1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 struct percpu_counter tcp_orphan_count;
284 EXPORT_SYMBOL_GPL(tcp_orphan_count);
285
286 long sysctl_tcp_mem[3] __read_mostly;
287 EXPORT_SYMBOL(sysctl_tcp_mem);
288
289 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
290 EXPORT_SYMBOL(tcp_memory_allocated);
291
292 #if IS_ENABLED(CONFIG_SMC)
293 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
294 EXPORT_SYMBOL(tcp_have_smc);
295 #endif
296
297 /*
298 * Current number of TCP sockets.
299 */
300 struct percpu_counter tcp_sockets_allocated;
301 EXPORT_SYMBOL(tcp_sockets_allocated);
302
303 /*
304 * TCP splice context
305 */
306 struct tcp_splice_state {
307 struct pipe_inode_info *pipe;
308 size_t len;
309 unsigned int flags;
310 };
311
312 /*
313 * Pressure flag: try to collapse.
314 * Technical note: it is used by multiple contexts non atomically.
315 * All the __sk_mem_schedule() is of this nature: accounting
316 * is strict, actions are advisory and have some latency.
317 */
318 unsigned long tcp_memory_pressure __read_mostly;
319 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
320
321 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
322 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
323
324 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
325
tcp_enter_memory_pressure(struct sock * sk)326 void tcp_enter_memory_pressure(struct sock *sk)
327 {
328 unsigned long val;
329
330 if (READ_ONCE(tcp_memory_pressure))
331 return;
332 val = jiffies;
333
334 if (!val)
335 val--;
336 if (!cmpxchg(&tcp_memory_pressure, 0, val))
337 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
338 }
339 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
340
tcp_leave_memory_pressure(struct sock * sk)341 void tcp_leave_memory_pressure(struct sock *sk)
342 {
343 unsigned long val;
344
345 if (!READ_ONCE(tcp_memory_pressure))
346 return;
347 val = xchg(&tcp_memory_pressure, 0);
348 if (val)
349 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
350 jiffies_to_msecs(jiffies - val));
351 }
352 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
353
354 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)355 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
356 {
357 u8 res = 0;
358
359 if (seconds > 0) {
360 int period = timeout;
361
362 res = 1;
363 while (seconds > period && res < 255) {
364 res++;
365 timeout <<= 1;
366 if (timeout > rto_max)
367 timeout = rto_max;
368 period += timeout;
369 }
370 }
371 return res;
372 }
373
374 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)375 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
376 {
377 int period = 0;
378
379 if (retrans > 0) {
380 period = timeout;
381 while (--retrans) {
382 timeout <<= 1;
383 if (timeout > rto_max)
384 timeout = rto_max;
385 period += timeout;
386 }
387 }
388 return period;
389 }
390
tcp_compute_delivery_rate(const struct tcp_sock * tp)391 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
392 {
393 u32 rate = READ_ONCE(tp->rate_delivered);
394 u32 intv = READ_ONCE(tp->rate_interval_us);
395 u64 rate64 = 0;
396
397 if (rate && intv) {
398 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
399 do_div(rate64, intv);
400 }
401 return rate64;
402 }
403
404 /* Address-family independent initialization for a tcp_sock.
405 *
406 * NOTE: A lot of things set to zero explicitly by call to
407 * sk_alloc() so need not be done here.
408 */
tcp_init_sock(struct sock * sk)409 void tcp_init_sock(struct sock *sk)
410 {
411 struct inet_connection_sock *icsk = inet_csk(sk);
412 struct tcp_sock *tp = tcp_sk(sk);
413
414 tp->out_of_order_queue = RB_ROOT;
415 sk->tcp_rtx_queue = RB_ROOT;
416 tcp_init_xmit_timers(sk);
417 INIT_LIST_HEAD(&tp->tsq_node);
418 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
419
420 icsk->icsk_rto = TCP_TIMEOUT_INIT;
421 icsk->icsk_rto_min = TCP_RTO_MIN;
422 icsk->icsk_delack_max = TCP_DELACK_MAX;
423 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
424 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
425
426 /* So many TCP implementations out there (incorrectly) count the
427 * initial SYN frame in their delayed-ACK and congestion control
428 * algorithms that we must have the following bandaid to talk
429 * efficiently to them. -DaveM
430 */
431 tp->snd_cwnd = TCP_INIT_CWND;
432
433 /* There's a bubble in the pipe until at least the first ACK. */
434 tp->app_limited = ~0U;
435
436 /* See draft-stevens-tcpca-spec-01 for discussion of the
437 * initialization of these values.
438 */
439 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
440 tp->snd_cwnd_clamp = ~0;
441 tp->mss_cache = TCP_MSS_DEFAULT;
442
443 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
444 tcp_assign_congestion_control(sk);
445
446 tp->tsoffset = 0;
447 tp->rack.reo_wnd_steps = 1;
448
449 sk->sk_write_space = sk_stream_write_space;
450 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
451
452 icsk->icsk_sync_mss = tcp_sync_mss;
453
454 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
455 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
456
457 sk_sockets_allocated_inc(sk);
458 sk->sk_route_forced_caps = NETIF_F_GSO;
459 }
460 EXPORT_SYMBOL(tcp_init_sock);
461
tcp_tx_timestamp(struct sock * sk,u16 tsflags)462 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
463 {
464 struct sk_buff *skb = tcp_write_queue_tail(sk);
465
466 if (tsflags && skb) {
467 struct skb_shared_info *shinfo = skb_shinfo(skb);
468 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
469
470 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
471 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
472 tcb->txstamp_ack = 1;
473 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
474 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
475 }
476 }
477
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)478 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
479 int target, struct sock *sk)
480 {
481 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
482
483 if (avail > 0) {
484 if (avail >= target)
485 return true;
486 if (tcp_rmem_pressure(sk))
487 return true;
488 if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
489 return true;
490 }
491 if (sk->sk_prot->stream_memory_read)
492 return sk->sk_prot->stream_memory_read(sk);
493 return false;
494 }
495
496 /*
497 * Wait for a TCP event.
498 *
499 * Note that we don't need to lock the socket, as the upper poll layers
500 * take care of normal races (between the test and the event) and we don't
501 * go look at any of the socket buffers directly.
502 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)503 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
504 {
505 __poll_t mask;
506 struct sock *sk = sock->sk;
507 const struct tcp_sock *tp = tcp_sk(sk);
508 int state;
509
510 sock_poll_wait(file, sock, wait);
511
512 state = inet_sk_state_load(sk);
513 if (state == TCP_LISTEN)
514 return inet_csk_listen_poll(sk);
515
516 /* Socket is not locked. We are protected from async events
517 * by poll logic and correct handling of state changes
518 * made by other threads is impossible in any case.
519 */
520
521 mask = 0;
522
523 /*
524 * EPOLLHUP is certainly not done right. But poll() doesn't
525 * have a notion of HUP in just one direction, and for a
526 * socket the read side is more interesting.
527 *
528 * Some poll() documentation says that EPOLLHUP is incompatible
529 * with the EPOLLOUT/POLLWR flags, so somebody should check this
530 * all. But careful, it tends to be safer to return too many
531 * bits than too few, and you can easily break real applications
532 * if you don't tell them that something has hung up!
533 *
534 * Check-me.
535 *
536 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
537 * our fs/select.c). It means that after we received EOF,
538 * poll always returns immediately, making impossible poll() on write()
539 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
540 * if and only if shutdown has been made in both directions.
541 * Actually, it is interesting to look how Solaris and DUX
542 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
543 * then we could set it on SND_SHUTDOWN. BTW examples given
544 * in Stevens' books assume exactly this behaviour, it explains
545 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
546 *
547 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
548 * blocking on fresh not-connected or disconnected socket. --ANK
549 */
550 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
551 mask |= EPOLLHUP;
552 if (sk->sk_shutdown & RCV_SHUTDOWN)
553 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
554
555 /* Connected or passive Fast Open socket? */
556 if (state != TCP_SYN_SENT &&
557 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
558 int target = sock_rcvlowat(sk, 0, INT_MAX);
559
560 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
561 !sock_flag(sk, SOCK_URGINLINE) &&
562 tp->urg_data)
563 target++;
564
565 if (tcp_stream_is_readable(tp, target, sk))
566 mask |= EPOLLIN | EPOLLRDNORM;
567
568 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
569 if (__sk_stream_is_writeable(sk, 1)) {
570 mask |= EPOLLOUT | EPOLLWRNORM;
571 } else { /* send SIGIO later */
572 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
573 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
574
575 /* Race breaker. If space is freed after
576 * wspace test but before the flags are set,
577 * IO signal will be lost. Memory barrier
578 * pairs with the input side.
579 */
580 smp_mb__after_atomic();
581 if (__sk_stream_is_writeable(sk, 1))
582 mask |= EPOLLOUT | EPOLLWRNORM;
583 }
584 } else
585 mask |= EPOLLOUT | EPOLLWRNORM;
586
587 if (tp->urg_data & TCP_URG_VALID)
588 mask |= EPOLLPRI;
589 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
590 /* Active TCP fastopen socket with defer_connect
591 * Return EPOLLOUT so application can call write()
592 * in order for kernel to generate SYN+data
593 */
594 mask |= EPOLLOUT | EPOLLWRNORM;
595 }
596 /* This barrier is coupled with smp_wmb() in tcp_reset() */
597 smp_rmb();
598 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
599 mask |= EPOLLERR;
600
601 return mask;
602 }
603 EXPORT_SYMBOL(tcp_poll);
604
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)605 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
606 {
607 struct tcp_sock *tp = tcp_sk(sk);
608 int answ;
609 bool slow;
610
611 switch (cmd) {
612 case SIOCINQ:
613 if (sk->sk_state == TCP_LISTEN)
614 return -EINVAL;
615
616 slow = lock_sock_fast(sk);
617 answ = tcp_inq(sk);
618 unlock_sock_fast(sk, slow);
619 break;
620 case SIOCATMARK:
621 answ = tp->urg_data &&
622 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
623 break;
624 case SIOCOUTQ:
625 if (sk->sk_state == TCP_LISTEN)
626 return -EINVAL;
627
628 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
629 answ = 0;
630 else
631 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
632 break;
633 case SIOCOUTQNSD:
634 if (sk->sk_state == TCP_LISTEN)
635 return -EINVAL;
636
637 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
638 answ = 0;
639 else
640 answ = READ_ONCE(tp->write_seq) -
641 READ_ONCE(tp->snd_nxt);
642 break;
643 default:
644 return -ENOIOCTLCMD;
645 }
646
647 return put_user(answ, (int __user *)arg);
648 }
649 EXPORT_SYMBOL(tcp_ioctl);
650
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)651 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652 {
653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 tp->pushed_seq = tp->write_seq;
655 }
656
forced_push(const struct tcp_sock * tp)657 static inline bool forced_push(const struct tcp_sock *tp)
658 {
659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660 }
661
skb_entail(struct sock * sk,struct sk_buff * skb)662 static void skb_entail(struct sock *sk, struct sk_buff *skb)
663 {
664 struct tcp_sock *tp = tcp_sk(sk);
665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666
667 skb->csum = 0;
668 tcb->seq = tcb->end_seq = tp->write_seq;
669 tcb->tcp_flags = TCPHDR_ACK;
670 tcb->sacked = 0;
671 __skb_header_release(skb);
672 tcp_add_write_queue_tail(sk, skb);
673 sk_wmem_queued_add(sk, skb->truesize);
674 sk_mem_charge(sk, skb->truesize);
675 if (tp->nonagle & TCP_NAGLE_PUSH)
676 tp->nonagle &= ~TCP_NAGLE_PUSH;
677
678 tcp_slow_start_after_idle_check(sk);
679 }
680
tcp_mark_urg(struct tcp_sock * tp,int flags)681 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
682 {
683 if (flags & MSG_OOB)
684 tp->snd_up = tp->write_seq;
685 }
686
687 /* If a not yet filled skb is pushed, do not send it if
688 * we have data packets in Qdisc or NIC queues :
689 * Because TX completion will happen shortly, it gives a chance
690 * to coalesce future sendmsg() payload into this skb, without
691 * need for a timer, and with no latency trade off.
692 * As packets containing data payload have a bigger truesize
693 * than pure acks (dataless) packets, the last checks prevent
694 * autocorking if we only have an ACK in Qdisc/NIC queues,
695 * or if TX completion was delayed after we processed ACK packet.
696 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)697 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
698 int size_goal)
699 {
700 return skb->len < size_goal &&
701 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
702 !tcp_rtx_queue_empty(sk) &&
703 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
704 }
705
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)706 void tcp_push(struct sock *sk, int flags, int mss_now,
707 int nonagle, int size_goal)
708 {
709 struct tcp_sock *tp = tcp_sk(sk);
710 struct sk_buff *skb;
711
712 skb = tcp_write_queue_tail(sk);
713 if (!skb)
714 return;
715 if (!(flags & MSG_MORE) || forced_push(tp))
716 tcp_mark_push(tp, skb);
717
718 tcp_mark_urg(tp, flags);
719
720 if (tcp_should_autocork(sk, skb, size_goal)) {
721
722 /* avoid atomic op if TSQ_THROTTLED bit is already set */
723 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
724 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
725 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
726 }
727 /* It is possible TX completion already happened
728 * before we set TSQ_THROTTLED.
729 */
730 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
731 return;
732 }
733
734 if (flags & MSG_MORE)
735 nonagle = TCP_NAGLE_CORK;
736
737 __tcp_push_pending_frames(sk, mss_now, nonagle);
738 }
739
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)740 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
741 unsigned int offset, size_t len)
742 {
743 struct tcp_splice_state *tss = rd_desc->arg.data;
744 int ret;
745
746 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
747 min(rd_desc->count, len), tss->flags);
748 if (ret > 0)
749 rd_desc->count -= ret;
750 return ret;
751 }
752
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)753 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
754 {
755 /* Store TCP splice context information in read_descriptor_t. */
756 read_descriptor_t rd_desc = {
757 .arg.data = tss,
758 .count = tss->len,
759 };
760
761 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
762 }
763
764 /**
765 * tcp_splice_read - splice data from TCP socket to a pipe
766 * @sock: socket to splice from
767 * @ppos: position (not valid)
768 * @pipe: pipe to splice to
769 * @len: number of bytes to splice
770 * @flags: splice modifier flags
771 *
772 * Description:
773 * Will read pages from given socket and fill them into a pipe.
