 
3760 struct flag {
3761 	const char *name;
3762 	unsigned long long value;
3763 };
3764 
3765 static const struct flag flags[] = {
3766 	{ "HI_SOFTIRQ", 0 },
3767 	{ "TIMER_SOFTIRQ", 1 },
3768 	{ "NET_TX_SOFTIRQ", 2 },
3769 	{ "NET_RX_SOFTIRQ", 3 },
3770 	{ "BLOCK_SOFTIRQ", 4 },
3771 	{ "IRQ_POLL_SOFTIRQ", 5 },
3772 	{ "TASKLET_SOFTIRQ", 6 },
3773 	{ "SCHED_SOFTIRQ", 7 },
3774 	{ "HRTIMER_SOFTIRQ", 8 },
3775 	{ "RCU_SOFTIRQ", 9 },
3776 
3777 	{ "HRTIMER_NORESTART", 0 },
3778 	{ "HRTIMER_RESTART", 1 },
3779 };
3780 
eval_flag(const char * flag)3781 static long long eval_flag(const char *flag)
3782 {
3783 	int i;
3784 
3785 	/*
3786 	 * Some flags in the format files do not get converted.
3787 	 * If the flag is not numeric, see if it is something that
3788 	 * we already know about.
3789 	 */
3790 	if (isdigit(flag[0]))
3791 		return strtoull(flag, NULL, 0);
3792 
3793 	for (i = 0; i < (int)(sizeof(flags)/sizeof(flags[0])); i++)
3794 		if (strcmp(flags[i].name, flag) == 0)
3795 			return flags[i].value;
3796 
3797 	return -1LL;
3798 }
3799 
print_str_to_seq(struct trace_seq * s,const char * format,int len_arg,const char * str)3800 static void print_str_to_seq(struct trace_seq *s, const char *format,
3801 			     int len_arg, const char *str)
3802 {
3803 	if (len_arg >= 0)
3804 		trace_seq_printf(s, format, len_arg, str);
3805 	else
3806 		trace_seq_printf(s, format, str);
3807 }
3808 
print_bitmask_to_seq(struct tep_handle * pevent,struct trace_seq * s,const char * format,int len_arg,const void * data,int size)3809 static void print_bitmask_to_seq(struct tep_handle *pevent,
3810 				 struct trace_seq *s, const char *format,
3811 				 int len_arg, const void *data, int size)
3812 {
3813 	int nr_bits = size * 8;
3814 	int str_size = (nr_bits + 3) / 4;
3815 	int len = 0;
3816 	char buf[3];
3817 	char *str;
3818 	int index;
3819 	int i;
3820 
3821 	/*
3822 	 * The kernel likes to put in commas every 32 bits, we
3823 	 * can do the same.
3824 	 */
3825 	str_size += (nr_bits - 1) / 32;
3826 
3827 	str = malloc(str_size + 1);
3828 	if (!str) {
3829 		do_warning("%s: not enough memory!", __func__);
3830 		return;
3831 	}
3832 	str[str_size] = 0;
3833 
3834 	/* Start out with -2 for the two chars per byte */
3835 	for (i = str_size - 2; i >= 0; i -= 2) {
3836 		/*
3837 		 * data points to a bit mask of size bytes.
3838 		 * In the kernel, this is an array of long words, thus
3839 		 * endianess is very important.
3840 		 */
3841 		if (pevent->file_bigendian)
3842 			index = size - (len + 1);
3843 		else
3844 			index = len;
3845 
3846 		snprintf(buf, 3, "%02x", *((unsigned char *)data + index));
3847 		memcpy(str + i, buf, 2);
3848 		len++;
3849 		if (!(len & 3) && i > 0) {
3850 			i--;
3851 			str[i] = ',';
3852 		}
3853 	}
3854 
3855 	if (len_arg >= 0)
3856 		trace_seq_printf(s, format, len_arg, str);
3857 	else
3858 		trace_seq_printf(s, format, str);
3859 
3860 	free(str);
3861 }
3862 
print_str_arg(struct trace_seq * s,void * data,int size,struct event_format * event,const char * format,int len_arg,struct print_arg * arg)3863 static void print_str_arg(struct trace_seq *s, void *data, int size,
3864 			  struct event_format *event, const char *format,
3865 			  int len_arg, struct print_arg *arg)
3866 {
3867 	struct tep_handle *pevent = event->pevent;
3868 	struct print_flag_sym *flag;
3869 	struct format_field *field;
3870 	struct printk_map *printk;
3871 	long long val, fval;
3872 	unsigned long long addr;
3873 	char *str;
3874 	unsigned char *hex;
3875 	int print;
3876 	int i, len;
3877 
3878 	switch (arg->type) {
3879 	case PRINT_NULL:
3880 		/* ?? */
3881 		return;
3882 	case PRINT_ATOM:
3883 		print_str_to_seq(s, format, len_arg, arg->atom.atom);
3884 		return;
3885 	case PRINT_FIELD:
3886 		field = arg->field.field;
3887 		if (!field) {
3888 			field = tep_find_any_field(event, arg->field.name);
3889 			if (!field) {
3890 				str = arg->field.name;
3891 				goto out_warning_field;
3892 			}
3893 			arg->field.field = field;
3894 		}
3895 		/* Zero sized fields, mean the rest of the data */
3896 		len = field->size ? : size - field->offset;
3897 
3898 		/*
3899 		 * Some events pass in pointers. If this is not an array
3900 		 * and the size is the same as long_size, assume that it
3901 		 * is a pointer.
3902 		 */
3903 		if (!(field->flags & FIELD_IS_ARRAY) &&
3904 		    field->size == pevent->long_size) {
3905 
3906 			/* Handle heterogeneous recording and processing
3907 			 * architectures
3908 			 *
3909 			 * CASE I:
3910 			 * Traces recorded on 32-bit devices (32-bit
3911 			 * addressing) and processed on 64-bit devices:
3912 			 * In this case, only 32 bits should be read.
3913 			 *
3914 			 * CASE II:
3915 			 * Traces recorded on 64 bit devices and processed
3916 			 * on 32-bit devices:
3917 			 * In this case, 64 bits must be read.
3918 			 */
3919 			addr = (pevent->long_size == 8) ?
3920 				*(unsigned long long *)(data + field->offset) :
3921 				(unsigned long long)*(unsigned int *)(data + field->offset);
3922 
3923 			/* Check if it matches a print format */
3924 			printk = find_printk(pevent, addr);
3925 			if (printk)
3926 				trace_seq_puts(s, printk->printk);
3927 			else
3928 				trace_seq_printf(s, "%llx", addr);
3929 			break;
3930 		}
3931 		str = malloc(len + 1);
3932 		if (!str) {
3933 			do_warning_event(event, "%s: not enough memory!",
3934 					 __func__);
3935 			return;
3936 		}
3937 		memcpy(str, data + field->offset, len);
3938 		str[len] = 0;
3939 		print_str_to_seq(s, format, len_arg, str);
3940 		free(str);
3941 		break;
3942 	case PRINT_FLAGS:
3943 		val = eval_num_arg(data, size, event, arg->flags.field);
3944 		print = 0;
3945 		for (flag = arg->flags.flags; flag; flag = flag->next) {
3946 			fval = eval_flag(flag->value);
3947 			if (!val && fval < 0) {
3948 				print_str_to_seq(s, format, len_arg, flag->str);
3949 				break;
3950 			}
3951 			if (fval > 0 && (val & fval) == fval) {
3952 				if (print && arg->flags.delim)
3953 					trace_seq_puts(s, arg->flags.delim);
3954 				print_str_to_seq(s, format, len_arg, flag->str);
3955 				print = 1;
3956 				val &= ~fval;
3957 			}
3958 		}
3959 		if (val) {
3960 			if (print && arg->flags.delim)
3961 				trace_seq_puts(s, arg->flags.delim);
3962 			trace_seq_printf(s, "0x%llx", val);
3963 		}
3964 		break;
3965 	case PRINT_SYMBOL:
3966 		val = eval_num_arg(data, size, event, arg->symbol.field);
3967 		for (flag = arg->symbol.symbols; flag; flag = flag->next) {
3968 			fval = eval_flag(flag->value);
3969 			if (val == fval) {
3970 				print_str_to_seq(s, format, len_arg, flag->str);
3971 				break;
3972 			}
3973 		}
3974 		if (!flag)
3975 			trace_seq_printf(s, "0x%llx", val);
3976 		break;
3977 	case PRINT_HEX:
3978 	case PRINT_HEX_STR:
3979 		if (arg->hex.field->type == PRINT_DYNAMIC_ARRAY) {
3980 			unsigned long offset;
3981 			offset = tep_read_number(pevent,
3982 				data + arg->hex.field->dynarray.field->offset,
3983 				arg->hex.field->dynarray.field->size);
3984 			hex = data + (offset & 0xffff);
3985 		} else {
3986 			field = arg->hex.field->field.field;
3987 			if (!field) {
3988 				str = arg->hex.field->field.name;
3989 				field = tep_find_any_field(event, str);
3990 				if (!field)
3991 					goto out_warning_field;
3992 				arg->hex.field->field.field = field;
3993 			}
3994 			hex = data + field->offset;
3995 		}
3996 		len = eval_num_arg(data, size, event, arg->hex.size);
3997 		for (i = 0; i < len; i++) {
3998 			if (i && arg->type == PRINT_HEX)
3999 				trace_seq_putc(s, ' ');
4000 			trace_seq_printf(s, "%02x", hex[i]);
4001 		}
4002 		break;
4003 
4004 	case PRINT_INT_ARRAY: {
4005 		void *num;
4006 		int el_size;
4007 
4008 		if (arg->int_array.field->type == PRINT_DYNAMIC_ARRAY) {
4009 			unsigned long offset;
4010 			struct format_field *field =
4011 				arg->int_array.field->dynarray.field;
4012 			offset = tep_read_number(pevent,
4013 						 data + field->offset,
4014 						 field->size);
4015 			num = data + (offset & 0xffff);
4016 		} else {
4017 			field = arg->int_array.field->field.field;
4018 			if (!field) {
4019 				str = arg->int_array.field->field.name;
4020 				field = tep_find_any_field(event, str);
4021 				if (!field)
4022 					goto out_warning_field;
4023 				arg->int_array.field->field.field = field;
4024 			}
4025 			num = data + field->offset;
4026 		}
4027 		len = eval_num_arg(data, size, event, arg->int_array.count);
4028 		el_size = eval_num_arg(data, size, event,
4029 				       arg->int_array.el_size);
4030 		for (i = 0; i < len; i++) {
4031 			if (i)
4032 				trace_seq_putc(s, ' ');
4033 
4034 			if (el_size == 1) {
4035 				trace_seq_printf(s, "%u", *(uint8_t *)num);
4036 			} else if (el_size == 2) {
4037 				trace_seq_printf(s, "%u", *(uint16_t *)num);
4038 			} else if (el_size == 4) {
4039 				trace_seq_printf(s, "%u", *(uint32_t *)num);
4040 			} else if (el_size == 8) {
4041 				trace_seq_printf(s, "%"PRIu64, *(uint64_t *)num);
4042 			} else {
4043 				trace_seq_printf(s, "BAD SIZE:%d 0x%x",
4044 						 el_size, *(uint8_t *)num);
4045 				el_size = 1;
4046 			}
4047 
4048 			num += el_size;
4049 		}
4050 		break;
4051 	}
4052 	case PRINT_TYPE:
4053 		break;
4054 	case PRINT_STRING: {
4055 		int str_offset;
4056 
4057 		if (arg->string.offset == -1) {
4058 			struct format_field *f;
4059 
4060 			f = tep_find_any_field(event, arg->string.string);
4061 			arg->string.offset = f->offset;
4062 		}
4063 		str_offset = data2host4(pevent, data + arg->string.offset);
4064 		str_offset &= 0xffff;
4065 		print_str_to_seq(s, format, len_arg, ((char *)data) + str_offset);
4066 		break;
4067 	}
4068 	case PRINT_BSTRING:
4069 		print_str_to_seq(s, format, len_arg, arg->string.string);
4070 		break;
4071 	case PRINT_BITMASK: {
4072 		int bitmask_offset;
4073 		int bitmask_size;
4074 
4075 		if (arg->bitmask.offset == -1) {
4076 			struct format_field *f;
4077 
4078 			f = tep_find_any_field(event, arg->bitmask.bitmask);
4079 			arg->bitmask.offset = f->offset;
4080 		}
4081 		bitmask_offset = data2host4(pevent, data + arg->bitmask.offset);
4082 		bitmask_size = bitmask_offset >> 16;
4083 		bitmask_offset &= 0xffff;
4084 		print_bitmask_to_seq(pevent, s, format, len_arg,
4085 				     data + bitmask_offset, bitmask_size);
4086 		break;
4087 	}
4088 	case PRINT_OP:
4089 		/*
4090 		 * The only op for string should be ? :
4091 		 */
4092 		if (arg->op.op[0] != '?')
