1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 /* Track pending CMSGs. */
284 enum {
285 TCP_CMSG_INQ = 1,
286 TCP_CMSG_TS = 2
287 };
288
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304
305 /*
306 * Current number of TCP sockets.
307 */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310
311 /*
312 * TCP splice context
313 */
314 struct tcp_splice_state {
315 struct pipe_inode_info *pipe;
316 size_t len;
317 unsigned int flags;
318 };
319
320 /*
321 * Pressure flag: try to collapse.
322 * Technical note: it is used by multiple contexts non atomically.
323 * All the __sk_mem_schedule() is of this nature: accounting
324 * is strict, actions are advisory and have some latency.
325 */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328
tcp_enter_memory_pressure(struct sock * sk)329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 unsigned long val;
332
333 if (READ_ONCE(tcp_memory_pressure))
334 return;
335 val = jiffies;
336
337 if (!val)
338 val--;
339 if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343
tcp_leave_memory_pressure(struct sock * sk)344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 unsigned long val;
347
348 if (!READ_ONCE(tcp_memory_pressure))
349 return;
350 val = xchg(&tcp_memory_pressure, 0);
351 if (val)
352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356
357 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 u8 res = 0;
361
362 if (seconds > 0) {
363 int period = timeout;
364
365 res = 1;
366 while (seconds > period && res < 255) {
367 res++;
368 timeout <<= 1;
369 if (timeout > rto_max)
370 timeout = rto_max;
371 period += timeout;
372 }
373 }
374 return res;
375 }
376
377 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 int period = 0;
381
382 if (retrans > 0) {
383 period = timeout;
384 while (--retrans) {
385 timeout <<= 1;
386 if (timeout > rto_max)
387 timeout = rto_max;
388 period += timeout;
389 }
390 }
391 return period;
392 }
393
tcp_compute_delivery_rate(const struct tcp_sock * tp)394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 u32 rate = READ_ONCE(tp->rate_delivered);
397 u32 intv = READ_ONCE(tp->rate_interval_us);
398 u64 rate64 = 0;
399
400 if (rate && intv) {
401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 do_div(rate64, intv);
403 }
404 return rate64;
405 }
406
407 /* Address-family independent initialization for a tcp_sock.
408 *
409 * NOTE: A lot of things set to zero explicitly by call to
410 * sk_alloc() so need not be done here.
411 */
tcp_init_sock(struct sock * sk)412 void tcp_init_sock(struct sock *sk)
413 {
414 struct inet_connection_sock *icsk = inet_csk(sk);
415 struct tcp_sock *tp = tcp_sk(sk);
416
417 tp->out_of_order_queue = RB_ROOT;
418 sk->tcp_rtx_queue = RB_ROOT;
419 tcp_init_xmit_timers(sk);
420 INIT_LIST_HEAD(&tp->tsq_node);
421 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422
423 icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 icsk->icsk_rto_min = TCP_RTO_MIN;
425 icsk->icsk_delack_max = TCP_DELACK_MAX;
426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428
429 /* So many TCP implementations out there (incorrectly) count the
430 * initial SYN frame in their delayed-ACK and congestion control
431 * algorithms that we must have the following bandaid to talk
432 * efficiently to them. -DaveM
433 */
434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435
436 /* There's a bubble in the pipe until at least the first ACK. */
437 tp->app_limited = ~0U;
438
439 /* See draft-stevens-tcpca-spec-01 for discussion of the
440 * initialization of these values.
441 */
442 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
443 tp->snd_cwnd_clamp = ~0;
444 tp->mss_cache = TCP_MSS_DEFAULT;
445
446 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
447 tcp_assign_congestion_control(sk);
448
449 tp->tsoffset = 0;
450 tp->rack.reo_wnd_steps = 1;
451
452 sk->sk_write_space = sk_stream_write_space;
453 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
454
455 icsk->icsk_sync_mss = tcp_sync_mss;
456
457 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
458 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
459
460 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
461 sk_sockets_allocated_inc(sk);
462 }
463 EXPORT_SYMBOL(tcp_init_sock);
464
tcp_tx_timestamp(struct sock * sk,u16 tsflags)465 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
466 {
467 struct sk_buff *skb = tcp_write_queue_tail(sk);
468
469 if (tsflags && skb) {
470 struct skb_shared_info *shinfo = skb_shinfo(skb);
471 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
472
473 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
474 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
475 tcb->txstamp_ack = 1;
476 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
477 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
478 }
479 }
480
tcp_stream_is_readable(struct sock * sk,int target)481 static bool tcp_stream_is_readable(struct sock *sk, int target)
482 {
483 if (tcp_epollin_ready(sk, target))
484 return true;
485 return sk_is_readable(sk);
486 }
487
488 /*
489 * Wait for a TCP event.
490 *
491 * Note that we don't need to lock the socket, as the upper poll layers
492 * take care of normal races (between the test and the event) and we don't
493 * go look at any of the socket buffers directly.
494 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)495 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
496 {
497 __poll_t mask;
498 struct sock *sk = sock->sk;
499 const struct tcp_sock *tp = tcp_sk(sk);
500 int state;
501
502 sock_poll_wait(file, sock, wait);
503
504 state = inet_sk_state_load(sk);
505 if (state == TCP_LISTEN)
506 return inet_csk_listen_poll(sk);
507
508 /* Socket is not locked. We are protected from async events
509 * by poll logic and correct handling of state changes
510 * made by other threads is impossible in any case.
511 */
512
513 mask = 0;
514
515 /*
516 * EPOLLHUP is certainly not done right. But poll() doesn't
517 * have a notion of HUP in just one direction, and for a
518 * socket the read side is more interesting.
519 *
520 * Some poll() documentation says that EPOLLHUP is incompatible
521 * with the EPOLLOUT/POLLWR flags, so somebody should check this
522 * all. But careful, it tends to be safer to return too many
523 * bits than too few, and you can easily break real applications
524 * if you don't tell them that something has hung up!
525 *
526 * Check-me.
527 *
528 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
529 * our fs/select.c). It means that after we received EOF,
530 * poll always returns immediately, making impossible poll() on write()
531 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
532 * if and only if shutdown has been made in both directions.
533 * Actually, it is interesting to look how Solaris and DUX
534 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
535 * then we could set it on SND_SHUTDOWN. BTW examples given
536 * in Stevens' books assume exactly this behaviour, it explains
537 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
538 *
539 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
540 * blocking on fresh not-connected or disconnected socket. --ANK
541 */
542 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
543 mask |= EPOLLHUP;
544 if (sk->sk_shutdown & RCV_SHUTDOWN)
545 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
546
547 /* Connected or passive Fast Open socket? */
548 if (state != TCP_SYN_SENT &&
549 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
550 int target = sock_rcvlowat(sk, 0, INT_MAX);
551 u16 urg_data = READ_ONCE(tp->urg_data);
552
553 if (unlikely(urg_data) &&
554 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
555 !sock_flag(sk, SOCK_URGINLINE))
556 target++;
557
558 if (tcp_stream_is_readable(sk, target))
559 mask |= EPOLLIN | EPOLLRDNORM;
560
561 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
562 if (__sk_stream_is_writeable(sk, 1)) {
563 mask |= EPOLLOUT | EPOLLWRNORM;
564 } else { /* send SIGIO later */
565 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
566 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
567
568 /* Race breaker. If space is freed after
569 * wspace test but before the flags are set,
570 * IO signal will be lost. Memory barrier
571 * pairs with the input side.
572 */
573 smp_mb__after_atomic();
574 if (__sk_stream_is_writeable(sk, 1))
575 mask |= EPOLLOUT | EPOLLWRNORM;
576 }
577 } else
578 mask |= EPOLLOUT | EPOLLWRNORM;
579
580 if (urg_data & TCP_URG_VALID)
581 mask |= EPOLLPRI;
582 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
583 /* Active TCP fastopen socket with defer_connect
584 * Return EPOLLOUT so application can call write()
585 * in order for kernel to generate SYN+data
586 */
587 mask |= EPOLLOUT | EPOLLWRNORM;
588 }
589 /* This barrier is coupled with smp_wmb() in tcp_reset() */
590 smp_rmb();
591 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
592 mask |= EPOLLERR;
593
594 return mask;
595 }
596 EXPORT_SYMBOL(tcp_poll);
597
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)598 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
599 {
600 struct tcp_sock *tp = tcp_sk(sk);
601 int answ;
602 bool slow;
603
604 switch (cmd) {
605 case SIOCINQ:
606 if (sk->sk_state == TCP_LISTEN)
607 return -EINVAL;
608
609 slow = lock_sock_fast(sk);
610 answ = tcp_inq(sk);
611 unlock_sock_fast(sk, slow);
612 break;
613 case SIOCATMARK:
614 answ = READ_ONCE(tp->urg_data) &&
615 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
616 break;
617 case SIOCOUTQ:
618 if (sk->sk_state == TCP_LISTEN)
619 return -EINVAL;
620
621 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
622 answ = 0;
623 else
624 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
625 break;
626 case SIOCOUTQNSD:
627 if (sk->sk_state == TCP_LISTEN)
628 return -EINVAL;
629
630 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
631 answ = 0;
632 else
633 answ = READ_ONCE(tp->write_seq) -
634 READ_ONCE(tp->snd_nxt);
635 break;
636 default:
637 return -ENOIOCTLCMD;
638 }
639
640 return put_user(answ, (int __user *)arg);
641 }
642 EXPORT_SYMBOL(tcp_ioctl);
643
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)644 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
645 {
646 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
647 tp->pushed_seq = tp->write_seq;
648 }
649
forced_push(const struct tcp_sock * tp)650 static inline bool forced_push(const struct tcp_sock *tp)
651 {
652 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
653 }
654
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)655 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
656 {
657 struct tcp_sock *tp = tcp_sk(sk);
658 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
659
660 tcb->seq = tcb->end_seq = tp->write_seq;
661 tcb->tcp_flags = TCPHDR_ACK;
662 __skb_header_release(skb);
663 tcp_add_write_queue_tail(sk, skb);
664 sk_wmem_queued_add(sk, skb->truesize);
665 sk_mem_charge(sk, skb->truesize);
666 if (tp->nonagle & TCP_NAGLE_PUSH)
667 tp->nonagle &= ~TCP_NAGLE_PUSH;
668
669 tcp_slow_start_after_idle_check(sk);
670 }
671
tcp_mark_urg(struct tcp_sock * tp,int flags)672 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
673 {
674 if (flags & MSG_OOB)
675 tp->snd_up = tp->write_seq;
676 }
677
678 /* If a not yet filled skb is pushed, do not send it if
679 * we have data packets in Qdisc or NIC queues :
680 * Because TX completion will happen shortly, it gives a chance
681 * to coalesce future sendmsg() payload into this skb, without
682 * need for a timer, and with no latency trade off.
683 * As packets containing data payload have a bigger truesize
684 * than pure acks (dataless) packets, the last checks prevent
685 * autocorking if we only have an ACK in Qdisc/NIC queues,
686 * or if TX completion was delayed after we processed ACK packet.
687 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)688 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
689 int size_goal)
690 {
691 return skb->len < size_goal &&
692 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
693 !tcp_rtx_queue_empty(sk) &&
694 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
695 tcp_skb_can_collapse_to(skb);
696 }
697
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)698 void tcp_push(struct sock *sk, int flags, int mss_now,
699 int nonagle, int size_goal)
700 {
701 struct tcp_sock *tp = tcp_sk(sk);
702 struct sk_buff *skb;
703
704 skb = tcp_write_queue_tail(sk);
705 if (!skb)
706 return;
707 if (!(flags & MSG_MORE) || forced_push(tp))
708 tcp_mark_push(tp, skb);
709
710 tcp_mark_urg(tp, flags);
711
712 if (tcp_should_autocork(sk, skb, size_goal)) {
713
714 /* avoid atomic op if TSQ_THROTTLED bit is already set */
715 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
716 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
717 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
718 }
719 /* It is possible TX completion already happened
720 * before we set TSQ_THROTTLED.
721 */
722 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
723 return;
724 }
725
726 if (flags & MSG_MORE)
727 nonagle = TCP_NAGLE_CORK;
728
729 __tcp_push_pending_frames(sk, mss_now, nonagle);
730 }
731
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)732 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
733 unsigned int offset, size_t len)
734 {
735 struct tcp_splice_state *tss = rd_desc->arg.data;
736 int ret;
737
738 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
739 min(rd_desc->count, len), tss->flags);
740 if (ret > 0)
741 rd_desc->count -= ret;
742 return ret;
743 }
744
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)745 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
746 {
747 /* Store TCP splice context information in read_descriptor_t. */
748 read_descriptor_t rd_desc = {
749 .arg.data = tss,
750 .count = tss->len,
751 };
752
753 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
754 }
755
756 /**
757 * tcp_splice_read - splice data from TCP socket to a pipe
758 * @sock: socket to splice from
759 * @ppos: position (not valid)
760 * @pipe: pipe to splice to
761 * @len: number of bytes to splice
762 * @flags: splice modifier flags
763 *
764 * Description:
765 * Will read pages from given socket and fill them into a pipe.
766 *
767 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)768 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
769 struct pipe_inode_info *pipe, size_t len,
770 unsigned int flags)
771 {
772 struct sock *sk = sock->sk;
773 struct tcp_splice_state tss = {
774 .pipe = pipe,
775 .len = len,
776 .flags = flags,
777 };
778 long timeo;
779 ssize_t spliced;
780 int ret;
781
782 sock_rps_record_flow(sk);
783 /*
784 * We can't seek on a socket input
785 */
786 if (unlikely(*ppos))
787 return -ESPIPE;
788
789 ret = spliced = 0;
790
791 lock_sock(sk);
792
793 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
794 while (tss.len) {
795 ret = __tcp_splice_read(sk, &tss);
796 if (ret < 0)
797 break;
798 else if (!ret) {
799 if (spliced)
800 break;
801 if (sock_flag(sk, SOCK_DONE))
802 break;
803 if (sk->sk_err) {
804 ret = sock_error(sk);
805 break;
806 }
807 if (sk->sk_shutdown & RCV_SHUTDOWN)
808 break;
809 if (sk->sk_state == TCP_CLOSE) {
810 /*
811 * This occurs when user tries to read
812 * from never connected socket.
813 */
814 ret = -ENOTCONN;
815 break;
816 }
817 if (!timeo) {
818 ret = -EAGAIN;
819 break;
820 }
821 /* if __tcp_splice_read() got nothing while we have
822 * an skb in receive queue, we do not want to loop.
823 * This might happen with URG data.
824 */
825 if (!skb_queue_empty(&sk->sk_receive_queue))
826 break;
827 sk_wait_data(sk, &timeo, NULL);
828 if (signal_pending(current)) {
829 ret = sock_intr_errno(timeo);
830 break;
831 }
832 continue;
833 }
834 tss.len -= ret;
835 spliced += ret;
836
837 if (!timeo)
838 break;
839 release_sock(sk);
840 lock_sock(sk);
841
842 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
843 (sk->sk_shutdown & RCV_SHUTDOWN) ||
844 signal_pending(current))
845 break;
846 }
847
848 release_sock(sk);
849
850 if (spliced)
851 return spliced;
852
853 return ret;
854 }
855 EXPORT_SYMBOL(tcp_splice_read);
856
tcp_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)857 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
858 bool force_schedule)
859 {
860 struct sk_buff *skb;
861
862 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
863 if (likely(skb)) {
864 bool mem_scheduled;
865
866 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
867 if (force_schedule) {
868 mem_scheduled = true;
869 sk_forced_mem_schedule(sk, skb->truesize);
870 } else {
871 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
872 }
873 if (likely(mem_scheduled)) {
874 skb_reserve(skb, MAX_TCP_HEADER);
875 skb->ip_summed = CHECKSUM_PARTIAL;
876 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
877 return skb;
878 }
879 __kfree_skb(skb);
880 } else {
881 sk->sk_prot->enter_memory_pressure(sk);
882 sk_stream_moderate_sndbuf(sk);
883 }
884 return NULL;
885 }
886
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)887 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
888 int large_allowed)
889 {
890 struct tcp_sock *tp = tcp_sk(sk);
891 u32 new_size_goal, size_goal;
892
893 if (!large_allowed)
894 return mss_now;
895
896 /* Note : tcp_tso_autosize() will eventually split this later */
897 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
898
899 /* We try hard to avoid divides here */
900 size_goal = tp->gso_segs * mss_now;
901 if (unlikely(new_size_goal < size_goal ||
902 new_size_goal >= size_goal + mss_now)) {
903 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
904 sk->sk_gso_max_segs);
905 size_goal = tp->gso_segs * mss_now;
906 }
907
908 return max(size_goal, mss_now);
909 }
910
tcp_send_mss(struct sock * sk,int * size_goal,int flags)911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
912 {
913 int mss_now;
914
915 mss_now = tcp_current_mss(sk);
916 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
917
918 return mss_now;
919 }
920
921 /* In some cases, both sendpage() and sendmsg() could have added
922 * an skb to the write queue, but failed adding payload on it.
