1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Dynamic DMA mapping support.
4 *
5 * This implementation is a fallback for platforms that do not support
6 * I/O TLBs (aka DMA address translation hardware).
7 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
8 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
9 * Copyright (C) 2000, 2003 Hewlett-Packard Co
10 * David Mosberger-Tang <davidm@hpl.hp.com>
11 *
12 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
13 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
14 * unnecessary i-cache flushing.
15 * 04/07/.. ak Better overflow handling. Assorted fixes.
16 * 05/09/10 linville Add support for syncing ranges, support syncing for
17 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
18 * 08/12/11 beckyb Add highmem support
19 */
20
21 #define pr_fmt(fmt) "software IO TLB: " fmt
22
23 #include <linux/cache.h>
24 #include <linux/dma-direct.h>
25 #include <linux/mm.h>
26 #include <linux/export.h>
27 #include <linux/spinlock.h>
28 #include <linux/string.h>
29 #include <linux/swiotlb.h>
30 #include <linux/pfn.h>
31 #include <linux/types.h>
32 #include <linux/ctype.h>
33 #include <linux/highmem.h>
34 #include <linux/gfp.h>
35 #include <linux/scatterlist.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/set_memory.h>
38 #ifdef CONFIG_DEBUG_FS
39 #include <linux/debugfs.h>
40 #endif
41
42 #include <asm/io.h>
43 #include <asm/dma.h>
44
45 #include <linux/init.h>
46 #include <linux/memblock.h>
47 #include <linux/iommu-helper.h>
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/swiotlb.h>
51
52 #define OFFSET(val,align) ((unsigned long) \
53 ( (val) & ( (align) - 1)))
54
55 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
56
57 /*
58 * Minimum IO TLB size to bother booting with. Systems with mainly
59 * 64bit capable cards will only lightly use the swiotlb. If we can't
60 * allocate a contiguous 1MB, we're probably in trouble anyway.
61 */
62 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
63
64 enum swiotlb_force swiotlb_force;
65
66 /*
67 * Used to do a quick range check in swiotlb_tbl_unmap_single and
68 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
69 * API.
70 */
71 phys_addr_t io_tlb_start, io_tlb_end;
72
73 /*
74 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
75 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
76 */
77 static unsigned long io_tlb_nslabs;
78
79 /*
80 * The number of used IO TLB block
81 */
82 static unsigned long io_tlb_used;
83
84 /*
85 * This is a free list describing the number of free entries available from
86 * each index
87 */
88 static unsigned int *io_tlb_list;
89 static unsigned int io_tlb_index;
90
91 /*
92 * Max segment that we can provide which (if pages are contingous) will
93 * not be bounced (unless SWIOTLB_FORCE is set).
94 */
95 unsigned int max_segment;
96
97 /*
98 * We need to save away the original address corresponding to a mapped entry
99 * for the sync operations.
100 */
101 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
102 static phys_addr_t *io_tlb_orig_addr;
103
104 /*
105 * Protect the above data structures in the map and unmap calls
106 */
107 static DEFINE_SPINLOCK(io_tlb_lock);
108
109 static int late_alloc;
110
111 static int __init
setup_io_tlb_npages(char * str)112 setup_io_tlb_npages(char *str)
113 {
114 if (isdigit(*str)) {
115 io_tlb_nslabs = simple_strtoul(str, &str, 0);
116 /* avoid tail segment of size < IO_TLB_SEGSIZE */
117 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
118 }
119 if (*str == ',')
120 ++str;
121 if (!strcmp(str, "force")) {
122 swiotlb_force = SWIOTLB_FORCE;
123 } else if (!strcmp(str, "noforce")) {
124 swiotlb_force = SWIOTLB_NO_FORCE;
125 io_tlb_nslabs = 1;
126 }
127
128 return 0;
129 }
130 early_param("swiotlb", setup_io_tlb_npages);
131
132 static bool no_iotlb_memory;
133
swiotlb_nr_tbl(void)134 unsigned long swiotlb_nr_tbl(void)
135 {
136 return unlikely(no_iotlb_memory) ? 0 : io_tlb_nslabs;
137 }
138 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
139
swiotlb_max_segment(void)140 unsigned int swiotlb_max_segment(void)
141 {
142 return unlikely(no_iotlb_memory) ? 0 : max_segment;
143 }
144 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
145
swiotlb_set_max_segment(unsigned int val)146 void swiotlb_set_max_segment(unsigned int val)
147 {
148 if (swiotlb_force == SWIOTLB_FORCE)
149 max_segment = 1;
150 else
151 max_segment = rounddown(val, PAGE_SIZE);
152 }
153
154 /* default to 64MB */
155 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
swiotlb_size_or_default(void)156 unsigned long swiotlb_size_or_default(void)
157 {
158 unsigned long size;
159
160 size = io_tlb_nslabs << IO_TLB_SHIFT;
161
162 return size ? size : (IO_TLB_DEFAULT_SIZE);
163 }
164
swiotlb_print_info(void)165 void swiotlb_print_info(void)
166 {
167 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
168
169 if (no_iotlb_memory) {
170 pr_warn("No low mem\n");
171 return;
172 }
173
174 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
175 (unsigned long long)io_tlb_start,
176 (unsigned long long)io_tlb_end,
177 bytes >> 20);
178 }
179
180 /*
181 * Early SWIOTLB allocation may be too early to allow an architecture to
182 * perform the desired operations. This function allows the architecture to
183 * call SWIOTLB when the operations are possible. It needs to be called
184 * before the SWIOTLB memory is used.