4093 			return;
4094 		val = eval_num_arg(data, size, event, arg->op.left);
4095 		if (val)
4096 			print_str_arg(s, data, size, event,
4097 				      format, len_arg, arg->op.right->op.left);
4098 		else
4099 			print_str_arg(s, data, size, event,
4100 				      format, len_arg, arg->op.right->op.right);
4101 		break;
4102 	case PRINT_FUNC:
4103 		process_defined_func(s, data, size, event, arg);
4104 		break;
4105 	default:
4106 		/* well... */
4107 		break;
4108 	}
4109 
4110 	return;
4111 
4112 out_warning_field:
4113 	do_warning_event(event, "%s: field %s not found",
4114 			 __func__, arg->field.name);
4115 }
4116 
4117 static unsigned long long
process_defined_func(struct trace_seq * s,void * data,int size,struct event_format * event,struct print_arg * arg)4118 process_defined_func(struct trace_seq *s, void *data, int size,
4119 		     struct event_format *event, struct print_arg *arg)
4120 {
4121 	struct tep_function_handler *func_handle = arg->func.func;
4122 	struct func_params *param;
4123 	unsigned long long *args;
4124 	unsigned long long ret;
4125 	struct print_arg *farg;
4126 	struct trace_seq str;
4127 	struct save_str {
4128 		struct save_str *next;
4129 		char *str;
4130 	} *strings = NULL, *string;
4131 	int i;
4132 
4133 	if (!func_handle->nr_args) {
4134 		ret = (*func_handle->func)(s, NULL);
4135 		goto out;
4136 	}
4137 
4138 	farg = arg->func.args;
4139 	param = func_handle->params;
4140 
4141 	ret = ULLONG_MAX;
4142 	args = malloc(sizeof(*args) * func_handle->nr_args);
4143 	if (!args)
4144 		goto out;
4145 
4146 	for (i = 0; i < func_handle->nr_args; i++) {
4147 		switch (param->type) {
4148 		case TEP_FUNC_ARG_INT:
4149 		case TEP_FUNC_ARG_LONG:
4150 		case TEP_FUNC_ARG_PTR:
4151 			args[i] = eval_num_arg(data, size, event, farg);
4152 			break;
4153 		case TEP_FUNC_ARG_STRING:
4154 			trace_seq_init(&str);
4155 			print_str_arg(&str, data, size, event, "%s", -1, farg);
4156 			trace_seq_terminate(&str);
4157 			string = malloc(sizeof(*string));
4158 			if (!string) {
4159 				do_warning_event(event, "%s(%d): malloc str",
4160 						 __func__, __LINE__);
4161 				goto out_free;
4162 			}
4163 			string->next = strings;
4164 			string->str = strdup(str.buffer);
4165 			if (!string->str) {
4166 				free(string);
4167 				do_warning_event(event, "%s(%d): malloc str",
4168 						 __func__, __LINE__);
4169 				goto out_free;
4170 			}
4171 			args[i] = (uintptr_t)string->str;
4172 			strings = string;
4173 			trace_seq_destroy(&str);
4174 			break;
4175 		default:
4176 			/*
4177 			 * Something went totally wrong, this is not
4178 			 * an input error, something in this code broke.
4179 			 */
4180 			do_warning_event(event, "Unexpected end of arguments\n");
4181 			goto out_free;
4182 		}
4183 		farg = farg->next;
4184 		param = param->next;
4185 	}
4186 
4187 	ret = (*func_handle->func)(s, args);
4188 out_free:
4189 	free(args);
4190 	while (strings) {
4191 		string = strings;
4192 		strings = string->next;
4193 		free(string->str);
4194 		free(string);
4195 	}
4196 
4197  out:
4198 	/* TBD : handle return type here */
4199 	return ret;
4200 }
4201 
free_args(struct print_arg * args)4202 static void free_args(struct print_arg *args)
4203 {
4204 	struct print_arg *next;
4205 
4206 	while (args) {
4207 		next = args->next;
4208 
4209 		free_arg(args);
4210 		args = next;
4211 	}
4212 }
4213 
make_bprint_args(char * fmt,void * data,int size,struct event_format * event)4214 static struct print_arg *make_bprint_args(char *fmt, void *data, int size, struct event_format *event)
4215 {
4216 	struct tep_handle *pevent = event->pevent;
4217 	struct format_field *field, *ip_field;
4218 	struct print_arg *args, *arg, **next;
4219 	unsigned long long ip, val;
4220 	char *ptr;
4221 	void *bptr;
4222 	int vsize;
4223 
4224 	field = pevent->bprint_buf_field;
4225 	ip_field = pevent->bprint_ip_field;
4226 
4227 	if (!field) {
4228 		field = tep_find_field(event, "buf");
4229 		if (!field) {
4230 			do_warning_event(event, "can't find buffer field for binary printk");
4231 			return NULL;
4232 		}
4233 		ip_field = tep_find_field(event, "ip");
4234 		if (!ip_field) {
4235 			do_warning_event(event, "can't find ip field for binary printk");
4236 			return NULL;
4237 		}
4238 		pevent->bprint_buf_field = field;
4239 		pevent->bprint_ip_field = ip_field;
4240 	}
4241 
4242 	ip = tep_read_number(pevent, data + ip_field->offset, ip_field->size);
4243 
4244 	/*
4245 	 * The first arg is the IP pointer.
4246 	 */
4247 	args = alloc_arg();
4248 	if (!args) {
4249 		do_warning_event(event, "%s(%d): not enough memory!",
4250 				 __func__, __LINE__);
4251 		return NULL;
4252 	}
4253 	arg = args;
4254 	arg->next = NULL;
4255 	next = &arg->next;
4256 
4257 	arg->type = PRINT_ATOM;
4258 
4259 	if (asprintf(&arg->atom.atom, "%lld", ip) < 0)
4260 		goto out_free;
4261 
4262 	/* skip the first "%ps: " */
4263 	for (ptr = fmt + 5, bptr = data + field->offset;
4264 	     bptr < data + size && *ptr; ptr++) {
4265 		int ls = 0;
4266 
4267 		if (*ptr == '%') {
4268  process_again:
4269 			ptr++;
4270 			switch (*ptr) {
4271 			case '%':
4272 				break;
4273 			case 'l':
4274 				ls++;
4275 				goto process_again;
4276 			case 'L':
4277 				ls = 2;
4278 				goto process_again;
4279 			case '0' ... '9':
4280 				goto process_again;
4281 			case '.':
4282 				goto process_again;
4283 			case 'z':
4284 			case 'Z':
4285 				ls = 1;
4286 				goto process_again;
4287 			case 'p':
4288 				ls = 1;
4289 				if (isalnum(ptr[1])) {
4290 					ptr++;
4291 					/* Check for special pointers */
4292 					switch (*ptr) {
4293 					case 's':
4294 					case 'S':
4295 					case 'f':
4296 					case 'F':
4297 						break;
4298 					default:
4299 						/*
4300 						 * Older kernels do not process
4301 						 * dereferenced pointers.
4302 						 * Only process if the pointer
4303 						 * value is a printable.
4304 						 */
4305 						if (isprint(*(char *)bptr))
4306 							goto process_string;
4307 					}
4308 				}
4309 				/* fall through */
4310 			case 'd':
4311 			case 'u':
4312 			case 'x':
4313 			case 'i':
4314 				switch (ls) {
4315 				case 0:
4316 					vsize = 4;
4317 					break;
4318 				case 1:
4319 					vsize = pevent->long_size;
4320 					break;
4321 				case 2:
4322 					vsize = 8;
4323 					break;
4324 				default:
4325 					vsize = ls; /* ? */
4326 					break;
4327 				}
4328 			/* fall through */
4329 			case '*':
4330 				if (*ptr == '*')
4331 					vsize = 4;
4332 
4333 				/* the pointers are always 4 bytes aligned */
4334 				bptr = (void *)(((unsigned long)bptr + 3) &
4335 						~3);
4336 				val = tep_read_number(pevent, bptr, vsize);
4337 				bptr += vsize;
4338 				arg = alloc_arg();
4339 				if (!arg) {
4340 					do_warning_event(event, "%s(%d): not enough memory!",
4341 						   __func__, __LINE__);
4342 					goto out_free;
4343 				}
4344 				arg->next = NULL;
4345 				arg->type = PRINT_ATOM;
4346 				if (asprintf(&arg->atom.atom, "%lld", val) < 0) {
4347 					free(arg);
4348 					goto out_free;
4349 				}
4350 				*next = arg;
4351 				next = &arg->next;
4352 				/*
4353 				 * The '*' case means that an arg is used as the length.
4354 				 * We need to continue to figure out for what.
4355 				 */
4356 				if (*ptr == '*')
4357 					goto process_again;
4358 
4359 				break;
4360 			case 's':
4361  process_string:
4362 				arg = alloc_arg();
4363 				if (!arg) {
4364 					do_warning_event(event, "%s(%d): not enough memory!",
4365 						   __func__, __LINE__);
4366 					goto out_free;
4367 				}
4368 				arg->next = NULL;
4369 				arg->type = PRINT_BSTRING;
4370 				arg->string.string = strdup(bptr);
4371 				if (!arg->string.string)
4372 					goto out_free;
4373 				bptr += strlen(bptr) + 1;
4374 				*next = arg;
4375 				next = &arg->next;
4376 			default:
4377 				break;
4378 			}
4379 		}
4380 	}
4381 
4382 	return args;
4383 
4384 out_free:
4385 	free_args(args);
4386 	return NULL;
4387 }
4388 
4389 static char *
get_bprint_format(void * data,int size __maybe_unused,struct event_format * event)4390 get_bprint_format(void *data, int size __maybe_unused,
4391 		  struct event_format *event)
4392 {
4393 	struct tep_handle *pevent = event->pevent;
4394 	unsigned long long addr;
4395 	struct format_field *field;
4396 	struct printk_map *printk;
4397 	char *format;
4398 
4399 	field = pevent->bprint_fmt_field;
4400 
4401 	if (!field) {
4402 		field = tep_find_field(event, "fmt");
4403 		if (!field) {
4404 			do_warning_event(event, "can't find format field for binary printk");
4405 			return NULL;
4406 		}
4407 		pevent->bprint_fmt_field = field;
4408 	}
4409 
4410 	addr = tep_read_number(pevent, data + field->offset, field->size);
4411 
4412 	printk = find_printk(pevent, addr);
4413 	if (!printk) {
4414 		if (asprintf(&format, "%%pf: (NO FORMAT FOUND at %llx)\n", addr) < 0)
4415 			return NULL;
4416 		return format;
4417 	}
4418 
4419 	if (asprintf(&format, "%s: %s", "%pf", printk->printk) < 0)
4420 		return NULL;
4421 
4422 	return format;
4423 }
4424 
print_mac_arg(struct trace_seq * s,int mac,void * data,int size,struct event_format * event,struct print_arg * arg)4425 static void print_mac_arg(struct trace_seq *s, int mac, void *data, int size,
4426 			  struct event_format *event, struct print_arg *arg)
4427 {
4428 	unsigned char *buf;
4429 	const char *fmt = "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x";
4430 
4431 	if (arg->type == PRINT_FUNC) {
4432 		process_defined_func(s, data, size, event, arg);
4433 		return;
4434 	}
4435 
4436 	if (arg->type != PRINT_FIELD) {
4437 		trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d",
4438 				 arg->type);
4439 		return;
4440 	}
4441 
4442 	if (mac == 'm')
4443 		fmt = "%.2x%.2x%.2x%.2x%.2x%.2x";
4444 	if (!arg->field.field) {
4445 		arg->field.field =
4446 			tep_find_any_field(event, arg->field.name);
4447 		if (!arg->field.field) {
4448 			do_warning_event(event, "%s: field %s not found",
4449 					 __func__, arg->field.name);
4450 			return;
4451 		}
4452 	}
4453 	if (arg->field.field->size != 6) {
4454 		trace_seq_printf(s, "INVALIDMAC");
4455 		return;
4456 	}
4457 	buf = data + arg->field.field->offset;
4458 	trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
4459 }
4460 
print_ip4_addr(struct trace_seq * s,char i,unsigned char * buf)4461 static void print_ip4_addr(struct trace_seq *s, char i, unsigned char *buf)
4462 {
4463 	const char *fmt;
4464 
4465 	if (i == 'i')
4466 		fmt = "%03d.%03d.%03d.%03d";
4467 	else
4468 		fmt = "%d.%d.%d.%d";
4469 
4470 	trace_seq_printf(s, fmt, buf[0], buf[1], buf[2], buf[3]);
4471 }
4472 
ipv6_addr_v4mapped(const struct in6_addr * a)4473 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
4474 {
4475 	return ((unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
4476 		(unsigned long)(a->s6_addr32[2] ^ htonl(0x0000ffff))) == 0UL;
4477 }
4478 
ipv6_addr_is_isatap(const struct in6_addr * addr)4479 static inline bool ipv6_addr_is_isatap(const struct in6_addr *addr)
4480 {
4481 	return (addr->s6_addr32[2] | htonl(0x02000000)) == htonl(0x02005EFE);
4482 }
4483 
print_ip6c_addr(struct trace_seq * s,unsigned char * addr)4484 static void print_ip6c_addr(struct trace_seq *s, unsigned char *addr)
4485 {
4486 	int i, j, range;
4487 	unsigned char zerolength[8];
4488 	int longest = 1;
4489 	int colonpos = -1;
4490 	uint16_t word;
4491 	uint8_t hi, lo;
4492 	bool needcolon = false;
4493 	bool useIPv4;
4494 	struct in6_addr in6;
4495 
4496 	memcpy(&in6, addr, sizeof(struct in6_addr));
4497 
4498 	useIPv4 = ipv6_addr_v4mapped(&in6) || ipv6_addr_is_isatap(&in6);
4499 
4500 	memset(zerolength, 0, sizeof(zerolength));
4501 
4502 	if (useIPv4)
4503 		range = 6;
4504 	else
4505 		range = 8;
4506 
4507 	/* find position of longest 0 run */
4508 	for (i = 0; i < range; i++) {
4509 		for (j = i; j < range; j++) {
4510 			if (in6.s6_addr16[j] != 0)
4511 				break;
4512 			zerolength[i]++;
4513 		}
4514 	}
4515 	for (i = 0; i < range; i++) {
4516 		if (zerolength[i] > longest) {
4517 			longest = zerolength[i];
4518 			colonpos = i;
4519 		}
4520 	}
4521 	if (longest == 1)		/* don't compress a single 0 */
4522 		colonpos = -1;
4523 
4524 	/* emit address */
4525 	for (i = 0; i < range; i++) {
4526 		if (i == colonpos) {
4527 			if (needcolon || i == 0)
4528 				trace_seq_printf(s, ":");
4529 			trace_seq_printf(s, ":");
4530 			needcolon = false;
4531 			i += longest - 1;
4532 			continue;
4533 		}
4534 		if (needcolon) {
4535 			trace_seq_printf(s, ":");
4536 			needcolon = false;
4537 		}
4538 		/* hex u16 without leading 0s */
4539 		word = ntohs(in6.s6_addr16[i]);
4540 		hi = word >> 8;
4541 		lo = word & 0xff;
4542 		if (hi)
4543 			trace_seq_printf(s, "%x%02x", hi, lo);
4544 		else
4545 			trace_seq_printf(s, "%x", lo);
4546 
4547 		needcolon = true;
4548 	}
4549 
4550 	if (useIPv4) {
4551 		if (needcolon)
4552 			trace_seq_printf(s, ":");
4553 		print_ip4_addr(s, 'I', &in6.s6_addr[12]);
4554 	}
4555 
4556 	return;
4557 }
4558 
print_ip6_addr(struct trace_seq * s,char i,unsigned char * buf)4559 static void print_ip6_addr(struct trace_seq *s, char i, unsigned char *buf)
4560 {
4561 	int j;
4562 
4563 	for (j = 0; j < 16; j += 2) {
4564 		trace_seq_printf(s, "%02x%02x", buf[j], buf[j+1]);
4565 		if (i == 'I' && j < 14)
4566 			trace_seq_printf(s, ":");
4567 	}
4568 }
4569 
4570 /*
4571  * %pi4   print an IPv4 address with leading zeros
4572  * %pI4   print an IPv4 address without leading zeros
4573  * %pi6   print an IPv6 address without colons
4574  * %pI6   print an IPv6 address with colons
4575  * %pI6c  print an IPv6 address in compressed form with colons
4576  * %pISpc print an IP address based on sockaddr; p adds port.
