1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270 #include <linux/btf.h>
271 
272 #include <net/icmp.h>
273 #include <net/inet_common.h>
274 #include <net/tcp.h>
275 #include <net/mptcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <linux/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <net/busy_poll.h>
283 
284 /* Track pending CMSGs. */
285 enum {
286 	TCP_CMSG_INQ = 1,
287 	TCP_CMSG_TS = 2
288 };
289 
290 struct percpu_counter tcp_orphan_count;
291 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 
293 long sysctl_tcp_mem[3] __read_mostly;
294 EXPORT_SYMBOL(sysctl_tcp_mem);
295 
296 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
297 EXPORT_SYMBOL(tcp_memory_allocated);
298 
299 #if IS_ENABLED(CONFIG_SMC)
300 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
301 EXPORT_SYMBOL(tcp_have_smc);
302 #endif
303 
304 /*
305  * Current number of TCP sockets.
306  */
307 struct percpu_counter tcp_sockets_allocated;
308 EXPORT_SYMBOL(tcp_sockets_allocated);
309 
310 /*
311  * TCP splice context
312  */
313 struct tcp_splice_state {
314 	struct pipe_inode_info *pipe;
315 	size_t len;
316 	unsigned int flags;
317 };
318 
319 /*
320  * Pressure flag: try to collapse.
321  * Technical note: it is used by multiple contexts non atomically.
322  * All the __sk_mem_schedule() is of this nature: accounting
323  * is strict, actions are advisory and have some latency.
324  */
325 unsigned long tcp_memory_pressure __read_mostly;
326 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
327 
328 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
329 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
330 
331 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
332 
tcp_enter_memory_pressure(struct sock * sk)333 void tcp_enter_memory_pressure(struct sock *sk)
334 {
335 	unsigned long val;
336 
337 	if (READ_ONCE(tcp_memory_pressure))
338 		return;
339 	val = jiffies;
340 
341 	if (!val)
342 		val--;
343 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
344 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
345 }
346 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
347 
tcp_leave_memory_pressure(struct sock * sk)348 void tcp_leave_memory_pressure(struct sock *sk)
349 {
350 	unsigned long val;
351 
352 	if (!READ_ONCE(tcp_memory_pressure))
353 		return;
354 	val = xchg(&tcp_memory_pressure, 0);
355 	if (val)
356 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
357 			      jiffies_to_msecs(jiffies - val));
358 }
359 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
360 
361 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)362 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
363 {
364 	u8 res = 0;
365 
366 	if (seconds > 0) {
367 		int period = timeout;
368 
369 		res = 1;
370 		while (seconds > period && res < 255) {
371 			res++;
372 			timeout <<= 1;
373 			if (timeout > rto_max)
374 				timeout = rto_max;
375 			period += timeout;
376 		}
377 	}
378 	return res;
379 }
380 
381 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)382 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
383 {
384 	int period = 0;
385 
386 	if (retrans > 0) {
387 		period = timeout;
388 		while (--retrans) {
389 			timeout <<= 1;
390 			if (timeout > rto_max)
391 				timeout = rto_max;
392 			period += timeout;
393 		}
394 	}
395 	return period;
396 }
397 
tcp_compute_delivery_rate(const struct tcp_sock * tp)398 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
399 {
400 	u32 rate = READ_ONCE(tp->rate_delivered);
401 	u32 intv = READ_ONCE(tp->rate_interval_us);
402 	u64 rate64 = 0;
403 
404 	if (rate && intv) {
405 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
406 		do_div(rate64, intv);
407 	}
408 	return rate64;
409 }
410 
411 /* Address-family independent initialization for a tcp_sock.
412  *
413  * NOTE: A lot of things set to zero explicitly by call to
414  *       sk_alloc() so need not be done here.
415  */
tcp_init_sock(struct sock * sk)416 void tcp_init_sock(struct sock *sk)
417 {
418 	struct inet_connection_sock *icsk = inet_csk(sk);
419 	struct tcp_sock *tp = tcp_sk(sk);
420 
421 	tp->out_of_order_queue = RB_ROOT;
422 	sk->tcp_rtx_queue = RB_ROOT;
423 	tcp_init_xmit_timers(sk);
424 	INIT_LIST_HEAD(&tp->tsq_node);
425 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
426 
427 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
428 	icsk->icsk_rto_min = TCP_RTO_MIN;
429 	icsk->icsk_delack_max = TCP_DELACK_MAX;
430 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
431 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
432 
433 	/* So many TCP implementations out there (incorrectly) count the
434 	 * initial SYN frame in their delayed-ACK and congestion control
435 	 * algorithms that we must have the following bandaid to talk
436 	 * efficiently to them.  -DaveM
437 	 */
438 	tp->snd_cwnd = TCP_INIT_CWND;
439 
440 	/* There's a bubble in the pipe until at least the first ACK. */
441 	tp->app_limited = ~0U;
442 
443 	/* See draft-stevens-tcpca-spec-01 for discussion of the
444 	 * initialization of these values.
445 	 */
446 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
447 	tp->snd_cwnd_clamp = ~0;
448 	tp->mss_cache = TCP_MSS_DEFAULT;
449 
450 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
451 	tcp_assign_congestion_control(sk);
452 
453 	tp->tsoffset = 0;
454 	tp->rack.reo_wnd_steps = 1;
455 
456 	sk->sk_write_space = sk_stream_write_space;
457 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
458 
459 	icsk->icsk_sync_mss = tcp_sync_mss;
460 
461 	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
462 	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
463 
464 	sk_sockets_allocated_inc(sk);
465 	sk->sk_route_forced_caps = NETIF_F_GSO;
466 }
467 EXPORT_SYMBOL(tcp_init_sock);
468 
tcp_tx_timestamp(struct sock * sk,u16 tsflags)469 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
470 {
471 	struct sk_buff *skb = tcp_write_queue_tail(sk);
472 
473 	if (tsflags && skb) {
474 		struct skb_shared_info *shinfo = skb_shinfo(skb);
475 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
476 
477 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
478 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
479 			tcb->txstamp_ack = 1;
480 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
481 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
482 	}
483 }
484 
tcp_stream_is_readable(struct sock * sk,int target)485 static bool tcp_stream_is_readable(struct sock *sk, int target)
486 {
487 	if (tcp_epollin_ready(sk, target))
488 		return true;
489 	return sk_is_readable(sk);
490 }
491 
492 /*
493  *	Wait for a TCP event.
494  *
495  *	Note that we don't need to lock the socket, as the upper poll layers
496  *	take care of normal races (between the test and the event) and we don't
497  *	go look at any of the socket buffers directly.
498  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)499 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
500 {
501 	__poll_t mask;
502 	struct sock *sk = sock->sk;
503 	const struct tcp_sock *tp = tcp_sk(sk);
504 	int state;
505 
506 	sock_poll_wait(file, sock, wait);
507 
508 	state = inet_sk_state_load(sk);
509 	if (state == TCP_LISTEN)
510 		return inet_csk_listen_poll(sk);
511 
512 	/* Socket is not locked. We are protected from async events
513 	 * by poll logic and correct handling of state changes
514 	 * made by other threads is impossible in any case.
515 	 */
516 
517 	mask = 0;
518 
519 	/*
520 	 * EPOLLHUP is certainly not done right. But poll() doesn't
521 	 * have a notion of HUP in just one direction, and for a
522 	 * socket the read side is more interesting.
523 	 *
524 	 * Some poll() documentation says that EPOLLHUP is incompatible
525 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
526 	 * all. But careful, it tends to be safer to return too many
527 	 * bits than too few, and you can easily break real applications
528 	 * if you don't tell them that something has hung up!
529 	 *
530 	 * Check-me.
531 	 *
532 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
533 	 * our fs/select.c). It means that after we received EOF,
534 	 * poll always returns immediately, making impossible poll() on write()
535 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
536 	 * if and only if shutdown has been made in both directions.
537 	 * Actually, it is interesting to look how Solaris and DUX
538 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
539 	 * then we could set it on SND_SHUTDOWN. BTW examples given
540 	 * in Stevens' books assume exactly this behaviour, it explains
541 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
542 	 *
543 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
544 	 * blocking on fresh not-connected or disconnected socket. --ANK
545 	 */
546 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 		mask |= EPOLLHUP;
548 	if (sk->sk_shutdown & RCV_SHUTDOWN)
549 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550 
551 	/* Connected or passive Fast Open socket? */
552 	if (state != TCP_SYN_SENT &&
553 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 		int target = sock_rcvlowat(sk, 0, INT_MAX);
555 
556 		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
557 		    !sock_flag(sk, SOCK_URGINLINE) &&
558 		    tp->urg_data)
559 			target++;
560 
561 		if (tcp_stream_is_readable(sk, target))
562 			mask |= EPOLLIN | EPOLLRDNORM;
563 
564 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
565 			if (__sk_stream_is_writeable(sk, 1)) {
566 				mask |= EPOLLOUT | EPOLLWRNORM;
567 			} else {  /* send SIGIO later */
568 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
569 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
570 
571 				/* Race breaker. If space is freed after
572 				 * wspace test but before the flags are set,
573 				 * IO signal will be lost. Memory barrier
574 				 * pairs with the input side.
575 				 */
576 				smp_mb__after_atomic();
577 				if (__sk_stream_is_writeable(sk, 1))
578 					mask |= EPOLLOUT | EPOLLWRNORM;
579 			}
580 		} else
581 			mask |= EPOLLOUT | EPOLLWRNORM;
582 
583 		if (tp->urg_data & TCP_URG_VALID)
584 			mask |= EPOLLPRI;
585 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
586 		/* Active TCP fastopen socket with defer_connect
587 		 * Return EPOLLOUT so application can call write()
588 		 * in order for kernel to generate SYN+data
589 		 */
590 		mask |= EPOLLOUT | EPOLLWRNORM;
591 	}
592 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
593 	smp_rmb();
594 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
595 		mask |= EPOLLERR;
596 
597 	return mask;
598 }
599 EXPORT_SYMBOL(tcp_poll);
600 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)601 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
602 {
603 	struct tcp_sock *tp = tcp_sk(sk);
604 	int answ;
605 	bool slow;
606 
607 	switch (cmd) {
608 	case SIOCINQ:
609 		if (sk->sk_state == TCP_LISTEN)
610 			return -EINVAL;
611 
612 		slow = lock_sock_fast(sk);
613 		answ = tcp_inq(sk);
614 		unlock_sock_fast(sk, slow);
615 		break;
616 	case SIOCATMARK:
617 		answ = tp->urg_data &&
618 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
619 		break;
620 	case SIOCOUTQ:
621 		if (sk->sk_state == TCP_LISTEN)
622 			return -EINVAL;
623 
624 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
625 			answ = 0;
626 		else
627 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
628 		break;
629 	case SIOCOUTQNSD:
630 		if (sk->sk_state == TCP_LISTEN)
631 			return -EINVAL;
632 
633 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
634 			answ = 0;
635 		else
636 			answ = READ_ONCE(tp->write_seq) -
637 			       READ_ONCE(tp->snd_nxt);
638 		break;
639 	default:
640 		return -ENOIOCTLCMD;
641 	}
642 
643 	return put_user(answ, (int __user *)arg);
644 }
645 EXPORT_SYMBOL(tcp_ioctl);
646 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)647 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
648 {
649 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
650 	tp->pushed_seq = tp->write_seq;
651 }
652 
forced_push(const struct tcp_sock * tp)653 static inline bool forced_push(const struct tcp_sock *tp)
654 {
655 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
656 }
657 
skb_entail(struct sock * sk,struct sk_buff * skb)658 static void skb_entail(struct sock *sk, struct sk_buff *skb)
659 {
660 	struct tcp_sock *tp = tcp_sk(sk);
661 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
662 
663 	skb->csum    = 0;
664 	tcb->seq     = tcb->end_seq = tp->write_seq;
665 	tcb->tcp_flags = TCPHDR_ACK;
666 	tcb->sacked  = 0;
667 	__skb_header_release(skb);
668 	tcp_add_write_queue_tail(sk, skb);
669 	sk_wmem_queued_add(sk, skb->truesize);
670 	sk_mem_charge(sk, skb->truesize);
671 	if (tp->nonagle & TCP_NAGLE_PUSH)
672 		tp->nonagle &= ~TCP_NAGLE_PUSH;
673 
674 	tcp_slow_start_after_idle_check(sk);
675 }
676 
tcp_mark_urg(struct tcp_sock * tp,int flags)677 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
678 {
679 	if (flags & MSG_OOB)
680 		tp->snd_up = tp->write_seq;
681 }
682 
683 /* If a not yet filled skb is pushed, do not send it if
684  * we have data packets in Qdisc or NIC queues :
685  * Because TX completion will happen shortly, it gives a chance
686  * to coalesce future sendmsg() payload into this skb, without
687  * need for a timer, and with no latency trade off.
688  * As packets containing data payload have a bigger truesize
689  * than pure acks (dataless) packets, the last checks prevent
690  * autocorking if we only have an ACK in Qdisc/NIC queues,
691  * or if TX completion was delayed after we processed ACK packet.
692  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)693 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
694 				int size_goal)
695 {
696 	return skb->len < size_goal &&
697 	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
698 	       !tcp_rtx_queue_empty(sk) &&
699 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
700 }
701 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)702 void tcp_push(struct sock *sk, int flags, int mss_now,
703 	      int nonagle, int size_goal)
704 {
705 	struct tcp_sock *tp = tcp_sk(sk);
706 	struct sk_buff *skb;
707 
708 	skb = tcp_write_queue_tail(sk);
709 	if (!skb)
710 		return;
711 	if (!(flags & MSG_MORE) || forced_push(tp))
712 		tcp_mark_push(tp, skb);
713 
714 	tcp_mark_urg(tp, flags);
715 
716 	if (tcp_should_autocork(sk, skb, size_goal)) {
717 
718 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
719 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
720 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
721 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
722 		}
723 		/* It is possible TX completion already happened
724 		 * before we set TSQ_THROTTLED.
725 		 */
726 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
727 			return;
728 	}
729 
730 	if (flags & MSG_MORE)
731 		nonagle = TCP_NAGLE_CORK;
732 
733 	__tcp_push_pending_frames(sk, mss_now, nonagle);
734 }
735 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)736 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
737 				unsigned int offset, size_t len)
738 {
739 	struct tcp_splice_state *tss = rd_desc->arg.data;
740 	int ret;
741 
742 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
743 			      min(rd_desc->count, len), tss->flags);
744 	if (ret > 0)
745 		rd_desc->count -= ret;
746 	return ret;
747 }
748 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)749 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
750 {
751 	/* Store TCP splice context information in read_descriptor_t. */
752 	read_descriptor_t rd_desc = {
753 		.arg.data = tss,
754 		.count	  = tss->len,
755 	};
756 
757 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
758 }
759 
760 /**
761  *  tcp_splice_read - splice data from TCP socket to a pipe
762  * @sock:	socket to splice from
763  * @ppos:	position (not valid)
764  * @pipe:	pipe to splice to
765  * @len:	number of bytes to splice
766  * @flags:	splice modifier flags
767  *
768  * Description:
769  *    Will read pages from given socket and fill them into a pipe.
770  *
771  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)772 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
773 			struct pipe_inode_info *pipe, size_t len,
774 			unsigned int flags)
775 {
776 	struct sock *sk = sock->sk;
777 	struct tcp_splice_state tss = {
778 		.pipe = pipe,
779 		.len = len,
780 		.flags = flags,
781 	};
782 	long timeo;
783 	ssize_t spliced;
784 	int ret;
785 
786 	sock_rps_record_flow(sk);
787 	/*
788 	 * We can't seek on a socket input
789 	 */
790 	if (unlikely(*ppos))
791 		return -ESPIPE;
792 
793 	ret = spliced = 0;
794 
795 	lock_sock(sk);
796 
797 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
798 	while (tss.len) {
799 		ret = __tcp_splice_read(sk, &tss);
800 		if (ret < 0)
801 			break;
802 		else if (!ret) {
803 			if (spliced)
804 				break;
805 			if (sock_flag(sk, SOCK_DONE))
806 				break;
807 			if (sk->sk_err) {
808 				ret = sock_error(sk);
809 				break;
810 			}
811 			if (sk->sk_shutdown & RCV_SHUTDOWN)
812 				break;
813 			if (sk->sk_state == TCP_CLOSE) {
814 				/*
815 				 * This occurs when user tries to read
816 				 * from never connected socket.
817 				 */
818 				ret = -ENOTCONN;
819 				break;
820 			}
821 			if (!timeo) {
822 				ret = -EAGAIN;
823 				break;
824 			}
825 			/* if __tcp_splice_read() got nothing while we have
826 			 * an skb in receive queue, we do not want to loop.
827 			 * This might happen with URG data.
