1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 #include <linux/btf.h>
271
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/mptcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283
284 /* Track pending CMSGs. */
285 enum {
286 TCP_CMSG_INQ = 1,
287 TCP_CMSG_TS = 2
288 };
289
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292
293 long sysctl_tcp_mem[3] __read_mostly;
294 EXPORT_SYMBOL(sysctl_tcp_mem);
295
296 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
297 EXPORT_SYMBOL(tcp_memory_allocated);
298
299 #if IS_ENABLED(CONFIG_SMC)
300 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
301 EXPORT_SYMBOL(tcp_have_smc);
302 #endif
303
304 /*
305 * Current number of TCP sockets.
306 */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309
310 /*
311 * TCP splice context
312 */
313 struct tcp_splice_state {
314 struct pipe_inode_info *pipe;
315 size_t len;
316 unsigned int flags;
317 };
318
319 /*
320 * Pressure flag: try to collapse.
321 * Technical note: it is used by multiple contexts non atomically.
322 * All the __sk_mem_schedule() is of this nature: accounting
323 * is strict, actions are advisory and have some latency.
324 */
325 unsigned long tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
327
328 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
329 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
330
331 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
332
tcp_enter_memory_pressure(struct sock * sk)333 void tcp_enter_memory_pressure(struct sock *sk)
334 {
335 unsigned long val;
336
337 if (READ_ONCE(tcp_memory_pressure))
338 return;
339 val = jiffies;
340
341 if (!val)
342 val--;
343 if (!cmpxchg(&tcp_memory_pressure, 0, val))
344 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
345 }
346 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
347
tcp_leave_memory_pressure(struct sock * sk)348 void tcp_leave_memory_pressure(struct sock *sk)
349 {
350 unsigned long val;
351
352 if (!READ_ONCE(tcp_memory_pressure))
353 return;
354 val = xchg(&tcp_memory_pressure, 0);
355 if (val)
356 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
357 jiffies_to_msecs(jiffies - val));
358 }
359 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
360
361 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)362 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
363 {
364 u8 res = 0;
365
366 if (seconds > 0) {
367 int period = timeout;
368
369 res = 1;
370 while (seconds > period && res < 255) {
371 res++;
372 timeout <<= 1;
373 if (timeout > rto_max)
374 timeout = rto_max;
375 period += timeout;
376 }
377 }
378 return res;
379 }
380
381 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)382 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
383 {
384 int period = 0;
385
386 if (retrans > 0) {
387 period = timeout;
388 while (--retrans) {
389 timeout <<= 1;
390 if (timeout > rto_max)
391 timeout = rto_max;
392 period += timeout;
393 }
394 }
395 return period;
396 }
397
tcp_compute_delivery_rate(const struct tcp_sock * tp)398 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
399 {
400 u32 rate = READ_ONCE(tp->rate_delivered);
401 u32 intv = READ_ONCE(tp->rate_interval_us);
402 u64 rate64 = 0;
403
404 if (rate && intv) {
405 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
406 do_div(rate64, intv);
407 }
408 return rate64;
409 }
410
411 /* Address-family independent initialization for a tcp_sock.
412 *
413 * NOTE: A lot of things set to zero explicitly by call to
414 * sk_alloc() so need not be done here.
415 */
tcp_init_sock(struct sock * sk)416 void tcp_init_sock(struct sock *sk)
417 {
418 struct inet_connection_sock *icsk = inet_csk(sk);
419 struct tcp_sock *tp = tcp_sk(sk);
420
421 tp->out_of_order_queue = RB_ROOT;
422 sk->tcp_rtx_queue = RB_ROOT;
423 tcp_init_xmit_timers(sk);
424 INIT_LIST_HEAD(&tp->tsq_node);
425 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
426
427 icsk->icsk_rto = TCP_TIMEOUT_INIT;
428 icsk->icsk_rto_min = TCP_RTO_MIN;
429 icsk->icsk_delack_max = TCP_DELACK_MAX;
430 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
431 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
432
433 /* So many TCP implementations out there (incorrectly) count the
434 * initial SYN frame in their delayed-ACK and congestion control
435 * algorithms that we must have the following bandaid to talk
436 * efficiently to them. -DaveM
437 */
438 tp->snd_cwnd = TCP_INIT_CWND;
439
440 /* There's a bubble in the pipe until at least the first ACK. */
441 tp->app_limited = ~0U;
442
443 /* See draft-stevens-tcpca-spec-01 for discussion of the
444 * initialization of these values.
445 */
446 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
447 tp->snd_cwnd_clamp = ~0;
448 tp->mss_cache = TCP_MSS_DEFAULT;
449
450 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
451 tcp_assign_congestion_control(sk);
452
453 tp->tsoffset = 0;
454 tp->rack.reo_wnd_steps = 1;
455
456 sk->sk_write_space = sk_stream_write_space;
457 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
458
459 icsk->icsk_sync_mss = tcp_sync_mss;
460
461 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
462 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
463
464 sk_sockets_allocated_inc(sk);
465 sk->sk_route_forced_caps = NETIF_F_GSO;
466 }
467 EXPORT_SYMBOL(tcp_init_sock);
468
tcp_tx_timestamp(struct sock * sk,u16 tsflags)469 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
470 {
471 struct sk_buff *skb = tcp_write_queue_tail(sk);
472
473 if (tsflags && skb) {
474 struct skb_shared_info *shinfo = skb_shinfo(skb);
475 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
476
477 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
478 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
479 tcb->txstamp_ack = 1;
480 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
481 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
482 }
483 }
484
tcp_stream_is_readable(struct sock * sk,int target)485 static bool tcp_stream_is_readable(struct sock *sk, int target)
486 {
487 if (tcp_epollin_ready(sk, target))
488 return true;
489 return sk_is_readable(sk);
490 }
491
492 /*
493 * Wait for a TCP event.
494 *
495 * Note that we don't need to lock the socket, as the upper poll layers
496 * take care of normal races (between the test and the event) and we don't
497 * go look at any of the socket buffers directly.
498 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)499 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
500 {
501 __poll_t mask;
502 struct sock *sk = sock->sk;
503 const struct tcp_sock *tp = tcp_sk(sk);
504 int state;
505
506 sock_poll_wait(file, sock, wait);
507
508 state = inet_sk_state_load(sk);
509 if (state == TCP_LISTEN)
510 return inet_csk_listen_poll(sk);
511
512 /* Socket is not locked. We are protected from async events
513 * by poll logic and correct handling of state changes
514 * made by other threads is impossible in any case.
515 */
516
517 mask = 0;
518
519 /*
520 * EPOLLHUP is certainly not done right. But poll() doesn't
521 * have a notion of HUP in just one direction, and for a
522 * socket the read side is more interesting.
523 *
524 * Some poll() documentation says that EPOLLHUP is incompatible
525 * with the EPOLLOUT/POLLWR flags, so somebody should check this
526 * all. But careful, it tends to be safer to return too many
527 * bits than too few, and you can easily break real applications
528 * if you don't tell them that something has hung up!
529 *
530 * Check-me.
531 *
532 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
533 * our fs/select.c). It means that after we received EOF,
534 * poll always returns immediately, making impossible poll() on write()
535 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
536 * if and only if shutdown has been made in both directions.
537 * Actually, it is interesting to look how Solaris and DUX
538 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
539 * then we could set it on SND_SHUTDOWN. BTW examples given
540 * in Stevens' books assume exactly this behaviour, it explains
541 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
542 *
543 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
544 * blocking on fresh not-connected or disconnected socket. --ANK
545 */
546 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 mask |= EPOLLHUP;
548 if (sk->sk_shutdown & RCV_SHUTDOWN)
549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550
551 /* Connected or passive Fast Open socket? */
552 if (state != TCP_SYN_SENT &&
553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 int target = sock_rcvlowat(sk, 0, INT_MAX);
555
556 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
557 !sock_flag(sk, SOCK_URGINLINE) &&
558 tp->urg_data)
559 target++;
560
561 if (tcp_stream_is_readable(sk, target))
562 mask |= EPOLLIN | EPOLLRDNORM;
563
564 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
565 if (__sk_stream_is_writeable(sk, 1)) {
566 mask |= EPOLLOUT | EPOLLWRNORM;
567 } else { /* send SIGIO later */
568 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
569 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
570
571 /* Race breaker. If space is freed after
572 * wspace test but before the flags are set,
573 * IO signal will be lost. Memory barrier
574 * pairs with the input side.
575 */
576 smp_mb__after_atomic();
577 if (__sk_stream_is_writeable(sk, 1))
578 mask |= EPOLLOUT | EPOLLWRNORM;
579 }
580 } else
581 mask |= EPOLLOUT | EPOLLWRNORM;
582
583 if (tp->urg_data & TCP_URG_VALID)
584 mask |= EPOLLPRI;
585 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
586 /* Active TCP fastopen socket with defer_connect
587 * Return EPOLLOUT so application can call write()
588 * in order for kernel to generate SYN+data
589 */
590 mask |= EPOLLOUT | EPOLLWRNORM;
591 }
592 /* This barrier is coupled with smp_wmb() in tcp_reset() */
593 smp_rmb();
594 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
595 mask |= EPOLLERR;
596
597 return mask;
598 }
599 EXPORT_SYMBOL(tcp_poll);
600
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)601 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
602 {
603 struct tcp_sock *tp = tcp_sk(sk);
604 int answ;
605 bool slow;
606
607 switch (cmd) {
608 case SIOCINQ:
609 if (sk->sk_state == TCP_LISTEN)
610 return -EINVAL;
611
612 slow = lock_sock_fast(sk);
613 answ = tcp_inq(sk);
614 unlock_sock_fast(sk, slow);
615 break;
616 case SIOCATMARK:
617 answ = tp->urg_data &&
618 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
619 break;
620 case SIOCOUTQ:
621 if (sk->sk_state == TCP_LISTEN)
622 return -EINVAL;
623
624 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
625 answ = 0;
626 else
627 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
628 break;
629 case SIOCOUTQNSD:
630 if (sk->sk_state == TCP_LISTEN)
631 return -EINVAL;
632
633 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
634 answ = 0;
635 else
636 answ = READ_ONCE(tp->write_seq) -
637 READ_ONCE(tp->snd_nxt);
638 break;
639 default:
640 return -ENOIOCTLCMD;
641 }
642
643 return put_user(answ, (int __user *)arg);
644 }
645 EXPORT_SYMBOL(tcp_ioctl);
646
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)647 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
648 {
649 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
650 tp->pushed_seq = tp->write_seq;
651 }
652
forced_push(const struct tcp_sock * tp)653 static inline bool forced_push(const struct tcp_sock *tp)
654 {
655 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
656 }
657
skb_entail(struct sock * sk,struct sk_buff * skb)658 static void skb_entail(struct sock *sk, struct sk_buff *skb)
659 {
660 struct tcp_sock *tp = tcp_sk(sk);
661 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
662
663 skb->csum = 0;
664 tcb->seq = tcb->end_seq = tp->write_seq;
665 tcb->tcp_flags = TCPHDR_ACK;
666 tcb->sacked = 0;
667 __skb_header_release(skb);
668 tcp_add_write_queue_tail(sk, skb);
669 sk_wmem_queued_add(sk, skb->truesize);
670 sk_mem_charge(sk, skb->truesize);
671 if (tp->nonagle & TCP_NAGLE_PUSH)
672 tp->nonagle &= ~TCP_NAGLE_PUSH;
673
674 tcp_slow_start_after_idle_check(sk);
675 }
676
tcp_mark_urg(struct tcp_sock * tp,int flags)677 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
678 {
679 if (flags & MSG_OOB)
680 tp->snd_up = tp->write_seq;
681 }
682
683 /* If a not yet filled skb is pushed, do not send it if
684 * we have data packets in Qdisc or NIC queues :
685 * Because TX completion will happen shortly, it gives a chance
686 * to coalesce future sendmsg() payload into this skb, without
687 * need for a timer, and with no latency trade off.
688 * As packets containing data payload have a bigger truesize
689 * than pure acks (dataless) packets, the last checks prevent
690 * autocorking if we only have an ACK in Qdisc/NIC queues,
691 * or if TX completion was delayed after we processed ACK packet.
692 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)693 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
694 int size_goal)
695 {
696 return skb->len < size_goal &&
697 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
698 !tcp_rtx_queue_empty(sk) &&
699 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
700 }
701
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)702 void tcp_push(struct sock *sk, int flags, int mss_now,
703 int nonagle, int size_goal)
704 {
705 struct tcp_sock *tp = tcp_sk(sk);
706 struct sk_buff *skb;
707
708 skb = tcp_write_queue_tail(sk);
709 if (!skb)
710 return;
711 if (!(flags & MSG_MORE) || forced_push(tp))
712 tcp_mark_push(tp, skb);
713
714 tcp_mark_urg(tp, flags);
715
716 if (tcp_should_autocork(sk, skb, size_goal)) {
717
718 /* avoid atomic op if TSQ_THROTTLED bit is already set */
719 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
720 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
721 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
722 }
723 /* It is possible TX completion already happened
724 * before we set TSQ_THROTTLED.
725 */
726 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
727 return;
728 }
729
730 if (flags & MSG_MORE)
731 nonagle = TCP_NAGLE_CORK;
732
733 __tcp_push_pending_frames(sk, mss_now, nonagle);
734 }
735
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)736 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
737 unsigned int offset, size_t len)
738 {
739 struct tcp_splice_state *tss = rd_desc->arg.data;
740 int ret;
741
742 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
743 min(rd_desc->count, len), tss->flags);
744 if (ret > 0)
745 rd_desc->count -= ret;
746 return ret;
747 }
748
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)749 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
750 {
751 /* Store TCP splice context information in read_descriptor_t. */
752 read_descriptor_t rd_desc = {
753 .arg.data = tss,
754 .count = tss->len,
755 };
756
757 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
758 }
759
760 /**
761 * tcp_splice_read - splice data from TCP socket to a pipe
762 * @sock: socket to splice from
763 * @ppos: position (not valid)
764 * @pipe: pipe to splice to
765 * @len: number of bytes to splice
766 * @flags: splice modifier flags
767 *
768 * Description:
769 * Will read pages from given socket and fill them into a pipe.
770 *
771 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)772 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
773 struct pipe_inode_info *pipe, size_t len,
774 unsigned int flags)
775 {
776 struct sock *sk = sock->sk;
777 struct tcp_splice_state tss = {
778 .pipe = pipe,
779 .len = len,
780 .flags = flags,
781 };
782 long timeo;
783 ssize_t spliced;
784 int ret;
785
786 sock_rps_record_flow(sk);
787 /*
788 * We can't seek on a socket input
789 */
790 if (unlikely(*ppos))
791 return -ESPIPE;
792
793 ret = spliced = 0;
794
795 lock_sock(sk);
796
797 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
798 while (tss.len) {
799 ret = __tcp_splice_read(sk, &tss);
800 if (ret < 0)
801 break;
802 else if (!ret) {
803 if (spliced)
804 break;
805 if (sock_flag(sk, SOCK_DONE))
806 break;
807 if (sk->sk_err) {
808 ret = sock_error(sk);
809 break;
810 }
811 if (sk->sk_shutdown & RCV_SHUTDOWN)
812 break;
813 if (sk->sk_state == TCP_CLOSE) {
814 /*
815 * This occurs when user tries to read
816 * from never connected socket.
817 */
818 ret = -ENOTCONN;
819 break;
820 }
821 if (!timeo) {
822 ret = -EAGAIN;
823 break;
824 }
825 /* if __tcp_splice_read() got nothing while we have
826 * an skb in receive queue, we do not want to loop.
827 * This might happen with URG data.