774 *
775 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)776 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
777 struct pipe_inode_info *pipe, size_t len,
778 unsigned int flags)
779 {
780 struct sock *sk = sock->sk;
781 struct tcp_splice_state tss = {
782 .pipe = pipe,
783 .len = len,
784 .flags = flags,
785 };
786 long timeo;
787 ssize_t spliced;
788 int ret;
789
790 sock_rps_record_flow(sk);
791 /*
792 * We can't seek on a socket input
793 */
794 if (unlikely(*ppos))
795 return -ESPIPE;
796
797 ret = spliced = 0;
798
799 lock_sock(sk);
800
801 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
802 while (tss.len) {
803 ret = __tcp_splice_read(sk, &tss);
804 if (ret < 0)
805 break;
806 else if (!ret) {
807 if (spliced)
808 break;
809 if (sock_flag(sk, SOCK_DONE))
810 break;
811 if (sk->sk_err) {
812 ret = sock_error(sk);
813 break;
814 }
815 if (sk->sk_shutdown & RCV_SHUTDOWN)
816 break;
817 if (sk->sk_state == TCP_CLOSE) {
818 /*
819 * This occurs when user tries to read
820 * from never connected socket.
821 */
822 ret = -ENOTCONN;
823 break;
824 }
825 if (!timeo) {
826 ret = -EAGAIN;
827 break;
828 }
829 /* if __tcp_splice_read() got nothing while we have
830 * an skb in receive queue, we do not want to loop.
831 * This might happen with URG data.
832 */
833 if (!skb_queue_empty(&sk->sk_receive_queue))
834 break;
835 sk_wait_data(sk, &timeo, NULL);
836 if (signal_pending(current)) {
837 ret = sock_intr_errno(timeo);
838 break;
839 }
840 continue;
841 }
842 tss.len -= ret;
843 spliced += ret;
844
845 if (!timeo)
846 break;
847 release_sock(sk);
848 lock_sock(sk);
849
850 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
851 (sk->sk_shutdown & RCV_SHUTDOWN) ||
852 signal_pending(current))
853 break;
854 }
855
856 release_sock(sk);
857
858 if (spliced)
859 return spliced;
860
861 return ret;
862 }
863 EXPORT_SYMBOL(tcp_splice_read);
864
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)865 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
866 bool force_schedule)
867 {
868 struct sk_buff *skb;
869
870 if (likely(!size)) {
871 skb = sk->sk_tx_skb_cache;
872 if (skb) {
873 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
874 sk->sk_tx_skb_cache = NULL;
875 pskb_trim(skb, 0);
876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
877 skb_shinfo(skb)->tx_flags = 0;
878 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
879 return skb;
880 }
881 }
882 /* The TCP header must be at least 32-bit aligned. */
883 size = ALIGN(size, 4);
884
885 if (unlikely(tcp_under_memory_pressure(sk)))
886 sk_mem_reclaim_partial(sk);
887
888 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
889 if (likely(skb)) {
890 bool mem_scheduled;
891
892 if (force_schedule) {
893 mem_scheduled = true;
894 sk_forced_mem_schedule(sk, skb->truesize);
895 } else {
896 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
897 }
898 if (likely(mem_scheduled)) {
899 skb_reserve(skb, sk->sk_prot->max_header);
900 /*
901 * Make sure that we have exactly size bytes
902 * available to the caller, no more, no less.
903 */
904 skb->reserved_tailroom = skb->end - skb->tail - size;
905 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
906 return skb;
907 }
908 __kfree_skb(skb);
909 } else {
910 sk->sk_prot->enter_memory_pressure(sk);
911 sk_stream_moderate_sndbuf(sk);
912 }
913 return NULL;
914 }
915
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)916 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
917 int large_allowed)
918 {
919 struct tcp_sock *tp = tcp_sk(sk);
920 u32 new_size_goal, size_goal;
921
922 if (!large_allowed)
923 return mss_now;
924
925 /* Note : tcp_tso_autosize() will eventually split this later */
926 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
927 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
928
929 /* We try hard to avoid divides here */
930 size_goal = tp->gso_segs * mss_now;
931 if (unlikely(new_size_goal < size_goal ||
932 new_size_goal >= size_goal + mss_now)) {
933 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
934 sk->sk_gso_max_segs);
935 size_goal = tp->gso_segs * mss_now;
936 }
937
938 return max(size_goal, mss_now);
939 }
940
tcp_send_mss(struct sock * sk,int * size_goal,int flags)941 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
942 {
943 int mss_now;
944
945 mss_now = tcp_current_mss(sk);
946 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
947
948 return mss_now;
949 }
950
951 /* In some cases, both sendpage() and sendmsg() could have added
952 * an skb to the write queue, but failed adding payload on it.
953 * We need to remove it to consume less memory, but more
954 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
955 * users.
956 */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)957 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
958 {
959 if (skb && !skb->len) {
960 tcp_unlink_write_queue(skb, sk);
961 if (tcp_write_queue_empty(sk))
962 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
963 sk_wmem_free_skb(sk, skb);
964 }
965 }
966
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)967 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
968 size_t size, int flags)
969 {
970 struct tcp_sock *tp = tcp_sk(sk);
971 int mss_now, size_goal;
972 int err;
973 ssize_t copied;
974 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
975
976 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
977 WARN_ONCE(!sendpage_ok(page),
978 "page must not be a Slab one and have page_count > 0"))
979 return -EINVAL;
980
981 /* Wait for a connection to finish. One exception is TCP Fast Open
982 * (passive side) where data is allowed to be sent before a connection
983 * is fully established.
984 */
985 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
986 !tcp_passive_fastopen(sk)) {
987 err = sk_stream_wait_connect(sk, &timeo);
988 if (err != 0)
989 goto out_err;
990 }
991
992 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
993
994 mss_now = tcp_send_mss(sk, &size_goal, flags);
995 copied = 0;
996
997 err = -EPIPE;
998 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
999 goto out_err;
1000
1001 while (size > 0) {
1002 struct sk_buff *skb = tcp_write_queue_tail(sk);
1003 int copy, i;
1004 bool can_coalesce;
1005
1006 if (!skb || (copy = size_goal - skb->len) <= 0 ||
1007 !tcp_skb_can_collapse_to(skb)) {
1008 new_segment:
1009 if (!sk_stream_memory_free(sk))
1010 goto wait_for_space;
1011
1012 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1013 tcp_rtx_and_write_queues_empty(sk));
1014 if (!skb)
1015 goto wait_for_space;
1016
1017 #ifdef CONFIG_TLS_DEVICE
1018 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1019 #endif
1020 skb_entail(sk, skb);
1021 copy = size_goal;
1022 }
1023
1024 if (copy > size)
1025 copy = size;
1026
1027 i = skb_shinfo(skb)->nr_frags;
1028 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1029 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1030 tcp_mark_push(tp, skb);
1031 goto new_segment;
1032 }
1033 if (!sk_wmem_schedule(sk, copy))
1034 goto wait_for_space;
1035
1036 if (can_coalesce) {
1037 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1038 } else {
1039 get_page(page);
1040 skb_fill_page_desc(skb, i, page, offset, copy);
1041 }
1042
1043 if (!(flags & MSG_NO_SHARED_FRAGS))
1044 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1045
1046 skb->len += copy;
1047 skb->data_len += copy;
1048 skb->truesize += copy;
1049 sk_wmem_queued_add(sk, copy);
1050 sk_mem_charge(sk, copy);
1051 skb->ip_summed = CHECKSUM_PARTIAL;
1052 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1053 TCP_SKB_CB(skb)->end_seq += copy;
1054 tcp_skb_pcount_set(skb, 0);
1055
1056 if (!copied)
1057 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1058
1059 copied += copy;
1060 offset += copy;
1061 size -= copy;
1062 if (!size)
1063 goto out;
1064
1065 if (skb->len < size_goal || (flags & MSG_OOB))
1066 continue;
1067
1068 if (forced_push(tp)) {
1069 tcp_mark_push(tp, skb);
1070 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1071 } else if (skb == tcp_send_head(sk))
1072 tcp_push_one(sk, mss_now);
1073 continue;
1074
1075 wait_for_space:
1076 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1077 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1078 TCP_NAGLE_PUSH, size_goal);
1079
1080 err = sk_stream_wait_memory(sk, &timeo);
1081 if (err != 0)
1082 goto do_error;
1083
1084 mss_now = tcp_send_mss(sk, &size_goal, flags);
1085 }
1086
1087 out:
1088 if (copied) {
1089 tcp_tx_timestamp(sk, sk->sk_tsflags);
1090 if (!(flags & MSG_SENDPAGE_NOTLAST))
1091 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1092 }
1093 return copied;
1094
1095 do_error:
1096 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1097 if (copied)
1098 goto out;
1099 out_err:
1100 /* make sure we wake any epoll edge trigger waiter */
1101 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1102 sk->sk_write_space(sk);
1103 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1104 }
1105 return sk_stream_error(sk, flags, err);
1106 }
1107 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1108
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1109 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1110 size_t size, int flags)
1111 {
1112 if (!(sk->sk_route_caps & NETIF_F_SG))
1113 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1114
1115 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1116
1117 return do_tcp_sendpages(sk, page, offset, size, flags);
1118 }
1119 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1120
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1121 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1122 size_t size, int flags)
1123 {
1124 int ret;
1125
1126 lock_sock(sk);
1127 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1128 release_sock(sk);
1129
1130 return ret;
1131 }
1132 EXPORT_SYMBOL(tcp_sendpage);
1133
tcp_free_fastopen_req(struct tcp_sock * tp)1134 void tcp_free_fastopen_req(struct tcp_sock *tp)
1135 {
1136 if (tp->fastopen_req) {
1137 kfree(tp->fastopen_req);
1138 tp->fastopen_req = NULL;
1139 }
1140 }
1141
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1142 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1143 int *copied, size_t size,
1144 struct ubuf_info *uarg)
1145 {
1146 struct tcp_sock *tp = tcp_sk(sk);
1147 struct inet_sock *inet = inet_sk(sk);
1148 struct sockaddr *uaddr = msg->msg_name;
1149 int err, flags;
1150
1151 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1152 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1153 uaddr->sa_family == AF_UNSPEC))
1154 return -EOPNOTSUPP;
1155 if (tp->fastopen_req)
1156 return -EALREADY; /* Another Fast Open is in progress */
1157
1158 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1159 sk->sk_allocation);
1160 if (unlikely(!tp->fastopen_req))
1161 return -ENOBUFS;
1162 tp->fastopen_req->data = msg;
1163 tp->fastopen_req->size = size;
1164 tp->fastopen_req->uarg = uarg;
1165
1166 if (inet->defer_connect) {
1167 err = tcp_connect(sk);
1168 /* Same failure procedure as in tcp_v4/6_connect */
1169 if (err) {
1170 tcp_set_state(sk, TCP_CLOSE);
1171 inet->inet_dport = 0;
1172 sk->sk_route_caps = 0;
1173 }
1174 }
1175 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1176 err = __inet_stream_connect(sk->sk_socket, uaddr,
1177 msg->msg_namelen, flags, 1);
1178 /* fastopen_req could already be freed in __inet_stream_connect
1179 * if the connection times out or gets rst
1180 */
1181 if (tp->fastopen_req) {
1182 *copied = tp->fastopen_req->copied;
1183 tcp_free_fastopen_req(tp);
1184 inet->defer_connect = 0;
1185 }
1186 return err;
1187 }
1188
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1189 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1190 {
1191 struct tcp_sock *tp = tcp_sk(sk);
1192 struct ubuf_info *uarg = NULL;
1193 struct sk_buff *skb;
1194 struct sockcm_cookie sockc;
1195 int flags, err, copied = 0;
1196 int mss_now = 0, size_goal, copied_syn = 0;
1197 int process_backlog = 0;
1198 bool zc = false;
1199 long timeo;
1200
1201 flags = msg->msg_flags;
1202
1203 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1204 skb = tcp_write_queue_tail(sk);
1205 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1206 if (!uarg) {
1207 err = -ENOBUFS;
1208 goto out_err;
1209 }
1210
1211 zc = sk->sk_route_caps & NETIF_F_SG;
1212 if (!zc)
1213 uarg->zerocopy = 0;
1214 }
1215
1216 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1217 !tp->repair) {
1218 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1219 if (err == -EINPROGRESS && copied_syn > 0)
1220 goto out;
1221 else if (err)
1222 goto out_err;
1223 }
1224
1225 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1226
1227 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1228
1229 /* Wait for a connection to finish. One exception is TCP Fast Open
1230 * (passive side) where data is allowed to be sent before a connection
1231 * is fully established.
1232 */
1233 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1234 !tcp_passive_fastopen(sk)) {
1235 err = sk_stream_wait_connect(sk, &timeo);
1236 if (err != 0)
1237 goto do_error;
1238 }
1239
1240 if (unlikely(tp->repair)) {
1241 if (tp->repair_queue == TCP_RECV_QUEUE) {
1242 copied = tcp_send_rcvq(sk, msg, size);
1243 goto out_nopush;
1244 }
1245
1246 err = -EINVAL;
1247 if (tp->repair_queue == TCP_NO_QUEUE)
1248 goto out_err;
1249
1250 /* 'common' sending to sendq */
1251 }
1252
1253 sockcm_init(&sockc, sk);
1254 if (msg->msg_controllen) {
1255 err = sock_cmsg_send(sk, msg, &sockc);
1256 if (unlikely(err)) {
1257 err = -EINVAL;
1258 goto out_err;
1259 }
1260 }
1261
1262 /* This should be in poll */
1263 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1264
1265 /* Ok commence sending. */
1266 copied = 0;
1267
1268 restart:
1269 mss_now = tcp_send_mss(sk, &size_goal, flags);
1270
1271 err = -EPIPE;
1272 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1273 goto do_error;
1274
1275 while (msg_data_left(msg)) {
1276 int copy = 0;
1277
1278 skb = tcp_write_queue_tail(sk);
1279 if (skb)
1280 copy = size_goal - skb->len;
1281
1282 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1283 bool first_skb;
1284
1285 new_segment:
1286 if (!sk_stream_memory_free(sk))
1287 goto wait_for_space;
1288
1289 if (unlikely(process_backlog >= 16)) {
1290 process_backlog = 0;
1291 if (sk_flush_backlog(sk))
1292 goto restart;
1293 }
1294 first_skb = tcp_rtx_and_write_queues_empty(sk);
1295 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1296 first_skb);
1297 if (!skb)
1298 goto wait_for_space;
1299
1300 process_backlog++;
1301 skb->ip_summed = CHECKSUM_PARTIAL;
1302
1303 skb_entail(sk, skb);
1304 copy = size_goal;
1305
1306 /* All packets are restored as if they have
1307 * already been sent. skb_mstamp_ns isn't set to
1308 * avoid wrong rtt estimation.