828 			 */
829 			if (!skb_queue_empty(&sk->sk_receive_queue))
830 				break;
831 			sk_wait_data(sk, &timeo, NULL);
832 			if (signal_pending(current)) {
833 				ret = sock_intr_errno(timeo);
834 				break;
835 			}
836 			continue;
837 		}
838 		tss.len -= ret;
839 		spliced += ret;
840 
841 		if (!timeo)
842 			break;
843 		release_sock(sk);
844 		lock_sock(sk);
845 
846 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
847 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
848 		    signal_pending(current))
849 			break;
850 	}
851 
852 	release_sock(sk);
853 
854 	if (spliced)
855 		return spliced;
856 
857 	return ret;
858 }
859 EXPORT_SYMBOL(tcp_splice_read);
860 
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)861 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
862 				    bool force_schedule)
863 {
864 	struct sk_buff *skb;
865 
866 	if (likely(!size)) {
867 		skb = sk->sk_tx_skb_cache;
868 		if (skb) {
869 			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
870 			sk->sk_tx_skb_cache = NULL;
871 			pskb_trim(skb, 0);
872 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
873 			skb_shinfo(skb)->tx_flags = 0;
874 			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
875 			return skb;
876 		}
877 	}
878 	/* The TCP header must be at least 32-bit aligned.  */
879 	size = ALIGN(size, 4);
880 
881 	if (unlikely(tcp_under_memory_pressure(sk)))
882 		sk_mem_reclaim_partial(sk);
883 
884 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
885 	if (likely(skb)) {
886 		bool mem_scheduled;
887 
888 		if (force_schedule) {
889 			mem_scheduled = true;
890 			sk_forced_mem_schedule(sk, skb->truesize);
891 		} else {
892 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
893 		}
894 		if (likely(mem_scheduled)) {
895 			skb_reserve(skb, sk->sk_prot->max_header);
896 			/*
897 			 * Make sure that we have exactly size bytes
898 			 * available to the caller, no more, no less.
899 			 */
900 			skb->reserved_tailroom = skb->end - skb->tail - size;
901 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
902 			return skb;
903 		}
904 		__kfree_skb(skb);
905 	} else {
906 		sk->sk_prot->enter_memory_pressure(sk);
907 		sk_stream_moderate_sndbuf(sk);
908 	}
909 	return NULL;
910 }
911 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)912 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
913 				       int large_allowed)
914 {
915 	struct tcp_sock *tp = tcp_sk(sk);
916 	u32 new_size_goal, size_goal;
917 
918 	if (!large_allowed)
919 		return mss_now;
920 
921 	/* Note : tcp_tso_autosize() will eventually split this later */
922 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
923 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
924 
925 	/* We try hard to avoid divides here */
926 	size_goal = tp->gso_segs * mss_now;
927 	if (unlikely(new_size_goal < size_goal ||
928 		     new_size_goal >= size_goal + mss_now)) {
929 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
930 				     sk->sk_gso_max_segs);
931 		size_goal = tp->gso_segs * mss_now;
932 	}
933 
934 	return max(size_goal, mss_now);
935 }
936 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)937 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
938 {
939 	int mss_now;
940 
941 	mss_now = tcp_current_mss(sk);
942 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
943 
944 	return mss_now;
945 }
946 
947 /* In some cases, both sendpage() and sendmsg() could have added
948  * an skb to the write queue, but failed adding payload on it.
949  * We need to remove it to consume less memory, but more
950  * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
951  * users.
952  */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)953 void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
954 {
955 	if (skb && !skb->len) {
956 		tcp_unlink_write_queue(skb, sk);
957 		if (tcp_write_queue_empty(sk))
958 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
959 		sk_wmem_free_skb(sk, skb);
960 	}
961 }
962 
tcp_build_frag(struct sock * sk,int size_goal,int flags,struct page * page,int offset,size_t * size)963 struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
964 			       struct page *page, int offset, size_t *size)
965 {
966 	struct sk_buff *skb = tcp_write_queue_tail(sk);
967 	struct tcp_sock *tp = tcp_sk(sk);
968 	bool can_coalesce;
969 	int copy, i;
970 
971 	if (!skb || (copy = size_goal - skb->len) <= 0 ||
972 	    !tcp_skb_can_collapse_to(skb)) {
973 new_segment:
974 		if (!sk_stream_memory_free(sk))
975 			return NULL;
976 
977 		skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
978 					  tcp_rtx_and_write_queues_empty(sk));
979 		if (!skb)
980 			return NULL;
981 
982 #ifdef CONFIG_TLS_DEVICE
983 		skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
984 #endif
985 		skb_entail(sk, skb);
986 		copy = size_goal;
987 	}
988 
989 	if (copy > *size)
990 		copy = *size;
991 
992 	i = skb_shinfo(skb)->nr_frags;
993 	can_coalesce = skb_can_coalesce(skb, i, page, offset);
994 	if (!can_coalesce && i >= sysctl_max_skb_frags) {
995 		tcp_mark_push(tp, skb);
996 		goto new_segment;
997 	}
998 	if (!sk_wmem_schedule(sk, copy))
999 		return NULL;
1000 
1001 	if (can_coalesce) {
1002 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1003 	} else {
1004 		get_page(page);
1005 		skb_fill_page_desc(skb, i, page, offset, copy);
1006 	}
1007 
1008 	if (!(flags & MSG_NO_SHARED_FRAGS))
1009 		skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1010 
1011 	skb->len += copy;
1012 	skb->data_len += copy;
1013 	skb->truesize += copy;
1014 	sk_wmem_queued_add(sk, copy);
1015 	sk_mem_charge(sk, copy);
1016 	skb->ip_summed = CHECKSUM_PARTIAL;
1017 	WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1018 	TCP_SKB_CB(skb)->end_seq += copy;
1019 	tcp_skb_pcount_set(skb, 0);
1020 
1021 	*size = copy;
1022 	return skb;
1023 }
1024 
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)1025 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1026 			 size_t size, int flags)
1027 {
1028 	struct tcp_sock *tp = tcp_sk(sk);
1029 	int mss_now, size_goal;
1030 	int err;
1031 	ssize_t copied;
1032 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1033 
1034 	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1035 	    WARN_ONCE(!sendpage_ok(page),
1036 		      "page must not be a Slab one and have page_count > 0"))
1037 		return -EINVAL;
1038 
1039 	/* Wait for a connection to finish. One exception is TCP Fast Open
1040 	 * (passive side) where data is allowed to be sent before a connection
1041 	 * is fully established.
1042 	 */
1043 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1044 	    !tcp_passive_fastopen(sk)) {
1045 		err = sk_stream_wait_connect(sk, &timeo);
1046 		if (err != 0)
1047 			goto out_err;
1048 	}
1049 
1050 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1051 
1052 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1053 	copied = 0;
1054 
1055 	err = -EPIPE;
1056 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1057 		goto out_err;
1058 
1059 	while (size > 0) {
1060 		struct sk_buff *skb;
1061 		size_t copy = size;
1062 
1063 		skb = tcp_build_frag(sk, size_goal, flags, page, offset, &copy);
1064 		if (!skb)
1065 			goto wait_for_space;
1066 
1067 		if (!copied)
1068 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1069 
1070 		copied += copy;
1071 		offset += copy;
1072 		size -= copy;
1073 		if (!size)
1074 			goto out;
1075 
1076 		if (skb->len < size_goal || (flags & MSG_OOB))
1077 			continue;
1078 
1079 		if (forced_push(tp)) {
1080 			tcp_mark_push(tp, skb);
1081 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1082 		} else if (skb == tcp_send_head(sk))
1083 			tcp_push_one(sk, mss_now);
1084 		continue;
1085 
1086 wait_for_space:
1087 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1088 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1089 			 TCP_NAGLE_PUSH, size_goal);
1090 
1091 		err = sk_stream_wait_memory(sk, &timeo);
1092 		if (err != 0)
1093 			goto do_error;
1094 
1095 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1096 	}
1097 
1098 out:
1099 	if (copied) {
1100 		tcp_tx_timestamp(sk, sk->sk_tsflags);
1101 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1102 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1103 	}
1104 	return copied;
1105 
1106 do_error:
1107 	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1108 	if (copied)
1109 		goto out;
1110 out_err:
1111 	/* make sure we wake any epoll edge trigger waiter */
1112 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1113 		sk->sk_write_space(sk);
1114 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1115 	}
1116 	return sk_stream_error(sk, flags, err);
1117 }
1118 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1119 
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1120 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1121 			size_t size, int flags)
1122 {
1123 	if (!(sk->sk_route_caps & NETIF_F_SG))
1124 		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1125 
1126 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1127 
1128 	return do_tcp_sendpages(sk, page, offset, size, flags);
1129 }
1130 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1131 
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1132 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1133 		 size_t size, int flags)
1134 {
1135 	int ret;
1136 
1137 	lock_sock(sk);
1138 	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1139 	release_sock(sk);
1140 
1141 	return ret;
1142 }
1143 EXPORT_SYMBOL(tcp_sendpage);
1144 
tcp_free_fastopen_req(struct tcp_sock * tp)1145 void tcp_free_fastopen_req(struct tcp_sock *tp)
1146 {
1147 	if (tp->fastopen_req) {
1148 		kfree(tp->fastopen_req);
1149 		tp->fastopen_req = NULL;
1150 	}
1151 }
1152 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1153 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1154 				int *copied, size_t size,
1155 				struct ubuf_info *uarg)
1156 {
1157 	struct tcp_sock *tp = tcp_sk(sk);
1158 	struct inet_sock *inet = inet_sk(sk);
1159 	struct sockaddr *uaddr = msg->msg_name;
1160 	int err, flags;
1161 
1162 	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1163 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1164 	     uaddr->sa_family == AF_UNSPEC))
1165 		return -EOPNOTSUPP;
1166 	if (tp->fastopen_req)
1167 		return -EALREADY; /* Another Fast Open is in progress */
1168 
1169 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1170 				   sk->sk_allocation);
1171 	if (unlikely(!tp->fastopen_req))
1172 		return -ENOBUFS;
1173 	tp->fastopen_req->data = msg;
1174 	tp->fastopen_req->size = size;
1175 	tp->fastopen_req->uarg = uarg;
1176 
1177 	if (inet->defer_connect) {
1178 		err = tcp_connect(sk);
1179 		/* Same failure procedure as in tcp_v4/6_connect */
1180 		if (err) {
1181 			tcp_set_state(sk, TCP_CLOSE);
1182 			inet->inet_dport = 0;
1183 			sk->sk_route_caps = 0;
1184 		}
1185 	}
1186 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1187 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1188 				    msg->msg_namelen, flags, 1);
1189 	/* fastopen_req could already be freed in __inet_stream_connect
1190 	 * if the connection times out or gets rst
1191 	 */
1192 	if (tp->fastopen_req) {
1193 		*copied = tp->fastopen_req->copied;
1194 		tcp_free_fastopen_req(tp);
1195 		inet->defer_connect = 0;
1196 	}
1197 	return err;
1198 }
1199 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1200 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1201 {
1202 	struct tcp_sock *tp = tcp_sk(sk);
1203 	struct ubuf_info *uarg = NULL;
1204 	struct sk_buff *skb;
1205 	struct sockcm_cookie sockc;
1206 	int flags, err, copied = 0;
1207 	int mss_now = 0, size_goal, copied_syn = 0;
1208 	int process_backlog = 0;
1209 	bool zc = false;
1210 	long timeo;
1211 
1212 	flags = msg->msg_flags;
1213 
1214 	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1215 		skb = tcp_write_queue_tail(sk);
1216 		uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1217 		if (!uarg) {
1218 			err = -ENOBUFS;
1219 			goto out_err;
1220 		}
1221 
1222 		zc = sk->sk_route_caps & NETIF_F_SG;
1223 		if (!zc)
1224 			uarg->zerocopy = 0;
1225 	}
1226 
1227 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1228 	    !tp->repair) {
1229 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1230 		if (err == -EINPROGRESS && copied_syn > 0)
1231 			goto out;
1232 		else if (err)
1233 			goto out_err;
1234 	}
1235 
1236 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1237 
1238 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1239 
1240 	/* Wait for a connection to finish. One exception is TCP Fast Open
1241 	 * (passive side) where data is allowed to be sent before a connection
1242 	 * is fully established.
1243 	 */
1244 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1245 	    !tcp_passive_fastopen(sk)) {
1246 		err = sk_stream_wait_connect(sk, &timeo);
1247 		if (err != 0)
1248 			goto do_error;
1249 	}
1250 
1251 	if (unlikely(tp->repair)) {
1252 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1253 			copied = tcp_send_rcvq(sk, msg, size);
1254 			goto out_nopush;
1255 		}
1256 
1257 		err = -EINVAL;
1258 		if (tp->repair_queue == TCP_NO_QUEUE)
1259 			goto out_err;
1260 
1261 		/* 'common' sending to sendq */
1262 	}
1263 
1264 	sockcm_init(&sockc, sk);
1265 	if (msg->msg_controllen) {
1266 		err = sock_cmsg_send(sk, msg, &sockc);
1267 		if (unlikely(err)) {
1268 			err = -EINVAL;
1269 			goto out_err;
1270 		}
1271 	}
1272 
1273 	/* This should be in poll */
1274 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1275 
1276 	/* Ok commence sending. */
1277 	copied = 0;
1278 
1279 restart:
1280 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1281 
1282 	err = -EPIPE;
1283 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1284 		goto do_error;
1285 
1286 	while (msg_data_left(msg)) {
1287 		int copy = 0;
1288 
1289 		skb = tcp_write_queue_tail(sk);
1290 		if (skb)
1291 			copy = size_goal - skb->len;
1292 
1293 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1294 			bool first_skb;
1295 
1296 new_segment:
1297 			if (!sk_stream_memory_free(sk))
1298 				goto wait_for_space;
1299 
1300 			if (unlikely(process_backlog >= 16)) {
1301 				process_backlog = 0;
1302 				if (sk_flush_backlog(sk))
1303 					goto restart;
1304 			}
1305 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1306 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1307 						  first_skb);
1308 			if (!skb)
1309 				goto wait_for_space;
1310 
1311 			process_backlog++;
1312 			skb->ip_summed = CHECKSUM_PARTIAL;
1313 
1314 			skb_entail(sk, skb);
1315 			copy = size_goal;
1316 
1317 			/* All packets are restored as if they have
1318 			 * already been sent. skb_mstamp_ns isn't set to
1319 			 * avoid wrong rtt estimation.
