1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
5 */
6
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/interconnect.h>
12 #include <linux/module.h>
13 #include <linux/of_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16
17 #include <soc/tegra/pmc.h>
18
19 #include <drm/drm_atomic.h>
20 #include <drm/drm_atomic_helper.h>
21 #include <drm/drm_debugfs.h>
22 #include <drm/drm_fourcc.h>
23 #include <drm/drm_plane_helper.h>
24 #include <drm/drm_vblank.h>
25
26 #include "dc.h"
27 #include "drm.h"
28 #include "gem.h"
29 #include "hub.h"
30 #include "plane.h"
31
32 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
33 struct drm_crtc_state *state);
34
tegra_dc_stats_reset(struct tegra_dc_stats * stats)35 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
36 {
37 stats->frames = 0;
38 stats->vblank = 0;
39 stats->underflow = 0;
40 stats->overflow = 0;
41 }
42
43 /* Reads the active copy of a register. */
tegra_dc_readl_active(struct tegra_dc * dc,unsigned long offset)44 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
45 {
46 u32 value;
47
48 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
49 value = tegra_dc_readl(dc, offset);
50 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
51
52 return value;
53 }
54
tegra_plane_offset(struct tegra_plane * plane,unsigned int offset)55 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
56 unsigned int offset)
57 {
58 if (offset >= 0x500 && offset <= 0x638) {
59 offset = 0x000 + (offset - 0x500);
60 return plane->offset + offset;
61 }
62
63 if (offset >= 0x700 && offset <= 0x719) {
64 offset = 0x180 + (offset - 0x700);
65 return plane->offset + offset;
66 }
67
68 if (offset >= 0x800 && offset <= 0x839) {
69 offset = 0x1c0 + (offset - 0x800);
70 return plane->offset + offset;
71 }
72
73 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
74
75 return plane->offset + offset;
76 }
77
tegra_plane_readl(struct tegra_plane * plane,unsigned int offset)78 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
79 unsigned int offset)
80 {
81 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
82 }
83
tegra_plane_writel(struct tegra_plane * plane,u32 value,unsigned int offset)84 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
85 unsigned int offset)
86 {
87 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
88 }
89
tegra_dc_has_output(struct tegra_dc * dc,struct device * dev)90 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
91 {
92 struct device_node *np = dc->dev->of_node;
93 struct of_phandle_iterator it;
94 int err;
95
96 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
97 if (it.node == dev->of_node)
98 return true;
99
100 return false;
101 }
102
103 /*
104 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
105 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
106 * Latching happens mmediately if the display controller is in STOP mode or
107 * on the next frame boundary otherwise.
108 *
109 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
110 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
111 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
112 * into the ACTIVE copy, either immediately if the display controller is in
113 * STOP mode, or at the next frame boundary otherwise.
114 */
tegra_dc_commit(struct tegra_dc * dc)115 void tegra_dc_commit(struct tegra_dc *dc)
116 {
117 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
118 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
119 }
120
compute_dda_inc(unsigned int in,unsigned int out,bool v,unsigned int bpp)121 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
122 unsigned int bpp)
123 {
124 fixed20_12 outf = dfixed_init(out);
125 fixed20_12 inf = dfixed_init(in);
126 u32 dda_inc;
127 int max;
128
129 if (v)
130 max = 15;
131 else {
132 switch (bpp) {
133 case 2:
134 max = 8;
135 break;
136
137 default:
138 WARN_ON_ONCE(1);
139 fallthrough;
140 case 4:
141 max = 4;
142 break;
143 }
144 }
145
146 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
147 inf.full -= dfixed_const(1);
148
149 dda_inc = dfixed_div(inf, outf);
150 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
151
152 return dda_inc;
153 }
154
compute_initial_dda(unsigned int in)155 static inline u32 compute_initial_dda(unsigned int in)
156 {
157 fixed20_12 inf = dfixed_init(in);
158 return dfixed_frac(inf);
159 }
160
tegra_plane_setup_blending_legacy(struct tegra_plane * plane)161 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
162 {
163 u32 background[3] = {
164 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
167 };
168 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
169 BLEND_COLOR_KEY_NONE;
170 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
171 struct tegra_plane_state *state;
172 u32 blending[2];
173 unsigned int i;
174
175 /* disable blending for non-overlapping case */
176 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
177 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
178
179 state = to_tegra_plane_state(plane->base.state);
180
181 if (state->opaque) {
182 /*
183 * Since custom fix-weight blending isn't utilized and weight
184 * of top window is set to max, we can enforce dependent
185 * blending which in this case results in transparent bottom
186 * window if top window is opaque and if top window enables
187 * alpha blending, then bottom window is getting alpha value
188 * of 1 minus the sum of alpha components of the overlapping
189 * plane.
190 */
191 background[0] |= BLEND_CONTROL_DEPENDENT;
192 background[1] |= BLEND_CONTROL_DEPENDENT;
193
194 /*
195 * The region where three windows overlap is the intersection
196 * of the two regions where two windows overlap. It contributes
197 * to the area if all of the windows on top of it have an alpha
198 * component.
199 */
200 switch (state->base.normalized_zpos) {
201 case 0:
202 if (state->blending[0].alpha &&
203 state->blending[1].alpha)
204 background[2] |= BLEND_CONTROL_DEPENDENT;
205 break;
206
207 case 1:
208 background[2] |= BLEND_CONTROL_DEPENDENT;
209 break;
210 }
211 } else {
212 /*
213 * Enable alpha blending if pixel format has an alpha
214 * component.
215 */
216 foreground |= BLEND_CONTROL_ALPHA;
217
218 /*
219 * If any of the windows on top of this window is opaque, it
220 * will completely conceal this window within that area. If
221 * top window has an alpha component, it is blended over the
222 * bottom window.
223 */
224 for (i = 0; i < 2; i++) {
225 if (state->blending[i].alpha &&
226 state->blending[i].top)
227 background[i] |= BLEND_CONTROL_DEPENDENT;
228 }
229
230 switch (state->base.normalized_zpos) {
231 case 0:
232 if (state->blending[0].alpha &&
233 state->blending[1].alpha)
234 background[2] |= BLEND_CONTROL_DEPENDENT;
235 break;
236
237 case 1:
238 /*
239 * When both middle and topmost windows have an alpha,
240 * these windows a mixed together and then the result
241 * is blended over the bottom window.
242 */
243 if (state->blending[0].alpha &&
244 state->blending[0].top)
245 background[2] |= BLEND_CONTROL_ALPHA;
246
247 if (state->blending[1].alpha &&
248 state->blending[1].top)
249 background[2] |= BLEND_CONTROL_ALPHA;
250 break;
251 }
252 }
253
254 switch (state->base.normalized_zpos) {
255 case 0:
256 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
257 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
258 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
259 break;
260
261 case 1:
262 /*
263 * If window B / C is topmost, then X / Y registers are
264 * matching the order of blending[...] state indices,
265 * otherwise a swap is required.
266 */
267 if (!state->blending[0].top && state->blending[1].top) {
268 blending[0] = foreground;
269 blending[1] = background[1];
270 } else {
271 blending[0] = background[0];
272 blending[1] = foreground;
273 }
274
275 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
276 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
277 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
278 break;
279
280 case 2:
281 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
282 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
283 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
284 break;
285 }
286 }
287
tegra_plane_setup_blending(struct tegra_plane * plane,const struct tegra_dc_window * window)288 static void tegra_plane_setup_blending(struct tegra_plane *plane,
289 const struct tegra_dc_window *window)
290 {
291 u32 value;
292
293 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
294 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
295 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
296 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
297
298 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
299 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
300 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
301 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
302
303 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
304 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
305 }
306
307 static bool
tegra_plane_use_horizontal_filtering(struct tegra_plane * plane,const struct tegra_dc_window * window)308 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
309 const struct tegra_dc_window *window)
310 {
311 struct tegra_dc *dc = plane->dc;
312
313 if (window->src.w == window->dst.w)
314 return false;
315
316 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
317 return false;
318
319 return true;
320 }
321
322 static bool
tegra_plane_use_vertical_filtering(struct tegra_plane * plane,const struct tegra_dc_window * window)323 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
324 const struct tegra_dc_window *window)
325 {
326 struct tegra_dc *dc = plane->dc;
327
328 if (window->src.h == window->dst.h)
329 return false;
330
331 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
332 return false;
333
334 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
335 return false;
336
337 return true;
338 }
339
tegra_dc_setup_window(struct tegra_plane * plane,const struct tegra_dc_window * window)340 static void tegra_dc_setup_window(struct tegra_plane *plane,
341 const struct tegra_dc_window *window)
342 {
343 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
344 struct tegra_dc *dc = plane->dc;
345 bool yuv, planar;
346 u32 value;
347
348 /*
349 * For YUV planar modes, the number of bytes per pixel takes into
350 * account only the luma component and therefore is 1.
351 */
352 yuv = tegra_plane_format_is_yuv(window->format, &planar, NULL);
353 if (!yuv)
354 bpp = window->bits_per_pixel / 8;
355 else
356 bpp = planar ? 1 : 2;
357
358 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
359 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
360
361 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
362 tegra_plane_writel(plane, value, DC_WIN_POSITION);
363
364 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
365 tegra_plane_writel(plane, value, DC_WIN_SIZE);
366
367 h_offset = window->src.x * bpp;
368 v_offset = window->src.y;
369 h_size = window->src.w * bpp;
370 v_size = window->src.h;
371
372 if (window->reflect_x)
373 h_offset += (window->src.w - 1) * bpp;
374
375 if (window->reflect_y)
376 v_offset += window->src.h - 1;
377
378 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
379 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
380
381 /*
382 * For DDA computations the number of bytes per pixel for YUV planar
383 * modes needs to take into account all Y, U and V components.
384 */
385 if (yuv && planar)
386 bpp = 2;
387
388 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
389 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
390
391 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
392 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
393
394 h_dda = compute_initial_dda(window->src.x);
395 v_dda = compute_initial_dda(window->src.y);
396
397 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
398 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
399
400 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
401 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
402
403 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
404
405 if (yuv && planar) {
406 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
407 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
408 value = window->stride[1] << 16 | window->stride[0];
409 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
410 } else {
411 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
412 }
413
414 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
415 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
416
417 if (dc->soc->supports_block_linear) {
418 unsigned long height = window->tiling.value;
419
420 switch (window->tiling.mode) {
421 case TEGRA_BO_TILING_MODE_PITCH:
422 value = DC_WINBUF_SURFACE_KIND_PITCH;
423 break;
424
425 case TEGRA_BO_TILING_MODE_TILED:
426 value = DC_WINBUF_SURFACE_KIND_TILED;
427 break;
428
429 case TEGRA_BO_TILING_MODE_BLOCK:
430 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
431 DC_WINBUF_SURFACE_KIND_BLOCK;
432 break;
433 }
434
435 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
436 } else {
437 switch (window->tiling.mode) {
438 case TEGRA_BO_TILING_MODE_PITCH:
439 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
440 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
441 break;
442
443 case TEGRA_BO_TILING_MODE_TILED:
444 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
445 DC_WIN_BUFFER_ADDR_MODE_TILE;
446 break;
447
448 case TEGRA_BO_TILING_MODE_BLOCK:
449 /*
450 * No need to handle this here because ->atomic_check
451 * will already have filtered it out.