185 */
swiotlb_update_mem_attributes(void)186 void __init swiotlb_update_mem_attributes(void)
187 {
188 void *vaddr;
189 unsigned long bytes;
190
191 if (no_iotlb_memory || late_alloc)
192 return;
193
194 vaddr = phys_to_virt(io_tlb_start);
195 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
196 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
197 memset(vaddr, 0, bytes);
198 }
199
swiotlb_init_with_tbl(char * tlb,unsigned long nslabs,int verbose)200 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
201 {
202 unsigned long i, bytes;
203 size_t alloc_size;
204
205 bytes = nslabs << IO_TLB_SHIFT;
206
207 io_tlb_nslabs = nslabs;
208 io_tlb_start = __pa(tlb);
209 io_tlb_end = io_tlb_start + bytes;
210
211 /*
212 * Allocate and initialize the free list array. This array is used
213 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
214 * between io_tlb_start and io_tlb_end.
215 */
216 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(int));
217 io_tlb_list = memblock_alloc(alloc_size, PAGE_SIZE);
218 if (!io_tlb_list)
219 panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
220 __func__, alloc_size, PAGE_SIZE);
221
222 alloc_size = PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t));
223 io_tlb_orig_addr = memblock_alloc(alloc_size, PAGE_SIZE);
224 if (!io_tlb_orig_addr)
225 panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
226 __func__, alloc_size, PAGE_SIZE);
227
228 for (i = 0; i < io_tlb_nslabs; i++) {
229 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
230 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
231 }
232 io_tlb_index = 0;
233
234 if (verbose)
235 swiotlb_print_info();
236
237 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
238 return 0;
239 }
240
241 /*
242 * Statically reserve bounce buffer space and initialize bounce buffer data
243 * structures for the software IO TLB used to implement the DMA API.
244 */
245 void __init
swiotlb_init(int verbose)246 swiotlb_init(int verbose)
247 {
248 size_t default_size = IO_TLB_DEFAULT_SIZE;
249 unsigned char *vstart;
250 unsigned long bytes;
251
252 if (!io_tlb_nslabs) {
253 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
254 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
255 }
256
257 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
258
259 /* Get IO TLB memory from the low pages */
260 vstart = memblock_alloc_low(PAGE_ALIGN(bytes), PAGE_SIZE);
261 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
262 return;
263
264 if (io_tlb_start)
265 memblock_free_early(io_tlb_start,
266 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
267 pr_warn("Cannot allocate buffer");
268 no_iotlb_memory = true;
269 }
270
271 /*
272 * Systems with larger DMA zones (those that don't support ISA) can
273 * initialize the swiotlb later using the slab allocator if needed.
274 * This should be just like above, but with some error catching.