923 * We need to remove it to consume less memory, but more
924 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
925 * users.
926 */
tcp_remove_empty_skb(struct sock * sk)927 void tcp_remove_empty_skb(struct sock *sk)
928 {
929 struct sk_buff *skb = tcp_write_queue_tail(sk);
930
931 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
932 tcp_unlink_write_queue(skb, sk);
933 if (tcp_write_queue_empty(sk))
934 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
935 tcp_wmem_free_skb(sk, skb);
936 }
937 }
938
939 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)940 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
941 {
942 if (unlikely(skb_zcopy_pure(skb))) {
943 u32 extra = skb->truesize -
944 SKB_TRUESIZE(skb_end_offset(skb));
945
946 if (!sk_wmem_schedule(sk, extra))
947 return -ENOMEM;
948
949 sk_mem_charge(sk, extra);
950 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
951 }
952 return 0;
953 }
954
955
tcp_wmem_schedule(struct sock * sk,int copy)956 static int tcp_wmem_schedule(struct sock *sk, int copy)
957 {
958 int left;
959
960 if (likely(sk_wmem_schedule(sk, copy)))
961 return copy;
962
963 /* We could be in trouble if we have nothing queued.
964 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
965 * to guarantee some progress.
966 */
967 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
968 if (left > 0)
969 sk_forced_mem_schedule(sk, min(left, copy));
970 return min(copy, sk->sk_forward_alloc);
971 }
972
tcp_build_frag(struct sock * sk,int size_goal,int flags,struct page * page,int offset,size_t * size)973 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
974 struct page *page, int offset, size_t *size)
975 {
976 struct sk_buff *skb = tcp_write_queue_tail(sk);
977 struct tcp_sock *tp = tcp_sk(sk);
978 bool can_coalesce;
979 int copy, i;
980
981 if (!skb || (copy = size_goal - skb->len) <= 0 ||
982 !tcp_skb_can_collapse_to(skb)) {
983 new_segment:
984 if (!sk_stream_memory_free(sk))
985 return NULL;
986
987 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
988 tcp_rtx_and_write_queues_empty(sk));
989 if (!skb)
990 return NULL;
991
992 #ifdef CONFIG_TLS_DEVICE
993 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
994 #endif
995 tcp_skb_entail(sk, skb);
996 copy = size_goal;
997 }
998
999 if (copy > *size)
1000 copy = *size;
1001
1002 i = skb_shinfo(skb)->nr_frags;
1003 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1004 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1005 tcp_mark_push(tp, skb);
1006 goto new_segment;
1007 }
1008 if (tcp_downgrade_zcopy_pure(sk, skb))
1009 return NULL;
1010
1011 copy = tcp_wmem_schedule(sk, copy);
1012 if (!copy)
1013 return NULL;
1014
1015 if (can_coalesce) {
1016 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1017 } else {
1018 get_page(page);
1019 skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1020 }
1021
1022 if (!(flags & MSG_NO_SHARED_FRAGS))
1023 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1024
1025 skb->len += copy;
1026 skb->data_len += copy;
1027 skb->truesize += copy;
1028 sk_wmem_queued_add(sk, copy);
1029 sk_mem_charge(sk, copy);
1030 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1031 TCP_SKB_CB(skb)->end_seq += copy;
1032 tcp_skb_pcount_set(skb, 0);
1033
1034 *size = copy;
1035 return skb;
1036 }
1037
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)1038 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1039 size_t size, int flags)
1040 {
1041 struct tcp_sock *tp = tcp_sk(sk);
1042 int mss_now, size_goal;
1043 int err;
1044 ssize_t copied;
1045 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1046
1047 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1048 WARN_ONCE(!sendpage_ok(page),
1049 "page must not be a Slab one and have page_count > 0"))
1050 return -EINVAL;
1051
1052 /* Wait for a connection to finish. One exception is TCP Fast Open
1053 * (passive side) where data is allowed to be sent before a connection
1054 * is fully established.
1055 */
1056 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1057 !tcp_passive_fastopen(sk)) {
1058 err = sk_stream_wait_connect(sk, &timeo);
1059 if (err != 0)
1060 goto out_err;
1061 }
1062
1063 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1064
1065 mss_now = tcp_send_mss(sk, &size_goal, flags);
1066 copied = 0;
1067
1068 err = -EPIPE;
1069 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1070 goto out_err;
1071
1072 while (size > 0) {
1073 struct sk_buff *skb;
1074 size_t copy = size;
1075
1076 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©);
1077 if (!skb)
1078 goto wait_for_space;
1079
1080 if (!copied)
1081 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1082
1083 copied += copy;
1084 offset += copy;
1085 size -= copy;
1086 if (!size)
1087 goto out;
1088
1089 if (skb->len < size_goal || (flags & MSG_OOB))
1090 continue;
1091
1092 if (forced_push(tp)) {
1093 tcp_mark_push(tp, skb);
1094 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1095 } else if (skb == tcp_send_head(sk))
1096 tcp_push_one(sk, mss_now);
1097 continue;
1098
1099 wait_for_space:
1100 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1101 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1102 TCP_NAGLE_PUSH, size_goal);
1103
1104 err = sk_stream_wait_memory(sk, &timeo);
1105 if (err != 0)
1106 goto do_error;
1107
1108 mss_now = tcp_send_mss(sk, &size_goal, flags);
1109 }
1110
1111 out:
1112 if (copied) {
1113 tcp_tx_timestamp(sk, sk->sk_tsflags);
1114 if (!(flags & MSG_SENDPAGE_NOTLAST))
1115 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1116 }
1117 return copied;
1118
1119 do_error:
1120 tcp_remove_empty_skb(sk);
1121 if (copied)
1122 goto out;
1123 out_err:
1124 /* make sure we wake any epoll edge trigger waiter */
1125 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1126 sk->sk_write_space(sk);
1127 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1128 }
1129 return sk_stream_error(sk, flags, err);
1130 }
1131 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1132
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1133 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1134 size_t size, int flags)
1135 {
1136 if (!(sk->sk_route_caps & NETIF_F_SG))
1137 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1138
1139 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1140
1141 return do_tcp_sendpages(sk, page, offset, size, flags);
1142 }
1143 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1144
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1145 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1146 size_t size, int flags)
1147 {
1148 int ret;
1149
1150 lock_sock(sk);
1151 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1152 release_sock(sk);
1153
1154 return ret;
1155 }
1156 EXPORT_SYMBOL(tcp_sendpage);
1157
tcp_free_fastopen_req(struct tcp_sock * tp)1158 void tcp_free_fastopen_req(struct tcp_sock *tp)
1159 {
1160 if (tp->fastopen_req) {
1161 kfree(tp->fastopen_req);
1162 tp->fastopen_req = NULL;
1163 }
1164 }
1165
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1166 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1167 size_t size, struct ubuf_info *uarg)
1168 {
1169 struct tcp_sock *tp = tcp_sk(sk);
1170 struct inet_sock *inet = inet_sk(sk);
1171 struct sockaddr *uaddr = msg->msg_name;
1172 int err, flags;
1173
1174 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1175 TFO_CLIENT_ENABLE) ||
1176 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1177 uaddr->sa_family == AF_UNSPEC))
1178 return -EOPNOTSUPP;
1179 if (tp->fastopen_req)
1180 return -EALREADY; /* Another Fast Open is in progress */
1181
1182 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1183 sk->sk_allocation);
1184 if (unlikely(!tp->fastopen_req))
1185 return -ENOBUFS;
1186 tp->fastopen_req->data = msg;
1187 tp->fastopen_req->size = size;
1188 tp->fastopen_req->uarg = uarg;
1189
1190 if (inet->defer_connect) {
1191 err = tcp_connect(sk);
1192 /* Same failure procedure as in tcp_v4/6_connect */
1193 if (err) {
1194 tcp_set_state(sk, TCP_CLOSE);
1195 inet->inet_dport = 0;
1196 sk->sk_route_caps = 0;
1197 }
1198 }
1199 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1200 err = __inet_stream_connect(sk->sk_socket, uaddr,
1201 msg->msg_namelen, flags, 1);
1202 /* fastopen_req could already be freed in __inet_stream_connect
1203 * if the connection times out or gets rst
1204 */
1205 if (tp->fastopen_req) {
1206 *copied = tp->fastopen_req->copied;
1207 tcp_free_fastopen_req(tp);
1208 inet->defer_connect = 0;
1209 }
1210 return err;
1211 }
1212
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1213 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1214 {
1215 struct tcp_sock *tp = tcp_sk(sk);
1216 struct ubuf_info *uarg = NULL;
1217 struct sk_buff *skb;
1218 struct sockcm_cookie sockc;
1219 int flags, err, copied = 0;
1220 int mss_now = 0, size_goal, copied_syn = 0;
1221 int process_backlog = 0;
1222 bool zc = false;
1223 long timeo;
1224
1225 flags = msg->msg_flags;
1226
1227 if ((flags & MSG_ZEROCOPY) && size) {
1228 skb = tcp_write_queue_tail(sk);
1229
1230 if (msg->msg_ubuf) {
1231 uarg = msg->msg_ubuf;
1232 net_zcopy_get(uarg);
1233 zc = sk->sk_route_caps & NETIF_F_SG;
1234 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1235 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1236 if (!uarg) {
1237 err = -ENOBUFS;
1238 goto out_err;
1239 }
1240 zc = sk->sk_route_caps & NETIF_F_SG;
1241 if (!zc)
1242 uarg_to_msgzc(uarg)->zerocopy = 0;
1243 }
1244 }
1245
1246 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1247 !tp->repair) {
1248 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1249 if (err == -EINPROGRESS && copied_syn > 0)
1250 goto out;
1251 else if (err)
1252 goto out_err;
1253 }
1254
1255 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1256
1257 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1258
1259 /* Wait for a connection to finish. One exception is TCP Fast Open
1260 * (passive side) where data is allowed to be sent before a connection
1261 * is fully established.
1262 */
1263 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1264 !tcp_passive_fastopen(sk)) {
1265 err = sk_stream_wait_connect(sk, &timeo);
1266 if (err != 0)
1267 goto do_error;
1268 }
1269
1270 if (unlikely(tp->repair)) {
1271 if (tp->repair_queue == TCP_RECV_QUEUE) {
1272 copied = tcp_send_rcvq(sk, msg, size);
1273 goto out_nopush;
1274 }
1275
1276 err = -EINVAL;
1277 if (tp->repair_queue == TCP_NO_QUEUE)
1278 goto out_err;
1279
1280 /* 'common' sending to sendq */
1281 }
1282
1283 sockcm_init(&sockc, sk);
1284 if (msg->msg_controllen) {
1285 err = sock_cmsg_send(sk, msg, &sockc);
1286 if (unlikely(err)) {
1287 err = -EINVAL;
1288 goto out_err;
1289 }
1290 }
1291
1292 /* This should be in poll */
1293 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1294
1295 /* Ok commence sending. */
1296 copied = 0;
1297
1298 restart:
1299 mss_now = tcp_send_mss(sk, &size_goal, flags);
1300
1301 err = -EPIPE;
1302 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1303 goto do_error;
1304
1305 while (msg_data_left(msg)) {
1306 int copy = 0;
1307
1308 skb = tcp_write_queue_tail(sk);
1309 if (skb)
1310 copy = size_goal - skb->len;
1311
1312 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1313 bool first_skb;
1314
1315 new_segment:
1316 if (!sk_stream_memory_free(sk))
1317 goto wait_for_space;
1318
1319 if (unlikely(process_backlog >= 16)) {
1320 process_backlog = 0;
1321 if (sk_flush_backlog(sk))
1322 goto restart;
1323 }
1324 first_skb = tcp_rtx_and_write_queues_empty(sk);
1325 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1326 first_skb);
1327 if (!skb)
1328 goto wait_for_space;
1329
1330 process_backlog++;
1331
1332 tcp_skb_entail(sk, skb);
1333 copy = size_goal;
1334
1335 /* All packets are restored as if they have
1336 * already been sent. skb_mstamp_ns isn't set to
1337 * avoid wrong rtt estimation.
1338 */
1339 if (tp->repair)
1340 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1341 }
1342
1343 /* Try to append data to the end of skb. */
1344 if (copy > msg_data_left(msg))
1345 copy = msg_data_left(msg);
1346
1347 if (!zc) {
1348 bool merge = true;
1349 int i = skb_shinfo(skb)->nr_frags;
1350 struct page_frag *pfrag = sk_page_frag(sk);
1351
1352 if (!sk_page_frag_refill(sk, pfrag))
1353 goto wait_for_space;
1354
1355 if (!skb_can_coalesce(skb, i, pfrag->page,
1356 pfrag->offset)) {
1357 if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1358 tcp_mark_push(tp, skb);
1359 goto new_segment;
1360 }
1361 merge = false;
1362 }
1363
1364 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1365
1366 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1367 if (tcp_downgrade_zcopy_pure(sk, skb))
1368 goto wait_for_space;
1369 skb_zcopy_downgrade_managed(skb);
1370 }
1371
1372 copy = tcp_wmem_schedule(sk, copy);
1373 if (!copy)
1374 goto wait_for_space;
1375
1376 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1377 pfrag->page,
1378 pfrag->offset,
1379 copy);
1380 if (err)
1381 goto do_error;
1382
1383 /* Update the skb. */
1384 if (merge) {
1385 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1386 } else {
1387 skb_fill_page_desc(skb, i, pfrag->page,
1388 pfrag->offset, copy);
1389 page_ref_inc(pfrag->page);
1390 }
1391 pfrag->offset += copy;
1392 } else {
1393 /* First append to a fragless skb builds initial
1394 * pure zerocopy skb
1395 */
1396 if (!skb->len)
1397 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1398
1399 if (!skb_zcopy_pure(skb)) {
1400 copy = tcp_wmem_schedule(sk, copy);
1401 if (!copy)
1402 goto wait_for_space;
1403 }
1404
1405 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1406 if (err == -EMSGSIZE || err == -EEXIST) {
1407 tcp_mark_push(tp, skb);
1408 goto new_segment;
1409 }
1410 if (err < 0)
1411 goto do_error;
1412 copy = err;
1413 }
1414
1415 if (!copied)
1416 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1417
1418 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1419 TCP_SKB_CB(skb)->end_seq += copy;
1420 tcp_skb_pcount_set(skb, 0);
1421
1422 copied += copy;
1423 if (!msg_data_left(msg)) {
1424 if (unlikely(flags & MSG_EOR))
1425 TCP_SKB_CB(skb)->eor = 1;
1426 goto out;
1427 }
1428
1429 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1430 continue;
1431
1432 if (forced_push(tp)) {
1433 tcp_mark_push(tp, skb);
1434 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1435 } else if (skb == tcp_send_head(sk))
1436 tcp_push_one(sk, mss_now);
1437 continue;
1438
1439 wait_for_space:
1440 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1441 if (copied)
1442 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1443 TCP_NAGLE_PUSH, size_goal);
1444
1445 err = sk_stream_wait_memory(sk, &timeo);
1446 if (err != 0)
1447 goto do_error;
1448
1449 mss_now = tcp_send_mss(sk, &size_goal, flags);
1450 }
1451
1452 out:
1453 if (copied) {
1454 tcp_tx_timestamp(sk, sockc.tsflags);
1455 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1456 }
1457 out_nopush:
1458 net_zcopy_put(uarg);
1459 return copied + copied_syn;
1460
1461 do_error:
1462 tcp_remove_empty_skb(sk);
1463
1464 if (copied + copied_syn)
1465 goto out;
1466 out_err:
1467 net_zcopy_put_abort(uarg, true);
1468 err = sk_stream_error(sk, flags, err);
1469 /* make sure we wake any epoll edge trigger waiter */
1470 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1471 sk->sk_write_space(sk);
1472 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1473 }
1474 return err;
1475 }
1476 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1477
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1478 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1479 {
1480 int ret;
1481
1482 lock_sock(sk);
1483 ret = tcp_sendmsg_locked(sk, msg, size);
1484 release_sock(sk);
1485
1486 return ret;
1487 }
1488 EXPORT_SYMBOL(tcp_sendmsg);
1489
1490 /*
1491 * Handle reading urgent data. BSD has very simple semantics for
1492 * this, no blocking and very strange errors 8)
1493 */
1494
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1495 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1496 {
1497 struct tcp_sock *tp = tcp_sk(sk);
1498
1499 /* No URG data to read. */
1500 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1501 tp->urg_data == TCP_URG_READ)
1502 return -EINVAL; /* Yes this is right ! */
1503
1504 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1505 return -ENOTCONN;
1506
1507 if (tp->urg_data & TCP_URG_VALID) {
1508 int err = 0;
1509 char c = tp->urg_data;
1510
1511 if (!(flags & MSG_PEEK))
1512 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1513
1514 /* Read urgent data. */
1515 msg->msg_flags |= MSG_OOB;
1516
1517 if (len > 0) {
1518 if (!(flags & MSG_TRUNC))
1519 err = memcpy_to_msg(msg, &c, 1);
1520 len = 1;
1521 } else
1522 msg->msg_flags |= MSG_TRUNC;
1523
1524 return err ? -EFAULT : len;
1525 }
1526
1527 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1528 return 0;
1529
1530 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1531 * the available implementations agree in this case:
1532 * this call should never block, independent of the
1533 * blocking state of the socket.