452 */
453 break;
454 }
455
456 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
457 }
458
459 value = WIN_ENABLE;
460
461 if (yuv) {
462 /* setup default colorspace conversion coefficients */
463 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
464 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
465 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
466 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
467 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
468 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
469 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
470 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
471
472 value |= CSC_ENABLE;
473 } else if (window->bits_per_pixel < 24) {
474 value |= COLOR_EXPAND;
475 }
476
477 if (window->reflect_x)
478 value |= H_DIRECTION;
479
480 if (window->reflect_y)
481 value |= V_DIRECTION;
482
483 if (tegra_plane_use_horizontal_filtering(plane, window)) {
484 /*
485 * Enable horizontal 6-tap filter and set filtering
486 * coefficients to the default values defined in TRM.
487 */
488 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
489 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
490 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
491 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
492 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
493 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
494 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
495 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
496 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
497 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
498 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
499 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
500 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
501 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
502 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
503 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
504
505 value |= H_FILTER;
506 }
507
508 if (tegra_plane_use_vertical_filtering(plane, window)) {
509 unsigned int i, k;
510
511 /*
512 * Enable vertical 2-tap filter and set filtering
513 * coefficients to the default values defined in TRM.
514 */
515 for (i = 0, k = 128; i < 16; i++, k -= 8)
516 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
517
518 value |= V_FILTER;
519 }
520
521 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
522
523 if (dc->soc->has_legacy_blending)
524 tegra_plane_setup_blending_legacy(plane);
525 else
526 tegra_plane_setup_blending(plane, window);
527 }
528
529 static const u32 tegra20_primary_formats[] = {
530 DRM_FORMAT_ARGB4444,
531 DRM_FORMAT_ARGB1555,
532 DRM_FORMAT_RGB565,
533 DRM_FORMAT_RGBA5551,
534 DRM_FORMAT_ABGR8888,
535 DRM_FORMAT_ARGB8888,
536 /* non-native formats */
537 DRM_FORMAT_XRGB1555,
538 DRM_FORMAT_RGBX5551,
539 DRM_FORMAT_XBGR8888,
540 DRM_FORMAT_XRGB8888,
541 };
542
543 static const u64 tegra20_modifiers[] = {
544 DRM_FORMAT_MOD_LINEAR,
545 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
546 DRM_FORMAT_MOD_INVALID
547 };
548
549 static const u32 tegra114_primary_formats[] = {
550 DRM_FORMAT_ARGB4444,
551 DRM_FORMAT_ARGB1555,
552 DRM_FORMAT_RGB565,
553 DRM_FORMAT_RGBA5551,
554 DRM_FORMAT_ABGR8888,
555 DRM_FORMAT_ARGB8888,
556 /* new on Tegra114 */
557 DRM_FORMAT_ABGR4444,
558 DRM_FORMAT_ABGR1555,
559 DRM_FORMAT_BGRA5551,
560 DRM_FORMAT_XRGB1555,
561 DRM_FORMAT_RGBX5551,
562 DRM_FORMAT_XBGR1555,
563 DRM_FORMAT_BGRX5551,
564 DRM_FORMAT_BGR565,
565 DRM_FORMAT_BGRA8888,
566 DRM_FORMAT_RGBA8888,
567 DRM_FORMAT_XRGB8888,
568 DRM_FORMAT_XBGR8888,
569 };
570
571 static const u32 tegra124_primary_formats[] = {
572 DRM_FORMAT_ARGB4444,
573 DRM_FORMAT_ARGB1555,
574 DRM_FORMAT_RGB565,
575 DRM_FORMAT_RGBA5551,
576 DRM_FORMAT_ABGR8888,
577 DRM_FORMAT_ARGB8888,
578 /* new on Tegra114 */
579 DRM_FORMAT_ABGR4444,
580 DRM_FORMAT_ABGR1555,
581 DRM_FORMAT_BGRA5551,
582 DRM_FORMAT_XRGB1555,
583 DRM_FORMAT_RGBX5551,
584 DRM_FORMAT_XBGR1555,
585 DRM_FORMAT_BGRX5551,
586 DRM_FORMAT_BGR565,
587 DRM_FORMAT_BGRA8888,
588 DRM_FORMAT_RGBA8888,
589 DRM_FORMAT_XRGB8888,
590 DRM_FORMAT_XBGR8888,
591 /* new on Tegra124 */
592 DRM_FORMAT_RGBX8888,
593 DRM_FORMAT_BGRX8888,
594 };
595
596 static const u64 tegra124_modifiers[] = {
597 DRM_FORMAT_MOD_LINEAR,
598 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
599 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
600 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
601 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
602 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
603 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
604 DRM_FORMAT_MOD_INVALID
605 };
606
tegra_plane_atomic_check(struct drm_plane * plane,struct drm_atomic_state * state)607 static int tegra_plane_atomic_check(struct drm_plane *plane,
608 struct drm_atomic_state *state)
609 {
610 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
611 plane);
612 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
613 unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
614 DRM_MODE_REFLECT_X |
615 DRM_MODE_REFLECT_Y;
616 unsigned int rotation = new_plane_state->rotation;
617 struct tegra_bo_tiling *tiling = &plane_state->tiling;
618 struct tegra_plane *tegra = to_tegra_plane(plane);
619 struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
620 int err;
621
622 plane_state->peak_memory_bandwidth = 0;
623 plane_state->avg_memory_bandwidth = 0;
624
625 /* no need for further checks if the plane is being disabled */
626 if (!new_plane_state->crtc) {
627 plane_state->total_peak_memory_bandwidth = 0;
628 return 0;
629 }
630
631 err = tegra_plane_format(new_plane_state->fb->format->format,
632 &plane_state->format,
633 &plane_state->swap);
634 if (err < 0)
635 return err;
636
637 /*
638 * Tegra20 and Tegra30 are special cases here because they support
639 * only variants of specific formats with an alpha component, but not
640 * the corresponding opaque formats. However, the opaque formats can
641 * be emulated by disabling alpha blending for the plane.
642 */
643 if (dc->soc->has_legacy_blending) {
644 err = tegra_plane_setup_legacy_state(tegra, plane_state);
645 if (err < 0)
646 return err;
647 }
648
649 err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
650 if (err < 0)
651 return err;
652
653 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
654 !dc->soc->supports_block_linear) {
655 DRM_ERROR("hardware doesn't support block linear mode\n");
656 return -EINVAL;
657 }
658
659 /*
660 * Older userspace used custom BO flag in order to specify the Y
661 * reflection, while modern userspace uses the generic DRM rotation
662 * property in order to achieve the same result. The legacy BO flag
663 * duplicates the DRM rotation property when both are set.
664 */
665 if (tegra_fb_is_bottom_up(new_plane_state->fb))
666 rotation |= DRM_MODE_REFLECT_Y;
667
668 rotation = drm_rotation_simplify(rotation, supported_rotation);
669
670 if (rotation & DRM_MODE_REFLECT_X)
671 plane_state->reflect_x = true;
672 else
673 plane_state->reflect_x = false;
674
675 if (rotation & DRM_MODE_REFLECT_Y)
676 plane_state->reflect_y = true;
677 else
678 plane_state->reflect_y = false;
679
680 /*
681 * Tegra doesn't support different strides for U and V planes so we
682 * error out if the user tries to display a framebuffer with such a
683 * configuration.
684 */
685 if (new_plane_state->fb->format->num_planes > 2) {
686 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
687 DRM_ERROR("unsupported UV-plane configuration\n");
688 return -EINVAL;
689 }
690 }
691
692 err = tegra_plane_state_add(tegra, new_plane_state);
693 if (err < 0)
694 return err;
695
696 return 0;
697 }
698
tegra_plane_atomic_disable(struct drm_plane * plane,struct drm_atomic_state * state)699 static void tegra_plane_atomic_disable(struct drm_plane *plane,
700 struct drm_atomic_state *state)
701 {
702 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
703 plane);
704 struct tegra_plane *p = to_tegra_plane(plane);
705 u32 value;
706
707 /* rien ne va plus */
708 if (!old_state || !old_state->crtc)
709 return;
710
711 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
712 value &= ~WIN_ENABLE;
713 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
714 }
715
tegra_plane_atomic_update(struct drm_plane * plane,struct drm_atomic_state * state)716 static void tegra_plane_atomic_update(struct drm_plane *plane,
717 struct drm_atomic_state *state)
718 {
719 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
720 plane);
721 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
722 struct drm_framebuffer *fb = new_state->fb;
723 struct tegra_plane *p = to_tegra_plane(plane);
724 struct tegra_dc_window window;
725 unsigned int i;
726
727 /* rien ne va plus */
728 if (!new_state->crtc || !new_state->fb)
729 return;
730
731 if (!new_state->visible)
732 return tegra_plane_atomic_disable(plane, state);
733
734 memset(&window, 0, sizeof(window));
735 window.src.x = new_state->src.x1 >> 16;
736 window.src.y = new_state->src.y1 >> 16;
737 window.src.w = drm_rect_width(&new_state->src) >> 16;
738 window.src.h = drm_rect_height(&new_state->src) >> 16;
739 window.dst.x = new_state->dst.x1;
740 window.dst.y = new_state->dst.y1;
741 window.dst.w = drm_rect_width(&new_state->dst);
742 window.dst.h = drm_rect_height(&new_state->dst);
743 window.bits_per_pixel = fb->format->cpp[0] * 8;
744 window.reflect_x = tegra_plane_state->reflect_x;
745 window.reflect_y = tegra_plane_state->reflect_y;
746
747 /* copy from state */
748 window.zpos = new_state->normalized_zpos;
749 window.tiling = tegra_plane_state->tiling;
750 window.format = tegra_plane_state->format;
751 window.swap = tegra_plane_state->swap;
752
753 for (i = 0; i < fb->format->num_planes; i++) {
754 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
755
756 /*
757 * Tegra uses a shared stride for UV planes. Framebuffers are
758 * already checked for this in the tegra_plane_atomic_check()
759 * function, so it's safe to ignore the V-plane pitch here.
760 */
761 if (i < 2)
762 window.stride[i] = fb->pitches[i];
763 }
764
765 tegra_dc_setup_window(p, &window);
766 }
767
768 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
769 .prepare_fb = tegra_plane_prepare_fb,
770 .cleanup_fb = tegra_plane_cleanup_fb,
771 .atomic_check = tegra_plane_atomic_check,
772 .atomic_disable = tegra_plane_atomic_disable,
773 .atomic_update = tegra_plane_atomic_update,
774 };
775
tegra_plane_get_possible_crtcs(struct drm_device * drm)776 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
777 {
778 /*
779 * Ideally this would use drm_crtc_mask(), but that would require the
780 * CRTC to already be in the mode_config's list of CRTCs. However, it
781 * will only be added to that list in the drm_crtc_init_with_planes()
782 * (in tegra_dc_init()), which in turn requires registration of these
783 * planes. So we have ourselves a nice little chicken and egg problem
784 * here.
785 *
786 * We work around this by manually creating the mask from the number
787 * of CRTCs that have been registered, and should therefore always be
788 * the same as drm_crtc_index() after registration.
