1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
tcp_mstamp_refresh(struct tcp_sock * tp)53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 }
86 
87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88  * window scaling factor due to loss of precision.
89  * If window has been shrunk, what should we make? It is not clear at all.
90  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92  * invalid. OK, let's make this for now:
93  */
tcp_acceptable_seq(const struct sock * sk)94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 	const struct tcp_sock *tp = tcp_sk(sk);
97 
98 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
99 	    (tp->rx_opt.wscale_ok &&
100 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
101 		return tp->snd_nxt;
102 	else
103 		return tcp_wnd_end(tp);
104 }
105 
106 /* Calculate mss to advertise in SYN segment.
107  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108  *
109  * 1. It is independent of path mtu.
110  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112  *    attached devices, because some buggy hosts are confused by
113  *    large MSS.
114  * 4. We do not make 3, we advertise MSS, calculated from first
115  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
116  *    This may be overridden via information stored in routing table.
117  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118  *    probably even Jumbo".
119  */
tcp_advertise_mss(struct sock * sk)120 static __u16 tcp_advertise_mss(struct sock *sk)
121 {
122 	struct tcp_sock *tp = tcp_sk(sk);
123 	const struct dst_entry *dst = __sk_dst_get(sk);
124 	int mss = tp->advmss;
125 
126 	if (dst) {
127 		unsigned int metric = dst_metric_advmss(dst);
128 
129 		if (metric < mss) {
130 			mss = metric;
131 			tp->advmss = mss;
132 		}
133 	}
134 
135 	return (__u16)mss;
136 }
137 
138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139  * This is the first part of cwnd validation mechanism.
140  */
tcp_cwnd_restart(struct sock * sk,s32 delta)141 void tcp_cwnd_restart(struct sock *sk, s32 delta)
142 {
143 	struct tcp_sock *tp = tcp_sk(sk);
144 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
145 	u32 cwnd = tp->snd_cwnd;
146 
147 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
148 
149 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
150 	restart_cwnd = min(restart_cwnd, cwnd);
151 
152 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
153 		cwnd >>= 1;
154 	tp->snd_cwnd = max(cwnd, restart_cwnd);
155 	tp->snd_cwnd_stamp = tcp_jiffies32;
156 	tp->snd_cwnd_used = 0;
157 }
158 
159 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)160 static void tcp_event_data_sent(struct tcp_sock *tp,
161 				struct sock *sk)
162 {
163 	struct inet_connection_sock *icsk = inet_csk(sk);
164 	const u32 now = tcp_jiffies32;
165 
166 	if (tcp_packets_in_flight(tp) == 0)
167 		tcp_ca_event(sk, CA_EVENT_TX_START);
168 
169 	/* If this is the first data packet sent in response to the
170 	 * previous received data,
171 	 * and it is a reply for ato after last received packet,
172 	 * increase pingpong count.
173 	 */
174 	if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
175 	    (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_inc_pingpong_cnt(sk);
177 
178 	tp->lsndtime = now;
179 }
180 
181 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts,u32 rcv_nxt)182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
183 				      u32 rcv_nxt)
184 {
185 	struct tcp_sock *tp = tcp_sk(sk);
186 
187 	if (unlikely(tp->compressed_ack)) {
188 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189 			      tp->compressed_ack);
190 		tp->compressed_ack = 0;
191 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192 			__sock_put(sk);
193 	}
194 
195 	if (unlikely(rcv_nxt != tp->rcv_nxt))
196 		return;  /* Special ACK sent by DCTCP to reflect ECN */
197 	tcp_dec_quickack_mode(sk, pkts);
198 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199 }
200 
201 /* Determine a window scaling and initial window to offer.
202  * Based on the assumption that the given amount of space
203  * will be offered. Store the results in the tp structure.
204  * NOTE: for smooth operation initial space offering should
205  * be a multiple of mss if possible. We assume here that mss >= 1.
206  * This MUST be enforced by all callers.
207  */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 			       __u32 *rcv_wnd, __u32 *window_clamp,
210 			       int wscale_ok, __u8 *rcv_wscale,
211 			       __u32 init_rcv_wnd)
212 {
213 	unsigned int space = (__space < 0 ? 0 : __space);
214 
215 	/* If no clamp set the clamp to the max possible scaled window */
216 	if (*window_clamp == 0)
217 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
218 	space = min(*window_clamp, space);
219 
220 	/* Quantize space offering to a multiple of mss if possible. */
221 	if (space > mss)
222 		space = rounddown(space, mss);
223 
224 	/* NOTE: offering an initial window larger than 32767
225 	 * will break some buggy TCP stacks. If the admin tells us
226 	 * it is likely we could be speaking with such a buggy stack
227 	 * we will truncate our initial window offering to 32K-1
228 	 * unless the remote has sent us a window scaling option,
229 	 * which we interpret as a sign the remote TCP is not
230 	 * misinterpreting the window field as a signed quantity.
231 	 */
232 	if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
233 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 	else
235 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
236 
237 	if (init_rcv_wnd)
238 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239 
240 	*rcv_wscale = 0;
241 	if (wscale_ok) {
242 		/* Set window scaling on max possible window */
243 		space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
244 		space = max_t(u32, space, sysctl_rmem_max);
245 		space = min_t(u32, space, *window_clamp);
246 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 				      0, TCP_MAX_WSCALE);
248 	}
249 	/* Set the clamp no higher than max representable value */
250 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
251 }
252 EXPORT_SYMBOL(tcp_select_initial_window);
253 
254 /* Chose a new window to advertise, update state in tcp_sock for the
255  * socket, and return result with RFC1323 scaling applied.  The return
256  * value can be stuffed directly into th->window for an outgoing
257  * frame.
258  */
tcp_select_window(struct sock * sk)259 static u16 tcp_select_window(struct sock *sk)
260 {
261 	struct tcp_sock *tp = tcp_sk(sk);
262 	u32 old_win = tp->rcv_wnd;
263 	u32 cur_win = tcp_receive_window(tp);
264 	u32 new_win = __tcp_select_window(sk);
265 
266 	/* Never shrink the offered window */
267 	if (new_win < cur_win) {
268 		/* Danger Will Robinson!
269 		 * Don't update rcv_wup/rcv_wnd here or else
270 		 * we will not be able to advertise a zero
271 		 * window in time.  --DaveM
272 		 *
273 		 * Relax Will Robinson.
274 		 */
275 		if (new_win == 0)
276 			NET_INC_STATS(sock_net(sk),
277 				      LINUX_MIB_TCPWANTZEROWINDOWADV);
278 		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
279 	}
280 	tp->rcv_wnd = new_win;
281 	tp->rcv_wup = tp->rcv_nxt;
282 
283 	/* Make sure we do not exceed the maximum possible
284 	 * scaled window.
285 	 */
286 	if (!tp->rx_opt.rcv_wscale &&
287 	    sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
288 		new_win = min(new_win, MAX_TCP_WINDOW);
289 	else
290 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
291 
292 	/* RFC1323 scaling applied */
293 	new_win >>= tp->rx_opt.rcv_wscale;
294 
295 	/* If we advertise zero window, disable fast path. */
296 	if (new_win == 0) {
297 		tp->pred_flags = 0;
298 		if (old_win)
299 			NET_INC_STATS(sock_net(sk),
300 				      LINUX_MIB_TCPTOZEROWINDOWADV);
301 	} else if (old_win == 0) {
302 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
303 	}
304 
305 	return new_win;
306 }
307 
308 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
310 {
311 	const struct tcp_sock *tp = tcp_sk(sk);
312 
313 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314 	if (!(tp->ecn_flags & TCP_ECN_OK))
315 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316 	else if (tcp_ca_needs_ecn(sk) ||
317 		 tcp_bpf_ca_needs_ecn(sk))
318 		INET_ECN_xmit(sk);
319 }
320 
321 /* Packet ECN state for a SYN.  */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
323 {
324 	struct tcp_sock *tp = tcp_sk(sk);
325 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326 	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
328 
329 	if (!use_ecn) {
330 		const struct dst_entry *dst = __sk_dst_get(sk);
331 
332 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333 			use_ecn = true;
334 	}
335 
336 	tp->ecn_flags = 0;
337 
338 	if (use_ecn) {
339 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 		tp->ecn_flags = TCP_ECN_OK;
341 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
342 			INET_ECN_xmit(sk);
343 	}
344 }
345 
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
347 {
348 	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 		/* tp->ecn_flags are cleared at a later point in time when
350 		 * SYN ACK is ultimatively being received.
351 		 */
352 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
353 }
354 
355 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
357 {
358 	if (inet_rsk(req)->ecn_ok)
359 		th->ece = 1;
360 }
361 
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363  * be sent.
364  */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 			 struct tcphdr *th, int tcp_header_len)
367 {
368 	struct tcp_sock *tp = tcp_sk(sk);
369 
370 	if (tp->ecn_flags & TCP_ECN_OK) {
371 		/* Not-retransmitted data segment: set ECT and inject CWR. */
372 		if (skb->len != tcp_header_len &&
373 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374 			INET_ECN_xmit(sk);
375 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377 				th->cwr = 1;
378 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
379 			}
380 		} else if (!tcp_ca_needs_ecn(sk)) {
381 			/* ACK or retransmitted segment: clear ECT|CE */
382 			INET_ECN_dontxmit(sk);
383 		}
384 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 			th->ece = 1;
386 	}
387 }
388 
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390  * auto increment end seqno.
391  */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
393 {
394 	skb->ip_summed = CHECKSUM_PARTIAL;
395 
396 	TCP_SKB_CB(skb)->tcp_flags = flags;
397 	TCP_SKB_CB(skb)->sacked = 0;
398 
399 	tcp_skb_pcount_set(skb, 1);
400 
401 	TCP_SKB_CB(skb)->seq = seq;
402 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
403 		seq++;
404 	TCP_SKB_CB(skb)->end_seq = seq;
405 }
406 
tcp_urg_mode(const struct tcp_sock * tp)407 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
408 {
409 	return tp->snd_una != tp->snd_up;
410 }
411 
412 #define OPTION_SACK_ADVERTISE	(1 << 0)
413 #define OPTION_TS		(1 << 1)
414 #define OPTION_MD5		(1 << 2)
415 #define OPTION_WSCALE		(1 << 3)
416 #define OPTION_FAST_OPEN_COOKIE	(1 << 8)
417 #define OPTION_SMC		(1 << 9)
418 #define OPTION_MPTCP		(1 << 10)
419 
smc_options_write(__be32 * ptr,u16 * options)420 static void smc_options_write(__be32 *ptr, u16 *options)
421 {
422 #if IS_ENABLED(CONFIG_SMC)
423 	if (static_branch_unlikely(&tcp_have_smc)) {
424 		if (unlikely(OPTION_SMC & *options)) {
425 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
426 				       (TCPOPT_NOP  << 16) |
427 				       (TCPOPT_EXP <<  8) |
428 				       (TCPOLEN_EXP_SMC_BASE));
429 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
430 		}
431 	}
432 #endif
433 }
434 
435 struct tcp_out_options {
436 	u16 options;		/* bit field of OPTION_* */
437 	u16 mss;		/* 0 to disable */
438 	u8 ws;			/* window scale, 0 to disable */
439 	u8 num_sack_blocks;	/* number of SACK blocks to include */
440 	u8 hash_size;		/* bytes in hash_location */
441 	u8 bpf_opt_len;		/* length of BPF hdr option */
442 	__u8 *hash_location;	/* temporary pointer, overloaded */
443 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
444 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
445 	struct mptcp_out_options mptcp;
446 };
447 
mptcp_options_write(__be32 * ptr,struct tcp_out_options * opts)448 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
449 {
450 #if IS_ENABLED(CONFIG_MPTCP)
451 	if (unlikely(OPTION_MPTCP & opts->options))
452 		mptcp_write_options(ptr, &opts->mptcp);
453 #endif
454 }
455 
456 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)457 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
458 					enum tcp_synack_type synack_type)
459 {
460 	if (unlikely(!skb))
461 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
462 
463 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
464 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
465 
466 	return 0;
467 }
468 
469 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)470 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
471 				  struct request_sock *req,
472 				  struct sk_buff *syn_skb,
473 				  enum tcp_synack_type synack_type,
474 				  struct tcp_out_options *opts,
475 				  unsigned int *remaining)
476 {
477 	struct bpf_sock_ops_kern sock_ops;
478 	int err;
479 
480 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
481 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
482 	    !*remaining)
483 		return;
484 
485 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
486 
487 	/* init sock_ops */
488 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
489 
490 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
491 
492 	if (req) {
493 		/* The listen "sk" cannot be passed here because
494 		 * it is not locked.  It would not make too much
495 		 * sense to do bpf_setsockopt(listen_sk) based
496 		 * on individual connection request also.
497 		 *
498 		 * Thus, "req" is passed here and the cgroup-bpf-progs
499 		 * of the listen "sk" will be run.
500 		 *
501 		 * "req" is also used here for fastopen even the "sk" here is
502 		 * a fullsock "child" sk.  It is to keep the behavior
503 		 * consistent between fastopen and non-fastopen on
504 		 * the bpf programming side.
505 		 */
506 		sock_ops.sk = (struct sock *)req;
507 		sock_ops.syn_skb = syn_skb;
508 	} else {
509 		sock_owned_by_me(sk);
510 
511 		sock_ops.is_fullsock = 1;
512 		sock_ops.sk = sk;
513 	}
514 
515 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
516 	sock_ops.remaining_opt_len = *remaining;
517 	/* tcp_current_mss() does not pass a skb */
518 	if (skb)
519 		bpf_skops_init_skb(&sock_ops, skb, 0);
520 
521 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
522 
523 	if (err || sock_ops.remaining_opt_len == *remaining)
524 		return;
525 
526 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
527 	/* round up to 4 bytes */
528 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
529 
530 	*remaining -= opts->bpf_opt_len;
531 }
532 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)533 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
534 				    struct request_sock *req,
535 				    struct sk_buff *syn_skb,
536 				    enum tcp_synack_type synack_type,
537 				    struct tcp_out_options *opts)
538 {
539 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
540 	struct bpf_sock_ops_kern sock_ops;
541 	int err;
542 
543 	if (likely(!max_opt_len))
544 		return;
545 
546 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
547 
548 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
549 
550 	if (req) {
551 		sock_ops.sk = (struct sock *)req;
552 		sock_ops.syn_skb = syn_skb;
553 	} else {
554 		sock_owned_by_me(sk);
555 
556 		sock_ops.is_fullsock = 1;
557 		sock_ops.sk = sk;
558 	}
559 
560 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
561 	sock_ops.remaining_opt_len = max_opt_len;
562 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
563 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
564 
565 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
566 
567 	if (err)
568 		nr_written = 0;
569 	else
570 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
571 
572 	if (nr_written < max_opt_len)
573 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
574 		       max_opt_len - nr_written);
575 }
576 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)577 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
578 				  struct request_sock *req,
579 				  struct sk_buff *syn_skb,
580 				  enum tcp_synack_type synack_type,
581 				  struct tcp_out_options *opts,
582 				  unsigned int *remaining)
583 {
584 }
585 
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)586 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
587 				    struct request_sock *req,
588 				    struct sk_buff *syn_skb,
589 				    enum tcp_synack_type synack_type,
590 				    struct tcp_out_options *opts)
591 {
592 }
593 #endif
594 
595 /* Write previously computed TCP options to the packet.
596  *
597  * Beware: Something in the Internet is very sensitive to the ordering of
598  * TCP options, we learned this through the hard way, so be careful here.
599  * Luckily we can at least blame others for their non-compliance but from
600  * inter-operability perspective it seems that we're somewhat stuck with
601  * the ordering which we have been using if we want to keep working with
602  * those broken things (not that it currently hurts anybody as there isn't
603  * particular reason why the ordering would need to be changed).
604  *
605  * At least SACK_PERM as the first option is known to lead to a disaster
606  * (but it may well be that other scenarios fail similarly).
