1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
18
19 #include "tb.h"
20
21 /* Switch NVM support */
22
23 struct nvm_auth_status {
24 struct list_head list;
25 uuid_t uuid;
26 u32 status;
27 };
28
29 /*
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
32 * keep it separately.
33 */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36
__nvm_get_auth_status(const struct tb_switch * sw)37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 struct nvm_auth_status *st;
40
41 list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 if (uuid_equal(&st->uuid, sw->uuid))
43 return st;
44 }
45
46 return NULL;
47 }
48
nvm_get_auth_status(const struct tb_switch * sw,u32 * status)49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 struct nvm_auth_status *st;
52
53 mutex_lock(&nvm_auth_status_lock);
54 st = __nvm_get_auth_status(sw);
55 mutex_unlock(&nvm_auth_status_lock);
56
57 *status = st ? st->status : 0;
58 }
59
nvm_set_auth_status(const struct tb_switch * sw,u32 status)60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 struct nvm_auth_status *st;
63
64 if (WARN_ON(!sw->uuid))
65 return;
66
67 mutex_lock(&nvm_auth_status_lock);
68 st = __nvm_get_auth_status(sw);
69
70 if (!st) {
71 st = kzalloc(sizeof(*st), GFP_KERNEL);
72 if (!st)
73 goto unlock;
74
75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 INIT_LIST_HEAD(&st->list);
77 list_add_tail(&st->list, &nvm_auth_status_cache);
78 }
79
80 st->status = status;
81 unlock:
82 mutex_unlock(&nvm_auth_status_lock);
83 }
84
nvm_clear_auth_status(const struct tb_switch * sw)85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 struct nvm_auth_status *st;
88
89 mutex_lock(&nvm_auth_status_lock);
90 st = __nvm_get_auth_status(sw);
91 if (st) {
92 list_del(&st->list);
93 kfree(st);
94 }
95 mutex_unlock(&nvm_auth_status_lock);
96 }
97
nvm_validate_and_write(struct tb_switch * sw)98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 unsigned int image_size;
101 const u8 *buf;
102 int ret;
103
104 ret = tb_nvm_validate(sw->nvm);
105 if (ret)
106 return ret;
107
108 ret = tb_nvm_write_headers(sw->nvm);
109 if (ret)
110 return ret;
111
112 buf = sw->nvm->buf_data_start;
113 image_size = sw->nvm->buf_data_size;
114
115 if (tb_switch_is_usb4(sw))
116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 else
118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 if (ret)
120 return ret;
121
122 sw->nvm->flushed = true;
123 return 0;
124 }
125
nvm_authenticate_host_dma_port(struct tb_switch * sw)126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127 {
128 int ret = 0;
129
130 /*
131 * Root switch NVM upgrade requires that we disconnect the
132 * existing paths first (in case it is not in safe mode
133 * already).
134 */
135 if (!sw->safe_mode) {
136 u32 status;
137
138 ret = tb_domain_disconnect_all_paths(sw->tb);
139 if (ret)
140 return ret;
141 /*
142 * The host controller goes away pretty soon after this if
143 * everything goes well so getting timeout is expected.
144 */
145 ret = dma_port_flash_update_auth(sw->dma_port);
146 if (!ret || ret == -ETIMEDOUT)
147 return 0;
148
149 /*
150 * Any error from update auth operation requires power
151 * cycling of the host router.
152 */
153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 nvm_set_auth_status(sw, status);
156 }
157
158 /*
159 * From safe mode we can get out by just power cycling the
160 * switch.
161 */
162 dma_port_power_cycle(sw->dma_port);
163 return ret;
164 }
165
nvm_authenticate_device_dma_port(struct tb_switch * sw)166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167 {
168 int ret, retries = 10;
169
170 ret = dma_port_flash_update_auth(sw->dma_port);
171 switch (ret) {
172 case 0:
173 case -ETIMEDOUT:
174 case -EACCES:
175 case -EINVAL:
176 /* Power cycle is required */
177 break;
178 default:
179 return ret;
180 }
181
182 /*
183 * Poll here for the authentication status. It takes some time
184 * for the device to respond (we get timeout for a while). Once
185 * we get response the device needs to be power cycled in order
186 * to the new NVM to be taken into use.
