1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47
48 #include <trace/events/tcp.h>
49
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
52 */
tcp_mstamp_refresh(struct tcp_sock * tp)53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 u64 val = tcp_clock_ns();
56
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
63
64 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
70
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
78
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 tcp_rearm_rto(sk);
82
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 tcp_skb_pcount(skb));
85 }
86
87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88 * window scaling factor due to loss of precision.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
93 */
tcp_acceptable_seq(const struct sock * sk)94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 {
96 const struct tcp_sock *tp = tcp_sk(sk);
97
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
99 (tp->rx_opt.wscale_ok &&
100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
101 return tp->snd_nxt;
102 else
103 return tcp_wnd_end(tp);
104 }
105
106 /* Calculate mss to advertise in SYN segment.
107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108 *
109 * 1. It is independent of path mtu.
110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112 * attached devices, because some buggy hosts are confused by
113 * large MSS.
114 * 4. We do not make 3, we advertise MSS, calculated from first
115 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
116 * This may be overridden via information stored in routing table.
117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118 * probably even Jumbo".
119 */
tcp_advertise_mss(struct sock * sk)120 static __u16 tcp_advertise_mss(struct sock *sk)
121 {
122 struct tcp_sock *tp = tcp_sk(sk);
123 const struct dst_entry *dst = __sk_dst_get(sk);
124 int mss = tp->advmss;
125
126 if (dst) {
127 unsigned int metric = dst_metric_advmss(dst);
128
129 if (metric < mss) {
130 mss = metric;
131 tp->advmss = mss;
132 }
133 }
134
135 return (__u16)mss;
136 }
137
138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139 * This is the first part of cwnd validation mechanism.
140 */
tcp_cwnd_restart(struct sock * sk,s32 delta)141 void tcp_cwnd_restart(struct sock *sk, s32 delta)
142 {
143 struct tcp_sock *tp = tcp_sk(sk);
144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
145 u32 cwnd = tp->snd_cwnd;
146
147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
148
149 tp->snd_ssthresh = tcp_current_ssthresh(sk);
150 restart_cwnd = min(restart_cwnd, cwnd);
151
152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
153 cwnd >>= 1;
154 tp->snd_cwnd = max(cwnd, restart_cwnd);
155 tp->snd_cwnd_stamp = tcp_jiffies32;
156 tp->snd_cwnd_used = 0;
157 }
158
159 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)160 static void tcp_event_data_sent(struct tcp_sock *tp,
161 struct sock *sk)
162 {
163 struct inet_connection_sock *icsk = inet_csk(sk);
164 const u32 now = tcp_jiffies32;
165
166 if (tcp_packets_in_flight(tp) == 0)
167 tcp_ca_event(sk, CA_EVENT_TX_START);
168
169 /* If this is the first data packet sent in response to the
170 * previous received data,
171 * and it is a reply for ato after last received packet,
172 * increase pingpong count.
173 */
174 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
175 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 inet_csk_inc_pingpong_cnt(sk);
177
178 tp->lsndtime = now;
179 }
180
181 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,unsigned int pkts,u32 rcv_nxt)182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
183 u32 rcv_nxt)
184 {
185 struct tcp_sock *tp = tcp_sk(sk);
186
187 if (unlikely(tp->compressed_ack)) {
188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
189 tp->compressed_ack);
190 tp->compressed_ack = 0;
191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
192 __sock_put(sk);
193 }
194
195 if (unlikely(rcv_nxt != tp->rcv_nxt))
196 return; /* Special ACK sent by DCTCP to reflect ECN */
197 tcp_dec_quickack_mode(sk, pkts);
198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
199 }
200
201 /* Determine a window scaling and initial window to offer.
202 * Based on the assumption that the given amount of space
203 * will be offered. Store the results in the tp structure.
204 * NOTE: for smooth operation initial space offering should
205 * be a multiple of mss if possible. We assume here that mss >= 1.
206 * This MUST be enforced by all callers.
207 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 __u32 *rcv_wnd, __u32 *window_clamp,
210 int wscale_ok, __u8 *rcv_wscale,
211 __u32 init_rcv_wnd)
212 {
213 unsigned int space = (__space < 0 ? 0 : __space);
214
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (*window_clamp == 0)
217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
218 space = min(*window_clamp, space);
219
220 /* Quantize space offering to a multiple of mss if possible. */
221 if (space > mss)
222 space = rounddown(space, mss);
223
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
231 */
232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
234 else
235 (*rcv_wnd) = min_t(u32, space, U16_MAX);
236
237 if (init_rcv_wnd)
238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
239
240 *rcv_wscale = 0;
241 if (wscale_ok) {
242 /* Set window scaling on max possible window */
243 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
244 space = max_t(u32, space, sysctl_rmem_max);
245 space = min_t(u32, space, *window_clamp);
246 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
247 0, TCP_MAX_WSCALE);
248 }
249 /* Set the clamp no higher than max representable value */
250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
251 }
252 EXPORT_SYMBOL(tcp_select_initial_window);
253
254 /* Chose a new window to advertise, update state in tcp_sock for the
255 * socket, and return result with RFC1323 scaling applied. The return
256 * value can be stuffed directly into th->window for an outgoing
257 * frame.
258 */
tcp_select_window(struct sock * sk)259 static u16 tcp_select_window(struct sock *sk)
260 {
261 struct tcp_sock *tp = tcp_sk(sk);
262 u32 old_win = tp->rcv_wnd;
263 u32 cur_win = tcp_receive_window(tp);
264 u32 new_win = __tcp_select_window(sk);
265
266 /* Never shrink the offered window */
267 if (new_win < cur_win) {
268 /* Danger Will Robinson!
269 * Don't update rcv_wup/rcv_wnd here or else
270 * we will not be able to advertise a zero
271 * window in time. --DaveM
272 *
273 * Relax Will Robinson.
274 */
275 if (new_win == 0)
276 NET_INC_STATS(sock_net(sk),
277 LINUX_MIB_TCPWANTZEROWINDOWADV);
278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
279 }
280 tp->rcv_wnd = new_win;
281 tp->rcv_wup = tp->rcv_nxt;
282
283 /* Make sure we do not exceed the maximum possible
284 * scaled window.
285 */
286 if (!tp->rx_opt.rcv_wscale &&
287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
288 new_win = min(new_win, MAX_TCP_WINDOW);
289 else
290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
291
292 /* RFC1323 scaling applied */
293 new_win >>= tp->rx_opt.rcv_wscale;
294
295 /* If we advertise zero window, disable fast path. */
296 if (new_win == 0) {
297 tp->pred_flags = 0;
298 if (old_win)
299 NET_INC_STATS(sock_net(sk),
300 LINUX_MIB_TCPTOZEROWINDOWADV);
301 } else if (old_win == 0) {
302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
303 }
304
305 return new_win;
306 }
307
308 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
310 {
311 const struct tcp_sock *tp = tcp_sk(sk);
312
313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314 if (!(tp->ecn_flags & TCP_ECN_OK))
315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316 else if (tcp_ca_needs_ecn(sk) ||
317 tcp_bpf_ca_needs_ecn(sk))
318 INET_ECN_xmit(sk);
319 }
320
321 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
323 {
324 struct tcp_sock *tp = tcp_sk(sk);
325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
328
329 if (!use_ecn) {
330 const struct dst_entry *dst = __sk_dst_get(sk);
331
332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
333 use_ecn = true;
334 }
335
336 tp->ecn_flags = 0;
337
338 if (use_ecn) {
339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 tp->ecn_flags = TCP_ECN_OK;
341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
342 INET_ECN_xmit(sk);
343 }
344 }
345
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
347 {
348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 /* tp->ecn_flags are cleared at a later point in time when
350 * SYN ACK is ultimatively being received.
351 */
352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
353 }
354
355 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
357 {
358 if (inet_rsk(req)->ecn_ok)
359 th->ece = 1;
360 }
361
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
363 * be sent.
364 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 struct tcphdr *th, int tcp_header_len)
367 {
368 struct tcp_sock *tp = tcp_sk(sk);
369
370 if (tp->ecn_flags & TCP_ECN_OK) {
371 /* Not-retransmitted data segment: set ECT and inject CWR. */
372 if (skb->len != tcp_header_len &&
373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
374 INET_ECN_xmit(sk);
375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
377 th->cwr = 1;
378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
379 }
380 } else if (!tcp_ca_needs_ecn(sk)) {
381 /* ACK or retransmitted segment: clear ECT|CE */
382 INET_ECN_dontxmit(sk);
383 }
384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
385 th->ece = 1;
386 }
387 }
388
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390 * auto increment end seqno.
391 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
393 {
394 skb->ip_summed = CHECKSUM_PARTIAL;
395
396 TCP_SKB_CB(skb)->tcp_flags = flags;
397 TCP_SKB_CB(skb)->sacked = 0;
398
399 tcp_skb_pcount_set(skb, 1);
400
401 TCP_SKB_CB(skb)->seq = seq;
402 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
403 seq++;
404 TCP_SKB_CB(skb)->end_seq = seq;
405 }
406
tcp_urg_mode(const struct tcp_sock * tp)407 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
408 {
409 return tp->snd_una != tp->snd_up;
410 }
411
412 #define OPTION_SACK_ADVERTISE (1 << 0)
413 #define OPTION_TS (1 << 1)
414 #define OPTION_MD5 (1 << 2)
415 #define OPTION_WSCALE (1 << 3)
416 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
417 #define OPTION_SMC (1 << 9)
418 #define OPTION_MPTCP (1 << 10)
419
smc_options_write(__be32 * ptr,u16 * options)420 static void smc_options_write(__be32 *ptr, u16 *options)
421 {
422 #if IS_ENABLED(CONFIG_SMC)
423 if (static_branch_unlikely(&tcp_have_smc)) {
424 if (unlikely(OPTION_SMC & *options)) {
425 *ptr++ = htonl((TCPOPT_NOP << 24) |
426 (TCPOPT_NOP << 16) |
427 (TCPOPT_EXP << 8) |
428 (TCPOLEN_EXP_SMC_BASE));
429 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
430 }
431 }
432 #endif
433 }
434
435 struct tcp_out_options {
436 u16 options; /* bit field of OPTION_* */
437 u16 mss; /* 0 to disable */
438 u8 ws; /* window scale, 0 to disable */
439 u8 num_sack_blocks; /* number of SACK blocks to include */
440 u8 hash_size; /* bytes in hash_location */
441 u8 bpf_opt_len; /* length of BPF hdr option */
442 __u8 *hash_location; /* temporary pointer, overloaded */
443 __u32 tsval, tsecr; /* need to include OPTION_TS */
444 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
445 struct mptcp_out_options mptcp;
446 };
447
mptcp_options_write(__be32 * ptr,struct tcp_out_options * opts)448 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
449 {
450 #if IS_ENABLED(CONFIG_MPTCP)
451 if (unlikely(OPTION_MPTCP & opts->options))
452 mptcp_write_options(ptr, &opts->mptcp);
453 #endif
454 }
455
456 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)457 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
458 enum tcp_synack_type synack_type)
459 {
460 if (unlikely(!skb))
461 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
462
463 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
464 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
465
466 return 0;
467 }
468
469 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)470 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
471 struct request_sock *req,
472 struct sk_buff *syn_skb,
473 enum tcp_synack_type synack_type,
474 struct tcp_out_options *opts,
475 unsigned int *remaining)
476 {
477 struct bpf_sock_ops_kern sock_ops;
478 int err;
479
480 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
481 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
482 !*remaining)
483 return;
484
485 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
486
487 /* init sock_ops */
488 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
489
490 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
491
492 if (req) {
493 /* The listen "sk" cannot be passed here because
494 * it is not locked. It would not make too much
495 * sense to do bpf_setsockopt(listen_sk) based
496 * on individual connection request also.
497 *
498 * Thus, "req" is passed here and the cgroup-bpf-progs
499 * of the listen "sk" will be run.
500 *
501 * "req" is also used here for fastopen even the "sk" here is
502 * a fullsock "child" sk. It is to keep the behavior
503 * consistent between fastopen and non-fastopen on
504 * the bpf programming side.
505 */
506 sock_ops.sk = (struct sock *)req;
507 sock_ops.syn_skb = syn_skb;
508 } else {
509 sock_owned_by_me(sk);
510
511 sock_ops.is_fullsock = 1;
512 sock_ops.sk = sk;
513 }
514
515 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
516 sock_ops.remaining_opt_len = *remaining;
517 /* tcp_current_mss() does not pass a skb */
518 if (skb)
519 bpf_skops_init_skb(&sock_ops, skb, 0);
520
521 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
522
523 if (err || sock_ops.remaining_opt_len == *remaining)
524 return;
525
526 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
527 /* round up to 4 bytes */
528 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
529
530 *remaining -= opts->bpf_opt_len;
531 }
532
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)533 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
534 struct request_sock *req,
535 struct sk_buff *syn_skb,
536 enum tcp_synack_type synack_type,
537 struct tcp_out_options *opts)
538 {
539 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
540 struct bpf_sock_ops_kern sock_ops;
541 int err;
542
543 if (likely(!max_opt_len))
544 return;
545
546 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
547
548 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
549
550 if (req) {
551 sock_ops.sk = (struct sock *)req;
552 sock_ops.syn_skb = syn_skb;
553 } else {
554 sock_owned_by_me(sk);
555
556 sock_ops.is_fullsock = 1;
557 sock_ops.sk = sk;
558 }
559
560 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
561 sock_ops.remaining_opt_len = max_opt_len;
562 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
563 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
564
565 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
566
567 if (err)
568 nr_written = 0;
569 else
570 nr_written = max_opt_len - sock_ops.remaining_opt_len;
571
572 if (nr_written < max_opt_len)
573 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
574 max_opt_len - nr_written);
575 }
576 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)577 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
578 struct request_sock *req,
579 struct sk_buff *syn_skb,
580 enum tcp_synack_type synack_type,
581 struct tcp_out_options *opts,
582 unsigned int *remaining)
583 {
584 }
585
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)586 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
587 struct request_sock *req,
588 struct sk_buff *syn_skb,
589 enum tcp_synack_type synack_type,
590 struct tcp_out_options *opts)
591 {
592 }
593 #endif
594
595 /* Write previously computed TCP options to the packet.
596 *
597 * Beware: Something in the Internet is very sensitive to the ordering of
598 * TCP options, we learned this through the hard way, so be careful here.
599 * Luckily we can at least blame others for their non-compliance but from
600 * inter-operability perspective it seems that we're somewhat stuck with
601 * the ordering which we have been using if we want to keep working with
602 * those broken things (not that it currently hurts anybody as there isn't
603 * particular reason why the ordering would need to be changed).
604 *
605 * At least SACK_PERM as the first option is known to lead to a disaster
606 * (but it may well be that other scenarios fail similarly).