607  */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)608 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
609 			      struct tcp_out_options *opts)
610 {
611 	u16 options = opts->options;	/* mungable copy */
612 
613 	if (unlikely(OPTION_MD5 & options)) {
614 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
615 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
616 		/* overload cookie hash location */
617 		opts->hash_location = (__u8 *)ptr;
618 		ptr += 4;
619 	}
620 
621 	if (unlikely(opts->mss)) {
622 		*ptr++ = htonl((TCPOPT_MSS << 24) |
623 			       (TCPOLEN_MSS << 16) |
624 			       opts->mss);
625 	}
626 
627 	if (likely(OPTION_TS & options)) {
628 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
629 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
630 				       (TCPOLEN_SACK_PERM << 16) |
631 				       (TCPOPT_TIMESTAMP << 8) |
632 				       TCPOLEN_TIMESTAMP);
633 			options &= ~OPTION_SACK_ADVERTISE;
634 		} else {
635 			*ptr++ = htonl((TCPOPT_NOP << 24) |
636 				       (TCPOPT_NOP << 16) |
637 				       (TCPOPT_TIMESTAMP << 8) |
638 				       TCPOLEN_TIMESTAMP);
639 		}
640 		*ptr++ = htonl(opts->tsval);
641 		*ptr++ = htonl(opts->tsecr);
642 	}
643 
644 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
645 		*ptr++ = htonl((TCPOPT_NOP << 24) |
646 			       (TCPOPT_NOP << 16) |
647 			       (TCPOPT_SACK_PERM << 8) |
648 			       TCPOLEN_SACK_PERM);
649 	}
650 
651 	if (unlikely(OPTION_WSCALE & options)) {
652 		*ptr++ = htonl((TCPOPT_NOP << 24) |
653 			       (TCPOPT_WINDOW << 16) |
654 			       (TCPOLEN_WINDOW << 8) |
655 			       opts->ws);
656 	}
657 
658 	if (unlikely(opts->num_sack_blocks)) {
659 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
660 			tp->duplicate_sack : tp->selective_acks;
661 		int this_sack;
662 
663 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
664 			       (TCPOPT_NOP  << 16) |
665 			       (TCPOPT_SACK <<  8) |
666 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
667 						     TCPOLEN_SACK_PERBLOCK)));
668 
669 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
670 		     ++this_sack) {
671 			*ptr++ = htonl(sp[this_sack].start_seq);
672 			*ptr++ = htonl(sp[this_sack].end_seq);
673 		}
674 
675 		tp->rx_opt.dsack = 0;
676 	}
677 
678 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
679 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
680 		u8 *p = (u8 *)ptr;
681 		u32 len; /* Fast Open option length */
682 
683 		if (foc->exp) {
684 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
685 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
686 				     TCPOPT_FASTOPEN_MAGIC);
687 			p += TCPOLEN_EXP_FASTOPEN_BASE;
688 		} else {
689 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
690 			*p++ = TCPOPT_FASTOPEN;
691 			*p++ = len;
692 		}
693 
694 		memcpy(p, foc->val, foc->len);
695 		if ((len & 3) == 2) {
696 			p[foc->len] = TCPOPT_NOP;
697 			p[foc->len + 1] = TCPOPT_NOP;
698 		}
699 		ptr += (len + 3) >> 2;
700 	}
701 
702 	smc_options_write(ptr, &options);
703 
704 	mptcp_options_write(ptr, opts);
705 }
706 
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)707 static void smc_set_option(const struct tcp_sock *tp,
708 			   struct tcp_out_options *opts,
709 			   unsigned int *remaining)
710 {
711 #if IS_ENABLED(CONFIG_SMC)
712 	if (static_branch_unlikely(&tcp_have_smc)) {
713 		if (tp->syn_smc) {
714 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
715 				opts->options |= OPTION_SMC;
716 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
717 			}
718 		}
719 	}
720 #endif
721 }
722 
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)723 static void smc_set_option_cond(const struct tcp_sock *tp,
724 				const struct inet_request_sock *ireq,
725 				struct tcp_out_options *opts,
726 				unsigned int *remaining)
727 {
728 #if IS_ENABLED(CONFIG_SMC)
729 	if (static_branch_unlikely(&tcp_have_smc)) {
730 		if (tp->syn_smc && ireq->smc_ok) {
731 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
732 				opts->options |= OPTION_SMC;
733 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
734 			}
735 		}
736 	}
737 #endif
738 }
739 
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)740 static void mptcp_set_option_cond(const struct request_sock *req,
741 				  struct tcp_out_options *opts,
742 				  unsigned int *remaining)
743 {
744 	if (rsk_is_mptcp(req)) {
745 		unsigned int size;
746 
747 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
748 			if (*remaining >= size) {
749 				opts->options |= OPTION_MPTCP;
750 				*remaining -= size;
751 			}
752 		}
753 	}
754 }
755 
756 /* Compute TCP options for SYN packets. This is not the final
757  * network wire format yet.
758  */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
760 				struct tcp_out_options *opts,
761 				struct tcp_md5sig_key **md5)
762 {
763 	struct tcp_sock *tp = tcp_sk(sk);
764 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
765 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
766 
767 	*md5 = NULL;
768 #ifdef CONFIG_TCP_MD5SIG
769 	if (static_branch_unlikely(&tcp_md5_needed) &&
770 	    rcu_access_pointer(tp->md5sig_info)) {
771 		*md5 = tp->af_specific->md5_lookup(sk, sk);
772 		if (*md5) {
773 			opts->options |= OPTION_MD5;
774 			remaining -= TCPOLEN_MD5SIG_ALIGNED;
775 		}
776 	}
777 #endif
778 
779 	/* We always get an MSS option.  The option bytes which will be seen in
780 	 * normal data packets should timestamps be used, must be in the MSS
781 	 * advertised.  But we subtract them from tp->mss_cache so that
782 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
783 	 * fact here if necessary.  If we don't do this correctly, as a
784 	 * receiver we won't recognize data packets as being full sized when we
785 	 * should, and thus we won't abide by the delayed ACK rules correctly.
786 	 * SACKs don't matter, we never delay an ACK when we have any of those
787 	 * going out.  */
788 	opts->mss = tcp_advertise_mss(sk);
789 	remaining -= TCPOLEN_MSS_ALIGNED;
790 
791 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
792 		opts->options |= OPTION_TS;
793 		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
794 		opts->tsecr = tp->rx_opt.ts_recent;
795 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
796 	}
797 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
798 		opts->ws = tp->rx_opt.rcv_wscale;
799 		opts->options |= OPTION_WSCALE;
800 		remaining -= TCPOLEN_WSCALE_ALIGNED;
801 	}
802 	if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
803 		opts->options |= OPTION_SACK_ADVERTISE;
804 		if (unlikely(!(OPTION_TS & opts->options)))
805 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
806 	}
807 
808 	if (fastopen && fastopen->cookie.len >= 0) {
809 		u32 need = fastopen->cookie.len;
810 
811 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
812 					       TCPOLEN_FASTOPEN_BASE;
813 		need = (need + 3) & ~3U;  /* Align to 32 bits */
814 		if (remaining >= need) {
815 			opts->options |= OPTION_FAST_OPEN_COOKIE;
816 			opts->fastopen_cookie = &fastopen->cookie;
817 			remaining -= need;
818 			tp->syn_fastopen = 1;
819 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
820 		}
821 	}
822 
823 	smc_set_option(tp, opts, &remaining);
824 
825 	if (sk_is_mptcp(sk)) {
826 		unsigned int size;
827 
828 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
829 			opts->options |= OPTION_MPTCP;
830 			remaining -= size;
831 		}
832 	}
833 
834 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
835 
836 	return MAX_TCP_OPTION_SPACE - remaining;
837 }
838 
839 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)840 static unsigned int tcp_synack_options(const struct sock *sk,
841 				       struct request_sock *req,
842 				       unsigned int mss, struct sk_buff *skb,
843 				       struct tcp_out_options *opts,
844 				       const struct tcp_md5sig_key *md5,
845 				       struct tcp_fastopen_cookie *foc,
846 				       enum tcp_synack_type synack_type,
847 				       struct sk_buff *syn_skb)
848 {
849 	struct inet_request_sock *ireq = inet_rsk(req);
850 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
851 
852 #ifdef CONFIG_TCP_MD5SIG
853 	if (md5) {
854 		opts->options |= OPTION_MD5;
855 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
856 
857 		/* We can't fit any SACK blocks in a packet with MD5 + TS
858 		 * options. There was discussion about disabling SACK
859 		 * rather than TS in order to fit in better with old,
860 		 * buggy kernels, but that was deemed to be unnecessary.
861 		 */
862 		if (synack_type != TCP_SYNACK_COOKIE)
863 			ireq->tstamp_ok &= !ireq->sack_ok;
864 	}
865 #endif
866 
867 	/* We always send an MSS option. */
868 	opts->mss = mss;
869 	remaining -= TCPOLEN_MSS_ALIGNED;
870 
871 	if (likely(ireq->wscale_ok)) {
872 		opts->ws = ireq->rcv_wscale;
873 		opts->options |= OPTION_WSCALE;
874 		remaining -= TCPOLEN_WSCALE_ALIGNED;
875 	}
876 	if (likely(ireq->tstamp_ok)) {
877 		opts->options |= OPTION_TS;
878 		opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
879 		opts->tsecr = req->ts_recent;
880 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
881 	}
882 	if (likely(ireq->sack_ok)) {
883 		opts->options |= OPTION_SACK_ADVERTISE;
884 		if (unlikely(!ireq->tstamp_ok))
885 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
886 	}
887 	if (foc != NULL && foc->len >= 0) {
888 		u32 need = foc->len;
889 
890 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
891 				   TCPOLEN_FASTOPEN_BASE;
892 		need = (need + 3) & ~3U;  /* Align to 32 bits */
893 		if (remaining >= need) {
894 			opts->options |= OPTION_FAST_OPEN_COOKIE;
895 			opts->fastopen_cookie = foc;
896 			remaining -= need;
897 		}
898 	}
899 
900 	mptcp_set_option_cond(req, opts, &remaining);
901 
902 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
903 
904 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
905 			      synack_type, opts, &remaining);
906 
907 	return MAX_TCP_OPTION_SPACE - remaining;
908 }
909 
910 /* Compute TCP options for ESTABLISHED sockets. This is not the
911  * final wire format yet.
912  */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
914 					struct tcp_out_options *opts,
915 					struct tcp_md5sig_key **md5)
916 {
917 	struct tcp_sock *tp = tcp_sk(sk);
918 	unsigned int size = 0;
919 	unsigned int eff_sacks;
920 
921 	opts->options = 0;
922 
923 	*md5 = NULL;
924 #ifdef CONFIG_TCP_MD5SIG
925 	if (static_branch_unlikely(&tcp_md5_needed) &&
926 	    rcu_access_pointer(tp->md5sig_info)) {
927 		*md5 = tp->af_specific->md5_lookup(sk, sk);
928 		if (*md5) {
929 			opts->options |= OPTION_MD5;
930 			size += TCPOLEN_MD5SIG_ALIGNED;
931 		}
932 	}
933 #endif
934 
935 	if (likely(tp->rx_opt.tstamp_ok)) {
936 		opts->options |= OPTION_TS;
937 		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
938 		opts->tsecr = tp->rx_opt.ts_recent;
939 		size += TCPOLEN_TSTAMP_ALIGNED;
940 	}
941 
942 	/* MPTCP options have precedence over SACK for the limited TCP
943 	 * option space because a MPTCP connection would be forced to
944 	 * fall back to regular TCP if a required multipath option is
945 	 * missing. SACK still gets a chance to use whatever space is
946 	 * left.
947 	 */
948 	if (sk_is_mptcp(sk)) {
949 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
950 		unsigned int opt_size = 0;
951 
952 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
953 					      &opts->mptcp)) {
954 			opts->options |= OPTION_MPTCP;
955 			size += opt_size;
956 		}
957 	}
958 
959 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
960 	if (unlikely(eff_sacks)) {
961 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
962 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
963 					 TCPOLEN_SACK_PERBLOCK))
964 			return size;
965 
966 		opts->num_sack_blocks =
967 			min_t(unsigned int, eff_sacks,
968 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
969 			      TCPOLEN_SACK_PERBLOCK);
970 
971 		size += TCPOLEN_SACK_BASE_ALIGNED +
972 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
973 	}
974 
975 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
976 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
977 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
978 
979 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
980 
981 		size = MAX_TCP_OPTION_SPACE - remaining;
982 	}
983 
984 	return size;
985 }
986 
987 
988 /* TCP SMALL QUEUES (TSQ)
989  *
990  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
991  * to reduce RTT and bufferbloat.
992  * We do this using a special skb destructor (tcp_wfree).
993  *
994  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
995  * needs to be reallocated in a driver.
996  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
997  *
998  * Since transmit from skb destructor is forbidden, we use a tasklet
999  * to process all sockets that eventually need to send more skbs.
1000  * We use one tasklet per cpu, with its own queue of sockets.
1001  */
1002 struct tsq_tasklet {
1003 	struct tasklet_struct	tasklet;
1004 	struct list_head	head; /* queue of tcp sockets */
1005 };
1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1007 
tcp_tsq_write(struct sock * sk)1008 static void tcp_tsq_write(struct sock *sk)
1009 {
1010 	if ((1 << sk->sk_state) &
1011 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1012 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1013 		struct tcp_sock *tp = tcp_sk(sk);
1014 
1015 		if (tp->lost_out > tp->retrans_out &&
1016 		    tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1017 			tcp_mstamp_refresh(tp);
1018 			tcp_xmit_retransmit_queue(sk);
1019 		}
1020 
1021 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1022 			       0, GFP_ATOMIC);
1023 	}
1024 }
1025 
tcp_tsq_handler(struct sock * sk)1026 static void tcp_tsq_handler(struct sock *sk)
1027 {
1028 	bh_lock_sock(sk);
1029 	if (!sock_owned_by_user(sk))
1030 		tcp_tsq_write(sk);
1031 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1032 		sock_hold(sk);
1033 	bh_unlock_sock(sk);
1034 }
1035 /*
1036  * One tasklet per cpu tries to send more skbs.
1037  * We run in tasklet context but need to disable irqs when
1038  * transferring tsq->head because tcp_wfree() might
1039  * interrupt us (non NAPI drivers)
1040  */
tcp_tasklet_func(unsigned long data)1041 static void tcp_tasklet_func(unsigned long data)
1042 {
1043 	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
1044 	LIST_HEAD(list);
1045 	unsigned long flags;
1046 	struct list_head *q, *n;
1047 	struct tcp_sock *tp;
1048 	struct sock *sk;
1049 
1050 	local_irq_save(flags);
1051 	list_splice_init(&tsq->head, &list);
1052 	local_irq_restore(flags);
1053 
1054 	list_for_each_safe(q, n, &list) {
1055 		tp = list_entry(q, struct tcp_sock, tsq_node);
1056 		list_del(&tp->tsq_node);
1057 
1058 		sk = (struct sock *)tp;
1059 		smp_mb__before_atomic();
1060 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1061 
1062 		tcp_tsq_handler(sk);
1063 		sk_free(sk);
1064 	}
1065 }
1066 
1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1068 			  TCPF_WRITE_TIMER_DEFERRED |	\
1069 			  TCPF_DELACK_TIMER_DEFERRED |	\
1070 			  TCPF_MTU_REDUCED_DEFERRED)
1071 /**
1072  * tcp_release_cb - tcp release_sock() callback
1073  * @sk: socket
1074  *
1075  * called from release_sock() to perform protocol dependent
1076  * actions before socket release.