1534 * Mike <pall@rz.uni-karlsruhe.de>
1535 */
1536 return -EAGAIN;
1537 }
1538
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1539 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1540 {
1541 struct sk_buff *skb;
1542 int copied = 0, err = 0;
1543
1544 /* XXX -- need to support SO_PEEK_OFF */
1545
1546 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1547 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1548 if (err)
1549 return err;
1550 copied += skb->len;
1551 }
1552
1553 skb_queue_walk(&sk->sk_write_queue, skb) {
1554 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1555 if (err)
1556 break;
1557
1558 copied += skb->len;
1559 }
1560
1561 return err ?: copied;
1562 }
1563
1564 /* Clean up the receive buffer for full frames taken by the user,
1565 * then send an ACK if necessary. COPIED is the number of bytes
1566 * tcp_recvmsg has given to the user so far, it speeds up the
1567 * calculation of whether or not we must ACK for the sake of
1568 * a window update.
1569 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1570 static void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1571 {
1572 struct tcp_sock *tp = tcp_sk(sk);
1573 bool time_to_ack = false;
1574
1575 if (inet_csk_ack_scheduled(sk)) {
1576 const struct inet_connection_sock *icsk = inet_csk(sk);
1577
1578 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1579 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1580 /*
1581 * If this read emptied read buffer, we send ACK, if
1582 * connection is not bidirectional, user drained
1583 * receive buffer and there was a small segment
1584 * in queue.
1585 */
1586 (copied > 0 &&
1587 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1588 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1589 !inet_csk_in_pingpong_mode(sk))) &&
1590 !atomic_read(&sk->sk_rmem_alloc)))
1591 time_to_ack = true;
1592 }
1593
1594 /* We send an ACK if we can now advertise a non-zero window
1595 * which has been raised "significantly".
1596 *
1597 * Even if window raised up to infinity, do not send window open ACK
1598 * in states, where we will not receive more. It is useless.
1599 */
1600 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1601 __u32 rcv_window_now = tcp_receive_window(tp);
1602
1603 /* Optimize, __tcp_select_window() is not cheap. */
1604 if (2*rcv_window_now <= tp->window_clamp) {
1605 __u32 new_window = __tcp_select_window(sk);
1606
1607 /* Send ACK now, if this read freed lots of space
1608 * in our buffer. Certainly, new_window is new window.
1609 * We can advertise it now, if it is not less than current one.
1610 * "Lots" means "at least twice" here.
1611 */
1612 if (new_window && new_window >= 2 * rcv_window_now)
1613 time_to_ack = true;
1614 }
1615 }
1616 if (time_to_ack)
1617 tcp_send_ack(sk);
1618 }
1619
tcp_cleanup_rbuf(struct sock * sk,int copied)1620 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1621 {
1622 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1623 struct tcp_sock *tp = tcp_sk(sk);
1624
1625 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1626 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1627 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1628 __tcp_cleanup_rbuf(sk, copied);
1629 }
1630
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1631 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1632 {
1633 __skb_unlink(skb, &sk->sk_receive_queue);
1634 if (likely(skb->destructor == sock_rfree)) {
1635 sock_rfree(skb);
1636 skb->destructor = NULL;
1637 skb->sk = NULL;
1638 return skb_attempt_defer_free(skb);
1639 }
1640 __kfree_skb(skb);
1641 }
1642
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1643 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1644 {
1645 struct sk_buff *skb;
1646 u32 offset;
1647
1648 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1649 offset = seq - TCP_SKB_CB(skb)->seq;
1650 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1651 pr_err_once("%s: found a SYN, please report !\n", __func__);
1652 offset--;
1653 }
1654 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1655 *off = offset;
1656 return skb;
1657 }
1658 /* This looks weird, but this can happen if TCP collapsing
1659 * splitted a fat GRO packet, while we released socket lock
1660 * in skb_splice_bits()
1661 */
1662 tcp_eat_recv_skb(sk, skb);
1663 }
1664 return NULL;
1665 }
1666 EXPORT_SYMBOL(tcp_recv_skb);
1667
1668 /*
1669 * This routine provides an alternative to tcp_recvmsg() for routines
1670 * that would like to handle copying from skbuffs directly in 'sendfile'
1671 * fashion.
1672 * Note:
1673 * - It is assumed that the socket was locked by the caller.
1674 * - The routine does not block.
1675 * - At present, there is no support for reading OOB data
1676 * or for 'peeking' the socket using this routine
1677 * (although both would be easy to implement).
1678 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1679 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1680 sk_read_actor_t recv_actor)
1681 {
1682 struct sk_buff *skb;
1683 struct tcp_sock *tp = tcp_sk(sk);
1684 u32 seq = tp->copied_seq;
1685 u32 offset;
1686 int copied = 0;
1687
1688 if (sk->sk_state == TCP_LISTEN)
1689 return -ENOTCONN;
1690 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1691 if (offset < skb->len) {
1692 int used;
1693 size_t len;
1694
1695 len = skb->len - offset;
1696 /* Stop reading if we hit a patch of urgent data */
1697 if (unlikely(tp->urg_data)) {
1698 u32 urg_offset = tp->urg_seq - seq;
1699 if (urg_offset < len)
1700 len = urg_offset;
1701 if (!len)
1702 break;
1703 }
1704 used = recv_actor(desc, skb, offset, len);
1705 if (used <= 0) {
1706 if (!copied)
1707 copied = used;
1708 break;
1709 }
1710 if (WARN_ON_ONCE(used > len))
1711 used = len;
1712 seq += used;
1713 copied += used;
1714 offset += used;
1715
1716 /* If recv_actor drops the lock (e.g. TCP splice
1717 * receive) the skb pointer might be invalid when
1718 * getting here: tcp_collapse might have deleted it
1719 * while aggregating skbs from the socket queue.
1720 */
1721 skb = tcp_recv_skb(sk, seq - 1, &offset);
1722 if (!skb)
1723 break;
1724 /* TCP coalescing might have appended data to the skb.
1725 * Try to splice more frags
1726 */
1727 if (offset + 1 != skb->len)
1728 continue;
1729 }
1730 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1731 tcp_eat_recv_skb(sk, skb);
1732 ++seq;
1733 break;
1734 }
1735 tcp_eat_recv_skb(sk, skb);
1736 if (!desc->count)
1737 break;
1738 WRITE_ONCE(tp->copied_seq, seq);
1739 }
1740 WRITE_ONCE(tp->copied_seq, seq);
1741
1742 tcp_rcv_space_adjust(sk);
1743
1744 /* Clean up data we have read: This will do ACK frames. */
1745 if (copied > 0) {
1746 tcp_recv_skb(sk, seq, &offset);
1747 tcp_cleanup_rbuf(sk, copied);
1748 }
1749 return copied;
1750 }
1751 EXPORT_SYMBOL(tcp_read_sock);
1752
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1753 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1754 {
1755 struct tcp_sock *tp = tcp_sk(sk);
1756 u32 seq = tp->copied_seq;
1757 struct sk_buff *skb;
1758 int copied = 0;
1759 u32 offset;
1760
1761 if (sk->sk_state == TCP_LISTEN)
1762 return -ENOTCONN;
1763
1764 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1765 u8 tcp_flags;
1766 int used;
1767
1768 __skb_unlink(skb, &sk->sk_receive_queue);
1769 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1770 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1771 used = recv_actor(sk, skb);
1772 consume_skb(skb);
1773 if (used < 0) {
1774 if (!copied)
1775 copied = used;
1776 break;
1777 }
1778 seq += used;
1779 copied += used;
1780
1781 if (tcp_flags & TCPHDR_FIN) {
1782 ++seq;
1783 break;
1784 }
1785 }
1786 WRITE_ONCE(tp->copied_seq, seq);
1787
1788 tcp_rcv_space_adjust(sk);
1789
1790 /* Clean up data we have read: This will do ACK frames. */
1791 if (copied > 0)
1792 __tcp_cleanup_rbuf(sk, copied);
1793
1794 return copied;
1795 }
1796 EXPORT_SYMBOL(tcp_read_skb);
1797
tcp_read_done(struct sock * sk,size_t len)1798 void tcp_read_done(struct sock *sk, size_t len)
1799 {
1800 struct tcp_sock *tp = tcp_sk(sk);
1801 u32 seq = tp->copied_seq;
1802 struct sk_buff *skb;
1803 size_t left;
1804 u32 offset;
1805
1806 if (sk->sk_state == TCP_LISTEN)
1807 return;
1808
1809 left = len;
1810 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1811 int used;
1812
1813 used = min_t(size_t, skb->len - offset, left);
1814 seq += used;
1815 left -= used;
1816
1817 if (skb->len > offset + used)
1818 break;
1819
1820 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1821 tcp_eat_recv_skb(sk, skb);
1822 ++seq;
1823 break;
1824 }
1825 tcp_eat_recv_skb(sk, skb);
1826 }
1827 WRITE_ONCE(tp->copied_seq, seq);
1828
1829 tcp_rcv_space_adjust(sk);
1830
1831 /* Clean up data we have read: This will do ACK frames. */
1832 if (left != len)
1833 tcp_cleanup_rbuf(sk, len - left);
1834 }
1835 EXPORT_SYMBOL(tcp_read_done);
1836
tcp_peek_len(struct socket * sock)1837 int tcp_peek_len(struct socket *sock)
1838 {
1839 return tcp_inq(sock->sk);
1840 }
1841 EXPORT_SYMBOL(tcp_peek_len);
1842
1843 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1844 int tcp_set_rcvlowat(struct sock *sk, int val)
1845 {
1846 int cap;
1847
1848 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1849 cap = sk->sk_rcvbuf >> 1;
1850 else
1851 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1852 val = min(val, cap);
1853 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1854
1855 /* Check if we need to signal EPOLLIN right now */
1856 tcp_data_ready(sk);
1857
1858 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1859 return 0;
1860
1861 val <<= 1;
1862 if (val > sk->sk_rcvbuf) {
1863 WRITE_ONCE(sk->sk_rcvbuf, val);
1864 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1865 }
1866 return 0;
1867 }
1868 EXPORT_SYMBOL(tcp_set_rcvlowat);
1869
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1870 void tcp_update_recv_tstamps(struct sk_buff *skb,
1871 struct scm_timestamping_internal *tss)
1872 {
1873 if (skb->tstamp)
1874 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1875 else
1876 tss->ts[0] = (struct timespec64) {0};
1877
1878 if (skb_hwtstamps(skb)->hwtstamp)
1879 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1880 else
1881 tss->ts[2] = (struct timespec64) {0};
1882 }
1883
1884 #ifdef CONFIG_MMU
1885 static const struct vm_operations_struct tcp_vm_ops = {
1886 };
1887
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1888 int tcp_mmap(struct file *file, struct socket *sock,
1889 struct vm_area_struct *vma)
1890 {
1891 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1892 return -EPERM;
1893 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1894
1895 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1896 vma->vm_flags |= VM_MIXEDMAP;
1897
1898 vma->vm_ops = &tcp_vm_ops;
1899 return 0;
1900 }
1901 EXPORT_SYMBOL(tcp_mmap);
1902
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1903 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1904 u32 *offset_frag)
1905 {
1906 skb_frag_t *frag;
1907
1908 if (unlikely(offset_skb >= skb->len))
1909 return NULL;
1910
1911 offset_skb -= skb_headlen(skb);
1912 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1913 return NULL;
1914
1915 frag = skb_shinfo(skb)->frags;
1916 while (offset_skb) {
1917 if (skb_frag_size(frag) > offset_skb) {
1918 *offset_frag = offset_skb;
1919 return frag;
1920 }
1921 offset_skb -= skb_frag_size(frag);
1922 ++frag;
1923 }
1924 *offset_frag = 0;
1925 return frag;
1926 }
1927
can_map_frag(const skb_frag_t * frag)1928 static bool can_map_frag(const skb_frag_t *frag)
1929 {
1930 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1931 }
1932
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1933 static int find_next_mappable_frag(const skb_frag_t *frag,
1934 int remaining_in_skb)
1935 {
1936 int offset = 0;
1937
1938 if (likely(can_map_frag(frag)))
1939 return 0;
1940
1941 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1942 offset += skb_frag_size(frag);
1943 ++frag;
1944 }
1945 return offset;
1946 }
1947
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1948 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1949 struct tcp_zerocopy_receive *zc,
1950 struct sk_buff *skb, u32 offset)
1951 {
1952 u32 frag_offset, partial_frag_remainder = 0;
1953 int mappable_offset;
1954 skb_frag_t *frag;
1955
1956 /* worst case: skip to next skb. try to improve on this case below */
1957 zc->recv_skip_hint = skb->len - offset;
1958
1959 /* Find the frag containing this offset (and how far into that frag) */
1960 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1961 if (!frag)
1962 return;
1963
1964 if (frag_offset) {
1965 struct skb_shared_info *info = skb_shinfo(skb);
1966
1967 /* We read part of the last frag, must recvmsg() rest of skb. */
1968 if (frag == &info->frags[info->nr_frags - 1])
1969 return;
1970
1971 /* Else, we must at least read the remainder in this frag. */
1972 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1973 zc->recv_skip_hint -= partial_frag_remainder;
1974 ++frag;
1975 }
1976
1977 /* partial_frag_remainder: If part way through a frag, must read rest.
1978 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1979 * in partial_frag_remainder.
1980 */
1981 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1982 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1983 }
1984
1985 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1986 int flags, struct scm_timestamping_internal *tss,
1987 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1988 static int receive_fallback_to_copy(struct sock *sk,
1989 struct tcp_zerocopy_receive *zc, int inq,
1990 struct scm_timestamping_internal *tss)
1991 {
1992 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1993 struct msghdr msg = {};
1994 struct iovec iov;
1995 int err;
1996
1997 zc->length = 0;
1998 zc->recv_skip_hint = 0;
1999
2000 if (copy_address != zc->copybuf_address)
2001 return -EINVAL;
2002
2003 err = import_single_range(READ, (void __user *)copy_address,
2004 inq, &iov, &msg.msg_iter);
2005 if (err)
2006 return err;
2007
2008 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
2009 tss, &zc->msg_flags);
2010 if (err < 0)
2011 return err;
2012
2013 zc->copybuf_len = err;
2014 if (likely(zc->copybuf_len)) {
2015 struct sk_buff *skb;
2016 u32 offset;
2017
2018 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
2019 if (skb)
2020 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
2021 }
2022 return 0;
2023 }
2024
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)2025 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
2026 struct sk_buff *skb, u32 copylen,
2027 u32 *offset, u32 *seq)
2028 {
2029 unsigned long copy_address = (unsigned long)zc->copybuf_address;
2030 struct msghdr msg = {};
2031 struct iovec iov;
2032 int err;
2033
2034 if (copy_address != zc->copybuf_address)
2035 return -EINVAL;
2036
2037 err = import_single_range(READ, (void __user *)copy_address,
2038 copylen, &iov, &msg.msg_iter);
2039 if (err)
2040 return err;
2041 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2042 if (err)
2043 return err;
2044 zc->recv_skip_hint -= copylen;
2045 *offset += copylen;
2046 *seq += copylen;
2047 return (__s32)copylen;
2048 }
2049
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)2050 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2051 struct sock *sk,
2052 struct sk_buff *skb,
2053 u32 *seq,
2054 s32 copybuf_len,
2055 struct scm_timestamping_internal *tss)
2056 {
2057 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2058
2059 if (!copylen)
2060 return 0;
2061 /* skb is null if inq < PAGE_SIZE. */
2062 if (skb) {
2063 offset = *seq - TCP_SKB_CB(skb)->seq;
2064 } else {
2065 skb = tcp_recv_skb(sk, *seq, &offset);
2066 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2067 tcp_update_recv_tstamps(skb, tss);
2068 zc->msg_flags |= TCP_CMSG_TS;
2069 }
2070 }
2071
2072 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2073 seq);
2074 return zc->copybuf_len < 0 ? 0 : copylen;
2075 }
2076
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)2077 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2078 struct page **pending_pages,
2079 unsigned long pages_remaining,
2080 unsigned long *address,
2081 u32 *length,
2082 u32 *seq,
2083 struct tcp_zerocopy_receive *zc,
2084 u32 total_bytes_to_map,
2085 int err)
2086 {
2087 /* At least one page did not map. Try zapping if we skipped earlier. */
2088 if (err == -EBUSY &&
2089 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2090 u32 maybe_zap_len;
2091
2092 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
2093 *length + /* Mapped or pending */
2094 (pages_remaining * PAGE_SIZE); /* Failed map. */
2095 zap_page_range(vma, *address, maybe_zap_len);
2096 err = 0;
2097 }
2098
2099 if (!err) {
2100 unsigned long leftover_pages = pages_remaining;
2101 int bytes_mapped;
2102
2103 /* We called zap_page_range, try to reinsert. */
2104 err = vm_insert_pages(vma, *address,
2105 pending_pages,
2106 &pages_remaining);
2107 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2108 *seq += bytes_mapped;
2109 *address += bytes_mapped;
2110 }
2111 if (err) {
2112 /* Either we were unable to zap, OR we zapped, retried an
2113 * insert, and still had an issue. Either ways, pages_remaining
2114 * is the number of pages we were unable to map, and we unroll
2115 * some state we speculatively touched before.