1309 */
1310 if (tp->repair)
1311 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1312 }
1313
1314 /* Try to append data to the end of skb. */
1315 if (copy > msg_data_left(msg))
1316 copy = msg_data_left(msg);
1317
1318 /* Where to copy to? */
1319 if (skb_availroom(skb) > 0 && !zc) {
1320 /* We have some space in skb head. Superb! */
1321 copy = min_t(int, copy, skb_availroom(skb));
1322 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1323 if (err)
1324 goto do_fault;
1325 } else if (!zc) {
1326 bool merge = true;
1327 int i = skb_shinfo(skb)->nr_frags;
1328 struct page_frag *pfrag = sk_page_frag(sk);
1329
1330 if (!sk_page_frag_refill(sk, pfrag))
1331 goto wait_for_space;
1332
1333 if (!skb_can_coalesce(skb, i, pfrag->page,
1334 pfrag->offset)) {
1335 if (i >= sysctl_max_skb_frags) {
1336 tcp_mark_push(tp, skb);
1337 goto new_segment;
1338 }
1339 merge = false;
1340 }
1341
1342 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1343
1344 if (!sk_wmem_schedule(sk, copy))
1345 goto wait_for_space;
1346
1347 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1348 pfrag->page,
1349 pfrag->offset,
1350 copy);
1351 if (err)
1352 goto do_error;
1353
1354 /* Update the skb. */
1355 if (merge) {
1356 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1357 } else {
1358 skb_fill_page_desc(skb, i, pfrag->page,
1359 pfrag->offset, copy);
1360 page_ref_inc(pfrag->page);
1361 }
1362 pfrag->offset += copy;
1363 } else {
1364 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1365 if (err == -EMSGSIZE || err == -EEXIST) {
1366 tcp_mark_push(tp, skb);
1367 goto new_segment;
1368 }
1369 if (err < 0)
1370 goto do_error;
1371 copy = err;
1372 }
1373
1374 if (!copied)
1375 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1376
1377 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1378 TCP_SKB_CB(skb)->end_seq += copy;
1379 tcp_skb_pcount_set(skb, 0);
1380
1381 copied += copy;
1382 if (!msg_data_left(msg)) {
1383 if (unlikely(flags & MSG_EOR))
1384 TCP_SKB_CB(skb)->eor = 1;
1385 goto out;
1386 }
1387
1388 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1389 continue;
1390
1391 if (forced_push(tp)) {
1392 tcp_mark_push(tp, skb);
1393 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1394 } else if (skb == tcp_send_head(sk))
1395 tcp_push_one(sk, mss_now);
1396 continue;
1397
1398 wait_for_space:
1399 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1400 if (copied)
1401 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1402 TCP_NAGLE_PUSH, size_goal);
1403
1404 err = sk_stream_wait_memory(sk, &timeo);
1405 if (err != 0)
1406 goto do_error;
1407
1408 mss_now = tcp_send_mss(sk, &size_goal, flags);
1409 }
1410
1411 out:
1412 if (copied) {
1413 tcp_tx_timestamp(sk, sockc.tsflags);
1414 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1415 }
1416 out_nopush:
1417 sock_zerocopy_put(uarg);
1418 return copied + copied_syn;
1419
1420 do_error:
1421 skb = tcp_write_queue_tail(sk);
1422 do_fault:
1423 tcp_remove_empty_skb(sk, skb);
1424
1425 if (copied + copied_syn)
1426 goto out;
1427 out_err:
1428 sock_zerocopy_put_abort(uarg, true);
1429 err = sk_stream_error(sk, flags, err);
1430 /* make sure we wake any epoll edge trigger waiter */
1431 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1432 sk->sk_write_space(sk);
1433 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1434 }
1435 return err;
1436 }
1437 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1438
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1439 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1440 {
1441 int ret;
1442
1443 lock_sock(sk);
1444 ret = tcp_sendmsg_locked(sk, msg, size);
1445 release_sock(sk);
1446
1447 return ret;
1448 }
1449 EXPORT_SYMBOL(tcp_sendmsg);
1450
1451 /*
1452 * Handle reading urgent data. BSD has very simple semantics for
1453 * this, no blocking and very strange errors 8)
1454 */
1455
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1456 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1457 {
1458 struct tcp_sock *tp = tcp_sk(sk);
1459
1460 /* No URG data to read. */
1461 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1462 tp->urg_data == TCP_URG_READ)
1463 return -EINVAL; /* Yes this is right ! */
1464
1465 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1466 return -ENOTCONN;
1467
1468 if (tp->urg_data & TCP_URG_VALID) {
1469 int err = 0;
1470 char c = tp->urg_data;
1471
1472 if (!(flags & MSG_PEEK))
1473 tp->urg_data = TCP_URG_READ;
1474
1475 /* Read urgent data. */
1476 msg->msg_flags |= MSG_OOB;
1477
1478 if (len > 0) {
1479 if (!(flags & MSG_TRUNC))
1480 err = memcpy_to_msg(msg, &c, 1);
1481 len = 1;
1482 } else
1483 msg->msg_flags |= MSG_TRUNC;
1484
1485 return err ? -EFAULT : len;
1486 }
1487
1488 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1489 return 0;
1490
1491 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1492 * the available implementations agree in this case:
1493 * this call should never block, independent of the
1494 * blocking state of the socket.
1495 * Mike <pall@rz.uni-karlsruhe.de>
1496 */
1497 return -EAGAIN;
1498 }
1499
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1500 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1501 {
1502 struct sk_buff *skb;
1503 int copied = 0, err = 0;
1504
1505 /* XXX -- need to support SO_PEEK_OFF */
1506
1507 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1508 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1509 if (err)
1510 return err;
1511 copied += skb->len;
1512 }
1513
1514 skb_queue_walk(&sk->sk_write_queue, skb) {
1515 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1516 if (err)
1517 break;
1518
1519 copied += skb->len;
1520 }
1521
1522 return err ?: copied;
1523 }
1524
1525 /* Clean up the receive buffer for full frames taken by the user,
1526 * then send an ACK if necessary. COPIED is the number of bytes
1527 * tcp_recvmsg has given to the user so far, it speeds up the
1528 * calculation of whether or not we must ACK for the sake of
1529 * a window update.
1530 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1531 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1532 {
1533 struct tcp_sock *tp = tcp_sk(sk);
1534 bool time_to_ack = false;
1535
1536 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1537
1538 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1539 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1540 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1541
1542 if (inet_csk_ack_scheduled(sk)) {
1543 const struct inet_connection_sock *icsk = inet_csk(sk);
1544
1545 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1546 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1547 /*
1548 * If this read emptied read buffer, we send ACK, if
1549 * connection is not bidirectional, user drained
1550 * receive buffer and there was a small segment
1551 * in queue.
1552 */
1553 (copied > 0 &&
1554 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1555 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1556 !inet_csk_in_pingpong_mode(sk))) &&
1557 !atomic_read(&sk->sk_rmem_alloc)))
1558 time_to_ack = true;
1559 }
1560
1561 /* We send an ACK if we can now advertise a non-zero window
1562 * which has been raised "significantly".
1563 *
1564 * Even if window raised up to infinity, do not send window open ACK
1565 * in states, where we will not receive more. It is useless.
1566 */
1567 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1568 __u32 rcv_window_now = tcp_receive_window(tp);
1569
1570 /* Optimize, __tcp_select_window() is not cheap. */
1571 if (2*rcv_window_now <= tp->window_clamp) {
1572 __u32 new_window = __tcp_select_window(sk);
1573
1574 /* Send ACK now, if this read freed lots of space
1575 * in our buffer. Certainly, new_window is new window.
1576 * We can advertise it now, if it is not less than current one.
1577 * "Lots" means "at least twice" here.
1578 */
1579 if (new_window && new_window >= 2 * rcv_window_now)
1580 time_to_ack = true;
1581 }
1582 }
1583 if (time_to_ack)
1584 tcp_send_ack(sk);
1585 }
1586
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1587 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1588 {
1589 struct sk_buff *skb;
1590 u32 offset;
1591
1592 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1593 offset = seq - TCP_SKB_CB(skb)->seq;
1594 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1595 pr_err_once("%s: found a SYN, please report !\n", __func__);
1596 offset--;
1597 }
1598 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1599 *off = offset;
1600 return skb;
1601 }
1602 /* This looks weird, but this can happen if TCP collapsing
1603 * splitted a fat GRO packet, while we released socket lock
1604 * in skb_splice_bits()
1605 */
1606 sk_eat_skb(sk, skb);
1607 }
1608 return NULL;
1609 }
1610
1611 /*
1612 * This routine provides an alternative to tcp_recvmsg() for routines
1613 * that would like to handle copying from skbuffs directly in 'sendfile'
1614 * fashion.
1615 * Note:
1616 * - It is assumed that the socket was locked by the caller.
1617 * - The routine does not block.
1618 * - At present, there is no support for reading OOB data
1619 * or for 'peeking' the socket using this routine
1620 * (although both would be easy to implement).
1621 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1622 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1623 sk_read_actor_t recv_actor)
1624 {
1625 struct sk_buff *skb;
1626 struct tcp_sock *tp = tcp_sk(sk);
1627 u32 seq = tp->copied_seq;
1628 u32 offset;
1629 int copied = 0;
1630
1631 if (sk->sk_state == TCP_LISTEN)
1632 return -ENOTCONN;
1633 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1634 if (offset < skb->len) {
1635 int used;
1636 size_t len;
1637
1638 len = skb->len - offset;
1639 /* Stop reading if we hit a patch of urgent data */
1640 if (tp->urg_data) {
1641 u32 urg_offset = tp->urg_seq - seq;
1642 if (urg_offset < len)
1643 len = urg_offset;
1644 if (!len)
1645 break;
1646 }
1647 used = recv_actor(desc, skb, offset, len);
1648 if (used <= 0) {
1649 if (!copied)
1650 copied = used;
1651 break;
1652 } else if (used <= len) {
1653 seq += used;
1654 copied += used;
1655 offset += used;
1656 }
1657 /* If recv_actor drops the lock (e.g. TCP splice
1658 * receive) the skb pointer might be invalid when
1659 * getting here: tcp_collapse might have deleted it
1660 * while aggregating skbs from the socket queue.
1661 */
1662 skb = tcp_recv_skb(sk, seq - 1, &offset);
1663 if (!skb)
1664 break;
1665 /* TCP coalescing might have appended data to the skb.
1666 * Try to splice more frags
1667 */
1668 if (offset + 1 != skb->len)
1669 continue;
1670 }
1671 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1672 sk_eat_skb(sk, skb);
1673 ++seq;
1674 break;
1675 }
1676 sk_eat_skb(sk, skb);
1677 if (!desc->count)
1678 break;
1679 WRITE_ONCE(tp->copied_seq, seq);
1680 }
1681 WRITE_ONCE(tp->copied_seq, seq);
1682
1683 tcp_rcv_space_adjust(sk);
1684
1685 /* Clean up data we have read: This will do ACK frames. */
1686 if (copied > 0) {
1687 tcp_recv_skb(sk, seq, &offset);
1688 tcp_cleanup_rbuf(sk, copied);
1689 }
1690 return copied;
1691 }
1692 EXPORT_SYMBOL(tcp_read_sock);
1693
tcp_peek_len(struct socket * sock)1694 int tcp_peek_len(struct socket *sock)
1695 {
1696 return tcp_inq(sock->sk);
1697 }
1698 EXPORT_SYMBOL(tcp_peek_len);
1699
1700 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1701 int tcp_set_rcvlowat(struct sock *sk, int val)
1702 {
1703 int cap;
1704
1705 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1706 cap = sk->sk_rcvbuf >> 1;
1707 else
1708 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1709 val = min(val, cap);
1710 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1711
1712 /* Check if we need to signal EPOLLIN right now */
1713 tcp_data_ready(sk);
1714
1715 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1716 return 0;
1717
1718 val <<= 1;
1719 if (val > sk->sk_rcvbuf) {
1720 WRITE_ONCE(sk->sk_rcvbuf, val);
1721 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1722 }
1723 return 0;
1724 }
1725 EXPORT_SYMBOL(tcp_set_rcvlowat);
1726
1727 #ifdef CONFIG_MMU
1728 static const struct vm_operations_struct tcp_vm_ops = {
1729 };
1730
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1731 int tcp_mmap(struct file *file, struct socket *sock,
1732 struct vm_area_struct *vma)
1733 {
1734 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1735 return -EPERM;
1736 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1737
1738 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1739 vma->vm_flags |= VM_MIXEDMAP;
1740
1741 vma->vm_ops = &tcp_vm_ops;
1742 return 0;
1743 }
1744 EXPORT_SYMBOL(tcp_mmap);
1745
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned long pages_to_map,unsigned long * insert_addr,u32 * length_with_pending,u32 * seq,struct tcp_zerocopy_receive * zc)1746 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1747 struct page **pages,
1748 unsigned long pages_to_map,
1749 unsigned long *insert_addr,
1750 u32 *length_with_pending,
1751 u32 *seq,
1752 struct tcp_zerocopy_receive *zc)
1753 {
1754 unsigned long pages_remaining = pages_to_map;
1755 int bytes_mapped;
1756 int ret;
1757
1758 ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1759 bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1760 /* Even if vm_insert_pages fails, it may have partially succeeded in
1761 * mapping (some but not all of the pages).
1762 */
1763 *seq += bytes_mapped;
1764 *insert_addr += bytes_mapped;
1765 if (ret) {
1766 /* But if vm_insert_pages did fail, we have to unroll some state
1767 * we speculatively touched before.