275 */
276 int
swiotlb_late_init_with_default_size(size_t default_size)277 swiotlb_late_init_with_default_size(size_t default_size)
278 {
279 unsigned long bytes, req_nslabs = io_tlb_nslabs;
280 unsigned char *vstart = NULL;
281 unsigned int order;
282 int rc = 0;
283
284 if (!io_tlb_nslabs) {
285 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
286 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
287 }
288
289 /*
290 * Get IO TLB memory from the low pages
291 */
292 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
293 io_tlb_nslabs = SLABS_PER_PAGE << order;
294 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
295
296 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
297 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
298 order);
299 if (vstart)
300 break;
301 order--;
302 }
303
304 if (!vstart) {
305 io_tlb_nslabs = req_nslabs;
306 return -ENOMEM;
307 }
308 if (order != get_order(bytes)) {
309 pr_warn("only able to allocate %ld MB\n",
310 (PAGE_SIZE << order) >> 20);
311 io_tlb_nslabs = SLABS_PER_PAGE << order;
312 }
313 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
314 if (rc)
315 free_pages((unsigned long)vstart, order);
316
317 return rc;
318 }
319
swiotlb_cleanup(void)320 static void swiotlb_cleanup(void)
321 {
322 io_tlb_end = 0;
323 io_tlb_start = 0;
324 io_tlb_nslabs = 0;
325 max_segment = 0;
326 }
327
328 int
swiotlb_late_init_with_tbl(char * tlb,unsigned long nslabs)329 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
330 {
331 unsigned long i, bytes;
332
333 bytes = nslabs << IO_TLB_SHIFT;
334
335 io_tlb_nslabs = nslabs;
336 io_tlb_start = virt_to_phys(tlb);
337 io_tlb_end = io_tlb_start + bytes;
338
339 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
340 memset(tlb, 0, bytes);
341
342 /*
343 * Allocate and initialize the free list array. This array is used
344 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
345 * between io_tlb_start and io_tlb_end.
346 */
347 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
348 get_order(io_tlb_nslabs * sizeof(int)));
349 if (!io_tlb_list)
350 goto cleanup3;
351
352 io_tlb_orig_addr = (phys_addr_t *)
353 __get_free_pages(GFP_KERNEL,
354 get_order(io_tlb_nslabs *
355 sizeof(phys_addr_t)));
356 if (!io_tlb_orig_addr)
357 goto cleanup4;
358
359 for (i = 0; i < io_tlb_nslabs; i++) {
360 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
361 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
362 }
363 io_tlb_index = 0;
364
365 swiotlb_print_info();
366
367 late_alloc = 1;
368
369 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
370
371 return 0;
372
373 cleanup4:
374 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
375 sizeof(int)));
376 io_tlb_list = NULL;
377 cleanup3:
378 swiotlb_cleanup();
379 return -ENOMEM;
380 }
381
swiotlb_exit(void)382 void __init swiotlb_exit(void)
383 {
384 if (!io_tlb_orig_addr)
385 return;
386
387 if (late_alloc) {
388 free_pages((unsigned long)io_tlb_orig_addr,
389 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
390 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
391 sizeof(int)));
392 free_pages((unsigned long)phys_to_virt(io_tlb_start),
393 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
394 } else {
395 memblock_free_late(__pa(io_tlb_orig_addr),
396 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
397 memblock_free_late(__pa(io_tlb_list),
398 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
399 memblock_free_late(io_tlb_start,
400 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
401 }
402 swiotlb_cleanup();
403 }
404
405 /*
406 * Bounce: copy the swiotlb buffer from or back to the original dma location
407 */
swiotlb_bounce(phys_addr_t orig_addr,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir)408 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
409 size_t size, enum dma_data_direction dir)
410 {
411 unsigned long pfn = PFN_DOWN(orig_addr);
412 unsigned char *vaddr = phys_to_virt(tlb_addr);
413
414 if (PageHighMem(pfn_to_page(pfn))) {
415 /* The buffer does not have a mapping. Map it in and copy */
416 unsigned int offset = orig_addr & ~PAGE_MASK;
417 char *buffer;
418 unsigned int sz = 0;
419 unsigned long flags;
420
421 while (size) {
422 sz = min_t(size_t, PAGE_SIZE - offset, size);
423
424 local_irq_save(flags);
425 buffer = kmap_atomic(pfn_to_page(pfn));
426 if (dir == DMA_TO_DEVICE)
427 memcpy(vaddr, buffer + offset, sz);
428 else
429 memcpy(buffer + offset, vaddr, sz);
430 kunmap_atomic(buffer);
431 local_irq_restore(flags);
432
433 size -= sz;
434 pfn++;
435 vaddr += sz;
436 offset = 0;
437 }
438 } else if (dir == DMA_TO_DEVICE) {
439 memcpy(vaddr, phys_to_virt(orig_addr), size);
440 } else {
441 memcpy(phys_to_virt(orig_addr), vaddr, size);
442 }
443 }
444
swiotlb_tbl_map_single(struct device * hwdev,dma_addr_t tbl_dma_addr,phys_addr_t orig_addr,size_t mapping_size,size_t alloc_size,enum dma_data_direction dir,unsigned long attrs)445 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
446 dma_addr_t tbl_dma_addr,
447 phys_addr_t orig_addr,
448 size_t mapping_size,
449 size_t alloc_size,
450 enum dma_data_direction dir,
451 unsigned long attrs)
452 {
453 unsigned long flags;
454 phys_addr_t tlb_addr;
455 unsigned int nslots, stride, index, wrap;
456 int i;
457 unsigned long mask;
458 unsigned long offset_slots;
459 unsigned long max_slots;
460 unsigned long tmp_io_tlb_used;
461
462 if (no_iotlb_memory)
463 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
464
465 if (mem_encrypt_active())
466 pr_warn_once("Memory encryption is active and system is using DMA bounce buffers\n");
467
468 if (mapping_size > alloc_size) {
469 dev_warn_once(hwdev, "Invalid sizes (mapping: %zd bytes, alloc: %zd bytes)",
470 mapping_size, alloc_size);
471 return (phys_addr_t)DMA_MAPPING_ERROR;
472 }
473
474 mask = dma_get_seg_boundary(hwdev);
475
476 tbl_dma_addr &= mask;
477
478 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
479
480 /*
481 * Carefully handle integer overflow which can occur when mask == ~0UL.