187 */
188 do {
189 u32 status;
190
191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 if (ret < 0 && ret != -ETIMEDOUT)
193 return ret;
194 if (ret > 0) {
195 if (status) {
196 tb_sw_warn(sw, "failed to authenticate NVM\n");
197 nvm_set_auth_status(sw, status);
198 }
199
200 tb_sw_info(sw, "power cycling the switch now\n");
201 dma_port_power_cycle(sw->dma_port);
202 return 0;
203 }
204
205 msleep(500);
206 } while (--retries);
207
208 return -ETIMEDOUT;
209 }
210
nvm_authenticate_start_dma_port(struct tb_switch * sw)211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212 {
213 struct pci_dev *root_port;
214
215 /*
216 * During host router NVM upgrade we should not allow root port to
217 * go into D3cold because some root ports cannot trigger PME
218 * itself. To be on the safe side keep the root port in D0 during
219 * the whole upgrade process.
220 */
221 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 if (root_port)
223 pm_runtime_get_noresume(&root_port->dev);
224 }
225
nvm_authenticate_complete_dma_port(struct tb_switch * sw)226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227 {
228 struct pci_dev *root_port;
229
230 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 if (root_port)
232 pm_runtime_put(&root_port->dev);
233 }
234
nvm_readable(struct tb_switch * sw)235 static inline bool nvm_readable(struct tb_switch *sw)
236 {
237 if (tb_switch_is_usb4(sw)) {
238 /*
239 * USB4 devices must support NVM operations but it is
240 * optional for hosts. Therefore we query the NVM sector
241 * size here and if it is supported assume NVM
242 * operations are implemented.
243 */
244 return usb4_switch_nvm_sector_size(sw) > 0;
245 }
246
247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 return !!sw->dma_port;
249 }
250
nvm_upgradeable(struct tb_switch * sw)251 static inline bool nvm_upgradeable(struct tb_switch *sw)
252 {
253 if (sw->no_nvm_upgrade)
254 return false;
255 return nvm_readable(sw);
256 }
257
nvm_authenticate(struct tb_switch * sw,bool auth_only)258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259 {
260 int ret;
261
262 if (tb_switch_is_usb4(sw)) {
263 if (auth_only) {
264 ret = usb4_switch_nvm_set_offset(sw, 0);
265 if (ret)
266 return ret;
267 }
268 sw->nvm->authenticating = true;
269 return usb4_switch_nvm_authenticate(sw);
270 }
271 if (auth_only)
272 return -EOPNOTSUPP;
273
274 sw->nvm->authenticating = true;
275 if (!tb_route(sw)) {
276 nvm_authenticate_start_dma_port(sw);
277 ret = nvm_authenticate_host_dma_port(sw);
278 } else {
279 ret = nvm_authenticate_device_dma_port(sw);
280 }
281
282 return ret;
283 }
284
285 /**
286 * tb_switch_nvm_read() - Read router NVM
287 * @sw: Router whose NVM to read
288 * @address: Start address on the NVM
289 * @buf: Buffer where the read data is copied
290 * @size: Size of the buffer in bytes
291 *
292 * Reads from router NVM and returns the requested data in @buf. Locking
293 * is up to the caller. Returns %0 in success and negative errno in case
294 * of failure.