1320 			 */
1321 			if (tp->repair)
1322 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1323 		}
1324 
1325 		/* Try to append data to the end of skb. */
1326 		if (copy > msg_data_left(msg))
1327 			copy = msg_data_left(msg);
1328 
1329 		/* Where to copy to? */
1330 		if (skb_availroom(skb) > 0 && !zc) {
1331 			/* We have some space in skb head. Superb! */
1332 			copy = min_t(int, copy, skb_availroom(skb));
1333 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1334 			if (err)
1335 				goto do_fault;
1336 		} else if (!zc) {
1337 			bool merge = true;
1338 			int i = skb_shinfo(skb)->nr_frags;
1339 			struct page_frag *pfrag = sk_page_frag(sk);
1340 
1341 			if (!sk_page_frag_refill(sk, pfrag))
1342 				goto wait_for_space;
1343 
1344 			if (!skb_can_coalesce(skb, i, pfrag->page,
1345 					      pfrag->offset)) {
1346 				if (i >= sysctl_max_skb_frags) {
1347 					tcp_mark_push(tp, skb);
1348 					goto new_segment;
1349 				}
1350 				merge = false;
1351 			}
1352 
1353 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1354 
1355 			if (!sk_wmem_schedule(sk, copy))
1356 				goto wait_for_space;
1357 
1358 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1359 						       pfrag->page,
1360 						       pfrag->offset,
1361 						       copy);
1362 			if (err)
1363 				goto do_error;
1364 
1365 			/* Update the skb. */
1366 			if (merge) {
1367 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1368 			} else {
1369 				skb_fill_page_desc(skb, i, pfrag->page,
1370 						   pfrag->offset, copy);
1371 				page_ref_inc(pfrag->page);
1372 			}
1373 			pfrag->offset += copy;
1374 		} else {
1375 			if (!sk_wmem_schedule(sk, copy))
1376 				goto wait_for_space;
1377 
1378 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1379 			if (err == -EMSGSIZE || err == -EEXIST) {
1380 				tcp_mark_push(tp, skb);
1381 				goto new_segment;
1382 			}
1383 			if (err < 0)
1384 				goto do_error;
1385 			copy = err;
1386 		}
1387 
1388 		if (!copied)
1389 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1390 
1391 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1392 		TCP_SKB_CB(skb)->end_seq += copy;
1393 		tcp_skb_pcount_set(skb, 0);
1394 
1395 		copied += copy;
1396 		if (!msg_data_left(msg)) {
1397 			if (unlikely(flags & MSG_EOR))
1398 				TCP_SKB_CB(skb)->eor = 1;
1399 			goto out;
1400 		}
1401 
1402 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1403 			continue;
1404 
1405 		if (forced_push(tp)) {
1406 			tcp_mark_push(tp, skb);
1407 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1408 		} else if (skb == tcp_send_head(sk))
1409 			tcp_push_one(sk, mss_now);
1410 		continue;
1411 
1412 wait_for_space:
1413 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1414 		if (copied)
1415 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1416 				 TCP_NAGLE_PUSH, size_goal);
1417 
1418 		err = sk_stream_wait_memory(sk, &timeo);
1419 		if (err != 0)
1420 			goto do_error;
1421 
1422 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1423 	}
1424 
1425 out:
1426 	if (copied) {
1427 		tcp_tx_timestamp(sk, sockc.tsflags);
1428 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1429 	}
1430 out_nopush:
1431 	net_zcopy_put(uarg);
1432 	return copied + copied_syn;
1433 
1434 do_error:
1435 	skb = tcp_write_queue_tail(sk);
1436 do_fault:
1437 	tcp_remove_empty_skb(sk, skb);
1438 
1439 	if (copied + copied_syn)
1440 		goto out;
1441 out_err:
1442 	net_zcopy_put_abort(uarg, true);
1443 	err = sk_stream_error(sk, flags, err);
1444 	/* make sure we wake any epoll edge trigger waiter */
1445 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1446 		sk->sk_write_space(sk);
1447 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1448 	}
1449 	return err;
1450 }
1451 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1452 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1453 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1454 {
1455 	int ret;
1456 
1457 	lock_sock(sk);
1458 	ret = tcp_sendmsg_locked(sk, msg, size);
1459 	release_sock(sk);
1460 
1461 	return ret;
1462 }
1463 EXPORT_SYMBOL(tcp_sendmsg);
1464 
1465 /*
1466  *	Handle reading urgent data. BSD has very simple semantics for
1467  *	this, no blocking and very strange errors 8)
1468  */
1469 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1470 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1471 {
1472 	struct tcp_sock *tp = tcp_sk(sk);
1473 
1474 	/* No URG data to read. */
1475 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1476 	    tp->urg_data == TCP_URG_READ)
1477 		return -EINVAL;	/* Yes this is right ! */
1478 
1479 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1480 		return -ENOTCONN;
1481 
1482 	if (tp->urg_data & TCP_URG_VALID) {
1483 		int err = 0;
1484 		char c = tp->urg_data;
1485 
1486 		if (!(flags & MSG_PEEK))
1487 			tp->urg_data = TCP_URG_READ;
1488 
1489 		/* Read urgent data. */
1490 		msg->msg_flags |= MSG_OOB;
1491 
1492 		if (len > 0) {
1493 			if (!(flags & MSG_TRUNC))
1494 				err = memcpy_to_msg(msg, &c, 1);
1495 			len = 1;
1496 		} else
1497 			msg->msg_flags |= MSG_TRUNC;
1498 
1499 		return err ? -EFAULT : len;
1500 	}
1501 
1502 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1503 		return 0;
1504 
1505 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1506 	 * the available implementations agree in this case:
1507 	 * this call should never block, independent of the
1508 	 * blocking state of the socket.
1509 	 * Mike <pall@rz.uni-karlsruhe.de>
1510 	 */
1511 	return -EAGAIN;
1512 }
1513 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1514 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1515 {
1516 	struct sk_buff *skb;
1517 	int copied = 0, err = 0;
1518 
1519 	/* XXX -- need to support SO_PEEK_OFF */
1520 
1521 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1522 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1523 		if (err)
1524 			return err;
1525 		copied += skb->len;
1526 	}
1527 
1528 	skb_queue_walk(&sk->sk_write_queue, skb) {
1529 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1530 		if (err)
1531 			break;
1532 
1533 		copied += skb->len;
1534 	}
1535 
1536 	return err ?: copied;
1537 }
1538 
1539 /* Clean up the receive buffer for full frames taken by the user,
1540  * then send an ACK if necessary.  COPIED is the number of bytes
1541  * tcp_recvmsg has given to the user so far, it speeds up the
1542  * calculation of whether or not we must ACK for the sake of
1543  * a window update.
1544  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1545 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1546 {
1547 	struct tcp_sock *tp = tcp_sk(sk);
1548 	bool time_to_ack = false;
1549 
1550 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1551 
1552 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1553 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1554 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1555 
1556 	if (inet_csk_ack_scheduled(sk)) {
1557 		const struct inet_connection_sock *icsk = inet_csk(sk);
1558 
1559 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1560 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1561 		    /*
1562 		     * If this read emptied read buffer, we send ACK, if
1563 		     * connection is not bidirectional, user drained
1564 		     * receive buffer and there was a small segment
1565 		     * in queue.
1566 		     */
1567 		    (copied > 0 &&
1568 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1569 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1570 		       !inet_csk_in_pingpong_mode(sk))) &&
1571 		      !atomic_read(&sk->sk_rmem_alloc)))
1572 			time_to_ack = true;
1573 	}
1574 
1575 	/* We send an ACK if we can now advertise a non-zero window
1576 	 * which has been raised "significantly".
1577 	 *
1578 	 * Even if window raised up to infinity, do not send window open ACK
1579 	 * in states, where we will not receive more. It is useless.
1580 	 */
1581 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1582 		__u32 rcv_window_now = tcp_receive_window(tp);
1583 
1584 		/* Optimize, __tcp_select_window() is not cheap. */
1585 		if (2*rcv_window_now <= tp->window_clamp) {
1586 			__u32 new_window = __tcp_select_window(sk);
1587 
1588 			/* Send ACK now, if this read freed lots of space
1589 			 * in our buffer. Certainly, new_window is new window.
1590 			 * We can advertise it now, if it is not less than current one.
1591 			 * "Lots" means "at least twice" here.
1592 			 */
1593 			if (new_window && new_window >= 2 * rcv_window_now)
1594 				time_to_ack = true;
1595 		}
1596 	}
1597 	if (time_to_ack)
1598 		tcp_send_ack(sk);
1599 }
1600 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1601 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1602 {
1603 	struct sk_buff *skb;
1604 	u32 offset;
1605 
1606 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1607 		offset = seq - TCP_SKB_CB(skb)->seq;
1608 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1609 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1610 			offset--;
1611 		}
1612 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1613 			*off = offset;
1614 			return skb;
1615 		}
1616 		/* This looks weird, but this can happen if TCP collapsing
1617 		 * splitted a fat GRO packet, while we released socket lock
1618 		 * in skb_splice_bits()
1619 		 */
1620 		sk_eat_skb(sk, skb);
1621 	}
1622 	return NULL;
1623 }
1624 
1625 /*
1626  * This routine provides an alternative to tcp_recvmsg() for routines
1627  * that would like to handle copying from skbuffs directly in 'sendfile'
1628  * fashion.
1629  * Note:
1630  *	- It is assumed that the socket was locked by the caller.
1631  *	- The routine does not block.
1632  *	- At present, there is no support for reading OOB data
1633  *	  or for 'peeking' the socket using this routine
1634  *	  (although both would be easy to implement).
1635  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1636 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1637 		  sk_read_actor_t recv_actor)
1638 {
1639 	struct sk_buff *skb;
1640 	struct tcp_sock *tp = tcp_sk(sk);
1641 	u32 seq = tp->copied_seq;
1642 	u32 offset;
1643 	int copied = 0;
1644 
1645 	if (sk->sk_state == TCP_LISTEN)
1646 		return -ENOTCONN;
1647 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1648 		if (offset < skb->len) {
1649 			int used;
1650 			size_t len;
1651 
1652 			len = skb->len - offset;
1653 			/* Stop reading if we hit a patch of urgent data */
1654 			if (tp->urg_data) {
1655 				u32 urg_offset = tp->urg_seq - seq;
1656 				if (urg_offset < len)
1657 					len = urg_offset;
1658 				if (!len)
1659 					break;
1660 			}
1661 			used = recv_actor(desc, skb, offset, len);
1662 			if (used <= 0) {
1663 				if (!copied)
1664 					copied = used;
1665 				break;
1666 			} else if (used <= len) {
1667 				seq += used;
1668 				copied += used;
1669 				offset += used;
1670 			}
1671 			/* If recv_actor drops the lock (e.g. TCP splice
1672 			 * receive) the skb pointer might be invalid when
1673 			 * getting here: tcp_collapse might have deleted it
1674 			 * while aggregating skbs from the socket queue.
1675 			 */
1676 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1677 			if (!skb)
1678 				break;
1679 			/* TCP coalescing might have appended data to the skb.
1680 			 * Try to splice more frags
1681 			 */
1682 			if (offset + 1 != skb->len)
1683 				continue;
1684 		}
1685 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1686 			sk_eat_skb(sk, skb);
1687 			++seq;
1688 			break;
1689 		}
1690 		sk_eat_skb(sk, skb);
1691 		if (!desc->count)
1692 			break;
1693 		WRITE_ONCE(tp->copied_seq, seq);
1694 	}
1695 	WRITE_ONCE(tp->copied_seq, seq);
1696 
1697 	tcp_rcv_space_adjust(sk);
1698 
1699 	/* Clean up data we have read: This will do ACK frames. */
1700 	if (copied > 0) {
1701 		tcp_recv_skb(sk, seq, &offset);
1702 		tcp_cleanup_rbuf(sk, copied);
1703 	}
1704 	return copied;
1705 }
1706 EXPORT_SYMBOL(tcp_read_sock);
1707 
tcp_peek_len(struct socket * sock)1708 int tcp_peek_len(struct socket *sock)
1709 {
1710 	return tcp_inq(sock->sk);
1711 }
1712 EXPORT_SYMBOL(tcp_peek_len);
1713 
1714 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1715 int tcp_set_rcvlowat(struct sock *sk, int val)
1716 {
1717 	int cap;
1718 
1719 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1720 		cap = sk->sk_rcvbuf >> 1;
1721 	else
1722 		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1723 	val = min(val, cap);
1724 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1725 
1726 	/* Check if we need to signal EPOLLIN right now */
1727 	tcp_data_ready(sk);
1728 
1729 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1730 		return 0;
1731 
1732 	val <<= 1;
1733 	if (val > sk->sk_rcvbuf) {
1734 		WRITE_ONCE(sk->sk_rcvbuf, val);
1735 		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1736 	}
1737 	return 0;
1738 }
1739 EXPORT_SYMBOL(tcp_set_rcvlowat);
1740 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1741 void tcp_update_recv_tstamps(struct sk_buff *skb,
1742 			     struct scm_timestamping_internal *tss)
1743 {
1744 	if (skb->tstamp)
1745 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1746 	else
1747 		tss->ts[0] = (struct timespec64) {0};
1748 
1749 	if (skb_hwtstamps(skb)->hwtstamp)
1750 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1751 	else
1752 		tss->ts[2] = (struct timespec64) {0};
1753 }
1754 
1755 #ifdef CONFIG_MMU
1756 static const struct vm_operations_struct tcp_vm_ops = {
1757 };
1758 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1759 int tcp_mmap(struct file *file, struct socket *sock,
1760 	     struct vm_area_struct *vma)
1761 {
1762 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1763 		return -EPERM;
1764 	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1765 
1766 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1767 	vma->vm_flags |= VM_MIXEDMAP;
1768 
1769 	vma->vm_ops = &tcp_vm_ops;
1770 	return 0;
1771 }
1772 EXPORT_SYMBOL(tcp_mmap);
1773 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1774 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1775 				       u32 *offset_frag)
1776 {
1777 	skb_frag_t *frag;
1778 
1779 	offset_skb -= skb_headlen(skb);
1780 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1781 		return NULL;
1782 
1783 	frag = skb_shinfo(skb)->frags;
1784 	while (offset_skb) {
1785 		if (skb_frag_size(frag) > offset_skb) {
1786 			*offset_frag = offset_skb;
1787 			return frag;
1788 		}
1789 		offset_skb -= skb_frag_size(frag);
1790 		++frag;
1791 	}
1792 	*offset_frag = 0;
1793 	return frag;
1794 }
1795 
can_map_frag(const skb_frag_t * frag)1796 static bool can_map_frag(const skb_frag_t *frag)
1797 {
1798 	return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1799 }
1800 
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1801 static int find_next_mappable_frag(const skb_frag_t *frag,
1802 				   int remaining_in_skb)
1803 {
1804 	int offset = 0;
1805 
1806 	if (likely(can_map_frag(frag)))
1807 		return 0;
1808 
1809 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1810 		offset += skb_frag_size(frag);
1811 		++frag;
1812 	}
1813 	return offset;
1814 }
1815 
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1816 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1817 					  struct tcp_zerocopy_receive *zc,
1818 					  struct sk_buff *skb, u32 offset)
1819 {
1820 	u32 frag_offset, partial_frag_remainder = 0;
1821 	int mappable_offset;
1822 	skb_frag_t *frag;
1823 
1824 	/* worst case: skip to next skb. try to improve on this case below */
1825 	zc->recv_skip_hint = skb->len - offset;
1826 
1827 	/* Find the frag containing this offset (and how far into that frag) */
1828 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1829 	if (!frag)
1830 		return;
1831 
1832 	if (frag_offset) {
1833 		struct skb_shared_info *info = skb_shinfo(skb);
1834 
1835 		/* We read part of the last frag, must recvmsg() rest of skb. */
1836 		if (frag == &info->frags[info->nr_frags - 1])
1837 			return;
1838 
1839 		/* Else, we must at least read the remainder in this frag. */
1840 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1841 		zc->recv_skip_hint -= partial_frag_remainder;
1842 		++frag;
1843 	}
1844 
1845 	/* partial_frag_remainder: If part way through a frag, must read rest.
1846 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1847 	 * in partial_frag_remainder.
1848 	 */
1849 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1850 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1851 }
1852 
1853 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1854 			      int nonblock, int flags,
1855 			      struct scm_timestamping_internal *tss,
1856 			      int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1857 static int receive_fallback_to_copy(struct sock *sk,
1858 				    struct tcp_zerocopy_receive *zc, int inq,
1859 				    struct scm_timestamping_internal *tss)
1860 {
1861 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1862 	struct msghdr msg = {};
1863 	struct iovec iov;
1864 	int err;
1865 
1866 	zc->length = 0;
1867 	zc->recv_skip_hint = 0;
1868 
1869 	if (copy_address != zc->copybuf_address)
1870 		return -EINVAL;
1871 
1872 	err = import_single_range(READ, (void __user *)copy_address,
1873 				  inq, &iov, &msg.msg_iter);
1874 	if (err)
1875 		return err;
1876 
1877 	err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1878 				 tss, &zc->msg_flags);
1879 	if (err < 0)
1880 		return err;
1881 
1882 	zc->copybuf_len = err;
1883 	if (likely(zc->copybuf_len)) {
1884 		struct sk_buff *skb;
1885 		u32 offset;
1886 
1887 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1888 		if (skb)
1889 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1890 	}
1891 	return 0;
1892 }
1893 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1894 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1895 				   struct sk_buff *skb, u32 copylen,
1896 				   u32 *offset, u32 *seq)
1897 {
1898 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1899 	struct msghdr msg = {};
1900 	struct iovec iov;
1901 	int err;
1902 
1903 	if (copy_address != zc->copybuf_address)
1904 		return -EINVAL;
1905 
1906 	err = import_single_range(READ, (void __user *)copy_address,
1907 				  copylen, &iov, &msg.msg_iter);
1908 	if (err)
1909 		return err;
1910 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1911 	if (err)
1912 		return err;
1913 	zc->recv_skip_hint -= copylen;
1914 	*offset += copylen;
1915 	*seq += copylen;
1916 	return (__s32)copylen;
1917 }
1918 
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1919 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1920 				  struct sock *sk,
1921 				  struct sk_buff *skb,
1922 				  u32 *seq,
1923 				  s32 copybuf_len,
1924 				  struct scm_timestamping_internal *tss)
1925 {
1926 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1927 
1928 	if (!copylen)
1929 		return 0;
1930 	/* skb is null if inq < PAGE_SIZE. */
1931 	if (skb) {
1932 		offset = *seq - TCP_SKB_CB(skb)->seq;
1933 	} else {
1934 		skb = tcp_recv_skb(sk, *seq, &offset);
1935 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1936 			tcp_update_recv_tstamps(skb, tss);
1937 			zc->msg_flags |= TCP_CMSG_TS;
1938 		}
1939 	}
1940 
1941 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1942 						  seq);
1943 	return zc->copybuf_len < 0 ? 0 : copylen;
1944 }
1945 
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1946 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1947 					      struct page **pending_pages,
1948 					      unsigned long pages_remaining,
1949 					      unsigned long *address,
1950 					      u32 *length,
1951 					      u32 *seq,
1952 					      struct tcp_zerocopy_receive *zc,
1953 					      u32 total_bytes_to_map,
1954 					      int err)
1955 {
1956 	/* At least one page did not map. Try zapping if we skipped earlier. */
1957 	if (err == -EBUSY &&
1958 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1959 		u32 maybe_zap_len;
1960 
1961 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1962 				*length + /* Mapped or pending */
1963 				(pages_remaining * PAGE_SIZE); /* Failed map. */
1964 		zap_page_range(vma, *address, maybe_zap_len);
1965 		err = 0;
1966 	}
1967 
1968 	if (!err) {
1969 		unsigned long leftover_pages = pages_remaining;
1970 		int bytes_mapped;
1971 
1972 		/* We called zap_page_range, try to reinsert. */
1973 		err = vm_insert_pages(vma, *address,
1974 				      pending_pages,
1975 				      &pages_remaining);
1976 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1977 		*seq += bytes_mapped;
1978 		*address += bytes_mapped;
1979 	}
1980 	if (err) {
1981 		/* Either we were unable to zap, OR we zapped, retried an
1982 		 * insert, and still had an issue. Either ways, pages_remaining
1983 		 * is the number of pages we were unable to map, and we unroll
1984 		 * some state we speculatively touched before.