789 */
790 return 1 << drm->mode_config.num_crtc;
791 }
792
tegra_primary_plane_create(struct drm_device * drm,struct tegra_dc * dc)793 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
794 struct tegra_dc *dc)
795 {
796 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
797 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
798 struct tegra_plane *plane;
799 unsigned int num_formats;
800 const u64 *modifiers;
801 const u32 *formats;
802 int err;
803
804 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
805 if (!plane)
806 return ERR_PTR(-ENOMEM);
807
808 /* Always use window A as primary window */
809 plane->offset = 0xa00;
810 plane->index = 0;
811 plane->dc = dc;
812
813 num_formats = dc->soc->num_primary_formats;
814 formats = dc->soc->primary_formats;
815 modifiers = dc->soc->modifiers;
816
817 err = tegra_plane_interconnect_init(plane);
818 if (err) {
819 kfree(plane);
820 return ERR_PTR(err);
821 }
822
823 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
824 &tegra_plane_funcs, formats,
825 num_formats, modifiers, type, NULL);
826 if (err < 0) {
827 kfree(plane);
828 return ERR_PTR(err);
829 }
830
831 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
832 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
833
834 err = drm_plane_create_rotation_property(&plane->base,
835 DRM_MODE_ROTATE_0,
836 DRM_MODE_ROTATE_0 |
837 DRM_MODE_ROTATE_180 |
838 DRM_MODE_REFLECT_X |
839 DRM_MODE_REFLECT_Y);
840 if (err < 0)
841 dev_err(dc->dev, "failed to create rotation property: %d\n",
842 err);
843
844 return &plane->base;
845 }
846
847 static const u32 tegra_legacy_cursor_plane_formats[] = {
848 DRM_FORMAT_RGBA8888,
849 };
850
851 static const u32 tegra_cursor_plane_formats[] = {
852 DRM_FORMAT_ARGB8888,
853 };
854
tegra_cursor_atomic_check(struct drm_plane * plane,struct drm_atomic_state * state)855 static int tegra_cursor_atomic_check(struct drm_plane *plane,
856 struct drm_atomic_state *state)
857 {
858 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
859 plane);
860 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
861 struct tegra_plane *tegra = to_tegra_plane(plane);
862 int err;
863
864 plane_state->peak_memory_bandwidth = 0;
865 plane_state->avg_memory_bandwidth = 0;
866
867 /* no need for further checks if the plane is being disabled */
868 if (!new_plane_state->crtc) {
869 plane_state->total_peak_memory_bandwidth = 0;
870 return 0;
871 }
872
873 /* scaling not supported for cursor */
874 if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
875 (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
876 return -EINVAL;
877
878 /* only square cursors supported */
879 if (new_plane_state->src_w != new_plane_state->src_h)
880 return -EINVAL;
881
882 if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
883 new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
884 return -EINVAL;
885
886 err = tegra_plane_state_add(tegra, new_plane_state);
887 if (err < 0)
888 return err;
889
890 return 0;
891 }
892
tegra_cursor_atomic_update(struct drm_plane * plane,struct drm_atomic_state * state)893 static void tegra_cursor_atomic_update(struct drm_plane *plane,
894 struct drm_atomic_state *state)
895 {
896 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
897 plane);
898 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
899 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
900 struct tegra_drm *tegra = plane->dev->dev_private;
901 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
902 u64 dma_mask = *dc->dev->dma_mask;
903 #endif
904 unsigned int x, y;
905 u32 value = 0;
906
907 /* rien ne va plus */
908 if (!new_state->crtc || !new_state->fb)
909 return;
910
911 /*
912 * Legacy display supports hardware clipping of the cursor, but
913 * nvdisplay relies on software to clip the cursor to the screen.
914 */
915 if (!dc->soc->has_nvdisplay)
916 value |= CURSOR_CLIP_DISPLAY;
917
918 switch (new_state->crtc_w) {
919 case 32:
920 value |= CURSOR_SIZE_32x32;
921 break;
922
923 case 64:
924 value |= CURSOR_SIZE_64x64;
925 break;
926
927 case 128:
928 value |= CURSOR_SIZE_128x128;
929 break;
930
931 case 256:
932 value |= CURSOR_SIZE_256x256;
933 break;
934
935 default:
936 WARN(1, "cursor size %ux%u not supported\n",
937 new_state->crtc_w, new_state->crtc_h);
938 return;
939 }
940
941 value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
942 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
943
944 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
945 value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
946 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
947 #endif
948
949 /* enable cursor and set blend mode */
950 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
951 value |= CURSOR_ENABLE;
952 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
953
954 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
955 value &= ~CURSOR_DST_BLEND_MASK;
956 value &= ~CURSOR_SRC_BLEND_MASK;
957
958 if (dc->soc->has_nvdisplay)
959 value &= ~CURSOR_COMPOSITION_MODE_XOR;
960 else
961 value |= CURSOR_MODE_NORMAL;
962
963 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
964 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
965 value |= CURSOR_ALPHA;
966 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
967
968 /* nvdisplay relies on software for clipping */
969 if (dc->soc->has_nvdisplay) {
970 struct drm_rect src;
971
972 x = new_state->dst.x1;
973 y = new_state->dst.y1;
974
975 drm_rect_fp_to_int(&src, &new_state->src);
976
977 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
978 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
979
980 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
981 (drm_rect_width(&src) & tegra->hmask);
982 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
983 } else {
984 x = new_state->crtc_x;
985 y = new_state->crtc_y;
986 }
987
988 /* position the cursor */
989 value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
990 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
991 }
992
tegra_cursor_atomic_disable(struct drm_plane * plane,struct drm_atomic_state * state)993 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
994 struct drm_atomic_state *state)
995 {
996 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
997 plane);
998 struct tegra_dc *dc;
999 u32 value;
1000
1001 /* rien ne va plus */
1002 if (!old_state || !old_state->crtc)
1003 return;
1004
1005 dc = to_tegra_dc(old_state->crtc);
1006
1007 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1008 value &= ~CURSOR_ENABLE;
1009 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1010 }
1011
1012 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1013 .prepare_fb = tegra_plane_prepare_fb,
1014 .cleanup_fb = tegra_plane_cleanup_fb,
1015 .atomic_check = tegra_cursor_atomic_check,
1016 .atomic_update = tegra_cursor_atomic_update,
1017 .atomic_disable = tegra_cursor_atomic_disable,
1018 };
1019
1020 static const uint64_t linear_modifiers[] = {
1021 DRM_FORMAT_MOD_LINEAR,
1022 DRM_FORMAT_MOD_INVALID
1023 };
1024
tegra_dc_cursor_plane_create(struct drm_device * drm,struct tegra_dc * dc)1025 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1026 struct tegra_dc *dc)
1027 {
1028 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1029 struct tegra_plane *plane;
1030 unsigned int num_formats;
1031 const u32 *formats;
1032 int err;
1033
1034 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1035 if (!plane)
1036 return ERR_PTR(-ENOMEM);
1037
1038 /*
1039 * This index is kind of fake. The cursor isn't a regular plane, but
1040 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1041 * use the same programming. Setting this fake index here allows the
1042 * code in tegra_add_plane_state() to do the right thing without the
1043 * need to special-casing the cursor plane.
1044 */
1045 plane->index = 6;
1046 plane->dc = dc;
1047
1048 if (!dc->soc->has_nvdisplay) {
1049 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1050 formats = tegra_legacy_cursor_plane_formats;
1051
1052 err = tegra_plane_interconnect_init(plane);
1053 if (err) {
1054 kfree(plane);
1055 return ERR_PTR(err);
1056 }
1057 } else {
1058 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1059 formats = tegra_cursor_plane_formats;
1060 }
1061
1062 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1063 &tegra_plane_funcs, formats,
1064 num_formats, linear_modifiers,
1065 DRM_PLANE_TYPE_CURSOR, NULL);
1066 if (err < 0) {
1067 kfree(plane);
1068 return ERR_PTR(err);
1069 }
1070
1071 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1072 drm_plane_create_zpos_immutable_property(&plane->base, 255);
1073
1074 return &plane->base;
1075 }
1076
1077 static const u32 tegra20_overlay_formats[] = {
1078 DRM_FORMAT_ARGB4444,
1079 DRM_FORMAT_ARGB1555,
1080 DRM_FORMAT_RGB565,
1081 DRM_FORMAT_RGBA5551,
1082 DRM_FORMAT_ABGR8888,
1083 DRM_FORMAT_ARGB8888,
1084 /* non-native formats */
1085 DRM_FORMAT_XRGB1555,
1086 DRM_FORMAT_RGBX5551,
1087 DRM_FORMAT_XBGR8888,
1088 DRM_FORMAT_XRGB8888,
1089 /* planar formats */
1090 DRM_FORMAT_UYVY,
1091 DRM_FORMAT_YUYV,
1092 DRM_FORMAT_YUV420,
1093 DRM_FORMAT_YUV422,
1094 };
1095
1096 static const u32 tegra114_overlay_formats[] = {
1097 DRM_FORMAT_ARGB4444,
1098 DRM_FORMAT_ARGB1555,
1099 DRM_FORMAT_RGB565,
1100 DRM_FORMAT_RGBA5551,
1101 DRM_FORMAT_ABGR8888,
1102 DRM_FORMAT_ARGB8888,
1103 /* new on Tegra114 */
1104 DRM_FORMAT_ABGR4444,
1105 DRM_FORMAT_ABGR1555,
1106 DRM_FORMAT_BGRA5551,
1107 DRM_FORMAT_XRGB1555,
1108 DRM_FORMAT_RGBX5551,
1109 DRM_FORMAT_XBGR1555,
1110 DRM_FORMAT_BGRX5551,
1111 DRM_FORMAT_BGR565,
1112 DRM_FORMAT_BGRA8888,
1113 DRM_FORMAT_RGBA8888,
1114 DRM_FORMAT_XRGB8888,
1115 DRM_FORMAT_XBGR8888,
1116 /* planar formats */
1117 DRM_FORMAT_UYVY,
1118 DRM_FORMAT_YUYV,
1119 DRM_FORMAT_YUV420,
1120 DRM_FORMAT_YUV422,
1121 };
1122
1123 static const u32 tegra124_overlay_formats[] = {
1124 DRM_FORMAT_ARGB4444,
1125 DRM_FORMAT_ARGB1555,
1126 DRM_FORMAT_RGB565,
1127 DRM_FORMAT_RGBA5551,
1128 DRM_FORMAT_ABGR8888,
1129 DRM_FORMAT_ARGB8888,
1130 /* new on Tegra114 */
1131 DRM_FORMAT_ABGR4444,
1132 DRM_FORMAT_ABGR1555,
1133 DRM_FORMAT_BGRA5551,
1134 DRM_FORMAT_XRGB1555,
1135 DRM_FORMAT_RGBX5551,
1136 DRM_FORMAT_XBGR1555,
1137 DRM_FORMAT_BGRX5551,
1138 DRM_FORMAT_BGR565,
1139 DRM_FORMAT_BGRA8888,
1140 DRM_FORMAT_RGBA8888,
1141 DRM_FORMAT_XRGB8888,
1142 DRM_FORMAT_XBGR8888,
1143 /* new on Tegra124 */
1144 DRM_FORMAT_RGBX8888,
1145 DRM_FORMAT_BGRX8888,
1146 /* planar formats */
1147 DRM_FORMAT_UYVY,
1148 DRM_FORMAT_YUYV,
1149 DRM_FORMAT_YUV420,
1150 DRM_FORMAT_YUV422,
1151 };
1152
tegra_dc_overlay_plane_create(struct drm_device * drm,struct tegra_dc * dc,unsigned int index,bool cursor)1153 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1154 struct tegra_dc *dc,
1155 unsigned int index,
1156 bool cursor)
1157 {
1158 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1159 struct tegra_plane *plane;
1160 unsigned int num_formats;
1161 enum drm_plane_type type;
1162 const u32 *formats;
1163 int err;
1164
1165 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1166 if (!plane)
1167 return ERR_PTR(-ENOMEM);
1168
1169 plane->offset = 0xa00 + 0x200 * index;
1170 plane->index = index;
1171 plane->dc = dc;
1172
1173 num_formats = dc->soc->num_overlay_formats;
1174 formats = dc->soc->overlay_formats;
1175
1176 err = tegra_plane_interconnect_init(plane);
1177 if (err) {
1178 kfree(plane);
1179 return ERR_PTR(err);
1180 }
1181
1182 if (!cursor)
1183 type = DRM_PLANE_TYPE_OVERLAY;
1184 else
1185 type = DRM_PLANE_TYPE_CURSOR;
1186
1187 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1188 &tegra_plane_funcs, formats,
1189 num_formats, linear_modifiers,
1190 type, NULL);
1191 if (err < 0) {
1192 kfree(plane);
1193 return ERR_PTR(err);
1194 }
1195
1196 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1197 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1198
1199 err = drm_plane_create_rotation_property(&plane->base,
1200 DRM_MODE_ROTATE_0,
1201 DRM_MODE_ROTATE_0 |
1202 DRM_MODE_ROTATE_180 |
1203 DRM_MODE_REFLECT_X |
1204 DRM_MODE_REFLECT_Y);
1205 if (err < 0)
1206 dev_err(dc->dev, "failed to create rotation property: %d\n",
1207 err);
1208
1209 return &plane->base;
1210 }
1211
tegra_dc_add_shared_planes(struct drm_device * drm,struct tegra_dc * dc)1212 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1213 struct tegra_dc *dc)
1214 {
1215 struct drm_plane *plane, *primary = NULL;
1216 unsigned int i, j;
1217
1218 for (i = 0; i < dc->soc->num_wgrps; i++) {
1219 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1220
1221 if (wgrp->dc == dc->pipe) {
1222 for (j = 0; j < wgrp->num_windows; j++) {
1223 unsigned int index = wgrp->windows[j];
1224
1225 plane = tegra_shared_plane_create(drm, dc,
1226 wgrp->index,
1227 index);
1228 if (IS_ERR(plane))
1229 return plane;
1230
1231 /*
1232 * Choose the first shared plane owned by this
1233 * head as the primary plane.