1768 */
1769 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1770 *length_with_pending -= bytes_not_mapped;
1771 zc->recv_skip_hint += bytes_not_mapped;
1772 }
1773 return ret;
1774 }
1775
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1776 static int tcp_zerocopy_receive(struct sock *sk,
1777 struct tcp_zerocopy_receive *zc)
1778 {
1779 unsigned long address = (unsigned long)zc->address;
1780 u32 length = 0, seq, offset, zap_len;
1781 #define PAGE_BATCH_SIZE 8
1782 struct page *pages[PAGE_BATCH_SIZE];
1783 const skb_frag_t *frags = NULL;
1784 struct vm_area_struct *vma;
1785 struct sk_buff *skb = NULL;
1786 unsigned long pg_idx = 0;
1787 unsigned long curr_addr;
1788 struct tcp_sock *tp;
1789 int inq;
1790 int ret;
1791
1792 if (address & (PAGE_SIZE - 1) || address != zc->address)
1793 return -EINVAL;
1794
1795 if (sk->sk_state == TCP_LISTEN)
1796 return -ENOTCONN;
1797
1798 sock_rps_record_flow(sk);
1799
1800 tp = tcp_sk(sk);
1801
1802 mmap_read_lock(current->mm);
1803
1804 vma = find_vma(current->mm, address);
1805 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1806 mmap_read_unlock(current->mm);
1807 return -EINVAL;
1808 }
1809 zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1810
1811 seq = tp->copied_seq;
1812 inq = tcp_inq(sk);
1813 zc->length = min_t(u32, zc->length, inq);
1814 zap_len = zc->length & ~(PAGE_SIZE - 1);
1815 if (zap_len) {
1816 zap_page_range(vma, address, zap_len);
1817 zc->recv_skip_hint = 0;
1818 } else {
1819 zc->recv_skip_hint = zc->length;
1820 }
1821 ret = 0;
1822 curr_addr = address;
1823 while (length + PAGE_SIZE <= zc->length) {
1824 if (zc->recv_skip_hint < PAGE_SIZE) {
1825 /* If we're here, finish the current batch. */
1826 if (pg_idx) {
1827 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1828 pg_idx,
1829 &curr_addr,
1830 &length,
1831 &seq, zc);
1832 if (ret)
1833 goto out;
1834 pg_idx = 0;
1835 }
1836 if (skb) {
1837 if (zc->recv_skip_hint > 0)
1838 break;
1839 skb = skb->next;
1840 offset = seq - TCP_SKB_CB(skb)->seq;
1841 } else {
1842 skb = tcp_recv_skb(sk, seq, &offset);
1843 }
1844 zc->recv_skip_hint = skb->len - offset;
1845 offset -= skb_headlen(skb);
1846 if ((int)offset < 0 || skb_has_frag_list(skb))
1847 break;
1848 frags = skb_shinfo(skb)->frags;
1849 while (offset) {
1850 if (skb_frag_size(frags) > offset)
1851 goto out;
1852 offset -= skb_frag_size(frags);
1853 frags++;
1854 }
1855 }
1856 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1857 int remaining = zc->recv_skip_hint;
1858
1859 while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1860 skb_frag_off(frags))) {
1861 remaining -= skb_frag_size(frags);
1862 frags++;
1863 }
1864 zc->recv_skip_hint -= remaining;
1865 break;
1866 }
1867 pages[pg_idx] = skb_frag_page(frags);
1868 pg_idx++;
1869 length += PAGE_SIZE;
1870 zc->recv_skip_hint -= PAGE_SIZE;
1871 frags++;
1872 if (pg_idx == PAGE_BATCH_SIZE) {
1873 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1874 &curr_addr, &length,
1875 &seq, zc);
1876 if (ret)
1877 goto out;
1878 pg_idx = 0;
1879 }
1880 }
1881 if (pg_idx) {
1882 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1883 &curr_addr, &length, &seq,
1884 zc);
1885 }
1886 out:
1887 mmap_read_unlock(current->mm);
1888 if (length) {
1889 WRITE_ONCE(tp->copied_seq, seq);
1890 tcp_rcv_space_adjust(sk);
1891
1892 /* Clean up data we have read: This will do ACK frames. */
1893 tcp_recv_skb(sk, seq, &offset);
1894 tcp_cleanup_rbuf(sk, length);
1895 ret = 0;
1896 if (length == zc->length)
1897 zc->recv_skip_hint = 0;
1898 } else {
1899 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1900 ret = -EIO;
1901 }
1902 zc->length = length;
1903 return ret;
1904 }
1905 #endif
1906
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1907 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1908 struct scm_timestamping_internal *tss)
1909 {
1910 if (skb->tstamp)
1911 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1912 else
1913 tss->ts[0] = (struct timespec64) {0};
1914
1915 if (skb_hwtstamps(skb)->hwtstamp)
1916 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1917 else
1918 tss->ts[2] = (struct timespec64) {0};
1919 }
1920
1921 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)1922 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1923 struct scm_timestamping_internal *tss)
1924 {
1925 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1926 bool has_timestamping = false;
1927
1928 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1929 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1930 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1931 if (new_tstamp) {
1932 struct __kernel_timespec kts = {
1933 .tv_sec = tss->ts[0].tv_sec,
1934 .tv_nsec = tss->ts[0].tv_nsec,
1935 };
1936 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1937 sizeof(kts), &kts);
1938 } else {
1939 struct __kernel_old_timespec ts_old = {
1940 .tv_sec = tss->ts[0].tv_sec,
1941 .tv_nsec = tss->ts[0].tv_nsec,
1942 };
1943 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1944 sizeof(ts_old), &ts_old);
1945 }
1946 } else {
1947 if (new_tstamp) {
1948 struct __kernel_sock_timeval stv = {
1949 .tv_sec = tss->ts[0].tv_sec,
1950 .tv_usec = tss->ts[0].tv_nsec / 1000,
1951 };
1952 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1953 sizeof(stv), &stv);
1954 } else {
1955 struct __kernel_old_timeval tv = {
1956 .tv_sec = tss->ts[0].tv_sec,
1957 .tv_usec = tss->ts[0].tv_nsec / 1000,
1958 };
1959 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1960 sizeof(tv), &tv);
1961 }
1962 }
1963 }
1964
1965 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1966 has_timestamping = true;
1967 else
1968 tss->ts[0] = (struct timespec64) {0};
1969 }
1970
1971 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1972 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1973 has_timestamping = true;
1974 else
1975 tss->ts[2] = (struct timespec64) {0};
1976 }
1977
1978 if (has_timestamping) {
1979 tss->ts[1] = (struct timespec64) {0};
1980 if (sock_flag(sk, SOCK_TSTAMP_NEW))
1981 put_cmsg_scm_timestamping64(msg, tss);
1982 else
1983 put_cmsg_scm_timestamping(msg, tss);
1984 }
1985 }
1986
tcp_inq_hint(struct sock * sk)1987 static int tcp_inq_hint(struct sock *sk)
1988 {
1989 const struct tcp_sock *tp = tcp_sk(sk);
1990 u32 copied_seq = READ_ONCE(tp->copied_seq);
1991 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1992 int inq;
1993
1994 inq = rcv_nxt - copied_seq;
1995 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1996 lock_sock(sk);
1997 inq = tp->rcv_nxt - tp->copied_seq;
1998 release_sock(sk);
1999 }
2000 /* After receiving a FIN, tell the user-space to continue reading
2001 * by returning a non-zero inq.
2002 */
2003 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2004 inq = 1;
2005 return inq;
2006 }
2007
2008 /*
2009 * This routine copies from a sock struct into the user buffer.
2010 *
2011 * Technical note: in 2.3 we work on _locked_ socket, so that
2012 * tricks with *seq access order and skb->users are not required.
2013 * Probably, code can be easily improved even more.
2014 */
2015
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2016 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2017 int flags, int *addr_len)
2018 {
2019 struct tcp_sock *tp = tcp_sk(sk);
2020 int copied = 0;
2021 u32 peek_seq;
2022 u32 *seq;
2023 unsigned long used;
2024 int err, inq;
2025 int target; /* Read at least this many bytes */
2026 long timeo;
2027 struct sk_buff *skb, *last;
2028 u32 urg_hole = 0;
2029 struct scm_timestamping_internal tss;
2030 int cmsg_flags;
2031
2032 if (unlikely(flags & MSG_ERRQUEUE))
2033 return inet_recv_error(sk, msg, len, addr_len);
2034
2035 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2036 (sk->sk_state == TCP_ESTABLISHED))
2037 sk_busy_loop(sk, nonblock);
2038
2039 lock_sock(sk);
2040
2041 err = -ENOTCONN;
2042 if (sk->sk_state == TCP_LISTEN)
2043 goto out;
2044
2045 cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2046 timeo = sock_rcvtimeo(sk, nonblock);
2047
2048 /* Urgent data needs to be handled specially. */
2049 if (flags & MSG_OOB)
2050 goto recv_urg;
2051
2052 if (unlikely(tp->repair)) {
2053 err = -EPERM;
2054 if (!(flags & MSG_PEEK))
2055 goto out;
2056
2057 if (tp->repair_queue == TCP_SEND_QUEUE)
2058 goto recv_sndq;
2059
2060 err = -EINVAL;
2061 if (tp->repair_queue == TCP_NO_QUEUE)
2062 goto out;
2063
2064 /* 'common' recv queue MSG_PEEK-ing */
2065 }
2066
2067 seq = &tp->copied_seq;
2068 if (flags & MSG_PEEK) {
2069 peek_seq = tp->copied_seq;
2070 seq = &peek_seq;
2071 }
2072
2073 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2074
2075 do {
2076 u32 offset;
2077
2078 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2079 if (tp->urg_data && tp->urg_seq == *seq) {
2080 if (copied)
2081 break;
2082 if (signal_pending(current)) {
2083 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2084 break;
2085 }
2086 }
2087
2088 /* Next get a buffer. */
2089
2090 last = skb_peek_tail(&sk->sk_receive_queue);
2091 skb_queue_walk(&sk->sk_receive_queue, skb) {
2092 last = skb;
2093 /* Now that we have two receive queues this
2094 * shouldn't happen.
2095 */
2096 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2097 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2098 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2099 flags))
2100 break;
2101
2102 offset = *seq - TCP_SKB_CB(skb)->seq;
2103 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2104 pr_err_once("%s: found a SYN, please report !\n", __func__);
2105 offset--;
2106 }
2107 if (offset < skb->len)
2108 goto found_ok_skb;
2109 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2110 goto found_fin_ok;
2111 WARN(!(flags & MSG_PEEK),
2112 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2113 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2114 }
2115
2116 /* Well, if we have backlog, try to process it now yet. */
2117
2118 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2119 break;
2120
2121 if (copied) {
2122 if (sk->sk_err ||
2123 sk->sk_state == TCP_CLOSE ||
2124 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2125 !timeo ||
2126 signal_pending(current))
2127 break;
2128 } else {
2129 if (sock_flag(sk, SOCK_DONE))
2130 break;
2131
2132 if (sk->sk_err) {
2133 copied = sock_error(sk);
2134 break;
2135 }
2136
2137 if (sk->sk_shutdown & RCV_SHUTDOWN)
2138 break;
2139
2140 if (sk->sk_state == TCP_CLOSE) {
2141 /* This occurs when user tries to read
2142 * from never connected socket.
2143 */
2144 copied = -ENOTCONN;
2145 break;
2146 }
2147
2148 if (!timeo) {
2149 copied = -EAGAIN;
2150 break;
2151 }
2152
2153 if (signal_pending(current)) {
2154 copied = sock_intr_errno(timeo);
2155 break;
2156 }
2157 }
2158
2159 tcp_cleanup_rbuf(sk, copied);
2160
2161 if (copied >= target) {
2162 /* Do not sleep, just process backlog. */
2163 release_sock(sk);
2164 lock_sock(sk);
2165 } else {
2166 sk_wait_data(sk, &timeo, last);
2167 }
2168
2169 if ((flags & MSG_PEEK) &&
2170 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2171 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2172 current->comm,
2173 task_pid_nr(current));
2174 peek_seq = tp->copied_seq;
2175 }
2176 continue;
2177
2178 found_ok_skb:
2179 /* Ok so how much can we use? */
2180 used = skb->len - offset;
2181 if (len < used)
2182 used = len;
2183
2184 /* Do we have urgent data here? */
2185 if (tp->urg_data) {
2186 u32 urg_offset = tp->urg_seq - *seq;
2187 if (urg_offset < used) {
2188 if (!urg_offset) {
2189 if (!sock_flag(sk, SOCK_URGINLINE)) {
2190 WRITE_ONCE(*seq, *seq + 1);
2191 urg_hole++;
2192 offset++;
2193 used--;
2194 if (!used)
2195 goto skip_copy;
2196 }
2197 } else
2198 used = urg_offset;
2199 }
2200 }
2201
2202 if (!(flags & MSG_TRUNC)) {
2203 err = skb_copy_datagram_msg(skb, offset, msg, used);
2204 if (err) {
2205 /* Exception. Bailout! */
2206 if (!copied)
2207 copied = -EFAULT;
2208 break;
2209 }
2210 }
2211
2212 WRITE_ONCE(*seq, *seq + used);
2213 copied += used;
2214 len -= used;
2215
2216 tcp_rcv_space_adjust(sk);
2217
2218 skip_copy:
2219 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2220 tp->urg_data = 0;
2221 tcp_fast_path_check(sk);
2222 }
2223
2224 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2225 tcp_update_recv_tstamps(skb, &tss);
2226 cmsg_flags |= 2;
2227 }
2228
2229 if (used + offset < skb->len)
2230 continue;
2231
2232 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2233 goto found_fin_ok;
2234 if (!(flags & MSG_PEEK))
2235 sk_eat_skb(sk, skb);
2236 continue;
2237
2238 found_fin_ok:
2239 /* Process the FIN. */
2240 WRITE_ONCE(*seq, *seq + 1);
2241 if (!(flags & MSG_PEEK))
2242 sk_eat_skb(sk, skb);
2243 break;
2244 } while (len > 0);
2245
2246 /* According to UNIX98, msg_name/msg_namelen are ignored
2247 * on connected socket. I was just happy when found this 8) --ANK
2248 */
2249
2250 /* Clean up data we have read: This will do ACK frames. */
2251 tcp_cleanup_rbuf(sk, copied);
2252
2253 release_sock(sk);
2254
2255 if (cmsg_flags) {
2256 if (cmsg_flags & 2)
2257 tcp_recv_timestamp(msg, sk, &tss);
2258 if (cmsg_flags & 1) {
2259 inq = tcp_inq_hint(sk);
2260 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2261 }
2262 }
2263
2264 return copied;
2265
2266 out:
2267 release_sock(sk);
2268 return err;
2269
2270 recv_urg:
2271 err = tcp_recv_urg(sk, msg, len, flags);
2272 goto out;
2273
2274 recv_sndq:
2275 err = tcp_peek_sndq(sk, msg, len);
2276 goto out;
2277 }
2278 EXPORT_SYMBOL(tcp_recvmsg);
2279
tcp_set_state(struct sock * sk,int state)2280 void tcp_set_state(struct sock *sk, int state)
2281 {
2282 int oldstate = sk->sk_state;
2283
2284 /* We defined a new enum for TCP states that are exported in BPF
2285 * so as not force the internal TCP states to be frozen. The
2286 * following checks will detect if an internal state value ever
2287 * differs from the BPF value. If this ever happens, then we will
2288 * need to remap the internal value to the BPF value before calling
2289 * tcp_call_bpf_2arg.
2290 */
2291 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2292 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2293 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2294 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2295 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2296 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2297 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2298 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2299 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2300 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2301 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2302 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2303 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2304
2305 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2306 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2307
2308 switch (state) {
2309 case TCP_ESTABLISHED:
2310 if (oldstate != TCP_ESTABLISHED)
2311 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2312 break;
2313
2314 case TCP_CLOSE:
2315 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2316 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2317
2318 sk->sk_prot->unhash(sk);
2319 if (inet_csk(sk)->icsk_bind_hash &&
2320 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2321 inet_put_port(sk);
2322 fallthrough;
2323 default:
2324 if (oldstate == TCP_ESTABLISHED)
2325 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2326 }
2327
2328 /* Change state AFTER socket is unhashed to avoid closed
2329 * socket sitting in hash tables.
2330 */
2331 inet_sk_state_store(sk, state);
2332 }
2333 EXPORT_SYMBOL_GPL(tcp_set_state);
2334
2335 /*
2336 * State processing on a close. This implements the state shift for
2337 * sending our FIN frame. Note that we only send a FIN for some
2338 * states. A shutdown() may have already sent the FIN, or we may be
2339 * closed.