2116 */
2117 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2118
2119 *length -= bytes_not_mapped;
2120 zc->recv_skip_hint += bytes_not_mapped;
2121 }
2122 return err;
2123 }
2124
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2125 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2126 struct page **pages,
2127 unsigned int pages_to_map,
2128 unsigned long *address,
2129 u32 *length,
2130 u32 *seq,
2131 struct tcp_zerocopy_receive *zc,
2132 u32 total_bytes_to_map)
2133 {
2134 unsigned long pages_remaining = pages_to_map;
2135 unsigned int pages_mapped;
2136 unsigned int bytes_mapped;
2137 int err;
2138
2139 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2140 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2141 bytes_mapped = PAGE_SIZE * pages_mapped;
2142 /* Even if vm_insert_pages fails, it may have partially succeeded in
2143 * mapping (some but not all of the pages).
2144 */
2145 *seq += bytes_mapped;
2146 *address += bytes_mapped;
2147
2148 if (likely(!err))
2149 return 0;
2150
2151 /* Error: maybe zap and retry + rollback state for failed inserts. */
2152 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2153 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2154 err);
2155 }
2156
2157 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2158 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2159 struct tcp_zerocopy_receive *zc,
2160 struct scm_timestamping_internal *tss)
2161 {
2162 unsigned long msg_control_addr;
2163 struct msghdr cmsg_dummy;
2164
2165 msg_control_addr = (unsigned long)zc->msg_control;
2166 cmsg_dummy.msg_control = (void *)msg_control_addr;
2167 cmsg_dummy.msg_controllen =
2168 (__kernel_size_t)zc->msg_controllen;
2169 cmsg_dummy.msg_flags = in_compat_syscall()
2170 ? MSG_CMSG_COMPAT : 0;
2171 cmsg_dummy.msg_control_is_user = true;
2172 zc->msg_flags = 0;
2173 if (zc->msg_control == msg_control_addr &&
2174 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2175 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2176 zc->msg_control = (__u64)
2177 ((uintptr_t)cmsg_dummy.msg_control);
2178 zc->msg_controllen =
2179 (__u64)cmsg_dummy.msg_controllen;
2180 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2181 }
2182 }
2183
2184 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2185 static int tcp_zerocopy_receive(struct sock *sk,
2186 struct tcp_zerocopy_receive *zc,
2187 struct scm_timestamping_internal *tss)
2188 {
2189 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2190 unsigned long address = (unsigned long)zc->address;
2191 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2192 s32 copybuf_len = zc->copybuf_len;
2193 struct tcp_sock *tp = tcp_sk(sk);
2194 const skb_frag_t *frags = NULL;
2195 unsigned int pages_to_map = 0;
2196 struct vm_area_struct *vma;
2197 struct sk_buff *skb = NULL;
2198 u32 seq = tp->copied_seq;
2199 u32 total_bytes_to_map;
2200 int inq = tcp_inq(sk);
2201 int ret;
2202
2203 zc->copybuf_len = 0;
2204 zc->msg_flags = 0;
2205
2206 if (address & (PAGE_SIZE - 1) || address != zc->address)
2207 return -EINVAL;
2208
2209 if (sk->sk_state == TCP_LISTEN)
2210 return -ENOTCONN;
2211
2212 sock_rps_record_flow(sk);
2213
2214 if (inq && inq <= copybuf_len)
2215 return receive_fallback_to_copy(sk, zc, inq, tss);
2216
2217 if (inq < PAGE_SIZE) {
2218 zc->length = 0;
2219 zc->recv_skip_hint = inq;
2220 if (!inq && sock_flag(sk, SOCK_DONE))
2221 return -EIO;
2222 return 0;
2223 }
2224
2225 mmap_read_lock(current->mm);
2226
2227 vma = vma_lookup(current->mm, address);
2228 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2229 mmap_read_unlock(current->mm);
2230 return -EINVAL;
2231 }
2232 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2233 avail_len = min_t(u32, vma_len, inq);
2234 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2235 if (total_bytes_to_map) {
2236 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2237 zap_page_range(vma, address, total_bytes_to_map);
2238 zc->length = total_bytes_to_map;
2239 zc->recv_skip_hint = 0;
2240 } else {
2241 zc->length = avail_len;
2242 zc->recv_skip_hint = avail_len;
2243 }
2244 ret = 0;
2245 while (length + PAGE_SIZE <= zc->length) {
2246 int mappable_offset;
2247 struct page *page;
2248
2249 if (zc->recv_skip_hint < PAGE_SIZE) {
2250 u32 offset_frag;
2251
2252 if (skb) {
2253 if (zc->recv_skip_hint > 0)
2254 break;
2255 skb = skb->next;
2256 offset = seq - TCP_SKB_CB(skb)->seq;
2257 } else {
2258 skb = tcp_recv_skb(sk, seq, &offset);
2259 }
2260
2261 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2262 tcp_update_recv_tstamps(skb, tss);
2263 zc->msg_flags |= TCP_CMSG_TS;
2264 }
2265 zc->recv_skip_hint = skb->len - offset;
2266 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2267 if (!frags || offset_frag)
2268 break;
2269 }
2270
2271 mappable_offset = find_next_mappable_frag(frags,
2272 zc->recv_skip_hint);
2273 if (mappable_offset) {
2274 zc->recv_skip_hint = mappable_offset;
2275 break;
2276 }
2277 page = skb_frag_page(frags);
2278 prefetchw(page);
2279 pages[pages_to_map++] = page;
2280 length += PAGE_SIZE;
2281 zc->recv_skip_hint -= PAGE_SIZE;
2282 frags++;
2283 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2284 zc->recv_skip_hint < PAGE_SIZE) {
2285 /* Either full batch, or we're about to go to next skb
2286 * (and we cannot unroll failed ops across skbs).
2287 */
2288 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2289 pages_to_map,
2290 &address, &length,
2291 &seq, zc,
2292 total_bytes_to_map);
2293 if (ret)
2294 goto out;
2295 pages_to_map = 0;
2296 }
2297 }
2298 if (pages_to_map) {
2299 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2300 &address, &length, &seq,
2301 zc, total_bytes_to_map);
2302 }
2303 out:
2304 mmap_read_unlock(current->mm);
2305 /* Try to copy straggler data. */
2306 if (!ret)
2307 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2308
2309 if (length + copylen) {
2310 WRITE_ONCE(tp->copied_seq, seq);
2311 tcp_rcv_space_adjust(sk);
2312
2313 /* Clean up data we have read: This will do ACK frames. */
2314 tcp_recv_skb(sk, seq, &offset);
2315 tcp_cleanup_rbuf(sk, length + copylen);
2316 ret = 0;
2317 if (length == zc->length)
2318 zc->recv_skip_hint = 0;
2319 } else {
2320 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2321 ret = -EIO;
2322 }
2323 zc->length = length;
2324 return ret;
2325 }
2326 #endif
2327
2328 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2329 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2330 struct scm_timestamping_internal *tss)
2331 {
2332 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2333 bool has_timestamping = false;
2334
2335 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2336 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2337 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2338 if (new_tstamp) {
2339 struct __kernel_timespec kts = {
2340 .tv_sec = tss->ts[0].tv_sec,
2341 .tv_nsec = tss->ts[0].tv_nsec,
2342 };
2343 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2344 sizeof(kts), &kts);
2345 } else {
2346 struct __kernel_old_timespec ts_old = {
2347 .tv_sec = tss->ts[0].tv_sec,
2348 .tv_nsec = tss->ts[0].tv_nsec,
2349 };
2350 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2351 sizeof(ts_old), &ts_old);
2352 }
2353 } else {
2354 if (new_tstamp) {
2355 struct __kernel_sock_timeval stv = {
2356 .tv_sec = tss->ts[0].tv_sec,
2357 .tv_usec = tss->ts[0].tv_nsec / 1000,
2358 };
2359 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2360 sizeof(stv), &stv);
2361 } else {
2362 struct __kernel_old_timeval tv = {
2363 .tv_sec = tss->ts[0].tv_sec,
2364 .tv_usec = tss->ts[0].tv_nsec / 1000,
2365 };
2366 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2367 sizeof(tv), &tv);
2368 }
2369 }
2370 }
2371
2372 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2373 has_timestamping = true;
2374 else
2375 tss->ts[0] = (struct timespec64) {0};
2376 }
2377
2378 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2379 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2380 has_timestamping = true;
2381 else
2382 tss->ts[2] = (struct timespec64) {0};
2383 }
2384
2385 if (has_timestamping) {
2386 tss->ts[1] = (struct timespec64) {0};
2387 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2388 put_cmsg_scm_timestamping64(msg, tss);
2389 else
2390 put_cmsg_scm_timestamping(msg, tss);
2391 }
2392 }
2393
tcp_inq_hint(struct sock * sk)2394 static int tcp_inq_hint(struct sock *sk)
2395 {
2396 const struct tcp_sock *tp = tcp_sk(sk);
2397 u32 copied_seq = READ_ONCE(tp->copied_seq);
2398 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2399 int inq;
2400
2401 inq = rcv_nxt - copied_seq;
2402 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2403 lock_sock(sk);
2404 inq = tp->rcv_nxt - tp->copied_seq;
2405 release_sock(sk);
2406 }
2407 /* After receiving a FIN, tell the user-space to continue reading
2408 * by returning a non-zero inq.
2409 */
2410 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2411 inq = 1;
2412 return inq;
2413 }
2414
2415 /*
2416 * This routine copies from a sock struct into the user buffer.
2417 *
2418 * Technical note: in 2.3 we work on _locked_ socket, so that
2419 * tricks with *seq access order and skb->users are not required.
2420 * Probably, code can be easily improved even more.
2421 */
2422
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2423 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2424 int flags, struct scm_timestamping_internal *tss,
2425 int *cmsg_flags)
2426 {
2427 struct tcp_sock *tp = tcp_sk(sk);
2428 int copied = 0;
2429 u32 peek_seq;
2430 u32 *seq;
2431 unsigned long used;
2432 int err;
2433 int target; /* Read at least this many bytes */
2434 long timeo;
2435 struct sk_buff *skb, *last;
2436 u32 urg_hole = 0;
2437
2438 err = -ENOTCONN;
2439 if (sk->sk_state == TCP_LISTEN)
2440 goto out;
2441
2442 if (tp->recvmsg_inq) {
2443 *cmsg_flags = TCP_CMSG_INQ;
2444 msg->msg_get_inq = 1;
2445 }
2446 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2447
2448 /* Urgent data needs to be handled specially. */
2449 if (flags & MSG_OOB)
2450 goto recv_urg;
2451
2452 if (unlikely(tp->repair)) {
2453 err = -EPERM;
2454 if (!(flags & MSG_PEEK))
2455 goto out;
2456
2457 if (tp->repair_queue == TCP_SEND_QUEUE)
2458 goto recv_sndq;
2459
2460 err = -EINVAL;
2461 if (tp->repair_queue == TCP_NO_QUEUE)
2462 goto out;
2463
2464 /* 'common' recv queue MSG_PEEK-ing */
2465 }
2466
2467 seq = &tp->copied_seq;
2468 if (flags & MSG_PEEK) {
2469 peek_seq = tp->copied_seq;
2470 seq = &peek_seq;
2471 }
2472
2473 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2474
2475 do {
2476 u32 offset;
2477
2478 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2479 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2480 if (copied)
2481 break;
2482 if (signal_pending(current)) {
2483 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2484 break;
2485 }
2486 }
2487
2488 /* Next get a buffer. */
2489
2490 last = skb_peek_tail(&sk->sk_receive_queue);
2491 skb_queue_walk(&sk->sk_receive_queue, skb) {
2492 last = skb;
2493 /* Now that we have two receive queues this
2494 * shouldn't happen.
2495 */
2496 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2497 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2498 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2499 flags))
2500 break;
2501
2502 offset = *seq - TCP_SKB_CB(skb)->seq;
2503 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2504 pr_err_once("%s: found a SYN, please report !\n", __func__);
2505 offset--;
2506 }
2507 if (offset < skb->len)
2508 goto found_ok_skb;
2509 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2510 goto found_fin_ok;
2511 WARN(!(flags & MSG_PEEK),
2512 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2513 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2514 }
2515
2516 /* Well, if we have backlog, try to process it now yet. */
2517
2518 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2519 break;
2520
2521 if (copied) {
2522 if (!timeo ||
2523 sk->sk_err ||
2524 sk->sk_state == TCP_CLOSE ||
2525 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2526 signal_pending(current))
2527 break;
2528 } else {
2529 if (sock_flag(sk, SOCK_DONE))
2530 break;
2531
2532 if (sk->sk_err) {
2533 copied = sock_error(sk);
2534 break;
2535 }
2536
2537 if (sk->sk_shutdown & RCV_SHUTDOWN)
2538 break;
2539
2540 if (sk->sk_state == TCP_CLOSE) {
2541 /* This occurs when user tries to read
2542 * from never connected socket.
2543 */
2544 copied = -ENOTCONN;
2545 break;
2546 }
2547
2548 if (!timeo) {
2549 copied = -EAGAIN;
2550 break;
2551 }
2552
2553 if (signal_pending(current)) {
2554 copied = sock_intr_errno(timeo);
2555 break;
2556 }
2557 }
2558
2559 if (copied >= target) {
2560 /* Do not sleep, just process backlog. */
2561 __sk_flush_backlog(sk);
2562 } else {
2563 tcp_cleanup_rbuf(sk, copied);
2564 sk_wait_data(sk, &timeo, last);
2565 }
2566
2567 if ((flags & MSG_PEEK) &&
2568 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2569 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2570 current->comm,
2571 task_pid_nr(current));
2572 peek_seq = tp->copied_seq;
2573 }
2574 continue;
2575
2576 found_ok_skb:
2577 /* Ok so how much can we use? */
2578 used = skb->len - offset;
2579 if (len < used)
2580 used = len;
2581
2582 /* Do we have urgent data here? */
2583 if (unlikely(tp->urg_data)) {
2584 u32 urg_offset = tp->urg_seq - *seq;
2585 if (urg_offset < used) {
2586 if (!urg_offset) {
2587 if (!sock_flag(sk, SOCK_URGINLINE)) {
2588 WRITE_ONCE(*seq, *seq + 1);
2589 urg_hole++;
2590 offset++;
2591 used--;
2592 if (!used)
2593 goto skip_copy;
2594 }
2595 } else
2596 used = urg_offset;
2597 }
2598 }
2599
2600 if (!(flags & MSG_TRUNC)) {
2601 err = skb_copy_datagram_msg(skb, offset, msg, used);
2602 if (err) {
2603 /* Exception. Bailout! */
2604 if (!copied)
2605 copied = -EFAULT;
2606 break;
2607 }
2608 }
2609
2610 WRITE_ONCE(*seq, *seq + used);
2611 copied += used;
2612 len -= used;
2613
2614 tcp_rcv_space_adjust(sk);
2615
2616 skip_copy:
2617 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2618 WRITE_ONCE(tp->urg_data, 0);
2619 tcp_fast_path_check(sk);
2620 }
2621
2622 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2623 tcp_update_recv_tstamps(skb, tss);
2624 *cmsg_flags |= TCP_CMSG_TS;
2625 }
2626
2627 if (used + offset < skb->len)
2628 continue;
2629
2630 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2631 goto found_fin_ok;
2632 if (!(flags & MSG_PEEK))
2633 tcp_eat_recv_skb(sk, skb);
2634 continue;
2635
2636 found_fin_ok:
2637 /* Process the FIN. */
2638 WRITE_ONCE(*seq, *seq + 1);
2639 if (!(flags & MSG_PEEK))
2640 tcp_eat_recv_skb(sk, skb);
2641 break;
2642 } while (len > 0);
2643
2644 /* According to UNIX98, msg_name/msg_namelen are ignored
2645 * on connected socket. I was just happy when found this 8) --ANK
2646 */
2647
2648 /* Clean up data we have read: This will do ACK frames. */
2649 tcp_cleanup_rbuf(sk, copied);
2650 return copied;
2651
2652 out:
2653 return err;
2654
2655 recv_urg:
2656 err = tcp_recv_urg(sk, msg, len, flags);
2657 goto out;
2658
2659 recv_sndq:
2660 err = tcp_peek_sndq(sk, msg, len);
2661 goto out;
2662 }
2663
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2664 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2665 int *addr_len)
2666 {
2667 int cmsg_flags = 0, ret;
2668 struct scm_timestamping_internal tss;
2669
2670 if (unlikely(flags & MSG_ERRQUEUE))
2671 return inet_recv_error(sk, msg, len, addr_len);
2672
2673 if (sk_can_busy_loop(sk) &&
2674 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2675 sk->sk_state == TCP_ESTABLISHED)
2676 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2677
2678 lock_sock(sk);
2679 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2680 release_sock(sk);
2681
2682 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2683 if (cmsg_flags & TCP_CMSG_TS)
2684 tcp_recv_timestamp(msg, sk, &tss);
2685 if (msg->msg_get_inq) {
2686 msg->msg_inq = tcp_inq_hint(sk);
2687 if (cmsg_flags & TCP_CMSG_INQ)
2688 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2689 sizeof(msg->msg_inq), &msg->msg_inq);
2690 }
2691 }
2692 return ret;
2693 }
2694 EXPORT_SYMBOL(tcp_recvmsg);
2695
tcp_set_state(struct sock * sk,int state)2696 void tcp_set_state(struct sock *sk, int state)
2697 {
2698 int oldstate = sk->sk_state;
2699
2700 /* We defined a new enum for TCP states that are exported in BPF
2701 * so as not force the internal TCP states to be frozen. The
2702 * following checks will detect if an internal state value ever
2703 * differs from the BPF value. If this ever happens, then we will
2704 * need to remap the internal value to the BPF value before calling
2705 * tcp_call_bpf_2arg.