607 */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)608 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
609 struct tcp_out_options *opts)
610 {
611 u16 options = opts->options; /* mungable copy */
612
613 if (unlikely(OPTION_MD5 & options)) {
614 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
615 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
616 /* overload cookie hash location */
617 opts->hash_location = (__u8 *)ptr;
618 ptr += 4;
619 }
620
621 if (unlikely(opts->mss)) {
622 *ptr++ = htonl((TCPOPT_MSS << 24) |
623 (TCPOLEN_MSS << 16) |
624 opts->mss);
625 }
626
627 if (likely(OPTION_TS & options)) {
628 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
629 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
630 (TCPOLEN_SACK_PERM << 16) |
631 (TCPOPT_TIMESTAMP << 8) |
632 TCPOLEN_TIMESTAMP);
633 options &= ~OPTION_SACK_ADVERTISE;
634 } else {
635 *ptr++ = htonl((TCPOPT_NOP << 24) |
636 (TCPOPT_NOP << 16) |
637 (TCPOPT_TIMESTAMP << 8) |
638 TCPOLEN_TIMESTAMP);
639 }
640 *ptr++ = htonl(opts->tsval);
641 *ptr++ = htonl(opts->tsecr);
642 }
643
644 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
645 *ptr++ = htonl((TCPOPT_NOP << 24) |
646 (TCPOPT_NOP << 16) |
647 (TCPOPT_SACK_PERM << 8) |
648 TCPOLEN_SACK_PERM);
649 }
650
651 if (unlikely(OPTION_WSCALE & options)) {
652 *ptr++ = htonl((TCPOPT_NOP << 24) |
653 (TCPOPT_WINDOW << 16) |
654 (TCPOLEN_WINDOW << 8) |
655 opts->ws);
656 }
657
658 if (unlikely(opts->num_sack_blocks)) {
659 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
660 tp->duplicate_sack : tp->selective_acks;
661 int this_sack;
662
663 *ptr++ = htonl((TCPOPT_NOP << 24) |
664 (TCPOPT_NOP << 16) |
665 (TCPOPT_SACK << 8) |
666 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
667 TCPOLEN_SACK_PERBLOCK)));
668
669 for (this_sack = 0; this_sack < opts->num_sack_blocks;
670 ++this_sack) {
671 *ptr++ = htonl(sp[this_sack].start_seq);
672 *ptr++ = htonl(sp[this_sack].end_seq);
673 }
674
675 tp->rx_opt.dsack = 0;
676 }
677
678 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
679 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
680 u8 *p = (u8 *)ptr;
681 u32 len; /* Fast Open option length */
682
683 if (foc->exp) {
684 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
685 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
686 TCPOPT_FASTOPEN_MAGIC);
687 p += TCPOLEN_EXP_FASTOPEN_BASE;
688 } else {
689 len = TCPOLEN_FASTOPEN_BASE + foc->len;
690 *p++ = TCPOPT_FASTOPEN;
691 *p++ = len;
692 }
693
694 memcpy(p, foc->val, foc->len);
695 if ((len & 3) == 2) {
696 p[foc->len] = TCPOPT_NOP;
697 p[foc->len + 1] = TCPOPT_NOP;
698 }
699 ptr += (len + 3) >> 2;
700 }
701
702 smc_options_write(ptr, &options);
703
704 mptcp_options_write(ptr, opts);
705 }
706
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)707 static void smc_set_option(const struct tcp_sock *tp,
708 struct tcp_out_options *opts,
709 unsigned int *remaining)
710 {
711 #if IS_ENABLED(CONFIG_SMC)
712 if (static_branch_unlikely(&tcp_have_smc)) {
713 if (tp->syn_smc) {
714 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
715 opts->options |= OPTION_SMC;
716 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
717 }
718 }
719 }
720 #endif
721 }
722
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)723 static void smc_set_option_cond(const struct tcp_sock *tp,
724 const struct inet_request_sock *ireq,
725 struct tcp_out_options *opts,
726 unsigned int *remaining)
727 {
728 #if IS_ENABLED(CONFIG_SMC)
729 if (static_branch_unlikely(&tcp_have_smc)) {
730 if (tp->syn_smc && ireq->smc_ok) {
731 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
732 opts->options |= OPTION_SMC;
733 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
734 }
735 }
736 }
737 #endif
738 }
739
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)740 static void mptcp_set_option_cond(const struct request_sock *req,
741 struct tcp_out_options *opts,
742 unsigned int *remaining)
743 {
744 if (rsk_is_mptcp(req)) {
745 unsigned int size;
746
747 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
748 if (*remaining >= size) {
749 opts->options |= OPTION_MPTCP;
750 *remaining -= size;
751 }
752 }
753 }
754 }
755
756 /* Compute TCP options for SYN packets. This is not the final
757 * network wire format yet.
758 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
760 struct tcp_out_options *opts,
761 struct tcp_md5sig_key **md5)
762 {
763 struct tcp_sock *tp = tcp_sk(sk);
764 unsigned int remaining = MAX_TCP_OPTION_SPACE;
765 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
766
767 *md5 = NULL;
768 #ifdef CONFIG_TCP_MD5SIG
769 if (static_branch_unlikely(&tcp_md5_needed) &&
770 rcu_access_pointer(tp->md5sig_info)) {
771 *md5 = tp->af_specific->md5_lookup(sk, sk);
772 if (*md5) {
773 opts->options |= OPTION_MD5;
774 remaining -= TCPOLEN_MD5SIG_ALIGNED;
775 }
776 }
777 #endif
778
779 /* We always get an MSS option. The option bytes which will be seen in
780 * normal data packets should timestamps be used, must be in the MSS
781 * advertised. But we subtract them from tp->mss_cache so that
782 * calculations in tcp_sendmsg are simpler etc. So account for this
783 * fact here if necessary. If we don't do this correctly, as a
784 * receiver we won't recognize data packets as being full sized when we
785 * should, and thus we won't abide by the delayed ACK rules correctly.
786 * SACKs don't matter, we never delay an ACK when we have any of those
787 * going out. */
788 opts->mss = tcp_advertise_mss(sk);
789 remaining -= TCPOLEN_MSS_ALIGNED;
790
791 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
792 opts->options |= OPTION_TS;
793 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
794 opts->tsecr = tp->rx_opt.ts_recent;
795 remaining -= TCPOLEN_TSTAMP_ALIGNED;
796 }
797 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
798 opts->ws = tp->rx_opt.rcv_wscale;
799 opts->options |= OPTION_WSCALE;
800 remaining -= TCPOLEN_WSCALE_ALIGNED;
801 }
802 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
803 opts->options |= OPTION_SACK_ADVERTISE;
804 if (unlikely(!(OPTION_TS & opts->options)))
805 remaining -= TCPOLEN_SACKPERM_ALIGNED;
806 }
807
808 if (fastopen && fastopen->cookie.len >= 0) {
809 u32 need = fastopen->cookie.len;
810
811 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
812 TCPOLEN_FASTOPEN_BASE;
813 need = (need + 3) & ~3U; /* Align to 32 bits */
814 if (remaining >= need) {
815 opts->options |= OPTION_FAST_OPEN_COOKIE;
816 opts->fastopen_cookie = &fastopen->cookie;
817 remaining -= need;
818 tp->syn_fastopen = 1;
819 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
820 }
821 }
822
823 smc_set_option(tp, opts, &remaining);
824
825 if (sk_is_mptcp(sk)) {
826 unsigned int size;
827
828 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
829 opts->options |= OPTION_MPTCP;
830 remaining -= size;
831 }
832 }
833
834 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
835
836 return MAX_TCP_OPTION_SPACE - remaining;
837 }
838
839 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)840 static unsigned int tcp_synack_options(const struct sock *sk,
841 struct request_sock *req,
842 unsigned int mss, struct sk_buff *skb,
843 struct tcp_out_options *opts,
844 const struct tcp_md5sig_key *md5,
845 struct tcp_fastopen_cookie *foc,
846 enum tcp_synack_type synack_type,
847 struct sk_buff *syn_skb)
848 {
849 struct inet_request_sock *ireq = inet_rsk(req);
850 unsigned int remaining = MAX_TCP_OPTION_SPACE;
851
852 #ifdef CONFIG_TCP_MD5SIG
853 if (md5) {
854 opts->options |= OPTION_MD5;
855 remaining -= TCPOLEN_MD5SIG_ALIGNED;
856
857 /* We can't fit any SACK blocks in a packet with MD5 + TS
858 * options. There was discussion about disabling SACK
859 * rather than TS in order to fit in better with old,
860 * buggy kernels, but that was deemed to be unnecessary.
861 */
862 if (synack_type != TCP_SYNACK_COOKIE)
863 ireq->tstamp_ok &= !ireq->sack_ok;
864 }
865 #endif
866
867 /* We always send an MSS option. */
868 opts->mss = mss;
869 remaining -= TCPOLEN_MSS_ALIGNED;
870
871 if (likely(ireq->wscale_ok)) {
872 opts->ws = ireq->rcv_wscale;
873 opts->options |= OPTION_WSCALE;
874 remaining -= TCPOLEN_WSCALE_ALIGNED;
875 }
876 if (likely(ireq->tstamp_ok)) {
877 opts->options |= OPTION_TS;
878 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
879 opts->tsecr = req->ts_recent;
880 remaining -= TCPOLEN_TSTAMP_ALIGNED;
881 }
882 if (likely(ireq->sack_ok)) {
883 opts->options |= OPTION_SACK_ADVERTISE;
884 if (unlikely(!ireq->tstamp_ok))
885 remaining -= TCPOLEN_SACKPERM_ALIGNED;
886 }
887 if (foc != NULL && foc->len >= 0) {
888 u32 need = foc->len;
889
890 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
891 TCPOLEN_FASTOPEN_BASE;
892 need = (need + 3) & ~3U; /* Align to 32 bits */
893 if (remaining >= need) {
894 opts->options |= OPTION_FAST_OPEN_COOKIE;
895 opts->fastopen_cookie = foc;
896 remaining -= need;
897 }
898 }
899
900 mptcp_set_option_cond(req, opts, &remaining);
901
902 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
903
904 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
905 synack_type, opts, &remaining);
906
907 return MAX_TCP_OPTION_SPACE - remaining;
908 }
909
910 /* Compute TCP options for ESTABLISHED sockets. This is not the
911 * final wire format yet.
912 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
914 struct tcp_out_options *opts,
915 struct tcp_md5sig_key **md5)
916 {
917 struct tcp_sock *tp = tcp_sk(sk);
918 unsigned int size = 0;
919 unsigned int eff_sacks;
920
921 opts->options = 0;
922
923 *md5 = NULL;
924 #ifdef CONFIG_TCP_MD5SIG
925 if (static_branch_unlikely(&tcp_md5_needed) &&
926 rcu_access_pointer(tp->md5sig_info)) {
927 *md5 = tp->af_specific->md5_lookup(sk, sk);
928 if (*md5) {
929 opts->options |= OPTION_MD5;
930 size += TCPOLEN_MD5SIG_ALIGNED;
931 }
932 }
933 #endif
934
935 if (likely(tp->rx_opt.tstamp_ok)) {
936 opts->options |= OPTION_TS;
937 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
938 opts->tsecr = tp->rx_opt.ts_recent;
939 size += TCPOLEN_TSTAMP_ALIGNED;
940 }
941
942 /* MPTCP options have precedence over SACK for the limited TCP
943 * option space because a MPTCP connection would be forced to
944 * fall back to regular TCP if a required multipath option is
945 * missing. SACK still gets a chance to use whatever space is
946 * left.
947 */
948 if (sk_is_mptcp(sk)) {
949 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
950 unsigned int opt_size = 0;
951
952 if (mptcp_established_options(sk, skb, &opt_size, remaining,
953 &opts->mptcp)) {
954 opts->options |= OPTION_MPTCP;
955 size += opt_size;
956 }
957 }
958
959 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
960 if (unlikely(eff_sacks)) {
961 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
962 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
963 TCPOLEN_SACK_PERBLOCK))
964 return size;
965
966 opts->num_sack_blocks =
967 min_t(unsigned int, eff_sacks,
968 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
969 TCPOLEN_SACK_PERBLOCK);
970
971 size += TCPOLEN_SACK_BASE_ALIGNED +
972 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
973 }
974
975 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
976 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
977 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
978
979 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
980
981 size = MAX_TCP_OPTION_SPACE - remaining;
982 }
983
984 return size;
985 }
986
987
988 /* TCP SMALL QUEUES (TSQ)
989 *
990 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
991 * to reduce RTT and bufferbloat.
992 * We do this using a special skb destructor (tcp_wfree).
993 *
994 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
995 * needs to be reallocated in a driver.
996 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
997 *
998 * Since transmit from skb destructor is forbidden, we use a tasklet
999 * to process all sockets that eventually need to send more skbs.
1000 * We use one tasklet per cpu, with its own queue of sockets.
1001 */
1002 struct tsq_tasklet {
1003 struct tasklet_struct tasklet;
1004 struct list_head head; /* queue of tcp sockets */
1005 };
1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1007
tcp_tsq_write(struct sock * sk)1008 static void tcp_tsq_write(struct sock *sk)
1009 {
1010 if ((1 << sk->sk_state) &
1011 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1012 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1013 struct tcp_sock *tp = tcp_sk(sk);
1014
1015 if (tp->lost_out > tp->retrans_out &&
1016 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1017 tcp_mstamp_refresh(tp);
1018 tcp_xmit_retransmit_queue(sk);
1019 }
1020
1021 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1022 0, GFP_ATOMIC);
1023 }
1024 }
1025
tcp_tsq_handler(struct sock * sk)1026 static void tcp_tsq_handler(struct sock *sk)
1027 {
1028 bh_lock_sock(sk);
1029 if (!sock_owned_by_user(sk))
1030 tcp_tsq_write(sk);
1031 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1032 sock_hold(sk);
1033 bh_unlock_sock(sk);
1034 }
1035 /*
1036 * One tasklet per cpu tries to send more skbs.
1037 * We run in tasklet context but need to disable irqs when
1038 * transferring tsq->head because tcp_wfree() might
1039 * interrupt us (non NAPI drivers)
1040 */
tcp_tasklet_func(unsigned long data)1041 static void tcp_tasklet_func(unsigned long data)
1042 {
1043 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
1044 LIST_HEAD(list);
1045 unsigned long flags;
1046 struct list_head *q, *n;
1047 struct tcp_sock *tp;
1048 struct sock *sk;
1049
1050 local_irq_save(flags);
1051 list_splice_init(&tsq->head, &list);
1052 local_irq_restore(flags);
1053
1054 list_for_each_safe(q, n, &list) {
1055 tp = list_entry(q, struct tcp_sock, tsq_node);
1056 list_del(&tp->tsq_node);
1057
1058 sk = (struct sock *)tp;
1059 smp_mb__before_atomic();
1060 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1061
1062 tcp_tsq_handler(sk);
1063 sk_free(sk);
1064 }
1065 }
1066
1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1068 TCPF_WRITE_TIMER_DEFERRED | \
1069 TCPF_DELACK_TIMER_DEFERRED | \
1070 TCPF_MTU_REDUCED_DEFERRED)
1071 /**
1072 * tcp_release_cb - tcp release_sock() callback
1073 * @sk: socket
1074 *
1075 * called from release_sock() to perform protocol dependent
1076 * actions before socket release.