828 */
829 if (!skb_queue_empty(&sk->sk_receive_queue))
830 break;
831 sk_wait_data(sk, &timeo, NULL);
832 if (signal_pending(current)) {
833 ret = sock_intr_errno(timeo);
834 break;
835 }
836 continue;
837 }
838 tss.len -= ret;
839 spliced += ret;
840
841 if (!timeo)
842 break;
843 release_sock(sk);
844 lock_sock(sk);
845
846 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
847 (sk->sk_shutdown & RCV_SHUTDOWN) ||
848 signal_pending(current))
849 break;
850 }
851
852 release_sock(sk);
853
854 if (spliced)
855 return spliced;
856
857 return ret;
858 }
859 EXPORT_SYMBOL(tcp_splice_read);
860
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)861 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
862 bool force_schedule)
863 {
864 struct sk_buff *skb;
865
866 if (likely(!size)) {
867 skb = sk->sk_tx_skb_cache;
868 if (skb) {
869 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
870 sk->sk_tx_skb_cache = NULL;
871 pskb_trim(skb, 0);
872 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
873 skb_shinfo(skb)->tx_flags = 0;
874 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
875 return skb;
876 }
877 }
878 /* The TCP header must be at least 32-bit aligned. */
879 size = ALIGN(size, 4);
880
881 if (unlikely(tcp_under_memory_pressure(sk)))
882 sk_mem_reclaim_partial(sk);
883
884 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
885 if (likely(skb)) {
886 bool mem_scheduled;
887
888 if (force_schedule) {
889 mem_scheduled = true;
890 sk_forced_mem_schedule(sk, skb->truesize);
891 } else {
892 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
893 }
894 if (likely(mem_scheduled)) {
895 skb_reserve(skb, sk->sk_prot->max_header);
896 /*
897 * Make sure that we have exactly size bytes
898 * available to the caller, no more, no less.
899 */
900 skb->reserved_tailroom = skb->end - skb->tail - size;
901 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
902 return skb;
903 }
904 __kfree_skb(skb);
905 } else {
906 sk->sk_prot->enter_memory_pressure(sk);
907 sk_stream_moderate_sndbuf(sk);
908 }
909 return NULL;
910 }
911
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)912 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
913 int large_allowed)
914 {
915 struct tcp_sock *tp = tcp_sk(sk);
916 u32 new_size_goal, size_goal;
917
918 if (!large_allowed)
919 return mss_now;
920
921 /* Note : tcp_tso_autosize() will eventually split this later */
922 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
923 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
924
925 /* We try hard to avoid divides here */
926 size_goal = tp->gso_segs * mss_now;
927 if (unlikely(new_size_goal < size_goal ||
928 new_size_goal >= size_goal + mss_now)) {
929 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
930 sk->sk_gso_max_segs);
931 size_goal = tp->gso_segs * mss_now;
932 }
933
934 return max(size_goal, mss_now);
935 }
936
tcp_send_mss(struct sock * sk,int * size_goal,int flags)937 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
938 {
939 int mss_now;
940
941 mss_now = tcp_current_mss(sk);
942 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
943
944 return mss_now;
945 }
946
947 /* In some cases, both sendpage() and sendmsg() could have added
948 * an skb to the write queue, but failed adding payload on it.
949 * We need to remove it to consume less memory, but more
950 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
951 * users.
952 */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)953 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
954 {
955 if (skb && !skb->len) {
956 tcp_unlink_write_queue(skb, sk);
957 if (tcp_write_queue_empty(sk))
958 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
959 sk_wmem_free_skb(sk, skb);
960 }
961 }
962
tcp_build_frag(struct sock * sk,int size_goal,int flags,struct page * page,int offset,size_t * size)963 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
964 struct page *page, int offset, size_t *size)
965 {
966 struct sk_buff *skb = tcp_write_queue_tail(sk);
967 struct tcp_sock *tp = tcp_sk(sk);
968 bool can_coalesce;
969 int copy, i;
970
971 if (!skb || (copy = size_goal - skb->len) <= 0 ||
972 !tcp_skb_can_collapse_to(skb)) {
973 new_segment:
974 if (!sk_stream_memory_free(sk))
975 return NULL;
976
977 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
978 tcp_rtx_and_write_queues_empty(sk));
979 if (!skb)
980 return NULL;
981
982 #ifdef CONFIG_TLS_DEVICE
983 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
984 #endif
985 skb_entail(sk, skb);
986 copy = size_goal;
987 }
988
989 if (copy > *size)
990 copy = *size;
991
992 i = skb_shinfo(skb)->nr_frags;
993 can_coalesce = skb_can_coalesce(skb, i, page, offset);
994 if (!can_coalesce && i >= sysctl_max_skb_frags) {
995 tcp_mark_push(tp, skb);
996 goto new_segment;
997 }
998 if (!sk_wmem_schedule(sk, copy))
999 return NULL;
1000
1001 if (can_coalesce) {
1002 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1003 } else {
1004 get_page(page);
1005 skb_fill_page_desc(skb, i, page, offset, copy);
1006 }
1007
1008 if (!(flags & MSG_NO_SHARED_FRAGS))
1009 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1010
1011 skb->len += copy;
1012 skb->data_len += copy;
1013 skb->truesize += copy;
1014 sk_wmem_queued_add(sk, copy);
1015 sk_mem_charge(sk, copy);
1016 skb->ip_summed = CHECKSUM_PARTIAL;
1017 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1018 TCP_SKB_CB(skb)->end_seq += copy;
1019 tcp_skb_pcount_set(skb, 0);
1020
1021 *size = copy;
1022 return skb;
1023 }
1024
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)1025 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1026 size_t size, int flags)
1027 {
1028 struct tcp_sock *tp = tcp_sk(sk);
1029 int mss_now, size_goal;
1030 int err;
1031 ssize_t copied;
1032 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1033
1034 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1035 WARN_ONCE(!sendpage_ok(page),
1036 "page must not be a Slab one and have page_count > 0"))
1037 return -EINVAL;
1038
1039 /* Wait for a connection to finish. One exception is TCP Fast Open
1040 * (passive side) where data is allowed to be sent before a connection
1041 * is fully established.
1042 */
1043 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1044 !tcp_passive_fastopen(sk)) {
1045 err = sk_stream_wait_connect(sk, &timeo);
1046 if (err != 0)
1047 goto out_err;
1048 }
1049
1050 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1051
1052 mss_now = tcp_send_mss(sk, &size_goal, flags);
1053 copied = 0;
1054
1055 err = -EPIPE;
1056 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1057 goto out_err;
1058
1059 while (size > 0) {
1060 struct sk_buff *skb;
1061 size_t copy = size;
1062
1063 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©);
1064 if (!skb)
1065 goto wait_for_space;
1066
1067 if (!copied)
1068 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1069
1070 copied += copy;
1071 offset += copy;
1072 size -= copy;
1073 if (!size)
1074 goto out;
1075
1076 if (skb->len < size_goal || (flags & MSG_OOB))
1077 continue;
1078
1079 if (forced_push(tp)) {
1080 tcp_mark_push(tp, skb);
1081 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1082 } else if (skb == tcp_send_head(sk))
1083 tcp_push_one(sk, mss_now);
1084 continue;
1085
1086 wait_for_space:
1087 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1088 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1089 TCP_NAGLE_PUSH, size_goal);
1090
1091 err = sk_stream_wait_memory(sk, &timeo);
1092 if (err != 0)
1093 goto do_error;
1094
1095 mss_now = tcp_send_mss(sk, &size_goal, flags);
1096 }
1097
1098 out:
1099 if (copied) {
1100 tcp_tx_timestamp(sk, sk->sk_tsflags);
1101 if (!(flags & MSG_SENDPAGE_NOTLAST))
1102 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1103 }
1104 return copied;
1105
1106 do_error:
1107 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1108 if (copied)
1109 goto out;
1110 out_err:
1111 /* make sure we wake any epoll edge trigger waiter */
1112 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1113 sk->sk_write_space(sk);
1114 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1115 }
1116 return sk_stream_error(sk, flags, err);
1117 }
1118 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1119
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1120 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1121 size_t size, int flags)
1122 {
1123 if (!(sk->sk_route_caps & NETIF_F_SG))
1124 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1125
1126 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1127
1128 return do_tcp_sendpages(sk, page, offset, size, flags);
1129 }
1130 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1131
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1132 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1133 size_t size, int flags)
1134 {
1135 int ret;
1136
1137 lock_sock(sk);
1138 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1139 release_sock(sk);
1140
1141 return ret;
1142 }
1143 EXPORT_SYMBOL(tcp_sendpage);
1144
tcp_free_fastopen_req(struct tcp_sock * tp)1145 void tcp_free_fastopen_req(struct tcp_sock *tp)
1146 {
1147 if (tp->fastopen_req) {
1148 kfree(tp->fastopen_req);
1149 tp->fastopen_req = NULL;
1150 }
1151 }
1152
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1153 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1154 int *copied, size_t size,
1155 struct ubuf_info *uarg)
1156 {
1157 struct tcp_sock *tp = tcp_sk(sk);
1158 struct inet_sock *inet = inet_sk(sk);
1159 struct sockaddr *uaddr = msg->msg_name;
1160 int err, flags;
1161
1162 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1163 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1164 uaddr->sa_family == AF_UNSPEC))
1165 return -EOPNOTSUPP;
1166 if (tp->fastopen_req)
1167 return -EALREADY; /* Another Fast Open is in progress */
1168
1169 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1170 sk->sk_allocation);
1171 if (unlikely(!tp->fastopen_req))
1172 return -ENOBUFS;
1173 tp->fastopen_req->data = msg;
1174 tp->fastopen_req->size = size;
1175 tp->fastopen_req->uarg = uarg;
1176
1177 if (inet->defer_connect) {
1178 err = tcp_connect(sk);
1179 /* Same failure procedure as in tcp_v4/6_connect */
1180 if (err) {
1181 tcp_set_state(sk, TCP_CLOSE);
1182 inet->inet_dport = 0;
1183 sk->sk_route_caps = 0;
1184 }
1185 }
1186 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1187 err = __inet_stream_connect(sk->sk_socket, uaddr,
1188 msg->msg_namelen, flags, 1);
1189 /* fastopen_req could already be freed in __inet_stream_connect
1190 * if the connection times out or gets rst
1191 */
1192 if (tp->fastopen_req) {
1193 *copied = tp->fastopen_req->copied;
1194 tcp_free_fastopen_req(tp);
1195 inet->defer_connect = 0;
1196 }
1197 return err;
1198 }
1199
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1200 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1201 {
1202 struct tcp_sock *tp = tcp_sk(sk);
1203 struct ubuf_info *uarg = NULL;
1204 struct sk_buff *skb;
1205 struct sockcm_cookie sockc;
1206 int flags, err, copied = 0;
1207 int mss_now = 0, size_goal, copied_syn = 0;
1208 int process_backlog = 0;
1209 bool zc = false;
1210 long timeo;
1211
1212 flags = msg->msg_flags;
1213
1214 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1215 skb = tcp_write_queue_tail(sk);
1216 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1217 if (!uarg) {
1218 err = -ENOBUFS;
1219 goto out_err;
1220 }
1221
1222 zc = sk->sk_route_caps & NETIF_F_SG;
1223 if (!zc)
1224 uarg->zerocopy = 0;
1225 }
1226
1227 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1228 !tp->repair) {
1229 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1230 if (err == -EINPROGRESS && copied_syn > 0)
1231 goto out;
1232 else if (err)
1233 goto out_err;
1234 }
1235
1236 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1237
1238 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1239
1240 /* Wait for a connection to finish. One exception is TCP Fast Open
1241 * (passive side) where data is allowed to be sent before a connection
1242 * is fully established.
1243 */
1244 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1245 !tcp_passive_fastopen(sk)) {
1246 err = sk_stream_wait_connect(sk, &timeo);
1247 if (err != 0)
1248 goto do_error;
1249 }
1250
1251 if (unlikely(tp->repair)) {
1252 if (tp->repair_queue == TCP_RECV_QUEUE) {
1253 copied = tcp_send_rcvq(sk, msg, size);
1254 goto out_nopush;
1255 }
1256
1257 err = -EINVAL;
1258 if (tp->repair_queue == TCP_NO_QUEUE)
1259 goto out_err;
1260
1261 /* 'common' sending to sendq */
1262 }
1263
1264 sockcm_init(&sockc, sk);
1265 if (msg->msg_controllen) {
1266 err = sock_cmsg_send(sk, msg, &sockc);
1267 if (unlikely(err)) {
1268 err = -EINVAL;
1269 goto out_err;
1270 }
1271 }
1272
1273 /* This should be in poll */
1274 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1275
1276 /* Ok commence sending. */
1277 copied = 0;
1278
1279 restart:
1280 mss_now = tcp_send_mss(sk, &size_goal, flags);
1281
1282 err = -EPIPE;
1283 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1284 goto do_error;
1285
1286 while (msg_data_left(msg)) {
1287 int copy = 0;
1288
1289 skb = tcp_write_queue_tail(sk);
1290 if (skb)
1291 copy = size_goal - skb->len;
1292
1293 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1294 bool first_skb;
1295
1296 new_segment:
1297 if (!sk_stream_memory_free(sk))
1298 goto wait_for_space;
1299
1300 if (unlikely(process_backlog >= 16)) {
1301 process_backlog = 0;
1302 if (sk_flush_backlog(sk))
1303 goto restart;
1304 }
1305 first_skb = tcp_rtx_and_write_queues_empty(sk);
1306 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1307 first_skb);
1308 if (!skb)
1309 goto wait_for_space;
1310
1311 process_backlog++;
1312 skb->ip_summed = CHECKSUM_PARTIAL;
1313
1314 skb_entail(sk, skb);
1315 copy = size_goal;
1316
1317 /* All packets are restored as if they have
1318 * already been sent. skb_mstamp_ns isn't set to
1319 * avoid wrong rtt estimation.
1320 */
1321 if (tp->repair)
1322 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1323 }
1324
1325 /* Try to append data to the end of skb. */
1326 if (copy > msg_data_left(msg))
1327 copy = msg_data_left(msg);
1328
1329 /* Where to copy to? */
1330 if (skb_availroom(skb) > 0 && !zc) {
1331 /* We have some space in skb head. Superb! */
1332 copy = min_t(int, copy, skb_availroom(skb));
1333 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1334 if (err)
1335 goto do_fault;
1336 } else if (!zc) {
1337 bool merge = true;
1338 int i = skb_shinfo(skb)->nr_frags;
1339 struct page_frag *pfrag = sk_page_frag(sk);
1340
1341 if (!sk_page_frag_refill(sk, pfrag))
1342 goto wait_for_space;
1343
1344 if (!skb_can_coalesce(skb, i, pfrag->page,
1345 pfrag->offset)) {
1346 if (i >= sysctl_max_skb_frags) {
1347 tcp_mark_push(tp, skb);
1348 goto new_segment;
1349 }
1350 merge = false;
1351 }
1352
1353 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1354
1355 if (!sk_wmem_schedule(sk, copy))
1356 goto wait_for_space;
1357
1358 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1359 pfrag->page,
1360 pfrag->offset,
1361 copy);
1362 if (err)
1363 goto do_error;
1364
1365 /* Update the skb. */
1366 if (merge) {
1367 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1368 } else {
1369 skb_fill_page_desc(skb, i, pfrag->page,
1370 pfrag->offset, copy);
1371 page_ref_inc(pfrag->page);
1372 }
1373 pfrag->offset += copy;
1374 } else {
1375 if (!sk_wmem_schedule(sk, copy))
1376 goto wait_for_space;
1377
1378 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1379 if (err == -EMSGSIZE || err == -EEXIST) {
1380 tcp_mark_push(tp, skb);
1381 goto new_segment;
1382 }
1383 if (err < 0)
1384 goto do_error;
1385 copy = err;
1386 }
1387
1388 if (!copied)
1389 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1390
1391 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1392 TCP_SKB_CB(skb)->end_seq += copy;
1393 tcp_skb_pcount_set(skb, 0);
1394
1395 copied += copy;
1396 if (!msg_data_left(msg)) {
1397 if (unlikely(flags & MSG_EOR))
1398 TCP_SKB_CB(skb)->eor = 1;
1399 goto out;
1400 }
1401
1402 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1403 continue;
1404
1405 if (forced_push(tp)) {
1406 tcp_mark_push(tp, skb);
1407 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1408 } else if (skb == tcp_send_head(sk))
1409 tcp_push_one(sk, mss_now);
1410 continue;
1411
1412 wait_for_space:
1413 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1414 if (copied)
1415 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1416 TCP_NAGLE_PUSH, size_goal);
1417
1418 err = sk_stream_wait_memory(sk, &timeo);
1419 if (err != 0)
1420 goto do_error;
1421
1422 mss_now = tcp_send_mss(sk, &size_goal, flags);
1423 }
1424
1425 out:
1426 if (copied) {
1427 tcp_tx_timestamp(sk, sockc.tsflags);
1428 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1429 }
1430 out_nopush:
1431 net_zcopy_put(uarg);
1432 return copied + copied_syn;
1433
1434 do_error:
1435 skb = tcp_write_queue_tail(sk);
1436 do_fault:
1437 tcp_remove_empty_skb(sk, skb);
1438
1439 if (copied + copied_syn)
1440 goto out;
1441 out_err:
1442 net_zcopy_put_abort(uarg, true);
1443 err = sk_stream_error(sk, flags, err);
1444 /* make sure we wake any epoll edge trigger waiter */
1445 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1446 sk->sk_write_space(sk);
1447 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1448 }
1449 return err;
1450 }
1451 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1452
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1453 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1454 {
1455 int ret;
1456
1457 lock_sock(sk);
1458 ret = tcp_sendmsg_locked(sk, msg, size);
1459 release_sock(sk);
1460
1461 return ret;
1462 }
1463 EXPORT_SYMBOL(tcp_sendmsg);
1464
1465 /*
1466 * Handle reading urgent data. BSD has very simple semantics for
1467 * this, no blocking and very strange errors 8)
1468 */
1469
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1470 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1471 {
1472 struct tcp_sock *tp = tcp_sk(sk);
1473
1474 /* No URG data to read. */
1475 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1476 tp->urg_data == TCP_URG_READ)
1477 return -EINVAL; /* Yes this is right ! */
1478
1479 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1480 return -ENOTCONN;
1481
1482 if (tp->urg_data & TCP_URG_VALID) {
1483 int err = 0;
1484 char c = tp->urg_data;
1485
1486 if (!(flags & MSG_PEEK))
1487 tp->urg_data = TCP_URG_READ;
1488
1489 /* Read urgent data. */
1490 msg->msg_flags |= MSG_OOB;
1491
1492 if (len > 0) {
1493 if (!(flags & MSG_TRUNC))
1494 err = memcpy_to_msg(msg, &c, 1);
1495 len = 1;
1496 } else
1497 msg->msg_flags |= MSG_TRUNC;
1498
1499 return err ? -EFAULT : len;
1500 }
1501
1502 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1503 return 0;
1504
1505 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1506 * the available implementations agree in this case:
1507 * this call should never block, independent of the
1508 * blocking state of the socket.