1234 */
1235 if (!primary) {
1236 plane->type = DRM_PLANE_TYPE_PRIMARY;
1237 primary = plane;
1238 }
1239 }
1240 }
1241 }
1242
1243 return primary;
1244 }
1245
tegra_dc_add_planes(struct drm_device * drm,struct tegra_dc * dc)1246 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1247 struct tegra_dc *dc)
1248 {
1249 struct drm_plane *planes[2], *primary;
1250 unsigned int planes_num;
1251 unsigned int i;
1252 int err;
1253
1254 primary = tegra_primary_plane_create(drm, dc);
1255 if (IS_ERR(primary))
1256 return primary;
1257
1258 if (dc->soc->supports_cursor)
1259 planes_num = 2;
1260 else
1261 planes_num = 1;
1262
1263 for (i = 0; i < planes_num; i++) {
1264 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1265 false);
1266 if (IS_ERR(planes[i])) {
1267 err = PTR_ERR(planes[i]);
1268
1269 while (i--)
1270 tegra_plane_funcs.destroy(planes[i]);
1271
1272 tegra_plane_funcs.destroy(primary);
1273 return ERR_PTR(err);
1274 }
1275 }
1276
1277 return primary;
1278 }
1279
tegra_dc_destroy(struct drm_crtc * crtc)1280 static void tegra_dc_destroy(struct drm_crtc *crtc)
1281 {
1282 drm_crtc_cleanup(crtc);
1283 }
1284
tegra_crtc_reset(struct drm_crtc * crtc)1285 static void tegra_crtc_reset(struct drm_crtc *crtc)
1286 {
1287 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1288
1289 if (crtc->state)
1290 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1291
1292 __drm_atomic_helper_crtc_reset(crtc, &state->base);
1293 }
1294
1295 static struct drm_crtc_state *
tegra_crtc_atomic_duplicate_state(struct drm_crtc * crtc)1296 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1297 {
1298 struct tegra_dc_state *state = to_dc_state(crtc->state);
1299 struct tegra_dc_state *copy;
1300
1301 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1302 if (!copy)
1303 return NULL;
1304
1305 __drm_atomic_helper_crtc_duplicate_state(crtc, ©->base);
1306 copy->clk = state->clk;
1307 copy->pclk = state->pclk;
1308 copy->div = state->div;
1309 copy->planes = state->planes;
1310
1311 return ©->base;
1312 }
1313
tegra_crtc_atomic_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)1314 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1315 struct drm_crtc_state *state)
1316 {
1317 __drm_atomic_helper_crtc_destroy_state(state);
1318 kfree(state);
1319 }
1320
1321 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1322
1323 static const struct debugfs_reg32 tegra_dc_regs[] = {
1324 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1325 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1326 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1327 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1328 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1329 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1330 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1331 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1332 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1333 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1334 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1335 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1336 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1337 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1338 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1339 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1340 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1341 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1342 DEBUGFS_REG32(DC_CMD_INT_MASK),
1343 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1344 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1345 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1346 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1347 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1348 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1349 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1350 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1351 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1352 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1353 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1354 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1355 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1356 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1357 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1358 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1359 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1360 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1361 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1362 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1363 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1364 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1365 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1366 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1367 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1368 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1369 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1370 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1371 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1372 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1373 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1374 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1375 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1376 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1377 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1378 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1379 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1380 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1381 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1382 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1383 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1384 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1385 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1386 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1387 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1388 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1389 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1390 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1391 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1392 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1393 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1394 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1395 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1396 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1397 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1398 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1399 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1400 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1401 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1402 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1403 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1404 DEBUGFS_REG32(DC_DISP_ACTIVE),
1405 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1406 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1407 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1408 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1409 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1410 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1411 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1412 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1413 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1414 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1415 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1416 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1417 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1418 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1419 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1420 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1421 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1422 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1423 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1424 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1425 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1426 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1427 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1428 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1429 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1430 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1431 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1432 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1433 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1434 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1435 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1436 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1437 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1438 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1439 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1440 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1441 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1442 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1443 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1444 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1445 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1446 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1447 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1448 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1449 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1450 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1451 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1452 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1453 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1454 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1455 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1456 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1457 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1458 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1459 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1460 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1461 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1462 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1463 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1464 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1465 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1466 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1467 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1468 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1469 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1470 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1471 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1472 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1473 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1474 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1475 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1476 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1477 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1478 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1479 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1480 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1481 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1482 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1483 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1484 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1485 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1486 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1487 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1488 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1489 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1490 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1491 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1492 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1493 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1494 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1495 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1496 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1497 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1498 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1499 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1500 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1501 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1502 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1503 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1504 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1505 DEBUGFS_REG32(DC_WIN_POSITION),
1506 DEBUGFS_REG32(DC_WIN_SIZE),
1507 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1508 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1509 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1510 DEBUGFS_REG32(DC_WIN_DDA_INC),
1511 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1512 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1513 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1514 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1515 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1516 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1517 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1518 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1519 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1520 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1521 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1522 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1523 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1524 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1525 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1526 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1527 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1528 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1529 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1530 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1531 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1532 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1533 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1534 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1535 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1536 };
1537
tegra_dc_show_regs(struct seq_file * s,void * data)1538 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1539 {
1540 struct drm_info_node *node = s->private;
1541 struct tegra_dc *dc = node->info_ent->data;
1542 unsigned int i;
1543 int err = 0;
1544
1545 drm_modeset_lock(&dc->base.mutex, NULL);
1546
1547 if (!dc->base.state->active) {
1548 err = -EBUSY;
1549 goto unlock;
1550 }
1551
1552 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1553 unsigned int offset = tegra_dc_regs[i].offset;
1554
1555 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1556 offset, tegra_dc_readl(dc, offset));
1557 }
1558
1559 unlock:
1560 drm_modeset_unlock(&dc->base.mutex);
1561 return err;
1562 }
1563
tegra_dc_show_crc(struct seq_file * s,void * data)1564 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1565 {
1566 struct drm_info_node *node = s->private;
1567 struct tegra_dc *dc = node->info_ent->data;
1568 int err = 0;
1569 u32 value;
1570
1571 drm_modeset_lock(&dc->base.mutex, NULL);
1572
1573 if (!dc->base.state->active) {
1574 err = -EBUSY;
1575 goto unlock;
1576 }
1577
1578 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1579 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1580 tegra_dc_commit(dc);
1581
1582 drm_crtc_wait_one_vblank(&dc->base);
1583 drm_crtc_wait_one_vblank(&dc->base);
1584
1585 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1586 seq_printf(s, "%08x\n", value);
1587
1588 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1589
1590 unlock:
1591 drm_modeset_unlock(&dc->base.mutex);
1592 return err;
1593 }
1594
tegra_dc_show_stats(struct seq_file * s,void * data)1595 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1596 {
1597 struct drm_info_node *node = s->private;
1598 struct tegra_dc *dc = node->info_ent->data;
1599
1600 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1601 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1602 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1603 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1604
1605 seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1606 seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1607 seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1608 seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1609
1610 return 0;
1611 }
1612
1613 static struct drm_info_list debugfs_files[] = {
1614 { "regs", tegra_dc_show_regs, 0, NULL },
1615 { "crc", tegra_dc_show_crc, 0, NULL },
1616 { "stats", tegra_dc_show_stats, 0, NULL },
1617 };
1618
tegra_dc_late_register(struct drm_crtc * crtc)1619 static int tegra_dc_late_register(struct drm_crtc *crtc)
1620 {
1621 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1622 struct drm_minor *minor = crtc->dev->primary;
1623 struct dentry *root;
1624 struct tegra_dc *dc = to_tegra_dc(crtc);
1625
1626 #ifdef CONFIG_DEBUG_FS
1627 root = crtc->debugfs_entry;
1628 #else
1629 root = NULL;
1630 #endif
1631
1632 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1633 GFP_KERNEL);
1634 if (!dc->debugfs_files)
1635 return -ENOMEM;
1636
1637 for (i = 0; i < count; i++)
1638 dc->debugfs_files[i].data = dc;
1639
1640 drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1641
1642 return 0;
1643 }
1644
tegra_dc_early_unregister(struct drm_crtc * crtc)1645 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1646 {
1647 unsigned int count = ARRAY_SIZE(debugfs_files);
1648 struct drm_minor *minor = crtc->dev->primary;
1649 struct tegra_dc *dc = to_tegra_dc(crtc);
1650
1651 drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1652 kfree(dc->debugfs_files);
1653 dc->debugfs_files = NULL;
1654 }
1655
tegra_dc_get_vblank_counter(struct drm_crtc * crtc)1656 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1657 {
1658 struct tegra_dc *dc = to_tegra_dc(crtc);
1659
1660 /* XXX vblank syncpoints don't work with nvdisplay yet */
1661 if (dc->syncpt && !dc->soc->has_nvdisplay)
1662 return host1x_syncpt_read(dc->syncpt);
1663
1664 /* fallback to software emulated VBLANK counter */
1665 return (u32)drm_crtc_vblank_count(&dc->base);
1666 }
1667
tegra_dc_enable_vblank(struct drm_crtc * crtc)1668 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1669 {
1670 struct tegra_dc *dc = to_tegra_dc(crtc);
1671 u32 value;
1672
1673 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1674 value |= VBLANK_INT;
1675 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1676
1677 return 0;
1678 }
1679
tegra_dc_disable_vblank(struct drm_crtc * crtc)1680 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1681 {
1682 struct tegra_dc *dc = to_tegra_dc(crtc);
1683 u32 value;
1684
1685 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1686 value &= ~VBLANK_INT;
1687 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1688 }
1689
1690 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1691 .page_flip = drm_atomic_helper_page_flip,
1692 .set_config = drm_atomic_helper_set_config,
1693 .destroy = tegra_dc_destroy,
1694 .reset = tegra_crtc_reset,
1695 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1696 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1697 .late_register = tegra_dc_late_register,
1698 .early_unregister = tegra_dc_early_unregister,
1699 .get_vblank_counter = tegra_dc_get_vblank_counter,
1700 .enable_vblank = tegra_dc_enable_vblank,
1701 .disable_vblank = tegra_dc_disable_vblank,
1702 };
1703
tegra_dc_set_timings(struct tegra_dc * dc,struct drm_display_mode * mode)1704 static int tegra_dc_set_timings(struct tegra_dc *dc,
1705 struct drm_display_mode *mode)
1706 {
1707 unsigned int h_ref_to_sync = 1;
1708 unsigned int v_ref_to_sync = 1;
1709 unsigned long value;
1710
1711 if (!dc->soc->has_nvdisplay) {
1712 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1713
1714 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1715 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1716 }
1717
1718 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1719 ((mode->hsync_end - mode->hsync_start) << 0);
1720 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1721
1722 value = ((mode->vtotal - mode->vsync_end) << 16) |
1723 ((mode->htotal - mode->hsync_end) << 0);
1724 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1725
1726 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1727 ((mode->hsync_start - mode->hdisplay) << 0);
1728 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1729
1730 value = (mode->vdisplay << 16) | mode->hdisplay;
1731 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1732
1733 return 0;
1734 }
1735
1736 /**
1737 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1738 * state
1739 * @dc: display controller
1740 * @crtc_state: CRTC atomic state
1741 * @clk: parent clock for display controller
1742 * @pclk: pixel clock
1743 * @div: shift clock divider
1744 *
1745 * Returns:
1746 * 0 on success or a negative error-code on failure.