2706 */
2707 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2708 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2709 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2710 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2711 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2712 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2713 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2714 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2715 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2716 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2717 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2718 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2719 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2720
2721 /* bpf uapi header bpf.h defines an anonymous enum with values
2722 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2723 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2724 * But clang built vmlinux does not have this enum in DWARF
2725 * since clang removes the above code before generating IR/debuginfo.
2726 * Let us explicitly emit the type debuginfo to ensure the
2727 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2728 * regardless of which compiler is used.
2729 */
2730 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2731
2732 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2733 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2734
2735 switch (state) {
2736 case TCP_ESTABLISHED:
2737 if (oldstate != TCP_ESTABLISHED)
2738 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2739 break;
2740
2741 case TCP_CLOSE:
2742 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2743 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2744
2745 sk->sk_prot->unhash(sk);
2746 if (inet_csk(sk)->icsk_bind_hash &&
2747 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2748 inet_put_port(sk);
2749 fallthrough;
2750 default:
2751 if (oldstate == TCP_ESTABLISHED)
2752 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2753 }
2754
2755 /* Change state AFTER socket is unhashed to avoid closed
2756 * socket sitting in hash tables.
2757 */
2758 inet_sk_state_store(sk, state);
2759 }
2760 EXPORT_SYMBOL_GPL(tcp_set_state);
2761
2762 /*
2763 * State processing on a close. This implements the state shift for
2764 * sending our FIN frame. Note that we only send a FIN for some
2765 * states. A shutdown() may have already sent the FIN, or we may be
2766 * closed.
2767 */
2768
2769 static const unsigned char new_state[16] = {
2770 /* current state: new state: action: */
2771 [0 /* (Invalid) */] = TCP_CLOSE,
2772 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2773 [TCP_SYN_SENT] = TCP_CLOSE,
2774 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2775 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2776 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2777 [TCP_TIME_WAIT] = TCP_CLOSE,
2778 [TCP_CLOSE] = TCP_CLOSE,
2779 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2780 [TCP_LAST_ACK] = TCP_LAST_ACK,
2781 [TCP_LISTEN] = TCP_CLOSE,
2782 [TCP_CLOSING] = TCP_CLOSING,
2783 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2784 };
2785
tcp_close_state(struct sock * sk)2786 static int tcp_close_state(struct sock *sk)
2787 {
2788 int next = (int)new_state[sk->sk_state];
2789 int ns = next & TCP_STATE_MASK;
2790
2791 tcp_set_state(sk, ns);
2792
2793 return next & TCP_ACTION_FIN;
2794 }
2795
2796 /*
2797 * Shutdown the sending side of a connection. Much like close except
2798 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2799 */
2800
tcp_shutdown(struct sock * sk,int how)2801 void tcp_shutdown(struct sock *sk, int how)
2802 {
2803 /* We need to grab some memory, and put together a FIN,
2804 * and then put it into the queue to be sent.
2805 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2806 */
2807 if (!(how & SEND_SHUTDOWN))
2808 return;
2809
2810 /* If we've already sent a FIN, or it's a closed state, skip this. */
2811 if ((1 << sk->sk_state) &
2812 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2813 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2814 /* Clear out any half completed packets. FIN if needed. */
2815 if (tcp_close_state(sk))
2816 tcp_send_fin(sk);
2817 }
2818 }
2819 EXPORT_SYMBOL(tcp_shutdown);
2820
tcp_orphan_count_sum(void)2821 int tcp_orphan_count_sum(void)
2822 {
2823 int i, total = 0;
2824
2825 for_each_possible_cpu(i)
2826 total += per_cpu(tcp_orphan_count, i);
2827
2828 return max(total, 0);
2829 }
2830
2831 static int tcp_orphan_cache;
2832 static struct timer_list tcp_orphan_timer;
2833 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2834
tcp_orphan_update(struct timer_list * unused)2835 static void tcp_orphan_update(struct timer_list *unused)
2836 {
2837 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2838 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2839 }
2840
tcp_too_many_orphans(int shift)2841 static bool tcp_too_many_orphans(int shift)
2842 {
2843 return READ_ONCE(tcp_orphan_cache) << shift >
2844 READ_ONCE(sysctl_tcp_max_orphans);
2845 }
2846
tcp_check_oom(struct sock * sk,int shift)2847 bool tcp_check_oom(struct sock *sk, int shift)
2848 {
2849 bool too_many_orphans, out_of_socket_memory;
2850
2851 too_many_orphans = tcp_too_many_orphans(shift);
2852 out_of_socket_memory = tcp_out_of_memory(sk);
2853
2854 if (too_many_orphans)
2855 net_info_ratelimited("too many orphaned sockets\n");
2856 if (out_of_socket_memory)
2857 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2858 return too_many_orphans || out_of_socket_memory;
2859 }
2860
__tcp_close(struct sock * sk,long timeout)2861 void __tcp_close(struct sock *sk, long timeout)
2862 {
2863 struct sk_buff *skb;
2864 int data_was_unread = 0;
2865 int state;
2866
2867 sk->sk_shutdown = SHUTDOWN_MASK;
2868
2869 if (sk->sk_state == TCP_LISTEN) {
2870 tcp_set_state(sk, TCP_CLOSE);
2871
2872 /* Special case. */
2873 inet_csk_listen_stop(sk);
2874
2875 goto adjudge_to_death;
2876 }
2877
2878 /* We need to flush the recv. buffs. We do this only on the
2879 * descriptor close, not protocol-sourced closes, because the
2880 * reader process may not have drained the data yet!
2881 */
2882 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2883 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2884
2885 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2886 len--;
2887 data_was_unread += len;
2888 __kfree_skb(skb);
2889 }
2890
2891 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2892 if (sk->sk_state == TCP_CLOSE)
2893 goto adjudge_to_death;
2894
2895 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2896 * data was lost. To witness the awful effects of the old behavior of
2897 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2898 * GET in an FTP client, suspend the process, wait for the client to
2899 * advertise a zero window, then kill -9 the FTP client, wheee...
2900 * Note: timeout is always zero in such a case.
2901 */
2902 if (unlikely(tcp_sk(sk)->repair)) {
2903 sk->sk_prot->disconnect(sk, 0);
2904 } else if (data_was_unread) {
2905 /* Unread data was tossed, zap the connection. */
2906 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2907 tcp_set_state(sk, TCP_CLOSE);
2908 tcp_send_active_reset(sk, sk->sk_allocation);
2909 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2910 /* Check zero linger _after_ checking for unread data. */
2911 sk->sk_prot->disconnect(sk, 0);
2912 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2913 } else if (tcp_close_state(sk)) {
2914 /* We FIN if the application ate all the data before
2915 * zapping the connection.
2916 */
2917
2918 /* RED-PEN. Formally speaking, we have broken TCP state
2919 * machine. State transitions:
2920 *
2921 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2922 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2923 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2924 *
2925 * are legal only when FIN has been sent (i.e. in window),
2926 * rather than queued out of window. Purists blame.
2927 *
2928 * F.e. "RFC state" is ESTABLISHED,
2929 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2930 *
2931 * The visible declinations are that sometimes
2932 * we enter time-wait state, when it is not required really
2933 * (harmless), do not send active resets, when they are
2934 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2935 * they look as CLOSING or LAST_ACK for Linux)
2936 * Probably, I missed some more holelets.
2937 * --ANK
2938 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2939 * in a single packet! (May consider it later but will
2940 * probably need API support or TCP_CORK SYN-ACK until
2941 * data is written and socket is closed.)
2942 */
2943 tcp_send_fin(sk);
2944 }
2945
2946 sk_stream_wait_close(sk, timeout);
2947
2948 adjudge_to_death:
2949 state = sk->sk_state;
2950 sock_hold(sk);
2951 sock_orphan(sk);
2952
2953 local_bh_disable();
2954 bh_lock_sock(sk);
2955 /* remove backlog if any, without releasing ownership. */
2956 __release_sock(sk);
2957
2958 this_cpu_inc(tcp_orphan_count);
2959
2960 /* Have we already been destroyed by a softirq or backlog? */
2961 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2962 goto out;
2963
2964 /* This is a (useful) BSD violating of the RFC. There is a
2965 * problem with TCP as specified in that the other end could
2966 * keep a socket open forever with no application left this end.
2967 * We use a 1 minute timeout (about the same as BSD) then kill
2968 * our end. If they send after that then tough - BUT: long enough
2969 * that we won't make the old 4*rto = almost no time - whoops
2970 * reset mistake.
2971 *
2972 * Nope, it was not mistake. It is really desired behaviour
2973 * f.e. on http servers, when such sockets are useless, but
2974 * consume significant resources. Let's do it with special
2975 * linger2 option. --ANK
2976 */
2977
2978 if (sk->sk_state == TCP_FIN_WAIT2) {
2979 struct tcp_sock *tp = tcp_sk(sk);
2980 if (tp->linger2 < 0) {
2981 tcp_set_state(sk, TCP_CLOSE);
2982 tcp_send_active_reset(sk, GFP_ATOMIC);
2983 __NET_INC_STATS(sock_net(sk),
2984 LINUX_MIB_TCPABORTONLINGER);
2985 } else {
2986 const int tmo = tcp_fin_time(sk);
2987
2988 if (tmo > TCP_TIMEWAIT_LEN) {
2989 inet_csk_reset_keepalive_timer(sk,
2990 tmo - TCP_TIMEWAIT_LEN);
2991 } else {
2992 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2993 goto out;
2994 }
2995 }
2996 }
2997 if (sk->sk_state != TCP_CLOSE) {
2998 if (tcp_check_oom(sk, 0)) {
2999 tcp_set_state(sk, TCP_CLOSE);
3000 tcp_send_active_reset(sk, GFP_ATOMIC);
3001 __NET_INC_STATS(sock_net(sk),
3002 LINUX_MIB_TCPABORTONMEMORY);
3003 } else if (!check_net(sock_net(sk))) {
3004 /* Not possible to send reset; just close */
3005 tcp_set_state(sk, TCP_CLOSE);
3006 }
3007 }
3008
3009 if (sk->sk_state == TCP_CLOSE) {
3010 struct request_sock *req;
3011
3012 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3013 lockdep_sock_is_held(sk));
3014 /* We could get here with a non-NULL req if the socket is
3015 * aborted (e.g., closed with unread data) before 3WHS
3016 * finishes.