2340 */
2341
2342 static const unsigned char new_state[16] = {
2343 /* current state: new state: action: */
2344 [0 /* (Invalid) */] = TCP_CLOSE,
2345 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2346 [TCP_SYN_SENT] = TCP_CLOSE,
2347 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2348 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2349 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2350 [TCP_TIME_WAIT] = TCP_CLOSE,
2351 [TCP_CLOSE] = TCP_CLOSE,
2352 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2353 [TCP_LAST_ACK] = TCP_LAST_ACK,
2354 [TCP_LISTEN] = TCP_CLOSE,
2355 [TCP_CLOSING] = TCP_CLOSING,
2356 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2357 };
2358
tcp_close_state(struct sock * sk)2359 static int tcp_close_state(struct sock *sk)
2360 {
2361 int next = (int)new_state[sk->sk_state];
2362 int ns = next & TCP_STATE_MASK;
2363
2364 tcp_set_state(sk, ns);
2365
2366 return next & TCP_ACTION_FIN;
2367 }
2368
2369 /*
2370 * Shutdown the sending side of a connection. Much like close except
2371 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2372 */
2373
tcp_shutdown(struct sock * sk,int how)2374 void tcp_shutdown(struct sock *sk, int how)
2375 {
2376 /* We need to grab some memory, and put together a FIN,
2377 * and then put it into the queue to be sent.
2378 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2379 */
2380 if (!(how & SEND_SHUTDOWN))
2381 return;
2382
2383 /* If we've already sent a FIN, or it's a closed state, skip this. */
2384 if ((1 << sk->sk_state) &
2385 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2386 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2387 /* Clear out any half completed packets. FIN if needed. */
2388 if (tcp_close_state(sk))
2389 tcp_send_fin(sk);
2390 }
2391 }
2392 EXPORT_SYMBOL(tcp_shutdown);
2393
tcp_check_oom(struct sock * sk,int shift)2394 bool tcp_check_oom(struct sock *sk, int shift)
2395 {
2396 bool too_many_orphans, out_of_socket_memory;
2397
2398 too_many_orphans = tcp_too_many_orphans(sk, shift);
2399 out_of_socket_memory = tcp_out_of_memory(sk);
2400
2401 if (too_many_orphans)
2402 net_info_ratelimited("too many orphaned sockets\n");
2403 if (out_of_socket_memory)
2404 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2405 return too_many_orphans || out_of_socket_memory;
2406 }
2407
tcp_close(struct sock * sk,long timeout)2408 void tcp_close(struct sock *sk, long timeout)
2409 {
2410 struct sk_buff *skb;
2411 int data_was_unread = 0;
2412 int state;
2413
2414 lock_sock(sk);
2415 sk->sk_shutdown = SHUTDOWN_MASK;
2416
2417 if (sk->sk_state == TCP_LISTEN) {
2418 tcp_set_state(sk, TCP_CLOSE);
2419
2420 /* Special case. */
2421 inet_csk_listen_stop(sk);
2422
2423 goto adjudge_to_death;
2424 }
2425
2426 /* We need to flush the recv. buffs. We do this only on the
2427 * descriptor close, not protocol-sourced closes, because the
2428 * reader process may not have drained the data yet!
2429 */
2430 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2431 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2432
2433 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2434 len--;
2435 data_was_unread += len;
2436 __kfree_skb(skb);
2437 }
2438
2439 sk_mem_reclaim(sk);
2440
2441 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2442 if (sk->sk_state == TCP_CLOSE)
2443 goto adjudge_to_death;
2444
2445 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2446 * data was lost. To witness the awful effects of the old behavior of
2447 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2448 * GET in an FTP client, suspend the process, wait for the client to
2449 * advertise a zero window, then kill -9 the FTP client, wheee...
2450 * Note: timeout is always zero in such a case.
2451 */
2452 if (unlikely(tcp_sk(sk)->repair)) {
2453 sk->sk_prot->disconnect(sk, 0);
2454 } else if (data_was_unread) {
2455 /* Unread data was tossed, zap the connection. */
2456 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2457 tcp_set_state(sk, TCP_CLOSE);
2458 tcp_send_active_reset(sk, sk->sk_allocation);
2459 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2460 /* Check zero linger _after_ checking for unread data. */
2461 sk->sk_prot->disconnect(sk, 0);
2462 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2463 } else if (tcp_close_state(sk)) {
2464 /* We FIN if the application ate all the data before
2465 * zapping the connection.
2466 */
2467
2468 /* RED-PEN. Formally speaking, we have broken TCP state
2469 * machine. State transitions:
2470 *
2471 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2472 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2473 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2474 *
2475 * are legal only when FIN has been sent (i.e. in window),
2476 * rather than queued out of window. Purists blame.
2477 *
2478 * F.e. "RFC state" is ESTABLISHED,
2479 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2480 *
2481 * The visible declinations are that sometimes
2482 * we enter time-wait state, when it is not required really
2483 * (harmless), do not send active resets, when they are
2484 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2485 * they look as CLOSING or LAST_ACK for Linux)
2486 * Probably, I missed some more holelets.
2487 * --ANK
2488 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2489 * in a single packet! (May consider it later but will
2490 * probably need API support or TCP_CORK SYN-ACK until
2491 * data is written and socket is closed.)
2492 */
2493 tcp_send_fin(sk);
2494 }
2495
2496 sk_stream_wait_close(sk, timeout);
2497
2498 adjudge_to_death:
2499 state = sk->sk_state;
2500 sock_hold(sk);
2501 sock_orphan(sk);
2502
2503 local_bh_disable();
2504 bh_lock_sock(sk);
2505 /* remove backlog if any, without releasing ownership. */
2506 __release_sock(sk);
2507
2508 percpu_counter_inc(sk->sk_prot->orphan_count);
2509
2510 /* Have we already been destroyed by a softirq or backlog? */
2511 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2512 goto out;
2513
2514 /* This is a (useful) BSD violating of the RFC. There is a
2515 * problem with TCP as specified in that the other end could
2516 * keep a socket open forever with no application left this end.
2517 * We use a 1 minute timeout (about the same as BSD) then kill
2518 * our end. If they send after that then tough - BUT: long enough
2519 * that we won't make the old 4*rto = almost no time - whoops
2520 * reset mistake.
2521 *
2522 * Nope, it was not mistake. It is really desired behaviour
2523 * f.e. on http servers, when such sockets are useless, but
2524 * consume significant resources. Let's do it with special
2525 * linger2 option. --ANK
2526 */
2527
2528 if (sk->sk_state == TCP_FIN_WAIT2) {
2529 struct tcp_sock *tp = tcp_sk(sk);
2530 if (tp->linger2 < 0) {
2531 tcp_set_state(sk, TCP_CLOSE);
2532 tcp_send_active_reset(sk, GFP_ATOMIC);
2533 __NET_INC_STATS(sock_net(sk),
2534 LINUX_MIB_TCPABORTONLINGER);
2535 } else {
2536 const int tmo = tcp_fin_time(sk);
2537
2538 if (tmo > TCP_TIMEWAIT_LEN) {
2539 inet_csk_reset_keepalive_timer(sk,
2540 tmo - TCP_TIMEWAIT_LEN);
2541 } else {
2542 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2543 goto out;
2544 }
2545 }
2546 }
2547 if (sk->sk_state != TCP_CLOSE) {
2548 sk_mem_reclaim(sk);
2549 if (tcp_check_oom(sk, 0)) {
2550 tcp_set_state(sk, TCP_CLOSE);
2551 tcp_send_active_reset(sk, GFP_ATOMIC);
2552 __NET_INC_STATS(sock_net(sk),
2553 LINUX_MIB_TCPABORTONMEMORY);
2554 } else if (!check_net(sock_net(sk))) {
2555 /* Not possible to send reset; just close */
2556 tcp_set_state(sk, TCP_CLOSE);
2557 }
2558 }
2559
2560 if (sk->sk_state == TCP_CLOSE) {
2561 struct request_sock *req;
2562
2563 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2564 lockdep_sock_is_held(sk));
2565 /* We could get here with a non-NULL req if the socket is
2566 * aborted (e.g., closed with unread data) before 3WHS
2567 * finishes.
2568 */
2569 if (req)
2570 reqsk_fastopen_remove(sk, req, false);
2571 inet_csk_destroy_sock(sk);
2572 }
2573 /* Otherwise, socket is reprieved until protocol close. */
2574
2575 out:
2576 bh_unlock_sock(sk);
2577 local_bh_enable();
2578 release_sock(sk);
2579 sock_put(sk);
2580 }
2581 EXPORT_SYMBOL(tcp_close);
2582
2583 /* These states need RST on ABORT according to RFC793 */
2584
tcp_need_reset(int state)2585 static inline bool tcp_need_reset(int state)
2586 {
2587 return (1 << state) &
2588 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2589 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2590 }
2591
tcp_rtx_queue_purge(struct sock * sk)2592 static void tcp_rtx_queue_purge(struct sock *sk)
2593 {
2594 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2595
2596 tcp_sk(sk)->highest_sack = NULL;
2597 while (p) {
2598 struct sk_buff *skb = rb_to_skb(p);
2599
2600 p = rb_next(p);
2601 /* Since we are deleting whole queue, no need to
2602 * list_del(&skb->tcp_tsorted_anchor)
2603 */
2604 tcp_rtx_queue_unlink(skb, sk);
2605 sk_wmem_free_skb(sk, skb);
2606 }
2607 }
2608
tcp_write_queue_purge(struct sock * sk)2609 void tcp_write_queue_purge(struct sock *sk)
2610 {
2611 struct sk_buff *skb;
2612
2613 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2614 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2615 tcp_skb_tsorted_anchor_cleanup(skb);
2616 sk_wmem_free_skb(sk, skb);
2617 }
2618 tcp_rtx_queue_purge(sk);
2619 skb = sk->sk_tx_skb_cache;
2620 if (skb) {
2621 __kfree_skb(skb);
2622 sk->sk_tx_skb_cache = NULL;
2623 }
2624 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2625 sk_mem_reclaim(sk);
2626 tcp_clear_all_retrans_hints(tcp_sk(sk));
2627 tcp_sk(sk)->packets_out = 0;
2628 inet_csk(sk)->icsk_backoff = 0;
2629 }
2630
tcp_disconnect(struct sock * sk,int flags)2631 int tcp_disconnect(struct sock *sk, int flags)
2632 {
2633 struct inet_sock *inet = inet_sk(sk);
2634 struct inet_connection_sock *icsk = inet_csk(sk);
2635 struct tcp_sock *tp = tcp_sk(sk);
2636 int old_state = sk->sk_state;
2637 u32 seq;
2638
2639 if (old_state != TCP_CLOSE)
2640 tcp_set_state(sk, TCP_CLOSE);
2641
2642 /* ABORT function of RFC793 */
2643 if (old_state == TCP_LISTEN) {
2644 inet_csk_listen_stop(sk);
2645 } else if (unlikely(tp->repair)) {
2646 sk->sk_err = ECONNABORTED;
2647 } else if (tcp_need_reset(old_state) ||
2648 (tp->snd_nxt != tp->write_seq &&
2649 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2650 /* The last check adjusts for discrepancy of Linux wrt. RFC
2651 * states
2652 */
2653 tcp_send_active_reset(sk, gfp_any());
2654 sk->sk_err = ECONNRESET;
2655 } else if (old_state == TCP_SYN_SENT)
2656 sk->sk_err = ECONNRESET;
2657
2658 tcp_clear_xmit_timers(sk);
2659 __skb_queue_purge(&sk->sk_receive_queue);
2660 if (sk->sk_rx_skb_cache) {
2661 __kfree_skb(sk->sk_rx_skb_cache);
2662 sk->sk_rx_skb_cache = NULL;
2663 }
2664 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2665 tp->urg_data = 0;
2666 tcp_write_queue_purge(sk);
2667 tcp_fastopen_active_disable_ofo_check(sk);
2668 skb_rbtree_purge(&tp->out_of_order_queue);
2669
2670 inet->inet_dport = 0;
2671
2672 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2673 inet_reset_saddr(sk);
2674
2675 sk->sk_shutdown = 0;
2676 sock_reset_flag(sk, SOCK_DONE);
2677 tp->srtt_us = 0;
2678 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2679 tp->rcv_rtt_last_tsecr = 0;
2680
2681 seq = tp->write_seq + tp->max_window + 2;
2682 if (!seq)
2683 seq = 1;
2684 WRITE_ONCE(tp->write_seq, seq);
2685
2686 icsk->icsk_backoff = 0;
2687 icsk->icsk_probes_out = 0;
2688 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2689 icsk->icsk_rto_min = TCP_RTO_MIN;
2690 icsk->icsk_delack_max = TCP_DELACK_MAX;
2691 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2692 tp->snd_cwnd = TCP_INIT_CWND;
2693 tp->snd_cwnd_cnt = 0;
2694 tp->window_clamp = 0;
2695 tp->delivered = 0;
2696 tp->delivered_ce = 0;
2697 if (icsk->icsk_ca_ops->release)
2698 icsk->icsk_ca_ops->release(sk);
2699 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2700 icsk->icsk_ca_initialized = 0;
2701 tcp_set_ca_state(sk, TCP_CA_Open);
2702 tp->is_sack_reneg = 0;
2703 tcp_clear_retrans(tp);
2704 tp->total_retrans = 0;
2705 inet_csk_delack_init(sk);
2706 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2707 * issue in __tcp_select_window()
2708 */
2709 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2710 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2711 __sk_dst_reset(sk);
2712 dst_release(sk->sk_rx_dst);
2713 sk->sk_rx_dst = NULL;
2714 tcp_saved_syn_free(tp);
2715 tp->compressed_ack = 0;
2716 tp->segs_in = 0;
2717 tp->segs_out = 0;
2718 tp->bytes_sent = 0;
2719 tp->bytes_acked = 0;
2720 tp->bytes_received = 0;
2721 tp->bytes_retrans = 0;
2722 tp->data_segs_in = 0;
2723 tp->data_segs_out = 0;
2724 tp->duplicate_sack[0].start_seq = 0;
2725 tp->duplicate_sack[0].end_seq = 0;
2726 tp->dsack_dups = 0;
2727 tp->reord_seen = 0;
2728 tp->retrans_out = 0;
2729 tp->sacked_out = 0;
2730 tp->tlp_high_seq = 0;
2731 tp->last_oow_ack_time = 0;
2732 /* There's a bubble in the pipe until at least the first ACK. */
2733 tp->app_limited = ~0U;
2734 tp->rack.mstamp = 0;
2735 tp->rack.advanced = 0;
2736 tp->rack.reo_wnd_steps = 1;
2737 tp->rack.last_delivered = 0;
2738 tp->rack.reo_wnd_persist = 0;
2739 tp->rack.dsack_seen = 0;
2740 tp->syn_data_acked = 0;
2741 tp->rx_opt.saw_tstamp = 0;
2742 tp->rx_opt.dsack = 0;
2743 tp->rx_opt.num_sacks = 0;
2744 tp->rcv_ooopack = 0;
2745
2746
2747 /* Clean up fastopen related fields */
2748 tcp_free_fastopen_req(tp);
2749 inet->defer_connect = 0;
2750 tp->fastopen_client_fail = 0;
2751
2752 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2753
2754 if (sk->sk_frag.page) {
2755 put_page(sk->sk_frag.page);
2756 sk->sk_frag.page = NULL;
2757 sk->sk_frag.offset = 0;
2758 }
2759
2760 sk->sk_error_report(sk);
2761 return 0;
2762 }
2763 EXPORT_SYMBOL(tcp_disconnect);
2764
tcp_can_repair_sock(const struct sock * sk)2765 static inline bool tcp_can_repair_sock(const struct sock *sk)
2766 {
2767 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2768 (sk->sk_state != TCP_LISTEN);
2769 }
2770
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)2771 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2772 {
2773 struct tcp_repair_window opt;
2774
2775 if (!tp->repair)
2776 return -EPERM;
2777
2778 if (len != sizeof(opt))
2779 return -EINVAL;
2780
2781 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2782 return -EFAULT;
2783
2784 if (opt.max_window < opt.snd_wnd)
2785 return -EINVAL;
2786
2787 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2788 return -EINVAL;
2789
2790 if (after(opt.rcv_wup, tp->rcv_nxt))
2791 return -EINVAL;
2792
2793 tp->snd_wl1 = opt.snd_wl1;
2794 tp->snd_wnd = opt.snd_wnd;
2795 tp->max_window = opt.max_window;
2796
2797 tp->rcv_wnd = opt.rcv_wnd;
2798 tp->rcv_wup = opt.rcv_wup;
2799
2800 return 0;
2801 }
2802
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)2803 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2804 unsigned int len)
2805 {
2806 struct tcp_sock *tp = tcp_sk(sk);
2807 struct tcp_repair_opt opt;
2808 size_t offset = 0;
2809
2810 while (len >= sizeof(opt)) {
2811 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2812 return -EFAULT;
2813
2814 offset += sizeof(opt);
2815 len -= sizeof(opt);
2816
2817 switch (opt.opt_code) {
2818 case TCPOPT_MSS:
2819 tp->rx_opt.mss_clamp = opt.opt_val;
2820 tcp_mtup_init(sk);
2821 break;
2822 case TCPOPT_WINDOW:
2823 {
2824 u16 snd_wscale = opt.opt_val & 0xFFFF;
2825 u16 rcv_wscale = opt.opt_val >> 16;
2826
2827 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2828 return -EFBIG;
2829
2830 tp->rx_opt.snd_wscale = snd_wscale;
2831 tp->rx_opt.rcv_wscale = rcv_wscale;
2832 tp->rx_opt.wscale_ok = 1;
2833 }
2834 break;
2835 case TCPOPT_SACK_PERM:
2836 if (opt.opt_val != 0)
2837 return -EINVAL;
2838
2839 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2840 break;
2841 case TCPOPT_TIMESTAMP:
2842 if (opt.opt_val != 0)
2843 return -EINVAL;
2844
2845 tp->rx_opt.tstamp_ok = 1;
2846 break;
2847 }
2848 }
2849
2850 return 0;
2851 }
2852
2853 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2854 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2855
tcp_enable_tx_delay(void)2856 static void tcp_enable_tx_delay(void)
2857 {
2858 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2859 static int __tcp_tx_delay_enabled = 0;
2860
2861 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2862 static_branch_enable(&tcp_tx_delay_enabled);
2863 pr_info("TCP_TX_DELAY enabled\n");
2864 }
2865 }
2866 }
2867
2868 /* When set indicates to always queue non-full frames. Later the user clears
2869 * this option and we transmit any pending partial frames in the queue. This is
2870 * meant to be used alongside sendfile() to get properly filled frames when the
2871 * user (for example) must write out headers with a write() call first and then
2872 * use sendfile to send out the data parts.