1077  */
tcp_release_cb(struct sock * sk)1078 void tcp_release_cb(struct sock *sk)
1079 {
1080 	unsigned long flags, nflags;
1081 
1082 	/* perform an atomic operation only if at least one flag is set */
1083 	do {
1084 		flags = sk->sk_tsq_flags;
1085 		if (!(flags & TCP_DEFERRED_ALL))
1086 			return;
1087 		nflags = flags & ~TCP_DEFERRED_ALL;
1088 	} while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1089 
1090 	if (flags & TCPF_TSQ_DEFERRED) {
1091 		tcp_tsq_write(sk);
1092 		__sock_put(sk);
1093 	}
1094 	/* Here begins the tricky part :
1095 	 * We are called from release_sock() with :
1096 	 * 1) BH disabled
1097 	 * 2) sk_lock.slock spinlock held
1098 	 * 3) socket owned by us (sk->sk_lock.owned == 1)
1099 	 *
1100 	 * But following code is meant to be called from BH handlers,
1101 	 * so we should keep BH disabled, but early release socket ownership
1102 	 */
1103 	sock_release_ownership(sk);
1104 
1105 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106 		tcp_write_timer_handler(sk);
1107 		__sock_put(sk);
1108 	}
1109 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110 		tcp_delack_timer_handler(sk);
1111 		__sock_put(sk);
1112 	}
1113 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1115 		__sock_put(sk);
1116 	}
1117 }
1118 EXPORT_SYMBOL(tcp_release_cb);
1119 
tcp_tasklet_init(void)1120 void __init tcp_tasklet_init(void)
1121 {
1122 	int i;
1123 
1124 	for_each_possible_cpu(i) {
1125 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1126 
1127 		INIT_LIST_HEAD(&tsq->head);
1128 		tasklet_init(&tsq->tasklet,
1129 			     tcp_tasklet_func,
1130 			     (unsigned long)tsq);
1131 	}
1132 }
1133 
1134 /*
1135  * Write buffer destructor automatically called from kfree_skb.
1136  * We can't xmit new skbs from this context, as we might already
1137  * hold qdisc lock.
1138  */
tcp_wfree(struct sk_buff * skb)1139 void tcp_wfree(struct sk_buff *skb)
1140 {
1141 	struct sock *sk = skb->sk;
1142 	struct tcp_sock *tp = tcp_sk(sk);
1143 	unsigned long flags, nval, oval;
1144 
1145 	/* Keep one reference on sk_wmem_alloc.
1146 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1147 	 */
1148 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1149 
1150 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1151 	 * Wait until our queues (qdisc + devices) are drained.
1152 	 * This gives :
1153 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1154 	 * - chance for incoming ACK (processed by another cpu maybe)
1155 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1156 	 */
1157 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1158 		goto out;
1159 
1160 	for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1161 		struct tsq_tasklet *tsq;
1162 		bool empty;
1163 
1164 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1165 			goto out;
1166 
1167 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1168 		nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1169 		if (nval != oval)
1170 			continue;
1171 
1172 		/* queue this socket to tasklet queue */
1173 		local_irq_save(flags);
1174 		tsq = this_cpu_ptr(&tsq_tasklet);
1175 		empty = list_empty(&tsq->head);
1176 		list_add(&tp->tsq_node, &tsq->head);
1177 		if (empty)
1178 			tasklet_schedule(&tsq->tasklet);
1179 		local_irq_restore(flags);
1180 		return;
1181 	}
1182 out:
1183 	sk_free(sk);
1184 }
1185 
1186 /* Note: Called under soft irq.
1187  * We can call TCP stack right away, unless socket is owned by user.
1188  */
tcp_pace_kick(struct hrtimer * timer)1189 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1190 {
1191 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1192 	struct sock *sk = (struct sock *)tp;
1193 
1194 	tcp_tsq_handler(sk);
1195 	sock_put(sk);
1196 
1197 	return HRTIMER_NORESTART;
1198 }
1199 
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1200 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1201 				      u64 prior_wstamp)
1202 {
1203 	struct tcp_sock *tp = tcp_sk(sk);
1204 
1205 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1206 		unsigned long rate = sk->sk_pacing_rate;
1207 
1208 		/* Original sch_fq does not pace first 10 MSS
1209 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1210 		 * this is a minor annoyance.
1211 		 */
1212 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1213 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1214 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1215 
1216 			/* take into account OS jitter */
1217 			len_ns -= min_t(u64, len_ns / 2, credit);
1218 			tp->tcp_wstamp_ns += len_ns;
1219 		}
1220 	}
1221 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1222 }
1223 
1224 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1225 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1226 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1227 
1228 /* This routine actually transmits TCP packets queued in by
1229  * tcp_do_sendmsg().  This is used by both the initial
1230  * transmission and possible later retransmissions.
1231  * All SKB's seen here are completely headerless.  It is our
1232  * job to build the TCP header, and pass the packet down to
1233  * IP so it can do the same plus pass the packet off to the
1234  * device.
1235  *
1236  * We are working here with either a clone of the original
1237  * SKB, or a fresh unique copy made by the retransmit engine.
1238  */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1239 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1240 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1241 {
1242 	const struct inet_connection_sock *icsk = inet_csk(sk);
1243 	struct inet_sock *inet;
1244 	struct tcp_sock *tp;
1245 	struct tcp_skb_cb *tcb;
1246 	struct tcp_out_options opts;
1247 	unsigned int tcp_options_size, tcp_header_size;
1248 	struct sk_buff *oskb = NULL;
1249 	struct tcp_md5sig_key *md5;
1250 	struct tcphdr *th;
1251 	u64 prior_wstamp;
1252 	int err;
1253 
1254 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1255 	tp = tcp_sk(sk);
1256 	prior_wstamp = tp->tcp_wstamp_ns;
1257 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1258 	skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1259 	if (clone_it) {
1260 		TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1261 			- tp->snd_una;
1262 		oskb = skb;
1263 
1264 		tcp_skb_tsorted_save(oskb) {
1265 			if (unlikely(skb_cloned(oskb)))
1266 				skb = pskb_copy(oskb, gfp_mask);
1267 			else
1268 				skb = skb_clone(oskb, gfp_mask);
1269 		} tcp_skb_tsorted_restore(oskb);
1270 
1271 		if (unlikely(!skb))
1272 			return -ENOBUFS;
1273 		/* retransmit skbs might have a non zero value in skb->dev
1274 		 * because skb->dev is aliased with skb->rbnode.rb_left
1275 		 */
1276 		skb->dev = NULL;
1277 	}
1278 
1279 	inet = inet_sk(sk);
1280 	tcb = TCP_SKB_CB(skb);
1281 	memset(&opts, 0, sizeof(opts));
1282 
1283 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1284 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1285 	} else {
1286 		tcp_options_size = tcp_established_options(sk, skb, &opts,
1287 							   &md5);
1288 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1289 		 * at receiver : This slightly improve GRO performance.
1290 		 * Note that we do not force the PSH flag for non GSO packets,
1291 		 * because they might be sent under high congestion events,
1292 		 * and in this case it is better to delay the delivery of 1-MSS
1293 		 * packets and thus the corresponding ACK packet that would
1294 		 * release the following packet.
1295 		 */
1296 		if (tcp_skb_pcount(skb) > 1)
1297 			tcb->tcp_flags |= TCPHDR_PSH;
1298 	}
1299 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1300 
1301 	/* if no packet is in qdisc/device queue, then allow XPS to select
1302 	 * another queue. We can be called from tcp_tsq_handler()
1303 	 * which holds one reference to sk.
1304 	 *
1305 	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1306 	 * One way to get this would be to set skb->truesize = 2 on them.
1307 	 */
1308 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1309 
1310 	/* If we had to use memory reserve to allocate this skb,
1311 	 * this might cause drops if packet is looped back :
1312 	 * Other socket might not have SOCK_MEMALLOC.
1313 	 * Packets not looped back do not care about pfmemalloc.
1314 	 */
1315 	skb->pfmemalloc = 0;
1316 
1317 	skb_push(skb, tcp_header_size);
1318 	skb_reset_transport_header(skb);
1319 
1320 	skb_orphan(skb);
1321 	skb->sk = sk;
1322 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1323 	skb_set_hash_from_sk(skb, sk);
1324 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1325 
1326 	skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1327 
1328 	/* Build TCP header and checksum it. */
1329 	th = (struct tcphdr *)skb->data;
1330 	th->source		= inet->inet_sport;
1331 	th->dest		= inet->inet_dport;
1332 	th->seq			= htonl(tcb->seq);
1333 	th->ack_seq		= htonl(rcv_nxt);
1334 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1335 					tcb->tcp_flags);
1336 
1337 	th->check		= 0;
1338 	th->urg_ptr		= 0;
1339 
1340 	/* The urg_mode check is necessary during a below snd_una win probe */
1341 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1342 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1343 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1344 			th->urg = 1;
1345 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1346 			th->urg_ptr = htons(0xFFFF);
1347 			th->urg = 1;
1348 		}
1349 	}
1350 
1351 	tcp_options_write((__be32 *)(th + 1), tp, &opts);
1352 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1353 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1354 		th->window      = htons(tcp_select_window(sk));
1355 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1356 	} else {
1357 		/* RFC1323: The window in SYN & SYN/ACK segments
1358 		 * is never scaled.
1359 		 */
1360 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1361 	}
1362 #ifdef CONFIG_TCP_MD5SIG
1363 	/* Calculate the MD5 hash, as we have all we need now */
1364 	if (md5) {
1365 		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1366 		tp->af_specific->calc_md5_hash(opts.hash_location,
1367 					       md5, sk, skb);
1368 	}
1369 #endif
1370 
1371 	/* BPF prog is the last one writing header option */
1372 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1373 
1374 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1375 			   tcp_v6_send_check, tcp_v4_send_check,
1376 			   sk, skb);
1377 
1378 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1379 		tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1380 
1381 	if (skb->len != tcp_header_size) {
1382 		tcp_event_data_sent(tp, sk);
1383 		tp->data_segs_out += tcp_skb_pcount(skb);
1384 		tp->bytes_sent += skb->len - tcp_header_size;
1385 	}
1386 
1387 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1388 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1389 			      tcp_skb_pcount(skb));
1390 
1391 	tp->segs_out += tcp_skb_pcount(skb);
1392 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1393 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1394 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1395 
1396 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1397 
1398 	/* Cleanup our debris for IP stacks */
1399 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1400 			       sizeof(struct inet6_skb_parm)));
1401 
1402 	tcp_add_tx_delay(skb, tp);
1403 
1404 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1405 				 inet6_csk_xmit, ip_queue_xmit,
1406 				 sk, skb, &inet->cork.fl);
1407 
1408 	if (unlikely(err > 0)) {
1409 		tcp_enter_cwr(sk);
1410 		err = net_xmit_eval(err);
1411 	}
1412 	if (!err && oskb) {
1413 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1414 		tcp_rate_skb_sent(sk, oskb);
1415 	}
1416 	return err;
1417 }
1418 
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1419 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1420 			    gfp_t gfp_mask)
1421 {
1422 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1423 				  tcp_sk(sk)->rcv_nxt);
1424 }
1425 
1426 /* This routine just queues the buffer for sending.
1427  *
1428  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1429  * otherwise socket can stall.
1430  */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1431 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1432 {
1433 	struct tcp_sock *tp = tcp_sk(sk);
1434 
1435 	/* Advance write_seq and place onto the write_queue. */
1436 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1437 	__skb_header_release(skb);
1438 	tcp_add_write_queue_tail(sk, skb);
1439 	sk_wmem_queued_add(sk, skb->truesize);
1440 	sk_mem_charge(sk, skb->truesize);
1441 }
1442 
1443 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1444 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1445 {
1446 	if (skb->len <= mss_now) {
1447 		/* Avoid the costly divide in the normal
1448 		 * non-TSO case.
1449 		 */
1450 		tcp_skb_pcount_set(skb, 1);
1451 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1452 	} else {
1453 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1454 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1455 	}
1456 }
1457 
1458 /* Pcount in the middle of the write queue got changed, we need to do various
1459  * tweaks to fix counters
1460  */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1461 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1462 {
1463 	struct tcp_sock *tp = tcp_sk(sk);
1464 
1465 	tp->packets_out -= decr;
1466 
1467 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1468 		tp->sacked_out -= decr;
1469 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1470 		tp->retrans_out -= decr;
1471 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1472 		tp->lost_out -= decr;
1473 
1474 	/* Reno case is special. Sigh... */
1475 	if (tcp_is_reno(tp) && decr > 0)
1476 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1477 
1478 	if (tp->lost_skb_hint &&
1479 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1480 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1481 		tp->lost_cnt_hint -= decr;
1482 
1483 	tcp_verify_left_out(tp);
1484 }
1485 
tcp_has_tx_tstamp(const struct sk_buff * skb)1486 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1487 {
1488 	return TCP_SKB_CB(skb)->txstamp_ack ||
1489 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1490 }
1491 
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1492 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1493 {
1494 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1495 
1496 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1497 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1498 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1499 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1500 
1501 		shinfo->tx_flags &= ~tsflags;
1502 		shinfo2->tx_flags |= tsflags;
1503 		swap(shinfo->tskey, shinfo2->tskey);
1504 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1505 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1506 	}
1507 }
1508 
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1509 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1510 {
1511 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1512 	TCP_SKB_CB(skb)->eor = 0;
1513 }
1514 
1515 /* Insert buff after skb on the write or rtx queue of sk.  */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1516 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1517 					 struct sk_buff *buff,
1518 					 struct sock *sk,
1519 					 enum tcp_queue tcp_queue)
1520 {
1521 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1522 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1523 	else
1524 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1525 }
1526 
1527 /* Function to create two new TCP segments.  Shrinks the given segment
1528  * to the specified size and appends a new segment with the rest of the
1529  * packet to the list.  This won't be called frequently, I hope.
1530  * Remember, these are still headerless SKBs at this point.
1531  */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1532 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1533 		 struct sk_buff *skb, u32 len,
1534 		 unsigned int mss_now, gfp_t gfp)
1535 {
1536 	struct tcp_sock *tp = tcp_sk(sk);
1537 	struct sk_buff *buff;
1538 	int nsize, old_factor;
1539 	long limit;
1540 	int nlen;
1541 	u8 flags;
1542 
1543 	if (WARN_ON(len > skb->len))
1544 		return -EINVAL;
1545 
1546 	nsize = skb_headlen(skb) - len;
1547 	if (nsize < 0)
1548 		nsize = 0;
1549 
1550 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1551 	 * We need some allowance to not penalize applications setting small
1552 	 * SO_SNDBUF values.
1553 	 * Also allow first and last skb in retransmit queue to be split.
1554 	 */
1555 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1556 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1557 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1558 		     skb != tcp_rtx_queue_head(sk) &&
1559 		     skb != tcp_rtx_queue_tail(sk))) {
1560 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1561 		return -ENOMEM;
1562 	}
1563 
1564 	if (skb_unclone(skb, gfp))
1565 		return -ENOMEM;
1566 
1567 	/* Get a new skb... force flag on. */
1568 	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1569 	if (!buff)
1570 		return -ENOMEM; /* We'll just try again later. */
1571 	skb_copy_decrypted(buff, skb);
1572 
1573 	sk_wmem_queued_add(sk, buff->truesize);
1574 	sk_mem_charge(sk, buff->truesize);
1575 	nlen = skb->len - len - nsize;
1576 	buff->truesize += nlen;
1577 	skb->truesize -= nlen;
1578 
1579 	/* Correct the sequence numbers. */
1580 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1581 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1582 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1583 
1584 	/* PSH and FIN should only be set in the second packet. */
1585 	flags = TCP_SKB_CB(skb)->tcp_flags;
1586 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1587 	TCP_SKB_CB(buff)->tcp_flags = flags;
1588 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1589 	tcp_skb_fragment_eor(skb, buff);
1590 
1591 	skb_split(skb, buff, len);
1592 
1593 	buff->ip_summed = CHECKSUM_PARTIAL;
1594 
1595 	buff->tstamp = skb->tstamp;
1596 	tcp_fragment_tstamp(skb, buff);
1597 
1598 	old_factor = tcp_skb_pcount(skb);
1599 
1600 	/* Fix up tso_factor for both original and new SKB.  */
1601 	tcp_set_skb_tso_segs(skb, mss_now);
1602 	tcp_set_skb_tso_segs(buff, mss_now);
1603 
1604 	/* Update delivered info for the new segment */
1605 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1606 
1607 	/* If this packet has been sent out already, we must
1608 	 * adjust the various packet counters.