1077 */
tcp_release_cb(struct sock * sk)1078 void tcp_release_cb(struct sock *sk)
1079 {
1080 unsigned long flags, nflags;
1081
1082 /* perform an atomic operation only if at least one flag is set */
1083 do {
1084 flags = sk->sk_tsq_flags;
1085 if (!(flags & TCP_DEFERRED_ALL))
1086 return;
1087 nflags = flags & ~TCP_DEFERRED_ALL;
1088 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1089
1090 if (flags & TCPF_TSQ_DEFERRED) {
1091 tcp_tsq_write(sk);
1092 __sock_put(sk);
1093 }
1094 /* Here begins the tricky part :
1095 * We are called from release_sock() with :
1096 * 1) BH disabled
1097 * 2) sk_lock.slock spinlock held
1098 * 3) socket owned by us (sk->sk_lock.owned == 1)
1099 *
1100 * But following code is meant to be called from BH handlers,
1101 * so we should keep BH disabled, but early release socket ownership
1102 */
1103 sock_release_ownership(sk);
1104
1105 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106 tcp_write_timer_handler(sk);
1107 __sock_put(sk);
1108 }
1109 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110 tcp_delack_timer_handler(sk);
1111 __sock_put(sk);
1112 }
1113 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1115 __sock_put(sk);
1116 }
1117 }
1118 EXPORT_SYMBOL(tcp_release_cb);
1119
tcp_tasklet_init(void)1120 void __init tcp_tasklet_init(void)
1121 {
1122 int i;
1123
1124 for_each_possible_cpu(i) {
1125 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1126
1127 INIT_LIST_HEAD(&tsq->head);
1128 tasklet_init(&tsq->tasklet,
1129 tcp_tasklet_func,
1130 (unsigned long)tsq);
1131 }
1132 }
1133
1134 /*
1135 * Write buffer destructor automatically called from kfree_skb.
1136 * We can't xmit new skbs from this context, as we might already
1137 * hold qdisc lock.
1138 */
tcp_wfree(struct sk_buff * skb)1139 void tcp_wfree(struct sk_buff *skb)
1140 {
1141 struct sock *sk = skb->sk;
1142 struct tcp_sock *tp = tcp_sk(sk);
1143 unsigned long flags, nval, oval;
1144
1145 /* Keep one reference on sk_wmem_alloc.
1146 * Will be released by sk_free() from here or tcp_tasklet_func()
1147 */
1148 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1149
1150 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1151 * Wait until our queues (qdisc + devices) are drained.
1152 * This gives :
1153 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1154 * - chance for incoming ACK (processed by another cpu maybe)
1155 * to migrate this flow (skb->ooo_okay will be eventually set)
1156 */
1157 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1158 goto out;
1159
1160 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1161 struct tsq_tasklet *tsq;
1162 bool empty;
1163
1164 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1165 goto out;
1166
1167 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1168 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1169 if (nval != oval)
1170 continue;
1171
1172 /* queue this socket to tasklet queue */
1173 local_irq_save(flags);
1174 tsq = this_cpu_ptr(&tsq_tasklet);
1175 empty = list_empty(&tsq->head);
1176 list_add(&tp->tsq_node, &tsq->head);
1177 if (empty)
1178 tasklet_schedule(&tsq->tasklet);
1179 local_irq_restore(flags);
1180 return;
1181 }
1182 out:
1183 sk_free(sk);
1184 }
1185
1186 /* Note: Called under soft irq.
1187 * We can call TCP stack right away, unless socket is owned by user.
1188 */
tcp_pace_kick(struct hrtimer * timer)1189 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1190 {
1191 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1192 struct sock *sk = (struct sock *)tp;
1193
1194 tcp_tsq_handler(sk);
1195 sock_put(sk);
1196
1197 return HRTIMER_NORESTART;
1198 }
1199
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1200 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1201 u64 prior_wstamp)
1202 {
1203 struct tcp_sock *tp = tcp_sk(sk);
1204
1205 if (sk->sk_pacing_status != SK_PACING_NONE) {
1206 unsigned long rate = sk->sk_pacing_rate;
1207
1208 /* Original sch_fq does not pace first 10 MSS
1209 * Note that tp->data_segs_out overflows after 2^32 packets,
1210 * this is a minor annoyance.
1211 */
1212 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1213 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1214 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1215
1216 /* take into account OS jitter */
1217 len_ns -= min_t(u64, len_ns / 2, credit);
1218 tp->tcp_wstamp_ns += len_ns;
1219 }
1220 }
1221 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1222 }
1223
1224 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1225 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1226 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1227
1228 /* This routine actually transmits TCP packets queued in by
1229 * tcp_do_sendmsg(). This is used by both the initial
1230 * transmission and possible later retransmissions.
1231 * All SKB's seen here are completely headerless. It is our
1232 * job to build the TCP header, and pass the packet down to
1233 * IP so it can do the same plus pass the packet off to the
1234 * device.
1235 *
1236 * We are working here with either a clone of the original
1237 * SKB, or a fresh unique copy made by the retransmit engine.
1238 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1239 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1240 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1241 {
1242 const struct inet_connection_sock *icsk = inet_csk(sk);
1243 struct inet_sock *inet;
1244 struct tcp_sock *tp;
1245 struct tcp_skb_cb *tcb;
1246 struct tcp_out_options opts;
1247 unsigned int tcp_options_size, tcp_header_size;
1248 struct sk_buff *oskb = NULL;
1249 struct tcp_md5sig_key *md5;
1250 struct tcphdr *th;
1251 u64 prior_wstamp;
1252 int err;
1253
1254 BUG_ON(!skb || !tcp_skb_pcount(skb));
1255 tp = tcp_sk(sk);
1256 prior_wstamp = tp->tcp_wstamp_ns;
1257 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1258 skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1259 if (clone_it) {
1260 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1261 - tp->snd_una;
1262 oskb = skb;
1263
1264 tcp_skb_tsorted_save(oskb) {
1265 if (unlikely(skb_cloned(oskb)))
1266 skb = pskb_copy(oskb, gfp_mask);
1267 else
1268 skb = skb_clone(oskb, gfp_mask);
1269 } tcp_skb_tsorted_restore(oskb);
1270
1271 if (unlikely(!skb))
1272 return -ENOBUFS;
1273 /* retransmit skbs might have a non zero value in skb->dev
1274 * because skb->dev is aliased with skb->rbnode.rb_left
1275 */
1276 skb->dev = NULL;
1277 }
1278
1279 inet = inet_sk(sk);
1280 tcb = TCP_SKB_CB(skb);
1281 memset(&opts, 0, sizeof(opts));
1282
1283 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1284 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1285 } else {
1286 tcp_options_size = tcp_established_options(sk, skb, &opts,
1287 &md5);
1288 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1289 * at receiver : This slightly improve GRO performance.
1290 * Note that we do not force the PSH flag for non GSO packets,
1291 * because they might be sent under high congestion events,
1292 * and in this case it is better to delay the delivery of 1-MSS
1293 * packets and thus the corresponding ACK packet that would
1294 * release the following packet.
1295 */
1296 if (tcp_skb_pcount(skb) > 1)
1297 tcb->tcp_flags |= TCPHDR_PSH;
1298 }
1299 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1300
1301 /* if no packet is in qdisc/device queue, then allow XPS to select
1302 * another queue. We can be called from tcp_tsq_handler()
1303 * which holds one reference to sk.
1304 *
1305 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1306 * One way to get this would be to set skb->truesize = 2 on them.
1307 */
1308 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1309
1310 /* If we had to use memory reserve to allocate this skb,
1311 * this might cause drops if packet is looped back :
1312 * Other socket might not have SOCK_MEMALLOC.
1313 * Packets not looped back do not care about pfmemalloc.
1314 */
1315 skb->pfmemalloc = 0;
1316
1317 skb_push(skb, tcp_header_size);
1318 skb_reset_transport_header(skb);
1319
1320 skb_orphan(skb);
1321 skb->sk = sk;
1322 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1323 skb_set_hash_from_sk(skb, sk);
1324 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1325
1326 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1327
1328 /* Build TCP header and checksum it. */
1329 th = (struct tcphdr *)skb->data;
1330 th->source = inet->inet_sport;
1331 th->dest = inet->inet_dport;
1332 th->seq = htonl(tcb->seq);
1333 th->ack_seq = htonl(rcv_nxt);
1334 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1335 tcb->tcp_flags);
1336
1337 th->check = 0;
1338 th->urg_ptr = 0;
1339
1340 /* The urg_mode check is necessary during a below snd_una win probe */
1341 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1342 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1343 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1344 th->urg = 1;
1345 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1346 th->urg_ptr = htons(0xFFFF);
1347 th->urg = 1;
1348 }
1349 }
1350
1351 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1352 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1353 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1354 th->window = htons(tcp_select_window(sk));
1355 tcp_ecn_send(sk, skb, th, tcp_header_size);
1356 } else {
1357 /* RFC1323: The window in SYN & SYN/ACK segments
1358 * is never scaled.
1359 */
1360 th->window = htons(min(tp->rcv_wnd, 65535U));
1361 }
1362 #ifdef CONFIG_TCP_MD5SIG
1363 /* Calculate the MD5 hash, as we have all we need now */
1364 if (md5) {
1365 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1366 tp->af_specific->calc_md5_hash(opts.hash_location,
1367 md5, sk, skb);
1368 }
1369 #endif
1370
1371 /* BPF prog is the last one writing header option */
1372 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1373
1374 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1375 tcp_v6_send_check, tcp_v4_send_check,
1376 sk, skb);
1377
1378 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1379 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1380
1381 if (skb->len != tcp_header_size) {
1382 tcp_event_data_sent(tp, sk);
1383 tp->data_segs_out += tcp_skb_pcount(skb);
1384 tp->bytes_sent += skb->len - tcp_header_size;
1385 }
1386
1387 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1388 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1389 tcp_skb_pcount(skb));
1390
1391 tp->segs_out += tcp_skb_pcount(skb);
1392 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1393 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1394 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1395
1396 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1397
1398 /* Cleanup our debris for IP stacks */
1399 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1400 sizeof(struct inet6_skb_parm)));
1401
1402 tcp_add_tx_delay(skb, tp);
1403
1404 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1405 inet6_csk_xmit, ip_queue_xmit,
1406 sk, skb, &inet->cork.fl);
1407
1408 if (unlikely(err > 0)) {
1409 tcp_enter_cwr(sk);
1410 err = net_xmit_eval(err);
1411 }
1412 if (!err && oskb) {
1413 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1414 tcp_rate_skb_sent(sk, oskb);
1415 }
1416 return err;
1417 }
1418
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1419 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1420 gfp_t gfp_mask)
1421 {
1422 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1423 tcp_sk(sk)->rcv_nxt);
1424 }
1425
1426 /* This routine just queues the buffer for sending.
1427 *
1428 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1429 * otherwise socket can stall.
1430 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1431 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1432 {
1433 struct tcp_sock *tp = tcp_sk(sk);
1434
1435 /* Advance write_seq and place onto the write_queue. */
1436 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1437 __skb_header_release(skb);
1438 tcp_add_write_queue_tail(sk, skb);
1439 sk_wmem_queued_add(sk, skb->truesize);
1440 sk_mem_charge(sk, skb->truesize);
1441 }
1442
1443 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1444 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1445 {
1446 if (skb->len <= mss_now) {
1447 /* Avoid the costly divide in the normal
1448 * non-TSO case.
1449 */
1450 tcp_skb_pcount_set(skb, 1);
1451 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1452 } else {
1453 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1454 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1455 }
1456 }
1457
1458 /* Pcount in the middle of the write queue got changed, we need to do various
1459 * tweaks to fix counters
1460 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1461 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1462 {
1463 struct tcp_sock *tp = tcp_sk(sk);
1464
1465 tp->packets_out -= decr;
1466
1467 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1468 tp->sacked_out -= decr;
1469 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1470 tp->retrans_out -= decr;
1471 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1472 tp->lost_out -= decr;
1473
1474 /* Reno case is special. Sigh... */
1475 if (tcp_is_reno(tp) && decr > 0)
1476 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1477
1478 if (tp->lost_skb_hint &&
1479 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1480 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1481 tp->lost_cnt_hint -= decr;
1482
1483 tcp_verify_left_out(tp);
1484 }
1485
tcp_has_tx_tstamp(const struct sk_buff * skb)1486 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1487 {
1488 return TCP_SKB_CB(skb)->txstamp_ack ||
1489 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1490 }
1491
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1492 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1493 {
1494 struct skb_shared_info *shinfo = skb_shinfo(skb);
1495
1496 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1497 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1498 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1499 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1500
1501 shinfo->tx_flags &= ~tsflags;
1502 shinfo2->tx_flags |= tsflags;
1503 swap(shinfo->tskey, shinfo2->tskey);
1504 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1505 TCP_SKB_CB(skb)->txstamp_ack = 0;
1506 }
1507 }
1508
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1509 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1510 {
1511 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1512 TCP_SKB_CB(skb)->eor = 0;
1513 }
1514
1515 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1516 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1517 struct sk_buff *buff,
1518 struct sock *sk,
1519 enum tcp_queue tcp_queue)
1520 {
1521 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1522 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1523 else
1524 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1525 }
1526
1527 /* Function to create two new TCP segments. Shrinks the given segment
1528 * to the specified size and appends a new segment with the rest of the
1529 * packet to the list. This won't be called frequently, I hope.
1530 * Remember, these are still headerless SKBs at this point.
1531 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1532 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1533 struct sk_buff *skb, u32 len,
1534 unsigned int mss_now, gfp_t gfp)
1535 {
1536 struct tcp_sock *tp = tcp_sk(sk);
1537 struct sk_buff *buff;
1538 int nsize, old_factor;
1539 long limit;
1540 int nlen;
1541 u8 flags;
1542
1543 if (WARN_ON(len > skb->len))
1544 return -EINVAL;
1545
1546 nsize = skb_headlen(skb) - len;
1547 if (nsize < 0)
1548 nsize = 0;
1549
1550 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1551 * We need some allowance to not penalize applications setting small
1552 * SO_SNDBUF values.
1553 * Also allow first and last skb in retransmit queue to be split.
1554 */
1555 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1556 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1557 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1558 skb != tcp_rtx_queue_head(sk) &&
1559 skb != tcp_rtx_queue_tail(sk))) {
1560 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1561 return -ENOMEM;
1562 }
1563
1564 if (skb_unclone(skb, gfp))
1565 return -ENOMEM;
1566
1567 /* Get a new skb... force flag on. */
1568 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1569 if (!buff)
1570 return -ENOMEM; /* We'll just try again later. */
1571 skb_copy_decrypted(buff, skb);
1572
1573 sk_wmem_queued_add(sk, buff->truesize);
1574 sk_mem_charge(sk, buff->truesize);
1575 nlen = skb->len - len - nsize;
1576 buff->truesize += nlen;
1577 skb->truesize -= nlen;
1578
1579 /* Correct the sequence numbers. */
1580 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1581 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1582 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1583
1584 /* PSH and FIN should only be set in the second packet. */
1585 flags = TCP_SKB_CB(skb)->tcp_flags;
1586 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1587 TCP_SKB_CB(buff)->tcp_flags = flags;
1588 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1589 tcp_skb_fragment_eor(skb, buff);
1590
1591 skb_split(skb, buff, len);
1592
1593 buff->ip_summed = CHECKSUM_PARTIAL;
1594
1595 buff->tstamp = skb->tstamp;
1596 tcp_fragment_tstamp(skb, buff);
1597
1598 old_factor = tcp_skb_pcount(skb);
1599
1600 /* Fix up tso_factor for both original and new SKB. */
1601 tcp_set_skb_tso_segs(skb, mss_now);
1602 tcp_set_skb_tso_segs(buff, mss_now);
1603
1604 /* Update delivered info for the new segment */
1605 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1606
1607 /* If this packet has been sent out already, we must
1608 * adjust the various packet counters.
1609 */
1610 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1611 int diff = old_factor - tcp_skb_pcount(skb) -
1612 tcp_skb_pcount(buff);
1613
1614 if (diff)
1615 tcp_adjust_pcount(sk, skb, diff);
1616 }
1617
1618 /* Link BUFF into the send queue. */
1619 __skb_header_release(buff);
1620 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1621 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1622 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1623
1624 return 0;
1625 }
1626
1627 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1628 * data is not copied, but immediately discarded.