2873 *
2874 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
2875 * TCP_NODELAY.
2876 */
__tcp_sock_set_cork(struct sock * sk,bool on)2877 static void __tcp_sock_set_cork(struct sock *sk, bool on)
2878 {
2879 struct tcp_sock *tp = tcp_sk(sk);
2880
2881 if (on) {
2882 tp->nonagle |= TCP_NAGLE_CORK;
2883 } else {
2884 tp->nonagle &= ~TCP_NAGLE_CORK;
2885 if (tp->nonagle & TCP_NAGLE_OFF)
2886 tp->nonagle |= TCP_NAGLE_PUSH;
2887 tcp_push_pending_frames(sk);
2888 }
2889 }
2890
tcp_sock_set_cork(struct sock * sk,bool on)2891 void tcp_sock_set_cork(struct sock *sk, bool on)
2892 {
2893 lock_sock(sk);
2894 __tcp_sock_set_cork(sk, on);
2895 release_sock(sk);
2896 }
2897 EXPORT_SYMBOL(tcp_sock_set_cork);
2898
2899 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
2900 * remembered, but it is not activated until cork is cleared.
2901 *
2902 * However, when TCP_NODELAY is set we make an explicit push, which overrides
2903 * even TCP_CORK for currently queued segments.
2904 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)2905 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
2906 {
2907 if (on) {
2908 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2909 tcp_push_pending_frames(sk);
2910 } else {
2911 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
2912 }
2913 }
2914
tcp_sock_set_nodelay(struct sock * sk)2915 void tcp_sock_set_nodelay(struct sock *sk)
2916 {
2917 lock_sock(sk);
2918 __tcp_sock_set_nodelay(sk, true);
2919 release_sock(sk);
2920 }
2921 EXPORT_SYMBOL(tcp_sock_set_nodelay);
2922
__tcp_sock_set_quickack(struct sock * sk,int val)2923 static void __tcp_sock_set_quickack(struct sock *sk, int val)
2924 {
2925 if (!val) {
2926 inet_csk_enter_pingpong_mode(sk);
2927 return;
2928 }
2929
2930 inet_csk_exit_pingpong_mode(sk);
2931 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2932 inet_csk_ack_scheduled(sk)) {
2933 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
2934 tcp_cleanup_rbuf(sk, 1);
2935 if (!(val & 1))
2936 inet_csk_enter_pingpong_mode(sk);
2937 }
2938 }
2939
tcp_sock_set_quickack(struct sock * sk,int val)2940 void tcp_sock_set_quickack(struct sock *sk, int val)
2941 {
2942 lock_sock(sk);
2943 __tcp_sock_set_quickack(sk, val);
2944 release_sock(sk);
2945 }
2946 EXPORT_SYMBOL(tcp_sock_set_quickack);
2947
tcp_sock_set_syncnt(struct sock * sk,int val)2948 int tcp_sock_set_syncnt(struct sock *sk, int val)
2949 {
2950 if (val < 1 || val > MAX_TCP_SYNCNT)
2951 return -EINVAL;
2952
2953 lock_sock(sk);
2954 inet_csk(sk)->icsk_syn_retries = val;
2955 release_sock(sk);
2956 return 0;
2957 }
2958 EXPORT_SYMBOL(tcp_sock_set_syncnt);
2959
tcp_sock_set_user_timeout(struct sock * sk,u32 val)2960 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
2961 {
2962 lock_sock(sk);
2963 inet_csk(sk)->icsk_user_timeout = val;
2964 release_sock(sk);
2965 }
2966 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
2967
tcp_sock_set_keepidle_locked(struct sock * sk,int val)2968 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
2969 {
2970 struct tcp_sock *tp = tcp_sk(sk);
2971
2972 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2973 return -EINVAL;
2974
2975 tp->keepalive_time = val * HZ;
2976 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2977 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
2978 u32 elapsed = keepalive_time_elapsed(tp);
2979
2980 if (tp->keepalive_time > elapsed)
2981 elapsed = tp->keepalive_time - elapsed;
2982 else
2983 elapsed = 0;
2984 inet_csk_reset_keepalive_timer(sk, elapsed);
2985 }
2986
2987 return 0;
2988 }
2989
tcp_sock_set_keepidle(struct sock * sk,int val)2990 int tcp_sock_set_keepidle(struct sock *sk, int val)
2991 {
2992 int err;
2993
2994 lock_sock(sk);
2995 err = tcp_sock_set_keepidle_locked(sk, val);
2996 release_sock(sk);
2997 return err;
2998 }
2999 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3000
tcp_sock_set_keepintvl(struct sock * sk,int val)3001 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3002 {
3003 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3004 return -EINVAL;
3005
3006 lock_sock(sk);
3007 tcp_sk(sk)->keepalive_intvl = val * HZ;
3008 release_sock(sk);
3009 return 0;
3010 }
3011 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3012
tcp_sock_set_keepcnt(struct sock * sk,int val)3013 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3014 {
3015 if (val < 1 || val > MAX_TCP_KEEPCNT)
3016 return -EINVAL;
3017
3018 lock_sock(sk);
3019 tcp_sk(sk)->keepalive_probes = val;
3020 release_sock(sk);
3021 return 0;
3022 }
3023 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3024
3025 /*
3026 * Socket option code for TCP.
3027 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3028 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3029 sockptr_t optval, unsigned int optlen)
3030 {
3031 struct tcp_sock *tp = tcp_sk(sk);
3032 struct inet_connection_sock *icsk = inet_csk(sk);
3033 struct net *net = sock_net(sk);
3034 int val;
3035 int err = 0;
3036
3037 /* These are data/string values, all the others are ints */
3038 switch (optname) {
3039 case TCP_CONGESTION: {
3040 char name[TCP_CA_NAME_MAX];
3041
3042 if (optlen < 1)
3043 return -EINVAL;
3044
3045 val = strncpy_from_sockptr(name, optval,
3046 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3047 if (val < 0)
3048 return -EFAULT;
3049 name[val] = 0;
3050
3051 lock_sock(sk);
3052 err = tcp_set_congestion_control(sk, name, true,
3053 ns_capable(sock_net(sk)->user_ns,
3054 CAP_NET_ADMIN));
3055 release_sock(sk);
3056 return err;
3057 }
3058 case TCP_ULP: {
3059 char name[TCP_ULP_NAME_MAX];
3060
3061 if (optlen < 1)
3062 return -EINVAL;
3063
3064 val = strncpy_from_sockptr(name, optval,
3065 min_t(long, TCP_ULP_NAME_MAX - 1,
3066 optlen));
3067 if (val < 0)
3068 return -EFAULT;
3069 name[val] = 0;
3070
3071 lock_sock(sk);
3072 err = tcp_set_ulp(sk, name);
3073 release_sock(sk);
3074 return err;
3075 }
3076 case TCP_FASTOPEN_KEY: {
3077 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3078 __u8 *backup_key = NULL;
3079
3080 /* Allow a backup key as well to facilitate key rotation
3081 * First key is the active one.
3082 */
3083 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3084 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3085 return -EINVAL;
3086
3087 if (copy_from_sockptr(key, optval, optlen))
3088 return -EFAULT;
3089
3090 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3091 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3092
3093 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3094 }
3095 default:
3096 /* fallthru */
3097 break;
3098 }
3099
3100 if (optlen < sizeof(int))
3101 return -EINVAL;
3102
3103 if (copy_from_sockptr(&val, optval, sizeof(val)))
3104 return -EFAULT;
3105
3106 lock_sock(sk);
3107
3108 switch (optname) {
3109 case TCP_MAXSEG:
3110 /* Values greater than interface MTU won't take effect. However
3111 * at the point when this call is done we typically don't yet
3112 * know which interface is going to be used
3113 */
3114 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3115 err = -EINVAL;
3116 break;
3117 }
3118 tp->rx_opt.user_mss = val;
3119 break;
3120
3121 case TCP_NODELAY:
3122 __tcp_sock_set_nodelay(sk, val);
3123 break;
3124
3125 case TCP_THIN_LINEAR_TIMEOUTS:
3126 if (val < 0 || val > 1)
3127 err = -EINVAL;
3128 else
3129 tp->thin_lto = val;
3130 break;
3131
3132 case TCP_THIN_DUPACK:
3133 if (val < 0 || val > 1)
3134 err = -EINVAL;
3135 break;
3136
3137 case TCP_REPAIR:
3138 if (!tcp_can_repair_sock(sk))
3139 err = -EPERM;
3140 else if (val == TCP_REPAIR_ON) {
3141 tp->repair = 1;
3142 sk->sk_reuse = SK_FORCE_REUSE;
3143 tp->repair_queue = TCP_NO_QUEUE;
3144 } else if (val == TCP_REPAIR_OFF) {
3145 tp->repair = 0;
3146 sk->sk_reuse = SK_NO_REUSE;
3147 tcp_send_window_probe(sk);
3148 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3149 tp->repair = 0;
3150 sk->sk_reuse = SK_NO_REUSE;
3151 } else
3152 err = -EINVAL;
3153
3154 break;
3155
3156 case TCP_REPAIR_QUEUE:
3157 if (!tp->repair)
3158 err = -EPERM;
3159 else if ((unsigned int)val < TCP_QUEUES_NR)
3160 tp->repair_queue = val;
3161 else
3162 err = -EINVAL;
3163 break;
3164
3165 case TCP_QUEUE_SEQ:
3166 if (sk->sk_state != TCP_CLOSE)
3167 err = -EPERM;
3168 else if (tp->repair_queue == TCP_SEND_QUEUE)
3169 WRITE_ONCE(tp->write_seq, val);
3170 else if (tp->repair_queue == TCP_RECV_QUEUE) {
3171 WRITE_ONCE(tp->rcv_nxt, val);
3172 WRITE_ONCE(tp->copied_seq, val);
3173 }
3174 else
3175 err = -EINVAL;
3176 break;
3177
3178 case TCP_REPAIR_OPTIONS:
3179 if (!tp->repair)
3180 err = -EINVAL;
3181 else if (sk->sk_state == TCP_ESTABLISHED)
3182 err = tcp_repair_options_est(sk, optval, optlen);
3183 else
3184 err = -EPERM;
3185 break;
3186
3187 case TCP_CORK:
3188 __tcp_sock_set_cork(sk, val);
3189 break;
3190
3191 case TCP_KEEPIDLE:
3192 err = tcp_sock_set_keepidle_locked(sk, val);
3193 break;
3194 case TCP_KEEPINTVL:
3195 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3196 err = -EINVAL;
3197 else
3198 tp->keepalive_intvl = val * HZ;
3199 break;
3200 case TCP_KEEPCNT:
3201 if (val < 1 || val > MAX_TCP_KEEPCNT)
3202 err = -EINVAL;
3203 else
3204 tp->keepalive_probes = val;
3205 break;
3206 case TCP_SYNCNT:
3207 if (val < 1 || val > MAX_TCP_SYNCNT)
3208 err = -EINVAL;
3209 else
3210 icsk->icsk_syn_retries = val;
3211 break;
3212
3213 case TCP_SAVE_SYN:
3214 /* 0: disable, 1: enable, 2: start from ether_header */
3215 if (val < 0 || val > 2)
3216 err = -EINVAL;
3217 else
3218 tp->save_syn = val;
3219 break;
3220
3221 case TCP_LINGER2:
3222 if (val < 0)
3223 tp->linger2 = -1;
3224 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3225 tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3226 else
3227 tp->linger2 = val * HZ;
3228 break;
3229
3230 case TCP_DEFER_ACCEPT:
3231 /* Translate value in seconds to number of retransmits */
3232 icsk->icsk_accept_queue.rskq_defer_accept =
3233 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3234 TCP_RTO_MAX / HZ);
3235 break;
3236
3237 case TCP_WINDOW_CLAMP:
3238 if (!val) {
3239 if (sk->sk_state != TCP_CLOSE) {
3240 err = -EINVAL;
3241 break;
3242 }
3243 tp->window_clamp = 0;
3244 } else
3245 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3246 SOCK_MIN_RCVBUF / 2 : val;
3247 break;
3248
3249 case TCP_QUICKACK:
3250 __tcp_sock_set_quickack(sk, val);
3251 break;
3252
3253 #ifdef CONFIG_TCP_MD5SIG
3254 case TCP_MD5SIG:
3255 case TCP_MD5SIG_EXT:
3256 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3257 break;
3258 #endif
3259 case TCP_USER_TIMEOUT:
3260 /* Cap the max time in ms TCP will retry or probe the window
3261 * before giving up and aborting (ETIMEDOUT) a connection.