482 */
483 max_slots = mask + 1
484 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
485 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
486
487 /*
488 * For mappings greater than or equal to a page, we limit the stride
489 * (and hence alignment) to a page size.
490 */
491 nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
492 if (alloc_size >= PAGE_SIZE)
493 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
494 else
495 stride = 1;
496
497 BUG_ON(!nslots);
498
499 /*
500 * Find suitable number of IO TLB entries size that will fit this
501 * request and allocate a buffer from that IO TLB pool.
502 */
503 spin_lock_irqsave(&io_tlb_lock, flags);
504
505 if (unlikely(nslots > io_tlb_nslabs - io_tlb_used))
506 goto not_found;
507
508 index = ALIGN(io_tlb_index, stride);
509 if (index >= io_tlb_nslabs)
510 index = 0;
511 wrap = index;
512
513 do {
514 while (iommu_is_span_boundary(index, nslots, offset_slots,
515 max_slots)) {
516 index += stride;
517 if (index >= io_tlb_nslabs)
518 index = 0;
519 if (index == wrap)
520 goto not_found;
521 }
522
523 /*
524 * If we find a slot that indicates we have 'nslots' number of
525 * contiguous buffers, we allocate the buffers from that slot
526 * and mark the entries as '0' indicating unavailable.
527 */
528 if (io_tlb_list[index] >= nslots) {
529 int count = 0;
530
531 for (i = index; i < (int) (index + nslots); i++)
532 io_tlb_list[i] = 0;
533 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
534 io_tlb_list[i] = ++count;
535 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
536
537 /*
538 * Update the indices to avoid searching in the next
539 * round.
540 */
541 io_tlb_index = ((index + nslots) < io_tlb_nslabs
542 ? (index + nslots) : 0);
543
544 goto found;
545 }
546 index += stride;
547 if (index >= io_tlb_nslabs)
548 index = 0;
549 } while (index != wrap);
550
551 not_found:
552 tmp_io_tlb_used = io_tlb_used;
553
554 spin_unlock_irqrestore(&io_tlb_lock, flags);
555 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
556 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes), total %lu (slots), used %lu (slots)\n",
557 alloc_size, io_tlb_nslabs, tmp_io_tlb_used);
558 return (phys_addr_t)DMA_MAPPING_ERROR;
559 found:
560 io_tlb_used += nslots;
561 spin_unlock_irqrestore(&io_tlb_lock, flags);
562
563 /*
564 * Save away the mapping from the original address to the DMA address.
565 * This is needed when we sync the memory. Then we sync the buffer if
566 * needed.
567 */
568 for (i = 0; i < nslots; i++)
569 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
570 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
571 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
572 swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_TO_DEVICE);
573
574 return tlb_addr;
575 }
576
577 /*
578 * tlb_addr is the physical address of the bounce buffer to unmap.
579 */
swiotlb_tbl_unmap_single(struct device * hwdev,phys_addr_t tlb_addr,size_t mapping_size,size_t alloc_size,enum dma_data_direction dir,unsigned long attrs)580 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
581 size_t mapping_size, size_t alloc_size,
582 enum dma_data_direction dir, unsigned long attrs)
583 {
584 unsigned long flags;
585 int i, count, nslots = ALIGN(alloc_size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
586 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
587 phys_addr_t orig_addr = io_tlb_orig_addr[index];
588
589 /*
590 * First, sync the memory before unmapping the entry
591 */
592 if (orig_addr != INVALID_PHYS_ADDR &&
593 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
594 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
595 swiotlb_bounce(orig_addr, tlb_addr, mapping_size, DMA_FROM_DEVICE);
596
597 /*
598 * Return the buffer to the free list by setting the corresponding
599 * entries to indicate the number of contiguous entries available.