1629 */
__pskb_trim_head(struct sk_buff * skb,int len)1630 static int __pskb_trim_head(struct sk_buff *skb, int len)
1631 {
1632 struct skb_shared_info *shinfo;
1633 int i, k, eat;
1634
1635 eat = min_t(int, len, skb_headlen(skb));
1636 if (eat) {
1637 __skb_pull(skb, eat);
1638 len -= eat;
1639 if (!len)
1640 return 0;
1641 }
1642 eat = len;
1643 k = 0;
1644 shinfo = skb_shinfo(skb);
1645 for (i = 0; i < shinfo->nr_frags; i++) {
1646 int size = skb_frag_size(&shinfo->frags[i]);
1647
1648 if (size <= eat) {
1649 skb_frag_unref(skb, i);
1650 eat -= size;
1651 } else {
1652 shinfo->frags[k] = shinfo->frags[i];
1653 if (eat) {
1654 skb_frag_off_add(&shinfo->frags[k], eat);
1655 skb_frag_size_sub(&shinfo->frags[k], eat);
1656 eat = 0;
1657 }
1658 k++;
1659 }
1660 }
1661 shinfo->nr_frags = k;
1662
1663 skb->data_len -= len;
1664 skb->len = skb->data_len;
1665 return len;
1666 }
1667
1668 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1669 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1670 {
1671 u32 delta_truesize;
1672
1673 if (skb_unclone(skb, GFP_ATOMIC))
1674 return -ENOMEM;
1675
1676 delta_truesize = __pskb_trim_head(skb, len);
1677
1678 TCP_SKB_CB(skb)->seq += len;
1679 skb->ip_summed = CHECKSUM_PARTIAL;
1680
1681 if (delta_truesize) {
1682 skb->truesize -= delta_truesize;
1683 sk_wmem_queued_add(sk, -delta_truesize);
1684 sk_mem_uncharge(sk, delta_truesize);
1685 }
1686
1687 /* Any change of skb->len requires recalculation of tso factor. */
1688 if (tcp_skb_pcount(skb) > 1)
1689 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1690
1691 return 0;
1692 }
1693
1694 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1695 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1696 {
1697 const struct tcp_sock *tp = tcp_sk(sk);
1698 const struct inet_connection_sock *icsk = inet_csk(sk);
1699 int mss_now;
1700
1701 /* Calculate base mss without TCP options:
1702 It is MMS_S - sizeof(tcphdr) of rfc1122
1703 */
1704 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1705
1706 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1707 if (icsk->icsk_af_ops->net_frag_header_len) {
1708 const struct dst_entry *dst = __sk_dst_get(sk);
1709
1710 if (dst && dst_allfrag(dst))
1711 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1712 }
1713
1714 /* Clamp it (mss_clamp does not include tcp options) */
1715 if (mss_now > tp->rx_opt.mss_clamp)
1716 mss_now = tp->rx_opt.mss_clamp;
1717
1718 /* Now subtract optional transport overhead */
1719 mss_now -= icsk->icsk_ext_hdr_len;
1720
1721 /* Then reserve room for full set of TCP options and 8 bytes of data */
1722 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1723 return mss_now;
1724 }
1725
1726 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1727 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1728 {
1729 /* Subtract TCP options size, not including SACKs */
1730 return __tcp_mtu_to_mss(sk, pmtu) -
1731 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1732 }
1733
1734 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1735 int tcp_mss_to_mtu(struct sock *sk, int mss)
1736 {
1737 const struct tcp_sock *tp = tcp_sk(sk);
1738 const struct inet_connection_sock *icsk = inet_csk(sk);
1739 int mtu;
1740
1741 mtu = mss +
1742 tp->tcp_header_len +
1743 icsk->icsk_ext_hdr_len +
1744 icsk->icsk_af_ops->net_header_len;
1745
1746 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1747 if (icsk->icsk_af_ops->net_frag_header_len) {
1748 const struct dst_entry *dst = __sk_dst_get(sk);
1749
1750 if (dst && dst_allfrag(dst))
1751 mtu += icsk->icsk_af_ops->net_frag_header_len;
1752 }
1753 return mtu;
1754 }
1755 EXPORT_SYMBOL(tcp_mss_to_mtu);
1756
1757 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1758 void tcp_mtup_init(struct sock *sk)
1759 {
1760 struct tcp_sock *tp = tcp_sk(sk);
1761 struct inet_connection_sock *icsk = inet_csk(sk);
1762 struct net *net = sock_net(sk);
1763
1764 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1765 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1766 icsk->icsk_af_ops->net_header_len;
1767 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1768 icsk->icsk_mtup.probe_size = 0;
1769 if (icsk->icsk_mtup.enabled)
1770 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1771 }
1772 EXPORT_SYMBOL(tcp_mtup_init);
1773
1774 /* This function synchronize snd mss to current pmtu/exthdr set.
1775
1776 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1777 for TCP options, but includes only bare TCP header.
1778
1779 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1780 It is minimum of user_mss and mss received with SYN.
1781 It also does not include TCP options.
1782
1783 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1784
1785 tp->mss_cache is current effective sending mss, including
1786 all tcp options except for SACKs. It is evaluated,
1787 taking into account current pmtu, but never exceeds
1788 tp->rx_opt.mss_clamp.
1789
1790 NOTE1. rfc1122 clearly states that advertised MSS
1791 DOES NOT include either tcp or ip options.
1792
1793 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1794 are READ ONLY outside this function. --ANK (980731)
1795 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1796 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1797 {
1798 struct tcp_sock *tp = tcp_sk(sk);
1799 struct inet_connection_sock *icsk = inet_csk(sk);
1800 int mss_now;
1801
1802 if (icsk->icsk_mtup.search_high > pmtu)
1803 icsk->icsk_mtup.search_high = pmtu;
1804
1805 mss_now = tcp_mtu_to_mss(sk, pmtu);
1806 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1807
1808 /* And store cached results */
1809 icsk->icsk_pmtu_cookie = pmtu;
1810 if (icsk->icsk_mtup.enabled)
1811 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1812 tp->mss_cache = mss_now;
1813
1814 return mss_now;
1815 }
1816 EXPORT_SYMBOL(tcp_sync_mss);
1817
1818 /* Compute the current effective MSS, taking SACKs and IP options,
1819 * and even PMTU discovery events into account.
1820 */
tcp_current_mss(struct sock * sk)1821 unsigned int tcp_current_mss(struct sock *sk)
1822 {
1823 const struct tcp_sock *tp = tcp_sk(sk);
1824 const struct dst_entry *dst = __sk_dst_get(sk);
1825 u32 mss_now;
1826 unsigned int header_len;
1827 struct tcp_out_options opts;
1828 struct tcp_md5sig_key *md5;
1829
1830 mss_now = tp->mss_cache;
1831
1832 if (dst) {
1833 u32 mtu = dst_mtu(dst);
1834 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1835 mss_now = tcp_sync_mss(sk, mtu);
1836 }
1837
1838 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1839 sizeof(struct tcphdr);
1840 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1841 * some common options. If this is an odd packet (because we have SACK
1842 * blocks etc) then our calculated header_len will be different, and
1843 * we have to adjust mss_now correspondingly */
1844 if (header_len != tp->tcp_header_len) {
1845 int delta = (int) header_len - tp->tcp_header_len;
1846 mss_now -= delta;
1847 }
1848
1849 return mss_now;
1850 }
1851
1852 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1853 * As additional protections, we do not touch cwnd in retransmission phases,
1854 * and if application hit its sndbuf limit recently.
1855 */
tcp_cwnd_application_limited(struct sock * sk)1856 static void tcp_cwnd_application_limited(struct sock *sk)
1857 {
1858 struct tcp_sock *tp = tcp_sk(sk);
1859
1860 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1861 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1862 /* Limited by application or receiver window. */
1863 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1864 u32 win_used = max(tp->snd_cwnd_used, init_win);
1865 if (win_used < tp->snd_cwnd) {
1866 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1867 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1868 }
1869 tp->snd_cwnd_used = 0;
1870 }
1871 tp->snd_cwnd_stamp = tcp_jiffies32;
1872 }
1873
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1874 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1875 {
1876 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1877 struct tcp_sock *tp = tcp_sk(sk);
1878
1879 /* Track the maximum number of outstanding packets in each
1880 * window, and remember whether we were cwnd-limited then.
1881 */
1882 if (!before(tp->snd_una, tp->max_packets_seq) ||
1883 tp->packets_out > tp->max_packets_out ||
1884 is_cwnd_limited) {
1885 tp->max_packets_out = tp->packets_out;
1886 tp->max_packets_seq = tp->snd_nxt;
1887 tp->is_cwnd_limited = is_cwnd_limited;
1888 }
1889
1890 if (tcp_is_cwnd_limited(sk)) {
1891 /* Network is feed fully. */
1892 tp->snd_cwnd_used = 0;
1893 tp->snd_cwnd_stamp = tcp_jiffies32;
1894 } else {
1895 /* Network starves. */
1896 if (tp->packets_out > tp->snd_cwnd_used)
1897 tp->snd_cwnd_used = tp->packets_out;
1898
1899 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1900 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1901 !ca_ops->cong_control)
1902 tcp_cwnd_application_limited(sk);
1903
1904 /* The following conditions together indicate the starvation
1905 * is caused by insufficient sender buffer:
1906 * 1) just sent some data (see tcp_write_xmit)
1907 * 2) not cwnd limited (this else condition)
1908 * 3) no more data to send (tcp_write_queue_empty())
1909 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1910 */
1911 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1912 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1913 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1914 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1915 }
1916 }
1917
1918 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1919 static bool tcp_minshall_check(const struct tcp_sock *tp)
1920 {
1921 return after(tp->snd_sml, tp->snd_una) &&
1922 !after(tp->snd_sml, tp->snd_nxt);
1923 }
1924
1925 /* Update snd_sml if this skb is under mss
1926 * Note that a TSO packet might end with a sub-mss segment
1927 * The test is really :
1928 * if ((skb->len % mss) != 0)
1929 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1930 * But we can avoid doing the divide again given we already have
1931 * skb_pcount = skb->len / mss_now
1932 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1933 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1934 const struct sk_buff *skb)
1935 {
1936 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1937 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1938 }
1939
1940 /* Return false, if packet can be sent now without violation Nagle's rules:
1941 * 1. It is full sized. (provided by caller in %partial bool)
1942 * 2. Or it contains FIN. (already checked by caller)
1943 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1944 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1945 * With Minshall's modification: all sent small packets are ACKed.
1946 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1947 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1948 int nonagle)
1949 {
1950 return partial &&
1951 ((nonagle & TCP_NAGLE_CORK) ||
1952 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1953 }
1954
1955 /* Return how many segs we'd like on a TSO packet,
1956 * to send one TSO packet per ms
1957 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1958 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1959 int min_tso_segs)
1960 {
1961 u32 bytes, segs;
1962
1963 bytes = min_t(unsigned long,
1964 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1965 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1966
1967 /* Goal is to send at least one packet per ms,
1968 * not one big TSO packet every 100 ms.
1969 * This preserves ACK clocking and is consistent
1970 * with tcp_tso_should_defer() heuristic.
1971 */
1972 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1973
1974 return segs;
1975 }
1976
1977 /* Return the number of segments we want in the skb we are transmitting.
1978 * See if congestion control module wants to decide; otherwise, autosize.
1979 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1980 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1981 {
1982 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1983 u32 min_tso, tso_segs;
1984
1985 min_tso = ca_ops->min_tso_segs ?
1986 ca_ops->min_tso_segs(sk) :
1987 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1988
1989 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1990 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1991 }
1992
1993 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)1994 static unsigned int tcp_mss_split_point(const struct sock *sk,
1995 const struct sk_buff *skb,
1996 unsigned int mss_now,
1997 unsigned int max_segs,
1998 int nonagle)
1999 {
2000 const struct tcp_sock *tp = tcp_sk(sk);
2001 u32 partial, needed, window, max_len;
2002
2003 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2004 max_len = mss_now * max_segs;
2005
2006 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2007 return max_len;
2008
2009 needed = min(skb->len, window);
2010
2011 if (max_len <= needed)
2012 return max_len;
2013
2014 partial = needed % mss_now;
2015 /* If last segment is not a full MSS, check if Nagle rules allow us
2016 * to include this last segment in this skb.
2017 * Otherwise, we'll split the skb at last MSS boundary
2018 */
2019 if (tcp_nagle_check(partial != 0, tp, nonagle))
2020 return needed - partial;
2021
2022 return needed;
2023 }
2024
2025 /* Can at least one segment of SKB be sent right now, according to the
2026 * congestion window rules? If so, return how many segments are allowed.
2027 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2028 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2029 const struct sk_buff *skb)
2030 {
2031 u32 in_flight, cwnd, halfcwnd;
2032
2033 /* Don't be strict about the congestion window for the final FIN. */
2034 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2035 tcp_skb_pcount(skb) == 1)
2036 return 1;
2037
2038 in_flight = tcp_packets_in_flight(tp);
2039 cwnd = tp->snd_cwnd;
2040 if (in_flight >= cwnd)
2041 return 0;
2042
2043 /* For better scheduling, ensure we have at least
2044 * 2 GSO packets in flight.
2045 */
2046 halfcwnd = max(cwnd >> 1, 1U);
2047 return min(halfcwnd, cwnd - in_flight);
2048 }
2049
2050 /* Initialize TSO state of a skb.
2051 * This must be invoked the first time we consider transmitting
2052 * SKB onto the wire.
2053 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2054 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2055 {
2056 int tso_segs = tcp_skb_pcount(skb);
2057
2058 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2059 tcp_set_skb_tso_segs(skb, mss_now);
2060 tso_segs = tcp_skb_pcount(skb);
2061 }
2062 return tso_segs;
2063 }
2064
2065
2066 /* Return true if the Nagle test allows this packet to be
2067 * sent now.
2068 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2069 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2070 unsigned int cur_mss, int nonagle)
2071 {
2072 /* Nagle rule does not apply to frames, which sit in the middle of the
2073 * write_queue (they have no chances to get new data).
2074 *
2075 * This is implemented in the callers, where they modify the 'nonagle'
2076 * argument based upon the location of SKB in the send queue.
2077 */
2078 if (nonagle & TCP_NAGLE_PUSH)
2079 return true;
2080
2081 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2082 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2083 return true;
2084
2085 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2086 return true;
2087
2088 return false;
2089 }
2090
2091 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2092 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2093 const struct sk_buff *skb,
2094 unsigned int cur_mss)
2095 {
2096 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2097
2098 if (skb->len > cur_mss)
2099 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2100
2101 return !after(end_seq, tcp_wnd_end(tp));
2102 }
2103
2104 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2105 * which is put after SKB on the list. It is very much like
2106 * tcp_fragment() except that it may make several kinds of assumptions
2107 * in order to speed up the splitting operation. In particular, we
2108 * know that all the data is in scatter-gather pages, and that the
2109 * packet has never been sent out before (and thus is not cloned).