1985 		 */
1986 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1987 
1988 		*length -= bytes_not_mapped;
1989 		zc->recv_skip_hint += bytes_not_mapped;
1990 	}
1991 	return err;
1992 }
1993 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)1994 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1995 					struct page **pages,
1996 					unsigned int pages_to_map,
1997 					unsigned long *address,
1998 					u32 *length,
1999 					u32 *seq,
2000 					struct tcp_zerocopy_receive *zc,
2001 					u32 total_bytes_to_map)
2002 {
2003 	unsigned long pages_remaining = pages_to_map;
2004 	unsigned int pages_mapped;
2005 	unsigned int bytes_mapped;
2006 	int err;
2007 
2008 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2009 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2010 	bytes_mapped = PAGE_SIZE * pages_mapped;
2011 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2012 	 * mapping (some but not all of the pages).
2013 	 */
2014 	*seq += bytes_mapped;
2015 	*address += bytes_mapped;
2016 
2017 	if (likely(!err))
2018 		return 0;
2019 
2020 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2021 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2022 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2023 		err);
2024 }
2025 
2026 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2027 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2028 				      struct tcp_zerocopy_receive *zc,
2029 				      struct scm_timestamping_internal *tss)
2030 {
2031 	unsigned long msg_control_addr;
2032 	struct msghdr cmsg_dummy;
2033 
2034 	msg_control_addr = (unsigned long)zc->msg_control;
2035 	cmsg_dummy.msg_control = (void *)msg_control_addr;
2036 	cmsg_dummy.msg_controllen =
2037 		(__kernel_size_t)zc->msg_controllen;
2038 	cmsg_dummy.msg_flags = in_compat_syscall()
2039 		? MSG_CMSG_COMPAT : 0;
2040 	cmsg_dummy.msg_control_is_user = true;
2041 	zc->msg_flags = 0;
2042 	if (zc->msg_control == msg_control_addr &&
2043 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2044 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2045 		zc->msg_control = (__u64)
2046 			((uintptr_t)cmsg_dummy.msg_control);
2047 		zc->msg_controllen =
2048 			(__u64)cmsg_dummy.msg_controllen;
2049 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2050 	}
2051 }
2052 
2053 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2054 static int tcp_zerocopy_receive(struct sock *sk,
2055 				struct tcp_zerocopy_receive *zc,
2056 				struct scm_timestamping_internal *tss)
2057 {
2058 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2059 	unsigned long address = (unsigned long)zc->address;
2060 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2061 	s32 copybuf_len = zc->copybuf_len;
2062 	struct tcp_sock *tp = tcp_sk(sk);
2063 	const skb_frag_t *frags = NULL;
2064 	unsigned int pages_to_map = 0;
2065 	struct vm_area_struct *vma;
2066 	struct sk_buff *skb = NULL;
2067 	u32 seq = tp->copied_seq;
2068 	u32 total_bytes_to_map;
2069 	int inq = tcp_inq(sk);
2070 	int ret;
2071 
2072 	zc->copybuf_len = 0;
2073 	zc->msg_flags = 0;
2074 
2075 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2076 		return -EINVAL;
2077 
2078 	if (sk->sk_state == TCP_LISTEN)
2079 		return -ENOTCONN;
2080 
2081 	sock_rps_record_flow(sk);
2082 
2083 	if (inq && inq <= copybuf_len)
2084 		return receive_fallback_to_copy(sk, zc, inq, tss);
2085 
2086 	if (inq < PAGE_SIZE) {
2087 		zc->length = 0;
2088 		zc->recv_skip_hint = inq;
2089 		if (!inq && sock_flag(sk, SOCK_DONE))
2090 			return -EIO;
2091 		return 0;
2092 	}
2093 
2094 	mmap_read_lock(current->mm);
2095 
2096 	vma = vma_lookup(current->mm, address);
2097 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2098 		mmap_read_unlock(current->mm);
2099 		return -EINVAL;
2100 	}
2101 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2102 	avail_len = min_t(u32, vma_len, inq);
2103 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2104 	if (total_bytes_to_map) {
2105 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2106 			zap_page_range(vma, address, total_bytes_to_map);
2107 		zc->length = total_bytes_to_map;
2108 		zc->recv_skip_hint = 0;
2109 	} else {
2110 		zc->length = avail_len;
2111 		zc->recv_skip_hint = avail_len;
2112 	}
2113 	ret = 0;
2114 	while (length + PAGE_SIZE <= zc->length) {
2115 		int mappable_offset;
2116 		struct page *page;
2117 
2118 		if (zc->recv_skip_hint < PAGE_SIZE) {
2119 			u32 offset_frag;
2120 
2121 			if (skb) {
2122 				if (zc->recv_skip_hint > 0)
2123 					break;
2124 				skb = skb->next;
2125 				offset = seq - TCP_SKB_CB(skb)->seq;
2126 			} else {
2127 				skb = tcp_recv_skb(sk, seq, &offset);
2128 			}
2129 
2130 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2131 				tcp_update_recv_tstamps(skb, tss);
2132 				zc->msg_flags |= TCP_CMSG_TS;
2133 			}
2134 			zc->recv_skip_hint = skb->len - offset;
2135 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2136 			if (!frags || offset_frag)
2137 				break;
2138 		}
2139 
2140 		mappable_offset = find_next_mappable_frag(frags,
2141 							  zc->recv_skip_hint);
2142 		if (mappable_offset) {
2143 			zc->recv_skip_hint = mappable_offset;
2144 			break;
2145 		}
2146 		page = skb_frag_page(frags);
2147 		prefetchw(page);
2148 		pages[pages_to_map++] = page;
2149 		length += PAGE_SIZE;
2150 		zc->recv_skip_hint -= PAGE_SIZE;
2151 		frags++;
2152 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2153 		    zc->recv_skip_hint < PAGE_SIZE) {
2154 			/* Either full batch, or we're about to go to next skb
2155 			 * (and we cannot unroll failed ops across skbs).
2156 			 */
2157 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2158 							   pages_to_map,
2159 							   &address, &length,
2160 							   &seq, zc,
2161 							   total_bytes_to_map);
2162 			if (ret)
2163 				goto out;
2164 			pages_to_map = 0;
2165 		}
2166 	}
2167 	if (pages_to_map) {
2168 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2169 						   &address, &length, &seq,
2170 						   zc, total_bytes_to_map);
2171 	}
2172 out:
2173 	mmap_read_unlock(current->mm);
2174 	/* Try to copy straggler data. */
2175 	if (!ret)
2176 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2177 
2178 	if (length + copylen) {
2179 		WRITE_ONCE(tp->copied_seq, seq);
2180 		tcp_rcv_space_adjust(sk);
2181 
2182 		/* Clean up data we have read: This will do ACK frames. */
2183 		tcp_recv_skb(sk, seq, &offset);
2184 		tcp_cleanup_rbuf(sk, length + copylen);
2185 		ret = 0;
2186 		if (length == zc->length)
2187 			zc->recv_skip_hint = 0;
2188 	} else {
2189 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2190 			ret = -EIO;
2191 	}
2192 	zc->length = length;
2193 	return ret;
2194 }
2195 #endif
2196 
2197 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2198 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2199 			struct scm_timestamping_internal *tss)
2200 {
2201 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2202 	bool has_timestamping = false;
2203 
2204 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2205 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2206 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2207 				if (new_tstamp) {
2208 					struct __kernel_timespec kts = {
2209 						.tv_sec = tss->ts[0].tv_sec,
2210 						.tv_nsec = tss->ts[0].tv_nsec,
2211 					};
2212 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2213 						 sizeof(kts), &kts);
2214 				} else {
2215 					struct __kernel_old_timespec ts_old = {
2216 						.tv_sec = tss->ts[0].tv_sec,
2217 						.tv_nsec = tss->ts[0].tv_nsec,
2218 					};
2219 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2220 						 sizeof(ts_old), &ts_old);
2221 				}
2222 			} else {
2223 				if (new_tstamp) {
2224 					struct __kernel_sock_timeval stv = {
2225 						.tv_sec = tss->ts[0].tv_sec,
2226 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2227 					};
2228 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2229 						 sizeof(stv), &stv);
2230 				} else {
2231 					struct __kernel_old_timeval tv = {
2232 						.tv_sec = tss->ts[0].tv_sec,
2233 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2234 					};
2235 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2236 						 sizeof(tv), &tv);
2237 				}
2238 			}
2239 		}
2240 
2241 		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2242 			has_timestamping = true;
2243 		else
2244 			tss->ts[0] = (struct timespec64) {0};
2245 	}
2246 
2247 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2248 		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2249 			has_timestamping = true;
2250 		else
2251 			tss->ts[2] = (struct timespec64) {0};
2252 	}
2253 
2254 	if (has_timestamping) {
2255 		tss->ts[1] = (struct timespec64) {0};
2256 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2257 			put_cmsg_scm_timestamping64(msg, tss);
2258 		else
2259 			put_cmsg_scm_timestamping(msg, tss);
2260 	}
2261 }
2262 
tcp_inq_hint(struct sock * sk)2263 static int tcp_inq_hint(struct sock *sk)
2264 {
2265 	const struct tcp_sock *tp = tcp_sk(sk);
2266 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2267 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2268 	int inq;
2269 
2270 	inq = rcv_nxt - copied_seq;
2271 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2272 		lock_sock(sk);
2273 		inq = tp->rcv_nxt - tp->copied_seq;
2274 		release_sock(sk);
2275 	}
2276 	/* After receiving a FIN, tell the user-space to continue reading
2277 	 * by returning a non-zero inq.
2278 	 */
2279 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2280 		inq = 1;
2281 	return inq;
2282 }
2283 
2284 /*
2285  *	This routine copies from a sock struct into the user buffer.
2286  *
2287  *	Technical note: in 2.3 we work on _locked_ socket, so that
2288  *	tricks with *seq access order and skb->users are not required.
2289  *	Probably, code can be easily improved even more.
2290  */
2291 
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2292 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2293 			      int nonblock, int flags,
2294 			      struct scm_timestamping_internal *tss,
2295 			      int *cmsg_flags)
2296 {
2297 	struct tcp_sock *tp = tcp_sk(sk);
2298 	int copied = 0;
2299 	u32 peek_seq;
2300 	u32 *seq;
2301 	unsigned long used;
2302 	int err;
2303 	int target;		/* Read at least this many bytes */
2304 	long timeo;
2305 	struct sk_buff *skb, *last;
2306 	u32 urg_hole = 0;
2307 
2308 	err = -ENOTCONN;
2309 	if (sk->sk_state == TCP_LISTEN)
2310 		goto out;
2311 
2312 	if (tp->recvmsg_inq)
2313 		*cmsg_flags = TCP_CMSG_INQ;
2314 	timeo = sock_rcvtimeo(sk, nonblock);
2315 
2316 	/* Urgent data needs to be handled specially. */
2317 	if (flags & MSG_OOB)
2318 		goto recv_urg;
2319 
2320 	if (unlikely(tp->repair)) {
2321 		err = -EPERM;
2322 		if (!(flags & MSG_PEEK))
2323 			goto out;
2324 
2325 		if (tp->repair_queue == TCP_SEND_QUEUE)
2326 			goto recv_sndq;
2327 
2328 		err = -EINVAL;
2329 		if (tp->repair_queue == TCP_NO_QUEUE)
2330 			goto out;
2331 
2332 		/* 'common' recv queue MSG_PEEK-ing */
2333 	}
2334 
2335 	seq = &tp->copied_seq;
2336 	if (flags & MSG_PEEK) {
2337 		peek_seq = tp->copied_seq;
2338 		seq = &peek_seq;
2339 	}
2340 
2341 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2342 
2343 	do {
2344 		u32 offset;
2345 
2346 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2347 		if (tp->urg_data && tp->urg_seq == *seq) {
2348 			if (copied)
2349 				break;
2350 			if (signal_pending(current)) {
2351 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2352 				break;
2353 			}
2354 		}
2355 
2356 		/* Next get a buffer. */
2357 
2358 		last = skb_peek_tail(&sk->sk_receive_queue);
2359 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2360 			last = skb;
2361 			/* Now that we have two receive queues this
2362 			 * shouldn't happen.
2363 			 */
2364 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2365 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2366 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2367 				 flags))
2368 				break;
2369 
2370 			offset = *seq - TCP_SKB_CB(skb)->seq;
2371 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2372 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2373 				offset--;
2374 			}
2375 			if (offset < skb->len)
2376 				goto found_ok_skb;
2377 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2378 				goto found_fin_ok;
2379 			WARN(!(flags & MSG_PEEK),
2380 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2381 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2382 		}
2383 
2384 		/* Well, if we have backlog, try to process it now yet. */
2385 
2386 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2387 			break;
2388 
2389 		if (copied) {
2390 			if (sk->sk_err ||
2391 			    sk->sk_state == TCP_CLOSE ||
2392 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2393 			    !timeo ||
2394 			    signal_pending(current))
2395 				break;
2396 		} else {
2397 			if (sock_flag(sk, SOCK_DONE))
2398 				break;
2399 
2400 			if (sk->sk_err) {
2401 				copied = sock_error(sk);
2402 				break;
2403 			}
2404 
2405 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2406 				break;
2407 
2408 			if (sk->sk_state == TCP_CLOSE) {
2409 				/* This occurs when user tries to read
2410 				 * from never connected socket.
2411 				 */
2412 				copied = -ENOTCONN;
2413 				break;
2414 			}
2415 
2416 			if (!timeo) {
2417 				copied = -EAGAIN;
2418 				break;
2419 			}
2420 
2421 			if (signal_pending(current)) {
2422 				copied = sock_intr_errno(timeo);
2423 				break;
2424 			}
2425 		}
2426 
2427 		tcp_cleanup_rbuf(sk, copied);
2428 
2429 		if (copied >= target) {
2430 			/* Do not sleep, just process backlog. */
2431 			release_sock(sk);
2432 			lock_sock(sk);
2433 		} else {
2434 			sk_wait_data(sk, &timeo, last);
2435 		}
2436 
2437 		if ((flags & MSG_PEEK) &&
2438 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2439 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2440 					    current->comm,
2441 					    task_pid_nr(current));
2442 			peek_seq = tp->copied_seq;
2443 		}
2444 		continue;
2445 
2446 found_ok_skb:
2447 		/* Ok so how much can we use? */
2448 		used = skb->len - offset;
2449 		if (len < used)
2450 			used = len;
2451 
2452 		/* Do we have urgent data here? */
2453 		if (tp->urg_data) {
2454 			u32 urg_offset = tp->urg_seq - *seq;
2455 			if (urg_offset < used) {
2456 				if (!urg_offset) {
2457 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2458 						WRITE_ONCE(*seq, *seq + 1);
2459 						urg_hole++;
2460 						offset++;
2461 						used--;
2462 						if (!used)
2463 							goto skip_copy;
2464 					}
2465 				} else
2466 					used = urg_offset;
2467 			}
2468 		}
2469 
2470 		if (!(flags & MSG_TRUNC)) {
2471 			err = skb_copy_datagram_msg(skb, offset, msg, used);
2472 			if (err) {
2473 				/* Exception. Bailout! */
2474 				if (!copied)
2475 					copied = -EFAULT;
2476 				break;
2477 			}
2478 		}
2479 
2480 		WRITE_ONCE(*seq, *seq + used);
2481 		copied += used;
2482 		len -= used;
2483 
2484 		tcp_rcv_space_adjust(sk);
2485 
2486 skip_copy:
2487 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2488 			tp->urg_data = 0;
2489 			tcp_fast_path_check(sk);
2490 		}
2491 
2492 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2493 			tcp_update_recv_tstamps(skb, tss);
2494 			*cmsg_flags |= TCP_CMSG_TS;
2495 		}
2496 
2497 		if (used + offset < skb->len)
2498 			continue;
2499 
2500 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2501 			goto found_fin_ok;
2502 		if (!(flags & MSG_PEEK))
2503 			sk_eat_skb(sk, skb);
2504 		continue;
2505 
2506 found_fin_ok:
2507 		/* Process the FIN. */
2508 		WRITE_ONCE(*seq, *seq + 1);
2509 		if (!(flags & MSG_PEEK))
2510 			sk_eat_skb(sk, skb);
2511 		break;
2512 	} while (len > 0);
2513 
2514 	/* According to UNIX98, msg_name/msg_namelen are ignored
2515 	 * on connected socket. I was just happy when found this 8) --ANK
2516 	 */
2517 
2518 	/* Clean up data we have read: This will do ACK frames. */
2519 	tcp_cleanup_rbuf(sk, copied);
2520 	return copied;
2521 
2522 out:
2523 	return err;
2524 
2525 recv_urg:
2526 	err = tcp_recv_urg(sk, msg, len, flags);
2527 	goto out;
2528 
2529 recv_sndq:
2530 	err = tcp_peek_sndq(sk, msg, len);
2531 	goto out;
2532 }
2533 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2534 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2535 		int flags, int *addr_len)
2536 {
2537 	int cmsg_flags = 0, ret, inq;
2538 	struct scm_timestamping_internal tss;
2539 
2540 	if (unlikely(flags & MSG_ERRQUEUE))
2541 		return inet_recv_error(sk, msg, len, addr_len);
2542 
2543 	if (sk_can_busy_loop(sk) &&
2544 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2545 	    sk->sk_state == TCP_ESTABLISHED)
2546 		sk_busy_loop(sk, nonblock);
2547 
2548 	lock_sock(sk);
2549 	ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2550 				 &cmsg_flags);
2551 	release_sock(sk);
2552 
2553 	if (cmsg_flags && ret >= 0) {
2554 		if (cmsg_flags & TCP_CMSG_TS)
2555 			tcp_recv_timestamp(msg, sk, &tss);
2556 		if (cmsg_flags & TCP_CMSG_INQ) {
2557 			inq = tcp_inq_hint(sk);
2558 			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2559 		}
2560 	}
2561 	return ret;
2562 }
2563 EXPORT_SYMBOL(tcp_recvmsg);
2564 
tcp_set_state(struct sock * sk,int state)2565 void tcp_set_state(struct sock *sk, int state)
2566 {
2567 	int oldstate = sk->sk_state;
2568 
2569 	/* We defined a new enum for TCP states that are exported in BPF
2570 	 * so as not force the internal TCP states to be frozen. The
2571 	 * following checks will detect if an internal state value ever
2572 	 * differs from the BPF value. If this ever happens, then we will
2573 	 * need to remap the internal value to the BPF value before calling
2574 	 * tcp_call_bpf_2arg.