1747 */
tegra_dc_state_setup_clock(struct tegra_dc * dc,struct drm_crtc_state * crtc_state,struct clk * clk,unsigned long pclk,unsigned int div)1748 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1749 struct drm_crtc_state *crtc_state,
1750 struct clk *clk, unsigned long pclk,
1751 unsigned int div)
1752 {
1753 struct tegra_dc_state *state = to_dc_state(crtc_state);
1754
1755 if (!clk_has_parent(dc->clk, clk))
1756 return -EINVAL;
1757
1758 state->clk = clk;
1759 state->pclk = pclk;
1760 state->div = div;
1761
1762 return 0;
1763 }
1764
tegra_dc_commit_state(struct tegra_dc * dc,struct tegra_dc_state * state)1765 static void tegra_dc_commit_state(struct tegra_dc *dc,
1766 struct tegra_dc_state *state)
1767 {
1768 u32 value;
1769 int err;
1770
1771 err = clk_set_parent(dc->clk, state->clk);
1772 if (err < 0)
1773 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1774
1775 /*
1776 * Outputs may not want to change the parent clock rate. This is only
1777 * relevant to Tegra20 where only a single display PLL is available.
1778 * Since that PLL would typically be used for HDMI, an internal LVDS
1779 * panel would need to be driven by some other clock such as PLL_P
1780 * which is shared with other peripherals. Changing the clock rate
1781 * should therefore be avoided.
1782 */
1783 if (state->pclk > 0) {
1784 err = clk_set_rate(state->clk, state->pclk);
1785 if (err < 0)
1786 dev_err(dc->dev,
1787 "failed to set clock rate to %lu Hz\n",
1788 state->pclk);
1789
1790 err = clk_set_rate(dc->clk, state->pclk);
1791 if (err < 0)
1792 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1793 dc->clk, state->pclk, err);
1794 }
1795
1796 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1797 state->div);
1798 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1799
1800 if (!dc->soc->has_nvdisplay) {
1801 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1802 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1803 }
1804 }
1805
tegra_dc_stop(struct tegra_dc * dc)1806 static void tegra_dc_stop(struct tegra_dc *dc)
1807 {
1808 u32 value;
1809
1810 /* stop the display controller */
1811 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1812 value &= ~DISP_CTRL_MODE_MASK;
1813 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1814
1815 tegra_dc_commit(dc);
1816 }
1817
tegra_dc_idle(struct tegra_dc * dc)1818 static bool tegra_dc_idle(struct tegra_dc *dc)
1819 {
1820 u32 value;
1821
1822 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1823
1824 return (value & DISP_CTRL_MODE_MASK) == 0;
1825 }
1826
tegra_dc_wait_idle(struct tegra_dc * dc,unsigned long timeout)1827 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1828 {
1829 timeout = jiffies + msecs_to_jiffies(timeout);
1830
1831 while (time_before(jiffies, timeout)) {
1832 if (tegra_dc_idle(dc))
1833 return 0;
1834
1835 usleep_range(1000, 2000);
1836 }
1837
1838 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1839 return -ETIMEDOUT;
1840 }
1841
1842 static void
tegra_crtc_update_memory_bandwidth(struct drm_crtc * crtc,struct drm_atomic_state * state,bool prepare_bandwidth_transition)1843 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1844 struct drm_atomic_state *state,
1845 bool prepare_bandwidth_transition)
1846 {
1847 const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1848 u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1849 const struct drm_plane_state *old_plane_state;
1850 const struct drm_crtc_state *old_crtc_state;
1851 struct tegra_dc_window window, old_window;
1852 struct tegra_dc *dc = to_tegra_dc(crtc);
1853 struct tegra_plane *tegra;
1854 struct drm_plane *plane;
1855
1856 if (dc->soc->has_nvdisplay)
1857 return;
1858
1859 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
1860
1861 if (!crtc->state->active) {
1862 if (!old_crtc_state->active)
1863 return;
1864
1865 /*
1866 * When CRTC is disabled on DPMS, the state of attached planes
1867 * is kept unchanged. Hence we need to enforce removal of the
1868 * bandwidths from the ICC paths.
1869 */
1870 drm_atomic_crtc_for_each_plane(plane, crtc) {
1871 tegra = to_tegra_plane(plane);
1872
1873 icc_set_bw(tegra->icc_mem, 0, 0);
1874 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
1875 }
1876
1877 return;
1878 }
1879
1880 for_each_old_plane_in_state(old_crtc_state->state, plane,
1881 old_plane_state, i) {
1882 old_tegra_state = to_const_tegra_plane_state(old_plane_state);
1883 new_tegra_state = to_const_tegra_plane_state(plane->state);
1884 tegra = to_tegra_plane(plane);
1885
1886 /*
1887 * We're iterating over the global atomic state and it contains
1888 * planes from another CRTC, hence we need to filter out the
1889 * planes unrelated to this CRTC.
1890 */
1891 if (tegra->dc != dc)
1892 continue;
1893
1894 new_avg_bw = new_tegra_state->avg_memory_bandwidth;
1895 old_avg_bw = old_tegra_state->avg_memory_bandwidth;
1896
1897 new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
1898 old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
1899
1900 /*
1901 * See the comment related to !crtc->state->active above,
1902 * which explains why bandwidths need to be updated when
1903 * CRTC is turning ON.
1904 */
1905 if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
1906 old_crtc_state->active)
1907 continue;
1908
1909 window.src.h = drm_rect_height(&plane->state->src) >> 16;
1910 window.dst.h = drm_rect_height(&plane->state->dst);
1911
1912 old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
1913 old_window.dst.h = drm_rect_height(&old_plane_state->dst);
1914
1915 /*
1916 * During the preparation phase (atomic_begin), the memory
1917 * freq should go high before the DC changes are committed
1918 * if bandwidth requirement goes up, otherwise memory freq
1919 * should to stay high if BW requirement goes down. The
1920 * opposite applies to the completion phase (post_commit).
1921 */
1922 if (prepare_bandwidth_transition) {
1923 new_avg_bw = max(old_avg_bw, new_avg_bw);
1924 new_peak_bw = max(old_peak_bw, new_peak_bw);
1925
1926 if (tegra_plane_use_vertical_filtering(tegra, &old_window))
1927 window = old_window;
1928 }
1929
1930 icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
1931
1932 if (tegra_plane_use_vertical_filtering(tegra, &window))
1933 icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
1934 else
1935 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
1936 }
1937 }
1938
tegra_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)1939 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1940 struct drm_atomic_state *state)
1941 {
1942 struct tegra_dc *dc = to_tegra_dc(crtc);
1943 u32 value;
1944 int err;
1945
1946 if (!tegra_dc_idle(dc)) {
1947 tegra_dc_stop(dc);
1948
1949 /*
1950 * Ignore the return value, there isn't anything useful to do
1951 * in case this fails.
1952 */
1953 tegra_dc_wait_idle(dc, 100);
1954 }
1955
1956 /*
1957 * This should really be part of the RGB encoder driver, but clearing
1958 * these bits has the side-effect of stopping the display controller.
1959 * When that happens no VBLANK interrupts will be raised. At the same
1960 * time the encoder is disabled before the display controller, so the
1961 * above code is always going to timeout waiting for the controller
1962 * to go idle.
1963 *
1964 * Given the close coupling between the RGB encoder and the display
1965 * controller doing it here is still kind of okay. None of the other
1966 * encoder drivers require these bits to be cleared.
1967 *
1968 * XXX: Perhaps given that the display controller is switched off at
1969 * this point anyway maybe clearing these bits isn't even useful for
1970 * the RGB encoder?