2110 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2111 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2112 unsigned int mss_now, gfp_t gfp)
2113 {
2114 int nlen = skb->len - len;
2115 struct sk_buff *buff;
2116 u8 flags;
2117
2118 /* All of a TSO frame must be composed of paged data. */
2119 if (skb->len != skb->data_len)
2120 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2121 skb, len, mss_now, gfp);
2122
2123 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
2124 if (unlikely(!buff))
2125 return -ENOMEM;
2126 skb_copy_decrypted(buff, skb);
2127
2128 sk_wmem_queued_add(sk, buff->truesize);
2129 sk_mem_charge(sk, buff->truesize);
2130 buff->truesize += nlen;
2131 skb->truesize -= nlen;
2132
2133 /* Correct the sequence numbers. */
2134 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2135 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2136 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2137
2138 /* PSH and FIN should only be set in the second packet. */
2139 flags = TCP_SKB_CB(skb)->tcp_flags;
2140 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2141 TCP_SKB_CB(buff)->tcp_flags = flags;
2142
2143 /* This packet was never sent out yet, so no SACK bits. */
2144 TCP_SKB_CB(buff)->sacked = 0;
2145
2146 tcp_skb_fragment_eor(skb, buff);
2147
2148 buff->ip_summed = CHECKSUM_PARTIAL;
2149 skb_split(skb, buff, len);
2150 tcp_fragment_tstamp(skb, buff);
2151
2152 /* Fix up tso_factor for both original and new SKB. */
2153 tcp_set_skb_tso_segs(skb, mss_now);
2154 tcp_set_skb_tso_segs(buff, mss_now);
2155
2156 /* Link BUFF into the send queue. */
2157 __skb_header_release(buff);
2158 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2159
2160 return 0;
2161 }
2162
2163 /* Try to defer sending, if possible, in order to minimize the amount
2164 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2165 *
2166 * This algorithm is from John Heffner.
2167 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2168 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2169 bool *is_cwnd_limited,
2170 bool *is_rwnd_limited,
2171 u32 max_segs)
2172 {
2173 const struct inet_connection_sock *icsk = inet_csk(sk);
2174 u32 send_win, cong_win, limit, in_flight;
2175 struct tcp_sock *tp = tcp_sk(sk);
2176 struct sk_buff *head;
2177 int win_divisor;
2178 s64 delta;
2179
2180 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2181 goto send_now;
2182
2183 /* Avoid bursty behavior by allowing defer
2184 * only if the last write was recent (1 ms).
2185 * Note that tp->tcp_wstamp_ns can be in the future if we have
2186 * packets waiting in a qdisc or device for EDT delivery.
2187 */
2188 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2189 if (delta > 0)
2190 goto send_now;
2191
2192 in_flight = tcp_packets_in_flight(tp);
2193
2194 BUG_ON(tcp_skb_pcount(skb) <= 1);
2195 BUG_ON(tp->snd_cwnd <= in_flight);
2196
2197 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2198
2199 /* From in_flight test above, we know that cwnd > in_flight. */
2200 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2201
2202 limit = min(send_win, cong_win);
2203
2204 /* If a full-sized TSO skb can be sent, do it. */
2205 if (limit >= max_segs * tp->mss_cache)
2206 goto send_now;
2207
2208 /* Middle in queue won't get any more data, full sendable already? */
2209 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2210 goto send_now;
2211
2212 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2213 if (win_divisor) {
2214 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2215
2216 /* If at least some fraction of a window is available,
2217 * just use it.
2218 */
2219 chunk /= win_divisor;
2220 if (limit >= chunk)
2221 goto send_now;
2222 } else {
2223 /* Different approach, try not to defer past a single
2224 * ACK. Receiver should ACK every other full sized
2225 * frame, so if we have space for more than 3 frames
2226 * then send now.
2227 */
2228 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2229 goto send_now;
2230 }
2231
2232 /* TODO : use tsorted_sent_queue ? */
2233 head = tcp_rtx_queue_head(sk);
2234 if (!head)
2235 goto send_now;
2236 delta = tp->tcp_clock_cache - head->tstamp;
2237 /* If next ACK is likely to come too late (half srtt), do not defer */
2238 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2239 goto send_now;
2240
2241 /* Ok, it looks like it is advisable to defer.
2242 * Three cases are tracked :
2243 * 1) We are cwnd-limited
2244 * 2) We are rwnd-limited
2245 * 3) We are application limited.
2246 */
2247 if (cong_win < send_win) {
2248 if (cong_win <= skb->len) {
2249 *is_cwnd_limited = true;
2250 return true;
2251 }
2252 } else {
2253 if (send_win <= skb->len) {
2254 *is_rwnd_limited = true;
2255 return true;
2256 }
2257 }
2258
2259 /* If this packet won't get more data, do not wait. */
2260 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2261 TCP_SKB_CB(skb)->eor)
2262 goto send_now;
2263
2264 return true;
2265
2266 send_now:
2267 return false;
2268 }
2269
tcp_mtu_check_reprobe(struct sock * sk)2270 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2271 {
2272 struct inet_connection_sock *icsk = inet_csk(sk);
2273 struct tcp_sock *tp = tcp_sk(sk);
2274 struct net *net = sock_net(sk);
2275 u32 interval;
2276 s32 delta;
2277
2278 interval = net->ipv4.sysctl_tcp_probe_interval;
2279 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2280 if (unlikely(delta >= interval * HZ)) {
2281 int mss = tcp_current_mss(sk);
2282
2283 /* Update current search range */
2284 icsk->icsk_mtup.probe_size = 0;
2285 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2286 sizeof(struct tcphdr) +
2287 icsk->icsk_af_ops->net_header_len;
2288 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2289
2290 /* Update probe time stamp */
2291 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2292 }
2293 }
2294
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2295 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2296 {
2297 struct sk_buff *skb, *next;
2298
2299 skb = tcp_send_head(sk);
2300 tcp_for_write_queue_from_safe(skb, next, sk) {
2301 if (len <= skb->len)
2302 break;
2303
2304 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2305 return false;
2306
2307 len -= skb->len;
2308 }
2309
2310 return true;
2311 }
2312
2313 /* Create a new MTU probe if we are ready.
2314 * MTU probe is regularly attempting to increase the path MTU by
2315 * deliberately sending larger packets. This discovers routing
2316 * changes resulting in larger path MTUs.
2317 *
2318 * Returns 0 if we should wait to probe (no cwnd available),
2319 * 1 if a probe was sent,
2320 * -1 otherwise
2321 */
tcp_mtu_probe(struct sock * sk)2322 static int tcp_mtu_probe(struct sock *sk)
2323 {
2324 struct inet_connection_sock *icsk = inet_csk(sk);
2325 struct tcp_sock *tp = tcp_sk(sk);
2326 struct sk_buff *skb, *nskb, *next;
2327 struct net *net = sock_net(sk);
2328 int probe_size;
2329 int size_needed;
2330 int copy, len;
2331 int mss_now;
2332 int interval;
2333
2334 /* Not currently probing/verifying,
2335 * not in recovery,
2336 * have enough cwnd, and
2337 * not SACKing (the variable headers throw things off)
2338 */
2339 if (likely(!icsk->icsk_mtup.enabled ||
2340 icsk->icsk_mtup.probe_size ||
2341 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2342 tp->snd_cwnd < 11 ||
2343 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2344 return -1;
2345
2346 /* Use binary search for probe_size between tcp_mss_base,
2347 * and current mss_clamp. if (search_high - search_low)
2348 * smaller than a threshold, backoff from probing.
2349 */
2350 mss_now = tcp_current_mss(sk);
2351 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2352 icsk->icsk_mtup.search_low) >> 1);
2353 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2354 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2355 /* When misfortune happens, we are reprobing actively,
2356 * and then reprobe timer has expired. We stick with current
2357 * probing process by not resetting search range to its orignal.
2358 */
2359 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2360 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2361 /* Check whether enough time has elaplased for
2362 * another round of probing.
2363 */
2364 tcp_mtu_check_reprobe(sk);
2365 return -1;
2366 }
2367
2368 /* Have enough data in the send queue to probe? */
2369 if (tp->write_seq - tp->snd_nxt < size_needed)
2370 return -1;
2371
2372 if (tp->snd_wnd < size_needed)
2373 return -1;
2374 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2375 return 0;
2376
2377 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2378 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2379 if (!tcp_packets_in_flight(tp))
2380 return -1;
2381 else
2382 return 0;
2383 }
2384
2385 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2386 return -1;
2387
2388 /* We're allowed to probe. Build it now. */
2389 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2390 if (!nskb)
2391 return -1;
2392 sk_wmem_queued_add(sk, nskb->truesize);
2393 sk_mem_charge(sk, nskb->truesize);
2394
2395 skb = tcp_send_head(sk);
2396 skb_copy_decrypted(nskb, skb);
2397
2398 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2399 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2400 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2401 TCP_SKB_CB(nskb)->sacked = 0;
2402 nskb->csum = 0;
2403 nskb->ip_summed = CHECKSUM_PARTIAL;
2404
2405 tcp_insert_write_queue_before(nskb, skb, sk);
2406 tcp_highest_sack_replace(sk, skb, nskb);
2407
2408 len = 0;
2409 tcp_for_write_queue_from_safe(skb, next, sk) {
2410 copy = min_t(int, skb->len, probe_size - len);
2411 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2412
2413 if (skb->len <= copy) {
2414 /* We've eaten all the data from this skb.
2415 * Throw it away. */
2416 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2417 /* If this is the last SKB we copy and eor is set
2418 * we need to propagate it to the new skb.
2419 */
2420 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2421 tcp_skb_collapse_tstamp(nskb, skb);
2422 tcp_unlink_write_queue(skb, sk);
2423 sk_wmem_free_skb(sk, skb);
2424 } else {
2425 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2426 ~(TCPHDR_FIN|TCPHDR_PSH);
2427 if (!skb_shinfo(skb)->nr_frags) {
2428 skb_pull(skb, copy);
2429 } else {
2430 __pskb_trim_head(skb, copy);
2431 tcp_set_skb_tso_segs(skb, mss_now);
2432 }
2433 TCP_SKB_CB(skb)->seq += copy;
2434 }
2435
2436 len += copy;
2437
2438 if (len >= probe_size)
2439 break;
2440 }
2441 tcp_init_tso_segs(nskb, nskb->len);
2442
2443 /* We're ready to send. If this fails, the probe will
2444 * be resegmented into mss-sized pieces by tcp_write_xmit().
2445 */
2446 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2447 /* Decrement cwnd here because we are sending
2448 * effectively two packets. */
2449 tp->snd_cwnd--;
2450 tcp_event_new_data_sent(sk, nskb);
2451
2452 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2453 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2454 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2455
2456 return 1;
2457 }
2458
2459 return -1;
2460 }
2461
tcp_pacing_check(struct sock * sk)2462 static bool tcp_pacing_check(struct sock *sk)
2463 {
2464 struct tcp_sock *tp = tcp_sk(sk);
2465
2466 if (!tcp_needs_internal_pacing(sk))
2467 return false;
2468
2469 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2470 return false;
2471
2472 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2473 hrtimer_start(&tp->pacing_timer,
2474 ns_to_ktime(tp->tcp_wstamp_ns),
2475 HRTIMER_MODE_ABS_PINNED_SOFT);
2476 sock_hold(sk);
2477 }
2478 return true;
2479 }
2480
2481 /* TCP Small Queues :
2482 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2483 * (These limits are doubled for retransmits)
2484 * This allows for :
2485 * - better RTT estimation and ACK scheduling
2486 * - faster recovery
2487 * - high rates
2488 * Alas, some drivers / subsystems require a fair amount
2489 * of queued bytes to ensure line rate.
2490 * One example is wifi aggregation (802.11 AMPDU)
2491 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2492 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2493 unsigned int factor)
2494 {
2495 unsigned long limit;
2496
2497 limit = max_t(unsigned long,
2498 2 * skb->truesize,
2499 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2500 if (sk->sk_pacing_status == SK_PACING_NONE)
2501 limit = min_t(unsigned long, limit,
2502 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2503 limit <<= factor;
2504
2505 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2506 tcp_sk(sk)->tcp_tx_delay) {
2507 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2508
2509 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2510 * approximate our needs assuming an ~100% skb->truesize overhead.
2511 * USEC_PER_SEC is approximated by 2^20.
2512 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2513 */
2514 extra_bytes >>= (20 - 1);
2515 limit += extra_bytes;
2516 }
2517 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2518 /* Always send skb if rtx queue is empty.
2519 * No need to wait for TX completion to call us back,
2520 * after softirq/tasklet schedule.
2521 * This helps when TX completions are delayed too much.
2522 */
2523 if (tcp_rtx_queue_empty(sk))
2524 return false;
2525
2526 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2527 /* It is possible TX completion already happened
2528 * before we set TSQ_THROTTLED, so we must
2529 * test again the condition.
2530 */
2531 smp_mb__after_atomic();
2532 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2533 return true;
2534 }
2535 return false;
2536 }
2537
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2538 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2539 {
2540 const u32 now = tcp_jiffies32;
2541 enum tcp_chrono old = tp->chrono_type;
2542
2543 if (old > TCP_CHRONO_UNSPEC)
2544 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2545 tp->chrono_start = now;
2546 tp->chrono_type = new;
2547 }
2548
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2549 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2550 {
2551 struct tcp_sock *tp = tcp_sk(sk);
2552
2553 /* If there are multiple conditions worthy of tracking in a
2554 * chronograph then the highest priority enum takes precedence
2555 * over the other conditions. So that if something "more interesting"
2556 * starts happening, stop the previous chrono and start a new one.
2557 */
2558 if (type > tp->chrono_type)
2559 tcp_chrono_set(tp, type);
2560 }
2561
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2562 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2563 {
2564 struct tcp_sock *tp = tcp_sk(sk);
2565
2566
2567 /* There are multiple conditions worthy of tracking in a
2568 * chronograph, so that the highest priority enum takes
2569 * precedence over the other conditions (see tcp_chrono_start).
2570 * If a condition stops, we only stop chrono tracking if
2571 * it's the "most interesting" or current chrono we are
2572 * tracking and starts busy chrono if we have pending data.
2573 */
2574 if (tcp_rtx_and_write_queues_empty(sk))
2575 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2576 else if (type == tp->chrono_type)
2577 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2578 }
2579
2580 /* This routine writes packets to the network. It advances the
2581 * send_head. This happens as incoming acks open up the remote
2582 * window for us.
2583 *
2584 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2585 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2586 * account rare use of URG, this is not a big flaw.
2587 *
2588 * Send at most one packet when push_one > 0. Temporarily ignore
2589 * cwnd limit to force at most one packet out when push_one == 2.
2590
2591 * Returns true, if no segments are in flight and we have queued segments,
2592 * but cannot send anything now because of SWS or another problem.
2593 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2594 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2595 int push_one, gfp_t gfp)
2596 {
2597 struct tcp_sock *tp = tcp_sk(sk);
2598 struct sk_buff *skb;
2599 unsigned int tso_segs, sent_pkts;
2600 int cwnd_quota;
2601 int result;
2602 bool is_cwnd_limited = false, is_rwnd_limited = false;
2603 u32 max_segs;
2604
2605 sent_pkts = 0;
2606
2607 tcp_mstamp_refresh(tp);
2608 if (!push_one) {
2609 /* Do MTU probing. */
2610 result = tcp_mtu_probe(sk);
2611 if (!result) {
2612 return false;
2613 } else if (result > 0) {
2614 sent_pkts = 1;
2615 }
2616 }
2617
2618 max_segs = tcp_tso_segs(sk, mss_now);
2619 while ((skb = tcp_send_head(sk))) {
2620 unsigned int limit;
2621
2622 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2623 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2624 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2625 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2626 tcp_init_tso_segs(skb, mss_now);
2627 goto repair; /* Skip network transmission */
2628 }
2629
2630 if (tcp_pacing_check(sk))
2631 break;
2632
2633 tso_segs = tcp_init_tso_segs(skb, mss_now);
2634 BUG_ON(!tso_segs);
2635
2636 cwnd_quota = tcp_cwnd_test(tp, skb);
2637 if (!cwnd_quota) {
2638 if (push_one == 2)
2639 /* Force out a loss probe pkt. */
2640 cwnd_quota = 1;
2641 else
2642 break;
2643 }
2644
2645 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2646 is_rwnd_limited = true;
2647 break;
2648 }
2649
2650 if (tso_segs == 1) {
2651 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2652 (tcp_skb_is_last(sk, skb) ?