1509 * Mike <pall@rz.uni-karlsruhe.de>
1510 */
1511 return -EAGAIN;
1512 }
1513
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1514 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1515 {
1516 struct sk_buff *skb;
1517 int copied = 0, err = 0;
1518
1519 /* XXX -- need to support SO_PEEK_OFF */
1520
1521 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1522 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1523 if (err)
1524 return err;
1525 copied += skb->len;
1526 }
1527
1528 skb_queue_walk(&sk->sk_write_queue, skb) {
1529 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1530 if (err)
1531 break;
1532
1533 copied += skb->len;
1534 }
1535
1536 return err ?: copied;
1537 }
1538
1539 /* Clean up the receive buffer for full frames taken by the user,
1540 * then send an ACK if necessary. COPIED is the number of bytes
1541 * tcp_recvmsg has given to the user so far, it speeds up the
1542 * calculation of whether or not we must ACK for the sake of
1543 * a window update.
1544 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1545 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1546 {
1547 struct tcp_sock *tp = tcp_sk(sk);
1548 bool time_to_ack = false;
1549
1550 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1551
1552 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1553 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1554 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1555
1556 if (inet_csk_ack_scheduled(sk)) {
1557 const struct inet_connection_sock *icsk = inet_csk(sk);
1558
1559 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1560 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1561 /*
1562 * If this read emptied read buffer, we send ACK, if
1563 * connection is not bidirectional, user drained
1564 * receive buffer and there was a small segment
1565 * in queue.
1566 */
1567 (copied > 0 &&
1568 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1569 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1570 !inet_csk_in_pingpong_mode(sk))) &&
1571 !atomic_read(&sk->sk_rmem_alloc)))
1572 time_to_ack = true;
1573 }
1574
1575 /* We send an ACK if we can now advertise a non-zero window
1576 * which has been raised "significantly".
1577 *
1578 * Even if window raised up to infinity, do not send window open ACK
1579 * in states, where we will not receive more. It is useless.
1580 */
1581 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1582 __u32 rcv_window_now = tcp_receive_window(tp);
1583
1584 /* Optimize, __tcp_select_window() is not cheap. */
1585 if (2*rcv_window_now <= tp->window_clamp) {
1586 __u32 new_window = __tcp_select_window(sk);
1587
1588 /* Send ACK now, if this read freed lots of space
1589 * in our buffer. Certainly, new_window is new window.
1590 * We can advertise it now, if it is not less than current one.
1591 * "Lots" means "at least twice" here.
1592 */
1593 if (new_window && new_window >= 2 * rcv_window_now)
1594 time_to_ack = true;
1595 }
1596 }
1597 if (time_to_ack)
1598 tcp_send_ack(sk);
1599 }
1600
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1601 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1602 {
1603 struct sk_buff *skb;
1604 u32 offset;
1605
1606 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1607 offset = seq - TCP_SKB_CB(skb)->seq;
1608 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1609 pr_err_once("%s: found a SYN, please report !\n", __func__);
1610 offset--;
1611 }
1612 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1613 *off = offset;
1614 return skb;
1615 }
1616 /* This looks weird, but this can happen if TCP collapsing
1617 * splitted a fat GRO packet, while we released socket lock
1618 * in skb_splice_bits()
1619 */
1620 sk_eat_skb(sk, skb);
1621 }
1622 return NULL;
1623 }
1624
1625 /*
1626 * This routine provides an alternative to tcp_recvmsg() for routines
1627 * that would like to handle copying from skbuffs directly in 'sendfile'
1628 * fashion.
1629 * Note:
1630 * - It is assumed that the socket was locked by the caller.
1631 * - The routine does not block.
1632 * - At present, there is no support for reading OOB data
1633 * or for 'peeking' the socket using this routine
1634 * (although both would be easy to implement).
1635 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1636 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1637 sk_read_actor_t recv_actor)
1638 {
1639 struct sk_buff *skb;
1640 struct tcp_sock *tp = tcp_sk(sk);
1641 u32 seq = tp->copied_seq;
1642 u32 offset;
1643 int copied = 0;
1644
1645 if (sk->sk_state == TCP_LISTEN)
1646 return -ENOTCONN;
1647 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1648 if (offset < skb->len) {
1649 int used;
1650 size_t len;
1651
1652 len = skb->len - offset;
1653 /* Stop reading if we hit a patch of urgent data */
1654 if (tp->urg_data) {
1655 u32 urg_offset = tp->urg_seq - seq;
1656 if (urg_offset < len)
1657 len = urg_offset;
1658 if (!len)
1659 break;
1660 }
1661 used = recv_actor(desc, skb, offset, len);
1662 if (used <= 0) {
1663 if (!copied)
1664 copied = used;
1665 break;
1666 } else if (used <= len) {
1667 seq += used;
1668 copied += used;
1669 offset += used;
1670 }
1671 /* If recv_actor drops the lock (e.g. TCP splice
1672 * receive) the skb pointer might be invalid when
1673 * getting here: tcp_collapse might have deleted it
1674 * while aggregating skbs from the socket queue.
1675 */
1676 skb = tcp_recv_skb(sk, seq - 1, &offset);
1677 if (!skb)
1678 break;
1679 /* TCP coalescing might have appended data to the skb.
1680 * Try to splice more frags
1681 */
1682 if (offset + 1 != skb->len)
1683 continue;
1684 }
1685 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1686 sk_eat_skb(sk, skb);
1687 ++seq;
1688 break;
1689 }
1690 sk_eat_skb(sk, skb);
1691 if (!desc->count)
1692 break;
1693 WRITE_ONCE(tp->copied_seq, seq);
1694 }
1695 WRITE_ONCE(tp->copied_seq, seq);
1696
1697 tcp_rcv_space_adjust(sk);
1698
1699 /* Clean up data we have read: This will do ACK frames. */
1700 if (copied > 0) {
1701 tcp_recv_skb(sk, seq, &offset);
1702 tcp_cleanup_rbuf(sk, copied);
1703 }
1704 return copied;
1705 }
1706 EXPORT_SYMBOL(tcp_read_sock);
1707
tcp_peek_len(struct socket * sock)1708 int tcp_peek_len(struct socket *sock)
1709 {
1710 return tcp_inq(sock->sk);
1711 }
1712 EXPORT_SYMBOL(tcp_peek_len);
1713
1714 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1715 int tcp_set_rcvlowat(struct sock *sk, int val)
1716 {
1717 int cap;
1718
1719 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1720 cap = sk->sk_rcvbuf >> 1;
1721 else
1722 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1723 val = min(val, cap);
1724 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1725
1726 /* Check if we need to signal EPOLLIN right now */
1727 tcp_data_ready(sk);
1728
1729 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1730 return 0;
1731
1732 val <<= 1;
1733 if (val > sk->sk_rcvbuf) {
1734 WRITE_ONCE(sk->sk_rcvbuf, val);
1735 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1736 }
1737 return 0;
1738 }
1739 EXPORT_SYMBOL(tcp_set_rcvlowat);
1740
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1741 void tcp_update_recv_tstamps(struct sk_buff *skb,
1742 struct scm_timestamping_internal *tss)
1743 {
1744 if (skb->tstamp)
1745 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1746 else
1747 tss->ts[0] = (struct timespec64) {0};
1748
1749 if (skb_hwtstamps(skb)->hwtstamp)
1750 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1751 else
1752 tss->ts[2] = (struct timespec64) {0};
1753 }
1754
1755 #ifdef CONFIG_MMU
1756 static const struct vm_operations_struct tcp_vm_ops = {
1757 };
1758
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1759 int tcp_mmap(struct file *file, struct socket *sock,
1760 struct vm_area_struct *vma)
1761 {
1762 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1763 return -EPERM;
1764 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1765
1766 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1767 vma->vm_flags |= VM_MIXEDMAP;
1768
1769 vma->vm_ops = &tcp_vm_ops;
1770 return 0;
1771 }
1772 EXPORT_SYMBOL(tcp_mmap);
1773
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1774 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1775 u32 *offset_frag)
1776 {
1777 skb_frag_t *frag;
1778
1779 offset_skb -= skb_headlen(skb);
1780 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1781 return NULL;
1782
1783 frag = skb_shinfo(skb)->frags;
1784 while (offset_skb) {
1785 if (skb_frag_size(frag) > offset_skb) {
1786 *offset_frag = offset_skb;
1787 return frag;
1788 }
1789 offset_skb -= skb_frag_size(frag);
1790 ++frag;
1791 }
1792 *offset_frag = 0;
1793 return frag;
1794 }
1795
can_map_frag(const skb_frag_t * frag)1796 static bool can_map_frag(const skb_frag_t *frag)
1797 {
1798 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1799 }
1800
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1801 static int find_next_mappable_frag(const skb_frag_t *frag,
1802 int remaining_in_skb)
1803 {
1804 int offset = 0;
1805
1806 if (likely(can_map_frag(frag)))
1807 return 0;
1808
1809 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1810 offset += skb_frag_size(frag);
1811 ++frag;
1812 }
1813 return offset;
1814 }
1815
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1816 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1817 struct tcp_zerocopy_receive *zc,
1818 struct sk_buff *skb, u32 offset)
1819 {
1820 u32 frag_offset, partial_frag_remainder = 0;
1821 int mappable_offset;
1822 skb_frag_t *frag;
1823
1824 /* worst case: skip to next skb. try to improve on this case below */
1825 zc->recv_skip_hint = skb->len - offset;
1826
1827 /* Find the frag containing this offset (and how far into that frag) */
1828 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1829 if (!frag)
1830 return;
1831
1832 if (frag_offset) {
1833 struct skb_shared_info *info = skb_shinfo(skb);
1834
1835 /* We read part of the last frag, must recvmsg() rest of skb. */
1836 if (frag == &info->frags[info->nr_frags - 1])
1837 return;
1838
1839 /* Else, we must at least read the remainder in this frag. */
1840 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1841 zc->recv_skip_hint -= partial_frag_remainder;
1842 ++frag;
1843 }
1844
1845 /* partial_frag_remainder: If part way through a frag, must read rest.
1846 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1847 * in partial_frag_remainder.
1848 */
1849 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1850 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1851 }
1852
1853 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1854 int nonblock, int flags,
1855 struct scm_timestamping_internal *tss,
1856 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1857 static int receive_fallback_to_copy(struct sock *sk,
1858 struct tcp_zerocopy_receive *zc, int inq,
1859 struct scm_timestamping_internal *tss)
1860 {
1861 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1862 struct msghdr msg = {};
1863 struct iovec iov;
1864 int err;
1865
1866 zc->length = 0;
1867 zc->recv_skip_hint = 0;
1868
1869 if (copy_address != zc->copybuf_address)
1870 return -EINVAL;
1871
1872 err = import_single_range(READ, (void __user *)copy_address,
1873 inq, &iov, &msg.msg_iter);
1874 if (err)
1875 return err;
1876
1877 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1878 tss, &zc->msg_flags);
1879 if (err < 0)
1880 return err;
1881
1882 zc->copybuf_len = err;
1883 if (likely(zc->copybuf_len)) {
1884 struct sk_buff *skb;
1885 u32 offset;
1886
1887 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1888 if (skb)
1889 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1890 }
1891 return 0;
1892 }
1893
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1894 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1895 struct sk_buff *skb, u32 copylen,
1896 u32 *offset, u32 *seq)
1897 {
1898 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1899 struct msghdr msg = {};
1900 struct iovec iov;
1901 int err;
1902
1903 if (copy_address != zc->copybuf_address)
1904 return -EINVAL;
1905
1906 err = import_single_range(READ, (void __user *)copy_address,
1907 copylen, &iov, &msg.msg_iter);
1908 if (err)
1909 return err;
1910 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1911 if (err)
1912 return err;
1913 zc->recv_skip_hint -= copylen;
1914 *offset += copylen;
1915 *seq += copylen;
1916 return (__s32)copylen;
1917 }
1918
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1919 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1920 struct sock *sk,
1921 struct sk_buff *skb,
1922 u32 *seq,
1923 s32 copybuf_len,
1924 struct scm_timestamping_internal *tss)
1925 {
1926 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1927
1928 if (!copylen)
1929 return 0;
1930 /* skb is null if inq < PAGE_SIZE. */
1931 if (skb) {
1932 offset = *seq - TCP_SKB_CB(skb)->seq;
1933 } else {
1934 skb = tcp_recv_skb(sk, *seq, &offset);
1935 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1936 tcp_update_recv_tstamps(skb, tss);
1937 zc->msg_flags |= TCP_CMSG_TS;
1938 }
1939 }
1940
1941 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1942 seq);
1943 return zc->copybuf_len < 0 ? 0 : copylen;
1944 }
1945
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1946 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1947 struct page **pending_pages,
1948 unsigned long pages_remaining,
1949 unsigned long *address,
1950 u32 *length,
1951 u32 *seq,
1952 struct tcp_zerocopy_receive *zc,
1953 u32 total_bytes_to_map,
1954 int err)
1955 {
1956 /* At least one page did not map. Try zapping if we skipped earlier. */
1957 if (err == -EBUSY &&
1958 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1959 u32 maybe_zap_len;
1960
1961 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1962 *length + /* Mapped or pending */
1963 (pages_remaining * PAGE_SIZE); /* Failed map. */
1964 zap_page_range(vma, *address, maybe_zap_len);
1965 err = 0;
1966 }
1967
1968 if (!err) {
1969 unsigned long leftover_pages = pages_remaining;
1970 int bytes_mapped;
1971
1972 /* We called zap_page_range, try to reinsert. */
1973 err = vm_insert_pages(vma, *address,
1974 pending_pages,
1975 &pages_remaining);
1976 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1977 *seq += bytes_mapped;
1978 *address += bytes_mapped;
1979 }
1980 if (err) {
1981 /* Either we were unable to zap, OR we zapped, retried an
1982 * insert, and still had an issue. Either ways, pages_remaining
1983 * is the number of pages we were unable to map, and we unroll
1984 * some state we speculatively touched before.