3017 */
3018 if (req)
3019 reqsk_fastopen_remove(sk, req, false);
3020 inet_csk_destroy_sock(sk);
3021 }
3022 /* Otherwise, socket is reprieved until protocol close. */
3023
3024 out:
3025 bh_unlock_sock(sk);
3026 local_bh_enable();
3027 }
3028
tcp_close(struct sock * sk,long timeout)3029 void tcp_close(struct sock *sk, long timeout)
3030 {
3031 lock_sock(sk);
3032 __tcp_close(sk, timeout);
3033 release_sock(sk);
3034 sock_put(sk);
3035 }
3036 EXPORT_SYMBOL(tcp_close);
3037
3038 /* These states need RST on ABORT according to RFC793 */
3039
tcp_need_reset(int state)3040 static inline bool tcp_need_reset(int state)
3041 {
3042 return (1 << state) &
3043 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3044 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3045 }
3046
tcp_rtx_queue_purge(struct sock * sk)3047 static void tcp_rtx_queue_purge(struct sock *sk)
3048 {
3049 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3050
3051 tcp_sk(sk)->highest_sack = NULL;
3052 while (p) {
3053 struct sk_buff *skb = rb_to_skb(p);
3054
3055 p = rb_next(p);
3056 /* Since we are deleting whole queue, no need to
3057 * list_del(&skb->tcp_tsorted_anchor)
3058 */
3059 tcp_rtx_queue_unlink(skb, sk);
3060 tcp_wmem_free_skb(sk, skb);
3061 }
3062 }
3063
tcp_write_queue_purge(struct sock * sk)3064 void tcp_write_queue_purge(struct sock *sk)
3065 {
3066 struct sk_buff *skb;
3067
3068 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3069 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3070 tcp_skb_tsorted_anchor_cleanup(skb);
3071 tcp_wmem_free_skb(sk, skb);
3072 }
3073 tcp_rtx_queue_purge(sk);
3074 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3075 tcp_clear_all_retrans_hints(tcp_sk(sk));
3076 tcp_sk(sk)->packets_out = 0;
3077 inet_csk(sk)->icsk_backoff = 0;
3078 }
3079
tcp_disconnect(struct sock * sk,int flags)3080 int tcp_disconnect(struct sock *sk, int flags)
3081 {
3082 struct inet_sock *inet = inet_sk(sk);
3083 struct inet_connection_sock *icsk = inet_csk(sk);
3084 struct tcp_sock *tp = tcp_sk(sk);
3085 int old_state = sk->sk_state;
3086 u32 seq;
3087
3088 if (old_state != TCP_CLOSE)
3089 tcp_set_state(sk, TCP_CLOSE);
3090
3091 /* ABORT function of RFC793 */
3092 if (old_state == TCP_LISTEN) {
3093 inet_csk_listen_stop(sk);
3094 } else if (unlikely(tp->repair)) {
3095 sk->sk_err = ECONNABORTED;
3096 } else if (tcp_need_reset(old_state) ||
3097 (tp->snd_nxt != tp->write_seq &&
3098 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3099 /* The last check adjusts for discrepancy of Linux wrt. RFC
3100 * states
3101 */
3102 tcp_send_active_reset(sk, gfp_any());
3103 sk->sk_err = ECONNRESET;
3104 } else if (old_state == TCP_SYN_SENT)
3105 sk->sk_err = ECONNRESET;
3106
3107 tcp_clear_xmit_timers(sk);
3108 __skb_queue_purge(&sk->sk_receive_queue);
3109 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3110 WRITE_ONCE(tp->urg_data, 0);
3111 tcp_write_queue_purge(sk);
3112 tcp_fastopen_active_disable_ofo_check(sk);
3113 skb_rbtree_purge(&tp->out_of_order_queue);
3114
3115 inet->inet_dport = 0;
3116
3117 inet_bhash2_reset_saddr(sk);
3118
3119 sk->sk_shutdown = 0;
3120 sock_reset_flag(sk, SOCK_DONE);
3121 tp->srtt_us = 0;
3122 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3123 tp->rcv_rtt_last_tsecr = 0;
3124
3125 seq = tp->write_seq + tp->max_window + 2;
3126 if (!seq)
3127 seq = 1;
3128 WRITE_ONCE(tp->write_seq, seq);
3129
3130 icsk->icsk_backoff = 0;
3131 icsk->icsk_probes_out = 0;
3132 icsk->icsk_probes_tstamp = 0;
3133 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3134 icsk->icsk_rto_min = TCP_RTO_MIN;
3135 icsk->icsk_delack_max = TCP_DELACK_MAX;
3136 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3137 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3138 tp->snd_cwnd_cnt = 0;
3139 tp->is_cwnd_limited = 0;
3140 tp->max_packets_out = 0;
3141 tp->window_clamp = 0;
3142 tp->delivered = 0;
3143 tp->delivered_ce = 0;
3144 if (icsk->icsk_ca_ops->release)
3145 icsk->icsk_ca_ops->release(sk);
3146 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3147 icsk->icsk_ca_initialized = 0;
3148 tcp_set_ca_state(sk, TCP_CA_Open);
3149 tp->is_sack_reneg = 0;
3150 tcp_clear_retrans(tp);
3151 tp->total_retrans = 0;
3152 inet_csk_delack_init(sk);
3153 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3154 * issue in __tcp_select_window()
3155 */
3156 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3157 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3158 __sk_dst_reset(sk);
3159 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3160 tcp_saved_syn_free(tp);
3161 tp->compressed_ack = 0;
3162 tp->segs_in = 0;
3163 tp->segs_out = 0;
3164 tp->bytes_sent = 0;
3165 tp->bytes_acked = 0;
3166 tp->bytes_received = 0;
3167 tp->bytes_retrans = 0;
3168 tp->data_segs_in = 0;
3169 tp->data_segs_out = 0;
3170 tp->duplicate_sack[0].start_seq = 0;
3171 tp->duplicate_sack[0].end_seq = 0;
3172 tp->dsack_dups = 0;
3173 tp->reord_seen = 0;
3174 tp->retrans_out = 0;
3175 tp->sacked_out = 0;
3176 tp->tlp_high_seq = 0;
3177 tp->last_oow_ack_time = 0;
3178 /* There's a bubble in the pipe until at least the first ACK. */
3179 tp->app_limited = ~0U;
3180 tp->rack.mstamp = 0;
3181 tp->rack.advanced = 0;
3182 tp->rack.reo_wnd_steps = 1;
3183 tp->rack.last_delivered = 0;
3184 tp->rack.reo_wnd_persist = 0;
3185 tp->rack.dsack_seen = 0;
3186 tp->syn_data_acked = 0;
3187 tp->rx_opt.saw_tstamp = 0;
3188 tp->rx_opt.dsack = 0;
3189 tp->rx_opt.num_sacks = 0;
3190 tp->rcv_ooopack = 0;
3191
3192
3193 /* Clean up fastopen related fields */
3194 tcp_free_fastopen_req(tp);
3195 inet->defer_connect = 0;
3196 tp->fastopen_client_fail = 0;
3197
3198 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3199
3200 if (sk->sk_frag.page) {
3201 put_page(sk->sk_frag.page);
3202 sk->sk_frag.page = NULL;
3203 sk->sk_frag.offset = 0;
3204 }
3205 sk_error_report(sk);
3206 return 0;
3207 }
3208 EXPORT_SYMBOL(tcp_disconnect);
3209
tcp_can_repair_sock(const struct sock * sk)3210 static inline bool tcp_can_repair_sock(const struct sock *sk)
3211 {
3212 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3213 (sk->sk_state != TCP_LISTEN);
3214 }
3215
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3216 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3217 {
3218 struct tcp_repair_window opt;
3219
3220 if (!tp->repair)
3221 return -EPERM;
3222
3223 if (len != sizeof(opt))
3224 return -EINVAL;
3225
3226 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3227 return -EFAULT;
3228
3229 if (opt.max_window < opt.snd_wnd)
3230 return -EINVAL;
3231
3232 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3233 return -EINVAL;
3234
3235 if (after(opt.rcv_wup, tp->rcv_nxt))
3236 return -EINVAL;
3237
3238 tp->snd_wl1 = opt.snd_wl1;
3239 tp->snd_wnd = opt.snd_wnd;
3240 tp->max_window = opt.max_window;
3241
3242 tp->rcv_wnd = opt.rcv_wnd;
3243 tp->rcv_wup = opt.rcv_wup;
3244
3245 return 0;
3246 }
3247
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3248 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3249 unsigned int len)
3250 {
3251 struct tcp_sock *tp = tcp_sk(sk);
3252 struct tcp_repair_opt opt;
3253 size_t offset = 0;
3254
3255 while (len >= sizeof(opt)) {
3256 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3257 return -EFAULT;
3258
3259 offset += sizeof(opt);
3260 len -= sizeof(opt);
3261
3262 switch (opt.opt_code) {
3263 case TCPOPT_MSS:
3264 tp->rx_opt.mss_clamp = opt.opt_val;
3265 tcp_mtup_init(sk);
3266 break;
3267 case TCPOPT_WINDOW:
3268 {
3269 u16 snd_wscale = opt.opt_val & 0xFFFF;
3270 u16 rcv_wscale = opt.opt_val >> 16;
3271
3272 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3273 return -EFBIG;
3274
3275 tp->rx_opt.snd_wscale = snd_wscale;
3276 tp->rx_opt.rcv_wscale = rcv_wscale;
3277 tp->rx_opt.wscale_ok = 1;
3278 }
3279 break;
3280 case TCPOPT_SACK_PERM:
3281 if (opt.opt_val != 0)
3282 return -EINVAL;
3283
3284 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3285 break;
3286 case TCPOPT_TIMESTAMP:
3287 if (opt.opt_val != 0)
3288 return -EINVAL;
3289
3290 tp->rx_opt.tstamp_ok = 1;
3291 break;
3292 }
3293 }
3294
3295 return 0;
3296 }
3297
3298 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3299 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3300
tcp_enable_tx_delay(void)3301 static void tcp_enable_tx_delay(void)
3302 {
3303 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3304 static int __tcp_tx_delay_enabled = 0;
3305
3306 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3307 static_branch_enable(&tcp_tx_delay_enabled);
3308 pr_info("TCP_TX_DELAY enabled\n");
3309 }
3310 }
3311 }
3312
3313 /* When set indicates to always queue non-full frames. Later the user clears
3314 * this option and we transmit any pending partial frames in the queue. This is
3315 * meant to be used alongside sendfile() to get properly filled frames when the
3316 * user (for example) must write out headers with a write() call first and then
3317 * use sendfile to send out the data parts.
3318 *
3319 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3320 * TCP_NODELAY.
3321 */
__tcp_sock_set_cork(struct sock * sk,bool on)3322 void __tcp_sock_set_cork(struct sock *sk, bool on)
3323 {
3324 struct tcp_sock *tp = tcp_sk(sk);
3325
3326 if (on) {
3327 tp->nonagle |= TCP_NAGLE_CORK;
3328 } else {
3329 tp->nonagle &= ~TCP_NAGLE_CORK;
3330 if (tp->nonagle & TCP_NAGLE_OFF)
3331 tp->nonagle |= TCP_NAGLE_PUSH;
3332 tcp_push_pending_frames(sk);
3333 }
3334 }
3335
tcp_sock_set_cork(struct sock * sk,bool on)3336 void tcp_sock_set_cork(struct sock *sk, bool on)
3337 {
3338 lock_sock(sk);
3339 __tcp_sock_set_cork(sk, on);
3340 release_sock(sk);
3341 }
3342 EXPORT_SYMBOL(tcp_sock_set_cork);
3343
3344 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3345 * remembered, but it is not activated until cork is cleared.
3346 *
3347 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3348 * even TCP_CORK for currently queued segments.
3349 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3350 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3351 {
3352 if (on) {
3353 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3354 tcp_push_pending_frames(sk);
3355 } else {
3356 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3357 }
3358 }
3359
tcp_sock_set_nodelay(struct sock * sk)3360 void tcp_sock_set_nodelay(struct sock *sk)
3361 {
3362 lock_sock(sk);
3363 __tcp_sock_set_nodelay(sk, true);
3364 release_sock(sk);
3365 }
3366 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3367
__tcp_sock_set_quickack(struct sock * sk,int val)3368 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3369 {
3370 if (!val) {
3371 inet_csk_enter_pingpong_mode(sk);
3372 return;
3373 }
3374
3375 inet_csk_exit_pingpong_mode(sk);
3376 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3377 inet_csk_ack_scheduled(sk)) {
3378 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3379 tcp_cleanup_rbuf(sk, 1);
3380 if (!(val & 1))
3381 inet_csk_enter_pingpong_mode(sk);
3382 }
3383 }
3384
tcp_sock_set_quickack(struct sock * sk,int val)3385 void tcp_sock_set_quickack(struct sock *sk, int val)
3386 {
3387 lock_sock(sk);
3388 __tcp_sock_set_quickack(sk, val);
3389 release_sock(sk);
3390 }
3391 EXPORT_SYMBOL(tcp_sock_set_quickack);
3392
tcp_sock_set_syncnt(struct sock * sk,int val)3393 int tcp_sock_set_syncnt(struct sock *sk, int val)
3394 {
3395 if (val < 1 || val > MAX_TCP_SYNCNT)
3396 return -EINVAL;
3397
3398 lock_sock(sk);
3399 inet_csk(sk)->icsk_syn_retries = val;
3400 release_sock(sk);
3401 return 0;
3402 }
3403 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3404
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3405 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3406 {
3407 lock_sock(sk);
3408 inet_csk(sk)->icsk_user_timeout = val;
3409 release_sock(sk);
3410 }
3411 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3412
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3413 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3414 {
3415 struct tcp_sock *tp = tcp_sk(sk);
3416
3417 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3418 return -EINVAL;
3419
3420 tp->keepalive_time = val * HZ;
3421 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3422 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3423 u32 elapsed = keepalive_time_elapsed(tp);
3424
3425 if (tp->keepalive_time > elapsed)
3426 elapsed = tp->keepalive_time - elapsed;
3427 else
3428 elapsed = 0;
3429 inet_csk_reset_keepalive_timer(sk, elapsed);
3430 }
3431
3432 return 0;
3433 }
3434
tcp_sock_set_keepidle(struct sock * sk,int val)3435 int tcp_sock_set_keepidle(struct sock *sk, int val)
3436 {
3437 int err;
3438
3439 lock_sock(sk);
3440 err = tcp_sock_set_keepidle_locked(sk, val);
3441 release_sock(sk);
3442 return err;
3443 }
3444 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3445
tcp_sock_set_keepintvl(struct sock * sk,int val)3446 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3447 {
3448 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3449 return -EINVAL;
3450
3451 lock_sock(sk);
3452 tcp_sk(sk)->keepalive_intvl = val * HZ;
3453 release_sock(sk);
3454 return 0;
3455 }
3456 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3457
tcp_sock_set_keepcnt(struct sock * sk,int val)3458 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3459 {
3460 if (val < 1 || val > MAX_TCP_KEEPCNT)
3461 return -EINVAL;
3462
3463 lock_sock(sk);
3464 tcp_sk(sk)->keepalive_probes = val;
3465 release_sock(sk);
3466 return 0;
3467 }
3468 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3469
tcp_set_window_clamp(struct sock * sk,int val)3470 int tcp_set_window_clamp(struct sock *sk, int val)
3471 {
3472 struct tcp_sock *tp = tcp_sk(sk);
3473
3474 if (!val) {
3475 if (sk->sk_state != TCP_CLOSE)
3476 return -EINVAL;
3477 tp->window_clamp = 0;
3478 } else {
3479 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3480 SOCK_MIN_RCVBUF / 2 : val;
3481 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3482 }
3483 return 0;
3484 }
3485
3486 /*
3487 * Socket option code for TCP.
3488 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3489 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3490 sockptr_t optval, unsigned int optlen)
3491 {
3492 struct tcp_sock *tp = tcp_sk(sk);
3493 struct inet_connection_sock *icsk = inet_csk(sk);
3494 struct net *net = sock_net(sk);
3495 int val;
3496 int err = 0;
3497
3498 /* These are data/string values, all the others are ints */
3499 switch (optname) {
3500 case TCP_CONGESTION: {
3501 char name[TCP_CA_NAME_MAX];
3502
3503 if (optlen < 1)
3504 return -EINVAL;
3505
3506 val = strncpy_from_sockptr(name, optval,
3507 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3508 if (val < 0)
3509 return -EFAULT;
3510 name[val] = 0;
3511
3512 sockopt_lock_sock(sk);
3513 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3514 sockopt_ns_capable(sock_net(sk)->user_ns,
3515 CAP_NET_ADMIN));
3516 sockopt_release_sock(sk);
3517 return err;
3518 }
3519 case TCP_ULP: {
3520 char name[TCP_ULP_NAME_MAX];
3521
3522 if (optlen < 1)
3523 return -EINVAL;
3524
3525 val = strncpy_from_sockptr(name, optval,
3526 min_t(long, TCP_ULP_NAME_MAX - 1,
3527 optlen));
3528 if (val < 0)
3529 return -EFAULT;
3530 name[val] = 0;
3531
3532 sockopt_lock_sock(sk);
3533 err = tcp_set_ulp(sk, name);
3534 sockopt_release_sock(sk);
3535 return err;
3536 }
3537 case TCP_FASTOPEN_KEY: {
3538 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3539 __u8 *backup_key = NULL;
3540
3541 /* Allow a backup key as well to facilitate key rotation
3542 * First key is the active one.
3543 */
3544 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3545 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3546 return -EINVAL;
3547
3548 if (copy_from_sockptr(key, optval, optlen))
3549 return -EFAULT;
3550
3551 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3552 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3553
3554 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3555 }
3556 default:
3557 /* fallthru */
3558 break;
3559 }
3560
3561 if (optlen < sizeof(int))
3562 return -EINVAL;
3563
3564 if (copy_from_sockptr(&val, optval, sizeof(val)))
3565 return -EFAULT;
3566
3567 sockopt_lock_sock(sk);
3568
3569 switch (optname) {
3570 case TCP_MAXSEG:
3571 /* Values greater than interface MTU won't take effect. However
3572 * at the point when this call is done we typically don't yet
3573 * know which interface is going to be used
3574 */
3575 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3576 err = -EINVAL;
3577 break;
3578 }
3579 tp->rx_opt.user_mss = val;
3580 break;
3581
3582 case TCP_NODELAY:
3583 __tcp_sock_set_nodelay(sk, val);
3584 break;
3585
3586 case TCP_THIN_LINEAR_TIMEOUTS:
3587 if (val < 0 || val > 1)
3588 err = -EINVAL;
3589 else
3590 tp->thin_lto = val;
3591 break;
3592
3593 case TCP_THIN_DUPACK:
3594 if (val < 0 || val > 1)
3595 err = -EINVAL;
3596 break;
3597
3598 case TCP_REPAIR:
3599 if (!tcp_can_repair_sock(sk))
3600 err = -EPERM;
3601 else if (val == TCP_REPAIR_ON) {
3602 tp->repair = 1;
3603 sk->sk_reuse = SK_FORCE_REUSE;
3604 tp->repair_queue = TCP_NO_QUEUE;
3605 } else if (val == TCP_REPAIR_OFF) {
3606 tp->repair = 0;
3607 sk->sk_reuse = SK_NO_REUSE;
3608 tcp_send_window_probe(sk);
3609 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3610 tp->repair = 0;
3611 sk->sk_reuse = SK_NO_REUSE;
3612 } else
3613 err = -EINVAL;
3614
3615 break;
3616
3617 case TCP_REPAIR_QUEUE:
3618 if (!tp->repair)
3619 err = -EPERM;
3620 else if ((unsigned int)val < TCP_QUEUES_NR)
3621 tp->repair_queue = val;
3622 else
3623 err = -EINVAL;
3624 break;
3625
3626 case TCP_QUEUE_SEQ:
3627 if (sk->sk_state != TCP_CLOSE) {
3628 err = -EPERM;
3629 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3630 if (!tcp_rtx_queue_empty(sk))
3631 err = -EPERM;
3632 else
3633 WRITE_ONCE(tp->write_seq, val);
3634 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3635 if (tp->rcv_nxt != tp->copied_seq) {
3636 err = -EPERM;
3637 } else {
3638 WRITE_ONCE(tp->rcv_nxt, val);
3639 WRITE_ONCE(tp->copied_seq, val);
3640 }
3641 } else {
3642 err = -EINVAL;
3643 }
3644 break;
3645
3646 case TCP_REPAIR_OPTIONS:
3647 if (!tp->repair)
3648 err = -EINVAL;
3649 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3650 err = tcp_repair_options_est(sk, optval, optlen);
3651 else
3652 err = -EPERM;
3653 break;
3654
3655 case TCP_CORK:
3656 __tcp_sock_set_cork(sk, val);
3657 break;
3658
3659 case TCP_KEEPIDLE:
3660 err = tcp_sock_set_keepidle_locked(sk, val);
3661 break;
3662 case TCP_KEEPINTVL:
3663 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3664 err = -EINVAL;
3665 else
3666 tp->keepalive_intvl = val * HZ;
3667 break;
3668 case TCP_KEEPCNT:
3669 if (val < 1 || val > MAX_TCP_KEEPCNT)
3670 err = -EINVAL;
3671 else
3672 tp->keepalive_probes = val;
3673 break;
3674 case TCP_SYNCNT:
3675 if (val < 1 || val > MAX_TCP_SYNCNT)
3676 err = -EINVAL;
3677 else
3678 icsk->icsk_syn_retries = val;
3679 break;
3680
3681 case TCP_SAVE_SYN:
3682 /* 0: disable, 1: enable, 2: start from ether_header */
3683 if (val < 0 || val > 2)
3684 err = -EINVAL;
3685 else
3686 tp->save_syn = val;
3687 break;
3688
3689 case TCP_LINGER2:
3690 if (val < 0)
3691 tp->linger2 = -1;
3692 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3693 tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3694 else
3695 tp->linger2 = val * HZ;
3696 break;
3697
3698 case TCP_DEFER_ACCEPT:
3699 /* Translate value in seconds to number of retransmits */
3700 icsk->icsk_accept_queue.rskq_defer_accept =
3701 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3702 TCP_RTO_MAX / HZ);
3703 break;
3704
3705 case TCP_WINDOW_CLAMP:
3706 err = tcp_set_window_clamp(sk, val);
3707 break;
3708
3709 case TCP_QUICKACK:
3710 __tcp_sock_set_quickack(sk, val);
3711 break;
3712
3713 #ifdef CONFIG_TCP_MD5SIG
3714 case TCP_MD5SIG:
3715 case TCP_MD5SIG_EXT:
3716 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3717 break;
3718 #endif
3719 case TCP_USER_TIMEOUT:
3720 /* Cap the max time in ms TCP will retry or probe the window
3721 * before giving up and aborting (ETIMEDOUT) a connection.