4577  */
print_ipv4_arg(struct trace_seq * s,const char * ptr,char i,void * data,int size,struct event_format * event,struct print_arg * arg)4578 static int print_ipv4_arg(struct trace_seq *s, const char *ptr, char i,
4579 			  void *data, int size, struct event_format *event,
4580 			  struct print_arg *arg)
4581 {
4582 	unsigned char *buf;
4583 
4584 	if (arg->type == PRINT_FUNC) {
4585 		process_defined_func(s, data, size, event, arg);
4586 		return 0;
4587 	}
4588 
4589 	if (arg->type != PRINT_FIELD) {
4590 		trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4591 		return 0;
4592 	}
4593 
4594 	if (!arg->field.field) {
4595 		arg->field.field =
4596 			tep_find_any_field(event, arg->field.name);
4597 		if (!arg->field.field) {
4598 			do_warning("%s: field %s not found",
4599 				   __func__, arg->field.name);
4600 			return 0;
4601 		}
4602 	}
4603 
4604 	buf = data + arg->field.field->offset;
4605 
4606 	if (arg->field.field->size != 4) {
4607 		trace_seq_printf(s, "INVALIDIPv4");
4608 		return 0;
4609 	}
4610 	print_ip4_addr(s, i, buf);
4611 
4612 	return 0;
4613 }
4614 
print_ipv6_arg(struct trace_seq * s,const char * ptr,char i,void * data,int size,struct event_format * event,struct print_arg * arg)4615 static int print_ipv6_arg(struct trace_seq *s, const char *ptr, char i,
4616 			  void *data, int size, struct event_format *event,
4617 			  struct print_arg *arg)
4618 {
4619 	char have_c = 0;
4620 	unsigned char *buf;
4621 	int rc = 0;
4622 
4623 	/* pI6c */
4624 	if (i == 'I' && *ptr == 'c') {
4625 		have_c = 1;
4626 		ptr++;
4627 		rc++;
4628 	}
4629 
4630 	if (arg->type == PRINT_FUNC) {
4631 		process_defined_func(s, data, size, event, arg);
4632 		return rc;
4633 	}
4634 
4635 	if (arg->type != PRINT_FIELD) {
4636 		trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4637 		return rc;
4638 	}
4639 
4640 	if (!arg->field.field) {
4641 		arg->field.field =
4642 			tep_find_any_field(event, arg->field.name);
4643 		if (!arg->field.field) {
4644 			do_warning("%s: field %s not found",
4645 				   __func__, arg->field.name);
4646 			return rc;
4647 		}
4648 	}
4649 
4650 	buf = data + arg->field.field->offset;
4651 
4652 	if (arg->field.field->size != 16) {
4653 		trace_seq_printf(s, "INVALIDIPv6");
4654 		return rc;
4655 	}
4656 
4657 	if (have_c)
4658 		print_ip6c_addr(s, buf);
4659 	else
4660 		print_ip6_addr(s, i, buf);
4661 
4662 	return rc;
4663 }
4664 
print_ipsa_arg(struct trace_seq * s,const char * ptr,char i,void * data,int size,struct event_format * event,struct print_arg * arg)4665 static int print_ipsa_arg(struct trace_seq *s, const char *ptr, char i,
4666 			  void *data, int size, struct event_format *event,
4667 			  struct print_arg *arg)
4668 {
4669 	char have_c = 0, have_p = 0;
4670 	unsigned char *buf;
4671 	struct sockaddr_storage *sa;
4672 	int rc = 0;
4673 
4674 	/* pISpc */
4675 	if (i == 'I') {
4676 		if (*ptr == 'p') {
4677 			have_p = 1;
4678 			ptr++;
4679 			rc++;
4680 		}
4681 		if (*ptr == 'c') {
4682 			have_c = 1;
4683 			ptr++;
4684 			rc++;
4685 		}
4686 	}
4687 
4688 	if (arg->type == PRINT_FUNC) {
4689 		process_defined_func(s, data, size, event, arg);
4690 		return rc;
4691 	}
4692 
4693 	if (arg->type != PRINT_FIELD) {
4694 		trace_seq_printf(s, "ARG TYPE NOT FIELD BUT %d", arg->type);
4695 		return rc;
4696 	}
4697 
4698 	if (!arg->field.field) {
4699 		arg->field.field =
4700 			tep_find_any_field(event, arg->field.name);
4701 		if (!arg->field.field) {
4702 			do_warning("%s: field %s not found",
4703 				   __func__, arg->field.name);
4704 			return rc;
4705 		}
4706 	}
4707 
4708 	sa = (struct sockaddr_storage *) (data + arg->field.field->offset);
4709 
4710 	if (sa->ss_family == AF_INET) {
4711 		struct sockaddr_in *sa4 = (struct sockaddr_in *) sa;
4712 
4713 		if (arg->field.field->size < sizeof(struct sockaddr_in)) {
4714 			trace_seq_printf(s, "INVALIDIPv4");
4715 			return rc;
4716 		}
4717 
4718 		print_ip4_addr(s, i, (unsigned char *) &sa4->sin_addr);
4719 		if (have_p)
4720 			trace_seq_printf(s, ":%d", ntohs(sa4->sin_port));
4721 
4722 
4723 	} else if (sa->ss_family == AF_INET6) {
4724 		struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *) sa;
4725 
4726 		if (arg->field.field->size < sizeof(struct sockaddr_in6)) {
4727 			trace_seq_printf(s, "INVALIDIPv6");
4728 			return rc;
4729 		}
4730 
4731 		if (have_p)
4732 			trace_seq_printf(s, "[");
4733 
4734 		buf = (unsigned char *) &sa6->sin6_addr;
4735 		if (have_c)
4736 			print_ip6c_addr(s, buf);
4737 		else
4738 			print_ip6_addr(s, i, buf);
4739 
4740 		if (have_p)
4741 			trace_seq_printf(s, "]:%d", ntohs(sa6->sin6_port));
4742 	}
4743 
4744 	return rc;
4745 }
4746 
print_ip_arg(struct trace_seq * s,const char * ptr,void * data,int size,struct event_format * event,struct print_arg * arg)4747 static int print_ip_arg(struct trace_seq *s, const char *ptr,
4748 			void *data, int size, struct event_format *event,
4749 			struct print_arg *arg)
4750 {
4751 	char i = *ptr;  /* 'i' or 'I' */
4752 	char ver;
4753 	int rc = 0;
4754 
4755 	ptr++;
4756 	rc++;
4757 
4758 	ver = *ptr;
4759 	ptr++;
4760 	rc++;
4761 
4762 	switch (ver) {
4763 	case '4':
4764 		rc += print_ipv4_arg(s, ptr, i, data, size, event, arg);
4765 		break;
4766 	case '6':
4767 		rc += print_ipv6_arg(s, ptr, i, data, size, event, arg);
4768 		break;
4769 	case 'S':
4770 		rc += print_ipsa_arg(s, ptr, i, data, size, event, arg);
4771 		break;
4772 	default:
4773 		return 0;
4774 	}
4775 
4776 	return rc;
4777 }
4778 
is_printable_array(char * p,unsigned int len)4779 static int is_printable_array(char *p, unsigned int len)
4780 {
4781 	unsigned int i;
4782 
4783 	for (i = 0; i < len && p[i]; i++)
4784 		if (!isprint(p[i]) && !isspace(p[i]))
4785 		    return 0;
4786 	return 1;
4787 }
4788 
tep_print_field(struct trace_seq * s,void * data,struct format_field * field)4789 void tep_print_field(struct trace_seq *s, void *data,
4790 		     struct format_field *field)
4791 {
4792 	unsigned long long val;
4793 	unsigned int offset, len, i;
4794 	struct tep_handle *pevent = field->event->pevent;
4795 
4796 	if (field->flags & FIELD_IS_ARRAY) {
4797 		offset = field->offset;
4798 		len = field->size;
4799 		if (field->flags & FIELD_IS_DYNAMIC) {
4800 			val = tep_read_number(pevent, data + offset, len);
4801 			offset = val;
4802 			len = offset >> 16;
4803 			offset &= 0xffff;
4804 		}
4805 		if (field->flags & FIELD_IS_STRING &&
4806 		    is_printable_array(data + offset, len)) {
4807 			trace_seq_printf(s, "%s", (char *)data + offset);
4808 		} else {
4809 			trace_seq_puts(s, "ARRAY[");
4810 			for (i = 0; i < len; i++) {
4811 				if (i)
4812 					trace_seq_puts(s, ", ");
4813 				trace_seq_printf(s, "%02x",
4814 						 *((unsigned char *)data + offset + i));
4815 			}
4816 			trace_seq_putc(s, ']');
4817 			field->flags &= ~FIELD_IS_STRING;
4818 		}
4819 	} else {
4820 		val = tep_read_number(pevent, data + field->offset,
4821 				      field->size);
4822 		if (field->flags & FIELD_IS_POINTER) {
4823 			trace_seq_printf(s, "0x%llx", val);
4824 		} else if (field->flags & FIELD_IS_SIGNED) {
4825 			switch (field->size) {
4826 			case 4:
4827 				/*
4828 				 * If field is long then print it in hex.
4829 				 * A long usually stores pointers.