1985 */
1986 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1987
1988 *length -= bytes_not_mapped;
1989 zc->recv_skip_hint += bytes_not_mapped;
1990 }
1991 return err;
1992 }
1993
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)1994 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1995 struct page **pages,
1996 unsigned int pages_to_map,
1997 unsigned long *address,
1998 u32 *length,
1999 u32 *seq,
2000 struct tcp_zerocopy_receive *zc,
2001 u32 total_bytes_to_map)
2002 {
2003 unsigned long pages_remaining = pages_to_map;
2004 unsigned int pages_mapped;
2005 unsigned int bytes_mapped;
2006 int err;
2007
2008 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2009 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2010 bytes_mapped = PAGE_SIZE * pages_mapped;
2011 /* Even if vm_insert_pages fails, it may have partially succeeded in
2012 * mapping (some but not all of the pages).
2013 */
2014 *seq += bytes_mapped;
2015 *address += bytes_mapped;
2016
2017 if (likely(!err))
2018 return 0;
2019
2020 /* Error: maybe zap and retry + rollback state for failed inserts. */
2021 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2022 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2023 err);
2024 }
2025
2026 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2027 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2028 struct tcp_zerocopy_receive *zc,
2029 struct scm_timestamping_internal *tss)
2030 {
2031 unsigned long msg_control_addr;
2032 struct msghdr cmsg_dummy;
2033
2034 msg_control_addr = (unsigned long)zc->msg_control;
2035 cmsg_dummy.msg_control = (void *)msg_control_addr;
2036 cmsg_dummy.msg_controllen =
2037 (__kernel_size_t)zc->msg_controllen;
2038 cmsg_dummy.msg_flags = in_compat_syscall()
2039 ? MSG_CMSG_COMPAT : 0;
2040 cmsg_dummy.msg_control_is_user = true;
2041 zc->msg_flags = 0;
2042 if (zc->msg_control == msg_control_addr &&
2043 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2044 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2045 zc->msg_control = (__u64)
2046 ((uintptr_t)cmsg_dummy.msg_control);
2047 zc->msg_controllen =
2048 (__u64)cmsg_dummy.msg_controllen;
2049 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2050 }
2051 }
2052
2053 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2054 static int tcp_zerocopy_receive(struct sock *sk,
2055 struct tcp_zerocopy_receive *zc,
2056 struct scm_timestamping_internal *tss)
2057 {
2058 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2059 unsigned long address = (unsigned long)zc->address;
2060 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2061 s32 copybuf_len = zc->copybuf_len;
2062 struct tcp_sock *tp = tcp_sk(sk);
2063 const skb_frag_t *frags = NULL;
2064 unsigned int pages_to_map = 0;
2065 struct vm_area_struct *vma;
2066 struct sk_buff *skb = NULL;
2067 u32 seq = tp->copied_seq;
2068 u32 total_bytes_to_map;
2069 int inq = tcp_inq(sk);
2070 int ret;
2071
2072 zc->copybuf_len = 0;
2073 zc->msg_flags = 0;
2074
2075 if (address & (PAGE_SIZE - 1) || address != zc->address)
2076 return -EINVAL;
2077
2078 if (sk->sk_state == TCP_LISTEN)
2079 return -ENOTCONN;
2080
2081 sock_rps_record_flow(sk);
2082
2083 if (inq && inq <= copybuf_len)
2084 return receive_fallback_to_copy(sk, zc, inq, tss);
2085
2086 if (inq < PAGE_SIZE) {
2087 zc->length = 0;
2088 zc->recv_skip_hint = inq;
2089 if (!inq && sock_flag(sk, SOCK_DONE))
2090 return -EIO;
2091 return 0;
2092 }
2093
2094 mmap_read_lock(current->mm);
2095
2096 vma = vma_lookup(current->mm, address);
2097 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2098 mmap_read_unlock(current->mm);
2099 return -EINVAL;
2100 }
2101 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2102 avail_len = min_t(u32, vma_len, inq);
2103 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2104 if (total_bytes_to_map) {
2105 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2106 zap_page_range(vma, address, total_bytes_to_map);
2107 zc->length = total_bytes_to_map;
2108 zc->recv_skip_hint = 0;
2109 } else {
2110 zc->length = avail_len;
2111 zc->recv_skip_hint = avail_len;
2112 }
2113 ret = 0;
2114 while (length + PAGE_SIZE <= zc->length) {
2115 int mappable_offset;
2116 struct page *page;
2117
2118 if (zc->recv_skip_hint < PAGE_SIZE) {
2119 u32 offset_frag;
2120
2121 if (skb) {
2122 if (zc->recv_skip_hint > 0)
2123 break;
2124 skb = skb->next;
2125 offset = seq - TCP_SKB_CB(skb)->seq;
2126 } else {
2127 skb = tcp_recv_skb(sk, seq, &offset);
2128 }
2129
2130 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2131 tcp_update_recv_tstamps(skb, tss);
2132 zc->msg_flags |= TCP_CMSG_TS;
2133 }
2134 zc->recv_skip_hint = skb->len - offset;
2135 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2136 if (!frags || offset_frag)
2137 break;
2138 }
2139
2140 mappable_offset = find_next_mappable_frag(frags,
2141 zc->recv_skip_hint);
2142 if (mappable_offset) {
2143 zc->recv_skip_hint = mappable_offset;
2144 break;
2145 }
2146 page = skb_frag_page(frags);
2147 prefetchw(page);
2148 pages[pages_to_map++] = page;
2149 length += PAGE_SIZE;
2150 zc->recv_skip_hint -= PAGE_SIZE;
2151 frags++;
2152 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2153 zc->recv_skip_hint < PAGE_SIZE) {
2154 /* Either full batch, or we're about to go to next skb
2155 * (and we cannot unroll failed ops across skbs).
2156 */
2157 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2158 pages_to_map,
2159 &address, &length,
2160 &seq, zc,
2161 total_bytes_to_map);
2162 if (ret)
2163 goto out;
2164 pages_to_map = 0;
2165 }
2166 }
2167 if (pages_to_map) {
2168 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2169 &address, &length, &seq,
2170 zc, total_bytes_to_map);
2171 }
2172 out:
2173 mmap_read_unlock(current->mm);
2174 /* Try to copy straggler data. */
2175 if (!ret)
2176 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2177
2178 if (length + copylen) {
2179 WRITE_ONCE(tp->copied_seq, seq);
2180 tcp_rcv_space_adjust(sk);
2181
2182 /* Clean up data we have read: This will do ACK frames. */
2183 tcp_recv_skb(sk, seq, &offset);
2184 tcp_cleanup_rbuf(sk, length + copylen);
2185 ret = 0;
2186 if (length == zc->length)
2187 zc->recv_skip_hint = 0;
2188 } else {
2189 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2190 ret = -EIO;
2191 }
2192 zc->length = length;
2193 return ret;
2194 }
2195 #endif
2196
2197 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2198 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2199 struct scm_timestamping_internal *tss)
2200 {
2201 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2202 bool has_timestamping = false;
2203
2204 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2205 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2206 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2207 if (new_tstamp) {
2208 struct __kernel_timespec kts = {
2209 .tv_sec = tss->ts[0].tv_sec,
2210 .tv_nsec = tss->ts[0].tv_nsec,
2211 };
2212 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2213 sizeof(kts), &kts);
2214 } else {
2215 struct __kernel_old_timespec ts_old = {
2216 .tv_sec = tss->ts[0].tv_sec,
2217 .tv_nsec = tss->ts[0].tv_nsec,
2218 };
2219 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2220 sizeof(ts_old), &ts_old);
2221 }
2222 } else {
2223 if (new_tstamp) {
2224 struct __kernel_sock_timeval stv = {
2225 .tv_sec = tss->ts[0].tv_sec,
2226 .tv_usec = tss->ts[0].tv_nsec / 1000,
2227 };
2228 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2229 sizeof(stv), &stv);
2230 } else {
2231 struct __kernel_old_timeval tv = {
2232 .tv_sec = tss->ts[0].tv_sec,
2233 .tv_usec = tss->ts[0].tv_nsec / 1000,
2234 };
2235 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2236 sizeof(tv), &tv);
2237 }
2238 }
2239 }
2240
2241 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2242 has_timestamping = true;
2243 else
2244 tss->ts[0] = (struct timespec64) {0};
2245 }
2246
2247 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2248 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2249 has_timestamping = true;
2250 else
2251 tss->ts[2] = (struct timespec64) {0};
2252 }
2253
2254 if (has_timestamping) {
2255 tss->ts[1] = (struct timespec64) {0};
2256 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2257 put_cmsg_scm_timestamping64(msg, tss);
2258 else
2259 put_cmsg_scm_timestamping(msg, tss);
2260 }
2261 }
2262
tcp_inq_hint(struct sock * sk)2263 static int tcp_inq_hint(struct sock *sk)
2264 {
2265 const struct tcp_sock *tp = tcp_sk(sk);
2266 u32 copied_seq = READ_ONCE(tp->copied_seq);
2267 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2268 int inq;
2269
2270 inq = rcv_nxt - copied_seq;
2271 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2272 lock_sock(sk);
2273 inq = tp->rcv_nxt - tp->copied_seq;
2274 release_sock(sk);
2275 }
2276 /* After receiving a FIN, tell the user-space to continue reading
2277 * by returning a non-zero inq.
2278 */
2279 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2280 inq = 1;
2281 return inq;
2282 }
2283
2284 /*
2285 * This routine copies from a sock struct into the user buffer.
2286 *
2287 * Technical note: in 2.3 we work on _locked_ socket, so that
2288 * tricks with *seq access order and skb->users are not required.
2289 * Probably, code can be easily improved even more.
2290 */
2291
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2292 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2293 int nonblock, int flags,
2294 struct scm_timestamping_internal *tss,
2295 int *cmsg_flags)
2296 {
2297 struct tcp_sock *tp = tcp_sk(sk);
2298 int copied = 0;
2299 u32 peek_seq;
2300 u32 *seq;
2301 unsigned long used;
2302 int err;
2303 int target; /* Read at least this many bytes */
2304 long timeo;
2305 struct sk_buff *skb, *last;
2306 u32 urg_hole = 0;
2307
2308 err = -ENOTCONN;
2309 if (sk->sk_state == TCP_LISTEN)
2310 goto out;
2311
2312 if (tp->recvmsg_inq)
2313 *cmsg_flags = TCP_CMSG_INQ;
2314 timeo = sock_rcvtimeo(sk, nonblock);
2315
2316 /* Urgent data needs to be handled specially. */
2317 if (flags & MSG_OOB)
2318 goto recv_urg;
2319
2320 if (unlikely(tp->repair)) {
2321 err = -EPERM;
2322 if (!(flags & MSG_PEEK))
2323 goto out;
2324
2325 if (tp->repair_queue == TCP_SEND_QUEUE)
2326 goto recv_sndq;
2327
2328 err = -EINVAL;
2329 if (tp->repair_queue == TCP_NO_QUEUE)
2330 goto out;
2331
2332 /* 'common' recv queue MSG_PEEK-ing */
2333 }
2334
2335 seq = &tp->copied_seq;
2336 if (flags & MSG_PEEK) {
2337 peek_seq = tp->copied_seq;
2338 seq = &peek_seq;
2339 }
2340
2341 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2342
2343 do {
2344 u32 offset;
2345
2346 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2347 if (tp->urg_data && tp->urg_seq == *seq) {
2348 if (copied)
2349 break;
2350 if (signal_pending(current)) {
2351 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2352 break;
2353 }
2354 }
2355
2356 /* Next get a buffer. */
2357
2358 last = skb_peek_tail(&sk->sk_receive_queue);
2359 skb_queue_walk(&sk->sk_receive_queue, skb) {
2360 last = skb;
2361 /* Now that we have two receive queues this
2362 * shouldn't happen.
2363 */
2364 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2365 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2366 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2367 flags))
2368 break;
2369
2370 offset = *seq - TCP_SKB_CB(skb)->seq;
2371 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2372 pr_err_once("%s: found a SYN, please report !\n", __func__);
2373 offset--;
2374 }
2375 if (offset < skb->len)
2376 goto found_ok_skb;
2377 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2378 goto found_fin_ok;
2379 WARN(!(flags & MSG_PEEK),
2380 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2381 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2382 }
2383
2384 /* Well, if we have backlog, try to process it now yet. */
2385
2386 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2387 break;
2388
2389 if (copied) {
2390 if (sk->sk_err ||
2391 sk->sk_state == TCP_CLOSE ||
2392 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2393 !timeo ||
2394 signal_pending(current))
2395 break;
2396 } else {
2397 if (sock_flag(sk, SOCK_DONE))
2398 break;
2399
2400 if (sk->sk_err) {
2401 copied = sock_error(sk);
2402 break;
2403 }
2404
2405 if (sk->sk_shutdown & RCV_SHUTDOWN)
2406 break;
2407
2408 if (sk->sk_state == TCP_CLOSE) {
2409 /* This occurs when user tries to read
2410 * from never connected socket.
2411 */
2412 copied = -ENOTCONN;
2413 break;
2414 }
2415
2416 if (!timeo) {
2417 copied = -EAGAIN;
2418 break;
2419 }
2420
2421 if (signal_pending(current)) {
2422 copied = sock_intr_errno(timeo);
2423 break;
2424 }
2425 }
2426
2427 tcp_cleanup_rbuf(sk, copied);
2428
2429 if (copied >= target) {
2430 /* Do not sleep, just process backlog. */
2431 release_sock(sk);
2432 lock_sock(sk);
2433 } else {
2434 sk_wait_data(sk, &timeo, last);
2435 }
2436
2437 if ((flags & MSG_PEEK) &&
2438 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2439 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2440 current->comm,
2441 task_pid_nr(current));
2442 peek_seq = tp->copied_seq;
2443 }
2444 continue;
2445
2446 found_ok_skb:
2447 /* Ok so how much can we use? */
2448 used = skb->len - offset;
2449 if (len < used)
2450 used = len;
2451
2452 /* Do we have urgent data here? */
2453 if (tp->urg_data) {
2454 u32 urg_offset = tp->urg_seq - *seq;
2455 if (urg_offset < used) {
2456 if (!urg_offset) {
2457 if (!sock_flag(sk, SOCK_URGINLINE)) {
2458 WRITE_ONCE(*seq, *seq + 1);
2459 urg_hole++;
2460 offset++;
2461 used--;
2462 if (!used)
2463 goto skip_copy;
2464 }
2465 } else
2466 used = urg_offset;
2467 }
2468 }
2469
2470 if (!(flags & MSG_TRUNC)) {
2471 err = skb_copy_datagram_msg(skb, offset, msg, used);
2472 if (err) {
2473 /* Exception. Bailout! */
2474 if (!copied)
2475 copied = -EFAULT;
2476 break;
2477 }
2478 }
2479
2480 WRITE_ONCE(*seq, *seq + used);
2481 copied += used;
2482 len -= used;
2483
2484 tcp_rcv_space_adjust(sk);
2485
2486 skip_copy:
2487 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2488 tp->urg_data = 0;
2489 tcp_fast_path_check(sk);
2490 }
2491
2492 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2493 tcp_update_recv_tstamps(skb, tss);
2494 *cmsg_flags |= TCP_CMSG_TS;
2495 }
2496
2497 if (used + offset < skb->len)
2498 continue;
2499
2500 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2501 goto found_fin_ok;
2502 if (!(flags & MSG_PEEK))
2503 sk_eat_skb(sk, skb);
2504 continue;
2505
2506 found_fin_ok:
2507 /* Process the FIN. */
2508 WRITE_ONCE(*seq, *seq + 1);
2509 if (!(flags & MSG_PEEK))
2510 sk_eat_skb(sk, skb);
2511 break;
2512 } while (len > 0);
2513
2514 /* According to UNIX98, msg_name/msg_namelen are ignored
2515 * on connected socket. I was just happy when found this 8) --ANK
2516 */
2517
2518 /* Clean up data we have read: This will do ACK frames. */
2519 tcp_cleanup_rbuf(sk, copied);
2520 return copied;
2521
2522 out:
2523 return err;
2524
2525 recv_urg:
2526 err = tcp_recv_urg(sk, msg, len, flags);
2527 goto out;
2528
2529 recv_sndq:
2530 err = tcp_peek_sndq(sk, msg, len);
2531 goto out;
2532 }
2533
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2534 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2535 int flags, int *addr_len)
2536 {
2537 int cmsg_flags = 0, ret, inq;
2538 struct scm_timestamping_internal tss;
2539
2540 if (unlikely(flags & MSG_ERRQUEUE))
2541 return inet_recv_error(sk, msg, len, addr_len);
2542
2543 if (sk_can_busy_loop(sk) &&
2544 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2545 sk->sk_state == TCP_ESTABLISHED)
2546 sk_busy_loop(sk, nonblock);
2547
2548 lock_sock(sk);
2549 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2550 &cmsg_flags);
2551 release_sock(sk);
2552
2553 if (cmsg_flags && ret >= 0) {
2554 if (cmsg_flags & TCP_CMSG_TS)
2555 tcp_recv_timestamp(msg, sk, &tss);
2556 if (cmsg_flags & TCP_CMSG_INQ) {
2557 inq = tcp_inq_hint(sk);
2558 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2559 }
2560 }
2561 return ret;
2562 }
2563 EXPORT_SYMBOL(tcp_recvmsg);
2564
tcp_set_state(struct sock * sk,int state)2565 void tcp_set_state(struct sock *sk, int state)
2566 {
2567 int oldstate = sk->sk_state;
2568
2569 /* We defined a new enum for TCP states that are exported in BPF
2570 * so as not force the internal TCP states to be frozen. The
2571 * following checks will detect if an internal state value ever
2572 * differs from the BPF value. If this ever happens, then we will
2573 * need to remap the internal value to the BPF value before calling
2574 * tcp_call_bpf_2arg.