295 */
tb_switch_nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297 size_t size)
298 {
299 if (tb_switch_is_usb4(sw))
300 return usb4_switch_nvm_read(sw, address, buf, size);
301 return dma_port_flash_read(sw->dma_port, address, buf, size);
302 }
303
nvm_read(void * priv,unsigned int offset,void * val,size_t bytes)304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305 {
306 struct tb_nvm *nvm = priv;
307 struct tb_switch *sw = tb_to_switch(nvm->dev);
308 int ret;
309
310 pm_runtime_get_sync(&sw->dev);
311
312 if (!mutex_trylock(&sw->tb->lock)) {
313 ret = restart_syscall();
314 goto out;
315 }
316
317 ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 mutex_unlock(&sw->tb->lock);
319
320 out:
321 pm_runtime_mark_last_busy(&sw->dev);
322 pm_runtime_put_autosuspend(&sw->dev);
323
324 return ret;
325 }
326
nvm_write(void * priv,unsigned int offset,void * val,size_t bytes)327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328 {
329 struct tb_nvm *nvm = priv;
330 struct tb_switch *sw = tb_to_switch(nvm->dev);
331 int ret;
332
333 if (!mutex_trylock(&sw->tb->lock))
334 return restart_syscall();
335
336 /*
337 * Since writing the NVM image might require some special steps,
338 * for example when CSS headers are written, we cache the image
339 * locally here and handle the special cases when the user asks
340 * us to authenticate the image.
341 */
342 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 mutex_unlock(&sw->tb->lock);
344
345 return ret;
346 }
347
tb_switch_nvm_add(struct tb_switch * sw)348 static int tb_switch_nvm_add(struct tb_switch *sw)
349 {
350 struct tb_nvm *nvm;
351 int ret;
352
353 if (!nvm_readable(sw))
354 return 0;
355
356 nvm = tb_nvm_alloc(&sw->dev);
357 if (IS_ERR(nvm)) {
358 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359 goto err_nvm;
360 }
361
362 ret = tb_nvm_read_version(nvm);
363 if (ret)
364 goto err_nvm;
365
366 /*
367 * If the switch is in safe-mode the only accessible portion of
368 * the NVM is the non-active one where userspace is expected to
369 * write new functional NVM.
370 */
371 if (!sw->safe_mode) {
372 ret = tb_nvm_add_active(nvm, nvm_read);
373 if (ret)
374 goto err_nvm;
375 }
376
377 if (!sw->no_nvm_upgrade) {
378 ret = tb_nvm_add_non_active(nvm, nvm_write);
379 if (ret)
380 goto err_nvm;
381 }
382
383 sw->nvm = nvm;
384 return 0;
385
386 err_nvm:
387 tb_sw_dbg(sw, "NVM upgrade disabled\n");
388 sw->no_nvm_upgrade = true;
389 if (!IS_ERR(nvm))
390 tb_nvm_free(nvm);
391
392 return ret;
393 }
394
tb_switch_nvm_remove(struct tb_switch * sw)395 static void tb_switch_nvm_remove(struct tb_switch *sw)
396 {
397 struct tb_nvm *nvm;
398
399 nvm = sw->nvm;
400 sw->nvm = NULL;
401
402 if (!nvm)
403 return;
404
405 /* Remove authentication status in case the switch is unplugged */
406 if (!nvm->authenticating)
407 nvm_clear_auth_status(sw);
408
409 tb_nvm_free(nvm);
410 }
411
412 /* port utility functions */
413
tb_port_type(const struct tb_regs_port_header * port)414 static const char *tb_port_type(const struct tb_regs_port_header *port)
415 {
416 switch (port->type >> 16) {
417 case 0:
418 switch ((u8) port->type) {
419 case 0:
420 return "Inactive";
421 case 1:
422 return "Port";
423 case 2:
424 return "NHI";
425 default:
426 return "unknown";
427 }
428 case 0x2:
429 return "Ethernet";
430 case 0x8:
431 return "SATA";
432 case 0xe:
433 return "DP/HDMI";
434 case 0x10:
435 return "PCIe";
436 case 0x20:
437 return "USB";
438 default:
439 return "unknown";
440 }
441 }
442
tb_dump_port(struct tb * tb,const struct tb_port * port)443 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
444 {
445 const struct tb_regs_port_header *regs = &port->config;
446
447 tb_dbg(tb,
448 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
449 regs->port_number, regs->vendor_id, regs->device_id,
450 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
451 regs->type);
452 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
453 regs->max_in_hop_id, regs->max_out_hop_id);
454 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
455 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
456 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
457 port->ctl_credits);
458 }
459
460 /**
461 * tb_port_state() - get connectedness state of a port
462 * @port: the port to check
463 *
464 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
465 *
466 * Return: Returns an enum tb_port_state on success or an error code on failure.