1971 */
1972 if (dc->rgb) {
1973 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1974 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1975 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1976 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1977 }
1978
1979 tegra_dc_stats_reset(&dc->stats);
1980 drm_crtc_vblank_off(crtc);
1981
1982 spin_lock_irq(&crtc->dev->event_lock);
1983
1984 if (crtc->state->event) {
1985 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1986 crtc->state->event = NULL;
1987 }
1988
1989 spin_unlock_irq(&crtc->dev->event_lock);
1990
1991 err = host1x_client_suspend(&dc->client);
1992 if (err < 0)
1993 dev_err(dc->dev, "failed to suspend: %d\n", err);
1994 }
1995
tegra_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)1996 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1997 struct drm_atomic_state *state)
1998 {
1999 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2000 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2001 struct tegra_dc *dc = to_tegra_dc(crtc);
2002 u32 value;
2003 int err;
2004
2005 err = host1x_client_resume(&dc->client);
2006 if (err < 0) {
2007 dev_err(dc->dev, "failed to resume: %d\n", err);
2008 return;
2009 }
2010
2011 /* initialize display controller */
2012 if (dc->syncpt) {
2013 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2014
2015 if (dc->soc->has_nvdisplay)
2016 enable = 1 << 31;
2017 else
2018 enable = 1 << 8;
2019
2020 value = SYNCPT_CNTRL_NO_STALL;
2021 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2022
2023 value = enable | syncpt;
2024 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2025 }
2026
2027 if (dc->soc->has_nvdisplay) {
2028 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2029 DSC_OBUF_UF_INT;
2030 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2031
2032 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2033 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2034 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2035 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2036 VBLANK_INT | FRAME_END_INT;
2037 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2038
2039 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2040 FRAME_END_INT;
2041 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2042
2043 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2044 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2045
2046 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2047 } else {
2048 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2049 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2050 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2051
2052 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2053 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2054 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2055
2056 /* initialize timer */
2057 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2058 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2059 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2060
2061 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2062 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2063 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2064
2065 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2066 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2067 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2068
2069 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2070 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2071 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2072 }
2073
2074 if (dc->soc->supports_background_color)
2075 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2076 else
2077 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2078
2079 /* apply PLL and pixel clock changes */
2080 tegra_dc_commit_state(dc, crtc_state);
2081
2082 /* program display mode */
2083 tegra_dc_set_timings(dc, mode);
2084
2085 /* interlacing isn't supported yet, so disable it */
2086 if (dc->soc->supports_interlacing) {
2087 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2088 value &= ~INTERLACE_ENABLE;
2089 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2090 }
2091
2092 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2093 value &= ~DISP_CTRL_MODE_MASK;
2094 value |= DISP_CTRL_MODE_C_DISPLAY;
2095 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2096
2097 if (!dc->soc->has_nvdisplay) {
2098 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2099 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2100 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2101 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2102 }
2103
2104 /* enable underflow reporting and display red for missing pixels */
2105 if (dc->soc->has_nvdisplay) {
2106 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2107 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2108 }
2109
2110 tegra_dc_commit(dc);
2111
2112 drm_crtc_vblank_on(crtc);
2113 }
2114
tegra_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)2115 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2116 struct drm_atomic_state *state)
2117 {
2118 unsigned long flags;
2119
2120 tegra_crtc_update_memory_bandwidth(crtc, state, true);
2121
2122 if (crtc->state->event) {
2123 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2124
2125 if (drm_crtc_vblank_get(crtc) != 0)
2126 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2127 else
2128 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2129
2130 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2131
2132 crtc->state->event = NULL;
2133 }
2134 }
2135
tegra_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)2136 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2137 struct drm_atomic_state *state)
2138 {
2139 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2140 crtc);
2141 struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2142 struct tegra_dc *dc = to_tegra_dc(crtc);
2143 u32 value;
2144
2145 value = dc_state->planes << 8 | GENERAL_UPDATE;
2146 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2147 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2148
2149 value = dc_state->planes | GENERAL_ACT_REQ;
2150 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2151 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2152 }
2153
tegra_plane_is_cursor(const struct drm_plane_state * state)2154 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2155 {
2156 const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2157 const struct drm_format_info *fmt = state->fb->format;
2158 unsigned int src_w = drm_rect_width(&state->src) >> 16;
2159 unsigned int dst_w = drm_rect_width(&state->dst);
2160
2161 if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2162 return false;
2163
2164 if (soc->supports_cursor)
2165 return true;
2166
2167 if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2168 return false;
2169
2170 return true;
2171 }
2172
2173 static unsigned long
tegra_plane_overlap_mask(struct drm_crtc_state * state,const struct drm_plane_state * plane_state)2174 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2175 const struct drm_plane_state *plane_state)
2176 {
2177 const struct drm_plane_state *other_state;
2178 const struct tegra_plane *tegra;
2179 unsigned long overlap_mask = 0;
2180 struct drm_plane *plane;
2181 struct drm_rect rect;
2182
2183 if (!plane_state->visible || !plane_state->fb)
2184 return 0;
2185
2186 /*
2187 * Data-prefetch FIFO will easily help to overcome temporal memory
2188 * pressure if other plane overlaps with the cursor plane.
2189 */
2190 if (tegra_plane_is_cursor(plane_state))
2191 return 0;
2192
2193 drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2194 rect = plane_state->dst;
2195
2196 tegra = to_tegra_plane(other_state->plane);
2197
2198 if (!other_state->visible || !other_state->fb)
2199 continue;
2200
2201 /*
2202 * Ignore cursor plane overlaps because it's not practical to
2203 * assume that it contributes to the bandwidth in overlapping
2204 * area if window width is small.
2205 */
2206 if (tegra_plane_is_cursor(other_state))
2207 continue;
2208
2209 if (drm_rect_intersect(&rect, &other_state->dst))
2210 overlap_mask |= BIT(tegra->index);
2211 }
2212
2213 return overlap_mask;
2214 }
2215
tegra_crtc_calculate_memory_bandwidth(struct drm_crtc * crtc,struct drm_atomic_state * state)2216 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2217 struct drm_atomic_state *state)
2218 {
2219 ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2220 u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2221 bool all_planes_overlap_simultaneously = true;
2222 const struct tegra_plane_state *tegra_state;
2223 const struct drm_plane_state *plane_state;
2224 struct tegra_dc *dc = to_tegra_dc(crtc);
2225 const struct drm_crtc_state *old_state;
2226 struct drm_crtc_state *new_state;
2227 struct tegra_plane *tegra;
2228 struct drm_plane *plane;
2229
2230 /*
2231 * The nv-display uses shared planes. The algorithm below assumes
2232 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2233 * the nv-display. Note that T124 support has additional windows,
2234 * but currently they aren't supported by the driver.
2235 */
2236 if (dc->soc->has_nvdisplay)
2237 return 0;
2238
2239 new_state = drm_atomic_get_new_crtc_state(state, crtc);
2240 old_state = drm_atomic_get_old_crtc_state(state, crtc);
2241
2242 /*
2243 * For overlapping planes pixel's data is fetched for each plane at
2244 * the same time, hence bandwidths are accumulated in this case.
2245 * This needs to be taken into account for calculating total bandwidth
2246 * consumed by all planes.
2247 *
2248 * Here we get the overlapping state of each plane, which is a
2249 * bitmask of plane indices telling with what planes there is an
2250 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2251 * to make further code nicer and simpler.
2252 */
2253 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2254 tegra_state = to_const_tegra_plane_state(plane_state);
2255 tegra = to_tegra_plane(plane);
2256
2257 if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2258 return -EINVAL;
2259
2260 plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2261 mask = tegra_plane_overlap_mask(new_state, plane_state);
2262 overlap_mask[tegra->index] = mask;
2263
2264 if (hweight_long(mask) != 3)
2265 all_planes_overlap_simultaneously = false;
2266 }
2267
2268 /*
2269 * Then we calculate maximum bandwidth of each plane state.
2270 * The bandwidth includes the plane BW + BW of the "simultaneously"
2271 * overlapping planes, where "simultaneously" means areas where DC
2272 * fetches from the planes simultaneously during of scan-out process.
2273 *
2274 * For example, if plane A overlaps with planes B and C, but B and C
2275 * don't overlap, then the peak bandwidth will be either in area where
2276 * A-and-B or A-and-C planes overlap.
2277 *
2278 * The plane_peak_bw[] contains peak memory bandwidth values of
2279 * each plane, this information is needed by interconnect provider
2280 * in order to set up latency allowance based on the peak BW, see
2281 * tegra_crtc_update_memory_bandwidth().
2282 */
2283 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2284 u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2285
2286 /*
2287 * Note that plane's atomic check doesn't touch the
2288 * total_peak_memory_bandwidth of enabled plane, hence the
2289 * current state contains the old bandwidth state from the
2290 * previous CRTC commit.
2291 */
2292 tegra_state = to_const_tegra_plane_state(plane_state);
2293 tegra = to_tegra_plane(plane);
2294
2295 for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2296 if (i == tegra->index)
2297 continue;
2298
2299 if (all_planes_overlap_simultaneously)
2300 overlap_bw += plane_peak_bw[i];
2301 else
2302 overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2303 }
2304
2305 new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2306 old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2307
2308 /*
2309 * If plane's peak bandwidth changed (for example plane isn't
2310 * overlapped anymore) and plane isn't in the atomic state,
2311 * then add plane to the state in order to have the bandwidth
2312 * updated.
2313 */
2314 if (old_peak_bw != new_peak_bw) {
2315 struct tegra_plane_state *new_tegra_state;
2316 struct drm_plane_state *new_plane_state;
2317
2318 new_plane_state = drm_atomic_get_plane_state(state, plane);
2319 if (IS_ERR(new_plane_state))
2320 return PTR_ERR(new_plane_state);
2321
2322 new_tegra_state = to_tegra_plane_state(new_plane_state);
2323 new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2324 }
2325 }
2326
2327 return 0;
2328 }
2329
tegra_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)2330 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2331 struct drm_atomic_state *state)
2332 {
2333 int err;
2334
2335 err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2336 if (err)
2337 return err;
2338
2339 return 0;
2340 }
2341
tegra_crtc_atomic_post_commit(struct drm_crtc * crtc,struct drm_atomic_state * state)2342 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2343 struct drm_atomic_state *state)
2344 {
2345 /*
2346 * Display bandwidth is allowed to go down only once hardware state
2347 * is known to be armed, i.e. state was committed and VBLANK event
2348 * received.