2575 */
2576 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2577 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2578 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2579 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2580 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2581 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2582 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2583 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2584 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2585 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2586 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2587 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2588 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2589
2590 /* bpf uapi header bpf.h defines an anonymous enum with values
2591 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2592 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2593 * But clang built vmlinux does not have this enum in DWARF
2594 * since clang removes the above code before generating IR/debuginfo.
2595 * Let us explicitly emit the type debuginfo to ensure the
2596 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2597 * regardless of which compiler is used.
2598 */
2599 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2600
2601 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2602 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2603
2604 switch (state) {
2605 case TCP_ESTABLISHED:
2606 if (oldstate != TCP_ESTABLISHED)
2607 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2608 break;
2609
2610 case TCP_CLOSE:
2611 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2612 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2613
2614 sk->sk_prot->unhash(sk);
2615 if (inet_csk(sk)->icsk_bind_hash &&
2616 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2617 inet_put_port(sk);
2618 fallthrough;
2619 default:
2620 if (oldstate == TCP_ESTABLISHED)
2621 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2622 }
2623
2624 /* Change state AFTER socket is unhashed to avoid closed
2625 * socket sitting in hash tables.
2626 */
2627 inet_sk_state_store(sk, state);
2628 }
2629 EXPORT_SYMBOL_GPL(tcp_set_state);
2630
2631 /*
2632 * State processing on a close. This implements the state shift for
2633 * sending our FIN frame. Note that we only send a FIN for some
2634 * states. A shutdown() may have already sent the FIN, or we may be
2635 * closed.
2636 */
2637
2638 static const unsigned char new_state[16] = {
2639 /* current state: new state: action: */
2640 [0 /* (Invalid) */] = TCP_CLOSE,
2641 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2642 [TCP_SYN_SENT] = TCP_CLOSE,
2643 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2644 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2645 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2646 [TCP_TIME_WAIT] = TCP_CLOSE,
2647 [TCP_CLOSE] = TCP_CLOSE,
2648 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2649 [TCP_LAST_ACK] = TCP_LAST_ACK,
2650 [TCP_LISTEN] = TCP_CLOSE,
2651 [TCP_CLOSING] = TCP_CLOSING,
2652 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2653 };
2654
tcp_close_state(struct sock * sk)2655 static int tcp_close_state(struct sock *sk)
2656 {
2657 int next = (int)new_state[sk->sk_state];
2658 int ns = next & TCP_STATE_MASK;
2659
2660 tcp_set_state(sk, ns);
2661
2662 return next & TCP_ACTION_FIN;
2663 }
2664
2665 /*
2666 * Shutdown the sending side of a connection. Much like close except
2667 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2668 */
2669
tcp_shutdown(struct sock * sk,int how)2670 void tcp_shutdown(struct sock *sk, int how)
2671 {
2672 /* We need to grab some memory, and put together a FIN,
2673 * and then put it into the queue to be sent.
2674 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2675 */
2676 if (!(how & SEND_SHUTDOWN))
2677 return;
2678
2679 /* If we've already sent a FIN, or it's a closed state, skip this. */
2680 if ((1 << sk->sk_state) &
2681 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2682 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2683 /* Clear out any half completed packets. FIN if needed. */
2684 if (tcp_close_state(sk))
2685 tcp_send_fin(sk);
2686 }
2687 }
2688 EXPORT_SYMBOL(tcp_shutdown);
2689
tcp_check_oom(struct sock * sk,int shift)2690 bool tcp_check_oom(struct sock *sk, int shift)
2691 {
2692 bool too_many_orphans, out_of_socket_memory;
2693
2694 too_many_orphans = tcp_too_many_orphans(sk, shift);
2695 out_of_socket_memory = tcp_out_of_memory(sk);
2696
2697 if (too_many_orphans)
2698 net_info_ratelimited("too many orphaned sockets\n");
2699 if (out_of_socket_memory)
2700 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2701 return too_many_orphans || out_of_socket_memory;
2702 }
2703
__tcp_close(struct sock * sk,long timeout)2704 void __tcp_close(struct sock *sk, long timeout)
2705 {
2706 struct sk_buff *skb;
2707 int data_was_unread = 0;
2708 int state;
2709
2710 sk->sk_shutdown = SHUTDOWN_MASK;
2711
2712 if (sk->sk_state == TCP_LISTEN) {
2713 tcp_set_state(sk, TCP_CLOSE);
2714
2715 /* Special case. */
2716 inet_csk_listen_stop(sk);
2717
2718 goto adjudge_to_death;
2719 }
2720
2721 /* We need to flush the recv. buffs. We do this only on the
2722 * descriptor close, not protocol-sourced closes, because the
2723 * reader process may not have drained the data yet!
2724 */
2725 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2726 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2727
2728 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2729 len--;
2730 data_was_unread += len;
2731 __kfree_skb(skb);
2732 }
2733
2734 sk_mem_reclaim(sk);
2735
2736 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2737 if (sk->sk_state == TCP_CLOSE)
2738 goto adjudge_to_death;
2739
2740 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2741 * data was lost. To witness the awful effects of the old behavior of
2742 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2743 * GET in an FTP client, suspend the process, wait for the client to
2744 * advertise a zero window, then kill -9 the FTP client, wheee...
2745 * Note: timeout is always zero in such a case.
2746 */
2747 if (unlikely(tcp_sk(sk)->repair)) {
2748 sk->sk_prot->disconnect(sk, 0);
2749 } else if (data_was_unread) {
2750 /* Unread data was tossed, zap the connection. */
2751 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2752 tcp_set_state(sk, TCP_CLOSE);
2753 tcp_send_active_reset(sk, sk->sk_allocation);
2754 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2755 /* Check zero linger _after_ checking for unread data. */
2756 sk->sk_prot->disconnect(sk, 0);
2757 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2758 } else if (tcp_close_state(sk)) {
2759 /* We FIN if the application ate all the data before
2760 * zapping the connection.
2761 */
2762
2763 /* RED-PEN. Formally speaking, we have broken TCP state
2764 * machine. State transitions:
2765 *
2766 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2767 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2768 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2769 *
2770 * are legal only when FIN has been sent (i.e. in window),
2771 * rather than queued out of window. Purists blame.
2772 *
2773 * F.e. "RFC state" is ESTABLISHED,
2774 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2775 *
2776 * The visible declinations are that sometimes
2777 * we enter time-wait state, when it is not required really
2778 * (harmless), do not send active resets, when they are
2779 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2780 * they look as CLOSING or LAST_ACK for Linux)
2781 * Probably, I missed some more holelets.
2782 * --ANK
2783 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2784 * in a single packet! (May consider it later but will
2785 * probably need API support or TCP_CORK SYN-ACK until
2786 * data is written and socket is closed.)
2787 */
2788 tcp_send_fin(sk);
2789 }
2790
2791 sk_stream_wait_close(sk, timeout);
2792
2793 adjudge_to_death:
2794 state = sk->sk_state;
2795 sock_hold(sk);
2796 sock_orphan(sk);
2797
2798 local_bh_disable();
2799 bh_lock_sock(sk);
2800 /* remove backlog if any, without releasing ownership. */
2801 __release_sock(sk);
2802
2803 percpu_counter_inc(sk->sk_prot->orphan_count);
2804
2805 /* Have we already been destroyed by a softirq or backlog? */
2806 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2807 goto out;
2808
2809 /* This is a (useful) BSD violating of the RFC. There is a
2810 * problem with TCP as specified in that the other end could
2811 * keep a socket open forever with no application left this end.
2812 * We use a 1 minute timeout (about the same as BSD) then kill
2813 * our end. If they send after that then tough - BUT: long enough
2814 * that we won't make the old 4*rto = almost no time - whoops
2815 * reset mistake.
2816 *
2817 * Nope, it was not mistake. It is really desired behaviour
2818 * f.e. on http servers, when such sockets are useless, but
2819 * consume significant resources. Let's do it with special
2820 * linger2 option. --ANK
2821 */
2822
2823 if (sk->sk_state == TCP_FIN_WAIT2) {
2824 struct tcp_sock *tp = tcp_sk(sk);
2825 if (tp->linger2 < 0) {
2826 tcp_set_state(sk, TCP_CLOSE);
2827 tcp_send_active_reset(sk, GFP_ATOMIC);
2828 __NET_INC_STATS(sock_net(sk),
2829 LINUX_MIB_TCPABORTONLINGER);
2830 } else {
2831 const int tmo = tcp_fin_time(sk);
2832
2833 if (tmo > TCP_TIMEWAIT_LEN) {
2834 inet_csk_reset_keepalive_timer(sk,
2835 tmo - TCP_TIMEWAIT_LEN);
2836 } else {
2837 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2838 goto out;
2839 }
2840 }
2841 }
2842 if (sk->sk_state != TCP_CLOSE) {
2843 sk_mem_reclaim(sk);
2844 if (tcp_check_oom(sk, 0)) {
2845 tcp_set_state(sk, TCP_CLOSE);
2846 tcp_send_active_reset(sk, GFP_ATOMIC);
2847 __NET_INC_STATS(sock_net(sk),
2848 LINUX_MIB_TCPABORTONMEMORY);
2849 } else if (!check_net(sock_net(sk))) {
2850 /* Not possible to send reset; just close */
2851 tcp_set_state(sk, TCP_CLOSE);
2852 }
2853 }
2854
2855 if (sk->sk_state == TCP_CLOSE) {
2856 struct request_sock *req;
2857
2858 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2859 lockdep_sock_is_held(sk));
2860 /* We could get here with a non-NULL req if the socket is
2861 * aborted (e.g., closed with unread data) before 3WHS
2862 * finishes.