1609 	 */
1610 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1611 		int diff = old_factor - tcp_skb_pcount(skb) -
1612 			tcp_skb_pcount(buff);
1613 
1614 		if (diff)
1615 			tcp_adjust_pcount(sk, skb, diff);
1616 	}
1617 
1618 	/* Link BUFF into the send queue. */
1619 	__skb_header_release(buff);
1620 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1621 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1622 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1623 
1624 	return 0;
1625 }
1626 
1627 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1628  * data is not copied, but immediately discarded.
1629  */
__pskb_trim_head(struct sk_buff * skb,int len)1630 static int __pskb_trim_head(struct sk_buff *skb, int len)
1631 {
1632 	struct skb_shared_info *shinfo;
1633 	int i, k, eat;
1634 
1635 	eat = min_t(int, len, skb_headlen(skb));
1636 	if (eat) {
1637 		__skb_pull(skb, eat);
1638 		len -= eat;
1639 		if (!len)
1640 			return 0;
1641 	}
1642 	eat = len;
1643 	k = 0;
1644 	shinfo = skb_shinfo(skb);
1645 	for (i = 0; i < shinfo->nr_frags; i++) {
1646 		int size = skb_frag_size(&shinfo->frags[i]);
1647 
1648 		if (size <= eat) {
1649 			skb_frag_unref(skb, i);
1650 			eat -= size;
1651 		} else {
1652 			shinfo->frags[k] = shinfo->frags[i];
1653 			if (eat) {
1654 				skb_frag_off_add(&shinfo->frags[k], eat);
1655 				skb_frag_size_sub(&shinfo->frags[k], eat);
1656 				eat = 0;
1657 			}
1658 			k++;
1659 		}
1660 	}
1661 	shinfo->nr_frags = k;
1662 
1663 	skb->data_len -= len;
1664 	skb->len = skb->data_len;
1665 	return len;
1666 }
1667 
1668 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1669 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1670 {
1671 	u32 delta_truesize;
1672 
1673 	if (skb_unclone(skb, GFP_ATOMIC))
1674 		return -ENOMEM;
1675 
1676 	delta_truesize = __pskb_trim_head(skb, len);
1677 
1678 	TCP_SKB_CB(skb)->seq += len;
1679 	skb->ip_summed = CHECKSUM_PARTIAL;
1680 
1681 	if (delta_truesize) {
1682 		skb->truesize	   -= delta_truesize;
1683 		sk_wmem_queued_add(sk, -delta_truesize);
1684 		sk_mem_uncharge(sk, delta_truesize);
1685 	}
1686 
1687 	/* Any change of skb->len requires recalculation of tso factor. */
1688 	if (tcp_skb_pcount(skb) > 1)
1689 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1690 
1691 	return 0;
1692 }
1693 
1694 /* Calculate MSS not accounting any TCP options.  */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1695 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1696 {
1697 	const struct tcp_sock *tp = tcp_sk(sk);
1698 	const struct inet_connection_sock *icsk = inet_csk(sk);
1699 	int mss_now;
1700 
1701 	/* Calculate base mss without TCP options:
1702 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1703 	 */
1704 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1705 
1706 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1707 	if (icsk->icsk_af_ops->net_frag_header_len) {
1708 		const struct dst_entry *dst = __sk_dst_get(sk);
1709 
1710 		if (dst && dst_allfrag(dst))
1711 			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1712 	}
1713 
1714 	/* Clamp it (mss_clamp does not include tcp options) */
1715 	if (mss_now > tp->rx_opt.mss_clamp)
1716 		mss_now = tp->rx_opt.mss_clamp;
1717 
1718 	/* Now subtract optional transport overhead */
1719 	mss_now -= icsk->icsk_ext_hdr_len;
1720 
1721 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1722 	mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1723 	return mss_now;
1724 }
1725 
1726 /* Calculate MSS. Not accounting for SACKs here.  */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1727 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1728 {
1729 	/* Subtract TCP options size, not including SACKs */
1730 	return __tcp_mtu_to_mss(sk, pmtu) -
1731 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1732 }
1733 
1734 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1735 int tcp_mss_to_mtu(struct sock *sk, int mss)
1736 {
1737 	const struct tcp_sock *tp = tcp_sk(sk);
1738 	const struct inet_connection_sock *icsk = inet_csk(sk);
1739 	int mtu;
1740 
1741 	mtu = mss +
1742 	      tp->tcp_header_len +
1743 	      icsk->icsk_ext_hdr_len +
1744 	      icsk->icsk_af_ops->net_header_len;
1745 
1746 	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1747 	if (icsk->icsk_af_ops->net_frag_header_len) {
1748 		const struct dst_entry *dst = __sk_dst_get(sk);
1749 
1750 		if (dst && dst_allfrag(dst))
1751 			mtu += icsk->icsk_af_ops->net_frag_header_len;
1752 	}
1753 	return mtu;
1754 }
1755 EXPORT_SYMBOL(tcp_mss_to_mtu);
1756 
1757 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1758 void tcp_mtup_init(struct sock *sk)
1759 {
1760 	struct tcp_sock *tp = tcp_sk(sk);
1761 	struct inet_connection_sock *icsk = inet_csk(sk);
1762 	struct net *net = sock_net(sk);
1763 
1764 	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1765 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1766 			       icsk->icsk_af_ops->net_header_len;
1767 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1768 	icsk->icsk_mtup.probe_size = 0;
1769 	if (icsk->icsk_mtup.enabled)
1770 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1771 }
1772 EXPORT_SYMBOL(tcp_mtup_init);
1773 
1774 /* This function synchronize snd mss to current pmtu/exthdr set.
1775 
1776    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1777    for TCP options, but includes only bare TCP header.
1778 
1779    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1780    It is minimum of user_mss and mss received with SYN.
1781    It also does not include TCP options.
1782 
1783    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1784 
1785    tp->mss_cache is current effective sending mss, including
1786    all tcp options except for SACKs. It is evaluated,
1787    taking into account current pmtu, but never exceeds
1788    tp->rx_opt.mss_clamp.
1789 
1790    NOTE1. rfc1122 clearly states that advertised MSS
1791    DOES NOT include either tcp or ip options.
1792 
1793    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1794    are READ ONLY outside this function.		--ANK (980731)
1795  */
tcp_sync_mss(struct sock * sk,u32 pmtu)1796 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1797 {
1798 	struct tcp_sock *tp = tcp_sk(sk);
1799 	struct inet_connection_sock *icsk = inet_csk(sk);
1800 	int mss_now;
1801 
1802 	if (icsk->icsk_mtup.search_high > pmtu)
1803 		icsk->icsk_mtup.search_high = pmtu;
1804 
1805 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1806 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1807 
1808 	/* And store cached results */
1809 	icsk->icsk_pmtu_cookie = pmtu;
1810 	if (icsk->icsk_mtup.enabled)
1811 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1812 	tp->mss_cache = mss_now;
1813 
1814 	return mss_now;
1815 }
1816 EXPORT_SYMBOL(tcp_sync_mss);
1817 
1818 /* Compute the current effective MSS, taking SACKs and IP options,
1819  * and even PMTU discovery events into account.
1820  */
tcp_current_mss(struct sock * sk)1821 unsigned int tcp_current_mss(struct sock *sk)
1822 {
1823 	const struct tcp_sock *tp = tcp_sk(sk);
1824 	const struct dst_entry *dst = __sk_dst_get(sk);
1825 	u32 mss_now;
1826 	unsigned int header_len;
1827 	struct tcp_out_options opts;
1828 	struct tcp_md5sig_key *md5;
1829 
1830 	mss_now = tp->mss_cache;
1831 
1832 	if (dst) {
1833 		u32 mtu = dst_mtu(dst);
1834 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1835 			mss_now = tcp_sync_mss(sk, mtu);
1836 	}
1837 
1838 	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1839 		     sizeof(struct tcphdr);
1840 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1841 	 * some common options. If this is an odd packet (because we have SACK
1842 	 * blocks etc) then our calculated header_len will be different, and
1843 	 * we have to adjust mss_now correspondingly */
1844 	if (header_len != tp->tcp_header_len) {
1845 		int delta = (int) header_len - tp->tcp_header_len;
1846 		mss_now -= delta;
1847 	}
1848 
1849 	return mss_now;
1850 }
1851 
1852 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1853  * As additional protections, we do not touch cwnd in retransmission phases,
1854  * and if application hit its sndbuf limit recently.
1855  */
tcp_cwnd_application_limited(struct sock * sk)1856 static void tcp_cwnd_application_limited(struct sock *sk)
1857 {
1858 	struct tcp_sock *tp = tcp_sk(sk);
1859 
1860 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1861 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1862 		/* Limited by application or receiver window. */
1863 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1864 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1865 		if (win_used < tp->snd_cwnd) {
1866 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1867 			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1868 		}
1869 		tp->snd_cwnd_used = 0;
1870 	}
1871 	tp->snd_cwnd_stamp = tcp_jiffies32;
1872 }
1873 
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1874 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1875 {
1876 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1877 	struct tcp_sock *tp = tcp_sk(sk);
1878 
1879 	/* Track the maximum number of outstanding packets in each
1880 	 * window, and remember whether we were cwnd-limited then.
1881 	 */
1882 	if (!before(tp->snd_una, tp->max_packets_seq) ||
1883 	    tp->packets_out > tp->max_packets_out ||
1884 	    is_cwnd_limited) {
1885 		tp->max_packets_out = tp->packets_out;
1886 		tp->max_packets_seq = tp->snd_nxt;
1887 		tp->is_cwnd_limited = is_cwnd_limited;
1888 	}
1889 
1890 	if (tcp_is_cwnd_limited(sk)) {
1891 		/* Network is feed fully. */
1892 		tp->snd_cwnd_used = 0;
1893 		tp->snd_cwnd_stamp = tcp_jiffies32;
1894 	} else {
1895 		/* Network starves. */
1896 		if (tp->packets_out > tp->snd_cwnd_used)
1897 			tp->snd_cwnd_used = tp->packets_out;
1898 
1899 		if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1900 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1901 		    !ca_ops->cong_control)
1902 			tcp_cwnd_application_limited(sk);
1903 
1904 		/* The following conditions together indicate the starvation
1905 		 * is caused by insufficient sender buffer:
1906 		 * 1) just sent some data (see tcp_write_xmit)
1907 		 * 2) not cwnd limited (this else condition)
1908 		 * 3) no more data to send (tcp_write_queue_empty())
1909 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1910 		 */
1911 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1912 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1913 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1914 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1915 	}
1916 }
1917 
1918 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1919 static bool tcp_minshall_check(const struct tcp_sock *tp)
1920 {
1921 	return after(tp->snd_sml, tp->snd_una) &&
1922 		!after(tp->snd_sml, tp->snd_nxt);
1923 }
1924 
1925 /* Update snd_sml if this skb is under mss
1926  * Note that a TSO packet might end with a sub-mss segment
1927  * The test is really :
1928  * if ((skb->len % mss) != 0)
1929  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1930  * But we can avoid doing the divide again given we already have
1931  *  skb_pcount = skb->len / mss_now
1932  */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1933 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1934 				const struct sk_buff *skb)
1935 {
1936 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1937 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1938 }
1939 
1940 /* Return false, if packet can be sent now without violation Nagle's rules:
1941  * 1. It is full sized. (provided by caller in %partial bool)
1942  * 2. Or it contains FIN. (already checked by caller)
1943  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1944  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1945  *    With Minshall's modification: all sent small packets are ACKed.
1946  */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1947 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1948 			    int nonagle)
1949 {
1950 	return partial &&
1951 		((nonagle & TCP_NAGLE_CORK) ||
1952 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1953 }
1954 
1955 /* Return how many segs we'd like on a TSO packet,
1956  * to send one TSO packet per ms
1957  */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1958 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1959 			    int min_tso_segs)
1960 {
1961 	u32 bytes, segs;
1962 
1963 	bytes = min_t(unsigned long,
1964 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1965 		      sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1966 
1967 	/* Goal is to send at least one packet per ms,
1968 	 * not one big TSO packet every 100 ms.
1969 	 * This preserves ACK clocking and is consistent
1970 	 * with tcp_tso_should_defer() heuristic.
1971 	 */
1972 	segs = max_t(u32, bytes / mss_now, min_tso_segs);
1973 
1974 	return segs;
1975 }
1976 
1977 /* Return the number of segments we want in the skb we are transmitting.
1978  * See if congestion control module wants to decide; otherwise, autosize.
1979  */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1980 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1981 {
1982 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1983 	u32 min_tso, tso_segs;
1984 
1985 	min_tso = ca_ops->min_tso_segs ?
1986 			ca_ops->min_tso_segs(sk) :
1987 			sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1988 
1989 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1990 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1991 }
1992 
1993 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1994 static unsigned int tcp_mss_split_point(const struct sock *sk,
1995 					const struct sk_buff *skb,
1996 					unsigned int mss_now,
1997 					unsigned int max_segs,
1998 					int nonagle)
1999 {
2000 	const struct tcp_sock *tp = tcp_sk(sk);
2001 	u32 partial, needed, window, max_len;
2002 
2003 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2004 	max_len = mss_now * max_segs;
2005 
2006 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2007 		return max_len;
2008 
2009 	needed = min(skb->len, window);
2010 
2011 	if (max_len <= needed)
2012 		return max_len;
2013 
2014 	partial = needed % mss_now;
2015 	/* If last segment is not a full MSS, check if Nagle rules allow us
2016 	 * to include this last segment in this skb.
2017 	 * Otherwise, we'll split the skb at last MSS boundary
2018 	 */
2019 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2020 		return needed - partial;
2021 
2022 	return needed;
2023 }
2024 
2025 /* Can at least one segment of SKB be sent right now, according to the
2026  * congestion window rules?  If so, return how many segments are allowed.
2027  */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2028 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2029 					 const struct sk_buff *skb)
2030 {
2031 	u32 in_flight, cwnd, halfcwnd;
2032 
2033 	/* Don't be strict about the congestion window for the final FIN.  */
2034 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2035 	    tcp_skb_pcount(skb) == 1)
2036 		return 1;
2037 
2038 	in_flight = tcp_packets_in_flight(tp);
2039 	cwnd = tp->snd_cwnd;
2040 	if (in_flight >= cwnd)
2041 		return 0;
2042 
2043 	/* For better scheduling, ensure we have at least
2044 	 * 2 GSO packets in flight.
2045 	 */
2046 	halfcwnd = max(cwnd >> 1, 1U);
2047 	return min(halfcwnd, cwnd - in_flight);
2048 }
2049 
2050 /* Initialize TSO state of a skb.
2051  * This must be invoked the first time we consider transmitting
2052  * SKB onto the wire.
2053  */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2054 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2055 {
2056 	int tso_segs = tcp_skb_pcount(skb);
2057 
2058 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2059 		tcp_set_skb_tso_segs(skb, mss_now);
2060 		tso_segs = tcp_skb_pcount(skb);
2061 	}
2062 	return tso_segs;
2063 }
2064 
2065 
2066 /* Return true if the Nagle test allows this packet to be
2067  * sent now.
2068  */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2069 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2070 				  unsigned int cur_mss, int nonagle)
2071 {
2072 	/* Nagle rule does not apply to frames, which sit in the middle of the
2073 	 * write_queue (they have no chances to get new data).
2074 	 *
2075 	 * This is implemented in the callers, where they modify the 'nonagle'
2076 	 * argument based upon the location of SKB in the send queue.
2077 	 */
2078 	if (nonagle & TCP_NAGLE_PUSH)
2079 		return true;
2080 
2081 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2082 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2083 		return true;
2084 
2085 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2086 		return true;
2087 
2088 	return false;
2089 }
2090 
2091 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2092 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2093 			     const struct sk_buff *skb,
2094 			     unsigned int cur_mss)
2095 {
2096 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2097 
2098 	if (skb->len > cur_mss)
2099 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2100 
2101 	return !after(end_seq, tcp_wnd_end(tp));
2102 }
2103 
2104 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2105  * which is put after SKB on the list.  It is very much like
2106  * tcp_fragment() except that it may make several kinds of assumptions
2107  * in order to speed up the splitting operation.  In particular, we
2108  * know that all the data is in scatter-gather pages, and that the
2109  * packet has never been sent out before (and thus is not cloned).