2653 nonagle : TCP_NAGLE_PUSH))))
2654 break;
2655 } else {
2656 if (!push_one &&
2657 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2658 &is_rwnd_limited, max_segs))
2659 break;
2660 }
2661
2662 limit = mss_now;
2663 if (tso_segs > 1 && !tcp_urg_mode(tp))
2664 limit = tcp_mss_split_point(sk, skb, mss_now,
2665 min_t(unsigned int,
2666 cwnd_quota,
2667 max_segs),
2668 nonagle);
2669
2670 if (skb->len > limit &&
2671 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2672 break;
2673
2674 if (tcp_small_queue_check(sk, skb, 0))
2675 break;
2676
2677 /* Argh, we hit an empty skb(), presumably a thread
2678 * is sleeping in sendmsg()/sk_stream_wait_memory().
2679 * We do not want to send a pure-ack packet and have
2680 * a strange looking rtx queue with empty packet(s).
2681 */
2682 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2683 break;
2684
2685 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2686 break;
2687
2688 repair:
2689 /* Advance the send_head. This one is sent out.
2690 * This call will increment packets_out.
2691 */
2692 tcp_event_new_data_sent(sk, skb);
2693
2694 tcp_minshall_update(tp, mss_now, skb);
2695 sent_pkts += tcp_skb_pcount(skb);
2696
2697 if (push_one)
2698 break;
2699 }
2700
2701 if (is_rwnd_limited)
2702 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2703 else
2704 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2705
2706 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2707 if (likely(sent_pkts || is_cwnd_limited))
2708 tcp_cwnd_validate(sk, is_cwnd_limited);
2709
2710 if (likely(sent_pkts)) {
2711 if (tcp_in_cwnd_reduction(sk))
2712 tp->prr_out += sent_pkts;
2713
2714 /* Send one loss probe per tail loss episode. */
2715 if (push_one != 2)
2716 tcp_schedule_loss_probe(sk, false);
2717 return false;
2718 }
2719 return !tp->packets_out && !tcp_write_queue_empty(sk);
2720 }
2721
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2722 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2723 {
2724 struct inet_connection_sock *icsk = inet_csk(sk);
2725 struct tcp_sock *tp = tcp_sk(sk);
2726 u32 timeout, rto_delta_us;
2727 int early_retrans;
2728
2729 /* Don't do any loss probe on a Fast Open connection before 3WHS
2730 * finishes.
2731 */
2732 if (rcu_access_pointer(tp->fastopen_rsk))
2733 return false;
2734
2735 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2736 /* Schedule a loss probe in 2*RTT for SACK capable connections
2737 * not in loss recovery, that are either limited by cwnd or application.
2738 */
2739 if ((early_retrans != 3 && early_retrans != 4) ||
2740 !tp->packets_out || !tcp_is_sack(tp) ||
2741 (icsk->icsk_ca_state != TCP_CA_Open &&
2742 icsk->icsk_ca_state != TCP_CA_CWR))
2743 return false;
2744
2745 /* Probe timeout is 2*rtt. Add minimum RTO to account
2746 * for delayed ack when there's one outstanding packet. If no RTT
2747 * sample is available then probe after TCP_TIMEOUT_INIT.
2748 */
2749 if (tp->srtt_us) {
2750 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2751 if (tp->packets_out == 1)
2752 timeout += TCP_RTO_MIN;
2753 else
2754 timeout += TCP_TIMEOUT_MIN;
2755 } else {
2756 timeout = TCP_TIMEOUT_INIT;
2757 }
2758
2759 /* If the RTO formula yields an earlier time, then use that time. */
2760 rto_delta_us = advancing_rto ?
2761 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2762 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2763 if (rto_delta_us > 0)
2764 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2765
2766 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2767 return true;
2768 }
2769
2770 /* Thanks to skb fast clones, we can detect if a prior transmit of
2771 * a packet is still in a qdisc or driver queue.
2772 * In this case, there is very little point doing a retransmit !
2773 */
skb_still_in_host_queue(const struct sock * sk,const struct sk_buff * skb)2774 static bool skb_still_in_host_queue(const struct sock *sk,
2775 const struct sk_buff *skb)
2776 {
2777 if (unlikely(skb_fclone_busy(sk, skb))) {
2778 NET_INC_STATS(sock_net(sk),
2779 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2780 return true;
2781 }
2782 return false;
2783 }
2784
2785 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2786 * retransmit the last segment.
2787 */
tcp_send_loss_probe(struct sock * sk)2788 void tcp_send_loss_probe(struct sock *sk)
2789 {
2790 struct tcp_sock *tp = tcp_sk(sk);
2791 struct sk_buff *skb;
2792 int pcount;
2793 int mss = tcp_current_mss(sk);
2794
2795 /* At most one outstanding TLP */
2796 if (tp->tlp_high_seq)
2797 goto rearm_timer;
2798
2799 tp->tlp_retrans = 0;
2800 skb = tcp_send_head(sk);
2801 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2802 pcount = tp->packets_out;
2803 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2804 if (tp->packets_out > pcount)
2805 goto probe_sent;
2806 goto rearm_timer;
2807 }
2808 skb = skb_rb_last(&sk->tcp_rtx_queue);
2809 if (unlikely(!skb)) {
2810 WARN_ONCE(tp->packets_out,
2811 "invalid inflight: %u state %u cwnd %u mss %d\n",
2812 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2813 inet_csk(sk)->icsk_pending = 0;
2814 return;
2815 }
2816
2817 if (skb_still_in_host_queue(sk, skb))
2818 goto rearm_timer;
2819
2820 pcount = tcp_skb_pcount(skb);
2821 if (WARN_ON(!pcount))
2822 goto rearm_timer;
2823
2824 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2825 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2826 (pcount - 1) * mss, mss,
2827 GFP_ATOMIC)))
2828 goto rearm_timer;
2829 skb = skb_rb_next(skb);
2830 }
2831
2832 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2833 goto rearm_timer;
2834
2835 if (__tcp_retransmit_skb(sk, skb, 1))
2836 goto rearm_timer;
2837
2838 tp->tlp_retrans = 1;
2839
2840 probe_sent:
2841 /* Record snd_nxt for loss detection. */
2842 tp->tlp_high_seq = tp->snd_nxt;
2843
2844 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2845 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2846 inet_csk(sk)->icsk_pending = 0;
2847 rearm_timer:
2848 tcp_rearm_rto(sk);
2849 }
2850
2851 /* Push out any pending frames which were held back due to
2852 * TCP_CORK or attempt at coalescing tiny packets.
2853 * The socket must be locked by the caller.
2854 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2855 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2856 int nonagle)
2857 {
2858 /* If we are closed, the bytes will have to remain here.
2859 * In time closedown will finish, we empty the write queue and
2860 * all will be happy.
2861 */
2862 if (unlikely(sk->sk_state == TCP_CLOSE))
2863 return;
2864
2865 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2866 sk_gfp_mask(sk, GFP_ATOMIC)))
2867 tcp_check_probe_timer(sk);
2868 }
2869
2870 /* Send _single_ skb sitting at the send head. This function requires
2871 * true push pending frames to setup probe timer etc.
2872 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2873 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2874 {
2875 struct sk_buff *skb = tcp_send_head(sk);
2876
2877 BUG_ON(!skb || skb->len < mss_now);
2878
2879 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2880 }
2881
2882 /* This function returns the amount that we can raise the
2883 * usable window based on the following constraints
2884 *
2885 * 1. The window can never be shrunk once it is offered (RFC 793)
2886 * 2. We limit memory per socket
2887 *
2888 * RFC 1122:
2889 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2890 * RECV.NEXT + RCV.WIN fixed until:
2891 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2892 *
2893 * i.e. don't raise the right edge of the window until you can raise
2894 * it at least MSS bytes.
2895 *
2896 * Unfortunately, the recommended algorithm breaks header prediction,
2897 * since header prediction assumes th->window stays fixed.
2898 *
2899 * Strictly speaking, keeping th->window fixed violates the receiver
2900 * side SWS prevention criteria. The problem is that under this rule
2901 * a stream of single byte packets will cause the right side of the
2902 * window to always advance by a single byte.
2903 *
2904 * Of course, if the sender implements sender side SWS prevention
2905 * then this will not be a problem.
2906 *
2907 * BSD seems to make the following compromise:
2908 *
2909 * If the free space is less than the 1/4 of the maximum
2910 * space available and the free space is less than 1/2 mss,
2911 * then set the window to 0.
2912 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2913 * Otherwise, just prevent the window from shrinking
2914 * and from being larger than the largest representable value.
2915 *
2916 * This prevents incremental opening of the window in the regime
2917 * where TCP is limited by the speed of the reader side taking
2918 * data out of the TCP receive queue. It does nothing about
2919 * those cases where the window is constrained on the sender side
2920 * because the pipeline is full.
2921 *
2922 * BSD also seems to "accidentally" limit itself to windows that are a
2923 * multiple of MSS, at least until the free space gets quite small.
2924 * This would appear to be a side effect of the mbuf implementation.
2925 * Combining these two algorithms results in the observed behavior
2926 * of having a fixed window size at almost all times.
2927 *
2928 * Below we obtain similar behavior by forcing the offered window to
2929 * a multiple of the mss when it is feasible to do so.
2930 *
2931 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2932 * Regular options like TIMESTAMP are taken into account.
2933 */
__tcp_select_window(struct sock * sk)2934 u32 __tcp_select_window(struct sock *sk)
2935 {
2936 struct inet_connection_sock *icsk = inet_csk(sk);
2937 struct tcp_sock *tp = tcp_sk(sk);
2938 /* MSS for the peer's data. Previous versions used mss_clamp
2939 * here. I don't know if the value based on our guesses
2940 * of peer's MSS is better for the performance. It's more correct
2941 * but may be worse for the performance because of rcv_mss
2942 * fluctuations. --SAW 1998/11/1
2943 */
2944 int mss = icsk->icsk_ack.rcv_mss;
2945 int free_space = tcp_space(sk);
2946 int allowed_space = tcp_full_space(sk);
2947 int full_space, window;
2948
2949 if (sk_is_mptcp(sk))
2950 mptcp_space(sk, &free_space, &allowed_space);
2951
2952 full_space = min_t(int, tp->window_clamp, allowed_space);
2953
2954 if (unlikely(mss > full_space)) {
2955 mss = full_space;
2956 if (mss <= 0)
2957 return 0;
2958 }
2959 if (free_space < (full_space >> 1)) {
2960 icsk->icsk_ack.quick = 0;
2961
2962 if (tcp_under_memory_pressure(sk))
2963 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2964 4U * tp->advmss);
2965
2966 /* free_space might become our new window, make sure we don't
2967 * increase it due to wscale.
2968 */
2969 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2970
2971 /* if free space is less than mss estimate, or is below 1/16th
2972 * of the maximum allowed, try to move to zero-window, else
2973 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2974 * new incoming data is dropped due to memory limits.
2975 * With large window, mss test triggers way too late in order
2976 * to announce zero window in time before rmem limit kicks in.
2977 */
2978 if (free_space < (allowed_space >> 4) || free_space < mss)
2979 return 0;
2980 }
2981
2982 if (free_space > tp->rcv_ssthresh)
2983 free_space = tp->rcv_ssthresh;
2984
2985 /* Don't do rounding if we are using window scaling, since the
2986 * scaled window will not line up with the MSS boundary anyway.
2987 */
2988 if (tp->rx_opt.rcv_wscale) {
2989 window = free_space;
2990
2991 /* Advertise enough space so that it won't get scaled away.
2992 * Import case: prevent zero window announcement if
2993 * 1<<rcv_wscale > mss.
2994 */
2995 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2996 } else {
2997 window = tp->rcv_wnd;
2998 /* Get the largest window that is a nice multiple of mss.
2999 * Window clamp already applied above.
3000 * If our current window offering is within 1 mss of the
3001 * free space we just keep it. This prevents the divide
3002 * and multiply from happening most of the time.
3003 * We also don't do any window rounding when the free space
3004 * is too small.
3005 */
3006 if (window <= free_space - mss || window > free_space)
3007 window = rounddown(free_space, mss);
3008 else if (mss == full_space &&
3009 free_space > window + (full_space >> 1))
3010 window = free_space;
3011 }
3012
3013 return window;
3014 }
3015
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3016 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3017 const struct sk_buff *next_skb)
3018 {
3019 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3020 const struct skb_shared_info *next_shinfo =
3021 skb_shinfo(next_skb);
3022 struct skb_shared_info *shinfo = skb_shinfo(skb);
3023
3024 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3025 shinfo->tskey = next_shinfo->tskey;
3026 TCP_SKB_CB(skb)->txstamp_ack |=
3027 TCP_SKB_CB(next_skb)->txstamp_ack;
3028 }
3029 }
3030
3031 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3032 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3033 {
3034 struct tcp_sock *tp = tcp_sk(sk);
3035 struct sk_buff *next_skb = skb_rb_next(skb);
3036 int next_skb_size;
3037
3038 next_skb_size = next_skb->len;
3039
3040 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3041
3042 if (next_skb_size) {
3043 if (next_skb_size <= skb_availroom(skb))
3044 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
3045 next_skb_size);
3046 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3047 return false;
3048 }
3049 tcp_highest_sack_replace(sk, next_skb, skb);
3050
3051 /* Update sequence range on original skb. */
3052 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3053
3054 /* Merge over control information. This moves PSH/FIN etc. over */
3055 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3056
3057 /* All done, get rid of second SKB and account for it so
3058 * packet counting does not break.
3059 */
3060 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3061 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3062
3063 /* changed transmit queue under us so clear hints */
3064 tcp_clear_retrans_hints_partial(tp);
3065 if (next_skb == tp->retransmit_skb_hint)
3066 tp->retransmit_skb_hint = skb;
3067
3068 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3069
3070 tcp_skb_collapse_tstamp(skb, next_skb);
3071
3072 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3073 return true;
3074 }
3075
3076 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3077 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3078 {
3079 if (tcp_skb_pcount(skb) > 1)
3080 return false;
3081 if (skb_cloned(skb))
3082 return false;
3083 /* Some heuristics for collapsing over SACK'd could be invented */
3084 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3085 return false;
3086
3087 return true;
3088 }
3089
3090 /* Collapse packets in the retransmit queue to make to create
3091 * less packets on the wire. This is only done on retransmission.