2349 */
2350 tegra_crtc_update_memory_bandwidth(crtc, state, false);
2351 }
2352
2353 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2354 .atomic_check = tegra_crtc_atomic_check,
2355 .atomic_begin = tegra_crtc_atomic_begin,
2356 .atomic_flush = tegra_crtc_atomic_flush,
2357 .atomic_enable = tegra_crtc_atomic_enable,
2358 .atomic_disable = tegra_crtc_atomic_disable,
2359 };
2360
tegra_dc_irq(int irq,void * data)2361 static irqreturn_t tegra_dc_irq(int irq, void *data)
2362 {
2363 struct tegra_dc *dc = data;
2364 unsigned long status;
2365
2366 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2367 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2368
2369 if (status & FRAME_END_INT) {
2370 /*
2371 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2372 */
2373 dc->stats.frames_total++;
2374 dc->stats.frames++;
2375 }
2376
2377 if (status & VBLANK_INT) {
2378 /*
2379 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2380 */
2381 drm_crtc_handle_vblank(&dc->base);
2382 dc->stats.vblank_total++;
2383 dc->stats.vblank++;
2384 }
2385
2386 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2387 /*
2388 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2389 */
2390 dc->stats.underflow_total++;
2391 dc->stats.underflow++;
2392 }
2393
2394 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2395 /*
2396 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2397 */
2398 dc->stats.overflow_total++;
2399 dc->stats.overflow++;
2400 }
2401
2402 if (status & HEAD_UF_INT) {
2403 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2404 dc->stats.underflow_total++;
2405 dc->stats.underflow++;
2406 }
2407
2408 return IRQ_HANDLED;
2409 }
2410
tegra_dc_has_window_groups(struct tegra_dc * dc)2411 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2412 {
2413 unsigned int i;
2414
2415 if (!dc->soc->wgrps)
2416 return true;
2417
2418 for (i = 0; i < dc->soc->num_wgrps; i++) {
2419 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2420
2421 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2422 return true;
2423 }
2424
2425 return false;
2426 }
2427
tegra_dc_early_init(struct host1x_client * client)2428 static int tegra_dc_early_init(struct host1x_client *client)
2429 {
2430 struct drm_device *drm = dev_get_drvdata(client->host);
2431 struct tegra_drm *tegra = drm->dev_private;
2432
2433 tegra->num_crtcs++;
2434
2435 return 0;
2436 }
2437
tegra_dc_init(struct host1x_client * client)2438 static int tegra_dc_init(struct host1x_client *client)
2439 {
2440 struct drm_device *drm = dev_get_drvdata(client->host);
2441 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2442 struct tegra_dc *dc = host1x_client_to_dc(client);
2443 struct tegra_drm *tegra = drm->dev_private;
2444 struct drm_plane *primary = NULL;
2445 struct drm_plane *cursor = NULL;
2446 int err;
2447
2448 /*
2449 * DC has been reset by now, so VBLANK syncpoint can be released
2450 * for general use.
2451 */
2452 host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2453
2454 /*
2455 * XXX do not register DCs with no window groups because we cannot
2456 * assign a primary plane to them, which in turn will cause KMS to
2457 * crash.
2458 */
2459 if (!tegra_dc_has_window_groups(dc))
2460 return 0;
2461
2462 /*
2463 * Set the display hub as the host1x client parent for the display
2464 * controller. This is needed for the runtime reference counting that
2465 * ensures the display hub is always powered when any of the display
2466 * controllers are.
2467 */
2468 if (dc->soc->has_nvdisplay)
2469 client->parent = &tegra->hub->client;
2470
2471 dc->syncpt = host1x_syncpt_request(client, flags);
2472 if (!dc->syncpt)
2473 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2474
2475 err = host1x_client_iommu_attach(client);
2476 if (err < 0 && err != -ENODEV) {
2477 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2478 return err;
2479 }
2480
2481 if (dc->soc->wgrps)
2482 primary = tegra_dc_add_shared_planes(drm, dc);
2483 else
2484 primary = tegra_dc_add_planes(drm, dc);
2485
2486 if (IS_ERR(primary)) {
2487 err = PTR_ERR(primary);
2488 goto cleanup;
2489 }
2490
2491 if (dc->soc->supports_cursor) {
2492 cursor = tegra_dc_cursor_plane_create(drm, dc);
2493 if (IS_ERR(cursor)) {
2494 err = PTR_ERR(cursor);
2495 goto cleanup;
2496 }
2497 } else {
2498 /* dedicate one overlay to mouse cursor */
2499 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2500 if (IS_ERR(cursor)) {
2501 err = PTR_ERR(cursor);
2502 goto cleanup;
2503 }
2504 }
2505
2506 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2507 &tegra_crtc_funcs, NULL);
2508 if (err < 0)
2509 goto cleanup;
2510
2511 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2512
2513 /*
2514 * Keep track of the minimum pitch alignment across all display
2515 * controllers.
2516 */
2517 if (dc->soc->pitch_align > tegra->pitch_align)
2518 tegra->pitch_align = dc->soc->pitch_align;
2519
2520 /* track maximum resolution */
2521 if (dc->soc->has_nvdisplay)
2522 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2523 else
2524 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2525
2526 err = tegra_dc_rgb_init(drm, dc);
2527 if (err < 0 && err != -ENODEV) {
2528 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2529 goto cleanup;
2530 }
2531
2532 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2533 dev_name(dc->dev), dc);
2534 if (err < 0) {
2535 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2536 err);
2537 goto cleanup;
2538 }
2539
2540 /*
2541 * Inherit the DMA parameters (such as maximum segment size) from the
2542 * parent host1x device.
2543 */
2544 client->dev->dma_parms = client->host->dma_parms;
2545
2546 return 0;
2547
2548 cleanup:
2549 if (!IS_ERR_OR_NULL(cursor))
2550 drm_plane_cleanup(cursor);
2551
2552 if (!IS_ERR(primary))
2553 drm_plane_cleanup(primary);
2554
2555 host1x_client_iommu_detach(client);
2556 host1x_syncpt_put(dc->syncpt);
2557
2558 return err;
2559 }
2560
tegra_dc_exit(struct host1x_client * client)2561 static int tegra_dc_exit(struct host1x_client *client)
2562 {
2563 struct tegra_dc *dc = host1x_client_to_dc(client);
2564 int err;
2565
2566 if (!tegra_dc_has_window_groups(dc))
2567 return 0;
2568
2569 /* avoid a dangling pointer just in case this disappears */
2570 client->dev->dma_parms = NULL;
2571
2572 devm_free_irq(dc->dev, dc->irq, dc);
2573
2574 err = tegra_dc_rgb_exit(dc);
2575 if (err) {
2576 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2577 return err;
2578 }
2579
2580 host1x_client_iommu_detach(client);
2581 host1x_syncpt_put(dc->syncpt);
2582
2583 return 0;
2584 }
2585
tegra_dc_late_exit(struct host1x_client * client)2586 static int tegra_dc_late_exit(struct host1x_client *client)
2587 {
2588 struct drm_device *drm = dev_get_drvdata(client->host);
2589 struct tegra_drm *tegra = drm->dev_private;
2590
2591 tegra->num_crtcs--;
2592
2593 return 0;
2594 }
2595
tegra_dc_runtime_suspend(struct host1x_client * client)2596 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2597 {
2598 struct tegra_dc *dc = host1x_client_to_dc(client);
2599 struct device *dev = client->dev;
2600 int err;
2601
2602 err = reset_control_assert(dc->rst);
2603 if (err < 0) {
2604 dev_err(dev, "failed to assert reset: %d\n", err);
2605 return err;
2606 }
2607
2608 if (dc->soc->has_powergate)
2609 tegra_powergate_power_off(dc->powergate);
2610
2611 clk_disable_unprepare(dc->clk);
2612 pm_runtime_put_sync(dev);
2613
2614 return 0;
2615 }
2616
tegra_dc_runtime_resume(struct host1x_client * client)2617 static int tegra_dc_runtime_resume(struct host1x_client *client)
2618 {
2619 struct tegra_dc *dc = host1x_client_to_dc(client);
2620 struct device *dev = client->dev;
2621 int err;
2622
2623 err = pm_runtime_resume_and_get(dev);
2624 if (err < 0) {
2625 dev_err(dev, "failed to get runtime PM: %d\n", err);
2626 return err;
2627 }
2628
2629 if (dc->soc->has_powergate) {
2630 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2631 dc->rst);
2632 if (err < 0) {
2633 dev_err(dev, "failed to power partition: %d\n", err);
2634 goto put_rpm;
2635 }
2636 } else {
2637 err = clk_prepare_enable(dc->clk);
2638 if (err < 0) {
2639 dev_err(dev, "failed to enable clock: %d\n", err);
2640 goto put_rpm;
2641 }
2642
2643 err = reset_control_deassert(dc->rst);
2644 if (err < 0) {
2645 dev_err(dev, "failed to deassert reset: %d\n", err);
2646 goto disable_clk;
2647 }
2648 }
2649
2650 return 0;
2651
2652 disable_clk:
2653 clk_disable_unprepare(dc->clk);
2654 put_rpm:
2655 pm_runtime_put_sync(dev);
2656 return err;
2657 }
2658
2659 static const struct host1x_client_ops dc_client_ops = {
2660 .early_init = tegra_dc_early_init,
2661 .init = tegra_dc_init,
2662 .exit = tegra_dc_exit,
2663 .late_exit = tegra_dc_late_exit,
2664 .suspend = tegra_dc_runtime_suspend,
2665 .resume = tegra_dc_runtime_resume,
2666 };
2667
2668 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2669 .supports_background_color = false,
2670 .supports_interlacing = false,
2671 .supports_cursor = false,
2672 .supports_block_linear = false,
2673 .supports_sector_layout = false,
2674 .has_legacy_blending = true,
2675 .pitch_align = 8,
2676 .has_powergate = false,
2677 .coupled_pm = true,
2678 .has_nvdisplay = false,
2679 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2680 .primary_formats = tegra20_primary_formats,
2681 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2682 .overlay_formats = tegra20_overlay_formats,
2683 .modifiers = tegra20_modifiers,
2684 .has_win_a_without_filters = true,
2685 .has_win_b_vfilter_mem_client = true,
2686 .has_win_c_without_vert_filter = true,
2687 .plane_tiled_memory_bandwidth_x2 = false,
2688 };
2689
2690 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2691 .supports_background_color = false,
2692 .supports_interlacing = false,
2693 .supports_cursor = false,
2694 .supports_block_linear = false,
2695 .supports_sector_layout = false,
2696 .has_legacy_blending = true,
2697 .pitch_align = 8,
2698 .has_powergate = false,
2699 .coupled_pm = false,
2700 .has_nvdisplay = false,
2701 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2702 .primary_formats = tegra20_primary_formats,
2703 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2704 .overlay_formats = tegra20_overlay_formats,
2705 .modifiers = tegra20_modifiers,
2706 .has_win_a_without_filters = false,
2707 .has_win_b_vfilter_mem_client = true,
2708 .has_win_c_without_vert_filter = false,
2709 .plane_tiled_memory_bandwidth_x2 = true,
2710 };
2711
2712 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2713 .supports_background_color = false,
2714 .supports_interlacing = false,
2715 .supports_cursor = false,
2716 .supports_block_linear = false,
2717 .supports_sector_layout = false,
2718 .has_legacy_blending = true,
2719 .pitch_align = 64,
2720 .has_powergate = true,
2721 .coupled_pm = false,
2722 .has_nvdisplay = false,