2110  */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2111 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2112 			unsigned int mss_now, gfp_t gfp)
2113 {
2114 	int nlen = skb->len - len;
2115 	struct sk_buff *buff;
2116 	u8 flags;
2117 
2118 	/* All of a TSO frame must be composed of paged data.  */
2119 	if (skb->len != skb->data_len)
2120 		return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2121 				    skb, len, mss_now, gfp);
2122 
2123 	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
2124 	if (unlikely(!buff))
2125 		return -ENOMEM;
2126 	skb_copy_decrypted(buff, skb);
2127 
2128 	sk_wmem_queued_add(sk, buff->truesize);
2129 	sk_mem_charge(sk, buff->truesize);
2130 	buff->truesize += nlen;
2131 	skb->truesize -= nlen;
2132 
2133 	/* Correct the sequence numbers. */
2134 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2135 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2136 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2137 
2138 	/* PSH and FIN should only be set in the second packet. */
2139 	flags = TCP_SKB_CB(skb)->tcp_flags;
2140 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2141 	TCP_SKB_CB(buff)->tcp_flags = flags;
2142 
2143 	/* This packet was never sent out yet, so no SACK bits. */
2144 	TCP_SKB_CB(buff)->sacked = 0;
2145 
2146 	tcp_skb_fragment_eor(skb, buff);
2147 
2148 	buff->ip_summed = CHECKSUM_PARTIAL;
2149 	skb_split(skb, buff, len);
2150 	tcp_fragment_tstamp(skb, buff);
2151 
2152 	/* Fix up tso_factor for both original and new SKB.  */
2153 	tcp_set_skb_tso_segs(skb, mss_now);
2154 	tcp_set_skb_tso_segs(buff, mss_now);
2155 
2156 	/* Link BUFF into the send queue. */
2157 	__skb_header_release(buff);
2158 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2159 
2160 	return 0;
2161 }
2162 
2163 /* Try to defer sending, if possible, in order to minimize the amount
2164  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2165  *
2166  * This algorithm is from John Heffner.
2167  */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2168 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2169 				 bool *is_cwnd_limited,
2170 				 bool *is_rwnd_limited,
2171 				 u32 max_segs)
2172 {
2173 	const struct inet_connection_sock *icsk = inet_csk(sk);
2174 	u32 send_win, cong_win, limit, in_flight;
2175 	struct tcp_sock *tp = tcp_sk(sk);
2176 	struct sk_buff *head;
2177 	int win_divisor;
2178 	s64 delta;
2179 
2180 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2181 		goto send_now;
2182 
2183 	/* Avoid bursty behavior by allowing defer
2184 	 * only if the last write was recent (1 ms).
2185 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2186 	 * packets waiting in a qdisc or device for EDT delivery.
2187 	 */
2188 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2189 	if (delta > 0)
2190 		goto send_now;
2191 
2192 	in_flight = tcp_packets_in_flight(tp);
2193 
2194 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2195 	BUG_ON(tp->snd_cwnd <= in_flight);
2196 
2197 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2198 
2199 	/* From in_flight test above, we know that cwnd > in_flight.  */
2200 	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2201 
2202 	limit = min(send_win, cong_win);
2203 
2204 	/* If a full-sized TSO skb can be sent, do it. */
2205 	if (limit >= max_segs * tp->mss_cache)
2206 		goto send_now;
2207 
2208 	/* Middle in queue won't get any more data, full sendable already? */
2209 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2210 		goto send_now;
2211 
2212 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2213 	if (win_divisor) {
2214 		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2215 
2216 		/* If at least some fraction of a window is available,
2217 		 * just use it.
2218 		 */
2219 		chunk /= win_divisor;
2220 		if (limit >= chunk)
2221 			goto send_now;
2222 	} else {
2223 		/* Different approach, try not to defer past a single
2224 		 * ACK.  Receiver should ACK every other full sized
2225 		 * frame, so if we have space for more than 3 frames
2226 		 * then send now.
2227 		 */
2228 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2229 			goto send_now;
2230 	}
2231 
2232 	/* TODO : use tsorted_sent_queue ? */
2233 	head = tcp_rtx_queue_head(sk);
2234 	if (!head)
2235 		goto send_now;
2236 	delta = tp->tcp_clock_cache - head->tstamp;
2237 	/* If next ACK is likely to come too late (half srtt), do not defer */
2238 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2239 		goto send_now;
2240 
2241 	/* Ok, it looks like it is advisable to defer.
2242 	 * Three cases are tracked :
2243 	 * 1) We are cwnd-limited
2244 	 * 2) We are rwnd-limited
2245 	 * 3) We are application limited.
2246 	 */
2247 	if (cong_win < send_win) {
2248 		if (cong_win <= skb->len) {
2249 			*is_cwnd_limited = true;
2250 			return true;
2251 		}
2252 	} else {
2253 		if (send_win <= skb->len) {
2254 			*is_rwnd_limited = true;
2255 			return true;
2256 		}
2257 	}
2258 
2259 	/* If this packet won't get more data, do not wait. */
2260 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2261 	    TCP_SKB_CB(skb)->eor)
2262 		goto send_now;
2263 
2264 	return true;
2265 
2266 send_now:
2267 	return false;
2268 }
2269 
tcp_mtu_check_reprobe(struct sock * sk)2270 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2271 {
2272 	struct inet_connection_sock *icsk = inet_csk(sk);
2273 	struct tcp_sock *tp = tcp_sk(sk);
2274 	struct net *net = sock_net(sk);
2275 	u32 interval;
2276 	s32 delta;
2277 
2278 	interval = net->ipv4.sysctl_tcp_probe_interval;
2279 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2280 	if (unlikely(delta >= interval * HZ)) {
2281 		int mss = tcp_current_mss(sk);
2282 
2283 		/* Update current search range */
2284 		icsk->icsk_mtup.probe_size = 0;
2285 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2286 			sizeof(struct tcphdr) +
2287 			icsk->icsk_af_ops->net_header_len;
2288 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2289 
2290 		/* Update probe time stamp */
2291 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2292 	}
2293 }
2294 
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2295 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2296 {
2297 	struct sk_buff *skb, *next;
2298 
2299 	skb = tcp_send_head(sk);
2300 	tcp_for_write_queue_from_safe(skb, next, sk) {
2301 		if (len <= skb->len)
2302 			break;
2303 
2304 		if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2305 			return false;
2306 
2307 		len -= skb->len;
2308 	}
2309 
2310 	return true;
2311 }
2312 
2313 /* Create a new MTU probe if we are ready.
2314  * MTU probe is regularly attempting to increase the path MTU by
2315  * deliberately sending larger packets.  This discovers routing
2316  * changes resulting in larger path MTUs.
2317  *
2318  * Returns 0 if we should wait to probe (no cwnd available),
2319  *         1 if a probe was sent,
2320  *         -1 otherwise
2321  */
tcp_mtu_probe(struct sock * sk)2322 static int tcp_mtu_probe(struct sock *sk)
2323 {
2324 	struct inet_connection_sock *icsk = inet_csk(sk);
2325 	struct tcp_sock *tp = tcp_sk(sk);
2326 	struct sk_buff *skb, *nskb, *next;
2327 	struct net *net = sock_net(sk);
2328 	int probe_size;
2329 	int size_needed;
2330 	int copy, len;
2331 	int mss_now;
2332 	int interval;
2333 
2334 	/* Not currently probing/verifying,
2335 	 * not in recovery,
2336 	 * have enough cwnd, and
2337 	 * not SACKing (the variable headers throw things off)
2338 	 */
2339 	if (likely(!icsk->icsk_mtup.enabled ||
2340 		   icsk->icsk_mtup.probe_size ||
2341 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2342 		   tp->snd_cwnd < 11 ||
2343 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2344 		return -1;
2345 
2346 	/* Use binary search for probe_size between tcp_mss_base,
2347 	 * and current mss_clamp. if (search_high - search_low)
2348 	 * smaller than a threshold, backoff from probing.
2349 	 */
2350 	mss_now = tcp_current_mss(sk);
2351 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2352 				    icsk->icsk_mtup.search_low) >> 1);
2353 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2354 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2355 	/* When misfortune happens, we are reprobing actively,
2356 	 * and then reprobe timer has expired. We stick with current
2357 	 * probing process by not resetting search range to its orignal.
2358 	 */
2359 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2360 		interval < net->ipv4.sysctl_tcp_probe_threshold) {
2361 		/* Check whether enough time has elaplased for
2362 		 * another round of probing.
2363 		 */
2364 		tcp_mtu_check_reprobe(sk);
2365 		return -1;
2366 	}
2367 
2368 	/* Have enough data in the send queue to probe? */
2369 	if (tp->write_seq - tp->snd_nxt < size_needed)
2370 		return -1;
2371 
2372 	if (tp->snd_wnd < size_needed)
2373 		return -1;
2374 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2375 		return 0;
2376 
2377 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2378 	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2379 		if (!tcp_packets_in_flight(tp))
2380 			return -1;
2381 		else
2382 			return 0;
2383 	}
2384 
2385 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2386 		return -1;
2387 
2388 	/* We're allowed to probe.  Build it now. */
2389 	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2390 	if (!nskb)
2391 		return -1;
2392 	sk_wmem_queued_add(sk, nskb->truesize);
2393 	sk_mem_charge(sk, nskb->truesize);
2394 
2395 	skb = tcp_send_head(sk);
2396 	skb_copy_decrypted(nskb, skb);
2397 
2398 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2399 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2400 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2401 	TCP_SKB_CB(nskb)->sacked = 0;
2402 	nskb->csum = 0;
2403 	nskb->ip_summed = CHECKSUM_PARTIAL;
2404 
2405 	tcp_insert_write_queue_before(nskb, skb, sk);
2406 	tcp_highest_sack_replace(sk, skb, nskb);
2407 
2408 	len = 0;
2409 	tcp_for_write_queue_from_safe(skb, next, sk) {
2410 		copy = min_t(int, skb->len, probe_size - len);
2411 		skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2412 
2413 		if (skb->len <= copy) {
2414 			/* We've eaten all the data from this skb.
2415 			 * Throw it away. */
2416 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2417 			/* If this is the last SKB we copy and eor is set
2418 			 * we need to propagate it to the new skb.
2419 			 */
2420 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2421 			tcp_skb_collapse_tstamp(nskb, skb);
2422 			tcp_unlink_write_queue(skb, sk);
2423 			sk_wmem_free_skb(sk, skb);
2424 		} else {
2425 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2426 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2427 			if (!skb_shinfo(skb)->nr_frags) {
2428 				skb_pull(skb, copy);
2429 			} else {
2430 				__pskb_trim_head(skb, copy);
2431 				tcp_set_skb_tso_segs(skb, mss_now);
2432 			}
2433 			TCP_SKB_CB(skb)->seq += copy;
2434 		}
2435 
2436 		len += copy;
2437 
2438 		if (len >= probe_size)
2439 			break;
2440 	}
2441 	tcp_init_tso_segs(nskb, nskb->len);
2442 
2443 	/* We're ready to send.  If this fails, the probe will
2444 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2445 	 */
2446 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2447 		/* Decrement cwnd here because we are sending
2448 		 * effectively two packets. */
2449 		tp->snd_cwnd--;
2450 		tcp_event_new_data_sent(sk, nskb);
2451 
2452 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2453 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2454 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2455 
2456 		return 1;
2457 	}
2458 
2459 	return -1;
2460 }
2461 
tcp_pacing_check(struct sock * sk)2462 static bool tcp_pacing_check(struct sock *sk)
2463 {
2464 	struct tcp_sock *tp = tcp_sk(sk);
2465 
2466 	if (!tcp_needs_internal_pacing(sk))
2467 		return false;
2468 
2469 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2470 		return false;
2471 
2472 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2473 		hrtimer_start(&tp->pacing_timer,
2474 			      ns_to_ktime(tp->tcp_wstamp_ns),
2475 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2476 		sock_hold(sk);
2477 	}
2478 	return true;
2479 }
2480 
2481 /* TCP Small Queues :
2482  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2483  * (These limits are doubled for retransmits)
2484  * This allows for :
2485  *  - better RTT estimation and ACK scheduling
2486  *  - faster recovery
2487  *  - high rates
2488  * Alas, some drivers / subsystems require a fair amount
2489  * of queued bytes to ensure line rate.
2490  * One example is wifi aggregation (802.11 AMPDU)
2491  */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2492 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2493 				  unsigned int factor)
2494 {
2495 	unsigned long limit;
2496 
2497 	limit = max_t(unsigned long,
2498 		      2 * skb->truesize,
2499 		      sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2500 	if (sk->sk_pacing_status == SK_PACING_NONE)
2501 		limit = min_t(unsigned long, limit,
2502 			      sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2503 	limit <<= factor;
2504 
2505 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2506 	    tcp_sk(sk)->tcp_tx_delay) {
2507 		u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2508 
2509 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2510 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2511 		 * USEC_PER_SEC is approximated by 2^20.
2512 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2513 		 */
2514 		extra_bytes >>= (20 - 1);
2515 		limit += extra_bytes;
2516 	}
2517 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2518 		/* Always send skb if rtx queue is empty.
2519 		 * No need to wait for TX completion to call us back,
2520 		 * after softirq/tasklet schedule.
2521 		 * This helps when TX completions are delayed too much.
2522 		 */
2523 		if (tcp_rtx_queue_empty(sk))
2524 			return false;
2525 
2526 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2527 		/* It is possible TX completion already happened
2528 		 * before we set TSQ_THROTTLED, so we must
2529 		 * test again the condition.
2530 		 */
2531 		smp_mb__after_atomic();
2532 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2533 			return true;
2534 	}
2535 	return false;
2536 }
2537 
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2538 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2539 {
2540 	const u32 now = tcp_jiffies32;
2541 	enum tcp_chrono old = tp->chrono_type;
2542 
2543 	if (old > TCP_CHRONO_UNSPEC)
2544 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2545 	tp->chrono_start = now;
2546 	tp->chrono_type = new;
2547 }
2548 
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2549 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2550 {
2551 	struct tcp_sock *tp = tcp_sk(sk);
2552 
2553 	/* If there are multiple conditions worthy of tracking in a
2554 	 * chronograph then the highest priority enum takes precedence
2555 	 * over the other conditions. So that if something "more interesting"
2556 	 * starts happening, stop the previous chrono and start a new one.
2557 	 */
2558 	if (type > tp->chrono_type)
2559 		tcp_chrono_set(tp, type);
2560 }
2561 
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2562 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2563 {
2564 	struct tcp_sock *tp = tcp_sk(sk);
2565 
2566 
2567 	/* There are multiple conditions worthy of tracking in a
2568 	 * chronograph, so that the highest priority enum takes
2569 	 * precedence over the other conditions (see tcp_chrono_start).
2570 	 * If a condition stops, we only stop chrono tracking if
2571 	 * it's the "most interesting" or current chrono we are
2572 	 * tracking and starts busy chrono if we have pending data.
2573 	 */
2574 	if (tcp_rtx_and_write_queues_empty(sk))
2575 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2576 	else if (type == tp->chrono_type)
2577 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2578 }
2579 
2580 /* This routine writes packets to the network.  It advances the
2581  * send_head.  This happens as incoming acks open up the remote
2582  * window for us.
2583  *
2584  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2585  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2586  * account rare use of URG, this is not a big flaw.
2587  *
2588  * Send at most one packet when push_one > 0. Temporarily ignore
2589  * cwnd limit to force at most one packet out when push_one == 2.
2590 
2591  * Returns true, if no segments are in flight and we have queued segments,
2592  * but cannot send anything now because of SWS or another problem.