3092 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3093 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3094 int space)
3095 {
3096 struct tcp_sock *tp = tcp_sk(sk);
3097 struct sk_buff *skb = to, *tmp;
3098 bool first = true;
3099
3100 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
3101 return;
3102 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3103 return;
3104
3105 skb_rbtree_walk_from_safe(skb, tmp) {
3106 if (!tcp_can_collapse(sk, skb))
3107 break;
3108
3109 if (!tcp_skb_can_collapse(to, skb))
3110 break;
3111
3112 space -= skb->len;
3113
3114 if (first) {
3115 first = false;
3116 continue;
3117 }
3118
3119 if (space < 0)
3120 break;
3121
3122 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3123 break;
3124
3125 if (!tcp_collapse_retrans(sk, to))
3126 break;
3127 }
3128 }
3129
3130 /* This retransmits one SKB. Policy decisions and retransmit queue
3131 * state updates are done by the caller. Returns non-zero if an
3132 * error occurred which prevented the send.
3133 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3134 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3135 {
3136 struct inet_connection_sock *icsk = inet_csk(sk);
3137 struct tcp_sock *tp = tcp_sk(sk);
3138 unsigned int cur_mss;
3139 int diff, len, err;
3140
3141
3142 /* Inconclusive MTU probe */
3143 if (icsk->icsk_mtup.probe_size)
3144 icsk->icsk_mtup.probe_size = 0;
3145
3146 /* Do not sent more than we queued. 1/4 is reserved for possible
3147 * copying overhead: fragmentation, tunneling, mangling etc.
3148 */
3149 if (refcount_read(&sk->sk_wmem_alloc) >
3150 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
3151 sk->sk_sndbuf))
3152 return -EAGAIN;
3153
3154 if (skb_still_in_host_queue(sk, skb))
3155 return -EBUSY;
3156
3157 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3158 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3159 WARN_ON_ONCE(1);
3160 return -EINVAL;
3161 }
3162 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3163 return -ENOMEM;
3164 }
3165
3166 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3167 return -EHOSTUNREACH; /* Routing failure or similar. */
3168
3169 cur_mss = tcp_current_mss(sk);
3170
3171 /* If receiver has shrunk his window, and skb is out of
3172 * new window, do not retransmit it. The exception is the
3173 * case, when window is shrunk to zero. In this case
3174 * our retransmit serves as a zero window probe.
3175 */
3176 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3177 TCP_SKB_CB(skb)->seq != tp->snd_una)
3178 return -EAGAIN;
3179
3180 len = cur_mss * segs;
3181 if (skb->len > len) {
3182 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3183 cur_mss, GFP_ATOMIC))
3184 return -ENOMEM; /* We'll try again later. */
3185 } else {
3186 if (skb_unclone(skb, GFP_ATOMIC))
3187 return -ENOMEM;
3188
3189 diff = tcp_skb_pcount(skb);
3190 tcp_set_skb_tso_segs(skb, cur_mss);
3191 diff -= tcp_skb_pcount(skb);
3192 if (diff)
3193 tcp_adjust_pcount(sk, skb, diff);
3194 if (skb->len < cur_mss)
3195 tcp_retrans_try_collapse(sk, skb, cur_mss);
3196 }
3197
3198 /* RFC3168, section 6.1.1.1. ECN fallback */
3199 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3200 tcp_ecn_clear_syn(sk, skb);
3201
3202 /* Update global and local TCP statistics. */
3203 segs = tcp_skb_pcount(skb);
3204 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3205 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3206 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3207 tp->total_retrans += segs;
3208 tp->bytes_retrans += skb->len;
3209
3210 /* make sure skb->data is aligned on arches that require it
3211 * and check if ack-trimming & collapsing extended the headroom
3212 * beyond what csum_start can cover.
3213 */
3214 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3215 skb_headroom(skb) >= 0xFFFF)) {
3216 struct sk_buff *nskb;
3217
3218 tcp_skb_tsorted_save(skb) {
3219 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3220 if (nskb) {
3221 nskb->dev = NULL;
3222 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3223 } else {
3224 err = -ENOBUFS;
3225 }
3226 } tcp_skb_tsorted_restore(skb);
3227
3228 if (!err) {
3229 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3230 tcp_rate_skb_sent(sk, skb);
3231 }
3232 } else {
3233 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3234 }
3235
3236 /* To avoid taking spuriously low RTT samples based on a timestamp
3237 * for a transmit that never happened, always mark EVER_RETRANS
3238 */
3239 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3240
3241 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3242 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3243 TCP_SKB_CB(skb)->seq, segs, err);
3244
3245 if (likely(!err)) {
3246 trace_tcp_retransmit_skb(sk, skb);
3247 } else if (err != -EBUSY) {
3248 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3249 }
3250 return err;
3251 }
3252
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3253 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3254 {
3255 struct tcp_sock *tp = tcp_sk(sk);
3256 int err = __tcp_retransmit_skb(sk, skb, segs);
3257
3258 if (err == 0) {
3259 #if FASTRETRANS_DEBUG > 0
3260 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3261 net_dbg_ratelimited("retrans_out leaked\n");
3262 }
3263 #endif
3264 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3265 tp->retrans_out += tcp_skb_pcount(skb);
3266 }
3267
3268 /* Save stamp of the first (attempted) retransmit. */
3269 if (!tp->retrans_stamp)
3270 tp->retrans_stamp = tcp_skb_timestamp(skb);
3271
3272 if (tp->undo_retrans < 0)
3273 tp->undo_retrans = 0;
3274 tp->undo_retrans += tcp_skb_pcount(skb);
3275 return err;
3276 }
3277
3278 /* This gets called after a retransmit timeout, and the initially
3279 * retransmitted data is acknowledged. It tries to continue
3280 * resending the rest of the retransmit queue, until either
3281 * we've sent it all or the congestion window limit is reached.
3282 */
tcp_xmit_retransmit_queue(struct sock * sk)3283 void tcp_xmit_retransmit_queue(struct sock *sk)
3284 {
3285 const struct inet_connection_sock *icsk = inet_csk(sk);
3286 struct sk_buff *skb, *rtx_head, *hole = NULL;
3287 struct tcp_sock *tp = tcp_sk(sk);
3288 bool rearm_timer = false;
3289 u32 max_segs;
3290 int mib_idx;
3291
3292 if (!tp->packets_out)
3293 return;
3294
3295 rtx_head = tcp_rtx_queue_head(sk);
3296 skb = tp->retransmit_skb_hint ?: rtx_head;
3297 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3298 skb_rbtree_walk_from(skb) {
3299 __u8 sacked;
3300 int segs;
3301
3302 if (tcp_pacing_check(sk))
3303 break;
3304
3305 /* we could do better than to assign each time */
3306 if (!hole)
3307 tp->retransmit_skb_hint = skb;
3308
3309 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3310 if (segs <= 0)
3311 break;
3312 sacked = TCP_SKB_CB(skb)->sacked;
3313 /* In case tcp_shift_skb_data() have aggregated large skbs,
3314 * we need to make sure not sending too bigs TSO packets
3315 */
3316 segs = min_t(int, segs, max_segs);
3317
3318 if (tp->retrans_out >= tp->lost_out) {
3319 break;
3320 } else if (!(sacked & TCPCB_LOST)) {
3321 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3322 hole = skb;
3323 continue;
3324
3325 } else {
3326 if (icsk->icsk_ca_state != TCP_CA_Loss)
3327 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3328 else
3329 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3330 }
3331
3332 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3333 continue;
3334
3335 if (tcp_small_queue_check(sk, skb, 1))
3336 break;
3337
3338 if (tcp_retransmit_skb(sk, skb, segs))
3339 break;
3340
3341 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3342
3343 if (tcp_in_cwnd_reduction(sk))
3344 tp->prr_out += tcp_skb_pcount(skb);
3345
3346 if (skb == rtx_head &&
3347 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3348 rearm_timer = true;
3349
3350 }
3351 if (rearm_timer)
3352 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3353 inet_csk(sk)->icsk_rto,
3354 TCP_RTO_MAX);
3355 }
3356
3357 /* We allow to exceed memory limits for FIN packets to expedite
3358 * connection tear down and (memory) recovery.
3359 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3360 * or even be forced to close flow without any FIN.
3361 * In general, we want to allow one skb per socket to avoid hangs
3362 * with edge trigger epoll()
3363 */
sk_forced_mem_schedule(struct sock * sk,int size)3364 void sk_forced_mem_schedule(struct sock *sk, int size)
3365 {
3366 int amt;
3367
3368 if (size <= sk->sk_forward_alloc)
3369 return;
3370 amt = sk_mem_pages(size);
3371 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3372 sk_memory_allocated_add(sk, amt);
3373
3374 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3375 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3376 }
3377
3378 /* Send a FIN. The caller locks the socket for us.
3379 * We should try to send a FIN packet really hard, but eventually give up.
3380 */
tcp_send_fin(struct sock * sk)3381 void tcp_send_fin(struct sock *sk)
3382 {
3383 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3384 struct tcp_sock *tp = tcp_sk(sk);
3385
3386 /* Optimization, tack on the FIN if we have one skb in write queue and
3387 * this skb was not yet sent, or we are under memory pressure.
3388 * Note: in the latter case, FIN packet will be sent after a timeout,
3389 * as TCP stack thinks it has already been transmitted.
3390 */
3391 tskb = tail;
3392 if (!tskb && tcp_under_memory_pressure(sk))
3393 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3394
3395 if (tskb) {
3396 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3397 TCP_SKB_CB(tskb)->end_seq++;
3398 tp->write_seq++;
3399 if (!tail) {
3400 /* This means tskb was already sent.
3401 * Pretend we included the FIN on previous transmit.
3402 * We need to set tp->snd_nxt to the value it would have
3403 * if FIN had been sent. This is because retransmit path
3404 * does not change tp->snd_nxt.
3405 */
3406 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3407 return;
3408 }
3409 } else {
3410 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3411 if (unlikely(!skb))
3412 return;
3413
3414 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3415 skb_reserve(skb, MAX_TCP_HEADER);
3416 sk_forced_mem_schedule(sk, skb->truesize);
3417 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3418 tcp_init_nondata_skb(skb, tp->write_seq,
3419 TCPHDR_ACK | TCPHDR_FIN);
3420 tcp_queue_skb(sk, skb);
3421 }
3422 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3423 }
3424
3425 /* We get here when a process closes a file descriptor (either due to
3426 * an explicit close() or as a byproduct of exit()'ing) and there
3427 * was unread data in the receive queue. This behavior is recommended
3428 * by RFC 2525, section 2.17. -DaveM
3429 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3430 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3431 {
3432 struct sk_buff *skb;
3433
3434 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3435
3436 /* NOTE: No TCP options attached and we never retransmit this. */
3437 skb = alloc_skb(MAX_TCP_HEADER, priority);
3438 if (!skb) {
3439 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3440 return;
3441 }
3442
3443 /* Reserve space for headers and prepare control bits. */
3444 skb_reserve(skb, MAX_TCP_HEADER);
3445 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3446 TCPHDR_ACK | TCPHDR_RST);
3447 tcp_mstamp_refresh(tcp_sk(sk));
3448 /* Send it off. */
3449 if (tcp_transmit_skb(sk, skb, 0, priority))
3450 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3451
3452 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3453 * skb here is different to the troublesome skb, so use NULL
3454 */
3455 trace_tcp_send_reset(sk, NULL);
3456 }
3457
3458 /* Send a crossed SYN-ACK during socket establishment.
3459 * WARNING: This routine must only be called when we have already sent
3460 * a SYN packet that crossed the incoming SYN that caused this routine
3461 * to get called. If this assumption fails then the initial rcv_wnd
3462 * and rcv_wscale values will not be correct.
3463 */
tcp_send_synack(struct sock * sk)3464 int tcp_send_synack(struct sock *sk)
3465 {
3466 struct sk_buff *skb;
3467
3468 skb = tcp_rtx_queue_head(sk);
3469 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3470 pr_err("%s: wrong queue state\n", __func__);
3471 return -EFAULT;
3472 }
3473 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3474 if (skb_cloned(skb)) {
3475 struct sk_buff *nskb;
3476
3477 tcp_skb_tsorted_save(skb) {
3478 nskb = skb_copy(skb, GFP_ATOMIC);
3479 } tcp_skb_tsorted_restore(skb);
3480 if (!nskb)
3481 return -ENOMEM;
3482 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3483 tcp_highest_sack_replace(sk, skb, nskb);
3484 tcp_rtx_queue_unlink_and_free(skb, sk);
3485 __skb_header_release(nskb);
3486 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3487 sk_wmem_queued_add(sk, nskb->truesize);
3488 sk_mem_charge(sk, nskb->truesize);
3489 skb = nskb;
3490 }
3491
3492 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3493 tcp_ecn_send_synack(sk, skb);
3494 }
3495 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3496 }
3497
3498 /**
3499 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3500 * @sk: listener socket
3501 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3502 * should not use it again.
3503 * @req: request_sock pointer
3504 * @foc: cookie for tcp fast open
3505 * @synack_type: Type of synack to prepare
3506 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3507 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3508 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3509 struct request_sock *req,
3510 struct tcp_fastopen_cookie *foc,
3511 enum tcp_synack_type synack_type,
3512 struct sk_buff *syn_skb)
3513 {
3514 struct inet_request_sock *ireq = inet_rsk(req);
3515 const struct tcp_sock *tp = tcp_sk(sk);
3516 struct tcp_md5sig_key *md5 = NULL;
3517 struct tcp_out_options opts;
3518 struct sk_buff *skb;
3519 int tcp_header_size;
3520 struct tcphdr *th;
3521 int mss;
3522 u64 now;
3523
3524 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3525 if (unlikely(!skb)) {
3526 dst_release(dst);
3527 return NULL;
3528 }
3529 /* Reserve space for headers. */
3530 skb_reserve(skb, MAX_TCP_HEADER);
3531
3532 switch (synack_type) {
3533 case TCP_SYNACK_NORMAL:
3534 skb_set_owner_w(skb, req_to_sk(req));
3535 break;
3536 case TCP_SYNACK_COOKIE:
3537 /* Under synflood, we do not attach skb to a socket,
3538 * to avoid false sharing.
3539 */
3540 break;
3541 case TCP_SYNACK_FASTOPEN:
3542 /* sk is a const pointer, because we want to express multiple
3543 * cpu might call us concurrently.