600 * While returning the entries to the free list, we merge the entries
601 * with slots below and above the pool being returned.
602 */
603 spin_lock_irqsave(&io_tlb_lock, flags);
604 {
605 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
606 io_tlb_list[index + nslots] : 0);
607 /*
608 * Step 1: return the slots to the free list, merging the
609 * slots with superceeding slots
610 */
611 for (i = index + nslots - 1; i >= index; i--) {
612 io_tlb_list[i] = ++count;
613 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
614 }
615 /*
616 * Step 2: merge the returned slots with the preceding slots,
617 * if available (non zero)
618 */
619 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
620 io_tlb_list[i] = ++count;
621
622 io_tlb_used -= nslots;
623 }
624 spin_unlock_irqrestore(&io_tlb_lock, flags);
625 }
626
swiotlb_tbl_sync_single(struct device * hwdev,phys_addr_t tlb_addr,size_t size,enum dma_data_direction dir,enum dma_sync_target target)627 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
628 size_t size, enum dma_data_direction dir,
629 enum dma_sync_target target)
630 {
631 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
632 phys_addr_t orig_addr = io_tlb_orig_addr[index];
633
634 if (orig_addr == INVALID_PHYS_ADDR)
635 return;
636 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
637
638 switch (target) {
639 case SYNC_FOR_CPU:
640 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
641 swiotlb_bounce(orig_addr, tlb_addr,
642 size, DMA_FROM_DEVICE);
643 else
644 BUG_ON(dir != DMA_TO_DEVICE);
645 break;
646 case SYNC_FOR_DEVICE:
647 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
648 swiotlb_bounce(orig_addr, tlb_addr,
649 size, DMA_TO_DEVICE);
650 else
651 BUG_ON(dir != DMA_FROM_DEVICE);
652 break;
653 default:
654 BUG();
655 }
656 }
657
658 /*
659 * Create a swiotlb mapping for the buffer at @phys, and in case of DMAing
660 * to the device copy the data into it as well.
661 */
swiotlb_map(struct device * dev,phys_addr_t * phys,dma_addr_t * dma_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)662 bool swiotlb_map(struct device *dev, phys_addr_t *phys, dma_addr_t *dma_addr,
663 size_t size, enum dma_data_direction dir, unsigned long attrs)
664 {
665 trace_swiotlb_bounced(dev, *dma_addr, size, swiotlb_force);
666
667 if (unlikely(swiotlb_force == SWIOTLB_NO_FORCE)) {
668 dev_warn_ratelimited(dev,
669 "Cannot do DMA to address %pa\n", phys);
670 return false;
671 }
672
673 /* Oh well, have to allocate and map a bounce buffer. */
674 *phys = swiotlb_tbl_map_single(dev, __phys_to_dma(dev, io_tlb_start),
675 *phys, size, size, dir, attrs);
676 if (*phys == (phys_addr_t)DMA_MAPPING_ERROR)
677 return false;
678
679 /* Ensure that the address returned is DMA'ble */
680 *dma_addr = __phys_to_dma(dev, *phys);
681 if (unlikely(!dma_capable(dev, *dma_addr, size))) {
682 swiotlb_tbl_unmap_single(dev, *phys, size, size, dir,
683 attrs | DMA_ATTR_SKIP_CPU_SYNC);
684 return false;
685 }
686
687 return true;
688 }
689
swiotlb_max_mapping_size(struct device * dev)690 size_t swiotlb_max_mapping_size(struct device *dev)
691 {
692 return ((size_t)1 << IO_TLB_SHIFT) * IO_TLB_SEGSIZE;
693 }
694
is_swiotlb_active(void)695 bool is_swiotlb_active(void)
696 {
697 /*
698 * When SWIOTLB is initialized, even if io_tlb_start points to physical
699 * address zero, io_tlb_end surely doesn't.
700 */
701 return io_tlb_end != 0;
702 }
703
704 #ifdef CONFIG_DEBUG_FS
705
swiotlb_create_debugfs(void)706 static int __init swiotlb_create_debugfs(void)
707 {
708 struct dentry *root;
709
710 root = debugfs_create_dir("swiotlb", NULL);
711 debugfs_create_ulong("io_tlb_nslabs", 0400, root, &io_tlb_nslabs);
712 debugfs_create_ulong("io_tlb_used", 0400, root, &io_tlb_used);
713 return 0;
714 }
715
716 late_initcall(swiotlb_create_debugfs);
717
718 #endif
719