2593  */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2594 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2595 			   int push_one, gfp_t gfp)
2596 {
2597 	struct tcp_sock *tp = tcp_sk(sk);
2598 	struct sk_buff *skb;
2599 	unsigned int tso_segs, sent_pkts;
2600 	int cwnd_quota;
2601 	int result;
2602 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2603 	u32 max_segs;
2604 
2605 	sent_pkts = 0;
2606 
2607 	tcp_mstamp_refresh(tp);
2608 	if (!push_one) {
2609 		/* Do MTU probing. */
2610 		result = tcp_mtu_probe(sk);
2611 		if (!result) {
2612 			return false;
2613 		} else if (result > 0) {
2614 			sent_pkts = 1;
2615 		}
2616 	}
2617 
2618 	max_segs = tcp_tso_segs(sk, mss_now);
2619 	while ((skb = tcp_send_head(sk))) {
2620 		unsigned int limit;
2621 
2622 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2623 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2624 			skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2625 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2626 			tcp_init_tso_segs(skb, mss_now);
2627 			goto repair; /* Skip network transmission */
2628 		}
2629 
2630 		if (tcp_pacing_check(sk))
2631 			break;
2632 
2633 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2634 		BUG_ON(!tso_segs);
2635 
2636 		cwnd_quota = tcp_cwnd_test(tp, skb);
2637 		if (!cwnd_quota) {
2638 			if (push_one == 2)
2639 				/* Force out a loss probe pkt. */
2640 				cwnd_quota = 1;
2641 			else
2642 				break;
2643 		}
2644 
2645 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2646 			is_rwnd_limited = true;
2647 			break;
2648 		}
2649 
2650 		if (tso_segs == 1) {
2651 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2652 						     (tcp_skb_is_last(sk, skb) ?
2653 						      nonagle : TCP_NAGLE_PUSH))))
2654 				break;
2655 		} else {
2656 			if (!push_one &&
2657 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2658 						 &is_rwnd_limited, max_segs))
2659 				break;
2660 		}
2661 
2662 		limit = mss_now;
2663 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2664 			limit = tcp_mss_split_point(sk, skb, mss_now,
2665 						    min_t(unsigned int,
2666 							  cwnd_quota,
2667 							  max_segs),
2668 						    nonagle);
2669 
2670 		if (skb->len > limit &&
2671 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2672 			break;
2673 
2674 		if (tcp_small_queue_check(sk, skb, 0))
2675 			break;
2676 
2677 		/* Argh, we hit an empty skb(), presumably a thread
2678 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2679 		 * We do not want to send a pure-ack packet and have
2680 		 * a strange looking rtx queue with empty packet(s).
2681 		 */
2682 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2683 			break;
2684 
2685 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2686 			break;
2687 
2688 repair:
2689 		/* Advance the send_head.  This one is sent out.
2690 		 * This call will increment packets_out.
2691 		 */
2692 		tcp_event_new_data_sent(sk, skb);
2693 
2694 		tcp_minshall_update(tp, mss_now, skb);
2695 		sent_pkts += tcp_skb_pcount(skb);
2696 
2697 		if (push_one)
2698 			break;
2699 	}
2700 
2701 	if (is_rwnd_limited)
2702 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2703 	else
2704 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2705 
2706 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2707 	if (likely(sent_pkts || is_cwnd_limited))
2708 		tcp_cwnd_validate(sk, is_cwnd_limited);
2709 
2710 	if (likely(sent_pkts)) {
2711 		if (tcp_in_cwnd_reduction(sk))
2712 			tp->prr_out += sent_pkts;
2713 
2714 		/* Send one loss probe per tail loss episode. */
2715 		if (push_one != 2)
2716 			tcp_schedule_loss_probe(sk, false);
2717 		return false;
2718 	}
2719 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2720 }
2721 
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2722 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2723 {
2724 	struct inet_connection_sock *icsk = inet_csk(sk);
2725 	struct tcp_sock *tp = tcp_sk(sk);
2726 	u32 timeout, rto_delta_us;
2727 	int early_retrans;
2728 
2729 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2730 	 * finishes.
2731 	 */
2732 	if (rcu_access_pointer(tp->fastopen_rsk))
2733 		return false;
2734 
2735 	early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2736 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2737 	 * not in loss recovery, that are either limited by cwnd or application.
2738 	 */
2739 	if ((early_retrans != 3 && early_retrans != 4) ||
2740 	    !tp->packets_out || !tcp_is_sack(tp) ||
2741 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2742 	     icsk->icsk_ca_state != TCP_CA_CWR))
2743 		return false;
2744 
2745 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2746 	 * for delayed ack when there's one outstanding packet. If no RTT
2747 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2748 	 */
2749 	if (tp->srtt_us) {
2750 		timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2751 		if (tp->packets_out == 1)
2752 			timeout += TCP_RTO_MIN;
2753 		else
2754 			timeout += TCP_TIMEOUT_MIN;
2755 	} else {
2756 		timeout = TCP_TIMEOUT_INIT;
2757 	}
2758 
2759 	/* If the RTO formula yields an earlier time, then use that time. */
2760 	rto_delta_us = advancing_rto ?
2761 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2762 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2763 	if (rto_delta_us > 0)
2764 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2765 
2766 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2767 	return true;
2768 }
2769 
2770 /* Thanks to skb fast clones, we can detect if a prior transmit of
2771  * a packet is still in a qdisc or driver queue.
2772  * In this case, there is very little point doing a retransmit !
2773  */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2774 static bool skb_still_in_host_queue(const struct sock *sk,
2775 				    const struct sk_buff *skb)
2776 {
2777 	if (unlikely(skb_fclone_busy(sk, skb))) {
2778 		NET_INC_STATS(sock_net(sk),
2779 			      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2780 		return true;
2781 	}
2782 	return false;
2783 }
2784 
2785 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2786  * retransmit the last segment.
2787  */
tcp_send_loss_probe(struct sock * sk)2788 void tcp_send_loss_probe(struct sock *sk)
2789 {
2790 	struct tcp_sock *tp = tcp_sk(sk);
2791 	struct sk_buff *skb;
2792 	int pcount;
2793 	int mss = tcp_current_mss(sk);
2794 
2795 	/* At most one outstanding TLP */
2796 	if (tp->tlp_high_seq)
2797 		goto rearm_timer;
2798 
2799 	tp->tlp_retrans = 0;
2800 	skb = tcp_send_head(sk);
2801 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2802 		pcount = tp->packets_out;
2803 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2804 		if (tp->packets_out > pcount)
2805 			goto probe_sent;
2806 		goto rearm_timer;
2807 	}
2808 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2809 	if (unlikely(!skb)) {
2810 		WARN_ONCE(tp->packets_out,
2811 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2812 			  tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2813 		inet_csk(sk)->icsk_pending = 0;
2814 		return;
2815 	}
2816 
2817 	if (skb_still_in_host_queue(sk, skb))
2818 		goto rearm_timer;
2819 
2820 	pcount = tcp_skb_pcount(skb);
2821 	if (WARN_ON(!pcount))
2822 		goto rearm_timer;
2823 
2824 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2825 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2826 					  (pcount - 1) * mss, mss,
2827 					  GFP_ATOMIC)))
2828 			goto rearm_timer;
2829 		skb = skb_rb_next(skb);
2830 	}
2831 
2832 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2833 		goto rearm_timer;
2834 
2835 	if (__tcp_retransmit_skb(sk, skb, 1))
2836 		goto rearm_timer;
2837 
2838 	tp->tlp_retrans = 1;
2839 
2840 probe_sent:
2841 	/* Record snd_nxt for loss detection. */
2842 	tp->tlp_high_seq = tp->snd_nxt;
2843 
2844 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2845 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2846 	inet_csk(sk)->icsk_pending = 0;
2847 rearm_timer:
2848 	tcp_rearm_rto(sk);
2849 }
2850 
2851 /* Push out any pending frames which were held back due to
2852  * TCP_CORK or attempt at coalescing tiny packets.
2853  * The socket must be locked by the caller.
2854  */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2855 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2856 			       int nonagle)
2857 {
2858 	/* If we are closed, the bytes will have to remain here.
2859 	 * In time closedown will finish, we empty the write queue and
2860 	 * all will be happy.
2861 	 */
2862 	if (unlikely(sk->sk_state == TCP_CLOSE))
2863 		return;
2864 
2865 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2866 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2867 		tcp_check_probe_timer(sk);
2868 }
2869 
2870 /* Send _single_ skb sitting at the send head. This function requires
2871  * true push pending frames to setup probe timer etc.
2872  */
tcp_push_one(struct sock * sk,unsigned int mss_now)2873 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2874 {
2875 	struct sk_buff *skb = tcp_send_head(sk);
2876 
2877 	BUG_ON(!skb || skb->len < mss_now);
2878 
2879 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2880 }
2881 
2882 /* This function returns the amount that we can raise the
2883  * usable window based on the following constraints
2884  *
2885  * 1. The window can never be shrunk once it is offered (RFC 793)
2886  * 2. We limit memory per socket
2887  *
2888  * RFC 1122:
2889  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2890  *  RECV.NEXT + RCV.WIN fixed until:
2891  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2892  *
2893  * i.e. don't raise the right edge of the window until you can raise
2894  * it at least MSS bytes.
2895  *
2896  * Unfortunately, the recommended algorithm breaks header prediction,
2897  * since header prediction assumes th->window stays fixed.
2898  *
2899  * Strictly speaking, keeping th->window fixed violates the receiver
2900  * side SWS prevention criteria. The problem is that under this rule
2901  * a stream of single byte packets will cause the right side of the
2902  * window to always advance by a single byte.
2903  *
2904  * Of course, if the sender implements sender side SWS prevention
2905  * then this will not be a problem.
2906  *
2907  * BSD seems to make the following compromise:
2908  *
2909  *	If the free space is less than the 1/4 of the maximum
2910  *	space available and the free space is less than 1/2 mss,
2911  *	then set the window to 0.
2912  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2913  *	Otherwise, just prevent the window from shrinking
2914  *	and from being larger than the largest representable value.
2915  *
2916  * This prevents incremental opening of the window in the regime
2917  * where TCP is limited by the speed of the reader side taking
2918  * data out of the TCP receive queue. It does nothing about
2919  * those cases where the window is constrained on the sender side
2920  * because the pipeline is full.
2921  *
2922  * BSD also seems to "accidentally" limit itself to windows that are a
2923  * multiple of MSS, at least until the free space gets quite small.
2924  * This would appear to be a side effect of the mbuf implementation.
2925  * Combining these two algorithms results in the observed behavior
2926  * of having a fixed window size at almost all times.
2927  *
2928  * Below we obtain similar behavior by forcing the offered window to
2929  * a multiple of the mss when it is feasible to do so.
2930  *
2931  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2932  * Regular options like TIMESTAMP are taken into account.
2933  */
__tcp_select_window(struct sock * sk)2934 u32 __tcp_select_window(struct sock *sk)
2935 {
2936 	struct inet_connection_sock *icsk = inet_csk(sk);
2937 	struct tcp_sock *tp = tcp_sk(sk);
2938 	/* MSS for the peer's data.  Previous versions used mss_clamp
2939 	 * here.  I don't know if the value based on our guesses
2940 	 * of peer's MSS is better for the performance.  It's more correct
2941 	 * but may be worse for the performance because of rcv_mss
2942 	 * fluctuations.  --SAW  1998/11/1
2943 	 */
2944 	int mss = icsk->icsk_ack.rcv_mss;
2945 	int free_space = tcp_space(sk);
2946 	int allowed_space = tcp_full_space(sk);
2947 	int full_space, window;
2948 
2949 	if (sk_is_mptcp(sk))
2950 		mptcp_space(sk, &free_space, &allowed_space);
2951 
2952 	full_space = min_t(int, tp->window_clamp, allowed_space);
2953 
2954 	if (unlikely(mss > full_space)) {
2955 		mss = full_space;
2956 		if (mss <= 0)
2957 			return 0;
2958 	}
2959 	if (free_space < (full_space >> 1)) {
2960 		icsk->icsk_ack.quick = 0;
2961 
2962 		if (tcp_under_memory_pressure(sk))
2963 			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2964 					       4U * tp->advmss);
2965 
2966 		/* free_space might become our new window, make sure we don't
2967 		 * increase it due to wscale.
2968 		 */
2969 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2970 
2971 		/* if free space is less than mss estimate, or is below 1/16th
2972 		 * of the maximum allowed, try to move to zero-window, else
2973 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2974 		 * new incoming data is dropped due to memory limits.
2975 		 * With large window, mss test triggers way too late in order
2976 		 * to announce zero window in time before rmem limit kicks in.
2977 		 */
2978 		if (free_space < (allowed_space >> 4) || free_space < mss)
2979 			return 0;
2980 	}
2981 
2982 	if (free_space > tp->rcv_ssthresh)
2983 		free_space = tp->rcv_ssthresh;
2984 
2985 	/* Don't do rounding if we are using window scaling, since the
2986 	 * scaled window will not line up with the MSS boundary anyway.
2987 	 */
2988 	if (tp->rx_opt.rcv_wscale) {
2989 		window = free_space;
2990 
2991 		/* Advertise enough space so that it won't get scaled away.
2992 		 * Import case: prevent zero window announcement if
2993 		 * 1<<rcv_wscale > mss.
2994 		 */
2995 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2996 	} else {
2997 		window = tp->rcv_wnd;
2998 		/* Get the largest window that is a nice multiple of mss.
2999 		 * Window clamp already applied above.
3000 		 * If our current window offering is within 1 mss of the
3001 		 * free space we just keep it. This prevents the divide
3002 		 * and multiply from happening most of the time.
3003 		 * We also don't do any window rounding when the free space
3004 		 * is too small.
3005 		 */
3006 		if (window <= free_space - mss || window > free_space)
3007 			window = rounddown(free_space, mss);
3008 		else if (mss == full_space &&
3009 			 free_space > window + (full_space >> 1))
3010 			window = free_space;
3011 	}
3012 
3013 	return window;
3014 }
3015 
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3016 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3017 			     const struct sk_buff *next_skb)
3018 {
3019 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3020 		const struct skb_shared_info *next_shinfo =
3021 			skb_shinfo(next_skb);
3022 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3023 
3024 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3025 		shinfo->tskey = next_shinfo->tskey;
3026 		TCP_SKB_CB(skb)->txstamp_ack |=
3027 			TCP_SKB_CB(next_skb)->txstamp_ack;
3028 	}
3029 }
3030 
3031 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3032 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3033 {
3034 	struct tcp_sock *tp = tcp_sk(sk);
3035 	struct sk_buff *next_skb = skb_rb_next(skb);
3036 	int next_skb_size;
3037 
3038 	next_skb_size = next_skb->len;
3039 
3040 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3041 
3042 	if (next_skb_size) {
3043 		if (next_skb_size <= skb_availroom(skb))
3044 			skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
3045 				      next_skb_size);
3046 		else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3047 			return false;
3048 	}
3049 	tcp_highest_sack_replace(sk, next_skb, skb);
3050 
3051 	/* Update sequence range on original skb. */
3052 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3053 
3054 	/* Merge over control information. This moves PSH/FIN etc. over */
3055 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3056 
3057 	/* All done, get rid of second SKB and account for it so
3058 	 * packet counting does not break.
3059 	 */
3060 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3061 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3062 
3063 	/* changed transmit queue under us so clear hints */
3064 	tcp_clear_retrans_hints_partial(tp);
3065 	if (next_skb == tp->retransmit_skb_hint)
3066 		tp->retransmit_skb_hint = skb;
3067 
3068 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3069 
3070 	tcp_skb_collapse_tstamp(skb, next_skb);
3071 
3072 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3073 	return true;
3074 }
3075 
3076 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3077 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3078 {
3079 	if (tcp_skb_pcount(skb) > 1)
3080 		return false;
3081 	if (skb_cloned(skb))
3082 		return false;
3083 	/* Some heuristics for collapsing over SACK'd could be invented */
3084 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3085 		return false;
3086 
3087 	return true;
3088 }
3089 
3090 /* Collapse packets in the retransmit queue to make to create
3091  * less packets on the wire. This is only done on retransmission.