4830 				 */
4831 				if (field->flags & FIELD_IS_LONG)
4832 					trace_seq_printf(s, "0x%x", (int)val);
4833 				else
4834 					trace_seq_printf(s, "%d", (int)val);
4835 				break;
4836 			case 2:
4837 				trace_seq_printf(s, "%2d", (short)val);
4838 				break;
4839 			case 1:
4840 				trace_seq_printf(s, "%1d", (char)val);
4841 				break;
4842 			default:
4843 				trace_seq_printf(s, "%lld", val);
4844 			}
4845 		} else {
4846 			if (field->flags & FIELD_IS_LONG)
4847 				trace_seq_printf(s, "0x%llx", val);
4848 			else
4849 				trace_seq_printf(s, "%llu", val);
4850 		}
4851 	}
4852 }
4853 
tep_print_fields(struct trace_seq * s,void * data,int size __maybe_unused,struct event_format * event)4854 void tep_print_fields(struct trace_seq *s, void *data,
4855 		      int size __maybe_unused, struct event_format *event)
4856 {
4857 	struct format_field *field;
4858 
4859 	field = event->format.fields;
4860 	while (field) {
4861 		trace_seq_printf(s, " %s=", field->name);
4862 		tep_print_field(s, data, field);
4863 		field = field->next;
4864 	}
4865 }
4866 
pretty_print(struct trace_seq * s,void * data,int size,struct event_format * event)4867 static void pretty_print(struct trace_seq *s, void *data, int size, struct event_format *event)
4868 {
4869 	struct tep_handle *pevent = event->pevent;
4870 	struct print_fmt *print_fmt = &event->print_fmt;
4871 	struct print_arg *arg = print_fmt->args;
4872 	struct print_arg *args = NULL;
4873 	const char *ptr = print_fmt->format;
4874 	unsigned long long val;
4875 	struct func_map *func;
4876 	const char *saveptr;
4877 	struct trace_seq p;
4878 	char *bprint_fmt = NULL;
4879 	char format[32];
4880 	int show_func;
4881 	int len_as_arg;
4882 	int len_arg;
4883 	int len;
4884 	int ls;
4885 
4886 	if (event->flags & EVENT_FL_FAILED) {
4887 		trace_seq_printf(s, "[FAILED TO PARSE]");
4888 		tep_print_fields(s, data, size, event);
4889 		return;
4890 	}
4891 
4892 	if (event->flags & EVENT_FL_ISBPRINT) {
4893 		bprint_fmt = get_bprint_format(data, size, event);
4894 		args = make_bprint_args(bprint_fmt, data, size, event);
4895 		arg = args;
4896 		ptr = bprint_fmt;
4897 	}
4898 
4899 	for (; *ptr; ptr++) {
4900 		ls = 0;
4901 		if (*ptr == '\\') {
4902 			ptr++;
4903 			switch (*ptr) {
4904 			case 'n':
4905 				trace_seq_putc(s, '\n');
4906 				break;
4907 			case 't':
4908 				trace_seq_putc(s, '\t');
4909 				break;
4910 			case 'r':
4911 				trace_seq_putc(s, '\r');
4912 				break;
4913 			case '\\':
4914 				trace_seq_putc(s, '\\');
4915 				break;
4916 			default:
4917 				trace_seq_putc(s, *ptr);
4918 				break;
4919 			}
4920 
4921 		} else if (*ptr == '%') {
4922 			saveptr = ptr;
4923 			show_func = 0;
4924 			len_as_arg = 0;
4925  cont_process:
4926 			ptr++;
4927 			switch (*ptr) {
4928 			case '%':
4929 				trace_seq_putc(s, '%');
4930 				break;
4931 			case '#':
4932 				/* FIXME: need to handle properly */
4933 				goto cont_process;
4934 			case 'h':
4935 				ls--;
4936 				goto cont_process;
4937 			case 'l':
4938 				ls++;
4939 				goto cont_process;
4940 			case 'L':
4941 				ls = 2;
4942 				goto cont_process;
4943 			case '*':
4944 				/* The argument is the length. */
4945 				if (!arg) {
4946 					do_warning_event(event, "no argument match");
4947 					event->flags |= EVENT_FL_FAILED;
4948 					goto out_failed;
4949 				}
4950 				len_arg = eval_num_arg(data, size, event, arg);
4951 				len_as_arg = 1;
4952 				arg = arg->next;
4953 				goto cont_process;
4954 			case '.':
4955 			case 'z':
4956 			case 'Z':
4957 			case '0' ... '9':
4958 			case '-':
4959 				goto cont_process;
4960 			case 'p':
4961 				if (pevent->long_size == 4)
4962 					ls = 1;
4963 				else
4964 					ls = 2;
4965 
4966 				if (isalnum(ptr[1]))
4967 					ptr++;
4968 
4969 				if (arg->type == PRINT_BSTRING) {
4970 					trace_seq_puts(s, arg->string.string);
4971 					break;
4972 				}
4973 
4974 				if (*ptr == 'F' || *ptr == 'f' ||
4975 				    *ptr == 'S' || *ptr == 's') {
4976 					show_func = *ptr;
4977 				} else if (*ptr == 'M' || *ptr == 'm') {
4978 					print_mac_arg(s, *ptr, data, size, event, arg);
4979 					arg = arg->next;
4980 					break;
4981 				} else if (*ptr == 'I' || *ptr == 'i') {
4982 					int n;
4983 
4984 					n = print_ip_arg(s, ptr, data, size, event, arg);
4985 					if (n > 0) {
4986 						ptr += n - 1;
4987 						arg = arg->next;
4988 						break;
4989 					}
4990 				}
4991 
4992 				/* fall through */
4993 			case 'd':
4994 			case 'i':
4995 			case 'x':
4996 			case 'X':
4997 			case 'u':
4998 				if (!arg) {
4999 					do_warning_event(event, "no argument match");
5000 					event->flags |= EVENT_FL_FAILED;
5001 					goto out_failed;
5002 				}
5003 
5004 				len = ((unsigned long)ptr + 1) -
5005 					(unsigned long)saveptr;
5006 
5007 				/* should never happen */
5008 				if (len > 31) {
5009 					do_warning_event(event, "bad format!");
5010 					event->flags |= EVENT_FL_FAILED;
5011 					len = 31;
5012 				}
5013 
5014 				memcpy(format, saveptr, len);
5015 				format[len] = 0;
5016 
5017 				val = eval_num_arg(data, size, event, arg);
5018 				arg = arg->next;
5019 
5020 				if (show_func) {
5021 					func = find_func(pevent, val);
5022 					if (func) {
5023 						trace_seq_puts(s, func->func);
5024 						if (show_func == 'F')
5025 							trace_seq_printf(s,
5026 							       "+0x%llx",
5027 							       val - func->addr);
5028 						break;
5029 					}
5030 				}
5031 				if (pevent->long_size == 8 && ls == 1 &&
5032 				    sizeof(long) != 8) {
5033 					char *p;
5034 
5035 					/* make %l into %ll */
5036 					if (ls == 1 && (p = strchr(format, 'l')))
5037 						memmove(p+1, p, strlen(p)+1);
5038 					else if (strcmp(format, "%p") == 0)
5039 						strcpy(format, "0x%llx");
5040 					ls = 2;
5041 				}
5042 				switch (ls) {
5043 				case -2:
5044 					if (len_as_arg)
5045 						trace_seq_printf(s, format, len_arg, (char)val);
5046 					else
5047 						trace_seq_printf(s, format, (char)val);
5048 					break;
5049 				case -1:
5050 					if (len_as_arg)
5051 						trace_seq_printf(s, format, len_arg, (short)val);
5052 					else
5053 						trace_seq_printf(s, format, (short)val);
5054 					break;
5055 				case 0:
5056 					if (len_as_arg)
5057 						trace_seq_printf(s, format, len_arg, (int)val);
5058 					else
5059 						trace_seq_printf(s, format, (int)val);
5060 					break;
5061 				case 1:
5062 					if (len_as_arg)
5063 						trace_seq_printf(s, format, len_arg, (long)val);
5064 					else
5065 						trace_seq_printf(s, format, (long)val);
5066 					break;
5067 				case 2:
5068 					if (len_as_arg)
5069 						trace_seq_printf(s, format, len_arg,
5070 								 (long long)val);
5071 					else
5072 						trace_seq_printf(s, format, (long long)val);
5073 					break;
5074 				default:
5075 					do_warning_event(event, "bad count (%d)", ls);
5076 					event->flags |= EVENT_FL_FAILED;
5077 				}
5078 				break;
5079 			case 's':
5080 				if (!arg) {
5081 					do_warning_event(event, "no matching argument");
5082 					event->flags |= EVENT_FL_FAILED;
5083 					goto out_failed;
5084 				}
5085 
5086 				len = ((unsigned long)ptr + 1) -
5087 					(unsigned long)saveptr;
5088 
5089 				/* should never happen */
5090 				if (len > 31) {
5091 					do_warning_event(event, "bad format!");
5092 					event->flags |= EVENT_FL_FAILED;
5093 					len = 31;
5094 				}
5095 
5096 				memcpy(format, saveptr, len);
5097 				format[len] = 0;
5098 				if (!len_as_arg)
5099 					len_arg = -1;
5100 				/* Use helper trace_seq */
5101 				trace_seq_init(&p);
5102 				print_str_arg(&p, data, size, event,
5103 					      format, len_arg, arg);
5104 				trace_seq_terminate(&p);
5105 				trace_seq_puts(s, p.buffer);
5106 				trace_seq_destroy(&p);
5107 				arg = arg->next;
5108 				break;
5109 			default:
5110 				trace_seq_printf(s, ">%c<", *ptr);
5111 
5112 			}
5113 		} else
5114 			trace_seq_putc(s, *ptr);
5115 	}
5116 
5117 	if (event->flags & EVENT_FL_FAILED) {
5118 out_failed:
5119 		trace_seq_printf(s, "[FAILED TO PARSE]");
5120 	}
5121 
5122 	if (args) {
5123 		free_args(args);
5124 		free(bprint_fmt);
5125 	}
5126 }
5127 
5128 /**
5129  * tep_data_lat_fmt - parse the data for the latency format
5130  * @pevent: a handle to the pevent
5131  * @s: the trace_seq to write to
5132  * @record: the record to read from
5133  *
5134  * This parses out the Latency format (interrupts disabled,
5135  * need rescheduling, in hard/soft interrupt, preempt count
5136  * and lock depth) and places it into the trace_seq.
5137  */
tep_data_lat_fmt(struct tep_handle * pevent,struct trace_seq * s,struct tep_record * record)5138 void tep_data_lat_fmt(struct tep_handle *pevent,
5139 		      struct trace_seq *s, struct tep_record *record)
5140 {
5141 	static int check_lock_depth = 1;
5142 	static int check_migrate_disable = 1;
5143 	static int lock_depth_exists;
5144 	static int migrate_disable_exists;
5145 	unsigned int lat_flags;
5146 	unsigned int pc;
5147 	int lock_depth;
5148 	int migrate_disable;
5149 	int hardirq;
5150 	int softirq;
5151 	void *data = record->data;
5152 
5153 	lat_flags = parse_common_flags(pevent, data);
5154 	pc = parse_common_pc(pevent, data);
5155 	/* lock_depth may not always exist */
5156 	if (lock_depth_exists)
5157 		lock_depth = parse_common_lock_depth(pevent, data);
5158 	else if (check_lock_depth) {
5159 		lock_depth = parse_common_lock_depth(pevent, data);
5160 		if (lock_depth < 0)
5161 			check_lock_depth = 0;
5162 		else
5163 			lock_depth_exists = 1;
5164 	}
5165 
5166 	/* migrate_disable may not always exist */
5167 	if (migrate_disable_exists)
5168 		migrate_disable = parse_common_migrate_disable(pevent, data);
5169 	else if (check_migrate_disable) {
5170 		migrate_disable = parse_common_migrate_disable(pevent, data);
5171 		if (migrate_disable < 0)
5172 			check_migrate_disable = 0;
5173 		else
5174 			migrate_disable_exists = 1;
5175 	}
5176 
5177 	hardirq = lat_flags & TRACE_FLAG_HARDIRQ;
5178 	softirq = lat_flags & TRACE_FLAG_SOFTIRQ;
5179 
5180 	trace_seq_printf(s, "%c%c%c",
5181 	       (lat_flags & TRACE_FLAG_IRQS_OFF) ? 'd' :
5182 	       (lat_flags & TRACE_FLAG_IRQS_NOSUPPORT) ?
5183 	       'X' : '.',
5184 	       (lat_flags & TRACE_FLAG_NEED_RESCHED) ?
5185 	       'N' : '.',
5186 	       (hardirq && softirq) ? 'H' :
5187 	       hardirq ? 'h' : softirq ? 's' : '.');
5188 
5189 	if (pc)
5190 		trace_seq_printf(s, "%x", pc);
5191 	else
5192 		trace_seq_putc(s, '.');
5193 
5194 	if (migrate_disable_exists) {
5195 		if (migrate_disable < 0)
5196 			trace_seq_putc(s, '.');
5197 		else
5198 			trace_seq_printf(s, "%d", migrate_disable);
5199 	}
5200 
5201 	if (lock_depth_exists) {
5202 		if (lock_depth < 0)
5203 			trace_seq_putc(s, '.');
5204 		else
5205 			trace_seq_printf(s, "%d", lock_depth);
5206 	}
5207 
5208 	trace_seq_terminate(s);
5209 }
5210 
5211 /**
5212  * tep_data_type - parse out the given event type
5213  * @pevent: a handle to the pevent
5214  * @rec: the record to read from
5215  *
5216  * This returns the event id from the @rec.
5217  */
tep_data_type(struct tep_handle * pevent,struct tep_record * rec)5218 int tep_data_type(struct tep_handle *pevent, struct tep_record *rec)
5219 {
5220 	return trace_parse_common_type(pevent, rec->data);
5221 }
5222 
5223 /**
5224  * tep_data_event_from_type - find the event by a given type
5225  * @pevent: a handle to the pevent
5226  * @type: the type of the event.
5227  *
5228  * This returns the event form a given @type;
5229  */
tep_data_event_from_type(struct tep_handle * pevent,int type)5230 struct event_format *tep_data_event_from_type(struct tep_handle *pevent, int type)
5231 {
5232 	return tep_find_event(pevent, type);
5233 }
5234 
5235 /**
5236  * tep_data_pid - parse the PID from record
5237  * @pevent: a handle to the pevent
5238  * @rec: the record to parse
5239  *
5240  * This returns the PID from a record.
5241  */
tep_data_pid(struct tep_handle * pevent,struct tep_record * rec)5242 int tep_data_pid(struct tep_handle *pevent, struct tep_record *rec)
5243 {
5244 	return parse_common_pid(pevent, rec->data);
5245 }
5246 
5247 /**
5248  * tep_data_preempt_count - parse the preempt count from the record
5249  * @pevent: a handle to the pevent
5250  * @rec: the record to parse
5251  *
5252  * This returns the preempt count from a record.
5253  */
tep_data_preempt_count(struct tep_handle * pevent,struct tep_record * rec)5254 int tep_data_preempt_count(struct tep_handle *pevent, struct tep_record *rec)
5255 {
5256 	return parse_common_pc(pevent, rec->data);
5257 }
5258 
5259 /**
5260  * tep_data_flags - parse the latency flags from the record
5261  * @pevent: a handle to the pevent
5262  * @rec: the record to parse
5263  *
5264  * This returns the latency flags from a record.
5265  *
5266  *  Use trace_flag_type enum for the flags (see event-parse.h).
5267  */
tep_data_flags(struct tep_handle * pevent,struct tep_record * rec)5268 int tep_data_flags(struct tep_handle *pevent, struct tep_record *rec)
5269 {
5270 	return parse_common_flags(pevent, rec->data);
5271 }
5272 
5273 /**
5274  * tep_data_comm_from_pid - return the command line from PID
5275  * @pevent: a handle to the pevent
5276  * @pid: the PID of the task to search for
5277  *
5278  * This returns a pointer to the command line that has the given
5279  * @pid.
5280  */
tep_data_comm_from_pid(struct tep_handle * pevent,int pid)5281 const char *tep_data_comm_from_pid(struct tep_handle *pevent, int pid)
5282 {
5283 	const char *comm;
5284 
5285 	comm = find_cmdline(pevent, pid);
5286 	return comm;
5287 }
5288 
5289 static struct cmdline *
pid_from_cmdlist(struct tep_handle * pevent,const char * comm,struct cmdline * next)5290 pid_from_cmdlist(struct tep_handle *pevent, const char *comm, struct cmdline *next)
5291 {
5292 	struct cmdline_list *cmdlist = (struct cmdline_list *)next;
5293 
5294 	if (cmdlist)
5295 		cmdlist = cmdlist->next;
5296 	else
5297 		cmdlist = pevent->cmdlist;
5298 
5299 	while (cmdlist && strcmp(cmdlist->comm, comm) != 0)
5300 		cmdlist = cmdlist->next;
5301 
5302 	return (struct cmdline *)cmdlist;
5303 }
5304 
5305 /**
5306  * tep_data_pid_from_comm - return the pid from a given comm
5307  * @pevent: a handle to the pevent
5308  * @comm: the cmdline to find the pid from
5309  * @next: the cmdline structure to find the next comm
5310  *
5311  * This returns the cmdline structure that holds a pid for a given
5312  * comm, or NULL if none found. As there may be more than one pid for
5313  * a given comm, the result of this call can be passed back into
5314  * a recurring call in the @next paramater, and then it will find the
5315  * next pid.
5316  * Also, it does a linear seach, so it may be slow.