2575 	 */
2576 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2577 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2578 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2579 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2580 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2581 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2582 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2583 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2584 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2585 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2586 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2587 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2588 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2589 
2590 	/* bpf uapi header bpf.h defines an anonymous enum with values
2591 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2592 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2593 	 * But clang built vmlinux does not have this enum in DWARF
2594 	 * since clang removes the above code before generating IR/debuginfo.
2595 	 * Let us explicitly emit the type debuginfo to ensure the
2596 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2597 	 * regardless of which compiler is used.
2598 	 */
2599 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2600 
2601 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2602 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2603 
2604 	switch (state) {
2605 	case TCP_ESTABLISHED:
2606 		if (oldstate != TCP_ESTABLISHED)
2607 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2608 		break;
2609 
2610 	case TCP_CLOSE:
2611 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2612 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2613 
2614 		sk->sk_prot->unhash(sk);
2615 		if (inet_csk(sk)->icsk_bind_hash &&
2616 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2617 			inet_put_port(sk);
2618 		fallthrough;
2619 	default:
2620 		if (oldstate == TCP_ESTABLISHED)
2621 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2622 	}
2623 
2624 	/* Change state AFTER socket is unhashed to avoid closed
2625 	 * socket sitting in hash tables.
2626 	 */
2627 	inet_sk_state_store(sk, state);
2628 }
2629 EXPORT_SYMBOL_GPL(tcp_set_state);
2630 
2631 /*
2632  *	State processing on a close. This implements the state shift for
2633  *	sending our FIN frame. Note that we only send a FIN for some
2634  *	states. A shutdown() may have already sent the FIN, or we may be
2635  *	closed.
2636  */
2637 
2638 static const unsigned char new_state[16] = {
2639   /* current state:        new state:      action:	*/
2640   [0 /* (Invalid) */]	= TCP_CLOSE,
2641   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2642   [TCP_SYN_SENT]	= TCP_CLOSE,
2643   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2644   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2645   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2646   [TCP_TIME_WAIT]	= TCP_CLOSE,
2647   [TCP_CLOSE]		= TCP_CLOSE,
2648   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2649   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2650   [TCP_LISTEN]		= TCP_CLOSE,
2651   [TCP_CLOSING]		= TCP_CLOSING,
2652   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2653 };
2654 
tcp_close_state(struct sock * sk)2655 static int tcp_close_state(struct sock *sk)
2656 {
2657 	int next = (int)new_state[sk->sk_state];
2658 	int ns = next & TCP_STATE_MASK;
2659 
2660 	tcp_set_state(sk, ns);
2661 
2662 	return next & TCP_ACTION_FIN;
2663 }
2664 
2665 /*
2666  *	Shutdown the sending side of a connection. Much like close except
2667  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2668  */
2669 
tcp_shutdown(struct sock * sk,int how)2670 void tcp_shutdown(struct sock *sk, int how)
2671 {
2672 	/*	We need to grab some memory, and put together a FIN,
2673 	 *	and then put it into the queue to be sent.
2674 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2675 	 */
2676 	if (!(how & SEND_SHUTDOWN))
2677 		return;
2678 
2679 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2680 	if ((1 << sk->sk_state) &
2681 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2682 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2683 		/* Clear out any half completed packets.  FIN if needed. */
2684 		if (tcp_close_state(sk))
2685 			tcp_send_fin(sk);
2686 	}
2687 }
2688 EXPORT_SYMBOL(tcp_shutdown);
2689 
tcp_check_oom(struct sock * sk,int shift)2690 bool tcp_check_oom(struct sock *sk, int shift)
2691 {
2692 	bool too_many_orphans, out_of_socket_memory;
2693 
2694 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2695 	out_of_socket_memory = tcp_out_of_memory(sk);
2696 
2697 	if (too_many_orphans)
2698 		net_info_ratelimited("too many orphaned sockets\n");
2699 	if (out_of_socket_memory)
2700 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2701 	return too_many_orphans || out_of_socket_memory;
2702 }
2703 
__tcp_close(struct sock * sk,long timeout)2704 void __tcp_close(struct sock *sk, long timeout)
2705 {
2706 	struct sk_buff *skb;
2707 	int data_was_unread = 0;
2708 	int state;
2709 
2710 	sk->sk_shutdown = SHUTDOWN_MASK;
2711 
2712 	if (sk->sk_state == TCP_LISTEN) {
2713 		tcp_set_state(sk, TCP_CLOSE);
2714 
2715 		/* Special case. */
2716 		inet_csk_listen_stop(sk);
2717 
2718 		goto adjudge_to_death;
2719 	}
2720 
2721 	/*  We need to flush the recv. buffs.  We do this only on the
2722 	 *  descriptor close, not protocol-sourced closes, because the
2723 	 *  reader process may not have drained the data yet!
2724 	 */
2725 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2726 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2727 
2728 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2729 			len--;
2730 		data_was_unread += len;
2731 		__kfree_skb(skb);
2732 	}
2733 
2734 	sk_mem_reclaim(sk);
2735 
2736 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2737 	if (sk->sk_state == TCP_CLOSE)
2738 		goto adjudge_to_death;
2739 
2740 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2741 	 * data was lost. To witness the awful effects of the old behavior of
2742 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2743 	 * GET in an FTP client, suspend the process, wait for the client to
2744 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2745 	 * Note: timeout is always zero in such a case.
2746 	 */
2747 	if (unlikely(tcp_sk(sk)->repair)) {
2748 		sk->sk_prot->disconnect(sk, 0);
2749 	} else if (data_was_unread) {
2750 		/* Unread data was tossed, zap the connection. */
2751 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2752 		tcp_set_state(sk, TCP_CLOSE);
2753 		tcp_send_active_reset(sk, sk->sk_allocation);
2754 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2755 		/* Check zero linger _after_ checking for unread data. */
2756 		sk->sk_prot->disconnect(sk, 0);
2757 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2758 	} else if (tcp_close_state(sk)) {
2759 		/* We FIN if the application ate all the data before
2760 		 * zapping the connection.
2761 		 */
2762 
2763 		/* RED-PEN. Formally speaking, we have broken TCP state
2764 		 * machine. State transitions:
2765 		 *
2766 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2767 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2768 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2769 		 *
2770 		 * are legal only when FIN has been sent (i.e. in window),
2771 		 * rather than queued out of window. Purists blame.
2772 		 *
2773 		 * F.e. "RFC state" is ESTABLISHED,
2774 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2775 		 *
2776 		 * The visible declinations are that sometimes
2777 		 * we enter time-wait state, when it is not required really
2778 		 * (harmless), do not send active resets, when they are
2779 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2780 		 * they look as CLOSING or LAST_ACK for Linux)
2781 		 * Probably, I missed some more holelets.
2782 		 * 						--ANK
2783 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2784 		 * in a single packet! (May consider it later but will
2785 		 * probably need API support or TCP_CORK SYN-ACK until
2786 		 * data is written and socket is closed.)
2787 		 */
2788 		tcp_send_fin(sk);
2789 	}
2790 
2791 	sk_stream_wait_close(sk, timeout);
2792 
2793 adjudge_to_death:
2794 	state = sk->sk_state;
2795 	sock_hold(sk);
2796 	sock_orphan(sk);
2797 
2798 	local_bh_disable();
2799 	bh_lock_sock(sk);
2800 	/* remove backlog if any, without releasing ownership. */
2801 	__release_sock(sk);
2802 
2803 	percpu_counter_inc(sk->sk_prot->orphan_count);
2804 
2805 	/* Have we already been destroyed by a softirq or backlog? */
2806 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2807 		goto out;
2808 
2809 	/*	This is a (useful) BSD violating of the RFC. There is a
2810 	 *	problem with TCP as specified in that the other end could
2811 	 *	keep a socket open forever with no application left this end.
2812 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2813 	 *	our end. If they send after that then tough - BUT: long enough
2814 	 *	that we won't make the old 4*rto = almost no time - whoops
2815 	 *	reset mistake.
2816 	 *
2817 	 *	Nope, it was not mistake. It is really desired behaviour
2818 	 *	f.e. on http servers, when such sockets are useless, but
2819 	 *	consume significant resources. Let's do it with special
2820 	 *	linger2	option.					--ANK
2821 	 */
2822 
2823 	if (sk->sk_state == TCP_FIN_WAIT2) {
2824 		struct tcp_sock *tp = tcp_sk(sk);
2825 		if (tp->linger2 < 0) {
2826 			tcp_set_state(sk, TCP_CLOSE);
2827 			tcp_send_active_reset(sk, GFP_ATOMIC);
2828 			__NET_INC_STATS(sock_net(sk),
2829 					LINUX_MIB_TCPABORTONLINGER);
2830 		} else {
2831 			const int tmo = tcp_fin_time(sk);
2832 
2833 			if (tmo > TCP_TIMEWAIT_LEN) {
2834 				inet_csk_reset_keepalive_timer(sk,
2835 						tmo - TCP_TIMEWAIT_LEN);
2836 			} else {
2837 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2838 				goto out;
2839 			}
2840 		}
2841 	}
2842 	if (sk->sk_state != TCP_CLOSE) {
2843 		sk_mem_reclaim(sk);
2844 		if (tcp_check_oom(sk, 0)) {
2845 			tcp_set_state(sk, TCP_CLOSE);
2846 			tcp_send_active_reset(sk, GFP_ATOMIC);
2847 			__NET_INC_STATS(sock_net(sk),
2848 					LINUX_MIB_TCPABORTONMEMORY);
2849 		} else if (!check_net(sock_net(sk))) {
2850 			/* Not possible to send reset; just close */
2851 			tcp_set_state(sk, TCP_CLOSE);
2852 		}
2853 	}
2854 
2855 	if (sk->sk_state == TCP_CLOSE) {
2856 		struct request_sock *req;
2857 
2858 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2859 						lockdep_sock_is_held(sk));
2860 		/* We could get here with a non-NULL req if the socket is
2861 		 * aborted (e.g., closed with unread data) before 3WHS
2862 		 * finishes.