2863 */
2864 if (req)
2865 reqsk_fastopen_remove(sk, req, false);
2866 inet_csk_destroy_sock(sk);
2867 }
2868 /* Otherwise, socket is reprieved until protocol close. */
2869
2870 out:
2871 bh_unlock_sock(sk);
2872 local_bh_enable();
2873 }
2874
tcp_close(struct sock * sk,long timeout)2875 void tcp_close(struct sock *sk, long timeout)
2876 {
2877 lock_sock(sk);
2878 __tcp_close(sk, timeout);
2879 release_sock(sk);
2880 sock_put(sk);
2881 }
2882 EXPORT_SYMBOL(tcp_close);
2883
2884 /* These states need RST on ABORT according to RFC793 */
2885
tcp_need_reset(int state)2886 static inline bool tcp_need_reset(int state)
2887 {
2888 return (1 << state) &
2889 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2890 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2891 }
2892
tcp_rtx_queue_purge(struct sock * sk)2893 static void tcp_rtx_queue_purge(struct sock *sk)
2894 {
2895 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2896
2897 tcp_sk(sk)->highest_sack = NULL;
2898 while (p) {
2899 struct sk_buff *skb = rb_to_skb(p);
2900
2901 p = rb_next(p);
2902 /* Since we are deleting whole queue, no need to
2903 * list_del(&skb->tcp_tsorted_anchor)
2904 */
2905 tcp_rtx_queue_unlink(skb, sk);
2906 sk_wmem_free_skb(sk, skb);
2907 }
2908 }
2909
tcp_write_queue_purge(struct sock * sk)2910 void tcp_write_queue_purge(struct sock *sk)
2911 {
2912 struct sk_buff *skb;
2913
2914 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2915 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2916 tcp_skb_tsorted_anchor_cleanup(skb);
2917 sk_wmem_free_skb(sk, skb);
2918 }
2919 tcp_rtx_queue_purge(sk);
2920 skb = sk->sk_tx_skb_cache;
2921 if (skb) {
2922 __kfree_skb(skb);
2923 sk->sk_tx_skb_cache = NULL;
2924 }
2925 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2926 sk_mem_reclaim(sk);
2927 tcp_clear_all_retrans_hints(tcp_sk(sk));
2928 tcp_sk(sk)->packets_out = 0;
2929 inet_csk(sk)->icsk_backoff = 0;
2930 }
2931
tcp_disconnect(struct sock * sk,int flags)2932 int tcp_disconnect(struct sock *sk, int flags)
2933 {
2934 struct inet_sock *inet = inet_sk(sk);
2935 struct inet_connection_sock *icsk = inet_csk(sk);
2936 struct tcp_sock *tp = tcp_sk(sk);
2937 int old_state = sk->sk_state;
2938 u32 seq;
2939
2940 if (old_state != TCP_CLOSE)
2941 tcp_set_state(sk, TCP_CLOSE);
2942
2943 /* ABORT function of RFC793 */
2944 if (old_state == TCP_LISTEN) {
2945 inet_csk_listen_stop(sk);
2946 } else if (unlikely(tp->repair)) {
2947 sk->sk_err = ECONNABORTED;
2948 } else if (tcp_need_reset(old_state) ||
2949 (tp->snd_nxt != tp->write_seq &&
2950 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2951 /* The last check adjusts for discrepancy of Linux wrt. RFC
2952 * states
2953 */
2954 tcp_send_active_reset(sk, gfp_any());
2955 sk->sk_err = ECONNRESET;
2956 } else if (old_state == TCP_SYN_SENT)
2957 sk->sk_err = ECONNRESET;
2958
2959 tcp_clear_xmit_timers(sk);
2960 __skb_queue_purge(&sk->sk_receive_queue);
2961 if (sk->sk_rx_skb_cache) {
2962 __kfree_skb(sk->sk_rx_skb_cache);
2963 sk->sk_rx_skb_cache = NULL;
2964 }
2965 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2966 tp->urg_data = 0;
2967 tcp_write_queue_purge(sk);
2968 tcp_fastopen_active_disable_ofo_check(sk);
2969 skb_rbtree_purge(&tp->out_of_order_queue);
2970
2971 inet->inet_dport = 0;
2972
2973 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2974 inet_reset_saddr(sk);
2975
2976 sk->sk_shutdown = 0;
2977 sock_reset_flag(sk, SOCK_DONE);
2978 tp->srtt_us = 0;
2979 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2980 tp->rcv_rtt_last_tsecr = 0;
2981
2982 seq = tp->write_seq + tp->max_window + 2;
2983 if (!seq)
2984 seq = 1;
2985 WRITE_ONCE(tp->write_seq, seq);
2986
2987 icsk->icsk_backoff = 0;
2988 icsk->icsk_probes_out = 0;
2989 icsk->icsk_probes_tstamp = 0;
2990 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2991 icsk->icsk_rto_min = TCP_RTO_MIN;
2992 icsk->icsk_delack_max = TCP_DELACK_MAX;
2993 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2994 tp->snd_cwnd = TCP_INIT_CWND;
2995 tp->snd_cwnd_cnt = 0;
2996 tp->window_clamp = 0;
2997 tp->delivered = 0;
2998 tp->delivered_ce = 0;
2999 if (icsk->icsk_ca_ops->release)
3000 icsk->icsk_ca_ops->release(sk);
3001 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3002 icsk->icsk_ca_initialized = 0;
3003 tcp_set_ca_state(sk, TCP_CA_Open);
3004 tp->is_sack_reneg = 0;
3005 tcp_clear_retrans(tp);
3006 tp->total_retrans = 0;
3007 inet_csk_delack_init(sk);
3008 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3009 * issue in __tcp_select_window()
3010 */
3011 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3012 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3013 __sk_dst_reset(sk);
3014 dst_release(sk->sk_rx_dst);
3015 sk->sk_rx_dst = NULL;
3016 tcp_saved_syn_free(tp);
3017 tp->compressed_ack = 0;
3018 tp->segs_in = 0;
3019 tp->segs_out = 0;
3020 tp->bytes_sent = 0;
3021 tp->bytes_acked = 0;
3022 tp->bytes_received = 0;
3023 tp->bytes_retrans = 0;
3024 tp->data_segs_in = 0;
3025 tp->data_segs_out = 0;
3026 tp->duplicate_sack[0].start_seq = 0;
3027 tp->duplicate_sack[0].end_seq = 0;
3028 tp->dsack_dups = 0;
3029 tp->reord_seen = 0;
3030 tp->retrans_out = 0;
3031 tp->sacked_out = 0;
3032 tp->tlp_high_seq = 0;
3033 tp->last_oow_ack_time = 0;
3034 /* There's a bubble in the pipe until at least the first ACK. */
3035 tp->app_limited = ~0U;
3036 tp->rack.mstamp = 0;
3037 tp->rack.advanced = 0;
3038 tp->rack.reo_wnd_steps = 1;
3039 tp->rack.last_delivered = 0;
3040 tp->rack.reo_wnd_persist = 0;
3041 tp->rack.dsack_seen = 0;
3042 tp->syn_data_acked = 0;
3043 tp->rx_opt.saw_tstamp = 0;
3044 tp->rx_opt.dsack = 0;
3045 tp->rx_opt.num_sacks = 0;
3046 tp->rcv_ooopack = 0;
3047
3048
3049 /* Clean up fastopen related fields */
3050 tcp_free_fastopen_req(tp);
3051 inet->defer_connect = 0;
3052 tp->fastopen_client_fail = 0;
3053
3054 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3055
3056 if (sk->sk_frag.page) {
3057 put_page(sk->sk_frag.page);
3058 sk->sk_frag.page = NULL;
3059 sk->sk_frag.offset = 0;
3060 }
3061
3062 sk_error_report(sk);
3063 return 0;
3064 }
3065 EXPORT_SYMBOL(tcp_disconnect);
3066
tcp_can_repair_sock(const struct sock * sk)3067 static inline bool tcp_can_repair_sock(const struct sock *sk)
3068 {
3069 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3070 (sk->sk_state != TCP_LISTEN);
3071 }
3072
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3073 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3074 {
3075 struct tcp_repair_window opt;
3076
3077 if (!tp->repair)
3078 return -EPERM;
3079
3080 if (len != sizeof(opt))
3081 return -EINVAL;
3082
3083 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3084 return -EFAULT;
3085
3086 if (opt.max_window < opt.snd_wnd)
3087 return -EINVAL;
3088
3089 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3090 return -EINVAL;
3091
3092 if (after(opt.rcv_wup, tp->rcv_nxt))
3093 return -EINVAL;
3094
3095 tp->snd_wl1 = opt.snd_wl1;
3096 tp->snd_wnd = opt.snd_wnd;
3097 tp->max_window = opt.max_window;
3098
3099 tp->rcv_wnd = opt.rcv_wnd;
3100 tp->rcv_wup = opt.rcv_wup;
3101
3102 return 0;
3103 }
3104
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3105 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3106 unsigned int len)
3107 {
3108 struct tcp_sock *tp = tcp_sk(sk);
3109 struct tcp_repair_opt opt;
3110 size_t offset = 0;
3111
3112 while (len >= sizeof(opt)) {
3113 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3114 return -EFAULT;
3115
3116 offset += sizeof(opt);
3117 len -= sizeof(opt);
3118
3119 switch (opt.opt_code) {
3120 case TCPOPT_MSS:
3121 tp->rx_opt.mss_clamp = opt.opt_val;
3122 tcp_mtup_init(sk);
3123 break;
3124 case TCPOPT_WINDOW:
3125 {
3126 u16 snd_wscale = opt.opt_val & 0xFFFF;
3127 u16 rcv_wscale = opt.opt_val >> 16;
3128
3129 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3130 return -EFBIG;
3131
3132 tp->rx_opt.snd_wscale = snd_wscale;
3133 tp->rx_opt.rcv_wscale = rcv_wscale;
3134 tp->rx_opt.wscale_ok = 1;
3135 }
3136 break;
3137 case TCPOPT_SACK_PERM:
3138 if (opt.opt_val != 0)
3139 return -EINVAL;
3140
3141 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3142 break;
3143 case TCPOPT_TIMESTAMP:
3144 if (opt.opt_val != 0)
3145 return -EINVAL;
3146
3147 tp->rx_opt.tstamp_ok = 1;
3148 break;
3149 }
3150 }
3151
3152 return 0;
3153 }
3154
3155 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3156 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3157
tcp_enable_tx_delay(void)3158 static void tcp_enable_tx_delay(void)
3159 {
3160 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3161 static int __tcp_tx_delay_enabled = 0;
3162
3163 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3164 static_branch_enable(&tcp_tx_delay_enabled);
3165 pr_info("TCP_TX_DELAY enabled\n");
3166 }
3167 }
3168 }
3169
3170 /* When set indicates to always queue non-full frames. Later the user clears
3171 * this option and we transmit any pending partial frames in the queue. This is
3172 * meant to be used alongside sendfile() to get properly filled frames when the
3173 * user (for example) must write out headers with a write() call first and then
3174 * use sendfile to send out the data parts.
3175 *
3176 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3177 * TCP_NODELAY.
3178 */
__tcp_sock_set_cork(struct sock * sk,bool on)3179 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3180 {
3181 struct tcp_sock *tp = tcp_sk(sk);
3182
3183 if (on) {
3184 tp->nonagle |= TCP_NAGLE_CORK;
3185 } else {
3186 tp->nonagle &= ~TCP_NAGLE_CORK;
3187 if (tp->nonagle & TCP_NAGLE_OFF)
3188 tp->nonagle |= TCP_NAGLE_PUSH;
3189 tcp_push_pending_frames(sk);
3190 }
3191 }
3192
tcp_sock_set_cork(struct sock * sk,bool on)3193 void tcp_sock_set_cork(struct sock *sk, bool on)
3194 {
3195 lock_sock(sk);
3196 __tcp_sock_set_cork(sk, on);
3197 release_sock(sk);
3198 }
3199 EXPORT_SYMBOL(tcp_sock_set_cork);
3200
3201 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3202 * remembered, but it is not activated until cork is cleared.
3203 *
3204 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3205 * even TCP_CORK for currently queued segments.
3206 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3207 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3208 {
3209 if (on) {
3210 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3211 tcp_push_pending_frames(sk);
3212 } else {
3213 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3214 }
3215 }
3216
tcp_sock_set_nodelay(struct sock * sk)3217 void tcp_sock_set_nodelay(struct sock *sk)
3218 {
3219 lock_sock(sk);
3220 __tcp_sock_set_nodelay(sk, true);
3221 release_sock(sk);
3222 }
3223 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3224
__tcp_sock_set_quickack(struct sock * sk,int val)3225 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3226 {
3227 if (!val) {
3228 inet_csk_enter_pingpong_mode(sk);
3229 return;
3230 }
3231
3232 inet_csk_exit_pingpong_mode(sk);
3233 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3234 inet_csk_ack_scheduled(sk)) {
3235 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3236 tcp_cleanup_rbuf(sk, 1);
3237 if (!(val & 1))
3238 inet_csk_enter_pingpong_mode(sk);
3239 }
3240 }
3241
tcp_sock_set_quickack(struct sock * sk,int val)3242 void tcp_sock_set_quickack(struct sock *sk, int val)
3243 {
3244 lock_sock(sk);
3245 __tcp_sock_set_quickack(sk, val);
3246 release_sock(sk);
3247 }
3248 EXPORT_SYMBOL(tcp_sock_set_quickack);
3249
tcp_sock_set_syncnt(struct sock * sk,int val)3250 int tcp_sock_set_syncnt(struct sock *sk, int val)
3251 {
3252 if (val < 1 || val > MAX_TCP_SYNCNT)
3253 return -EINVAL;
3254
3255 lock_sock(sk);
3256 inet_csk(sk)->icsk_syn_retries = val;
3257 release_sock(sk);
3258 return 0;
3259 }
3260 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3261
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3262 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3263 {
3264 lock_sock(sk);
3265 inet_csk(sk)->icsk_user_timeout = val;
3266 release_sock(sk);
3267 }
3268 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3269
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3270 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3271 {
3272 struct tcp_sock *tp = tcp_sk(sk);
3273
3274 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3275 return -EINVAL;
3276
3277 tp->keepalive_time = val * HZ;
3278 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3279 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3280 u32 elapsed = keepalive_time_elapsed(tp);
3281
3282 if (tp->keepalive_time > elapsed)
3283 elapsed = tp->keepalive_time - elapsed;
3284 else
3285 elapsed = 0;
3286 inet_csk_reset_keepalive_timer(sk, elapsed);
3287 }
3288
3289 return 0;
3290 }
3291
tcp_sock_set_keepidle(struct sock * sk,int val)3292 int tcp_sock_set_keepidle(struct sock *sk, int val)
3293 {
3294 int err;
3295
3296 lock_sock(sk);
3297 err = tcp_sock_set_keepidle_locked(sk, val);
3298 release_sock(sk);
3299 return err;
3300 }
3301 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3302
tcp_sock_set_keepintvl(struct sock * sk,int val)3303 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3304 {
3305 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3306 return -EINVAL;
3307
3308 lock_sock(sk);
3309 tcp_sk(sk)->keepalive_intvl = val * HZ;
3310 release_sock(sk);
3311 return 0;
3312 }
3313 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3314
tcp_sock_set_keepcnt(struct sock * sk,int val)3315 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3316 {
3317 if (val < 1 || val > MAX_TCP_KEEPCNT)
3318 return -EINVAL;
3319
3320 lock_sock(sk);
3321 tcp_sk(sk)->keepalive_probes = val;
3322 release_sock(sk);
3323 return 0;
3324 }
3325 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3326
tcp_set_window_clamp(struct sock * sk,int val)3327 int tcp_set_window_clamp(struct sock *sk, int val)
3328 {
3329 struct tcp_sock *tp = tcp_sk(sk);
3330
3331 if (!val) {
3332 if (sk->sk_state != TCP_CLOSE)
3333 return -EINVAL;
3334 tp->window_clamp = 0;
3335 } else {
3336 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3337 SOCK_MIN_RCVBUF / 2 : val;
3338 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3339 }
3340 return 0;
3341 }
3342
3343 /*
3344 * Socket option code for TCP.
3345 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3346 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3347 sockptr_t optval, unsigned int optlen)
3348 {
3349 struct tcp_sock *tp = tcp_sk(sk);
3350 struct inet_connection_sock *icsk = inet_csk(sk);
3351 struct net *net = sock_net(sk);
3352 int val;
3353 int err = 0;
3354
3355 /* These are data/string values, all the others are ints */
3356 switch (optname) {
3357 case TCP_CONGESTION: {
3358 char name[TCP_CA_NAME_MAX];
3359
3360 if (optlen < 1)
3361 return -EINVAL;
3362
3363 val = strncpy_from_sockptr(name, optval,
3364 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3365 if (val < 0)
3366 return -EFAULT;
3367 name[val] = 0;
3368
3369 lock_sock(sk);
3370 err = tcp_set_congestion_control(sk, name, true,
3371 ns_capable(sock_net(sk)->user_ns,
3372 CAP_NET_ADMIN));
3373 release_sock(sk);
3374 return err;
3375 }
3376 case TCP_ULP: {
3377 char name[TCP_ULP_NAME_MAX];
3378
3379 if (optlen < 1)
3380 return -EINVAL;
3381
3382 val = strncpy_from_sockptr(name, optval,
3383 min_t(long, TCP_ULP_NAME_MAX - 1,
3384 optlen));
3385 if (val < 0)
3386 return -EFAULT;
3387 name[val] = 0;
3388
3389 lock_sock(sk);
3390 err = tcp_set_ulp(sk, name);
3391 release_sock(sk);
3392 return err;
3393 }
3394 case TCP_FASTOPEN_KEY: {
3395 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3396 __u8 *backup_key = NULL;
3397
3398 /* Allow a backup key as well to facilitate key rotation
3399 * First key is the active one.