5317  */
tep_data_pid_from_comm(struct tep_handle * pevent,const char * comm,struct cmdline * next)5318 struct cmdline *tep_data_pid_from_comm(struct tep_handle *pevent, const char *comm,
5319 				       struct cmdline *next)
5320 {
5321 	struct cmdline *cmdline;
5322 
5323 	/*
5324 	 * If the cmdlines have not been converted yet, then use
5325 	 * the list.
5326 	 */
5327 	if (!pevent->cmdlines)
5328 		return pid_from_cmdlist(pevent, comm, next);
5329 
5330 	if (next) {
5331 		/*
5332 		 * The next pointer could have been still from
5333 		 * a previous call before cmdlines were created
5334 		 */
5335 		if (next < pevent->cmdlines ||
5336 		    next >= pevent->cmdlines + pevent->cmdline_count)
5337 			next = NULL;
5338 		else
5339 			cmdline  = next++;
5340 	}
5341 
5342 	if (!next)
5343 		cmdline = pevent->cmdlines;
5344 
5345 	while (cmdline < pevent->cmdlines + pevent->cmdline_count) {
5346 		if (strcmp(cmdline->comm, comm) == 0)
5347 			return cmdline;
5348 		cmdline++;
5349 	}
5350 	return NULL;
5351 }
5352 
5353 /**
5354  * tep_cmdline_pid - return the pid associated to a given cmdline
5355  * @cmdline: The cmdline structure to get the pid from
5356  *
5357  * Returns the pid for a give cmdline. If @cmdline is NULL, then
5358  * -1 is returned.
5359  */
tep_cmdline_pid(struct tep_handle * pevent,struct cmdline * cmdline)5360 int tep_cmdline_pid(struct tep_handle *pevent, struct cmdline *cmdline)
5361 {
5362 	struct cmdline_list *cmdlist = (struct cmdline_list *)cmdline;
5363 
5364 	if (!cmdline)
5365 		return -1;
5366 
5367 	/*
5368 	 * If cmdlines have not been created yet, or cmdline is
5369 	 * not part of the array, then treat it as a cmdlist instead.
5370 	 */
5371 	if (!pevent->cmdlines ||
5372 	    cmdline < pevent->cmdlines ||
5373 	    cmdline >= pevent->cmdlines + pevent->cmdline_count)
5374 		return cmdlist->pid;
5375 
5376 	return cmdline->pid;
5377 }
5378 
5379 /**
5380  * tep_event_info - parse the data into the print format
5381  * @s: the trace_seq to write to
5382  * @event: the handle to the event
5383  * @record: the record to read from
5384  *
5385  * This parses the raw @data using the given @event information and
5386  * writes the print format into the trace_seq.
5387  */
tep_event_info(struct trace_seq * s,struct event_format * event,struct tep_record * record)5388 void tep_event_info(struct trace_seq *s, struct event_format *event,
5389 		    struct tep_record *record)
5390 {
5391 	int print_pretty = 1;
5392 
5393 	if (event->pevent->print_raw || (event->flags & EVENT_FL_PRINTRAW))
5394 		tep_print_fields(s, record->data, record->size, event);
5395 	else {
5396 
5397 		if (event->handler && !(event->flags & EVENT_FL_NOHANDLE))
5398 			print_pretty = event->handler(s, record, event,
5399 						      event->context);
5400 
5401 		if (print_pretty)
5402 			pretty_print(s, record->data, record->size, event);
5403 	}
5404 
5405 	trace_seq_terminate(s);
5406 }
5407 
is_timestamp_in_us(char * trace_clock,bool use_trace_clock)5408 static bool is_timestamp_in_us(char *trace_clock, bool use_trace_clock)
5409 {
5410 	if (!use_trace_clock)
5411 		return true;
5412 
5413 	if (!strcmp(trace_clock, "local") || !strcmp(trace_clock, "global")
5414 	    || !strcmp(trace_clock, "uptime") || !strcmp(trace_clock, "perf"))
5415 		return true;
5416 
5417 	/* trace_clock is setting in tsc or counter mode */
5418 	return false;
5419 }
5420 
5421 /**
5422  * tep_find_event_by_record - return the event from a given record
5423  * @pevent: a handle to the pevent
5424  * @record: The record to get the event from
5425  *
5426  * Returns the associated event for a given record, or NULL if non is
5427  * is found.
5428  */
5429 struct event_format *
tep_find_event_by_record(struct tep_handle * pevent,struct tep_record * record)5430 tep_find_event_by_record(struct tep_handle *pevent, struct tep_record *record)
5431 {
5432 	int type;
5433 
5434 	if (record->size < 0) {
5435 		do_warning("ug! negative record size %d", record->size);
5436 		return NULL;
5437 	}
5438 
5439 	type = trace_parse_common_type(pevent, record->data);
5440 
5441 	return tep_find_event(pevent, type);
5442 }
5443 
5444 /**
5445  * tep_print_event_task - Write the event task comm, pid and CPU
5446  * @pevent: a handle to the pevent
5447  * @s: the trace_seq to write to
5448  * @event: the handle to the record's event
5449  * @record: The record to get the event from
5450  *
5451  * Writes the tasks comm, pid and CPU to @s.
5452  */
tep_print_event_task(struct tep_handle * pevent,struct trace_seq * s,struct event_format * event,struct tep_record * record)5453 void tep_print_event_task(struct tep_handle *pevent, struct trace_seq *s,
5454 			  struct event_format *event,
5455 			  struct tep_record *record)
5456 {
5457 	void *data = record->data;
5458 	const char *comm;
5459 	int pid;
5460 
5461 	pid = parse_common_pid(pevent, data);
5462 	comm = find_cmdline(pevent, pid);
5463 
5464 	if (pevent->latency_format) {
5465 		trace_seq_printf(s, "%8.8s-%-5d %3d",
5466 		       comm, pid, record->cpu);
5467 	} else
5468 		trace_seq_printf(s, "%16s-%-5d [%03d]", comm, pid, record->cpu);
5469 }
5470 
5471 /**
5472  * tep_print_event_time - Write the event timestamp
5473  * @pevent: a handle to the pevent
5474  * @s: the trace_seq to write to
5475  * @event: the handle to the record's event
5476  * @record: The record to get the event from
5477  * @use_trace_clock: Set to parse according to the @pevent->trace_clock
5478  *
5479  * Writes the timestamp of the record into @s.
5480  */
tep_print_event_time(struct tep_handle * pevent,struct trace_seq * s,struct event_format * event,struct tep_record * record,bool use_trace_clock)5481 void tep_print_event_time(struct tep_handle *pevent, struct trace_seq *s,
5482 			  struct event_format *event,
5483 			  struct tep_record *record,
5484 			  bool use_trace_clock)
5485 {
5486 	unsigned long secs;
5487 	unsigned long usecs;
5488 	unsigned long nsecs;
5489 	int p;
5490 	bool use_usec_format;
5491 
5492 	use_usec_format = is_timestamp_in_us(pevent->trace_clock,
5493 							use_trace_clock);
5494 	if (use_usec_format) {
5495 		secs = record->ts / NSEC_PER_SEC;
5496 		nsecs = record->ts - secs * NSEC_PER_SEC;
5497 	}
5498 
5499 	if (pevent->latency_format) {
5500 		tep_data_lat_fmt(pevent, s, record);
5501 	}
5502 
5503 	if (use_usec_format) {
5504 		if (pevent->flags & TEP_NSEC_OUTPUT) {
5505 			usecs = nsecs;
5506 			p = 9;
5507 		} else {
5508 			usecs = (nsecs + 500) / NSEC_PER_USEC;
5509 			/* To avoid usecs larger than 1 sec */
5510 			if (usecs >= USEC_PER_SEC) {
5511 				usecs -= USEC_PER_SEC;
5512 				secs++;
5513 			}
5514 			p = 6;
5515 		}
5516 
5517 		trace_seq_printf(s, " %5lu.%0*lu:", secs, p, usecs);
5518 	} else
5519 		trace_seq_printf(s, " %12llu:", record->ts);
5520 }
5521 
5522 /**
5523  * tep_print_event_data - Write the event data section
5524  * @pevent: a handle to the pevent
5525  * @s: the trace_seq to write to
5526  * @event: the handle to the record's event
5527  * @record: The record to get the event from
5528  *
5529  * Writes the parsing of the record's data to @s.
5530  */
tep_print_event_data(struct tep_handle * pevent,struct trace_seq * s,struct event_format * event,struct tep_record * record)5531 void tep_print_event_data(struct tep_handle *pevent, struct trace_seq *s,
5532 			  struct event_format *event,
5533 			  struct tep_record *record)
5534 {
5535 	static const char *spaces = "                    "; /* 20 spaces */
5536 	int len;
5537 
5538 	trace_seq_printf(s, " %s: ", event->name);
5539 
5540 	/* Space out the event names evenly. */
5541 	len = strlen(event->name);
5542 	if (len < 20)
5543 		trace_seq_printf(s, "%.*s", 20 - len, spaces);
5544 
5545 	tep_event_info(s, event, record);
5546 }
5547 
tep_print_event(struct tep_handle * pevent,struct trace_seq * s,struct tep_record * record,bool use_trace_clock)5548 void tep_print_event(struct tep_handle *pevent, struct trace_seq *s,
5549 		     struct tep_record *record, bool use_trace_clock)
5550 {
5551 	struct event_format *event;
5552 
5553 	event = tep_find_event_by_record(pevent, record);
5554 	if (!event) {
5555 		int i;
5556 		int type = trace_parse_common_type(pevent, record->data);
5557 
5558 		do_warning("ug! no event found for type %d", type);
5559 		trace_seq_printf(s, "[UNKNOWN TYPE %d]", type);
5560 		for (i = 0; i < record->size; i++)
5561 			trace_seq_printf(s, " %02x",
5562 					 ((unsigned char *)record->data)[i]);
5563 		return;
5564 	}
5565 
5566 	tep_print_event_task(pevent, s, event, record);
5567 	tep_print_event_time(pevent, s, event, record, use_trace_clock);
5568 	tep_print_event_data(pevent, s, event, record);
5569 }
5570 
events_id_cmp(const void * a,const void * b)5571 static int events_id_cmp(const void *a, const void *b)
5572 {
5573 	struct event_format * const * ea = a;
5574 	struct event_format * const * eb = b;
5575 
5576 	if ((*ea)->id < (*eb)->id)
5577 		return -1;
5578 
5579 	if ((*ea)->id > (*eb)->id)
5580 		return 1;
5581 
5582 	return 0;
5583 }
5584 
events_name_cmp(const void * a,const void * b)5585 static int events_name_cmp(const void *a, const void *b)
5586 {
5587 	struct event_format * const * ea = a;
5588 	struct event_format * const * eb = b;
5589 	int res;
5590 
5591 	res = strcmp((*ea)->name, (*eb)->name);
5592 	if (res)
5593 		return res;
5594 
5595 	res = strcmp((*ea)->system, (*eb)->system);
5596 	if (res)
5597 		return res;
5598 
5599 	return events_id_cmp(a, b);
5600 }
5601 
events_system_cmp(const void * a,const void * b)5602 static int events_system_cmp(const void *a, const void *b)
5603 {
5604 	struct event_format * const * ea = a;
5605 	struct event_format * const * eb = b;
5606 	int res;
5607 
5608 	res = strcmp((*ea)->system, (*eb)->system);
5609 	if (res)
5610 		return res;
5611 
5612 	res = strcmp((*ea)->name, (*eb)->name);
5613 	if (res)
5614 		return res;
5615 
5616 	return events_id_cmp(a, b);
5617 }
5618 
tep_list_events(struct tep_handle * pevent,enum event_sort_type sort_type)5619 struct event_format **tep_list_events(struct tep_handle *pevent, enum event_sort_type sort_type)
5620 {
5621 	struct event_format **events;
5622 	int (*sort)(const void *a, const void *b);
5623 
5624 	events = pevent->sort_events;
5625 
5626 	if (events && pevent->last_type == sort_type)
5627 		return events;
5628 
5629 	if (!events) {
5630 		events = malloc(sizeof(*events) * (pevent->nr_events + 1));
5631 		if (!events)
5632 			return NULL;
5633 
5634 		memcpy(events, pevent->events, sizeof(*events) * pevent->nr_events);
5635 		events[pevent->nr_events] = NULL;
5636 
5637 		pevent->sort_events = events;
5638 
5639 		/* the internal events are sorted by id */
5640 		if (sort_type == EVENT_SORT_ID) {
5641 			pevent->last_type = sort_type;
5642 			return events;
5643 		}
5644 	}
5645 
5646 	switch (sort_type) {
5647 	case EVENT_SORT_ID:
5648 		sort = events_id_cmp;
5649 		break;
5650 	case EVENT_SORT_NAME:
5651 		sort = events_name_cmp;
5652 		break;
5653 	case EVENT_SORT_SYSTEM:
5654 		sort = events_system_cmp;
5655 		break;
5656 	default:
5657 		return events;
5658 	}
5659 
5660 	qsort(events, pevent->nr_events, sizeof(*events), sort);
5661 	pevent->last_type = sort_type;
5662 
5663 	return events;
5664 }
5665 
5666 static struct format_field **
get_event_fields(const char * type,const char * name,int count,struct format_field * list)5667 get_event_fields(const char *type, const char *name,
5668 		 int count, struct format_field *list)
5669 {
5670 	struct format_field **fields;
5671 	struct format_field *field;
5672 	int i = 0;
5673 
5674 	fields = malloc(sizeof(*fields) * (count + 1));
5675 	if (!fields)
5676 		return NULL;
5677 
5678 	for (field = list; field; field = field->next) {
5679 		fields[i++] = field;
5680 		if (i == count + 1) {
5681 			do_warning("event %s has more %s fields than specified",
5682 				name, type);
5683 			i--;
5684 			break;
5685 		}
5686 	}
5687 
5688 	if (i != count)
5689 		do_warning("event %s has less %s fields than specified",
5690 			name, type);
5691 
5692 	fields[i] = NULL;
5693 
5694 	return fields;
5695 }
5696 
5697 /**
5698  * tep_event_common_fields - return a list of common fields for an event
5699  * @event: the event to return the common fields of.