3262 */
3263 if (val < 0)
3264 err = -EINVAL;
3265 else
3266 icsk->icsk_user_timeout = val;
3267 break;
3268
3269 case TCP_FASTOPEN:
3270 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3271 TCPF_LISTEN))) {
3272 tcp_fastopen_init_key_once(net);
3273
3274 fastopen_queue_tune(sk, val);
3275 } else {
3276 err = -EINVAL;
3277 }
3278 break;
3279 case TCP_FASTOPEN_CONNECT:
3280 if (val > 1 || val < 0) {
3281 err = -EINVAL;
3282 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3283 if (sk->sk_state == TCP_CLOSE)
3284 tp->fastopen_connect = val;
3285 else
3286 err = -EINVAL;
3287 } else {
3288 err = -EOPNOTSUPP;
3289 }
3290 break;
3291 case TCP_FASTOPEN_NO_COOKIE:
3292 if (val > 1 || val < 0)
3293 err = -EINVAL;
3294 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3295 err = -EINVAL;
3296 else
3297 tp->fastopen_no_cookie = val;
3298 break;
3299 case TCP_TIMESTAMP:
3300 if (!tp->repair)
3301 err = -EPERM;
3302 else
3303 tp->tsoffset = val - tcp_time_stamp_raw();
3304 break;
3305 case TCP_REPAIR_WINDOW:
3306 err = tcp_repair_set_window(tp, optval, optlen);
3307 break;
3308 case TCP_NOTSENT_LOWAT:
3309 tp->notsent_lowat = val;
3310 sk->sk_write_space(sk);
3311 break;
3312 case TCP_INQ:
3313 if (val > 1 || val < 0)
3314 err = -EINVAL;
3315 else
3316 tp->recvmsg_inq = val;
3317 break;
3318 case TCP_TX_DELAY:
3319 if (val)
3320 tcp_enable_tx_delay();
3321 tp->tcp_tx_delay = val;
3322 break;
3323 default:
3324 err = -ENOPROTOOPT;
3325 break;
3326 }
3327
3328 release_sock(sk);
3329 return err;
3330 }
3331
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3332 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3333 unsigned int optlen)
3334 {
3335 const struct inet_connection_sock *icsk = inet_csk(sk);
3336
3337 if (level != SOL_TCP)
3338 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3339 optval, optlen);
3340 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3341 }
3342 EXPORT_SYMBOL(tcp_setsockopt);
3343
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3344 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3345 struct tcp_info *info)
3346 {
3347 u64 stats[__TCP_CHRONO_MAX], total = 0;
3348 enum tcp_chrono i;
3349
3350 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3351 stats[i] = tp->chrono_stat[i - 1];
3352 if (i == tp->chrono_type)
3353 stats[i] += tcp_jiffies32 - tp->chrono_start;
3354 stats[i] *= USEC_PER_SEC / HZ;
3355 total += stats[i];
3356 }
3357
3358 info->tcpi_busy_time = total;
3359 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3360 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3361 }
3362
3363 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3364 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3365 {
3366 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3367 const struct inet_connection_sock *icsk = inet_csk(sk);
3368 unsigned long rate;
3369 u32 now;
3370 u64 rate64;
3371 bool slow;
3372
3373 memset(info, 0, sizeof(*info));
3374 if (sk->sk_type != SOCK_STREAM)
3375 return;
3376
3377 info->tcpi_state = inet_sk_state_load(sk);
3378
3379 /* Report meaningful fields for all TCP states, including listeners */
3380 rate = READ_ONCE(sk->sk_pacing_rate);
3381 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3382 info->tcpi_pacing_rate = rate64;
3383
3384 rate = READ_ONCE(sk->sk_max_pacing_rate);
3385 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3386 info->tcpi_max_pacing_rate = rate64;
3387
3388 info->tcpi_reordering = tp->reordering;
3389 info->tcpi_snd_cwnd = tp->snd_cwnd;
3390
3391 if (info->tcpi_state == TCP_LISTEN) {
3392 /* listeners aliased fields :
3393 * tcpi_unacked -> Number of children ready for accept()
3394 * tcpi_sacked -> max backlog
3395 */
3396 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3397 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3398 return;
3399 }
3400
3401 slow = lock_sock_fast(sk);
3402
3403 info->tcpi_ca_state = icsk->icsk_ca_state;
3404 info->tcpi_retransmits = icsk->icsk_retransmits;
3405 info->tcpi_probes = icsk->icsk_probes_out;
3406 info->tcpi_backoff = icsk->icsk_backoff;
3407
3408 if (tp->rx_opt.tstamp_ok)
3409 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3410 if (tcp_is_sack(tp))
3411 info->tcpi_options |= TCPI_OPT_SACK;
3412 if (tp->rx_opt.wscale_ok) {
3413 info->tcpi_options |= TCPI_OPT_WSCALE;
3414 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3415 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3416 }
3417
3418 if (tp->ecn_flags & TCP_ECN_OK)
3419 info->tcpi_options |= TCPI_OPT_ECN;
3420 if (tp->ecn_flags & TCP_ECN_SEEN)
3421 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3422 if (tp->syn_data_acked)
3423 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3424
3425 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3426 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3427 info->tcpi_snd_mss = tp->mss_cache;
3428 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3429
3430 info->tcpi_unacked = tp->packets_out;
3431 info->tcpi_sacked = tp->sacked_out;
3432
3433 info->tcpi_lost = tp->lost_out;
3434 info->tcpi_retrans = tp->retrans_out;
3435
3436 now = tcp_jiffies32;
3437 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3438 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3439 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3440
3441 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3442 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3443 info->tcpi_rtt = tp->srtt_us >> 3;
3444 info->tcpi_rttvar = tp->mdev_us >> 2;
3445 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3446 info->tcpi_advmss = tp->advmss;
3447
3448 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3449 info->tcpi_rcv_space = tp->rcvq_space.space;
3450
3451 info->tcpi_total_retrans = tp->total_retrans;
3452
3453 info->tcpi_bytes_acked = tp->bytes_acked;
3454 info->tcpi_bytes_received = tp->bytes_received;
3455 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3456 tcp_get_info_chrono_stats(tp, info);
3457
3458 info->tcpi_segs_out = tp->segs_out;
3459 info->tcpi_segs_in = tp->segs_in;
3460
3461 info->tcpi_min_rtt = tcp_min_rtt(tp);
3462 info->tcpi_data_segs_in = tp->data_segs_in;
3463 info->tcpi_data_segs_out = tp->data_segs_out;
3464
3465 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3466 rate64 = tcp_compute_delivery_rate(tp);
3467 if (rate64)
3468 info->tcpi_delivery_rate = rate64;
3469 info->tcpi_delivered = tp->delivered;
3470 info->tcpi_delivered_ce = tp->delivered_ce;
3471 info->tcpi_bytes_sent = tp->bytes_sent;
3472 info->tcpi_bytes_retrans = tp->bytes_retrans;
3473 info->tcpi_dsack_dups = tp->dsack_dups;
3474 info->tcpi_reord_seen = tp->reord_seen;
3475 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3476 info->tcpi_snd_wnd = tp->snd_wnd;
3477 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3478 unlock_sock_fast(sk, slow);
3479 }
3480 EXPORT_SYMBOL_GPL(tcp_get_info);
3481
tcp_opt_stats_get_size(void)3482 static size_t tcp_opt_stats_get_size(void)
3483 {
3484 return
3485 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3486 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3487 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3488 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3489 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3490 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3491 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3492 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3493 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3494 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3495 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3496 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3497 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3498 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3499 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3500 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3501 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3502 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3503 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3504 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3505 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3506 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3507 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3508 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3509 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3510 0;
3511 }
3512
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb)3513 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3514 const struct sk_buff *orig_skb)
3515 {
3516 const struct tcp_sock *tp = tcp_sk(sk);
3517 struct sk_buff *stats;
3518 struct tcp_info info;
3519 unsigned long rate;
3520 u64 rate64;
3521
3522 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3523 if (!stats)
3524 return NULL;
3525
3526 tcp_get_info_chrono_stats(tp, &info);
3527 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3528 info.tcpi_busy_time, TCP_NLA_PAD);
3529 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3530 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3531 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3532 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3533 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3534 tp->data_segs_out, TCP_NLA_PAD);
3535 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3536 tp->total_retrans, TCP_NLA_PAD);
3537
3538 rate = READ_ONCE(sk->sk_pacing_rate);
3539 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3540 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3541
3542 rate64 = tcp_compute_delivery_rate(tp);
3543 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3544
3545 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3546 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3547 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3548
3549 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3550 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3551 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3552 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3553 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3554
3555 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3556 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3557
3558 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3559 TCP_NLA_PAD);
3560 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3561 TCP_NLA_PAD);
3562 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3563 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3564 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3565 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3566 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3567 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3568 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3569 TCP_NLA_PAD);
3570
3571 return stats;
3572 }
3573
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3574 static int do_tcp_getsockopt(struct sock *sk, int level,
3575 int optname, char __user *optval, int __user *optlen)
3576 {
3577 struct inet_connection_sock *icsk = inet_csk(sk);
3578 struct tcp_sock *tp = tcp_sk(sk);
3579 struct net *net = sock_net(sk);
3580 int val, len;
3581
3582 if (get_user(len, optlen))
3583 return -EFAULT;
3584
3585 len = min_t(unsigned int, len, sizeof(int));
3586
3587 if (len < 0)
3588 return -EINVAL;
3589
3590 switch (optname) {
3591 case TCP_MAXSEG:
3592 val = tp->mss_cache;
3593 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3594 val = tp->rx_opt.user_mss;
3595 if (tp->repair)
3596 val = tp->rx_opt.mss_clamp;
3597 break;
3598 case TCP_NODELAY:
3599 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3600 break;
3601 case TCP_CORK:
3602 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3603 break;
3604 case TCP_KEEPIDLE:
3605 val = keepalive_time_when(tp) / HZ;
3606 break;
3607 case TCP_KEEPINTVL:
3608 val = keepalive_intvl_when(tp) / HZ;
3609 break;
3610 case TCP_KEEPCNT:
3611 val = keepalive_probes(tp);
3612 break;
3613 case TCP_SYNCNT:
3614 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3615 break;
3616 case TCP_LINGER2:
3617 val = tp->linger2;
3618 if (val >= 0)
3619 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3620 break;
3621 case TCP_DEFER_ACCEPT:
3622 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3623 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3624 break;
3625 case TCP_WINDOW_CLAMP:
3626 val = tp->window_clamp;
3627 break;
3628 case TCP_INFO: {
3629 struct tcp_info info;
3630
3631 if (get_user(len, optlen))
3632 return -EFAULT;
3633
3634 tcp_get_info(sk, &info);
3635
3636 len = min_t(unsigned int, len, sizeof(info));
3637 if (put_user(len, optlen))
3638 return -EFAULT;
3639 if (copy_to_user(optval, &info, len))
3640 return -EFAULT;
3641 return 0;
3642 }
3643 case TCP_CC_INFO: {
3644 const struct tcp_congestion_ops *ca_ops;
3645 union tcp_cc_info info;
3646 size_t sz = 0;
3647 int attr;
3648
3649 if (get_user(len, optlen))
3650 return -EFAULT;
3651
3652 ca_ops = icsk->icsk_ca_ops;
3653 if (ca_ops && ca_ops->get_info)
3654 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3655
3656 len = min_t(unsigned int, len, sz);
3657 if (put_user(len, optlen))
3658 return -EFAULT;
3659 if (copy_to_user(optval, &info, len))
3660 return -EFAULT;
3661 return 0;
3662 }
3663 case TCP_QUICKACK:
3664 val = !inet_csk_in_pingpong_mode(sk);
3665 break;
3666
3667 case TCP_CONGESTION:
3668 if (get_user(len, optlen))
3669 return -EFAULT;
3670 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3671 if (put_user(len, optlen))
3672 return -EFAULT;
3673 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3674 return -EFAULT;
3675 return 0;
3676
3677 case TCP_ULP:
3678 if (get_user(len, optlen))
3679 return -EFAULT;
3680 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3681 if (!icsk->icsk_ulp_ops) {
3682 if (put_user(0, optlen))
3683 return -EFAULT;
3684 return 0;
3685 }
3686 if (put_user(len, optlen))
3687 return -EFAULT;
3688 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3689 return -EFAULT;
3690 return 0;
3691
3692 case TCP_FASTOPEN_KEY: {
3693 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3694 unsigned int key_len;
3695
3696 if (get_user(len, optlen))
3697 return -EFAULT;
3698