3092  */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3093 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3094 				     int space)
3095 {
3096 	struct tcp_sock *tp = tcp_sk(sk);
3097 	struct sk_buff *skb = to, *tmp;
3098 	bool first = true;
3099 
3100 	if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
3101 		return;
3102 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3103 		return;
3104 
3105 	skb_rbtree_walk_from_safe(skb, tmp) {
3106 		if (!tcp_can_collapse(sk, skb))
3107 			break;
3108 
3109 		if (!tcp_skb_can_collapse(to, skb))
3110 			break;
3111 
3112 		space -= skb->len;
3113 
3114 		if (first) {
3115 			first = false;
3116 			continue;
3117 		}
3118 
3119 		if (space < 0)
3120 			break;
3121 
3122 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3123 			break;
3124 
3125 		if (!tcp_collapse_retrans(sk, to))
3126 			break;
3127 	}
3128 }
3129 
3130 /* This retransmits one SKB.  Policy decisions and retransmit queue
3131  * state updates are done by the caller.  Returns non-zero if an
3132  * error occurred which prevented the send.
3133  */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3134 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3135 {
3136 	struct inet_connection_sock *icsk = inet_csk(sk);
3137 	struct tcp_sock *tp = tcp_sk(sk);
3138 	unsigned int cur_mss;
3139 	int diff, len, err;
3140 
3141 
3142 	/* Inconclusive MTU probe */
3143 	if (icsk->icsk_mtup.probe_size)
3144 		icsk->icsk_mtup.probe_size = 0;
3145 
3146 	/* Do not sent more than we queued. 1/4 is reserved for possible
3147 	 * copying overhead: fragmentation, tunneling, mangling etc.
3148 	 */
3149 	if (refcount_read(&sk->sk_wmem_alloc) >
3150 	    min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
3151 		  sk->sk_sndbuf))
3152 		return -EAGAIN;
3153 
3154 	if (skb_still_in_host_queue(sk, skb))
3155 		return -EBUSY;
3156 
3157 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3158 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3159 			WARN_ON_ONCE(1);
3160 			return -EINVAL;
3161 		}
3162 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3163 			return -ENOMEM;
3164 	}
3165 
3166 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3167 		return -EHOSTUNREACH; /* Routing failure or similar. */
3168 
3169 	cur_mss = tcp_current_mss(sk);
3170 
3171 	/* If receiver has shrunk his window, and skb is out of
3172 	 * new window, do not retransmit it. The exception is the
3173 	 * case, when window is shrunk to zero. In this case
3174 	 * our retransmit serves as a zero window probe.
3175 	 */
3176 	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3177 	    TCP_SKB_CB(skb)->seq != tp->snd_una)
3178 		return -EAGAIN;
3179 
3180 	len = cur_mss * segs;
3181 	if (skb->len > len) {
3182 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3183 				 cur_mss, GFP_ATOMIC))
3184 			return -ENOMEM; /* We'll try again later. */
3185 	} else {
3186 		if (skb_unclone(skb, GFP_ATOMIC))
3187 			return -ENOMEM;
3188 
3189 		diff = tcp_skb_pcount(skb);
3190 		tcp_set_skb_tso_segs(skb, cur_mss);
3191 		diff -= tcp_skb_pcount(skb);
3192 		if (diff)
3193 			tcp_adjust_pcount(sk, skb, diff);
3194 		if (skb->len < cur_mss)
3195 			tcp_retrans_try_collapse(sk, skb, cur_mss);
3196 	}
3197 
3198 	/* RFC3168, section 6.1.1.1. ECN fallback */
3199 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3200 		tcp_ecn_clear_syn(sk, skb);
3201 
3202 	/* Update global and local TCP statistics. */
3203 	segs = tcp_skb_pcount(skb);
3204 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3205 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3206 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3207 	tp->total_retrans += segs;
3208 	tp->bytes_retrans += skb->len;
3209 
3210 	/* make sure skb->data is aligned on arches that require it
3211 	 * and check if ack-trimming & collapsing extended the headroom
3212 	 * beyond what csum_start can cover.
3213 	 */
3214 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3215 		     skb_headroom(skb) >= 0xFFFF)) {
3216 		struct sk_buff *nskb;
3217 
3218 		tcp_skb_tsorted_save(skb) {
3219 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3220 			if (nskb) {
3221 				nskb->dev = NULL;
3222 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3223 			} else {
3224 				err = -ENOBUFS;
3225 			}
3226 		} tcp_skb_tsorted_restore(skb);
3227 
3228 		if (!err) {
3229 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3230 			tcp_rate_skb_sent(sk, skb);
3231 		}
3232 	} else {
3233 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3234 	}
3235 
3236 	/* To avoid taking spuriously low RTT samples based on a timestamp
3237 	 * for a transmit that never happened, always mark EVER_RETRANS
3238 	 */
3239 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3240 
3241 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3242 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3243 				  TCP_SKB_CB(skb)->seq, segs, err);
3244 
3245 	if (likely(!err)) {
3246 		trace_tcp_retransmit_skb(sk, skb);
3247 	} else if (err != -EBUSY) {
3248 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3249 	}
3250 	return err;
3251 }
3252 
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3253 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3254 {
3255 	struct tcp_sock *tp = tcp_sk(sk);
3256 	int err = __tcp_retransmit_skb(sk, skb, segs);
3257 
3258 	if (err == 0) {
3259 #if FASTRETRANS_DEBUG > 0
3260 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3261 			net_dbg_ratelimited("retrans_out leaked\n");
3262 		}
3263 #endif
3264 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3265 		tp->retrans_out += tcp_skb_pcount(skb);
3266 	}
3267 
3268 	/* Save stamp of the first (attempted) retransmit. */
3269 	if (!tp->retrans_stamp)
3270 		tp->retrans_stamp = tcp_skb_timestamp(skb);
3271 
3272 	if (tp->undo_retrans < 0)
3273 		tp->undo_retrans = 0;
3274 	tp->undo_retrans += tcp_skb_pcount(skb);
3275 	return err;
3276 }
3277 
3278 /* This gets called after a retransmit timeout, and the initially
3279  * retransmitted data is acknowledged.  It tries to continue
3280  * resending the rest of the retransmit queue, until either
3281  * we've sent it all or the congestion window limit is reached.
3282  */
tcp_xmit_retransmit_queue(struct sock * sk)3283 void tcp_xmit_retransmit_queue(struct sock *sk)
3284 {
3285 	const struct inet_connection_sock *icsk = inet_csk(sk);
3286 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3287 	struct tcp_sock *tp = tcp_sk(sk);
3288 	bool rearm_timer = false;
3289 	u32 max_segs;
3290 	int mib_idx;
3291 
3292 	if (!tp->packets_out)
3293 		return;
3294 
3295 	rtx_head = tcp_rtx_queue_head(sk);
3296 	skb = tp->retransmit_skb_hint ?: rtx_head;
3297 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3298 	skb_rbtree_walk_from(skb) {
3299 		__u8 sacked;
3300 		int segs;
3301 
3302 		if (tcp_pacing_check(sk))
3303 			break;
3304 
3305 		/* we could do better than to assign each time */
3306 		if (!hole)
3307 			tp->retransmit_skb_hint = skb;
3308 
3309 		segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3310 		if (segs <= 0)
3311 			break;
3312 		sacked = TCP_SKB_CB(skb)->sacked;
3313 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3314 		 * we need to make sure not sending too bigs TSO packets
3315 		 */
3316 		segs = min_t(int, segs, max_segs);
3317 
3318 		if (tp->retrans_out >= tp->lost_out) {
3319 			break;
3320 		} else if (!(sacked & TCPCB_LOST)) {
3321 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3322 				hole = skb;
3323 			continue;
3324 
3325 		} else {
3326 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3327 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3328 			else
3329 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3330 		}
3331 
3332 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3333 			continue;
3334 
3335 		if (tcp_small_queue_check(sk, skb, 1))
3336 			break;
3337 
3338 		if (tcp_retransmit_skb(sk, skb, segs))
3339 			break;
3340 
3341 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3342 
3343 		if (tcp_in_cwnd_reduction(sk))
3344 			tp->prr_out += tcp_skb_pcount(skb);
3345 
3346 		if (skb == rtx_head &&
3347 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3348 			rearm_timer = true;
3349 
3350 	}
3351 	if (rearm_timer)
3352 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3353 				     inet_csk(sk)->icsk_rto,
3354 				     TCP_RTO_MAX);
3355 }
3356 
3357 /* We allow to exceed memory limits for FIN packets to expedite
3358  * connection tear down and (memory) recovery.
3359  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3360  * or even be forced to close flow without any FIN.
3361  * In general, we want to allow one skb per socket to avoid hangs
3362  * with edge trigger epoll()
3363  */
sk_forced_mem_schedule(struct sock * sk,int size)3364 void sk_forced_mem_schedule(struct sock *sk, int size)
3365 {
3366 	int amt;
3367 
3368 	if (size <= sk->sk_forward_alloc)
3369 		return;
3370 	amt = sk_mem_pages(size);
3371 	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3372 	sk_memory_allocated_add(sk, amt);
3373 
3374 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3375 		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3376 }
3377 
3378 /* Send a FIN. The caller locks the socket for us.
3379  * We should try to send a FIN packet really hard, but eventually give up.
3380  */
tcp_send_fin(struct sock * sk)3381 void tcp_send_fin(struct sock *sk)
3382 {
3383 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3384 	struct tcp_sock *tp = tcp_sk(sk);
3385 
3386 	/* Optimization, tack on the FIN if we have one skb in write queue and
3387 	 * this skb was not yet sent, or we are under memory pressure.
3388 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3389 	 * as TCP stack thinks it has already been transmitted.
3390 	 */
3391 	tskb = tail;
3392 	if (!tskb && tcp_under_memory_pressure(sk))
3393 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3394 
3395 	if (tskb) {
3396 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3397 		TCP_SKB_CB(tskb)->end_seq++;
3398 		tp->write_seq++;
3399 		if (!tail) {
3400 			/* This means tskb was already sent.
3401 			 * Pretend we included the FIN on previous transmit.
3402 			 * We need to set tp->snd_nxt to the value it would have
3403 			 * if FIN had been sent. This is because retransmit path
3404 			 * does not change tp->snd_nxt.
3405 			 */
3406 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3407 			return;
3408 		}
3409 	} else {
3410 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3411 		if (unlikely(!skb))
3412 			return;
3413 
3414 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3415 		skb_reserve(skb, MAX_TCP_HEADER);
3416 		sk_forced_mem_schedule(sk, skb->truesize);
3417 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3418 		tcp_init_nondata_skb(skb, tp->write_seq,
3419 				     TCPHDR_ACK | TCPHDR_FIN);
3420 		tcp_queue_skb(sk, skb);
3421 	}
3422 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3423 }
3424 
3425 /* We get here when a process closes a file descriptor (either due to
3426  * an explicit close() or as a byproduct of exit()'ing) and there
3427  * was unread data in the receive queue.  This behavior is recommended
3428  * by RFC 2525, section 2.17.  -DaveM
3429  */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3430 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3431 {
3432 	struct sk_buff *skb;
3433 
3434 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3435 
3436 	/* NOTE: No TCP options attached and we never retransmit this. */
3437 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3438 	if (!skb) {
3439 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3440 		return;
3441 	}
3442 
3443 	/* Reserve space for headers and prepare control bits. */
3444 	skb_reserve(skb, MAX_TCP_HEADER);
3445 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3446 			     TCPHDR_ACK | TCPHDR_RST);
3447 	tcp_mstamp_refresh(tcp_sk(sk));
3448 	/* Send it off. */
3449 	if (tcp_transmit_skb(sk, skb, 0, priority))
3450 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3451 
3452 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3453 	 * skb here is different to the troublesome skb, so use NULL
3454 	 */
3455 	trace_tcp_send_reset(sk, NULL);
3456 }
3457 
3458 /* Send a crossed SYN-ACK during socket establishment.
3459  * WARNING: This routine must only be called when we have already sent
3460  * a SYN packet that crossed the incoming SYN that caused this routine
3461  * to get called. If this assumption fails then the initial rcv_wnd
3462  * and rcv_wscale values will not be correct.
3463  */
tcp_send_synack(struct sock * sk)3464 int tcp_send_synack(struct sock *sk)
3465 {
3466 	struct sk_buff *skb;
3467 
3468 	skb = tcp_rtx_queue_head(sk);
3469 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3470 		pr_err("%s: wrong queue state\n", __func__);
3471 		return -EFAULT;
3472 	}
3473 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3474 		if (skb_cloned(skb)) {
3475 			struct sk_buff *nskb;
3476 
3477 			tcp_skb_tsorted_save(skb) {
3478 				nskb = skb_copy(skb, GFP_ATOMIC);
3479 			} tcp_skb_tsorted_restore(skb);
3480 			if (!nskb)
3481 				return -ENOMEM;
3482 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3483 			tcp_highest_sack_replace(sk, skb, nskb);
3484 			tcp_rtx_queue_unlink_and_free(skb, sk);
3485 			__skb_header_release(nskb);
3486 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3487 			sk_wmem_queued_add(sk, nskb->truesize);
3488 			sk_mem_charge(sk, nskb->truesize);
3489 			skb = nskb;
3490 		}
3491 
3492 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3493 		tcp_ecn_send_synack(sk, skb);
3494 	}
3495 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3496 }
3497 
3498 /**
3499  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3500  * @sk: listener socket
3501  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3502  *       should not use it again.
3503  * @req: request_sock pointer
3504  * @foc: cookie for tcp fast open
3505  * @synack_type: Type of synack to prepare
3506  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3507  */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3508 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3509 				struct request_sock *req,
3510 				struct tcp_fastopen_cookie *foc,
3511 				enum tcp_synack_type synack_type,
3512 				struct sk_buff *syn_skb)
3513 {
3514 	struct inet_request_sock *ireq = inet_rsk(req);
3515 	const struct tcp_sock *tp = tcp_sk(sk);
3516 	struct tcp_md5sig_key *md5 = NULL;
3517 	struct tcp_out_options opts;
3518 	struct sk_buff *skb;
3519 	int tcp_header_size;
3520 	struct tcphdr *th;
3521 	int mss;
3522 	u64 now;
3523 
3524 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3525 	if (unlikely(!skb)) {
3526 		dst_release(dst);
3527 		return NULL;
3528 	}
3529 	/* Reserve space for headers. */
3530 	skb_reserve(skb, MAX_TCP_HEADER);
3531 
3532 	switch (synack_type) {
3533 	case TCP_SYNACK_NORMAL:
3534 		skb_set_owner_w(skb, req_to_sk(req));
3535 		break;
3536 	case TCP_SYNACK_COOKIE:
3537 		/* Under synflood, we do not attach skb to a socket,
3538 		 * to avoid false sharing.
3539 		 */
3540 		break;
3541 	case TCP_SYNACK_FASTOPEN:
3542 		/* sk is a const pointer, because we want to express multiple
3543 		 * cpu might call us concurrently.
3544 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3545 		 */
3546 		skb_set_owner_w(skb, (struct sock *)sk);
3547 		break;
3548 	}
3549 	skb_dst_set(skb, dst);
3550 
3551 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3552 
3553 	memset(&opts, 0, sizeof(opts));
3554 	now = tcp_clock_ns();
3555 #ifdef CONFIG_SYN_COOKIES
3556 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3557 		skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3558 	else
3559 #endif
3560 	{
3561 		skb->skb_mstamp_ns = now;
3562 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3563 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3564 	}
3565 
3566 #ifdef CONFIG_TCP_MD5SIG
3567 	rcu_read_lock();
3568 	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3569 #endif
3570 	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3571 	/* bpf program will be interested in the tcp_flags */
3572 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3573 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3574 					     foc, synack_type,
3575 					     syn_skb) + sizeof(*th);
3576 
3577 	skb_push(skb, tcp_header_size);
3578 	skb_reset_transport_header(skb);
3579 
3580 	th = (struct tcphdr *)skb->data;
3581 	memset(th, 0, sizeof(struct tcphdr));
3582 	th->syn = 1;
3583 	th->ack = 1;
3584 	tcp_ecn_make_synack(req, th);
3585 	th->source = htons(ireq->ir_num);
3586 	th->dest = ireq->ir_rmt_port;
3587 	skb->mark = ireq->ir_mark;
3588 	skb->ip_summed = CHECKSUM_PARTIAL;
3589 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3590 	/* XXX data is queued and acked as is. No buffer/window check */
3591 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3592 
3593 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3594 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3595 	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3596 	th->doff = (tcp_header_size >> 2);
3597 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3598 
3599 #ifdef CONFIG_TCP_MD5SIG
3600 	/* Okay, we have all we need - do the md5 hash if needed */
3601 	if (md5)
3602 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3603 					       md5, req_to_sk(req), skb);
3604 	rcu_read_unlock();
3605 #endif
3606 
3607 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3608 				synack_type, &opts);
3609 
3610 	skb->skb_mstamp_ns = now;
3611 	tcp_add_tx_delay(skb, tp);
3612 
3613 	return skb;
3614 }
3615 EXPORT_SYMBOL(tcp_make_synack);
3616 
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3617 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3618 {
3619 	struct inet_connection_sock *icsk = inet_csk(sk);
3620 	const struct tcp_congestion_ops *ca;
3621 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3622 
3623 	if (ca_key == TCP_CA_UNSPEC)
3624 		return;
3625 
3626 	rcu_read_lock();
3627 	ca = tcp_ca_find_key(ca_key);
3628 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3629 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3630 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3631 		icsk->icsk_ca_ops = ca;
3632 	}
3633 	rcu_read_unlock();
3634 }
3635 
3636 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3637 static void tcp_connect_init(struct sock *sk)
3638 {
3639 	const struct dst_entry *dst = __sk_dst_get(sk);
3640 	struct tcp_sock *tp = tcp_sk(sk);
3641 	__u8 rcv_wscale;
3642 	u32 rcv_wnd;
3643 
3644 	/* We'll fix this up when we get a response from the other end.