5700  *
5701  * Returns an allocated array of fields. The last item in the array is NULL.
5702  * The array must be freed with free().
5703  */
tep_event_common_fields(struct event_format * event)5704 struct format_field **tep_event_common_fields(struct event_format *event)
5705 {
5706 	return get_event_fields("common", event->name,
5707 				event->format.nr_common,
5708 				event->format.common_fields);
5709 }
5710 
5711 /**
5712  * tep_event_fields - return a list of event specific fields for an event
5713  * @event: the event to return the fields of.
5714  *
5715  * Returns an allocated array of fields. The last item in the array is NULL.
5716  * The array must be freed with free().
5717  */
tep_event_fields(struct event_format * event)5718 struct format_field **tep_event_fields(struct event_format *event)
5719 {
5720 	return get_event_fields("event", event->name,
5721 				event->format.nr_fields,
5722 				event->format.fields);
5723 }
5724 
print_fields(struct trace_seq * s,struct print_flag_sym * field)5725 static void print_fields(struct trace_seq *s, struct print_flag_sym *field)
5726 {
5727 	trace_seq_printf(s, "{ %s, %s }", field->value, field->str);
5728 	if (field->next) {
5729 		trace_seq_puts(s, ", ");
5730 		print_fields(s, field->next);
5731 	}
5732 }
5733 
5734 /* for debugging */
print_args(struct print_arg * args)5735 static void print_args(struct print_arg *args)
5736 {
5737 	int print_paren = 1;
5738 	struct trace_seq s;
5739 
5740 	switch (args->type) {
5741 	case PRINT_NULL:
5742 		printf("null");
5743 		break;
5744 	case PRINT_ATOM:
5745 		printf("%s", args->atom.atom);
5746 		break;
5747 	case PRINT_FIELD:
5748 		printf("REC->%s", args->field.name);
5749 		break;
5750 	case PRINT_FLAGS:
5751 		printf("__print_flags(");
5752 		print_args(args->flags.field);
5753 		printf(", %s, ", args->flags.delim);
5754 		trace_seq_init(&s);
5755 		print_fields(&s, args->flags.flags);
5756 		trace_seq_do_printf(&s);
5757 		trace_seq_destroy(&s);
5758 		printf(")");
5759 		break;
5760 	case PRINT_SYMBOL:
5761 		printf("__print_symbolic(");
5762 		print_args(args->symbol.field);
5763 		printf(", ");
5764 		trace_seq_init(&s);
5765 		print_fields(&s, args->symbol.symbols);
5766 		trace_seq_do_printf(&s);
5767 		trace_seq_destroy(&s);
5768 		printf(")");
5769 		break;
5770 	case PRINT_HEX:
5771 		printf("__print_hex(");
5772 		print_args(args->hex.field);
5773 		printf(", ");
5774 		print_args(args->hex.size);
5775 		printf(")");
5776 		break;
5777 	case PRINT_HEX_STR:
5778 		printf("__print_hex_str(");
5779 		print_args(args->hex.field);
5780 		printf(", ");
5781 		print_args(args->hex.size);
5782 		printf(")");
5783 		break;
5784 	case PRINT_INT_ARRAY:
5785 		printf("__print_array(");
5786 		print_args(args->int_array.field);
5787 		printf(", ");
5788 		print_args(args->int_array.count);
5789 		printf(", ");
5790 		print_args(args->int_array.el_size);
5791 		printf(")");
5792 		break;
5793 	case PRINT_STRING:
5794 	case PRINT_BSTRING:
5795 		printf("__get_str(%s)", args->string.string);
5796 		break;
5797 	case PRINT_BITMASK:
5798 		printf("__get_bitmask(%s)", args->bitmask.bitmask);
5799 		break;
5800 	case PRINT_TYPE:
5801 		printf("(%s)", args->typecast.type);
5802 		print_args(args->typecast.item);
5803 		break;
5804 	case PRINT_OP:
5805 		if (strcmp(args->op.op, ":") == 0)
5806 			print_paren = 0;
5807 		if (print_paren)
5808 			printf("(");
5809 		print_args(args->op.left);
5810 		printf(" %s ", args->op.op);
5811 		print_args(args->op.right);
5812 		if (print_paren)
5813 			printf(")");
5814 		break;
5815 	default:
5816 		/* we should warn... */
5817 		return;
5818 	}
5819 	if (args->next) {
5820 		printf("\n");
5821 		print_args(args->next);
5822 	}
5823 }
5824 
parse_header_field(const char * field,int * offset,int * size,int mandatory)5825 static void parse_header_field(const char *field,
5826 			       int *offset, int *size, int mandatory)
5827 {
5828 	unsigned long long save_input_buf_ptr;
5829 	unsigned long long save_input_buf_siz;
5830 	char *token;
5831 	int type;
5832 
5833 	save_input_buf_ptr = input_buf_ptr;
5834 	save_input_buf_siz = input_buf_siz;
5835 
5836 	if (read_expected(EVENT_ITEM, "field") < 0)
5837 		return;
5838 	if (read_expected(EVENT_OP, ":") < 0)
5839 		return;
5840 
5841 	/* type */
5842 	if (read_expect_type(EVENT_ITEM, &token) < 0)
5843 		goto fail;
5844 	free_token(token);
5845 
5846 	/*
5847 	 * If this is not a mandatory field, then test it first.
5848 	 */
5849 	if (mandatory) {
5850 		if (read_expected(EVENT_ITEM, field) < 0)
5851 			return;
5852 	} else {
5853 		if (read_expect_type(EVENT_ITEM, &token) < 0)
5854 			goto fail;
5855 		if (strcmp(token, field) != 0)
5856 			goto discard;
5857 		free_token(token);
5858 	}
5859 
5860 	if (read_expected(EVENT_OP, ";") < 0)
5861 		return;
5862 	if (read_expected(EVENT_ITEM, "offset") < 0)
5863 		return;
5864 	if (read_expected(EVENT_OP, ":") < 0)
5865 		return;
5866 	if (read_expect_type(EVENT_ITEM, &token) < 0)
5867 		goto fail;
5868 	*offset = atoi(token);
5869 	free_token(token);
5870 	if (read_expected(EVENT_OP, ";") < 0)
5871 		return;
5872 	if (read_expected(EVENT_ITEM, "size") < 0)
5873 		return;
5874 	if (read_expected(EVENT_OP, ":") < 0)
5875 		return;
5876 	if (read_expect_type(EVENT_ITEM, &token) < 0)
5877 		goto fail;
5878 	*size = atoi(token);
5879 	free_token(token);
5880 	if (read_expected(EVENT_OP, ";") < 0)
5881 		return;
5882 	type = read_token(&token);
5883 	if (type != EVENT_NEWLINE) {
5884 		/* newer versions of the kernel have a "signed" type */
5885 		if (type != EVENT_ITEM)
5886 			goto fail;
5887 
5888 		if (strcmp(token, "signed") != 0)
5889 			goto fail;
5890 
5891 		free_token(token);
5892 
5893 		if (read_expected(EVENT_OP, ":") < 0)
5894 			return;
5895 
5896 		if (read_expect_type(EVENT_ITEM, &token))
5897 			goto fail;
5898 
5899 		free_token(token);
5900 		if (read_expected(EVENT_OP, ";") < 0)
5901 			return;
5902 
5903 		if (read_expect_type(EVENT_NEWLINE, &token))
5904 			goto fail;
5905 	}
5906  fail:
5907 	free_token(token);
5908 	return;
5909 
5910  discard:
5911 	input_buf_ptr = save_input_buf_ptr;
5912 	input_buf_siz = save_input_buf_siz;
5913 	*offset = 0;
5914 	*size = 0;
5915 	free_token(token);
5916 }
5917 
5918 /**
5919  * tep_parse_header_page - parse the data stored in the header page
5920  * @pevent: the handle to the pevent
5921  * @buf: the buffer storing the header page format string
5922  * @size: the size of @buf
5923  * @long_size: the long size to use if there is no header
5924  *
5925  * This parses the header page format for information on the
5926  * ring buffer used. The @buf should be copied from
5927  *
5928  * /sys/kernel/debug/tracing/events/header_page
5929  */
tep_parse_header_page(struct tep_handle * pevent,char * buf,unsigned long size,int long_size)5930 int tep_parse_header_page(struct tep_handle *pevent, char *buf, unsigned long size,
5931 			  int long_size)
5932 {
5933 	int ignore;
5934 
5935 	if (!size) {
5936 		/*
5937 		 * Old kernels did not have header page info.
5938 		 * Sorry but we just use what we find here in user space.
5939 		 */
5940 		pevent->header_page_ts_size = sizeof(long long);
5941 		pevent->header_page_size_size = long_size;
5942 		pevent->header_page_data_offset = sizeof(long long) + long_size;
5943 		pevent->old_format = 1;
5944 		return -1;
5945 	}
5946 	init_input_buf(buf, size);
5947 
5948 	parse_header_field("timestamp", &pevent->header_page_ts_offset,
5949 			   &pevent->header_page_ts_size, 1);
5950 	parse_header_field("commit", &pevent->header_page_size_offset,
5951 			   &pevent->header_page_size_size, 1);
5952 	parse_header_field("overwrite", &pevent->header_page_overwrite,
5953 			   &ignore, 0);
5954 	parse_header_field("data", &pevent->header_page_data_offset,
5955 			   &pevent->header_page_data_size, 1);
5956 
5957 	return 0;
5958 }
5959 
event_matches(struct event_format * event,int id,const char * sys_name,const char * event_name)5960 static int event_matches(struct event_format *event,
5961 			 int id, const char *sys_name,
5962 			 const char *event_name)
5963 {
5964 	if (id >= 0 && id != event->id)
5965 		return 0;
5966 
5967 	if (event_name && (strcmp(event_name, event->name) != 0))
5968 		return 0;
5969 
5970 	if (sys_name && (strcmp(sys_name, event->system) != 0))
5971 		return 0;
5972 
5973 	return 1;
5974 }
5975 
free_handler(struct event_handler * handle)5976 static void free_handler(struct event_handler *handle)
5977 {
5978 	free((void *)handle->sys_name);
5979 	free((void *)handle->event_name);
5980 	free(handle);
5981 }
5982 
find_event_handle(struct tep_handle * pevent,struct event_format * event)5983 static int find_event_handle(struct tep_handle *pevent, struct event_format *event)
5984 {
5985 	struct event_handler *handle, **next;
5986 
5987 	for (next = &pevent->handlers; *next;
5988 	     next = &(*next)->next) {
5989 		handle = *next;
5990 		if (event_matches(event, handle->id,
5991 				  handle->sys_name,
5992 				  handle->event_name))
5993 			break;
5994 	}
5995 
5996 	if (!(*next))
5997 		return 0;
5998 
5999 	pr_stat("overriding event (%d) %s:%s with new print handler",
6000 		event->id, event->system, event->name);
6001 
6002 	event->handler = handle->func;
6003 	event->context = handle->context;
6004 
6005 	*next = handle->next;
6006 	free_handler(handle);
6007 
6008 	return 1;
6009 }
6010 
6011 /**
6012  * __tep_parse_format - parse the event format
6013  * @buf: the buffer storing the event format string
6014  * @size: the size of @buf
6015  * @sys: the system the event belongs to
6016  *
6017  * This parses the event format and creates an event structure
6018  * to quickly parse raw data for a given event.
6019  *
6020  * These files currently come from:
6021  *
6022  * /sys/kernel/debug/tracing/events/.../.../format
6023  */
__tep_parse_format(struct event_format ** eventp,struct tep_handle * pevent,const char * buf,unsigned long size,const char * sys)6024 enum tep_errno __tep_parse_format(struct event_format **eventp,
6025 				  struct tep_handle *pevent, const char *buf,
6026 				  unsigned long size, const char *sys)
6027 {
6028 	struct event_format *event;
6029 	int ret;
6030 
6031 	init_input_buf(buf, size);
6032 
6033 	*eventp = event = alloc_event();
6034 	if (!event)
6035 		return TEP_ERRNO__MEM_ALLOC_FAILED;
6036 
6037 	event->name = event_read_name();
6038 	if (!event->name) {
6039 		/* Bad event? */
6040 		ret = TEP_ERRNO__MEM_ALLOC_FAILED;
6041 		goto event_alloc_failed;
6042 	}
6043 
6044 	if (strcmp(sys, "ftrace") == 0) {
6045 		event->flags |= EVENT_FL_ISFTRACE;
6046 
6047 		if (strcmp(event->name, "bprint") == 0)
6048 			event->flags |= EVENT_FL_ISBPRINT;
6049 	}
6050 
6051 	event->id = event_read_id();
6052 	if (event->id < 0) {
6053 		ret = TEP_ERRNO__READ_ID_FAILED;
6054 		/*
6055 		 * This isn't an allocation error actually.
6056 		 * But as the ID is critical, just bail out.
6057 		 */
6058 		goto event_alloc_failed;
6059 	}
6060 
6061 	event->system = strdup(sys);
6062 	if (!event->system) {
6063 		ret = TEP_ERRNO__MEM_ALLOC_FAILED;
6064 		goto event_alloc_failed;
6065 	}
6066 
6067 	/* Add pevent to event so that it can be referenced */
6068 	event->pevent = pevent;
6069 
6070 	ret = event_read_format(event);
6071 	if (ret < 0) {
6072 		ret = TEP_ERRNO__READ_FORMAT_FAILED;
6073 		goto event_parse_failed;
6074 	}
6075 
6076 	/*
6077 	 * If the event has an override, don't print warnings if the event
6078 	 * print format fails to parse.