2863 		 */
2864 		if (req)
2865 			reqsk_fastopen_remove(sk, req, false);
2866 		inet_csk_destroy_sock(sk);
2867 	}
2868 	/* Otherwise, socket is reprieved until protocol close. */
2869 
2870 out:
2871 	bh_unlock_sock(sk);
2872 	local_bh_enable();
2873 }
2874 
tcp_close(struct sock * sk,long timeout)2875 void tcp_close(struct sock *sk, long timeout)
2876 {
2877 	lock_sock(sk);
2878 	__tcp_close(sk, timeout);
2879 	release_sock(sk);
2880 	sock_put(sk);
2881 }
2882 EXPORT_SYMBOL(tcp_close);
2883 
2884 /* These states need RST on ABORT according to RFC793 */
2885 
tcp_need_reset(int state)2886 static inline bool tcp_need_reset(int state)
2887 {
2888 	return (1 << state) &
2889 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2890 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2891 }
2892 
tcp_rtx_queue_purge(struct sock * sk)2893 static void tcp_rtx_queue_purge(struct sock *sk)
2894 {
2895 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2896 
2897 	tcp_sk(sk)->highest_sack = NULL;
2898 	while (p) {
2899 		struct sk_buff *skb = rb_to_skb(p);
2900 
2901 		p = rb_next(p);
2902 		/* Since we are deleting whole queue, no need to
2903 		 * list_del(&skb->tcp_tsorted_anchor)
2904 		 */
2905 		tcp_rtx_queue_unlink(skb, sk);
2906 		sk_wmem_free_skb(sk, skb);
2907 	}
2908 }
2909 
tcp_write_queue_purge(struct sock * sk)2910 void tcp_write_queue_purge(struct sock *sk)
2911 {
2912 	struct sk_buff *skb;
2913 
2914 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2915 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2916 		tcp_skb_tsorted_anchor_cleanup(skb);
2917 		sk_wmem_free_skb(sk, skb);
2918 	}
2919 	tcp_rtx_queue_purge(sk);
2920 	skb = sk->sk_tx_skb_cache;
2921 	if (skb) {
2922 		__kfree_skb(skb);
2923 		sk->sk_tx_skb_cache = NULL;
2924 	}
2925 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2926 	sk_mem_reclaim(sk);
2927 	tcp_clear_all_retrans_hints(tcp_sk(sk));
2928 	tcp_sk(sk)->packets_out = 0;
2929 	inet_csk(sk)->icsk_backoff = 0;
2930 }
2931 
tcp_disconnect(struct sock * sk,int flags)2932 int tcp_disconnect(struct sock *sk, int flags)
2933 {
2934 	struct inet_sock *inet = inet_sk(sk);
2935 	struct inet_connection_sock *icsk = inet_csk(sk);
2936 	struct tcp_sock *tp = tcp_sk(sk);
2937 	int old_state = sk->sk_state;
2938 	u32 seq;
2939 
2940 	if (old_state != TCP_CLOSE)
2941 		tcp_set_state(sk, TCP_CLOSE);
2942 
2943 	/* ABORT function of RFC793 */
2944 	if (old_state == TCP_LISTEN) {
2945 		inet_csk_listen_stop(sk);
2946 	} else if (unlikely(tp->repair)) {
2947 		sk->sk_err = ECONNABORTED;
2948 	} else if (tcp_need_reset(old_state) ||
2949 		   (tp->snd_nxt != tp->write_seq &&
2950 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2951 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2952 		 * states
2953 		 */
2954 		tcp_send_active_reset(sk, gfp_any());
2955 		sk->sk_err = ECONNRESET;
2956 	} else if (old_state == TCP_SYN_SENT)
2957 		sk->sk_err = ECONNRESET;
2958 
2959 	tcp_clear_xmit_timers(sk);
2960 	__skb_queue_purge(&sk->sk_receive_queue);
2961 	if (sk->sk_rx_skb_cache) {
2962 		__kfree_skb(sk->sk_rx_skb_cache);
2963 		sk->sk_rx_skb_cache = NULL;
2964 	}
2965 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2966 	tp->urg_data = 0;
2967 	tcp_write_queue_purge(sk);
2968 	tcp_fastopen_active_disable_ofo_check(sk);
2969 	skb_rbtree_purge(&tp->out_of_order_queue);
2970 
2971 	inet->inet_dport = 0;
2972 
2973 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2974 		inet_reset_saddr(sk);
2975 
2976 	sk->sk_shutdown = 0;
2977 	sock_reset_flag(sk, SOCK_DONE);
2978 	tp->srtt_us = 0;
2979 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2980 	tp->rcv_rtt_last_tsecr = 0;
2981 
2982 	seq = tp->write_seq + tp->max_window + 2;
2983 	if (!seq)
2984 		seq = 1;
2985 	WRITE_ONCE(tp->write_seq, seq);
2986 
2987 	icsk->icsk_backoff = 0;
2988 	icsk->icsk_probes_out = 0;
2989 	icsk->icsk_probes_tstamp = 0;
2990 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
2991 	icsk->icsk_rto_min = TCP_RTO_MIN;
2992 	icsk->icsk_delack_max = TCP_DELACK_MAX;
2993 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2994 	tp->snd_cwnd = TCP_INIT_CWND;
2995 	tp->snd_cwnd_cnt = 0;
2996 	tp->window_clamp = 0;
2997 	tp->delivered = 0;
2998 	tp->delivered_ce = 0;
2999 	if (icsk->icsk_ca_ops->release)
3000 		icsk->icsk_ca_ops->release(sk);
3001 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3002 	icsk->icsk_ca_initialized = 0;
3003 	tcp_set_ca_state(sk, TCP_CA_Open);
3004 	tp->is_sack_reneg = 0;
3005 	tcp_clear_retrans(tp);
3006 	tp->total_retrans = 0;
3007 	inet_csk_delack_init(sk);
3008 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3009 	 * issue in __tcp_select_window()
3010 	 */
3011 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3012 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3013 	__sk_dst_reset(sk);
3014 	dst_release(sk->sk_rx_dst);
3015 	sk->sk_rx_dst = NULL;
3016 	tcp_saved_syn_free(tp);
3017 	tp->compressed_ack = 0;
3018 	tp->segs_in = 0;
3019 	tp->segs_out = 0;
3020 	tp->bytes_sent = 0;
3021 	tp->bytes_acked = 0;
3022 	tp->bytes_received = 0;
3023 	tp->bytes_retrans = 0;
3024 	tp->data_segs_in = 0;
3025 	tp->data_segs_out = 0;
3026 	tp->duplicate_sack[0].start_seq = 0;
3027 	tp->duplicate_sack[0].end_seq = 0;
3028 	tp->dsack_dups = 0;
3029 	tp->reord_seen = 0;
3030 	tp->retrans_out = 0;
3031 	tp->sacked_out = 0;
3032 	tp->tlp_high_seq = 0;
3033 	tp->last_oow_ack_time = 0;
3034 	/* There's a bubble in the pipe until at least the first ACK. */
3035 	tp->app_limited = ~0U;
3036 	tp->rack.mstamp = 0;
3037 	tp->rack.advanced = 0;
3038 	tp->rack.reo_wnd_steps = 1;
3039 	tp->rack.last_delivered = 0;
3040 	tp->rack.reo_wnd_persist = 0;
3041 	tp->rack.dsack_seen = 0;
3042 	tp->syn_data_acked = 0;
3043 	tp->rx_opt.saw_tstamp = 0;
3044 	tp->rx_opt.dsack = 0;
3045 	tp->rx_opt.num_sacks = 0;
3046 	tp->rcv_ooopack = 0;
3047 
3048 
3049 	/* Clean up fastopen related fields */
3050 	tcp_free_fastopen_req(tp);
3051 	inet->defer_connect = 0;
3052 	tp->fastopen_client_fail = 0;
3053 
3054 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3055 
3056 	if (sk->sk_frag.page) {
3057 		put_page(sk->sk_frag.page);
3058 		sk->sk_frag.page = NULL;
3059 		sk->sk_frag.offset = 0;
3060 	}
3061 
3062 	sk_error_report(sk);
3063 	return 0;
3064 }
3065 EXPORT_SYMBOL(tcp_disconnect);
3066 
tcp_can_repair_sock(const struct sock * sk)3067 static inline bool tcp_can_repair_sock(const struct sock *sk)
3068 {
3069 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3070 		(sk->sk_state != TCP_LISTEN);
3071 }
3072 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3073 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3074 {
3075 	struct tcp_repair_window opt;
3076 
3077 	if (!tp->repair)
3078 		return -EPERM;
3079 
3080 	if (len != sizeof(opt))
3081 		return -EINVAL;
3082 
3083 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3084 		return -EFAULT;
3085 
3086 	if (opt.max_window < opt.snd_wnd)
3087 		return -EINVAL;
3088 
3089 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3090 		return -EINVAL;
3091 
3092 	if (after(opt.rcv_wup, tp->rcv_nxt))
3093 		return -EINVAL;
3094 
3095 	tp->snd_wl1	= opt.snd_wl1;
3096 	tp->snd_wnd	= opt.snd_wnd;
3097 	tp->max_window	= opt.max_window;
3098 
3099 	tp->rcv_wnd	= opt.rcv_wnd;
3100 	tp->rcv_wup	= opt.rcv_wup;
3101 
3102 	return 0;
3103 }
3104 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3105 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3106 		unsigned int len)
3107 {
3108 	struct tcp_sock *tp = tcp_sk(sk);
3109 	struct tcp_repair_opt opt;
3110 	size_t offset = 0;
3111 
3112 	while (len >= sizeof(opt)) {
3113 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3114 			return -EFAULT;
3115 
3116 		offset += sizeof(opt);
3117 		len -= sizeof(opt);
3118 
3119 		switch (opt.opt_code) {
3120 		case TCPOPT_MSS:
3121 			tp->rx_opt.mss_clamp = opt.opt_val;
3122 			tcp_mtup_init(sk);
3123 			break;
3124 		case TCPOPT_WINDOW:
3125 			{
3126 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3127 				u16 rcv_wscale = opt.opt_val >> 16;
3128 
3129 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3130 					return -EFBIG;
3131 
3132 				tp->rx_opt.snd_wscale = snd_wscale;
3133 				tp->rx_opt.rcv_wscale = rcv_wscale;
3134 				tp->rx_opt.wscale_ok = 1;
3135 			}
3136 			break;
3137 		case TCPOPT_SACK_PERM:
3138 			if (opt.opt_val != 0)
3139 				return -EINVAL;
3140 
3141 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3142 			break;
3143 		case TCPOPT_TIMESTAMP:
3144 			if (opt.opt_val != 0)
3145 				return -EINVAL;
3146 
3147 			tp->rx_opt.tstamp_ok = 1;
3148 			break;
3149 		}
3150 	}
3151 
3152 	return 0;
3153 }
3154 
3155 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3156 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3157 
tcp_enable_tx_delay(void)3158 static void tcp_enable_tx_delay(void)
3159 {
3160 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3161 		static int __tcp_tx_delay_enabled = 0;
3162 
3163 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3164 			static_branch_enable(&tcp_tx_delay_enabled);
3165 			pr_info("TCP_TX_DELAY enabled\n");
3166 		}
3167 	}
3168 }
3169 
3170 /* When set indicates to always queue non-full frames.  Later the user clears
3171  * this option and we transmit any pending partial frames in the queue.  This is
3172  * meant to be used alongside sendfile() to get properly filled frames when the
3173  * user (for example) must write out headers with a write() call first and then
3174  * use sendfile to send out the data parts.
3175  *
3176  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3177  * TCP_NODELAY.
3178  */
__tcp_sock_set_cork(struct sock * sk,bool on)3179 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3180 {
3181 	struct tcp_sock *tp = tcp_sk(sk);
3182 
3183 	if (on) {
3184 		tp->nonagle |= TCP_NAGLE_CORK;
3185 	} else {
3186 		tp->nonagle &= ~TCP_NAGLE_CORK;
3187 		if (tp->nonagle & TCP_NAGLE_OFF)
3188 			tp->nonagle |= TCP_NAGLE_PUSH;
3189 		tcp_push_pending_frames(sk);
3190 	}
3191 }
3192 
tcp_sock_set_cork(struct sock * sk,bool on)3193 void tcp_sock_set_cork(struct sock *sk, bool on)
3194 {
3195 	lock_sock(sk);
3196 	__tcp_sock_set_cork(sk, on);
3197 	release_sock(sk);
3198 }
3199 EXPORT_SYMBOL(tcp_sock_set_cork);
3200 
3201 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3202  * remembered, but it is not activated until cork is cleared.
3203  *
3204  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3205  * even TCP_CORK for currently queued segments.
3206  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3207 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3208 {
3209 	if (on) {
3210 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3211 		tcp_push_pending_frames(sk);
3212 	} else {
3213 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3214 	}
3215 }
3216 
tcp_sock_set_nodelay(struct sock * sk)3217 void tcp_sock_set_nodelay(struct sock *sk)
3218 {
3219 	lock_sock(sk);
3220 	__tcp_sock_set_nodelay(sk, true);
3221 	release_sock(sk);
3222 }
3223 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3224 
__tcp_sock_set_quickack(struct sock * sk,int val)3225 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3226 {
3227 	if (!val) {
3228 		inet_csk_enter_pingpong_mode(sk);
3229 		return;
3230 	}
3231 
3232 	inet_csk_exit_pingpong_mode(sk);
3233 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3234 	    inet_csk_ack_scheduled(sk)) {
3235 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3236 		tcp_cleanup_rbuf(sk, 1);
3237 		if (!(val & 1))
3238 			inet_csk_enter_pingpong_mode(sk);
3239 	}
3240 }
3241 
tcp_sock_set_quickack(struct sock * sk,int val)3242 void tcp_sock_set_quickack(struct sock *sk, int val)
3243 {
3244 	lock_sock(sk);
3245 	__tcp_sock_set_quickack(sk, val);
3246 	release_sock(sk);
3247 }
3248 EXPORT_SYMBOL(tcp_sock_set_quickack);
3249 
tcp_sock_set_syncnt(struct sock * sk,int val)3250 int tcp_sock_set_syncnt(struct sock *sk, int val)
3251 {
3252 	if (val < 1 || val > MAX_TCP_SYNCNT)
3253 		return -EINVAL;
3254 
3255 	lock_sock(sk);
3256 	inet_csk(sk)->icsk_syn_retries = val;
3257 	release_sock(sk);
3258 	return 0;
3259 }
3260 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3261 
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3262 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3263 {
3264 	lock_sock(sk);
3265 	inet_csk(sk)->icsk_user_timeout = val;
3266 	release_sock(sk);
3267 }
3268 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3269 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3270 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3271 {
3272 	struct tcp_sock *tp = tcp_sk(sk);
3273 
3274 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3275 		return -EINVAL;
3276 
3277 	tp->keepalive_time = val * HZ;
3278 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3279 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3280 		u32 elapsed = keepalive_time_elapsed(tp);
3281 
3282 		if (tp->keepalive_time > elapsed)
3283 			elapsed = tp->keepalive_time - elapsed;
3284 		else
3285 			elapsed = 0;
3286 		inet_csk_reset_keepalive_timer(sk, elapsed);
3287 	}
3288 
3289 	return 0;
3290 }
3291 
tcp_sock_set_keepidle(struct sock * sk,int val)3292 int tcp_sock_set_keepidle(struct sock *sk, int val)
3293 {
3294 	int err;
3295 
3296 	lock_sock(sk);
3297 	err = tcp_sock_set_keepidle_locked(sk, val);
3298 	release_sock(sk);
3299 	return err;
3300 }
3301 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3302 
tcp_sock_set_keepintvl(struct sock * sk,int val)3303 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3304 {
3305 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3306 		return -EINVAL;
3307 
3308 	lock_sock(sk);
3309 	tcp_sk(sk)->keepalive_intvl = val * HZ;
3310 	release_sock(sk);
3311 	return 0;
3312 }
3313 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3314 
tcp_sock_set_keepcnt(struct sock * sk,int val)3315 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3316 {
3317 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3318 		return -EINVAL;
3319 
3320 	lock_sock(sk);
3321 	tcp_sk(sk)->keepalive_probes = val;
3322 	release_sock(sk);
3323 	return 0;
3324 }
3325 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3326 
tcp_set_window_clamp(struct sock * sk,int val)3327 int tcp_set_window_clamp(struct sock *sk, int val)
3328 {
3329 	struct tcp_sock *tp = tcp_sk(sk);
3330 
3331 	if (!val) {
3332 		if (sk->sk_state != TCP_CLOSE)
3333 			return -EINVAL;
3334 		tp->window_clamp = 0;
3335 	} else {
3336 		tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3337 			SOCK_MIN_RCVBUF / 2 : val;
3338 		tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3339 	}
3340 	return 0;
3341 }
3342 
3343 /*
3344  *	Socket option code for TCP.
3345  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3346 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3347 		sockptr_t optval, unsigned int optlen)
3348 {
3349 	struct tcp_sock *tp = tcp_sk(sk);
3350 	struct inet_connection_sock *icsk = inet_csk(sk);
3351 	struct net *net = sock_net(sk);
3352 	int val;
3353 	int err = 0;
3354 
3355 	/* These are data/string values, all the others are ints */
3356 	switch (optname) {
3357 	case TCP_CONGESTION: {
3358 		char name[TCP_CA_NAME_MAX];
3359 
3360 		if (optlen < 1)
3361 			return -EINVAL;
3362 
3363 		val = strncpy_from_sockptr(name, optval,
3364 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3365 		if (val < 0)
3366 			return -EFAULT;
3367 		name[val] = 0;
3368 
3369 		lock_sock(sk);
3370 		err = tcp_set_congestion_control(sk, name, true,
3371 						 ns_capable(sock_net(sk)->user_ns,
3372 							    CAP_NET_ADMIN));
3373 		release_sock(sk);
3374 		return err;
3375 	}
3376 	case TCP_ULP: {
3377 		char name[TCP_ULP_NAME_MAX];
3378 
3379 		if (optlen < 1)
3380 			return -EINVAL;
3381 
3382 		val = strncpy_from_sockptr(name, optval,
3383 					min_t(long, TCP_ULP_NAME_MAX - 1,
3384 					      optlen));
3385 		if (val < 0)
3386 			return -EFAULT;
3387 		name[val] = 0;
3388 
3389 		lock_sock(sk);
3390 		err = tcp_set_ulp(sk, name);
3391 		release_sock(sk);
3392 		return err;
3393 	}
3394 	case TCP_FASTOPEN_KEY: {
3395 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3396 		__u8 *backup_key = NULL;
3397 
3398 		/* Allow a backup key as well to facilitate key rotation
3399 		 * First key is the active one.
3400 		 */
3401 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3402 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3403 			return -EINVAL;
3404 
3405 		if (copy_from_sockptr(key, optval, optlen))
3406 			return -EFAULT;
3407 
3408 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3409 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3410 
3411 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3412 	}
3413 	default:
3414 		/* fallthru */
3415 		break;
3416 	}
3417 
3418 	if (optlen < sizeof(int))
3419 		return -EINVAL;
3420 
3421 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3422 		return -EFAULT;
3423 
3424 	lock_sock(sk);
3425 
3426 	switch (optname) {
3427 	case TCP_MAXSEG:
3428 		/* Values greater than interface MTU won't take effect. However
3429 		 * at the point when this call is done we typically don't yet
3430 		 * know which interface is going to be used
3431 		 */
3432 		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3433 			err = -EINVAL;
3434 			break;
3435 		}
3436 		tp->rx_opt.user_mss = val;
3437 		break;
3438 
3439 	case TCP_NODELAY:
3440 		__tcp_sock_set_nodelay(sk, val);
3441 		break;
3442 
3443 	case TCP_THIN_LINEAR_TIMEOUTS:
3444 		if (val < 0 || val > 1)
3445 			err = -EINVAL;
3446 		else
3447 			tp->thin_lto = val;
3448 		break;
3449 
3450 	case TCP_THIN_DUPACK:
3451 		if (val < 0 || val > 1)
3452 			err = -EINVAL;
3453 		break;
3454 
3455 	case TCP_REPAIR:
3456 		if (!tcp_can_repair_sock(sk))
3457 			err = -EPERM;
3458 		else if (val == TCP_REPAIR_ON) {
3459 			tp->repair = 1;
3460 			sk->sk_reuse = SK_FORCE_REUSE;
3461 			tp->repair_queue = TCP_NO_QUEUE;
3462 		} else if (val == TCP_REPAIR_OFF) {
3463 			tp->repair = 0;
3464 			sk->sk_reuse = SK_NO_REUSE;
3465 			tcp_send_window_probe(sk);
3466 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3467 			tp->repair = 0;
3468 			sk->sk_reuse = SK_NO_REUSE;
3469 		} else
3470 			err = -EINVAL;
3471 
3472 		break;
3473 
3474 	case TCP_REPAIR_QUEUE:
3475 		if (!tp->repair)
3476 			err = -EPERM;
3477 		else if ((unsigned int)val < TCP_QUEUES_NR)
3478 			tp->repair_queue = val;
3479 		else
3480 			err = -EINVAL;
3481 		break;
3482 
3483 	case TCP_QUEUE_SEQ:
3484 		if (sk->sk_state != TCP_CLOSE) {
3485 			err = -EPERM;
3486 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3487 			if (!tcp_rtx_queue_empty(sk))
3488 				err = -EPERM;
3489 			else
3490 				WRITE_ONCE(tp->write_seq, val);
3491 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3492 			if (tp->rcv_nxt != tp->copied_seq) {
3493 				err = -EPERM;
3494 			} else {
3495 				WRITE_ONCE(tp->rcv_nxt, val);
3496 				WRITE_ONCE(tp->copied_seq, val);
3497 			}
3498 		} else {
3499 			err = -EINVAL;
3500 		}
3501 		break;
3502 
3503 	case TCP_REPAIR_OPTIONS:
3504 		if (!tp->repair)
3505 			err = -EINVAL;
3506 		else if (sk->sk_state == TCP_ESTABLISHED)
3507 			err = tcp_repair_options_est(sk, optval, optlen);
3508 		else
3509 			err = -EPERM;
3510 		break;
3511 
3512 	case TCP_CORK:
3513 		__tcp_sock_set_cork(sk, val);
3514 		break;
3515 
3516 	case TCP_KEEPIDLE:
3517 		err = tcp_sock_set_keepidle_locked(sk, val);
3518 		break;
3519 	case TCP_KEEPINTVL:
3520 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3521 			err = -EINVAL;
3522 		else
3523 			tp->keepalive_intvl = val * HZ;
3524 		break;
3525 	case TCP_KEEPCNT:
3526 		if (val < 1 || val > MAX_TCP_KEEPCNT)
3527 			err = -EINVAL;
3528 		else
3529 			tp->keepalive_probes = val;
3530 		break;
3531 	case TCP_SYNCNT:
3532 		if (val < 1 || val > MAX_TCP_SYNCNT)
3533 			err = -EINVAL;
3534 		else
3535 			icsk->icsk_syn_retries = val;
3536 		break;
3537 
3538 	case TCP_SAVE_SYN:
3539 		/* 0: disable, 1: enable, 2: start from ether_header */
3540 		if (val < 0 || val > 2)
3541 			err = -EINVAL;
3542 		else
3543 			tp->save_syn = val;
3544 		break;
3545 
3546 	case TCP_LINGER2:
3547 		if (val < 0)
3548 			tp->linger2 = -1;
3549 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3550 			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3551 		else
3552 			tp->linger2 = val * HZ;
3553 		break;
3554 
3555 	case TCP_DEFER_ACCEPT:
3556 		/* Translate value in seconds to number of retransmits */
3557 		icsk->icsk_accept_queue.rskq_defer_accept =
3558 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3559 					TCP_RTO_MAX / HZ);
3560 		break;
3561 
3562 	case TCP_WINDOW_CLAMP:
3563 		err = tcp_set_window_clamp(sk, val);
3564 		break;
3565 
3566 	case TCP_QUICKACK:
3567 		__tcp_sock_set_quickack(sk, val);
3568 		break;
3569 
3570 #ifdef CONFIG_TCP_MD5SIG
3571 	case TCP_MD5SIG:
3572 	case TCP_MD5SIG_EXT:
3573 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3574 		break;
3575 #endif
3576 	case TCP_USER_TIMEOUT:
3577 		/* Cap the max time in ms TCP will retry or probe the window
3578 		 * before giving up and aborting (ETIMEDOUT) a connection.