3400 */
3401 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3402 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3403 return -EINVAL;
3404
3405 if (copy_from_sockptr(key, optval, optlen))
3406 return -EFAULT;
3407
3408 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3409 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3410
3411 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3412 }
3413 default:
3414 /* fallthru */
3415 break;
3416 }
3417
3418 if (optlen < sizeof(int))
3419 return -EINVAL;
3420
3421 if (copy_from_sockptr(&val, optval, sizeof(val)))
3422 return -EFAULT;
3423
3424 lock_sock(sk);
3425
3426 switch (optname) {
3427 case TCP_MAXSEG:
3428 /* Values greater than interface MTU won't take effect. However
3429 * at the point when this call is done we typically don't yet
3430 * know which interface is going to be used
3431 */
3432 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3433 err = -EINVAL;
3434 break;
3435 }
3436 tp->rx_opt.user_mss = val;
3437 break;
3438
3439 case TCP_NODELAY:
3440 __tcp_sock_set_nodelay(sk, val);
3441 break;
3442
3443 case TCP_THIN_LINEAR_TIMEOUTS:
3444 if (val < 0 || val > 1)
3445 err = -EINVAL;
3446 else
3447 tp->thin_lto = val;
3448 break;
3449
3450 case TCP_THIN_DUPACK:
3451 if (val < 0 || val > 1)
3452 err = -EINVAL;
3453 break;
3454
3455 case TCP_REPAIR:
3456 if (!tcp_can_repair_sock(sk))
3457 err = -EPERM;
3458 else if (val == TCP_REPAIR_ON) {
3459 tp->repair = 1;
3460 sk->sk_reuse = SK_FORCE_REUSE;
3461 tp->repair_queue = TCP_NO_QUEUE;
3462 } else if (val == TCP_REPAIR_OFF) {
3463 tp->repair = 0;
3464 sk->sk_reuse = SK_NO_REUSE;
3465 tcp_send_window_probe(sk);
3466 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3467 tp->repair = 0;
3468 sk->sk_reuse = SK_NO_REUSE;
3469 } else
3470 err = -EINVAL;
3471
3472 break;
3473
3474 case TCP_REPAIR_QUEUE:
3475 if (!tp->repair)
3476 err = -EPERM;
3477 else if ((unsigned int)val < TCP_QUEUES_NR)
3478 tp->repair_queue = val;
3479 else
3480 err = -EINVAL;
3481 break;
3482
3483 case TCP_QUEUE_SEQ:
3484 if (sk->sk_state != TCP_CLOSE) {
3485 err = -EPERM;
3486 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3487 if (!tcp_rtx_queue_empty(sk))
3488 err = -EPERM;
3489 else
3490 WRITE_ONCE(tp->write_seq, val);
3491 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3492 if (tp->rcv_nxt != tp->copied_seq) {
3493 err = -EPERM;
3494 } else {
3495 WRITE_ONCE(tp->rcv_nxt, val);
3496 WRITE_ONCE(tp->copied_seq, val);
3497 }
3498 } else {
3499 err = -EINVAL;
3500 }
3501 break;
3502
3503 case TCP_REPAIR_OPTIONS:
3504 if (!tp->repair)
3505 err = -EINVAL;
3506 else if (sk->sk_state == TCP_ESTABLISHED)
3507 err = tcp_repair_options_est(sk, optval, optlen);
3508 else
3509 err = -EPERM;
3510 break;
3511
3512 case TCP_CORK:
3513 __tcp_sock_set_cork(sk, val);
3514 break;
3515
3516 case TCP_KEEPIDLE:
3517 err = tcp_sock_set_keepidle_locked(sk, val);
3518 break;
3519 case TCP_KEEPINTVL:
3520 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3521 err = -EINVAL;
3522 else
3523 tp->keepalive_intvl = val * HZ;
3524 break;
3525 case TCP_KEEPCNT:
3526 if (val < 1 || val > MAX_TCP_KEEPCNT)
3527 err = -EINVAL;
3528 else
3529 tp->keepalive_probes = val;
3530 break;
3531 case TCP_SYNCNT:
3532 if (val < 1 || val > MAX_TCP_SYNCNT)
3533 err = -EINVAL;
3534 else
3535 icsk->icsk_syn_retries = val;
3536 break;
3537
3538 case TCP_SAVE_SYN:
3539 /* 0: disable, 1: enable, 2: start from ether_header */
3540 if (val < 0 || val > 2)
3541 err = -EINVAL;
3542 else
3543 tp->save_syn = val;
3544 break;
3545
3546 case TCP_LINGER2:
3547 if (val < 0)
3548 tp->linger2 = -1;
3549 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3550 tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3551 else
3552 tp->linger2 = val * HZ;
3553 break;
3554
3555 case TCP_DEFER_ACCEPT:
3556 /* Translate value in seconds to number of retransmits */
3557 icsk->icsk_accept_queue.rskq_defer_accept =
3558 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3559 TCP_RTO_MAX / HZ);
3560 break;
3561
3562 case TCP_WINDOW_CLAMP:
3563 err = tcp_set_window_clamp(sk, val);
3564 break;
3565
3566 case TCP_QUICKACK:
3567 __tcp_sock_set_quickack(sk, val);
3568 break;
3569
3570 #ifdef CONFIG_TCP_MD5SIG
3571 case TCP_MD5SIG:
3572 case TCP_MD5SIG_EXT:
3573 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3574 break;
3575 #endif
3576 case TCP_USER_TIMEOUT:
3577 /* Cap the max time in ms TCP will retry or probe the window
3578 * before giving up and aborting (ETIMEDOUT) a connection.
3579 */
3580 if (val < 0)
3581 err = -EINVAL;
3582 else
3583 icsk->icsk_user_timeout = val;
3584 break;
3585
3586 case TCP_FASTOPEN:
3587 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3588 TCPF_LISTEN))) {
3589 tcp_fastopen_init_key_once(net);
3590
3591 fastopen_queue_tune(sk, val);
3592 } else {
3593 err = -EINVAL;
3594 }
3595 break;
3596 case TCP_FASTOPEN_CONNECT:
3597 if (val > 1 || val < 0) {
3598 err = -EINVAL;
3599 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3600 if (sk->sk_state == TCP_CLOSE)
3601 tp->fastopen_connect = val;
3602 else
3603 err = -EINVAL;
3604 } else {
3605 err = -EOPNOTSUPP;
3606 }
3607 break;
3608 case TCP_FASTOPEN_NO_COOKIE:
3609 if (val > 1 || val < 0)
3610 err = -EINVAL;
3611 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3612 err = -EINVAL;
3613 else
3614 tp->fastopen_no_cookie = val;
3615 break;
3616 case TCP_TIMESTAMP:
3617 if (!tp->repair)
3618 err = -EPERM;
3619 else
3620 tp->tsoffset = val - tcp_time_stamp_raw();
3621 break;
3622 case TCP_REPAIR_WINDOW:
3623 err = tcp_repair_set_window(tp, optval, optlen);
3624 break;
3625 case TCP_NOTSENT_LOWAT:
3626 tp->notsent_lowat = val;
3627 sk->sk_write_space(sk);
3628 break;
3629 case TCP_INQ:
3630 if (val > 1 || val < 0)
3631 err = -EINVAL;
3632 else
3633 tp->recvmsg_inq = val;
3634 break;
3635 case TCP_TX_DELAY:
3636 if (val)
3637 tcp_enable_tx_delay();
3638 tp->tcp_tx_delay = val;
3639 break;
3640 default:
3641 err = -ENOPROTOOPT;
3642 break;
3643 }
3644
3645 release_sock(sk);
3646 return err;
3647 }
3648
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3649 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3650 unsigned int optlen)
3651 {
3652 const struct inet_connection_sock *icsk = inet_csk(sk);
3653
3654 if (level != SOL_TCP)
3655 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3656 optval, optlen);
3657 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3658 }
3659 EXPORT_SYMBOL(tcp_setsockopt);
3660
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3661 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3662 struct tcp_info *info)
3663 {
3664 u64 stats[__TCP_CHRONO_MAX], total = 0;
3665 enum tcp_chrono i;
3666
3667 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3668 stats[i] = tp->chrono_stat[i - 1];
3669 if (i == tp->chrono_type)
3670 stats[i] += tcp_jiffies32 - tp->chrono_start;
3671 stats[i] *= USEC_PER_SEC / HZ;
3672 total += stats[i];
3673 }
3674
3675 info->tcpi_busy_time = total;
3676 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3677 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3678 }
3679
3680 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3681 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3682 {
3683 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3684 const struct inet_connection_sock *icsk = inet_csk(sk);
3685 unsigned long rate;
3686 u32 now;
3687 u64 rate64;
3688 bool slow;
3689
3690 memset(info, 0, sizeof(*info));
3691 if (sk->sk_type != SOCK_STREAM)
3692 return;
3693
3694 info->tcpi_state = inet_sk_state_load(sk);
3695
3696 /* Report meaningful fields for all TCP states, including listeners */
3697 rate = READ_ONCE(sk->sk_pacing_rate);
3698 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3699 info->tcpi_pacing_rate = rate64;
3700
3701 rate = READ_ONCE(sk->sk_max_pacing_rate);
3702 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3703 info->tcpi_max_pacing_rate = rate64;
3704
3705 info->tcpi_reordering = tp->reordering;
3706 info->tcpi_snd_cwnd = tp->snd_cwnd;
3707
3708 if (info->tcpi_state == TCP_LISTEN) {
3709 /* listeners aliased fields :
3710 * tcpi_unacked -> Number of children ready for accept()
3711 * tcpi_sacked -> max backlog
3712 */
3713 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3714 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3715 return;
3716 }
3717
3718 slow = lock_sock_fast(sk);
3719
3720 info->tcpi_ca_state = icsk->icsk_ca_state;
3721 info->tcpi_retransmits = icsk->icsk_retransmits;
3722 info->tcpi_probes = icsk->icsk_probes_out;
3723 info->tcpi_backoff = icsk->icsk_backoff;
3724
3725 if (tp->rx_opt.tstamp_ok)
3726 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3727 if (tcp_is_sack(tp))
3728 info->tcpi_options |= TCPI_OPT_SACK;
3729 if (tp->rx_opt.wscale_ok) {
3730 info->tcpi_options |= TCPI_OPT_WSCALE;
3731 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3732 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3733 }
3734
3735 if (tp->ecn_flags & TCP_ECN_OK)
3736 info->tcpi_options |= TCPI_OPT_ECN;
3737 if (tp->ecn_flags & TCP_ECN_SEEN)
3738 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3739 if (tp->syn_data_acked)
3740 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3741
3742 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3743 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3744 info->tcpi_snd_mss = tp->mss_cache;
3745 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3746
3747 info->tcpi_unacked = tp->packets_out;
3748 info->tcpi_sacked = tp->sacked_out;
3749
3750 info->tcpi_lost = tp->lost_out;
3751 info->tcpi_retrans = tp->retrans_out;
3752
3753 now = tcp_jiffies32;
3754 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3755 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3756 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3757
3758 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3759 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3760 info->tcpi_rtt = tp->srtt_us >> 3;
3761 info->tcpi_rttvar = tp->mdev_us >> 2;
3762 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3763 info->tcpi_advmss = tp->advmss;
3764
3765 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3766 info->tcpi_rcv_space = tp->rcvq_space.space;
3767
3768 info->tcpi_total_retrans = tp->total_retrans;
3769
3770 info->tcpi_bytes_acked = tp->bytes_acked;
3771 info->tcpi_bytes_received = tp->bytes_received;
3772 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3773 tcp_get_info_chrono_stats(tp, info);
3774
3775 info->tcpi_segs_out = tp->segs_out;
3776 info->tcpi_segs_in = tp->segs_in;
3777
3778 info->tcpi_min_rtt = tcp_min_rtt(tp);
3779 info->tcpi_data_segs_in = tp->data_segs_in;
3780 info->tcpi_data_segs_out = tp->data_segs_out;
3781
3782 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3783 rate64 = tcp_compute_delivery_rate(tp);
3784 if (rate64)
3785 info->tcpi_delivery_rate = rate64;
3786 info->tcpi_delivered = tp->delivered;
3787 info->tcpi_delivered_ce = tp->delivered_ce;
3788 info->tcpi_bytes_sent = tp->bytes_sent;
3789 info->tcpi_bytes_retrans = tp->bytes_retrans;
3790 info->tcpi_dsack_dups = tp->dsack_dups;
3791 info->tcpi_reord_seen = tp->reord_seen;
3792 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3793 info->tcpi_snd_wnd = tp->snd_wnd;
3794 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3795 unlock_sock_fast(sk, slow);
3796 }
3797 EXPORT_SYMBOL_GPL(tcp_get_info);
3798
tcp_opt_stats_get_size(void)3799 static size_t tcp_opt_stats_get_size(void)
3800 {
3801 return
3802 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3803 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3804 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3805 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3806 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3807 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3808 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3809 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3810 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3811 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3812 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3813 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3814 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3815 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3816 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3817 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3818 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3819 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3820 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3821 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3822 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3823 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3824 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3825 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3826 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3827 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3828 0;
3829 }
3830
3831 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3832 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3833 {
3834 if (skb->protocol == htons(ETH_P_IP))
3835 return ip_hdr(skb)->ttl;
3836 else if (skb->protocol == htons(ETH_P_IPV6))
3837 return ipv6_hdr(skb)->hop_limit;
3838 else
3839 return 0;
3840 }
3841
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3842 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3843 const struct sk_buff *orig_skb,
3844 const struct sk_buff *ack_skb)
3845 {
3846 const struct tcp_sock *tp = tcp_sk(sk);
3847 struct sk_buff *stats;
3848 struct tcp_info info;
3849 unsigned long rate;
3850 u64 rate64;
3851
3852 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3853 if (!stats)
3854 return NULL;
3855
3856 tcp_get_info_chrono_stats(tp, &info);
3857 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3858 info.tcpi_busy_time, TCP_NLA_PAD);
3859 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3860 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3861 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3862 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3863 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3864 tp->data_segs_out, TCP_NLA_PAD);
3865 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3866 tp->total_retrans, TCP_NLA_PAD);
3867
3868 rate = READ_ONCE(sk->sk_pacing_rate);
3869 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3870 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3871
3872 rate64 = tcp_compute_delivery_rate(tp);
3873 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3874
3875 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3876 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3877 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3878
3879 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3880 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3881 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3882 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3883 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3884
3885 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3886 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3887
3888 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3889 TCP_NLA_PAD);
3890 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3891 TCP_NLA_PAD);
3892 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3893 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3894 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3895 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3896 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3897 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3898 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3899 TCP_NLA_PAD);
3900 if (ack_skb)
3901 nla_put_u8(stats, TCP_NLA_TTL,
3902 tcp_skb_ttl_or_hop_limit(ack_skb));
3903
3904 return stats;
3905 }
3906
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3907 static int do_tcp_getsockopt(struct sock *sk, int level,
3908 int optname, char __user *optval, int __user *optlen)
3909 {
3910 struct inet_connection_sock *icsk = inet_csk(sk);
3911 struct tcp_sock *tp = tcp_sk(sk);
3912 struct net *net = sock_net(sk);
3913 int val, len;
3914
3915 if (get_user(len, optlen))
3916 return -EFAULT;
3917
3918 len = min_t(unsigned int, len, sizeof(int));
3919
3920 if (len < 0)
3921 return -EINVAL;
3922
3923 switch (optname) {
3924 case TCP_MAXSEG:
3925 val = tp->mss_cache;
3926 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3927 val = tp->rx_opt.user_mss;
3928 if (tp->repair)
3929 val = tp->rx_opt.mss_clamp;
3930 break;
3931 case TCP_NODELAY:
3932 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3933 break;
3934 case TCP_CORK:
3935 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3936 break;
3937 case TCP_KEEPIDLE:
3938 val = keepalive_time_when(tp) / HZ;
3939 break;
3940 case TCP_KEEPINTVL:
3941 val = keepalive_intvl_when(tp) / HZ;
3942 break;
3943 case TCP_KEEPCNT:
3944 val = keepalive_probes(tp);
3945 break;
3946 case TCP_SYNCNT:
3947 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3948 break;
3949 case TCP_LINGER2:
3950 val = tp->linger2;
3951 if (val >= 0)
3952 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3953 break;
3954 case TCP_DEFER_ACCEPT:
3955 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3956 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3957 break;
3958 case TCP_WINDOW_CLAMP:
3959 val = tp->window_clamp;
3960 break;