3699 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3700 TCP_FASTOPEN_KEY_LENGTH;
3701 len = min_t(unsigned int, len, key_len);
3702 if (put_user(len, optlen))
3703 return -EFAULT;
3704 if (copy_to_user(optval, key, len))
3705 return -EFAULT;
3706 return 0;
3707 }
3708 case TCP_THIN_LINEAR_TIMEOUTS:
3709 val = tp->thin_lto;
3710 break;
3711
3712 case TCP_THIN_DUPACK:
3713 val = 0;
3714 break;
3715
3716 case TCP_REPAIR:
3717 val = tp->repair;
3718 break;
3719
3720 case TCP_REPAIR_QUEUE:
3721 if (tp->repair)
3722 val = tp->repair_queue;
3723 else
3724 return -EINVAL;
3725 break;
3726
3727 case TCP_REPAIR_WINDOW: {
3728 struct tcp_repair_window opt;
3729
3730 if (get_user(len, optlen))
3731 return -EFAULT;
3732
3733 if (len != sizeof(opt))
3734 return -EINVAL;
3735
3736 if (!tp->repair)
3737 return -EPERM;
3738
3739 opt.snd_wl1 = tp->snd_wl1;
3740 opt.snd_wnd = tp->snd_wnd;
3741 opt.max_window = tp->max_window;
3742 opt.rcv_wnd = tp->rcv_wnd;
3743 opt.rcv_wup = tp->rcv_wup;
3744
3745 if (copy_to_user(optval, &opt, len))
3746 return -EFAULT;
3747 return 0;
3748 }
3749 case TCP_QUEUE_SEQ:
3750 if (tp->repair_queue == TCP_SEND_QUEUE)
3751 val = tp->write_seq;
3752 else if (tp->repair_queue == TCP_RECV_QUEUE)
3753 val = tp->rcv_nxt;
3754 else
3755 return -EINVAL;
3756 break;
3757
3758 case TCP_USER_TIMEOUT:
3759 val = icsk->icsk_user_timeout;
3760 break;
3761
3762 case TCP_FASTOPEN:
3763 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3764 break;
3765
3766 case TCP_FASTOPEN_CONNECT:
3767 val = tp->fastopen_connect;
3768 break;
3769
3770 case TCP_FASTOPEN_NO_COOKIE:
3771 val = tp->fastopen_no_cookie;
3772 break;
3773
3774 case TCP_TX_DELAY:
3775 val = tp->tcp_tx_delay;
3776 break;
3777
3778 case TCP_TIMESTAMP:
3779 val = tcp_time_stamp_raw() + tp->tsoffset;
3780 break;
3781 case TCP_NOTSENT_LOWAT:
3782 val = tp->notsent_lowat;
3783 break;
3784 case TCP_INQ:
3785 val = tp->recvmsg_inq;
3786 break;
3787 case TCP_SAVE_SYN:
3788 val = tp->save_syn;
3789 break;
3790 case TCP_SAVED_SYN: {
3791 if (get_user(len, optlen))
3792 return -EFAULT;
3793
3794 lock_sock(sk);
3795 if (tp->saved_syn) {
3796 if (len < tcp_saved_syn_len(tp->saved_syn)) {
3797 if (put_user(tcp_saved_syn_len(tp->saved_syn),
3798 optlen)) {
3799 release_sock(sk);
3800 return -EFAULT;
3801 }
3802 release_sock(sk);
3803 return -EINVAL;
3804 }
3805 len = tcp_saved_syn_len(tp->saved_syn);
3806 if (put_user(len, optlen)) {
3807 release_sock(sk);
3808 return -EFAULT;
3809 }
3810 if (copy_to_user(optval, tp->saved_syn->data, len)) {
3811 release_sock(sk);
3812 return -EFAULT;
3813 }
3814 tcp_saved_syn_free(tp);
3815 release_sock(sk);
3816 } else {
3817 release_sock(sk);
3818 len = 0;
3819 if (put_user(len, optlen))
3820 return -EFAULT;
3821 }
3822 return 0;
3823 }
3824 #ifdef CONFIG_MMU
3825 case TCP_ZEROCOPY_RECEIVE: {
3826 struct tcp_zerocopy_receive zc;
3827 int err;
3828
3829 if (get_user(len, optlen))
3830 return -EFAULT;
3831 if (len < offsetofend(struct tcp_zerocopy_receive, length))
3832 return -EINVAL;
3833 if (len > sizeof(zc)) {
3834 len = sizeof(zc);
3835 if (put_user(len, optlen))
3836 return -EFAULT;
3837 }
3838 if (copy_from_user(&zc, optval, len))
3839 return -EFAULT;
3840 lock_sock(sk);
3841 err = tcp_zerocopy_receive(sk, &zc);
3842 release_sock(sk);
3843 if (len == sizeof(zc))
3844 goto zerocopy_rcv_sk_err;
3845 switch (len) {
3846 case offsetofend(struct tcp_zerocopy_receive, err):
3847 goto zerocopy_rcv_sk_err;
3848 case offsetofend(struct tcp_zerocopy_receive, inq):
3849 goto zerocopy_rcv_inq;
3850 case offsetofend(struct tcp_zerocopy_receive, length):
3851 default:
3852 goto zerocopy_rcv_out;
3853 }
3854 zerocopy_rcv_sk_err:
3855 if (!err)
3856 zc.err = sock_error(sk);
3857 zerocopy_rcv_inq:
3858 zc.inq = tcp_inq_hint(sk);
3859 zerocopy_rcv_out:
3860 if (!err && copy_to_user(optval, &zc, len))
3861 err = -EFAULT;
3862 return err;
3863 }
3864 #endif
3865 default:
3866 return -ENOPROTOOPT;
3867 }
3868
3869 if (put_user(len, optlen))
3870 return -EFAULT;
3871 if (copy_to_user(optval, &val, len))
3872 return -EFAULT;
3873 return 0;
3874 }
3875
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3876 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3877 int __user *optlen)
3878 {
3879 struct inet_connection_sock *icsk = inet_csk(sk);
3880
3881 if (level != SOL_TCP)
3882 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3883 optval, optlen);
3884 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3885 }
3886 EXPORT_SYMBOL(tcp_getsockopt);
3887
3888 #ifdef CONFIG_TCP_MD5SIG
3889 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3890 static DEFINE_MUTEX(tcp_md5sig_mutex);
3891 static bool tcp_md5sig_pool_populated = false;
3892
__tcp_alloc_md5sig_pool(void)3893 static void __tcp_alloc_md5sig_pool(void)
3894 {
3895 struct crypto_ahash *hash;
3896 int cpu;
3897
3898 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3899 if (IS_ERR(hash))
3900 return;
3901
3902 for_each_possible_cpu(cpu) {
3903 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3904 struct ahash_request *req;
3905
3906 if (!scratch) {
3907 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3908 sizeof(struct tcphdr),
3909 GFP_KERNEL,
3910 cpu_to_node(cpu));
3911 if (!scratch)
3912 return;
3913 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3914 }
3915 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3916 continue;
3917
3918 req = ahash_request_alloc(hash, GFP_KERNEL);
3919 if (!req)
3920 return;
3921
3922 ahash_request_set_callback(req, 0, NULL, NULL);
3923
3924 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3925 }
3926 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3927 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3928 */
3929 smp_wmb();
3930 tcp_md5sig_pool_populated = true;
3931 }
3932
tcp_alloc_md5sig_pool(void)3933 bool tcp_alloc_md5sig_pool(void)
3934 {
3935 if (unlikely(!tcp_md5sig_pool_populated)) {
3936 mutex_lock(&tcp_md5sig_mutex);
3937
3938 if (!tcp_md5sig_pool_populated) {
3939 __tcp_alloc_md5sig_pool();
3940 if (tcp_md5sig_pool_populated)
3941 static_branch_inc(&tcp_md5_needed);
3942 }
3943
3944 mutex_unlock(&tcp_md5sig_mutex);
3945 }
3946 return tcp_md5sig_pool_populated;
3947 }
3948 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3949
3950
3951 /**
3952 * tcp_get_md5sig_pool - get md5sig_pool for this user
3953 *
3954 * We use percpu structure, so if we succeed, we exit with preemption
3955 * and BH disabled, to make sure another thread or softirq handling
3956 * wont try to get same context.
3957 */
tcp_get_md5sig_pool(void)3958 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3959 {
3960 local_bh_disable();
3961
3962 if (tcp_md5sig_pool_populated) {
3963 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3964 smp_rmb();
3965 return this_cpu_ptr(&tcp_md5sig_pool);
3966 }
3967 local_bh_enable();
3968 return NULL;
3969 }
3970 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3971
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)3972 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3973 const struct sk_buff *skb, unsigned int header_len)
3974 {
3975 struct scatterlist sg;
3976 const struct tcphdr *tp = tcp_hdr(skb);
3977 struct ahash_request *req = hp->md5_req;
3978 unsigned int i;
3979 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3980 skb_headlen(skb) - header_len : 0;
3981 const struct skb_shared_info *shi = skb_shinfo(skb);
3982 struct sk_buff *frag_iter;
3983
3984 sg_init_table(&sg, 1);
3985
3986 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3987 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3988 if (crypto_ahash_update(req))
3989 return 1;
3990
3991 for (i = 0; i < shi->nr_frags; ++i) {
3992 const skb_frag_t *f = &shi->frags[i];
3993 unsigned int offset = skb_frag_off(f);
3994 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3995
3996 sg_set_page(&sg, page, skb_frag_size(f),
3997 offset_in_page(offset));
3998 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3999 if (crypto_ahash_update(req))
4000 return 1;
4001 }
4002
4003 skb_walk_frags(skb, frag_iter)
4004 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4005 return 1;
4006
4007 return 0;
4008 }
4009 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4010
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4011 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4012 {
4013 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4014 struct scatterlist sg;
4015
4016 sg_init_one(&sg, key->key, keylen);
4017 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4018
4019 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4020 return data_race(crypto_ahash_update(hp->md5_req));
4021 }
4022 EXPORT_SYMBOL(tcp_md5_hash_key);
4023
4024 #endif
4025
tcp_done(struct sock * sk)4026 void tcp_done(struct sock *sk)
4027 {
4028 struct request_sock *req;
4029
4030 /* We might be called with a new socket, after
4031 * inet_csk_prepare_forced_close() has been called
4032 * so we can not use lockdep_sock_is_held(sk)
4033 */
4034 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4035
4036 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4037 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4038
4039 tcp_set_state(sk, TCP_CLOSE);
4040 tcp_clear_xmit_timers(sk);
4041 if (req)
4042 reqsk_fastopen_remove(sk, req, false);
4043
4044 sk->sk_shutdown = SHUTDOWN_MASK;
4045
4046 if (!sock_flag(sk, SOCK_DEAD))
4047 sk->sk_state_change(sk);
4048 else
4049 inet_csk_destroy_sock(sk);
4050 }
4051 EXPORT_SYMBOL_GPL(tcp_done);
4052
tcp_abort(struct sock * sk,int err)4053 int tcp_abort(struct sock *sk, int err)
4054 {
4055 if (!sk_fullsock(sk)) {
4056 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4057 struct request_sock *req = inet_reqsk(sk);
4058
4059 local_bh_disable();
4060 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4061 local_bh_enable();
4062 return 0;
4063 }
4064 return -EOPNOTSUPP;
4065 }
4066
4067 /* Don't race with userspace socket closes such as tcp_close. */
4068 lock_sock(sk);
4069
4070 if (sk->sk_state == TCP_LISTEN) {
4071 tcp_set_state(sk, TCP_CLOSE);
4072 inet_csk_listen_stop(sk);
4073 }
4074
4075 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4076 local_bh_disable();
4077 bh_lock_sock(sk);
4078
4079 if (!sock_flag(sk, SOCK_DEAD)) {
4080 sk->sk_err = err;
4081 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4082 smp_wmb();
4083 sk->sk_error_report(sk);
4084 if (tcp_need_reset(sk->sk_state))
4085 tcp_send_active_reset(sk, GFP_ATOMIC);
4086 tcp_done(sk);
4087 }
4088
4089 bh_unlock_sock(sk);
4090 local_bh_enable();
4091 tcp_write_queue_purge(sk);
4092 release_sock(sk);
4093 return 0;
4094 }
4095 EXPORT_SYMBOL_GPL(tcp_abort);
4096
4097 extern struct tcp_congestion_ops tcp_reno;
4098
4099 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4100 static int __init set_thash_entries(char *str)
4101 {
4102 ssize_t ret;
4103
4104 if (!str)
4105 return 0;
4106
4107 ret = kstrtoul(str, 0, &thash_entries);
4108 if (ret)
4109 return 0;
4110
4111 return 1;
4112 }
4113 __setup("thash_entries=", set_thash_entries);
4114
tcp_init_mem(void)4115 static void __init tcp_init_mem(void)
4116 {
4117 unsigned long limit = nr_free_buffer_pages() / 16;
4118
4119 limit = max(limit, 128UL);
4120 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4121 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4122 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4123 }
4124
tcp_init(void)4125 void __init tcp_init(void)
4126 {
4127 int max_rshare, max_wshare, cnt;
4128 unsigned long limit;
4129 unsigned int i;
4130
4131 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4132 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4133 sizeof_field(struct sk_buff, cb));
4134
4135 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4136 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
4137 inet_hashinfo_init(&tcp_hashinfo);
4138 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4139 thash_entries, 21, /* one slot per 2 MB*/
4140 0, 64 * 1024);
4141 tcp_hashinfo.bind_bucket_cachep =
4142 kmem_cache_create("tcp_bind_bucket",
4143 sizeof(struct inet_bind_bucket), 0,
4144 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4145
4146 /* Size and allocate the main established and bind bucket
4147 * hash tables.
4148 *
4149 * The methodology is similar to that of the buffer cache.
4150 */
4151 tcp_hashinfo.ehash =
4152 alloc_large_system_hash("TCP established",
4153 sizeof(struct inet_ehash_bucket),
4154 thash_entries,
4155 17, /* one slot per 128 KB of memory */
4156 0,
4157 NULL,
4158 &tcp_hashinfo.ehash_mask,
4159 0,
4160 thash_entries ? 0 : 512 * 1024);
4161 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4162 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4163
4164 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4165 panic("TCP: failed to alloc ehash_locks");
4166 tcp_hashinfo.bhash =
4167 alloc_large_system_hash("TCP bind",
4168 sizeof(struct inet_bind_hashbucket),
4169 tcp_hashinfo.ehash_mask + 1,
4170 17, /* one slot per 128 KB of memory */
4171 0,
4172 &tcp_hashinfo.bhash_size,
4173 NULL,
4174 0,
4175 64 * 1024);
4176 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4177 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4178 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4179 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4180 }
4181
4182
4183 cnt = tcp_hashinfo.ehash_mask + 1;
4184 sysctl_tcp_max_orphans = cnt / 2;
4185
4186 tcp_init_mem();
4187 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4188 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4189 max_wshare = min(4UL*1024*1024, limit);
4190 max_rshare = min(6UL*1024*1024, limit);
4191
4192 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4193 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4194 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4195
4196 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4197 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4198 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4199
4200 pr_info("Hash tables configured (established %u bind %u)\n",
4201 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4202
4203 tcp_v4_init();
4204 tcp_metrics_init();
4205 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4206 tcp_tasklet_init();
4207 mptcp_init();
4208 }
4209