3722 */
3723 if (val < 0)
3724 err = -EINVAL;
3725 else
3726 icsk->icsk_user_timeout = val;
3727 break;
3728
3729 case TCP_FASTOPEN:
3730 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3731 TCPF_LISTEN))) {
3732 tcp_fastopen_init_key_once(net);
3733
3734 fastopen_queue_tune(sk, val);
3735 } else {
3736 err = -EINVAL;
3737 }
3738 break;
3739 case TCP_FASTOPEN_CONNECT:
3740 if (val > 1 || val < 0) {
3741 err = -EINVAL;
3742 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3743 TFO_CLIENT_ENABLE) {
3744 if (sk->sk_state == TCP_CLOSE)
3745 tp->fastopen_connect = val;
3746 else
3747 err = -EINVAL;
3748 } else {
3749 err = -EOPNOTSUPP;
3750 }
3751 break;
3752 case TCP_FASTOPEN_NO_COOKIE:
3753 if (val > 1 || val < 0)
3754 err = -EINVAL;
3755 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3756 err = -EINVAL;
3757 else
3758 tp->fastopen_no_cookie = val;
3759 break;
3760 case TCP_TIMESTAMP:
3761 if (!tp->repair)
3762 err = -EPERM;
3763 else
3764 tp->tsoffset = val - tcp_time_stamp_raw();
3765 break;
3766 case TCP_REPAIR_WINDOW:
3767 err = tcp_repair_set_window(tp, optval, optlen);
3768 break;
3769 case TCP_NOTSENT_LOWAT:
3770 tp->notsent_lowat = val;
3771 sk->sk_write_space(sk);
3772 break;
3773 case TCP_INQ:
3774 if (val > 1 || val < 0)
3775 err = -EINVAL;
3776 else
3777 tp->recvmsg_inq = val;
3778 break;
3779 case TCP_TX_DELAY:
3780 if (val)
3781 tcp_enable_tx_delay();
3782 tp->tcp_tx_delay = val;
3783 break;
3784 default:
3785 err = -ENOPROTOOPT;
3786 break;
3787 }
3788
3789 sockopt_release_sock(sk);
3790 return err;
3791 }
3792
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3793 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3794 unsigned int optlen)
3795 {
3796 const struct inet_connection_sock *icsk = inet_csk(sk);
3797
3798 if (level != SOL_TCP)
3799 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3800 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3801 optval, optlen);
3802 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3803 }
3804 EXPORT_SYMBOL(tcp_setsockopt);
3805
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3806 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3807 struct tcp_info *info)
3808 {
3809 u64 stats[__TCP_CHRONO_MAX], total = 0;
3810 enum tcp_chrono i;
3811
3812 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3813 stats[i] = tp->chrono_stat[i - 1];
3814 if (i == tp->chrono_type)
3815 stats[i] += tcp_jiffies32 - tp->chrono_start;
3816 stats[i] *= USEC_PER_SEC / HZ;
3817 total += stats[i];
3818 }
3819
3820 info->tcpi_busy_time = total;
3821 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3822 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3823 }
3824
3825 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3826 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3827 {
3828 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3829 const struct inet_connection_sock *icsk = inet_csk(sk);
3830 unsigned long rate;
3831 u32 now;
3832 u64 rate64;
3833 bool slow;
3834
3835 memset(info, 0, sizeof(*info));
3836 if (sk->sk_type != SOCK_STREAM)
3837 return;
3838
3839 info->tcpi_state = inet_sk_state_load(sk);
3840
3841 /* Report meaningful fields for all TCP states, including listeners */
3842 rate = READ_ONCE(sk->sk_pacing_rate);
3843 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3844 info->tcpi_pacing_rate = rate64;
3845
3846 rate = READ_ONCE(sk->sk_max_pacing_rate);
3847 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3848 info->tcpi_max_pacing_rate = rate64;
3849
3850 info->tcpi_reordering = tp->reordering;
3851 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3852
3853 if (info->tcpi_state == TCP_LISTEN) {
3854 /* listeners aliased fields :
3855 * tcpi_unacked -> Number of children ready for accept()
3856 * tcpi_sacked -> max backlog
3857 */
3858 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3859 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3860 return;
3861 }
3862
3863 slow = lock_sock_fast(sk);
3864
3865 info->tcpi_ca_state = icsk->icsk_ca_state;
3866 info->tcpi_retransmits = icsk->icsk_retransmits;
3867 info->tcpi_probes = icsk->icsk_probes_out;
3868 info->tcpi_backoff = icsk->icsk_backoff;
3869
3870 if (tp->rx_opt.tstamp_ok)
3871 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3872 if (tcp_is_sack(tp))
3873 info->tcpi_options |= TCPI_OPT_SACK;
3874 if (tp->rx_opt.wscale_ok) {
3875 info->tcpi_options |= TCPI_OPT_WSCALE;
3876 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3877 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3878 }
3879
3880 if (tp->ecn_flags & TCP_ECN_OK)
3881 info->tcpi_options |= TCPI_OPT_ECN;
3882 if (tp->ecn_flags & TCP_ECN_SEEN)
3883 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3884 if (tp->syn_data_acked)
3885 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3886
3887 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3888 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3889 info->tcpi_snd_mss = tp->mss_cache;
3890 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3891
3892 info->tcpi_unacked = tp->packets_out;
3893 info->tcpi_sacked = tp->sacked_out;
3894
3895 info->tcpi_lost = tp->lost_out;
3896 info->tcpi_retrans = tp->retrans_out;
3897
3898 now = tcp_jiffies32;
3899 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3900 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3901 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3902
3903 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3904 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3905 info->tcpi_rtt = tp->srtt_us >> 3;
3906 info->tcpi_rttvar = tp->mdev_us >> 2;
3907 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3908 info->tcpi_advmss = tp->advmss;
3909
3910 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3911 info->tcpi_rcv_space = tp->rcvq_space.space;
3912
3913 info->tcpi_total_retrans = tp->total_retrans;
3914
3915 info->tcpi_bytes_acked = tp->bytes_acked;
3916 info->tcpi_bytes_received = tp->bytes_received;
3917 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3918 tcp_get_info_chrono_stats(tp, info);
3919
3920 info->tcpi_segs_out = tp->segs_out;
3921
3922 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3923 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3924 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3925
3926 info->tcpi_min_rtt = tcp_min_rtt(tp);
3927 info->tcpi_data_segs_out = tp->data_segs_out;
3928
3929 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3930 rate64 = tcp_compute_delivery_rate(tp);
3931 if (rate64)
3932 info->tcpi_delivery_rate = rate64;
3933 info->tcpi_delivered = tp->delivered;
3934 info->tcpi_delivered_ce = tp->delivered_ce;
3935 info->tcpi_bytes_sent = tp->bytes_sent;
3936 info->tcpi_bytes_retrans = tp->bytes_retrans;
3937 info->tcpi_dsack_dups = tp->dsack_dups;
3938 info->tcpi_reord_seen = tp->reord_seen;
3939 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3940 info->tcpi_snd_wnd = tp->snd_wnd;
3941 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3942 unlock_sock_fast(sk, slow);
3943 }
3944 EXPORT_SYMBOL_GPL(tcp_get_info);
3945
tcp_opt_stats_get_size(void)3946 static size_t tcp_opt_stats_get_size(void)
3947 {
3948 return
3949 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3950 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3951 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3952 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3953 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3954 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3955 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3956 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3957 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3958 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3959 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3960 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3961 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3962 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3963 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3964 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3965 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3966 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3967 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3968 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3969 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3970 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3971 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3972 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3973 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3974 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3975 0;
3976 }
3977
3978 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3979 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3980 {
3981 if (skb->protocol == htons(ETH_P_IP))
3982 return ip_hdr(skb)->ttl;
3983 else if (skb->protocol == htons(ETH_P_IPV6))
3984 return ipv6_hdr(skb)->hop_limit;
3985 else
3986 return 0;
3987 }
3988
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3989 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3990 const struct sk_buff *orig_skb,
3991 const struct sk_buff *ack_skb)
3992 {
3993 const struct tcp_sock *tp = tcp_sk(sk);
3994 struct sk_buff *stats;
3995 struct tcp_info info;
3996 unsigned long rate;
3997 u64 rate64;
3998
3999 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4000 if (!stats)
4001 return NULL;
4002
4003 tcp_get_info_chrono_stats(tp, &info);
4004 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4005 info.tcpi_busy_time, TCP_NLA_PAD);
4006 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4007 info.tcpi_rwnd_limited, TCP_NLA_PAD);
4008 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4009 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4010 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4011 tp->data_segs_out, TCP_NLA_PAD);
4012 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4013 tp->total_retrans, TCP_NLA_PAD);
4014
4015 rate = READ_ONCE(sk->sk_pacing_rate);
4016 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4017 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4018
4019 rate64 = tcp_compute_delivery_rate(tp);
4020 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4021
4022 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4023 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4024 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4025
4026 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4027 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4028 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4029 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4030 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4031
4032 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4033 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4034
4035 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4036 TCP_NLA_PAD);
4037 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4038 TCP_NLA_PAD);
4039 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4040 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4041 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4042 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4043 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4044 max_t(int, 0, tp->write_seq - tp->snd_nxt));
4045 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4046 TCP_NLA_PAD);
4047 if (ack_skb)
4048 nla_put_u8(stats, TCP_NLA_TTL,
4049 tcp_skb_ttl_or_hop_limit(ack_skb));
4050
4051 return stats;
4052 }
4053
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4054 int do_tcp_getsockopt(struct sock *sk, int level,
4055 int optname, sockptr_t optval, sockptr_t optlen)
4056 {
4057 struct inet_connection_sock *icsk = inet_csk(sk);
4058 struct tcp_sock *tp = tcp_sk(sk);
4059 struct net *net = sock_net(sk);
4060 int val, len;
4061
4062 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4063 return -EFAULT;
4064
4065 len = min_t(unsigned int, len, sizeof(int));
4066
4067 if (len < 0)
4068 return -EINVAL;
4069
4070 switch (optname) {
4071 case TCP_MAXSEG:
4072 val = tp->mss_cache;
4073 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4074 val = tp->rx_opt.user_mss;
4075 if (tp->repair)
4076 val = tp->rx_opt.mss_clamp;
4077 break;
4078 case TCP_NODELAY:
4079 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4080 break;
4081 case TCP_CORK:
4082 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4083 break;
4084 case TCP_KEEPIDLE:
4085 val = keepalive_time_when(tp) / HZ;
4086 break;
4087 case TCP_KEEPINTVL:
4088 val = keepalive_intvl_when(tp) / HZ;
4089 break;
4090 case TCP_KEEPCNT:
4091 val = keepalive_probes(tp);
4092 break;
4093 case TCP_SYNCNT:
4094 val = icsk->icsk_syn_retries ? :
4095 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4096 break;
4097 case TCP_LINGER2:
4098 val = tp->linger2;
4099 if (val >= 0)
4100 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4101 break;
4102 case TCP_DEFER_ACCEPT:
4103 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
4104 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
4105 break;
4106 case TCP_WINDOW_CLAMP:
4107 val = tp->window_clamp;
4108 break;
4109 case TCP_INFO: {
4110 struct tcp_info info;
4111
4112 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4113 return -EFAULT;
4114
4115 tcp_get_info(sk, &info);
4116
4117 len = min_t(unsigned int, len, sizeof(info));
4118 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4119 return -EFAULT;
4120 if (copy_to_sockptr(optval, &info, len))
4121 return -EFAULT;
4122 return 0;
4123 }
4124 case TCP_CC_INFO: {
4125 const struct tcp_congestion_ops *ca_ops;
4126 union tcp_cc_info info;
4127 size_t sz = 0;
4128 int attr;
4129
4130 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4131 return -EFAULT;
4132
4133 ca_ops = icsk->icsk_ca_ops;
4134 if (ca_ops && ca_ops->get_info)
4135 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4136
4137 len = min_t(unsigned int, len, sz);
4138 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4139 return -EFAULT;
4140 if (copy_to_sockptr(optval, &info, len))
4141 return -EFAULT;
4142 return 0;
4143 }
4144 case TCP_QUICKACK:
4145 val = !inet_csk_in_pingpong_mode(sk);
4146 break;
4147
4148 case TCP_CONGESTION:
4149 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4150 return -EFAULT;
4151 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4152 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4153 return -EFAULT;
4154 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4155 return -EFAULT;
4156 return 0;
4157
4158 case TCP_ULP:
4159 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4160 return -EFAULT;
4161 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4162 if (!icsk->icsk_ulp_ops) {
4163 len = 0;
4164 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4165 return -EFAULT;
4166 return 0;
4167 }
4168 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4169 return -EFAULT;
4170 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4171 return -EFAULT;
4172 return 0;
4173
4174 case TCP_FASTOPEN_KEY: {
4175 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4176 unsigned int key_len;
4177
4178 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4179 return -EFAULT;
4180
4181 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4182 TCP_FASTOPEN_KEY_LENGTH;
4183 len = min_t(unsigned int, len, key_len);
4184 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4185 return -EFAULT;
4186 if (copy_to_sockptr(optval, key, len))
4187 return -EFAULT;
4188 return 0;
4189 }
4190 case TCP_THIN_LINEAR_TIMEOUTS:
4191 val = tp->thin_lto;
4192 break;
4193
4194 case TCP_THIN_DUPACK:
4195 val = 0;
4196 break;
4197
4198 case TCP_REPAIR:
4199 val = tp->repair;
4200 break;
4201
4202 case TCP_REPAIR_QUEUE:
4203 if (tp->repair)
4204 val = tp->repair_queue;
4205 else
4206 return -EINVAL;
4207 break;
4208
4209 case TCP_REPAIR_WINDOW: {
4210 struct tcp_repair_window opt;
4211
4212 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4213 return -EFAULT;
4214
4215 if (len != sizeof(opt))
4216 return -EINVAL;
4217
4218 if (!tp->repair)
4219 return -EPERM;
4220
4221 opt.snd_wl1 = tp->snd_wl1;
4222 opt.snd_wnd = tp->snd_wnd;
4223 opt.max_window = tp->max_window;
4224 opt.rcv_wnd = tp->rcv_wnd;
4225 opt.rcv_wup = tp->rcv_wup;
4226
4227 if (copy_to_sockptr(optval, &opt, len))
4228 return -EFAULT;
4229 return 0;
4230 }
4231 case TCP_QUEUE_SEQ:
4232 if (tp->repair_queue == TCP_SEND_QUEUE)
4233 val = tp->write_seq;
4234 else if (tp->repair_queue == TCP_RECV_QUEUE)
4235 val = tp->rcv_nxt;
4236 else
4237 return -EINVAL;
4238 break;
4239
4240 case TCP_USER_TIMEOUT:
4241 val = icsk->icsk_user_timeout;
4242 break;
4243
4244 case TCP_FASTOPEN:
4245 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4246 break;
4247
4248 case TCP_FASTOPEN_CONNECT:
4249 val = tp->fastopen_connect;
4250 break;
4251
4252 case TCP_FASTOPEN_NO_COOKIE:
4253 val = tp->fastopen_no_cookie;
4254 break;
4255
4256 case TCP_TX_DELAY:
4257 val = tp->tcp_tx_delay;
4258 break;
4259
4260 case TCP_TIMESTAMP:
4261 val = tcp_time_stamp_raw() + tp->tsoffset;
4262 break;
4263 case TCP_NOTSENT_LOWAT:
4264 val = tp->notsent_lowat;
4265 break;
4266 case TCP_INQ:
4267 val = tp->recvmsg_inq;
4268 break;
4269 case TCP_SAVE_SYN:
4270 val = tp->save_syn;
4271 break;
4272 case TCP_SAVED_SYN: {
4273 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4274 return -EFAULT;