3961 case TCP_INFO: {
3962 struct tcp_info info;
3963
3964 if (get_user(len, optlen))
3965 return -EFAULT;
3966
3967 tcp_get_info(sk, &info);
3968
3969 len = min_t(unsigned int, len, sizeof(info));
3970 if (put_user(len, optlen))
3971 return -EFAULT;
3972 if (copy_to_user(optval, &info, len))
3973 return -EFAULT;
3974 return 0;
3975 }
3976 case TCP_CC_INFO: {
3977 const struct tcp_congestion_ops *ca_ops;
3978 union tcp_cc_info info;
3979 size_t sz = 0;
3980 int attr;
3981
3982 if (get_user(len, optlen))
3983 return -EFAULT;
3984
3985 ca_ops = icsk->icsk_ca_ops;
3986 if (ca_ops && ca_ops->get_info)
3987 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3988
3989 len = min_t(unsigned int, len, sz);
3990 if (put_user(len, optlen))
3991 return -EFAULT;
3992 if (copy_to_user(optval, &info, len))
3993 return -EFAULT;
3994 return 0;
3995 }
3996 case TCP_QUICKACK:
3997 val = !inet_csk_in_pingpong_mode(sk);
3998 break;
3999
4000 case TCP_CONGESTION:
4001 if (get_user(len, optlen))
4002 return -EFAULT;
4003 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4004 if (put_user(len, optlen))
4005 return -EFAULT;
4006 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4007 return -EFAULT;
4008 return 0;
4009
4010 case TCP_ULP:
4011 if (get_user(len, optlen))
4012 return -EFAULT;
4013 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4014 if (!icsk->icsk_ulp_ops) {
4015 if (put_user(0, optlen))
4016 return -EFAULT;
4017 return 0;
4018 }
4019 if (put_user(len, optlen))
4020 return -EFAULT;
4021 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4022 return -EFAULT;
4023 return 0;
4024
4025 case TCP_FASTOPEN_KEY: {
4026 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4027 unsigned int key_len;
4028
4029 if (get_user(len, optlen))
4030 return -EFAULT;
4031
4032 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4033 TCP_FASTOPEN_KEY_LENGTH;
4034 len = min_t(unsigned int, len, key_len);
4035 if (put_user(len, optlen))
4036 return -EFAULT;
4037 if (copy_to_user(optval, key, len))
4038 return -EFAULT;
4039 return 0;
4040 }
4041 case TCP_THIN_LINEAR_TIMEOUTS:
4042 val = tp->thin_lto;
4043 break;
4044
4045 case TCP_THIN_DUPACK:
4046 val = 0;
4047 break;
4048
4049 case TCP_REPAIR:
4050 val = tp->repair;
4051 break;
4052
4053 case TCP_REPAIR_QUEUE:
4054 if (tp->repair)
4055 val = tp->repair_queue;
4056 else
4057 return -EINVAL;
4058 break;
4059
4060 case TCP_REPAIR_WINDOW: {
4061 struct tcp_repair_window opt;
4062
4063 if (get_user(len, optlen))
4064 return -EFAULT;
4065
4066 if (len != sizeof(opt))
4067 return -EINVAL;
4068
4069 if (!tp->repair)
4070 return -EPERM;
4071
4072 opt.snd_wl1 = tp->snd_wl1;
4073 opt.snd_wnd = tp->snd_wnd;
4074 opt.max_window = tp->max_window;
4075 opt.rcv_wnd = tp->rcv_wnd;
4076 opt.rcv_wup = tp->rcv_wup;
4077
4078 if (copy_to_user(optval, &opt, len))
4079 return -EFAULT;
4080 return 0;
4081 }
4082 case TCP_QUEUE_SEQ:
4083 if (tp->repair_queue == TCP_SEND_QUEUE)
4084 val = tp->write_seq;
4085 else if (tp->repair_queue == TCP_RECV_QUEUE)
4086 val = tp->rcv_nxt;
4087 else
4088 return -EINVAL;
4089 break;
4090
4091 case TCP_USER_TIMEOUT:
4092 val = icsk->icsk_user_timeout;
4093 break;
4094
4095 case TCP_FASTOPEN:
4096 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4097 break;
4098
4099 case TCP_FASTOPEN_CONNECT:
4100 val = tp->fastopen_connect;
4101 break;
4102
4103 case TCP_FASTOPEN_NO_COOKIE:
4104 val = tp->fastopen_no_cookie;
4105 break;
4106
4107 case TCP_TX_DELAY:
4108 val = tp->tcp_tx_delay;
4109 break;
4110
4111 case TCP_TIMESTAMP:
4112 val = tcp_time_stamp_raw() + tp->tsoffset;
4113 break;
4114 case TCP_NOTSENT_LOWAT:
4115 val = tp->notsent_lowat;
4116 break;
4117 case TCP_INQ:
4118 val = tp->recvmsg_inq;
4119 break;
4120 case TCP_SAVE_SYN:
4121 val = tp->save_syn;
4122 break;
4123 case TCP_SAVED_SYN: {
4124 if (get_user(len, optlen))
4125 return -EFAULT;
4126
4127 lock_sock(sk);
4128 if (tp->saved_syn) {
4129 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4130 if (put_user(tcp_saved_syn_len(tp->saved_syn),
4131 optlen)) {
4132 release_sock(sk);
4133 return -EFAULT;
4134 }
4135 release_sock(sk);
4136 return -EINVAL;
4137 }
4138 len = tcp_saved_syn_len(tp->saved_syn);
4139 if (put_user(len, optlen)) {
4140 release_sock(sk);
4141 return -EFAULT;
4142 }
4143 if (copy_to_user(optval, tp->saved_syn->data, len)) {
4144 release_sock(sk);
4145 return -EFAULT;
4146 }
4147 tcp_saved_syn_free(tp);
4148 release_sock(sk);
4149 } else {
4150 release_sock(sk);
4151 len = 0;
4152 if (put_user(len, optlen))
4153 return -EFAULT;
4154 }
4155 return 0;
4156 }
4157 #ifdef CONFIG_MMU
4158 case TCP_ZEROCOPY_RECEIVE: {
4159 struct scm_timestamping_internal tss;
4160 struct tcp_zerocopy_receive zc = {};
4161 int err;
4162
4163 if (get_user(len, optlen))
4164 return -EFAULT;
4165 if (len < 0 ||
4166 len < offsetofend(struct tcp_zerocopy_receive, length))
4167 return -EINVAL;
4168 if (unlikely(len > sizeof(zc))) {
4169 err = check_zeroed_user(optval + sizeof(zc),
4170 len - sizeof(zc));
4171 if (err < 1)
4172 return err == 0 ? -EINVAL : err;
4173 len = sizeof(zc);
4174 if (put_user(len, optlen))
4175 return -EFAULT;
4176 }
4177 if (copy_from_user(&zc, optval, len))
4178 return -EFAULT;
4179 if (zc.reserved)
4180 return -EINVAL;
4181 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4182 return -EINVAL;
4183 lock_sock(sk);
4184 err = tcp_zerocopy_receive(sk, &zc, &tss);
4185 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4186 &zc, &len, err);
4187 release_sock(sk);
4188 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4189 goto zerocopy_rcv_cmsg;
4190 switch (len) {
4191 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4192 goto zerocopy_rcv_cmsg;
4193 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4194 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4195 case offsetofend(struct tcp_zerocopy_receive, flags):
4196 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4197 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4198 case offsetofend(struct tcp_zerocopy_receive, err):
4199 goto zerocopy_rcv_sk_err;
4200 case offsetofend(struct tcp_zerocopy_receive, inq):
4201 goto zerocopy_rcv_inq;
4202 case offsetofend(struct tcp_zerocopy_receive, length):
4203 default:
4204 goto zerocopy_rcv_out;
4205 }
4206 zerocopy_rcv_cmsg:
4207 if (zc.msg_flags & TCP_CMSG_TS)
4208 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4209 else
4210 zc.msg_flags = 0;
4211 zerocopy_rcv_sk_err:
4212 if (!err)
4213 zc.err = sock_error(sk);
4214 zerocopy_rcv_inq:
4215 zc.inq = tcp_inq_hint(sk);
4216 zerocopy_rcv_out:
4217 if (!err && copy_to_user(optval, &zc, len))
4218 err = -EFAULT;
4219 return err;
4220 }
4221 #endif
4222 default:
4223 return -ENOPROTOOPT;
4224 }
4225
4226 if (put_user(len, optlen))
4227 return -EFAULT;
4228 if (copy_to_user(optval, &val, len))
4229 return -EFAULT;
4230 return 0;
4231 }
4232
tcp_bpf_bypass_getsockopt(int level,int optname)4233 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4234 {
4235 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4236 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4237 */
4238 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4239 return true;
4240
4241 return false;
4242 }
4243 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4244
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4245 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4246 int __user *optlen)
4247 {
4248 struct inet_connection_sock *icsk = inet_csk(sk);
4249
4250 if (level != SOL_TCP)
4251 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4252 optval, optlen);
4253 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4254 }
4255 EXPORT_SYMBOL(tcp_getsockopt);
4256
4257 #ifdef CONFIG_TCP_MD5SIG
4258 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4259 static DEFINE_MUTEX(tcp_md5sig_mutex);
4260 static bool tcp_md5sig_pool_populated = false;
4261
__tcp_alloc_md5sig_pool(void)4262 static void __tcp_alloc_md5sig_pool(void)
4263 {
4264 struct crypto_ahash *hash;
4265 int cpu;
4266
4267 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4268 if (IS_ERR(hash))
4269 return;
4270
4271 for_each_possible_cpu(cpu) {
4272 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4273 struct ahash_request *req;
4274
4275 if (!scratch) {
4276 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4277 sizeof(struct tcphdr),
4278 GFP_KERNEL,
4279 cpu_to_node(cpu));
4280 if (!scratch)
4281 return;
4282 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4283 }
4284 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4285 continue;
4286
4287 req = ahash_request_alloc(hash, GFP_KERNEL);
4288 if (!req)
4289 return;
4290
4291 ahash_request_set_callback(req, 0, NULL, NULL);
4292
4293 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4294 }
4295 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4296 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4297 */
4298 smp_wmb();
4299 tcp_md5sig_pool_populated = true;
4300 }
4301
tcp_alloc_md5sig_pool(void)4302 bool tcp_alloc_md5sig_pool(void)
4303 {
4304 if (unlikely(!tcp_md5sig_pool_populated)) {
4305 mutex_lock(&tcp_md5sig_mutex);
4306
4307 if (!tcp_md5sig_pool_populated) {
4308 __tcp_alloc_md5sig_pool();
4309 if (tcp_md5sig_pool_populated)
4310 static_branch_inc(&tcp_md5_needed);
4311 }
4312
4313 mutex_unlock(&tcp_md5sig_mutex);
4314 }
4315 return tcp_md5sig_pool_populated;
4316 }
4317 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4318
4319
4320 /**
4321 * tcp_get_md5sig_pool - get md5sig_pool for this user
4322 *
4323 * We use percpu structure, so if we succeed, we exit with preemption
4324 * and BH disabled, to make sure another thread or softirq handling
4325 * wont try to get same context.
4326 */
tcp_get_md5sig_pool(void)4327 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4328 {
4329 local_bh_disable();
4330
4331 if (tcp_md5sig_pool_populated) {
4332 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4333 smp_rmb();
4334 return this_cpu_ptr(&tcp_md5sig_pool);
4335 }
4336 local_bh_enable();
4337 return NULL;
4338 }
4339 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4340
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4341 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4342 const struct sk_buff *skb, unsigned int header_len)
4343 {
4344 struct scatterlist sg;
4345 const struct tcphdr *tp = tcp_hdr(skb);
4346 struct ahash_request *req = hp->md5_req;
4347 unsigned int i;
4348 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4349 skb_headlen(skb) - header_len : 0;
4350 const struct skb_shared_info *shi = skb_shinfo(skb);
4351 struct sk_buff *frag_iter;
4352
4353 sg_init_table(&sg, 1);
4354
4355 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4356 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4357 if (crypto_ahash_update(req))
4358 return 1;
4359
4360 for (i = 0; i < shi->nr_frags; ++i) {
4361 const skb_frag_t *f = &shi->frags[i];
4362 unsigned int offset = skb_frag_off(f);
4363 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4364
4365 sg_set_page(&sg, page, skb_frag_size(f),
4366 offset_in_page(offset));
4367 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4368 if (crypto_ahash_update(req))
4369 return 1;
4370 }
4371
4372 skb_walk_frags(skb, frag_iter)
4373 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4374 return 1;
4375
4376 return 0;
4377 }
4378 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4379
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4380 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4381 {
4382 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4383 struct scatterlist sg;
4384
4385 sg_init_one(&sg, key->key, keylen);
4386 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4387
4388 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4389 return data_race(crypto_ahash_update(hp->md5_req));
4390 }
4391 EXPORT_SYMBOL(tcp_md5_hash_key);
4392
4393 #endif
4394
tcp_done(struct sock * sk)4395 void tcp_done(struct sock *sk)
4396 {
4397 struct request_sock *req;
4398
4399 /* We might be called with a new socket, after
4400 * inet_csk_prepare_forced_close() has been called
4401 * so we can not use lockdep_sock_is_held(sk)
4402 */
4403 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4404
4405 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4406 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4407
4408 tcp_set_state(sk, TCP_CLOSE);
4409 tcp_clear_xmit_timers(sk);
4410 if (req)
4411 reqsk_fastopen_remove(sk, req, false);
4412
4413 sk->sk_shutdown = SHUTDOWN_MASK;
4414
4415 if (!sock_flag(sk, SOCK_DEAD))
4416 sk->sk_state_change(sk);
4417 else
4418 inet_csk_destroy_sock(sk);
4419 }
4420 EXPORT_SYMBOL_GPL(tcp_done);
4421
tcp_abort(struct sock * sk,int err)4422 int tcp_abort(struct sock *sk, int err)
4423 {
4424 if (!sk_fullsock(sk)) {
4425 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4426 struct request_sock *req = inet_reqsk(sk);
4427
4428 local_bh_disable();
4429 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4430 local_bh_enable();
4431 return 0;
4432 }
4433 return -EOPNOTSUPP;
4434 }
4435
4436 /* Don't race with userspace socket closes such as tcp_close. */
4437 lock_sock(sk);
4438
4439 if (sk->sk_state == TCP_LISTEN) {
4440 tcp_set_state(sk, TCP_CLOSE);
4441 inet_csk_listen_stop(sk);
4442 }
4443
4444 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4445 local_bh_disable();
4446 bh_lock_sock(sk);
4447
4448 if (!sock_flag(sk, SOCK_DEAD)) {
4449 sk->sk_err = err;
4450 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4451 smp_wmb();
4452 sk_error_report(sk);
4453 if (tcp_need_reset(sk->sk_state))
4454 tcp_send_active_reset(sk, GFP_ATOMIC);
4455 tcp_done(sk);
4456 }
4457
4458 bh_unlock_sock(sk);
4459 local_bh_enable();
4460 tcp_write_queue_purge(sk);
4461 release_sock(sk);
4462 return 0;
4463 }
4464 EXPORT_SYMBOL_GPL(tcp_abort);
4465
4466 extern struct tcp_congestion_ops tcp_reno;
4467
4468 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4469 static int __init set_thash_entries(char *str)
4470 {
4471 ssize_t ret;
4472
4473 if (!str)
4474 return 0;
4475
4476 ret = kstrtoul(str, 0, &thash_entries);
4477 if (ret)
4478 return 0;
4479
4480 return 1;
4481 }
4482 __setup("thash_entries=", set_thash_entries);
4483
tcp_init_mem(void)4484 static void __init tcp_init_mem(void)
4485 {
4486 unsigned long limit = nr_free_buffer_pages() / 16;
4487
4488 limit = max(limit, 128UL);
4489 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4490 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4491 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4492 }
4493
tcp_init(void)4494 void __init tcp_init(void)
4495 {
4496 int max_rshare, max_wshare, cnt;
4497 unsigned long limit;
4498 unsigned int i;
4499
4500 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4501 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4502 sizeof_field(struct sk_buff, cb));
4503
4504 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4505 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
4506 inet_hashinfo_init(&tcp_hashinfo);
4507 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4508 thash_entries, 21, /* one slot per 2 MB*/
4509 0, 64 * 1024);
4510 tcp_hashinfo.bind_bucket_cachep =
4511 kmem_cache_create("tcp_bind_bucket",
4512 sizeof(struct inet_bind_bucket), 0,
4513 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4514 SLAB_ACCOUNT,
4515 NULL);
4516
4517 /* Size and allocate the main established and bind bucket
4518 * hash tables.
4519 *
4520 * The methodology is similar to that of the buffer cache.
4521 */
4522 tcp_hashinfo.ehash =
4523 alloc_large_system_hash("TCP established",
4524 sizeof(struct inet_ehash_bucket),
4525 thash_entries,
4526 17, /* one slot per 128 KB of memory */
4527 0,
4528 NULL,
4529 &tcp_hashinfo.ehash_mask,
4530 0,
4531 thash_entries ? 0 : 512 * 1024);
4532 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4533 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4534
4535 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4536 panic("TCP: failed to alloc ehash_locks");
4537 tcp_hashinfo.bhash =
4538 alloc_large_system_hash("TCP bind",
4539 sizeof(struct inet_bind_hashbucket),
4540 tcp_hashinfo.ehash_mask + 1,
4541 17, /* one slot per 128 KB of memory */
4542 0,
4543 &tcp_hashinfo.bhash_size,
4544 NULL,
4545 0,
4546 64 * 1024);
4547 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4548 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4549 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4550 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4551 }
4552
4553
4554 cnt = tcp_hashinfo.ehash_mask + 1;
4555 sysctl_tcp_max_orphans = cnt / 2;
4556
4557 tcp_init_mem();
4558 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4559 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4560 max_wshare = min(4UL*1024*1024, limit);
4561 max_rshare = min(6UL*1024*1024, limit);
4562
4563 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4564 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4565 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4566
4567 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4568 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4569 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4570
4571 pr_info("Hash tables configured (established %u bind %u)\n",
4572 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4573
4574 tcp_v4_init();
4575 tcp_metrics_init();
4576 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4577 tcp_tasklet_init();
4578 mptcp_init();
4579 }
4580