3544 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3545 */
3546 skb_set_owner_w(skb, (struct sock *)sk);
3547 break;
3548 }
3549 skb_dst_set(skb, dst);
3550
3551 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3552
3553 memset(&opts, 0, sizeof(opts));
3554 now = tcp_clock_ns();
3555 #ifdef CONFIG_SYN_COOKIES
3556 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3557 skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3558 else
3559 #endif
3560 {
3561 skb->skb_mstamp_ns = now;
3562 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3563 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3564 }
3565
3566 #ifdef CONFIG_TCP_MD5SIG
3567 rcu_read_lock();
3568 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3569 #endif
3570 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3571 /* bpf program will be interested in the tcp_flags */
3572 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3573 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3574 foc, synack_type,
3575 syn_skb) + sizeof(*th);
3576
3577 skb_push(skb, tcp_header_size);
3578 skb_reset_transport_header(skb);
3579
3580 th = (struct tcphdr *)skb->data;
3581 memset(th, 0, sizeof(struct tcphdr));
3582 th->syn = 1;
3583 th->ack = 1;
3584 tcp_ecn_make_synack(req, th);
3585 th->source = htons(ireq->ir_num);
3586 th->dest = ireq->ir_rmt_port;
3587 skb->mark = ireq->ir_mark;
3588 skb->ip_summed = CHECKSUM_PARTIAL;
3589 th->seq = htonl(tcp_rsk(req)->snt_isn);
3590 /* XXX data is queued and acked as is. No buffer/window check */
3591 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3592
3593 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3594 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3595 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3596 th->doff = (tcp_header_size >> 2);
3597 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3598
3599 #ifdef CONFIG_TCP_MD5SIG
3600 /* Okay, we have all we need - do the md5 hash if needed */
3601 if (md5)
3602 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3603 md5, req_to_sk(req), skb);
3604 rcu_read_unlock();
3605 #endif
3606
3607 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3608 synack_type, &opts);
3609
3610 skb->skb_mstamp_ns = now;
3611 tcp_add_tx_delay(skb, tp);
3612
3613 return skb;
3614 }
3615 EXPORT_SYMBOL(tcp_make_synack);
3616
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3617 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3618 {
3619 struct inet_connection_sock *icsk = inet_csk(sk);
3620 const struct tcp_congestion_ops *ca;
3621 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3622
3623 if (ca_key == TCP_CA_UNSPEC)
3624 return;
3625
3626 rcu_read_lock();
3627 ca = tcp_ca_find_key(ca_key);
3628 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3629 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3630 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3631 icsk->icsk_ca_ops = ca;
3632 }
3633 rcu_read_unlock();
3634 }
3635
3636 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3637 static void tcp_connect_init(struct sock *sk)
3638 {
3639 const struct dst_entry *dst = __sk_dst_get(sk);
3640 struct tcp_sock *tp = tcp_sk(sk);
3641 __u8 rcv_wscale;
3642 u32 rcv_wnd;
3643
3644 /* We'll fix this up when we get a response from the other end.
3645 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3646 */
3647 tp->tcp_header_len = sizeof(struct tcphdr);
3648 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3649 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3650
3651 #ifdef CONFIG_TCP_MD5SIG
3652 if (tp->af_specific->md5_lookup(sk, sk))
3653 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3654 #endif
3655
3656 /* If user gave his TCP_MAXSEG, record it to clamp */
3657 if (tp->rx_opt.user_mss)
3658 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3659 tp->max_window = 0;
3660 tcp_mtup_init(sk);
3661 tcp_sync_mss(sk, dst_mtu(dst));
3662
3663 tcp_ca_dst_init(sk, dst);
3664
3665 if (!tp->window_clamp)
3666 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3667 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3668
3669 tcp_initialize_rcv_mss(sk);
3670
3671 /* limit the window selection if the user enforce a smaller rx buffer */
3672 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3673 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3674 tp->window_clamp = tcp_full_space(sk);
3675
3676 rcv_wnd = tcp_rwnd_init_bpf(sk);
3677 if (rcv_wnd == 0)
3678 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3679
3680 tcp_select_initial_window(sk, tcp_full_space(sk),
3681 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3682 &tp->rcv_wnd,
3683 &tp->window_clamp,
3684 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3685 &rcv_wscale,
3686 rcv_wnd);
3687
3688 tp->rx_opt.rcv_wscale = rcv_wscale;
3689 tp->rcv_ssthresh = tp->rcv_wnd;
3690
3691 sk->sk_err = 0;
3692 sock_reset_flag(sk, SOCK_DONE);
3693 tp->snd_wnd = 0;
3694 tcp_init_wl(tp, 0);
3695 tcp_write_queue_purge(sk);
3696 tp->snd_una = tp->write_seq;
3697 tp->snd_sml = tp->write_seq;
3698 tp->snd_up = tp->write_seq;
3699 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3700
3701 if (likely(!tp->repair))
3702 tp->rcv_nxt = 0;
3703 else
3704 tp->rcv_tstamp = tcp_jiffies32;
3705 tp->rcv_wup = tp->rcv_nxt;
3706 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3707
3708 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3709 inet_csk(sk)->icsk_retransmits = 0;
3710 tcp_clear_retrans(tp);
3711 }
3712
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3713 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3714 {
3715 struct tcp_sock *tp = tcp_sk(sk);
3716 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3717
3718 tcb->end_seq += skb->len;
3719 __skb_header_release(skb);
3720 sk_wmem_queued_add(sk, skb->truesize);
3721 sk_mem_charge(sk, skb->truesize);
3722 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3723 tp->packets_out += tcp_skb_pcount(skb);
3724 }
3725
3726 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3727 * queue a data-only packet after the regular SYN, such that regular SYNs
3728 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3729 * only the SYN sequence, the data are retransmitted in the first ACK.
3730 * If cookie is not cached or other error occurs, falls back to send a
3731 * regular SYN with Fast Open cookie request option.
3732 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3733 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3734 {
3735 struct tcp_sock *tp = tcp_sk(sk);
3736 struct tcp_fastopen_request *fo = tp->fastopen_req;
3737 int space, err = 0;
3738 struct sk_buff *syn_data;
3739
3740 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3741 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3742 goto fallback;
3743
3744 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3745 * user-MSS. Reserve maximum option space for middleboxes that add
3746 * private TCP options. The cost is reduced data space in SYN :(
3747 */
3748 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3749
3750 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3751 MAX_TCP_OPTION_SPACE;
3752
3753 space = min_t(size_t, space, fo->size);
3754
3755 /* limit to order-0 allocations */
3756 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3757
3758 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3759 if (!syn_data)
3760 goto fallback;
3761 syn_data->ip_summed = CHECKSUM_PARTIAL;
3762 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3763 if (space) {
3764 int copied = copy_from_iter(skb_put(syn_data, space), space,
3765 &fo->data->msg_iter);
3766 if (unlikely(!copied)) {
3767 tcp_skb_tsorted_anchor_cleanup(syn_data);
3768 kfree_skb(syn_data);
3769 goto fallback;
3770 }
3771 if (copied != space) {
3772 skb_trim(syn_data, copied);
3773 space = copied;
3774 }
3775 skb_zcopy_set(syn_data, fo->uarg, NULL);
3776 }
3777 /* No more data pending in inet_wait_for_connect() */
3778 if (space == fo->size)
3779 fo->data = NULL;
3780 fo->copied = space;
3781
3782 tcp_connect_queue_skb(sk, syn_data);
3783 if (syn_data->len)
3784 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3785
3786 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3787
3788 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3789
3790 /* Now full SYN+DATA was cloned and sent (or not),
3791 * remove the SYN from the original skb (syn_data)
3792 * we keep in write queue in case of a retransmit, as we
3793 * also have the SYN packet (with no data) in the same queue.
3794 */
3795 TCP_SKB_CB(syn_data)->seq++;
3796 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3797 if (!err) {
3798 tp->syn_data = (fo->copied > 0);
3799 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3800 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3801 goto done;
3802 }
3803
3804 /* data was not sent, put it in write_queue */
3805 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3806 tp->packets_out -= tcp_skb_pcount(syn_data);
3807
3808 fallback:
3809 /* Send a regular SYN with Fast Open cookie request option */
3810 if (fo->cookie.len > 0)
3811 fo->cookie.len = 0;
3812 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3813 if (err)
3814 tp->syn_fastopen = 0;
3815 done:
3816 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3817 return err;
3818 }
3819
3820 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3821 int tcp_connect(struct sock *sk)
3822 {
3823 struct tcp_sock *tp = tcp_sk(sk);
3824 struct sk_buff *buff;
3825 int err;
3826
3827 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3828
3829 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3830 return -EHOSTUNREACH; /* Routing failure or similar. */
3831
3832 tcp_connect_init(sk);
3833
3834 if (unlikely(tp->repair)) {
3835 tcp_finish_connect(sk, NULL);
3836 return 0;
3837 }
3838
3839 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3840 if (unlikely(!buff))
3841 return -ENOBUFS;
3842
3843 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3844 tcp_mstamp_refresh(tp);
3845 tp->retrans_stamp = tcp_time_stamp(tp);
3846 tcp_connect_queue_skb(sk, buff);
3847 tcp_ecn_send_syn(sk, buff);
3848 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3849
3850 /* Send off SYN; include data in Fast Open. */
3851 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3852 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3853 if (err == -ECONNREFUSED)
3854 return err;
3855
3856 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3857 * in order to make this packet get counted in tcpOutSegs.
3858 */
3859 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3860 tp->pushed_seq = tp->write_seq;
3861 buff = tcp_send_head(sk);
3862 if (unlikely(buff)) {
3863 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3864 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3865 }
3866 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3867
3868 /* Timer for repeating the SYN until an answer. */
3869 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3870 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3871 return 0;
3872 }
3873 EXPORT_SYMBOL(tcp_connect);
3874
3875 /* Send out a delayed ack, the caller does the policy checking
3876 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3877 * for details.
3878 */
tcp_send_delayed_ack(struct sock * sk)3879 void tcp_send_delayed_ack(struct sock *sk)
3880 {
3881 struct inet_connection_sock *icsk = inet_csk(sk);
3882 int ato = icsk->icsk_ack.ato;
3883 unsigned long timeout;
3884
3885 if (ato > TCP_DELACK_MIN) {
3886 const struct tcp_sock *tp = tcp_sk(sk);
3887 int max_ato = HZ / 2;
3888
3889 if (inet_csk_in_pingpong_mode(sk) ||
3890 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3891 max_ato = TCP_DELACK_MAX;
3892
3893 /* Slow path, intersegment interval is "high". */
3894
3895 /* If some rtt estimate is known, use it to bound delayed ack.
3896 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3897 * directly.
3898 */
3899 if (tp->srtt_us) {
3900 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3901 TCP_DELACK_MIN);
3902
3903 if (rtt < max_ato)
3904 max_ato = rtt;
3905 }
3906
3907 ato = min(ato, max_ato);
3908 }
3909
3910 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3911
3912 /* Stay within the limit we were given */
3913 timeout = jiffies + ato;
3914
3915 /* Use new timeout only if there wasn't a older one earlier. */
3916 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3917 /* If delack timer is about to expire, send ACK now. */
3918 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3919 tcp_send_ack(sk);
3920 return;
3921 }
3922
3923 if (!time_before(timeout, icsk->icsk_ack.timeout))
3924 timeout = icsk->icsk_ack.timeout;
3925 }
3926 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3927 icsk->icsk_ack.timeout = timeout;
3928 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3929 }
3930
3931 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3932 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3933 {
3934 struct sk_buff *buff;
3935
3936 /* If we have been reset, we may not send again. */
3937 if (sk->sk_state == TCP_CLOSE)
3938 return;
3939
3940 /* We are not putting this on the write queue, so
3941 * tcp_transmit_skb() will set the ownership to this
3942 * sock.
3943 */
3944 buff = alloc_skb(MAX_TCP_HEADER,
3945 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3946 if (unlikely(!buff)) {
3947 struct inet_connection_sock *icsk = inet_csk(sk);
3948 unsigned long delay;
3949
3950 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3951 if (delay < TCP_RTO_MAX)
3952 icsk->icsk_ack.retry++;
3953 inet_csk_schedule_ack(sk);
3954 icsk->icsk_ack.ato = TCP_ATO_MIN;
3955 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3956 return;
3957 }
3958
3959 /* Reserve space for headers and prepare control bits. */
3960 skb_reserve(buff, MAX_TCP_HEADER);
3961 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3962
3963 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3964 * too much.
3965 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3966 */
3967 skb_set_tcp_pure_ack(buff);
3968
3969 /* Send it off, this clears delayed acks for us. */
3970 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3971 }
3972 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3973
tcp_send_ack(struct sock * sk)3974 void tcp_send_ack(struct sock *sk)
3975 {
3976 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3977 }
3978
3979 /* This routine sends a packet with an out of date sequence
3980 * number. It assumes the other end will try to ack it.
3981 *
3982 * Question: what should we make while urgent mode?
3983 * 4.4BSD forces sending single byte of data. We cannot send
3984 * out of window data, because we have SND.NXT==SND.MAX...
3985 *
3986 * Current solution: to send TWO zero-length segments in urgent mode:
3987 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3988 * out-of-date with SND.UNA-1 to probe window.
3989 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)3990 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3991 {
3992 struct tcp_sock *tp = tcp_sk(sk);
3993 struct sk_buff *skb;
3994
3995 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3996 skb = alloc_skb(MAX_TCP_HEADER,
3997 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3998 if (!skb)
3999 return -1;
4000
4001 /* Reserve space for headers and set control bits. */
4002 skb_reserve(skb, MAX_TCP_HEADER);
4003 /* Use a previous sequence. This should cause the other
4004 * end to send an ack. Don't queue or clone SKB, just
4005 * send it.
4006 */
4007 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4008 NET_INC_STATS(sock_net(sk), mib);
4009 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4010 }
4011
4012 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4013 void tcp_send_window_probe(struct sock *sk)
4014 {
4015 if (sk->sk_state == TCP_ESTABLISHED) {
4016 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4017 tcp_mstamp_refresh(tcp_sk(sk));
4018 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4019 }
4020 }
4021
4022 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4023 int tcp_write_wakeup(struct sock *sk, int mib)
4024 {
4025 struct tcp_sock *tp = tcp_sk(sk);
4026 struct sk_buff *skb;
4027
4028 if (sk->sk_state == TCP_CLOSE)
4029 return -1;
4030
4031 skb = tcp_send_head(sk);
4032 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4033 int err;
4034 unsigned int mss = tcp_current_mss(sk);
4035 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4036
4037 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4038 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4039
4040 /* We are probing the opening of a window
4041 * but the window size is != 0
4042 * must have been a result SWS avoidance ( sender )
4043 */
4044 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4045 skb->len > mss) {
4046 seg_size = min(seg_size, mss);
4047 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4048 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4049 skb, seg_size, mss, GFP_ATOMIC))
4050 return -1;
4051 } else if (!tcp_skb_pcount(skb))
4052 tcp_set_skb_tso_segs(skb, mss);
4053
4054 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4055 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4056 if (!err)
4057 tcp_event_new_data_sent(sk, skb);
4058 return err;
4059 } else {
4060 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4061 tcp_xmit_probe_skb(sk, 1, mib);
4062 return tcp_xmit_probe_skb(sk, 0, mib);
4063 }
4064 }
4065
4066 /* A window probe timeout has occurred. If window is not closed send
4067 * a partial packet else a zero probe.
4068 */
tcp_send_probe0(struct sock * sk)4069 void tcp_send_probe0(struct sock *sk)
4070 {
4071 struct inet_connection_sock *icsk = inet_csk(sk);
4072 struct tcp_sock *tp = tcp_sk(sk);
4073 struct net *net = sock_net(sk);
4074 unsigned long timeout;
4075 int err;
4076
4077 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4078
4079 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4080 /* Cancel probe timer, if it is not required. */
4081 icsk->icsk_probes_out = 0;
4082 icsk->icsk_backoff = 0;
4083 return;
4084 }
4085
4086 icsk->icsk_probes_out++;
4087 if (err <= 0) {
4088 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
4089 icsk->icsk_backoff++;
4090 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4091 } else {
4092 /* If packet was not sent due to local congestion,
4093 * Let senders fight for local resources conservatively.
4094 */
4095 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4096 }
4097 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4098 }
4099
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4100 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4101 {
4102 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4103 struct flowi fl;
4104 int res;
4105
4106 tcp_rsk(req)->txhash = net_tx_rndhash();
4107 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4108 NULL);
4109 if (!res) {
4110 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4111 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4112 if (unlikely(tcp_passive_fastopen(sk)))
4113 tcp_sk(sk)->total_retrans++;
4114 trace_tcp_retransmit_synack(sk, req);
4115 }
4116 return res;
4117 }
4118 EXPORT_SYMBOL(tcp_rtx_synack);
4119