2723 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2724 .primary_formats = tegra114_primary_formats,
2725 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2726 .overlay_formats = tegra114_overlay_formats,
2727 .modifiers = tegra20_modifiers,
2728 .has_win_a_without_filters = false,
2729 .has_win_b_vfilter_mem_client = false,
2730 .has_win_c_without_vert_filter = false,
2731 .plane_tiled_memory_bandwidth_x2 = true,
2732 };
2733
2734 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2735 .supports_background_color = true,
2736 .supports_interlacing = true,
2737 .supports_cursor = true,
2738 .supports_block_linear = true,
2739 .supports_sector_layout = false,
2740 .has_legacy_blending = false,
2741 .pitch_align = 64,
2742 .has_powergate = true,
2743 .coupled_pm = false,
2744 .has_nvdisplay = false,
2745 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2746 .primary_formats = tegra124_primary_formats,
2747 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2748 .overlay_formats = tegra124_overlay_formats,
2749 .modifiers = tegra124_modifiers,
2750 .has_win_a_without_filters = false,
2751 .has_win_b_vfilter_mem_client = false,
2752 .has_win_c_without_vert_filter = false,
2753 .plane_tiled_memory_bandwidth_x2 = false,
2754 };
2755
2756 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2757 .supports_background_color = true,
2758 .supports_interlacing = true,
2759 .supports_cursor = true,
2760 .supports_block_linear = true,
2761 .supports_sector_layout = false,
2762 .has_legacy_blending = false,
2763 .pitch_align = 64,
2764 .has_powergate = true,
2765 .coupled_pm = false,
2766 .has_nvdisplay = false,
2767 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2768 .primary_formats = tegra114_primary_formats,
2769 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2770 .overlay_formats = tegra114_overlay_formats,
2771 .modifiers = tegra124_modifiers,
2772 .has_win_a_without_filters = false,
2773 .has_win_b_vfilter_mem_client = false,
2774 .has_win_c_without_vert_filter = false,
2775 .plane_tiled_memory_bandwidth_x2 = false,
2776 };
2777
2778 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2779 {
2780 .index = 0,
2781 .dc = 0,
2782 .windows = (const unsigned int[]) { 0 },
2783 .num_windows = 1,
2784 }, {
2785 .index = 1,
2786 .dc = 1,
2787 .windows = (const unsigned int[]) { 1 },
2788 .num_windows = 1,
2789 }, {
2790 .index = 2,
2791 .dc = 1,
2792 .windows = (const unsigned int[]) { 2 },
2793 .num_windows = 1,
2794 }, {
2795 .index = 3,
2796 .dc = 2,
2797 .windows = (const unsigned int[]) { 3 },
2798 .num_windows = 1,
2799 }, {
2800 .index = 4,
2801 .dc = 2,
2802 .windows = (const unsigned int[]) { 4 },
2803 .num_windows = 1,
2804 }, {
2805 .index = 5,
2806 .dc = 2,
2807 .windows = (const unsigned int[]) { 5 },
2808 .num_windows = 1,
2809 },
2810 };
2811
2812 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2813 .supports_background_color = true,
2814 .supports_interlacing = true,
2815 .supports_cursor = true,
2816 .supports_block_linear = true,
2817 .supports_sector_layout = false,
2818 .has_legacy_blending = false,
2819 .pitch_align = 64,
2820 .has_powergate = false,
2821 .coupled_pm = false,
2822 .has_nvdisplay = true,
2823 .wgrps = tegra186_dc_wgrps,
2824 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2825 .plane_tiled_memory_bandwidth_x2 = false,
2826 };
2827
2828 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2829 {
2830 .index = 0,
2831 .dc = 0,
2832 .windows = (const unsigned int[]) { 0 },
2833 .num_windows = 1,
2834 }, {
2835 .index = 1,
2836 .dc = 1,
2837 .windows = (const unsigned int[]) { 1 },
2838 .num_windows = 1,
2839 }, {
2840 .index = 2,
2841 .dc = 1,
2842 .windows = (const unsigned int[]) { 2 },
2843 .num_windows = 1,
2844 }, {
2845 .index = 3,
2846 .dc = 2,
2847 .windows = (const unsigned int[]) { 3 },
2848 .num_windows = 1,
2849 }, {
2850 .index = 4,
2851 .dc = 2,
2852 .windows = (const unsigned int[]) { 4 },
2853 .num_windows = 1,
2854 }, {
2855 .index = 5,
2856 .dc = 2,
2857 .windows = (const unsigned int[]) { 5 },
2858 .num_windows = 1,
2859 },
2860 };
2861
2862 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2863 .supports_background_color = true,
2864 .supports_interlacing = true,
2865 .supports_cursor = true,
2866 .supports_block_linear = true,
2867 .supports_sector_layout = true,
2868 .has_legacy_blending = false,
2869 .pitch_align = 64,
2870 .has_powergate = false,
2871 .coupled_pm = false,
2872 .has_nvdisplay = true,
2873 .wgrps = tegra194_dc_wgrps,
2874 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2875 .plane_tiled_memory_bandwidth_x2 = false,
2876 };
2877
2878 static const struct of_device_id tegra_dc_of_match[] = {
2879 {
2880 .compatible = "nvidia,tegra194-dc",
2881 .data = &tegra194_dc_soc_info,
2882 }, {
2883 .compatible = "nvidia,tegra186-dc",
2884 .data = &tegra186_dc_soc_info,
2885 }, {
2886 .compatible = "nvidia,tegra210-dc",
2887 .data = &tegra210_dc_soc_info,
2888 }, {
2889 .compatible = "nvidia,tegra124-dc",
2890 .data = &tegra124_dc_soc_info,
2891 }, {
2892 .compatible = "nvidia,tegra114-dc",
2893 .data = &tegra114_dc_soc_info,
2894 }, {
2895 .compatible = "nvidia,tegra30-dc",
2896 .data = &tegra30_dc_soc_info,
2897 }, {
2898 .compatible = "nvidia,tegra20-dc",
2899 .data = &tegra20_dc_soc_info,
2900 }, {
2901 /* sentinel */
2902 }
2903 };
2904 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2905
tegra_dc_parse_dt(struct tegra_dc * dc)2906 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2907 {
2908 struct device_node *np;
2909 u32 value = 0;
2910 int err;
2911
2912 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2913 if (err < 0) {
2914 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2915
2916 /*
2917 * If the nvidia,head property isn't present, try to find the
2918 * correct head number by looking up the position of this
2919 * display controller's node within the device tree. Assuming
2920 * that the nodes are ordered properly in the DTS file and
2921 * that the translation into a flattened device tree blob
2922 * preserves that ordering this will actually yield the right
2923 * head number.
2924 *
2925 * If those assumptions don't hold, this will still work for
2926 * cases where only a single display controller is used.
2927 */
2928 for_each_matching_node(np, tegra_dc_of_match) {
2929 if (np == dc->dev->of_node) {
2930 of_node_put(np);
2931 break;
2932 }
2933
2934 value++;
2935 }
2936 }
2937
2938 dc->pipe = value;
2939
2940 return 0;
2941 }
2942
tegra_dc_match_by_pipe(struct device * dev,const void * data)2943 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2944 {
2945 struct tegra_dc *dc = dev_get_drvdata(dev);
2946 unsigned int pipe = (unsigned long)(void *)data;
2947
2948 return dc->pipe == pipe;
2949 }
2950
tegra_dc_couple(struct tegra_dc * dc)2951 static int tegra_dc_couple(struct tegra_dc *dc)
2952 {
2953 /*
2954 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2955 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2956 * POWER_CONTROL registers during CRTC enabling.
2957 */
2958 if (dc->soc->coupled_pm && dc->pipe == 1) {
2959 struct device *companion;
2960 struct tegra_dc *parent;
2961
2962 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
2963 tegra_dc_match_by_pipe);
2964 if (!companion)
2965 return -EPROBE_DEFER;
2966
2967 parent = dev_get_drvdata(companion);
2968 dc->client.parent = &parent->client;
2969
2970 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
2971 }
2972
2973 return 0;
2974 }
2975
tegra_dc_probe(struct platform_device * pdev)2976 static int tegra_dc_probe(struct platform_device *pdev)
2977 {
2978 u64 dma_mask = dma_get_mask(pdev->dev.parent);
2979 struct tegra_dc *dc;
2980 int err;
2981
2982 err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
2983 if (err < 0) {
2984 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
2985 return err;
2986 }
2987
2988 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2989 if (!dc)
2990 return -ENOMEM;
2991
2992 dc->soc = of_device_get_match_data(&pdev->dev);
2993
2994 INIT_LIST_HEAD(&dc->list);
2995 dc->dev = &pdev->dev;
2996
2997 err = tegra_dc_parse_dt(dc);
2998 if (err < 0)
2999 return err;
3000
3001 err = tegra_dc_couple(dc);
3002 if (err < 0)
3003 return err;
3004
3005 dc->clk = devm_clk_get(&pdev->dev, NULL);
3006 if (IS_ERR(dc->clk)) {
3007 dev_err(&pdev->dev, "failed to get clock\n");
3008 return PTR_ERR(dc->clk);
3009 }
3010
3011 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3012 if (IS_ERR(dc->rst)) {
3013 dev_err(&pdev->dev, "failed to get reset\n");
3014 return PTR_ERR(dc->rst);
3015 }
3016
3017 /* assert reset and disable clock */
3018 err = clk_prepare_enable(dc->clk);
3019 if (err < 0)
3020 return err;
3021
3022 usleep_range(2000, 4000);
3023
3024 err = reset_control_assert(dc->rst);
3025 if (err < 0)
3026 return err;
3027
3028 usleep_range(2000, 4000);
3029
3030 clk_disable_unprepare(dc->clk);
3031
3032 if (dc->soc->has_powergate) {
3033 if (dc->pipe == 0)
3034 dc->powergate = TEGRA_POWERGATE_DIS;
3035 else
3036 dc->powergate = TEGRA_POWERGATE_DISB;
3037
3038 tegra_powergate_power_off(dc->powergate);
3039 }
3040
3041 dc->regs = devm_platform_ioremap_resource(pdev, 0);
3042 if (IS_ERR(dc->regs))
3043 return PTR_ERR(dc->regs);
3044
3045 dc->irq = platform_get_irq(pdev, 0);
3046 if (dc->irq < 0)
3047 return -ENXIO;
3048
3049 err = tegra_dc_rgb_probe(dc);
3050 if (err < 0 && err != -ENODEV) {
3051 const char *level = KERN_ERR;
3052
3053 if (err == -EPROBE_DEFER)
3054 level = KERN_DEBUG;
3055
3056 dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
3057 err);
3058 return err;
3059 }
3060
3061 platform_set_drvdata(pdev, dc);
3062 pm_runtime_enable(&pdev->dev);
3063
3064 INIT_LIST_HEAD(&dc->client.list);
3065 dc->client.ops = &dc_client_ops;
3066 dc->client.dev = &pdev->dev;
3067
3068 err = host1x_client_register(&dc->client);
3069 if (err < 0) {
3070 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3071 err);
3072 goto disable_pm;
3073 }
3074
3075 return 0;
3076
3077 disable_pm:
3078 pm_runtime_disable(&pdev->dev);
3079 tegra_dc_rgb_remove(dc);
3080
3081 return err;
3082 }
3083
tegra_dc_remove(struct platform_device * pdev)3084 static int tegra_dc_remove(struct platform_device *pdev)
3085 {
3086 struct tegra_dc *dc = platform_get_drvdata(pdev);
3087 int err;
3088
3089 err = host1x_client_unregister(&dc->client);
3090 if (err < 0) {
3091 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
3092 err);
3093 return err;
3094 }
3095
3096 err = tegra_dc_rgb_remove(dc);
3097 if (err < 0) {
3098 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
3099 return err;
3100 }
3101
3102 pm_runtime_disable(&pdev->dev);
3103
3104 return 0;
3105 }
3106
3107 struct platform_driver tegra_dc_driver = {
3108 .driver = {
3109 .name = "tegra-dc",
3110 .of_match_table = tegra_dc_of_match,
3111 },
3112 .probe = tegra_dc_probe,
3113 .remove = tegra_dc_remove,
3114 };
3115