3645 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3646 	 */
3647 	tp->tcp_header_len = sizeof(struct tcphdr);
3648 	if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3649 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3650 
3651 #ifdef CONFIG_TCP_MD5SIG
3652 	if (tp->af_specific->md5_lookup(sk, sk))
3653 		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3654 #endif
3655 
3656 	/* If user gave his TCP_MAXSEG, record it to clamp */
3657 	if (tp->rx_opt.user_mss)
3658 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3659 	tp->max_window = 0;
3660 	tcp_mtup_init(sk);
3661 	tcp_sync_mss(sk, dst_mtu(dst));
3662 
3663 	tcp_ca_dst_init(sk, dst);
3664 
3665 	if (!tp->window_clamp)
3666 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3667 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3668 
3669 	tcp_initialize_rcv_mss(sk);
3670 
3671 	/* limit the window selection if the user enforce a smaller rx buffer */
3672 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3673 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3674 		tp->window_clamp = tcp_full_space(sk);
3675 
3676 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3677 	if (rcv_wnd == 0)
3678 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3679 
3680 	tcp_select_initial_window(sk, tcp_full_space(sk),
3681 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3682 				  &tp->rcv_wnd,
3683 				  &tp->window_clamp,
3684 				  sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3685 				  &rcv_wscale,
3686 				  rcv_wnd);
3687 
3688 	tp->rx_opt.rcv_wscale = rcv_wscale;
3689 	tp->rcv_ssthresh = tp->rcv_wnd;
3690 
3691 	sk->sk_err = 0;
3692 	sock_reset_flag(sk, SOCK_DONE);
3693 	tp->snd_wnd = 0;
3694 	tcp_init_wl(tp, 0);
3695 	tcp_write_queue_purge(sk);
3696 	tp->snd_una = tp->write_seq;
3697 	tp->snd_sml = tp->write_seq;
3698 	tp->snd_up = tp->write_seq;
3699 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3700 
3701 	if (likely(!tp->repair))
3702 		tp->rcv_nxt = 0;
3703 	else
3704 		tp->rcv_tstamp = tcp_jiffies32;
3705 	tp->rcv_wup = tp->rcv_nxt;
3706 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3707 
3708 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3709 	inet_csk(sk)->icsk_retransmits = 0;
3710 	tcp_clear_retrans(tp);
3711 }
3712 
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3713 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3714 {
3715 	struct tcp_sock *tp = tcp_sk(sk);
3716 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3717 
3718 	tcb->end_seq += skb->len;
3719 	__skb_header_release(skb);
3720 	sk_wmem_queued_add(sk, skb->truesize);
3721 	sk_mem_charge(sk, skb->truesize);
3722 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3723 	tp->packets_out += tcp_skb_pcount(skb);
3724 }
3725 
3726 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3727  * queue a data-only packet after the regular SYN, such that regular SYNs
3728  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3729  * only the SYN sequence, the data are retransmitted in the first ACK.
3730  * If cookie is not cached or other error occurs, falls back to send a
3731  * regular SYN with Fast Open cookie request option.
3732  */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3733 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3734 {
3735 	struct tcp_sock *tp = tcp_sk(sk);
3736 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3737 	int space, err = 0;
3738 	struct sk_buff *syn_data;
3739 
3740 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3741 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3742 		goto fallback;
3743 
3744 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3745 	 * user-MSS. Reserve maximum option space for middleboxes that add
3746 	 * private TCP options. The cost is reduced data space in SYN :(
3747 	 */
3748 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3749 
3750 	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3751 		MAX_TCP_OPTION_SPACE;
3752 
3753 	space = min_t(size_t, space, fo->size);
3754 
3755 	/* limit to order-0 allocations */
3756 	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3757 
3758 	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3759 	if (!syn_data)
3760 		goto fallback;
3761 	syn_data->ip_summed = CHECKSUM_PARTIAL;
3762 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3763 	if (space) {
3764 		int copied = copy_from_iter(skb_put(syn_data, space), space,
3765 					    &fo->data->msg_iter);
3766 		if (unlikely(!copied)) {
3767 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3768 			kfree_skb(syn_data);
3769 			goto fallback;
3770 		}
3771 		if (copied != space) {
3772 			skb_trim(syn_data, copied);
3773 			space = copied;
3774 		}
3775 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3776 	}
3777 	/* No more data pending in inet_wait_for_connect() */
3778 	if (space == fo->size)
3779 		fo->data = NULL;
3780 	fo->copied = space;
3781 
3782 	tcp_connect_queue_skb(sk, syn_data);
3783 	if (syn_data->len)
3784 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3785 
3786 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3787 
3788 	syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3789 
3790 	/* Now full SYN+DATA was cloned and sent (or not),
3791 	 * remove the SYN from the original skb (syn_data)
3792 	 * we keep in write queue in case of a retransmit, as we
3793 	 * also have the SYN packet (with no data) in the same queue.
3794 	 */
3795 	TCP_SKB_CB(syn_data)->seq++;
3796 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3797 	if (!err) {
3798 		tp->syn_data = (fo->copied > 0);
3799 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3800 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3801 		goto done;
3802 	}
3803 
3804 	/* data was not sent, put it in write_queue */
3805 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
3806 	tp->packets_out -= tcp_skb_pcount(syn_data);
3807 
3808 fallback:
3809 	/* Send a regular SYN with Fast Open cookie request option */
3810 	if (fo->cookie.len > 0)
3811 		fo->cookie.len = 0;
3812 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3813 	if (err)
3814 		tp->syn_fastopen = 0;
3815 done:
3816 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3817 	return err;
3818 }
3819 
3820 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3821 int tcp_connect(struct sock *sk)
3822 {
3823 	struct tcp_sock *tp = tcp_sk(sk);
3824 	struct sk_buff *buff;
3825 	int err;
3826 
3827 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3828 
3829 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3830 		return -EHOSTUNREACH; /* Routing failure or similar. */
3831 
3832 	tcp_connect_init(sk);
3833 
3834 	if (unlikely(tp->repair)) {
3835 		tcp_finish_connect(sk, NULL);
3836 		return 0;
3837 	}
3838 
3839 	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3840 	if (unlikely(!buff))
3841 		return -ENOBUFS;
3842 
3843 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3844 	tcp_mstamp_refresh(tp);
3845 	tp->retrans_stamp = tcp_time_stamp(tp);
3846 	tcp_connect_queue_skb(sk, buff);
3847 	tcp_ecn_send_syn(sk, buff);
3848 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3849 
3850 	/* Send off SYN; include data in Fast Open. */
3851 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3852 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3853 	if (err == -ECONNREFUSED)
3854 		return err;
3855 
3856 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3857 	 * in order to make this packet get counted in tcpOutSegs.
3858 	 */
3859 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3860 	tp->pushed_seq = tp->write_seq;
3861 	buff = tcp_send_head(sk);
3862 	if (unlikely(buff)) {
3863 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3864 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
3865 	}
3866 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3867 
3868 	/* Timer for repeating the SYN until an answer. */
3869 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3870 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3871 	return 0;
3872 }
3873 EXPORT_SYMBOL(tcp_connect);
3874 
3875 /* Send out a delayed ack, the caller does the policy checking
3876  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3877  * for details.
3878  */
tcp_send_delayed_ack(struct sock * sk)3879 void tcp_send_delayed_ack(struct sock *sk)
3880 {
3881 	struct inet_connection_sock *icsk = inet_csk(sk);
3882 	int ato = icsk->icsk_ack.ato;
3883 	unsigned long timeout;
3884 
3885 	if (ato > TCP_DELACK_MIN) {
3886 		const struct tcp_sock *tp = tcp_sk(sk);
3887 		int max_ato = HZ / 2;
3888 
3889 		if (inet_csk_in_pingpong_mode(sk) ||
3890 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3891 			max_ato = TCP_DELACK_MAX;
3892 
3893 		/* Slow path, intersegment interval is "high". */
3894 
3895 		/* If some rtt estimate is known, use it to bound delayed ack.
3896 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3897 		 * directly.
3898 		 */
3899 		if (tp->srtt_us) {
3900 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3901 					TCP_DELACK_MIN);
3902 
3903 			if (rtt < max_ato)
3904 				max_ato = rtt;
3905 		}
3906 
3907 		ato = min(ato, max_ato);
3908 	}
3909 
3910 	ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3911 
3912 	/* Stay within the limit we were given */
3913 	timeout = jiffies + ato;
3914 
3915 	/* Use new timeout only if there wasn't a older one earlier. */
3916 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3917 		/* If delack timer is about to expire, send ACK now. */
3918 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3919 			tcp_send_ack(sk);
3920 			return;
3921 		}
3922 
3923 		if (!time_before(timeout, icsk->icsk_ack.timeout))
3924 			timeout = icsk->icsk_ack.timeout;
3925 	}
3926 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3927 	icsk->icsk_ack.timeout = timeout;
3928 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3929 }
3930 
3931 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3932 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3933 {
3934 	struct sk_buff *buff;
3935 
3936 	/* If we have been reset, we may not send again. */
3937 	if (sk->sk_state == TCP_CLOSE)
3938 		return;
3939 
3940 	/* We are not putting this on the write queue, so
3941 	 * tcp_transmit_skb() will set the ownership to this
3942 	 * sock.
3943 	 */
3944 	buff = alloc_skb(MAX_TCP_HEADER,
3945 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3946 	if (unlikely(!buff)) {
3947 		struct inet_connection_sock *icsk = inet_csk(sk);
3948 		unsigned long delay;
3949 
3950 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3951 		if (delay < TCP_RTO_MAX)
3952 			icsk->icsk_ack.retry++;
3953 		inet_csk_schedule_ack(sk);
3954 		icsk->icsk_ack.ato = TCP_ATO_MIN;
3955 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3956 		return;
3957 	}
3958 
3959 	/* Reserve space for headers and prepare control bits. */
3960 	skb_reserve(buff, MAX_TCP_HEADER);
3961 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3962 
3963 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3964 	 * too much.
3965 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3966 	 */
3967 	skb_set_tcp_pure_ack(buff);
3968 
3969 	/* Send it off, this clears delayed acks for us. */
3970 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3971 }
3972 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3973 
tcp_send_ack(struct sock * sk)3974 void tcp_send_ack(struct sock *sk)
3975 {
3976 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3977 }
3978 
3979 /* This routine sends a packet with an out of date sequence
3980  * number. It assumes the other end will try to ack it.
3981  *
3982  * Question: what should we make while urgent mode?
3983  * 4.4BSD forces sending single byte of data. We cannot send
3984  * out of window data, because we have SND.NXT==SND.MAX...
3985  *
3986  * Current solution: to send TWO zero-length segments in urgent mode:
3987  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3988  * out-of-date with SND.UNA-1 to probe window.
3989  */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)3990 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3991 {
3992 	struct tcp_sock *tp = tcp_sk(sk);
3993 	struct sk_buff *skb;
3994 
3995 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3996 	skb = alloc_skb(MAX_TCP_HEADER,
3997 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3998 	if (!skb)
3999 		return -1;
4000 
4001 	/* Reserve space for headers and set control bits. */
4002 	skb_reserve(skb, MAX_TCP_HEADER);
4003 	/* Use a previous sequence.  This should cause the other
4004 	 * end to send an ack.  Don't queue or clone SKB, just
4005 	 * send it.
4006 	 */
4007 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4008 	NET_INC_STATS(sock_net(sk), mib);
4009 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4010 }
4011 
4012 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4013 void tcp_send_window_probe(struct sock *sk)
4014 {
4015 	if (sk->sk_state == TCP_ESTABLISHED) {
4016 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4017 		tcp_mstamp_refresh(tcp_sk(sk));
4018 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4019 	}
4020 }
4021 
4022 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4023 int tcp_write_wakeup(struct sock *sk, int mib)
4024 {
4025 	struct tcp_sock *tp = tcp_sk(sk);
4026 	struct sk_buff *skb;
4027 
4028 	if (sk->sk_state == TCP_CLOSE)
4029 		return -1;
4030 
4031 	skb = tcp_send_head(sk);
4032 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4033 		int err;
4034 		unsigned int mss = tcp_current_mss(sk);
4035 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4036 
4037 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4038 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4039 
4040 		/* We are probing the opening of a window
4041 		 * but the window size is != 0
4042 		 * must have been a result SWS avoidance ( sender )
4043 		 */
4044 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4045 		    skb->len > mss) {
4046 			seg_size = min(seg_size, mss);
4047 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4048 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4049 					 skb, seg_size, mss, GFP_ATOMIC))
4050 				return -1;
4051 		} else if (!tcp_skb_pcount(skb))
4052 			tcp_set_skb_tso_segs(skb, mss);
4053 
4054 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4055 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4056 		if (!err)
4057 			tcp_event_new_data_sent(sk, skb);
4058 		return err;
4059 	} else {
4060 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4061 			tcp_xmit_probe_skb(sk, 1, mib);
4062 		return tcp_xmit_probe_skb(sk, 0, mib);
4063 	}
4064 }
4065 
4066 /* A window probe timeout has occurred.  If window is not closed send
4067  * a partial packet else a zero probe.
4068  */
tcp_send_probe0(struct sock * sk)4069 void tcp_send_probe0(struct sock *sk)
4070 {
4071 	struct inet_connection_sock *icsk = inet_csk(sk);
4072 	struct tcp_sock *tp = tcp_sk(sk);
4073 	struct net *net = sock_net(sk);
4074 	unsigned long timeout;
4075 	int err;
4076 
4077 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4078 
4079 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4080 		/* Cancel probe timer, if it is not required. */
4081 		icsk->icsk_probes_out = 0;
4082 		icsk->icsk_backoff = 0;
4083 		return;
4084 	}
4085 
4086 	icsk->icsk_probes_out++;
4087 	if (err <= 0) {
4088 		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
4089 			icsk->icsk_backoff++;
4090 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4091 	} else {
4092 		/* If packet was not sent due to local congestion,
4093 		 * Let senders fight for local resources conservatively.
4094 		 */
4095 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4096 	}
4097 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4098 }
4099 
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4100 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4101 {
4102 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4103 	struct flowi fl;
4104 	int res;
4105 
4106 	tcp_rsk(req)->txhash = net_tx_rndhash();
4107 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4108 				  NULL);
4109 	if (!res) {
4110 		__TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4111 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4112 		if (unlikely(tcp_passive_fastopen(sk)))
4113 			tcp_sk(sk)->total_retrans++;
4114 		trace_tcp_retransmit_synack(sk, req);
4115 	}
4116 	return res;
4117 }
4118 EXPORT_SYMBOL(tcp_rtx_synack);
4119