6079 	 */
6080 	if (pevent && find_event_handle(pevent, event))
6081 		show_warning = 0;
6082 
6083 	ret = event_read_print(event);
6084 	show_warning = 1;
6085 
6086 	if (ret < 0) {
6087 		ret = TEP_ERRNO__READ_PRINT_FAILED;
6088 		goto event_parse_failed;
6089 	}
6090 
6091 	if (!ret && (event->flags & EVENT_FL_ISFTRACE)) {
6092 		struct format_field *field;
6093 		struct print_arg *arg, **list;
6094 
6095 		/* old ftrace had no args */
6096 		list = &event->print_fmt.args;
6097 		for (field = event->format.fields; field; field = field->next) {
6098 			arg = alloc_arg();
6099 			if (!arg) {
6100 				event->flags |= EVENT_FL_FAILED;
6101 				return TEP_ERRNO__OLD_FTRACE_ARG_FAILED;
6102 			}
6103 			arg->type = PRINT_FIELD;
6104 			arg->field.name = strdup(field->name);
6105 			if (!arg->field.name) {
6106 				event->flags |= EVENT_FL_FAILED;
6107 				free_arg(arg);
6108 				return TEP_ERRNO__OLD_FTRACE_ARG_FAILED;
6109 			}
6110 			arg->field.field = field;
6111 			*list = arg;
6112 			list = &arg->next;
6113 		}
6114 		return 0;
6115 	}
6116 
6117 	return 0;
6118 
6119  event_parse_failed:
6120 	event->flags |= EVENT_FL_FAILED;
6121 	return ret;
6122 
6123  event_alloc_failed:
6124 	free(event->system);
6125 	free(event->name);
6126 	free(event);
6127 	*eventp = NULL;
6128 	return ret;
6129 }
6130 
6131 static enum tep_errno
__parse_event(struct tep_handle * pevent,struct event_format ** eventp,const char * buf,unsigned long size,const char * sys)6132 __parse_event(struct tep_handle *pevent,
6133 	      struct event_format **eventp,
6134 	      const char *buf, unsigned long size,
6135 	      const char *sys)
6136 {
6137 	int ret = __tep_parse_format(eventp, pevent, buf, size, sys);
6138 	struct event_format *event = *eventp;
6139 
6140 	if (event == NULL)
6141 		return ret;
6142 
6143 	if (pevent && add_event(pevent, event)) {
6144 		ret = TEP_ERRNO__MEM_ALLOC_FAILED;
6145 		goto event_add_failed;
6146 	}
6147 
6148 #define PRINT_ARGS 0
6149 	if (PRINT_ARGS && event->print_fmt.args)
6150 		print_args(event->print_fmt.args);
6151 
6152 	return 0;
6153 
6154 event_add_failed:
6155 	tep_free_format(event);
6156 	return ret;
6157 }
6158 
6159 /**
6160  * tep_parse_format - parse the event format
6161  * @pevent: the handle to the pevent
6162  * @eventp: returned format
6163  * @buf: the buffer storing the event format string
6164  * @size: the size of @buf
6165  * @sys: the system the event belongs to
6166  *
6167  * This parses the event format and creates an event structure
6168  * to quickly parse raw data for a given event.
6169  *
6170  * These files currently come from:
6171  *
6172  * /sys/kernel/debug/tracing/events/.../.../format
6173  */
tep_parse_format(struct tep_handle * pevent,struct event_format ** eventp,const char * buf,unsigned long size,const char * sys)6174 enum tep_errno tep_parse_format(struct tep_handle *pevent,
6175 				struct event_format **eventp,
6176 				const char *buf,
6177 				unsigned long size, const char *sys)
6178 {
6179 	return __parse_event(pevent, eventp, buf, size, sys);
6180 }
6181 
6182 /**
6183  * tep_parse_event - parse the event format
6184  * @pevent: the handle to the pevent
6185  * @buf: the buffer storing the event format string
6186  * @size: the size of @buf
6187  * @sys: the system the event belongs to
6188  *
6189  * This parses the event format and creates an event structure
6190  * to quickly parse raw data for a given event.
6191  *
6192  * These files currently come from:
6193  *
6194  * /sys/kernel/debug/tracing/events/.../.../format
6195  */
tep_parse_event(struct tep_handle * pevent,const char * buf,unsigned long size,const char * sys)6196 enum tep_errno tep_parse_event(struct tep_handle *pevent, const char *buf,
6197 			       unsigned long size, const char *sys)
6198 {
6199 	struct event_format *event = NULL;
6200 	return __parse_event(pevent, &event, buf, size, sys);
6201 }
6202 
6203 #undef _PE
6204 #define _PE(code, str) str
6205 static const char * const tep_error_str[] = {
6206 	TEP_ERRORS
6207 };
6208 #undef _PE
6209 
tep_strerror(struct tep_handle * pevent __maybe_unused,enum tep_errno errnum,char * buf,size_t buflen)6210 int tep_strerror(struct tep_handle *pevent __maybe_unused,
6211 		 enum tep_errno errnum, char *buf, size_t buflen)
6212 {
6213 	int idx;
6214 	const char *msg;
6215 
6216 	if (errnum >= 0) {
6217 		str_error_r(errnum, buf, buflen);
6218 		return 0;
6219 	}
6220 
6221 	if (errnum <= __TEP_ERRNO__START ||
6222 	    errnum >= __TEP_ERRNO__END)
6223 		return -1;
6224 
6225 	idx = errnum - __TEP_ERRNO__START - 1;
6226 	msg = tep_error_str[idx];
6227 	snprintf(buf, buflen, "%s", msg);
6228 
6229 	return 0;
6230 }
6231 
get_field_val(struct trace_seq * s,struct format_field * field,const char * name,struct tep_record * record,unsigned long long * val,int err)6232 int get_field_val(struct trace_seq *s, struct format_field *field,
6233 		  const char *name, struct tep_record *record,
6234 		  unsigned long long *val, int err)
6235 {
6236 	if (!field) {
6237 		if (err)
6238 			trace_seq_printf(s, "<CANT FIND FIELD %s>", name);
6239 		return -1;
6240 	}
6241 
6242 	if (tep_read_number_field(field, record->data, val)) {
6243 		if (err)
6244 			trace_seq_printf(s, " %s=INVALID", name);
6245 		return -1;
6246 	}
6247 
6248 	return 0;
6249 }
6250 
6251 /**
6252  * tep_get_field_raw - return the raw pointer into the data field
6253  * @s: The seq to print to on error
6254  * @event: the event that the field is for
6255  * @name: The name of the field
6256  * @record: The record with the field name.
6257  * @len: place to store the field length.
6258  * @err: print default error if failed.
6259  *
6260  * Returns a pointer into record->data of the field and places
6261  * the length of the field in @len.
6262  *
6263  * On failure, it returns NULL.
6264  */
tep_get_field_raw(struct trace_seq * s,struct event_format * event,const char * name,struct tep_record * record,int * len,int err)6265 void *tep_get_field_raw(struct trace_seq *s, struct event_format *event,
6266 			const char *name, struct tep_record *record,
6267 			int *len, int err)
6268 {
6269 	struct format_field *field;
6270 	void *data = record->data;
6271 	unsigned offset;
6272 	int dummy;
6273 
6274 	if (!event)
6275 		return NULL;
6276 
6277 	field = tep_find_field(event, name);
6278 
6279 	if (!field) {
6280 		if (err)
6281 			trace_seq_printf(s, "<CANT FIND FIELD %s>", name);
6282 		return NULL;
6283 	}
6284 
6285 	/* Allow @len to be NULL */
6286 	if (!len)
6287 		len = &dummy;
6288 
6289 	offset = field->offset;
6290 	if (field->flags & FIELD_IS_DYNAMIC) {
6291 		offset = tep_read_number(event->pevent,
6292 					    data + offset, field->size);
6293 		*len = offset >> 16;
6294 		offset &= 0xffff;
6295 	} else
6296 		*len = field->size;
6297 
6298 	return data + offset;
6299 }
6300 
6301 /**
6302  * tep_get_field_val - find a field and return its value
6303  * @s: The seq to print to on error
6304  * @event: the event that the field is for
6305  * @name: The name of the field
6306  * @record: The record with the field name.
6307  * @val: place to store the value of the field.
6308  * @err: print default error if failed.
6309  *
6310  * Returns 0 on success -1 on field not found.
6311  */
tep_get_field_val(struct trace_seq * s,struct event_format * event,const char * name,struct tep_record * record,unsigned long long * val,int err)6312 int tep_get_field_val(struct trace_seq *s, struct event_format *event,
6313 		      const char *name, struct tep_record *record,
6314 		      unsigned long long *val, int err)
6315 {
6316 	struct format_field *field;
6317 
6318 	if (!event)
6319 		return -1;
6320 
6321 	field = tep_find_field(event, name);
6322 
6323 	return get_field_val(s, field, name, record, val, err);
6324 }
6325 
6326 /**
6327  * tep_get_common_field_val - find a common field and return its value
6328  * @s: The seq to print to on error
6329  * @event: the event that the field is for
6330  * @name: The name of the field
6331  * @record: The record with the field name.
6332  * @val: place to store the value of the field.
6333  * @err: print default error if failed.
6334  *
6335  * Returns 0 on success -1 on field not found.
6336  */
tep_get_common_field_val(struct trace_seq * s,struct event_format * event,const char * name,struct tep_record * record,unsigned long long * val,int err)6337 int tep_get_common_field_val(struct trace_seq *s, struct event_format *event,
6338 			     const char *name, struct tep_record *record,
6339 			     unsigned long long *val, int err)
6340 {
6341 	struct format_field *field;
6342 
6343 	if (!event)
6344 		return -1;
6345 
6346 	field = tep_find_common_field(event, name);
6347 
6348 	return get_field_val(s, field, name, record, val, err);
6349 }
6350 
6351 /**
6352  * tep_get_any_field_val - find a any field and return its value
6353  * @s: The seq to print to on error
6354  * @event: the event that the field is for
6355  * @name: The name of the field
6356  * @record: The record with the field name.
6357  * @val: place to store the value of the field.
6358  * @err: print default error if failed.
6359  *
6360  * Returns 0 on success -1 on field not found.
6361  */
tep_get_any_field_val(struct trace_seq * s,struct event_format * event,const char * name,struct tep_record * record,unsigned long long * val,int err)6362 int tep_get_any_field_val(struct trace_seq *s, struct event_format *event,
6363 			  const char *name, struct tep_record *record,
6364 			  unsigned long long *val, int err)
6365 {
6366 	struct format_field *field;
6367 
6368 	if (!event)
6369 		return -1;
6370 
6371 	field = tep_find_any_field(event, name);
6372 
6373 	return get_field_val(s, field, name, record, val, err);
6374 }
6375 
6376 /**
6377  * tep_print_num_field - print a field and a format
6378  * @s: The seq to print to
6379  * @fmt: The printf format to print the field with.
6380  * @event: the event that the field is for
6381  * @name: The name of the field
6382  * @record: The record with the field name.
6383  * @err: print default error if failed.
6384  *
6385  * Returns: 0 on success, -1 field not found, or 1 if buffer is full.
6386  */
tep_print_num_field(struct trace_seq * s,const char * fmt,struct event_format * event,const char * name,struct tep_record * record,int err)6387 int tep_print_num_field(struct trace_seq *s, const char *fmt,
6388 			struct event_format *event, const char *name,
6389 			struct tep_record *record, int err)
6390 {
6391 	struct format_field *field = tep_find_field(event, name);
6392 	unsigned long long val;
6393 
6394 	if (!field)
6395 		goto failed;
6396 
6397 	if (tep_read_number_field(field, record->data, &val))
6398 		goto failed;
6399 
6400 	return trace_seq_printf(s, fmt, val);
6401 
6402  failed:
6403 	if (err)
6404 		trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name);
6405 	return -1;
6406 }
6407 
6408 /**
6409  * tep_print_func_field - print a field and a format for function pointers
6410  * @s: The seq to print to
6411  * @fmt: The printf format to print the field with.
6412  * @event: the event that the field is for
6413  * @name: The name of the field
6414  * @record: The record with the field name.
6415  * @err: print default error if failed.
6416  *
6417  * Returns: 0 on success, -1 field not found, or 1 if buffer is full.
6418  */
tep_print_func_field(struct trace_seq * s,const char * fmt,struct event_format * event,const char * name,struct tep_record * record,int err)6419 int tep_print_func_field(struct trace_seq *s, const char *fmt,
6420 			 struct event_format *event, const char *name,
6421 			 struct tep_record *record, int err)
6422 {
6423 	struct format_field *field = tep_find_field(event, name);
6424 	struct tep_handle *pevent = event->pevent;
6425 	unsigned long long val;
6426 	struct func_map *func;
6427 	char tmp[128];
6428 
6429 	if (!field)
6430 		goto failed;
6431 
6432 	if (tep_read_number_field(field, record->data, &val))
6433 		goto failed;
6434 
6435 	func = find_func(pevent, val);
6436 
6437 	if (func)
6438 		snprintf(tmp, 128, "%s/0x%llx", func->func, func->addr - val);
6439 	else
6440 		sprintf(tmp, "0x%08llx", val);
6441 
6442 	return trace_seq_printf(s, fmt, tmp);
6443 
6444  failed:
6445 	if (err)
6446 		trace_seq_printf(s, "CAN'T FIND FIELD \"%s\"", name);
6447 	return -1;
6448 }
6449 
free_func_handle(struct tep_function_handler * func)6450 static void free_func_handle(struct tep_function_handler *func)
6451 {
6452 	struct func_params *params;
6453 
6454 	free(func->name);
6455 
6456 	while (func->params) {
6457 		params = func->params;
6458 		func->params = params->next;
6459 		free(params);
6460 	}
6461 
6462 	free(func);
6463 }
6464 
6465 /**
6466  * tep_register_print_function - register a helper function
6467  * @pevent: the handle to the pevent
6468  * @func: the function to process the helper function
6469  * @ret_type: the return type of the helper function
6470  * @name: the name of the helper function
6471  * @parameters: A list of enum tep_func_arg_type
6472  *
6473  * Some events may have helper functions in the print format arguments.
6474  * This allows a plugin to dynamically create a way to process one
6475  * of these functions.
6476  *
6477  * The @parameters is a variable list of tep_func_arg_type enums that
6478  * must end with TEP_FUNC_ARG_VOID.
6479  */
tep_register_print_function(struct tep_handle * pevent,tep_func_handler func,enum tep_func_arg_type ret_type,char * name,...)6480 int tep_register_print_function(struct tep_handle *pevent,
6481 				tep_func_handler func,
6482 				enum tep_func_arg_type ret_type,
6483 				char *name, ...)