4275
4276 sockopt_lock_sock(sk);
4277 if (tp->saved_syn) {
4278 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4279 len = tcp_saved_syn_len(tp->saved_syn);
4280 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4281 sockopt_release_sock(sk);
4282 return -EFAULT;
4283 }
4284 sockopt_release_sock(sk);
4285 return -EINVAL;
4286 }
4287 len = tcp_saved_syn_len(tp->saved_syn);
4288 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4289 sockopt_release_sock(sk);
4290 return -EFAULT;
4291 }
4292 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4293 sockopt_release_sock(sk);
4294 return -EFAULT;
4295 }
4296 tcp_saved_syn_free(tp);
4297 sockopt_release_sock(sk);
4298 } else {
4299 sockopt_release_sock(sk);
4300 len = 0;
4301 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4302 return -EFAULT;
4303 }
4304 return 0;
4305 }
4306 #ifdef CONFIG_MMU
4307 case TCP_ZEROCOPY_RECEIVE: {
4308 struct scm_timestamping_internal tss;
4309 struct tcp_zerocopy_receive zc = {};
4310 int err;
4311
4312 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4313 return -EFAULT;
4314 if (len < 0 ||
4315 len < offsetofend(struct tcp_zerocopy_receive, length))
4316 return -EINVAL;
4317 if (unlikely(len > sizeof(zc))) {
4318 err = check_zeroed_sockptr(optval, sizeof(zc),
4319 len - sizeof(zc));
4320 if (err < 1)
4321 return err == 0 ? -EINVAL : err;
4322 len = sizeof(zc);
4323 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4324 return -EFAULT;
4325 }
4326 if (copy_from_sockptr(&zc, optval, len))
4327 return -EFAULT;
4328 if (zc.reserved)
4329 return -EINVAL;
4330 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4331 return -EINVAL;
4332 sockopt_lock_sock(sk);
4333 err = tcp_zerocopy_receive(sk, &zc, &tss);
4334 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4335 &zc, &len, err);
4336 sockopt_release_sock(sk);
4337 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4338 goto zerocopy_rcv_cmsg;
4339 switch (len) {
4340 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4341 goto zerocopy_rcv_cmsg;
4342 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4343 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4344 case offsetofend(struct tcp_zerocopy_receive, flags):
4345 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4346 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4347 case offsetofend(struct tcp_zerocopy_receive, err):
4348 goto zerocopy_rcv_sk_err;
4349 case offsetofend(struct tcp_zerocopy_receive, inq):
4350 goto zerocopy_rcv_inq;
4351 case offsetofend(struct tcp_zerocopy_receive, length):
4352 default:
4353 goto zerocopy_rcv_out;
4354 }
4355 zerocopy_rcv_cmsg:
4356 if (zc.msg_flags & TCP_CMSG_TS)
4357 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4358 else
4359 zc.msg_flags = 0;
4360 zerocopy_rcv_sk_err:
4361 if (!err)
4362 zc.err = sock_error(sk);
4363 zerocopy_rcv_inq:
4364 zc.inq = tcp_inq_hint(sk);
4365 zerocopy_rcv_out:
4366 if (!err && copy_to_sockptr(optval, &zc, len))
4367 err = -EFAULT;
4368 return err;
4369 }
4370 #endif
4371 default:
4372 return -ENOPROTOOPT;
4373 }
4374
4375 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4376 return -EFAULT;
4377 if (copy_to_sockptr(optval, &val, len))
4378 return -EFAULT;
4379 return 0;
4380 }
4381
tcp_bpf_bypass_getsockopt(int level,int optname)4382 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4383 {
4384 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4385 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4386 */
4387 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4388 return true;
4389
4390 return false;
4391 }
4392 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4393
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4394 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4395 int __user *optlen)
4396 {
4397 struct inet_connection_sock *icsk = inet_csk(sk);
4398
4399 if (level != SOL_TCP)
4400 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4401 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4402 optval, optlen);
4403 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4404 USER_SOCKPTR(optlen));
4405 }
4406 EXPORT_SYMBOL(tcp_getsockopt);
4407
4408 #ifdef CONFIG_TCP_MD5SIG
4409 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4410 static DEFINE_MUTEX(tcp_md5sig_mutex);
4411 static bool tcp_md5sig_pool_populated = false;
4412
__tcp_alloc_md5sig_pool(void)4413 static void __tcp_alloc_md5sig_pool(void)
4414 {
4415 struct crypto_ahash *hash;
4416 int cpu;
4417
4418 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4419 if (IS_ERR(hash))
4420 return;
4421
4422 for_each_possible_cpu(cpu) {
4423 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4424 struct ahash_request *req;
4425
4426 if (!scratch) {
4427 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4428 sizeof(struct tcphdr),
4429 GFP_KERNEL,
4430 cpu_to_node(cpu));
4431 if (!scratch)
4432 return;
4433 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4434 }
4435 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4436 continue;
4437
4438 req = ahash_request_alloc(hash, GFP_KERNEL);
4439 if (!req)
4440 return;
4441
4442 ahash_request_set_callback(req, 0, NULL, NULL);
4443
4444 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4445 }
4446 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4447 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4448 */
4449 smp_wmb();
4450 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4451 * and tcp_get_md5sig_pool().
4452 */
4453 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4454 }
4455
tcp_alloc_md5sig_pool(void)4456 bool tcp_alloc_md5sig_pool(void)
4457 {
4458 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4459 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4460 mutex_lock(&tcp_md5sig_mutex);
4461
4462 if (!tcp_md5sig_pool_populated) {
4463 __tcp_alloc_md5sig_pool();
4464 if (tcp_md5sig_pool_populated)
4465 static_branch_inc(&tcp_md5_needed);
4466 }
4467
4468 mutex_unlock(&tcp_md5sig_mutex);
4469 }
4470 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4471 return READ_ONCE(tcp_md5sig_pool_populated);
4472 }
4473 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4474
4475
4476 /**
4477 * tcp_get_md5sig_pool - get md5sig_pool for this user
4478 *
4479 * We use percpu structure, so if we succeed, we exit with preemption
4480 * and BH disabled, to make sure another thread or softirq handling
4481 * wont try to get same context.
4482 */
tcp_get_md5sig_pool(void)4483 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4484 {
4485 local_bh_disable();
4486
4487 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4488 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4489 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4490 smp_rmb();
4491 return this_cpu_ptr(&tcp_md5sig_pool);
4492 }
4493 local_bh_enable();
4494 return NULL;
4495 }
4496 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4497
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4498 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4499 const struct sk_buff *skb, unsigned int header_len)
4500 {
4501 struct scatterlist sg;
4502 const struct tcphdr *tp = tcp_hdr(skb);
4503 struct ahash_request *req = hp->md5_req;
4504 unsigned int i;
4505 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4506 skb_headlen(skb) - header_len : 0;
4507 const struct skb_shared_info *shi = skb_shinfo(skb);
4508 struct sk_buff *frag_iter;
4509
4510 sg_init_table(&sg, 1);
4511
4512 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4513 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4514 if (crypto_ahash_update(req))
4515 return 1;
4516
4517 for (i = 0; i < shi->nr_frags; ++i) {
4518 const skb_frag_t *f = &shi->frags[i];
4519 unsigned int offset = skb_frag_off(f);
4520 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4521
4522 sg_set_page(&sg, page, skb_frag_size(f),
4523 offset_in_page(offset));
4524 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4525 if (crypto_ahash_update(req))
4526 return 1;
4527 }
4528
4529 skb_walk_frags(skb, frag_iter)
4530 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4531 return 1;
4532
4533 return 0;
4534 }
4535 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4536
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4537 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4538 {
4539 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4540 struct scatterlist sg;
4541
4542 sg_init_one(&sg, key->key, keylen);
4543 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4544
4545 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4546 return data_race(crypto_ahash_update(hp->md5_req));
4547 }
4548 EXPORT_SYMBOL(tcp_md5_hash_key);
4549
4550 /* Called with rcu_read_lock() */
4551 enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4552 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4553 const void *saddr, const void *daddr,
4554 int family, int dif, int sdif)
4555 {
4556 /*
4557 * This gets called for each TCP segment that arrives
4558 * so we want to be efficient.
4559 * We have 3 drop cases:
4560 * o No MD5 hash and one expected.
4561 * o MD5 hash and we're not expecting one.
4562 * o MD5 hash and its wrong.
4563 */
4564 const __u8 *hash_location = NULL;
4565 struct tcp_md5sig_key *hash_expected;
4566 const struct tcphdr *th = tcp_hdr(skb);
4567 struct tcp_sock *tp = tcp_sk(sk);
4568 int genhash, l3index;
4569 u8 newhash[16];
4570
4571 /* sdif set, means packet ingressed via a device
4572 * in an L3 domain and dif is set to the l3mdev
4573 */
4574 l3index = sdif ? dif : 0;
4575
4576 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4577 hash_location = tcp_parse_md5sig_option(th);
4578
4579 /* We've parsed the options - do we have a hash? */
4580 if (!hash_expected && !hash_location)
4581 return SKB_NOT_DROPPED_YET;
4582
4583 if (hash_expected && !hash_location) {
4584 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4585 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4586 }
4587
4588 if (!hash_expected && hash_location) {
4589 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4590 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4591 }
4592
4593 /* Check the signature.
4594 * To support dual stack listeners, we need to handle
4595 * IPv4-mapped case.
4596 */
4597 if (family == AF_INET)
4598 genhash = tcp_v4_md5_hash_skb(newhash,
4599 hash_expected,
4600 NULL, skb);
4601 else
4602 genhash = tp->af_specific->calc_md5_hash(newhash,
4603 hash_expected,
4604 NULL, skb);
4605
4606 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4607 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4608 if (family == AF_INET) {
4609 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4610 saddr, ntohs(th->source),
4611 daddr, ntohs(th->dest),
4612 genhash ? " tcp_v4_calc_md5_hash failed"
4613 : "", l3index);
4614 } else {
4615 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4616 genhash ? "failed" : "mismatch",
4617 saddr, ntohs(th->source),
4618 daddr, ntohs(th->dest), l3index);
4619 }
4620 return SKB_DROP_REASON_TCP_MD5FAILURE;
4621 }
4622 return SKB_NOT_DROPPED_YET;
4623 }
4624 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4625
4626 #endif
4627
tcp_done(struct sock * sk)4628 void tcp_done(struct sock *sk)
4629 {
4630 struct request_sock *req;
4631
4632 /* We might be called with a new socket, after
4633 * inet_csk_prepare_forced_close() has been called
4634 * so we can not use lockdep_sock_is_held(sk)
4635 */
4636 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4637
4638 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4639 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4640
4641 tcp_set_state(sk, TCP_CLOSE);
4642 tcp_clear_xmit_timers(sk);
4643 if (req)
4644 reqsk_fastopen_remove(sk, req, false);
4645
4646 sk->sk_shutdown = SHUTDOWN_MASK;
4647
4648 if (!sock_flag(sk, SOCK_DEAD))
4649 sk->sk_state_change(sk);
4650 else
4651 inet_csk_destroy_sock(sk);
4652 }
4653 EXPORT_SYMBOL_GPL(tcp_done);
4654
tcp_abort(struct sock * sk,int err)4655 int tcp_abort(struct sock *sk, int err)
4656 {
4657 int state = inet_sk_state_load(sk);
4658
4659 if (state == TCP_NEW_SYN_RECV) {
4660 struct request_sock *req = inet_reqsk(sk);
4661
4662 local_bh_disable();
4663 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4664 local_bh_enable();
4665 return 0;
4666 }
4667 if (state == TCP_TIME_WAIT) {
4668 struct inet_timewait_sock *tw = inet_twsk(sk);
4669
4670 refcount_inc(&tw->tw_refcnt);
4671 local_bh_disable();
4672 inet_twsk_deschedule_put(tw);
4673 local_bh_enable();
4674 return 0;
4675 }
4676
4677 /* Don't race with userspace socket closes such as tcp_close. */
4678 lock_sock(sk);
4679
4680 if (sk->sk_state == TCP_LISTEN) {
4681 tcp_set_state(sk, TCP_CLOSE);
4682 inet_csk_listen_stop(sk);
4683 }
4684
4685 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4686 local_bh_disable();
4687 bh_lock_sock(sk);
4688
4689 if (!sock_flag(sk, SOCK_DEAD)) {
4690 sk->sk_err = err;
4691 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4692 smp_wmb();
4693 sk_error_report(sk);
4694 if (tcp_need_reset(sk->sk_state))
4695 tcp_send_active_reset(sk, GFP_ATOMIC);
4696 tcp_done(sk);
4697 }
4698
4699 bh_unlock_sock(sk);
4700 local_bh_enable();
4701 tcp_write_queue_purge(sk);
4702 release_sock(sk);
4703 return 0;
4704 }
4705 EXPORT_SYMBOL_GPL(tcp_abort);
4706
4707 extern struct tcp_congestion_ops tcp_reno;
4708
4709 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4710 static int __init set_thash_entries(char *str)
4711 {
4712 ssize_t ret;
4713
4714 if (!str)
4715 return 0;
4716
4717 ret = kstrtoul(str, 0, &thash_entries);
4718 if (ret)
4719 return 0;
4720
4721 return 1;
4722 }
4723 __setup("thash_entries=", set_thash_entries);
4724
tcp_init_mem(void)4725 static void __init tcp_init_mem(void)
4726 {
4727 unsigned long limit = nr_free_buffer_pages() / 16;
4728
4729 limit = max(limit, 128UL);
4730 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4731 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4732 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4733 }
4734
tcp_init(void)4735 void __init tcp_init(void)
4736 {
4737 int max_rshare, max_wshare, cnt;
4738 unsigned long limit;
4739 unsigned int i;
4740
4741 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4742 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4743 sizeof_field(struct sk_buff, cb));
4744
4745 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4746
4747 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4748 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4749
4750 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4751 thash_entries, 21, /* one slot per 2 MB*/
4752 0, 64 * 1024);
4753 tcp_hashinfo.bind_bucket_cachep =
4754 kmem_cache_create("tcp_bind_bucket",
4755 sizeof(struct inet_bind_bucket), 0,
4756 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4757 SLAB_ACCOUNT,
4758 NULL);
4759 tcp_hashinfo.bind2_bucket_cachep =
4760 kmem_cache_create("tcp_bind2_bucket",
4761 sizeof(struct inet_bind2_bucket), 0,
4762 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4763 SLAB_ACCOUNT,
4764 NULL);
4765
4766 /* Size and allocate the main established and bind bucket
4767 * hash tables.
4768 *
4769 * The methodology is similar to that of the buffer cache.
4770 */
4771 tcp_hashinfo.ehash =
4772 alloc_large_system_hash("TCP established",
4773 sizeof(struct inet_ehash_bucket),
4774 thash_entries,
4775 17, /* one slot per 128 KB of memory */
4776 0,
4777 NULL,
4778 &tcp_hashinfo.ehash_mask,
4779 0,
4780 thash_entries ? 0 : 512 * 1024);
4781 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4782 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4783
4784 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4785 panic("TCP: failed to alloc ehash_locks");
4786 tcp_hashinfo.bhash =
4787 alloc_large_system_hash("TCP bind",
4788 2 * sizeof(struct inet_bind_hashbucket),
4789 tcp_hashinfo.ehash_mask + 1,
4790 17, /* one slot per 128 KB of memory */
4791 0,
4792 &tcp_hashinfo.bhash_size,
4793 NULL,
4794 0,
4795 64 * 1024);
4796 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4797 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4798 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4799 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4800 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4801 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4802 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4803 }
4804
4805 tcp_hashinfo.pernet = false;
4806
4807 cnt = tcp_hashinfo.ehash_mask + 1;
4808 sysctl_tcp_max_orphans = cnt / 2;
4809
4810 tcp_init_mem();
4811 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4812 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4813 max_wshare = min(4UL*1024*1024, limit);
4814 max_rshare = min(6UL*1024*1024, limit);
4815
4816 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4817 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4818 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4819
4820 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4821 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4822 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4823
4824 pr_info("Hash tables configured (established %u bind %u)\n",
4825 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4826
4827 tcp_v4_init();
4828 tcp_metrics_init();
4829 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4830 tcp_tasklet_init();
4831 mptcp_init();
4832 }
4833