3579 		 */
3580 		if (val < 0)
3581 			err = -EINVAL;
3582 		else
3583 			icsk->icsk_user_timeout = val;
3584 		break;
3585 
3586 	case TCP_FASTOPEN:
3587 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3588 		    TCPF_LISTEN))) {
3589 			tcp_fastopen_init_key_once(net);
3590 
3591 			fastopen_queue_tune(sk, val);
3592 		} else {
3593 			err = -EINVAL;
3594 		}
3595 		break;
3596 	case TCP_FASTOPEN_CONNECT:
3597 		if (val > 1 || val < 0) {
3598 			err = -EINVAL;
3599 		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3600 			if (sk->sk_state == TCP_CLOSE)
3601 				tp->fastopen_connect = val;
3602 			else
3603 				err = -EINVAL;
3604 		} else {
3605 			err = -EOPNOTSUPP;
3606 		}
3607 		break;
3608 	case TCP_FASTOPEN_NO_COOKIE:
3609 		if (val > 1 || val < 0)
3610 			err = -EINVAL;
3611 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3612 			err = -EINVAL;
3613 		else
3614 			tp->fastopen_no_cookie = val;
3615 		break;
3616 	case TCP_TIMESTAMP:
3617 		if (!tp->repair)
3618 			err = -EPERM;
3619 		else
3620 			tp->tsoffset = val - tcp_time_stamp_raw();
3621 		break;
3622 	case TCP_REPAIR_WINDOW:
3623 		err = tcp_repair_set_window(tp, optval, optlen);
3624 		break;
3625 	case TCP_NOTSENT_LOWAT:
3626 		tp->notsent_lowat = val;
3627 		sk->sk_write_space(sk);
3628 		break;
3629 	case TCP_INQ:
3630 		if (val > 1 || val < 0)
3631 			err = -EINVAL;
3632 		else
3633 			tp->recvmsg_inq = val;
3634 		break;
3635 	case TCP_TX_DELAY:
3636 		if (val)
3637 			tcp_enable_tx_delay();
3638 		tp->tcp_tx_delay = val;
3639 		break;
3640 	default:
3641 		err = -ENOPROTOOPT;
3642 		break;
3643 	}
3644 
3645 	release_sock(sk);
3646 	return err;
3647 }
3648 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3649 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3650 		   unsigned int optlen)
3651 {
3652 	const struct inet_connection_sock *icsk = inet_csk(sk);
3653 
3654 	if (level != SOL_TCP)
3655 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3656 						     optval, optlen);
3657 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3658 }
3659 EXPORT_SYMBOL(tcp_setsockopt);
3660 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3661 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3662 				      struct tcp_info *info)
3663 {
3664 	u64 stats[__TCP_CHRONO_MAX], total = 0;
3665 	enum tcp_chrono i;
3666 
3667 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3668 		stats[i] = tp->chrono_stat[i - 1];
3669 		if (i == tp->chrono_type)
3670 			stats[i] += tcp_jiffies32 - tp->chrono_start;
3671 		stats[i] *= USEC_PER_SEC / HZ;
3672 		total += stats[i];
3673 	}
3674 
3675 	info->tcpi_busy_time = total;
3676 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3677 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3678 }
3679 
3680 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3681 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3682 {
3683 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3684 	const struct inet_connection_sock *icsk = inet_csk(sk);
3685 	unsigned long rate;
3686 	u32 now;
3687 	u64 rate64;
3688 	bool slow;
3689 
3690 	memset(info, 0, sizeof(*info));
3691 	if (sk->sk_type != SOCK_STREAM)
3692 		return;
3693 
3694 	info->tcpi_state = inet_sk_state_load(sk);
3695 
3696 	/* Report meaningful fields for all TCP states, including listeners */
3697 	rate = READ_ONCE(sk->sk_pacing_rate);
3698 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3699 	info->tcpi_pacing_rate = rate64;
3700 
3701 	rate = READ_ONCE(sk->sk_max_pacing_rate);
3702 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3703 	info->tcpi_max_pacing_rate = rate64;
3704 
3705 	info->tcpi_reordering = tp->reordering;
3706 	info->tcpi_snd_cwnd = tp->snd_cwnd;
3707 
3708 	if (info->tcpi_state == TCP_LISTEN) {
3709 		/* listeners aliased fields :
3710 		 * tcpi_unacked -> Number of children ready for accept()
3711 		 * tcpi_sacked  -> max backlog
3712 		 */
3713 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3714 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3715 		return;
3716 	}
3717 
3718 	slow = lock_sock_fast(sk);
3719 
3720 	info->tcpi_ca_state = icsk->icsk_ca_state;
3721 	info->tcpi_retransmits = icsk->icsk_retransmits;
3722 	info->tcpi_probes = icsk->icsk_probes_out;
3723 	info->tcpi_backoff = icsk->icsk_backoff;
3724 
3725 	if (tp->rx_opt.tstamp_ok)
3726 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3727 	if (tcp_is_sack(tp))
3728 		info->tcpi_options |= TCPI_OPT_SACK;
3729 	if (tp->rx_opt.wscale_ok) {
3730 		info->tcpi_options |= TCPI_OPT_WSCALE;
3731 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3732 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3733 	}
3734 
3735 	if (tp->ecn_flags & TCP_ECN_OK)
3736 		info->tcpi_options |= TCPI_OPT_ECN;
3737 	if (tp->ecn_flags & TCP_ECN_SEEN)
3738 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3739 	if (tp->syn_data_acked)
3740 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3741 
3742 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3743 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3744 	info->tcpi_snd_mss = tp->mss_cache;
3745 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3746 
3747 	info->tcpi_unacked = tp->packets_out;
3748 	info->tcpi_sacked = tp->sacked_out;
3749 
3750 	info->tcpi_lost = tp->lost_out;
3751 	info->tcpi_retrans = tp->retrans_out;
3752 
3753 	now = tcp_jiffies32;
3754 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3755 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3756 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3757 
3758 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3759 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3760 	info->tcpi_rtt = tp->srtt_us >> 3;
3761 	info->tcpi_rttvar = tp->mdev_us >> 2;
3762 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3763 	info->tcpi_advmss = tp->advmss;
3764 
3765 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3766 	info->tcpi_rcv_space = tp->rcvq_space.space;
3767 
3768 	info->tcpi_total_retrans = tp->total_retrans;
3769 
3770 	info->tcpi_bytes_acked = tp->bytes_acked;
3771 	info->tcpi_bytes_received = tp->bytes_received;
3772 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3773 	tcp_get_info_chrono_stats(tp, info);
3774 
3775 	info->tcpi_segs_out = tp->segs_out;
3776 	info->tcpi_segs_in = tp->segs_in;
3777 
3778 	info->tcpi_min_rtt = tcp_min_rtt(tp);
3779 	info->tcpi_data_segs_in = tp->data_segs_in;
3780 	info->tcpi_data_segs_out = tp->data_segs_out;
3781 
3782 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3783 	rate64 = tcp_compute_delivery_rate(tp);
3784 	if (rate64)
3785 		info->tcpi_delivery_rate = rate64;
3786 	info->tcpi_delivered = tp->delivered;
3787 	info->tcpi_delivered_ce = tp->delivered_ce;
3788 	info->tcpi_bytes_sent = tp->bytes_sent;
3789 	info->tcpi_bytes_retrans = tp->bytes_retrans;
3790 	info->tcpi_dsack_dups = tp->dsack_dups;
3791 	info->tcpi_reord_seen = tp->reord_seen;
3792 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3793 	info->tcpi_snd_wnd = tp->snd_wnd;
3794 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3795 	unlock_sock_fast(sk, slow);
3796 }
3797 EXPORT_SYMBOL_GPL(tcp_get_info);
3798 
tcp_opt_stats_get_size(void)3799 static size_t tcp_opt_stats_get_size(void)
3800 {
3801 	return
3802 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3803 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3804 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3805 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3806 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3807 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3808 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3809 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3810 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3811 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3812 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3813 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3814 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3815 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3816 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3817 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3818 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3819 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3820 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3821 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3822 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3823 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3824 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3825 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3826 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3827 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3828 		0;
3829 }
3830 
3831 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3832 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3833 {
3834 	if (skb->protocol == htons(ETH_P_IP))
3835 		return ip_hdr(skb)->ttl;
3836 	else if (skb->protocol == htons(ETH_P_IPV6))
3837 		return ipv6_hdr(skb)->hop_limit;
3838 	else
3839 		return 0;
3840 }
3841 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3842 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3843 					       const struct sk_buff *orig_skb,
3844 					       const struct sk_buff *ack_skb)
3845 {
3846 	const struct tcp_sock *tp = tcp_sk(sk);
3847 	struct sk_buff *stats;
3848 	struct tcp_info info;
3849 	unsigned long rate;
3850 	u64 rate64;
3851 
3852 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3853 	if (!stats)
3854 		return NULL;
3855 
3856 	tcp_get_info_chrono_stats(tp, &info);
3857 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3858 			  info.tcpi_busy_time, TCP_NLA_PAD);
3859 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3860 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3861 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3862 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3863 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3864 			  tp->data_segs_out, TCP_NLA_PAD);
3865 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3866 			  tp->total_retrans, TCP_NLA_PAD);
3867 
3868 	rate = READ_ONCE(sk->sk_pacing_rate);
3869 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3870 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3871 
3872 	rate64 = tcp_compute_delivery_rate(tp);
3873 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3874 
3875 	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3876 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3877 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3878 
3879 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3880 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3881 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3882 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3883 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3884 
3885 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3886 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3887 
3888 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3889 			  TCP_NLA_PAD);
3890 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3891 			  TCP_NLA_PAD);
3892 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3893 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3894 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3895 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3896 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3897 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3898 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3899 			  TCP_NLA_PAD);
3900 	if (ack_skb)
3901 		nla_put_u8(stats, TCP_NLA_TTL,
3902 			   tcp_skb_ttl_or_hop_limit(ack_skb));
3903 
3904 	return stats;
3905 }
3906 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3907 static int do_tcp_getsockopt(struct sock *sk, int level,
3908 		int optname, char __user *optval, int __user *optlen)
3909 {
3910 	struct inet_connection_sock *icsk = inet_csk(sk);
3911 	struct tcp_sock *tp = tcp_sk(sk);
3912 	struct net *net = sock_net(sk);
3913 	int val, len;
3914 
3915 	if (get_user(len, optlen))
3916 		return -EFAULT;
3917 
3918 	len = min_t(unsigned int, len, sizeof(int));
3919 
3920 	if (len < 0)
3921 		return -EINVAL;
3922 
3923 	switch (optname) {
3924 	case TCP_MAXSEG:
3925 		val = tp->mss_cache;
3926 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3927 			val = tp->rx_opt.user_mss;
3928 		if (tp->repair)
3929 			val = tp->rx_opt.mss_clamp;
3930 		break;
3931 	case TCP_NODELAY:
3932 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3933 		break;
3934 	case TCP_CORK:
3935 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3936 		break;
3937 	case TCP_KEEPIDLE:
3938 		val = keepalive_time_when(tp) / HZ;
3939 		break;
3940 	case TCP_KEEPINTVL:
3941 		val = keepalive_intvl_when(tp) / HZ;
3942 		break;
3943 	case TCP_KEEPCNT:
3944 		val = keepalive_probes(tp);
3945 		break;
3946 	case TCP_SYNCNT:
3947 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3948 		break;
3949 	case TCP_LINGER2:
3950 		val = tp->linger2;
3951 		if (val >= 0)
3952 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3953 		break;
3954 	case TCP_DEFER_ACCEPT:
3955 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3956 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3957 		break;
3958 	case TCP_WINDOW_CLAMP:
3959 		val = tp->window_clamp;
3960 		break;
3961 	case TCP_INFO: {
3962 		struct tcp_info info;
3963 
3964 		if (get_user(len, optlen))
3965 			return -EFAULT;
3966 
3967 		tcp_get_info(sk, &info);
3968 
3969 		len = min_t(unsigned int, len, sizeof(info));
3970 		if (put_user(len, optlen))
3971 			return -EFAULT;
3972 		if (copy_to_user(optval, &info, len))
3973 			return -EFAULT;
3974 		return 0;
3975 	}
3976 	case TCP_CC_INFO: {
3977 		const struct tcp_congestion_ops *ca_ops;
3978 		union tcp_cc_info info;
3979 		size_t sz = 0;
3980 		int attr;
3981 
3982 		if (get_user(len, optlen))
3983 			return -EFAULT;
3984 
3985 		ca_ops = icsk->icsk_ca_ops;
3986 		if (ca_ops && ca_ops->get_info)
3987 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3988 
3989 		len = min_t(unsigned int, len, sz);
3990 		if (put_user(len, optlen))
3991 			return -EFAULT;
3992 		if (copy_to_user(optval, &info, len))
3993 			return -EFAULT;
3994 		return 0;
3995 	}
3996 	case TCP_QUICKACK:
3997 		val = !inet_csk_in_pingpong_mode(sk);
3998 		break;
3999 
4000 	case TCP_CONGESTION:
4001 		if (get_user(len, optlen))
4002 			return -EFAULT;
4003 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4004 		if (put_user(len, optlen))
4005 			return -EFAULT;
4006 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4007 			return -EFAULT;
4008 		return 0;
4009 
4010 	case TCP_ULP:
4011 		if (get_user(len, optlen))
4012 			return -EFAULT;
4013 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4014 		if (!icsk->icsk_ulp_ops) {
4015 			if (put_user(0, optlen))
4016 				return -EFAULT;
4017 			return 0;
4018 		}
4019 		if (put_user(len, optlen))
4020 			return -EFAULT;
4021 		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4022 			return -EFAULT;
4023 		return 0;
4024 
4025 	case TCP_FASTOPEN_KEY: {
4026 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4027 		unsigned int key_len;
4028 
4029 		if (get_user(len, optlen))
4030 			return -EFAULT;
4031 
4032 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4033 				TCP_FASTOPEN_KEY_LENGTH;
4034 		len = min_t(unsigned int, len, key_len);
4035 		if (put_user(len, optlen))
4036 			return -EFAULT;
4037 		if (copy_to_user(optval, key, len))
4038 			return -EFAULT;
4039 		return 0;
4040 	}
4041 	case TCP_THIN_LINEAR_TIMEOUTS:
4042 		val = tp->thin_lto;
4043 		break;
4044 
4045 	case TCP_THIN_DUPACK:
4046 		val = 0;
4047 		break;
4048 
4049 	case TCP_REPAIR:
4050 		val = tp->repair;
4051 		break;
4052 
4053 	case TCP_REPAIR_QUEUE:
4054 		if (tp->repair)
4055 			val = tp->repair_queue;
4056 		else
4057 			return -EINVAL;