6484 {
6485 	struct tep_function_handler *func_handle;
6486 	struct func_params **next_param;
6487 	struct func_params *param;
6488 	enum tep_func_arg_type type;
6489 	va_list ap;
6490 	int ret;
6491 
6492 	func_handle = find_func_handler(pevent, name);
6493 	if (func_handle) {
6494 		/*
6495 		 * This is most like caused by the users own
6496 		 * plugins updating the function. This overrides the
6497 		 * system defaults.
6498 		 */
6499 		pr_stat("override of function helper '%s'", name);
6500 		remove_func_handler(pevent, name);
6501 	}
6502 
6503 	func_handle = calloc(1, sizeof(*func_handle));
6504 	if (!func_handle) {
6505 		do_warning("Failed to allocate function handler");
6506 		return TEP_ERRNO__MEM_ALLOC_FAILED;
6507 	}
6508 
6509 	func_handle->ret_type = ret_type;
6510 	func_handle->name = strdup(name);
6511 	func_handle->func = func;
6512 	if (!func_handle->name) {
6513 		do_warning("Failed to allocate function name");
6514 		free(func_handle);
6515 		return TEP_ERRNO__MEM_ALLOC_FAILED;
6516 	}
6517 
6518 	next_param = &(func_handle->params);
6519 	va_start(ap, name);
6520 	for (;;) {
6521 		type = va_arg(ap, enum tep_func_arg_type);
6522 		if (type == TEP_FUNC_ARG_VOID)
6523 			break;
6524 
6525 		if (type >= TEP_FUNC_ARG_MAX_TYPES) {
6526 			do_warning("Invalid argument type %d", type);
6527 			ret = TEP_ERRNO__INVALID_ARG_TYPE;
6528 			goto out_free;
6529 		}
6530 
6531 		param = malloc(sizeof(*param));
6532 		if (!param) {
6533 			do_warning("Failed to allocate function param");
6534 			ret = TEP_ERRNO__MEM_ALLOC_FAILED;
6535 			goto out_free;
6536 		}
6537 		param->type = type;
6538 		param->next = NULL;
6539 
6540 		*next_param = param;
6541 		next_param = &(param->next);
6542 
6543 		func_handle->nr_args++;
6544 	}
6545 	va_end(ap);
6546 
6547 	func_handle->next = pevent->func_handlers;
6548 	pevent->func_handlers = func_handle;
6549 
6550 	return 0;
6551  out_free:
6552 	va_end(ap);
6553 	free_func_handle(func_handle);
6554 	return ret;
6555 }
6556 
6557 /**
6558  * tep_unregister_print_function - unregister a helper function
6559  * @pevent: the handle to the pevent
6560  * @func: the function to process the helper function
6561  * @name: the name of the helper function
6562  *
6563  * This function removes existing print handler for function @name.
6564  *
6565  * Returns 0 if the handler was removed successully, -1 otherwise.
6566  */
tep_unregister_print_function(struct tep_handle * pevent,tep_func_handler func,char * name)6567 int tep_unregister_print_function(struct tep_handle *pevent,
6568 				  tep_func_handler func, char *name)
6569 {
6570 	struct tep_function_handler *func_handle;
6571 
6572 	func_handle = find_func_handler(pevent, name);
6573 	if (func_handle && func_handle->func == func) {
6574 		remove_func_handler(pevent, name);
6575 		return 0;
6576 	}
6577 	return -1;
6578 }
6579 
search_event(struct tep_handle * pevent,int id,const char * sys_name,const char * event_name)6580 static struct event_format *search_event(struct tep_handle *pevent, int id,
6581 					 const char *sys_name,
6582 					 const char *event_name)
6583 {
6584 	struct event_format *event;
6585 
6586 	if (id >= 0) {
6587 		/* search by id */
6588 		event = tep_find_event(pevent, id);
6589 		if (!event)
6590 			return NULL;
6591 		if (event_name && (strcmp(event_name, event->name) != 0))
6592 			return NULL;
6593 		if (sys_name && (strcmp(sys_name, event->system) != 0))
6594 			return NULL;
6595 	} else {
6596 		event = tep_find_event_by_name(pevent, sys_name, event_name);
6597 		if (!event)
6598 			return NULL;
6599 	}
6600 	return event;
6601 }
6602 
6603 /**
6604  * tep_register_event_handler - register a way to parse an event
6605  * @pevent: the handle to the pevent
6606  * @id: the id of the event to register
6607  * @sys_name: the system name the event belongs to
6608  * @event_name: the name of the event
6609  * @func: the function to call to parse the event information
6610  * @context: the data to be passed to @func
6611  *
6612  * This function allows a developer to override the parsing of
6613  * a given event. If for some reason the default print format
6614  * is not sufficient, this function will register a function
6615  * for an event to be used to parse the data instead.
6616  *
6617  * If @id is >= 0, then it is used to find the event.
6618  * else @sys_name and @event_name are used.
6619  */
tep_register_event_handler(struct tep_handle * pevent,int id,const char * sys_name,const char * event_name,tep_event_handler_func func,void * context)6620 int tep_register_event_handler(struct tep_handle *pevent, int id,
6621 			       const char *sys_name, const char *event_name,
6622 			       tep_event_handler_func func, void *context)
6623 {
6624 	struct event_format *event;
6625 	struct event_handler *handle;
6626 
6627 	event = search_event(pevent, id, sys_name, event_name);
6628 	if (event == NULL)
6629 		goto not_found;
6630 
6631 	pr_stat("overriding event (%d) %s:%s with new print handler",
6632 		event->id, event->system, event->name);
6633 
6634 	event->handler = func;
6635 	event->context = context;
6636 	return 0;
6637 
6638  not_found:
6639 	/* Save for later use. */
6640 	handle = calloc(1, sizeof(*handle));
6641 	if (!handle) {
6642 		do_warning("Failed to allocate event handler");
6643 		return TEP_ERRNO__MEM_ALLOC_FAILED;
6644 	}
6645 
6646 	handle->id = id;
6647 	if (event_name)
6648 		handle->event_name = strdup(event_name);
6649 	if (sys_name)
6650 		handle->sys_name = strdup(sys_name);
6651 
6652 	if ((event_name && !handle->event_name) ||
6653 	    (sys_name && !handle->sys_name)) {
6654 		do_warning("Failed to allocate event/sys name");
6655 		free((void *)handle->event_name);
6656 		free((void *)handle->sys_name);
6657 		free(handle);
6658 		return TEP_ERRNO__MEM_ALLOC_FAILED;
6659 	}
6660 
6661 	handle->func = func;
6662 	handle->next = pevent->handlers;
6663 	pevent->handlers = handle;
6664 	handle->context = context;
6665 
6666 	return -1;
6667 }
6668 
handle_matches(struct event_handler * handler,int id,const char * sys_name,const char * event_name,tep_event_handler_func func,void * context)6669 static int handle_matches(struct event_handler *handler, int id,
6670 			  const char *sys_name, const char *event_name,
6671 			  tep_event_handler_func func, void *context)
6672 {
6673 	if (id >= 0 && id != handler->id)
6674 		return 0;
6675 
6676 	if (event_name && (strcmp(event_name, handler->event_name) != 0))
6677 		return 0;
6678 
6679 	if (sys_name && (strcmp(sys_name, handler->sys_name) != 0))
6680 		return 0;
6681 
6682 	if (func != handler->func || context != handler->context)
6683 		return 0;
6684 
6685 	return 1;
6686 }
6687 
6688 /**
6689  * tep_unregister_event_handler - unregister an existing event handler
6690  * @pevent: the handle to the pevent
6691  * @id: the id of the event to unregister
6692  * @sys_name: the system name the handler belongs to
6693  * @event_name: the name of the event handler
6694  * @func: the function to call to parse the event information
6695  * @context: the data to be passed to @func
6696  *
6697  * This function removes existing event handler (parser).
6698  *
6699  * If @id is >= 0, then it is used to find the event.
6700  * else @sys_name and @event_name are used.
6701  *
6702  * Returns 0 if handler was removed successfully, -1 if event was not found.
6703  */
tep_unregister_event_handler(struct tep_handle * pevent,int id,const char * sys_name,const char * event_name,tep_event_handler_func func,void * context)6704 int tep_unregister_event_handler(struct tep_handle *pevent, int id,
6705 				 const char *sys_name, const char *event_name,
6706 				 tep_event_handler_func func, void *context)
6707 {
6708 	struct event_format *event;
6709 	struct event_handler *handle;
6710 	struct event_handler **next;
6711 
6712 	event = search_event(pevent, id, sys_name, event_name);
6713 	if (event == NULL)
6714 		goto not_found;
6715 
6716 	if (event->handler == func && event->context == context) {
6717 		pr_stat("removing override handler for event (%d) %s:%s. Going back to default handler.",
6718 			event->id, event->system, event->name);
6719 
6720 		event->handler = NULL;
6721 		event->context = NULL;
6722 		return 0;
6723 	}
6724 
6725 not_found:
6726 	for (next = &pevent->handlers; *next; next = &(*next)->next) {
6727 		handle = *next;
6728 		if (handle_matches(handle, id, sys_name, event_name,
6729 				   func, context))
6730 			break;
6731 	}
6732 
6733 	if (!(*next))
6734 		return -1;
6735 
6736 	*next = handle->next;
6737 	free_handler(handle);
6738 
6739 	return 0;
6740 }
6741 
6742 /**
6743  * tep_alloc - create a pevent handle
6744  */
tep_alloc(void)6745 struct tep_handle *tep_alloc(void)
6746 {
6747 	struct tep_handle *pevent = calloc(1, sizeof(*pevent));
6748 
6749 	if (pevent)
6750 		pevent->ref_count = 1;
6751 
6752 	return pevent;
6753 }
6754 
tep_ref(struct tep_handle * pevent)6755 void tep_ref(struct tep_handle *pevent)
6756 {
6757 	pevent->ref_count++;
6758 }
6759 
tep_free_format_field(struct format_field * field)6760 void tep_free_format_field(struct format_field *field)
6761 {
6762 	free(field->type);
6763 	if (field->alias != field->name)
6764 		free(field->alias);
6765 	free(field->name);
6766 	free(field);
6767 }
6768 
free_format_fields(struct format_field * field)6769 static void free_format_fields(struct format_field *field)
6770 {
6771 	struct format_field *next;
6772 
6773 	while (field) {
6774 		next = field->next;
6775 		tep_free_format_field(field);
6776 		field = next;
6777 	}
6778 }
6779 
free_formats(struct format * format)6780 static void free_formats(struct format *format)
6781 {
6782 	free_format_fields(format->common_fields);
6783 	free_format_fields(format->fields);
6784 }
6785 
tep_free_format(struct event_format * event)6786 void tep_free_format(struct event_format *event)
6787 {
6788 	free(event->name);
6789 	free(event->system);
6790 
6791 	free_formats(&event->format);
6792 
6793 	free(event->print_fmt.format);
6794 	free_args(event->print_fmt.args);
6795 
6796 	free(event);
6797 }
6798 
6799 /**
6800  * tep_free - free a pevent handle
6801  * @pevent: the pevent handle to free
6802  */
tep_free(struct tep_handle * pevent)6803 void tep_free(struct tep_handle *pevent)
6804 {
6805 	struct cmdline_list *cmdlist, *cmdnext;
6806 	struct func_list *funclist, *funcnext;
6807 	struct printk_list *printklist, *printknext;
6808 	struct tep_function_handler *func_handler;
6809 	struct event_handler *handle;
6810 	int i;
6811 
6812 	if (!pevent)
6813 		return;
6814 
6815 	cmdlist = pevent->cmdlist;
6816 	funclist = pevent->funclist;
6817 	printklist = pevent->printklist;
6818 
6819 	pevent->ref_count--;
6820 	if (pevent->ref_count)
6821 		return;
6822 
6823 	if (pevent->cmdlines) {
6824 		for (i = 0; i < pevent->cmdline_count; i++)
6825 			free(pevent->cmdlines[i].comm);
6826 		free(pevent->cmdlines);
6827 	}
6828 
6829 	while (cmdlist) {
6830 		cmdnext = cmdlist->next;
6831 		free(cmdlist->comm);
6832 		free(cmdlist);
6833 		cmdlist = cmdnext;
6834 	}
6835 
6836 	if (pevent->func_map) {
6837 		for (i = 0; i < (int)pevent->func_count; i++) {
6838 			free(pevent->func_map[i].func);
6839 			free(pevent->func_map[i].mod);
6840 		}
6841 		free(pevent->func_map);
6842 	}
6843 
6844 	while (funclist) {
6845 		funcnext = funclist->next;
6846 		free(funclist->func);
6847 		free(funclist->mod);
6848 		free(funclist);
6849 		funclist = funcnext;
6850 	}
6851 
6852 	while (pevent->func_handlers) {
6853 		func_handler = pevent->func_handlers;
6854 		pevent->func_handlers = func_handler->next;
6855 		free_func_handle(func_handler);
6856 	}
6857 
6858 	if (pevent->printk_map) {
6859 		for (i = 0; i < (int)pevent->printk_count; i++)
6860 			free(pevent->printk_map[i].printk);
6861 		free(pevent->printk_map);
6862 	}
6863 
6864 	while (printklist) {
6865 		printknext = printklist->next;
6866 		free(printklist->printk);
6867 		free(printklist);
6868 		printklist = printknext;
6869 	}
6870 
6871 	for (i = 0; i < pevent->nr_events; i++)
6872 		tep_free_format(pevent->events[i]);
6873 
6874 	while (pevent->handlers) {
6875 		handle = pevent->handlers;
6876 		pevent->handlers = handle->next;
6877 		free_handler(handle);
6878 	}
6879 
6880 	free(pevent->trace_clock);
6881 	free(pevent->events);
6882 	free(pevent->sort_events);
6883 	free(pevent->func_resolver);
6884 
6885 	free(pevent);
6886 }
6887 
tep_unref(struct tep_handle * pevent)6888 void tep_unref(struct tep_handle *pevent)
6889 {
6890 	tep_free(pevent);
6891 }
6892