4058 		break;
4059 
4060 	case TCP_REPAIR_WINDOW: {
4061 		struct tcp_repair_window opt;
4062 
4063 		if (get_user(len, optlen))
4064 			return -EFAULT;
4065 
4066 		if (len != sizeof(opt))
4067 			return -EINVAL;
4068 
4069 		if (!tp->repair)
4070 			return -EPERM;
4071 
4072 		opt.snd_wl1	= tp->snd_wl1;
4073 		opt.snd_wnd	= tp->snd_wnd;
4074 		opt.max_window	= tp->max_window;
4075 		opt.rcv_wnd	= tp->rcv_wnd;
4076 		opt.rcv_wup	= tp->rcv_wup;
4077 
4078 		if (copy_to_user(optval, &opt, len))
4079 			return -EFAULT;
4080 		return 0;
4081 	}
4082 	case TCP_QUEUE_SEQ:
4083 		if (tp->repair_queue == TCP_SEND_QUEUE)
4084 			val = tp->write_seq;
4085 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4086 			val = tp->rcv_nxt;
4087 		else
4088 			return -EINVAL;
4089 		break;
4090 
4091 	case TCP_USER_TIMEOUT:
4092 		val = icsk->icsk_user_timeout;
4093 		break;
4094 
4095 	case TCP_FASTOPEN:
4096 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4097 		break;
4098 
4099 	case TCP_FASTOPEN_CONNECT:
4100 		val = tp->fastopen_connect;
4101 		break;
4102 
4103 	case TCP_FASTOPEN_NO_COOKIE:
4104 		val = tp->fastopen_no_cookie;
4105 		break;
4106 
4107 	case TCP_TX_DELAY:
4108 		val = tp->tcp_tx_delay;
4109 		break;
4110 
4111 	case TCP_TIMESTAMP:
4112 		val = tcp_time_stamp_raw() + tp->tsoffset;
4113 		break;
4114 	case TCP_NOTSENT_LOWAT:
4115 		val = tp->notsent_lowat;
4116 		break;
4117 	case TCP_INQ:
4118 		val = tp->recvmsg_inq;
4119 		break;
4120 	case TCP_SAVE_SYN:
4121 		val = tp->save_syn;
4122 		break;
4123 	case TCP_SAVED_SYN: {
4124 		if (get_user(len, optlen))
4125 			return -EFAULT;
4126 
4127 		lock_sock(sk);
4128 		if (tp->saved_syn) {
4129 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4130 				if (put_user(tcp_saved_syn_len(tp->saved_syn),
4131 					     optlen)) {
4132 					release_sock(sk);
4133 					return -EFAULT;
4134 				}
4135 				release_sock(sk);
4136 				return -EINVAL;
4137 			}
4138 			len = tcp_saved_syn_len(tp->saved_syn);
4139 			if (put_user(len, optlen)) {
4140 				release_sock(sk);
4141 				return -EFAULT;
4142 			}
4143 			if (copy_to_user(optval, tp->saved_syn->data, len)) {
4144 				release_sock(sk);
4145 				return -EFAULT;
4146 			}
4147 			tcp_saved_syn_free(tp);
4148 			release_sock(sk);
4149 		} else {
4150 			release_sock(sk);
4151 			len = 0;
4152 			if (put_user(len, optlen))
4153 				return -EFAULT;
4154 		}
4155 		return 0;
4156 	}
4157 #ifdef CONFIG_MMU
4158 	case TCP_ZEROCOPY_RECEIVE: {
4159 		struct scm_timestamping_internal tss;
4160 		struct tcp_zerocopy_receive zc = {};
4161 		int err;
4162 
4163 		if (get_user(len, optlen))
4164 			return -EFAULT;
4165 		if (len < 0 ||
4166 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4167 			return -EINVAL;
4168 		if (unlikely(len > sizeof(zc))) {
4169 			err = check_zeroed_user(optval + sizeof(zc),
4170 						len - sizeof(zc));
4171 			if (err < 1)
4172 				return err == 0 ? -EINVAL : err;
4173 			len = sizeof(zc);
4174 			if (put_user(len, optlen))
4175 				return -EFAULT;
4176 		}
4177 		if (copy_from_user(&zc, optval, len))
4178 			return -EFAULT;
4179 		if (zc.reserved)
4180 			return -EINVAL;
4181 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4182 			return -EINVAL;
4183 		lock_sock(sk);
4184 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4185 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4186 							  &zc, &len, err);
4187 		release_sock(sk);
4188 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4189 			goto zerocopy_rcv_cmsg;
4190 		switch (len) {
4191 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4192 			goto zerocopy_rcv_cmsg;
4193 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4194 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4195 		case offsetofend(struct tcp_zerocopy_receive, flags):
4196 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4197 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4198 		case offsetofend(struct tcp_zerocopy_receive, err):
4199 			goto zerocopy_rcv_sk_err;
4200 		case offsetofend(struct tcp_zerocopy_receive, inq):
4201 			goto zerocopy_rcv_inq;
4202 		case offsetofend(struct tcp_zerocopy_receive, length):
4203 		default:
4204 			goto zerocopy_rcv_out;
4205 		}
4206 zerocopy_rcv_cmsg:
4207 		if (zc.msg_flags & TCP_CMSG_TS)
4208 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4209 		else
4210 			zc.msg_flags = 0;
4211 zerocopy_rcv_sk_err:
4212 		if (!err)
4213 			zc.err = sock_error(sk);
4214 zerocopy_rcv_inq:
4215 		zc.inq = tcp_inq_hint(sk);
4216 zerocopy_rcv_out:
4217 		if (!err && copy_to_user(optval, &zc, len))
4218 			err = -EFAULT;
4219 		return err;
4220 	}
4221 #endif
4222 	default:
4223 		return -ENOPROTOOPT;
4224 	}
4225 
4226 	if (put_user(len, optlen))
4227 		return -EFAULT;
4228 	if (copy_to_user(optval, &val, len))
4229 		return -EFAULT;
4230 	return 0;
4231 }
4232 
tcp_bpf_bypass_getsockopt(int level,int optname)4233 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4234 {
4235 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4236 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4237 	 */
4238 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4239 		return true;
4240 
4241 	return false;
4242 }
4243 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4244 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4245 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4246 		   int __user *optlen)
4247 {
4248 	struct inet_connection_sock *icsk = inet_csk(sk);
4249 
4250 	if (level != SOL_TCP)
4251 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4252 						     optval, optlen);
4253 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4254 }
4255 EXPORT_SYMBOL(tcp_getsockopt);
4256 
4257 #ifdef CONFIG_TCP_MD5SIG
4258 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4259 static DEFINE_MUTEX(tcp_md5sig_mutex);
4260 static bool tcp_md5sig_pool_populated = false;
4261 
__tcp_alloc_md5sig_pool(void)4262 static void __tcp_alloc_md5sig_pool(void)
4263 {
4264 	struct crypto_ahash *hash;
4265 	int cpu;
4266 
4267 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4268 	if (IS_ERR(hash))
4269 		return;
4270 
4271 	for_each_possible_cpu(cpu) {
4272 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4273 		struct ahash_request *req;
4274 
4275 		if (!scratch) {
4276 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4277 					       sizeof(struct tcphdr),
4278 					       GFP_KERNEL,
4279 					       cpu_to_node(cpu));
4280 			if (!scratch)
4281 				return;
4282 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4283 		}
4284 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4285 			continue;
4286 
4287 		req = ahash_request_alloc(hash, GFP_KERNEL);
4288 		if (!req)
4289 			return;
4290 
4291 		ahash_request_set_callback(req, 0, NULL, NULL);
4292 
4293 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4294 	}
4295 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4296 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4297 	 */
4298 	smp_wmb();
4299 	tcp_md5sig_pool_populated = true;
4300 }
4301 
tcp_alloc_md5sig_pool(void)4302 bool tcp_alloc_md5sig_pool(void)
4303 {
4304 	if (unlikely(!tcp_md5sig_pool_populated)) {
4305 		mutex_lock(&tcp_md5sig_mutex);
4306 
4307 		if (!tcp_md5sig_pool_populated) {
4308 			__tcp_alloc_md5sig_pool();
4309 			if (tcp_md5sig_pool_populated)
4310 				static_branch_inc(&tcp_md5_needed);
4311 		}
4312 
4313 		mutex_unlock(&tcp_md5sig_mutex);
4314 	}
4315 	return tcp_md5sig_pool_populated;
4316 }
4317 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4318 
4319 
4320 /**
4321  *	tcp_get_md5sig_pool - get md5sig_pool for this user
4322  *
4323  *	We use percpu structure, so if we succeed, we exit with preemption
4324  *	and BH disabled, to make sure another thread or softirq handling
4325  *	wont try to get same context.
4326  */
tcp_get_md5sig_pool(void)4327 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4328 {
4329 	local_bh_disable();
4330 
4331 	if (tcp_md5sig_pool_populated) {
4332 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4333 		smp_rmb();
4334 		return this_cpu_ptr(&tcp_md5sig_pool);
4335 	}
4336 	local_bh_enable();
4337 	return NULL;
4338 }
4339 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4340 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4341 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4342 			  const struct sk_buff *skb, unsigned int header_len)
4343 {
4344 	struct scatterlist sg;
4345 	const struct tcphdr *tp = tcp_hdr(skb);
4346 	struct ahash_request *req = hp->md5_req;
4347 	unsigned int i;
4348 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4349 					   skb_headlen(skb) - header_len : 0;
4350 	const struct skb_shared_info *shi = skb_shinfo(skb);
4351 	struct sk_buff *frag_iter;
4352 
4353 	sg_init_table(&sg, 1);
4354 
4355 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4356 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4357 	if (crypto_ahash_update(req))
4358 		return 1;
4359 
4360 	for (i = 0; i < shi->nr_frags; ++i) {
4361 		const skb_frag_t *f = &shi->frags[i];
4362 		unsigned int offset = skb_frag_off(f);
4363 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4364 
4365 		sg_set_page(&sg, page, skb_frag_size(f),
4366 			    offset_in_page(offset));
4367 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4368 		if (crypto_ahash_update(req))
4369 			return 1;
4370 	}
4371 
4372 	skb_walk_frags(skb, frag_iter)
4373 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4374 			return 1;
4375 
4376 	return 0;
4377 }
4378 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4379 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4380 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4381 {
4382 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4383 	struct scatterlist sg;
4384 
4385 	sg_init_one(&sg, key->key, keylen);
4386 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4387 
4388 	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4389 	return data_race(crypto_ahash_update(hp->md5_req));
4390 }
4391 EXPORT_SYMBOL(tcp_md5_hash_key);
4392 
4393 #endif
4394 
tcp_done(struct sock * sk)4395 void tcp_done(struct sock *sk)
4396 {
4397 	struct request_sock *req;
4398 
4399 	/* We might be called with a new socket, after
4400 	 * inet_csk_prepare_forced_close() has been called
4401 	 * so we can not use lockdep_sock_is_held(sk)
4402 	 */
4403 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4404 
4405 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4406 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4407 
4408 	tcp_set_state(sk, TCP_CLOSE);
4409 	tcp_clear_xmit_timers(sk);
4410 	if (req)
4411 		reqsk_fastopen_remove(sk, req, false);
4412 
4413 	sk->sk_shutdown = SHUTDOWN_MASK;
4414 
4415 	if (!sock_flag(sk, SOCK_DEAD))
4416 		sk->sk_state_change(sk);
4417 	else
4418 		inet_csk_destroy_sock(sk);
4419 }
4420 EXPORT_SYMBOL_GPL(tcp_done);
4421 
tcp_abort(struct sock * sk,int err)4422 int tcp_abort(struct sock *sk, int err)
4423 {
4424 	if (!sk_fullsock(sk)) {
4425 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4426 			struct request_sock *req = inet_reqsk(sk);
4427 
4428 			local_bh_disable();
4429 			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4430 			local_bh_enable();
4431 			return 0;
4432 		}
4433 		return -EOPNOTSUPP;
4434 	}
4435 
4436 	/* Don't race with userspace socket closes such as tcp_close. */
4437 	lock_sock(sk);
4438 
4439 	if (sk->sk_state == TCP_LISTEN) {
4440 		tcp_set_state(sk, TCP_CLOSE);
4441 		inet_csk_listen_stop(sk);
4442 	}
4443 
4444 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4445 	local_bh_disable();
4446 	bh_lock_sock(sk);
4447 
4448 	if (!sock_flag(sk, SOCK_DEAD)) {
4449 		sk->sk_err = err;
4450 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4451 		smp_wmb();
4452 		sk_error_report(sk);
4453 		if (tcp_need_reset(sk->sk_state))
4454 			tcp_send_active_reset(sk, GFP_ATOMIC);
4455 		tcp_done(sk);
4456 	}
4457 
4458 	bh_unlock_sock(sk);
4459 	local_bh_enable();
4460 	tcp_write_queue_purge(sk);
4461 	release_sock(sk);
4462 	return 0;
4463 }
4464 EXPORT_SYMBOL_GPL(tcp_abort);
4465 
4466 extern struct tcp_congestion_ops tcp_reno;
4467 
4468 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4469 static int __init set_thash_entries(char *str)
4470 {
4471 	ssize_t ret;
4472 
4473 	if (!str)
4474 		return 0;
4475 
4476 	ret = kstrtoul(str, 0, &thash_entries);
4477 	if (ret)
4478 		return 0;
4479 
4480 	return 1;
4481 }
4482 __setup("thash_entries=", set_thash_entries);
4483 
tcp_init_mem(void)4484 static void __init tcp_init_mem(void)
4485 {
4486 	unsigned long limit = nr_free_buffer_pages() / 16;
4487 
4488 	limit = max(limit, 128UL);
4489 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4490 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4491 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4492 }
4493 
tcp_init(void)4494 void __init tcp_init(void)
4495 {
4496 	int max_rshare, max_wshare, cnt;
4497 	unsigned long limit;
4498 	unsigned int i;
4499 
4500 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4501 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4502 		     sizeof_field(struct sk_buff, cb));
4503 
4504 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4505 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
4506 	inet_hashinfo_init(&tcp_hashinfo);
4507 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4508 			    thash_entries, 21,  /* one slot per 2 MB*/
4509 			    0, 64 * 1024);
4510 	tcp_hashinfo.bind_bucket_cachep =
4511 		kmem_cache_create("tcp_bind_bucket",
4512 				  sizeof(struct inet_bind_bucket), 0,
4513 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4514 				  SLAB_ACCOUNT,
4515 				  NULL);
4516 
4517 	/* Size and allocate the main established and bind bucket
4518 	 * hash tables.
4519 	 *
4520 	 * The methodology is similar to that of the buffer cache.
4521 	 */
4522 	tcp_hashinfo.ehash =
4523 		alloc_large_system_hash("TCP established",
4524 					sizeof(struct inet_ehash_bucket),
4525 					thash_entries,
4526 					17, /* one slot per 128 KB of memory */
4527 					0,
4528 					NULL,
4529 					&tcp_hashinfo.ehash_mask,
4530 					0,
4531 					thash_entries ? 0 : 512 * 1024);
4532 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4533 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4534 
4535 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4536 		panic("TCP: failed to alloc ehash_locks");
4537 	tcp_hashinfo.bhash =
4538 		alloc_large_system_hash("TCP bind",
4539 					sizeof(struct inet_bind_hashbucket),
4540 					tcp_hashinfo.ehash_mask + 1,
4541 					17, /* one slot per 128 KB of memory */
4542 					0,
4543 					&tcp_hashinfo.bhash_size,
4544 					NULL,
4545 					0,
4546 					64 * 1024);
4547 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4548 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4549 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4550 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4551 	}
4552 
4553 
4554 	cnt = tcp_hashinfo.ehash_mask + 1;
4555 	sysctl_tcp_max_orphans = cnt / 2;
4556 
4557 	tcp_init_mem();
4558 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4559 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4560 	max_wshare = min(4UL*1024*1024, limit);
4561 	max_rshare = min(6UL*1024*1024, limit);
4562 
4563 	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4564 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4565 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4566 
4567 	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4568 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4569 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4570 
4571 	pr_info("Hash tables configured (established %u bind %u)\n",
4572 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4573 
4574 	tcp_v4_init();
4575 	tcp_metrics_init();
4576 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4577 	tcp_tasklet_init();
4578 	mptcp_init();
4579 }
4580