467 */
tb_port_state(struct tb_port * port)468 int tb_port_state(struct tb_port *port)
469 {
470 struct tb_cap_phy phy;
471 int res;
472 if (port->cap_phy == 0) {
473 tb_port_WARN(port, "does not have a PHY\n");
474 return -EINVAL;
475 }
476 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
477 if (res)
478 return res;
479 return phy.state;
480 }
481
482 /**
483 * tb_wait_for_port() - wait for a port to become ready
484 * @port: Port to wait
485 * @wait_if_unplugged: Wait also when port is unplugged
486 *
487 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
488 * wait_if_unplugged is set then we also wait if the port is in state
489 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
490 * switch resume). Otherwise we only wait if a device is registered but the link
491 * has not yet been established.
492 *
493 * Return: Returns an error code on failure. Returns 0 if the port is not
494 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
495 * if the port is connected and in state TB_PORT_UP.
496 */
tb_wait_for_port(struct tb_port * port,bool wait_if_unplugged)497 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
498 {
499 int retries = 10;
500 int state;
501 if (!port->cap_phy) {
502 tb_port_WARN(port, "does not have PHY\n");
503 return -EINVAL;
504 }
505 if (tb_is_upstream_port(port)) {
506 tb_port_WARN(port, "is the upstream port\n");
507 return -EINVAL;
508 }
509
510 while (retries--) {
511 state = tb_port_state(port);
512 switch (state) {
513 case TB_PORT_DISABLED:
514 tb_port_dbg(port, "is disabled (state: 0)\n");
515 return 0;
516
517 case TB_PORT_UNPLUGGED:
518 if (wait_if_unplugged) {
519 /* used during resume */
520 tb_port_dbg(port,
521 "is unplugged (state: 7), retrying...\n");
522 msleep(100);
523 break;
524 }
525 tb_port_dbg(port, "is unplugged (state: 7)\n");
526 return 0;
527
528 case TB_PORT_UP:
529 case TB_PORT_TX_CL0S:
530 case TB_PORT_RX_CL0S:
531 case TB_PORT_CL1:
532 case TB_PORT_CL2:
533 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
534 return 1;
535
536 default:
537 if (state < 0)
538 return state;
539
540 /*
541 * After plug-in the state is TB_PORT_CONNECTING. Give it some
542 * time.
543 */
544 tb_port_dbg(port,
545 "is connected, link is not up (state: %d), retrying...\n",
546 state);
547 msleep(100);
548 }
549
550 }
551 tb_port_warn(port,
552 "failed to reach state TB_PORT_UP. Ignoring port...\n");
553 return 0;
554 }
555
556 /**
557 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
558 * @port: Port to add/remove NFC credits
559 * @credits: Credits to add/remove
560 *
561 * Change the number of NFC credits allocated to @port by @credits. To remove
562 * NFC credits pass a negative amount of credits.
563 *
564 * Return: Returns 0 on success or an error code on failure.
565 */
tb_port_add_nfc_credits(struct tb_port * port,int credits)566 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
567 {
568 u32 nfc_credits;
569
570 if (credits == 0 || port->sw->is_unplugged)
571 return 0;
572
573 /*
574 * USB4 restricts programming NFC buffers to lane adapters only
575 * so skip other ports.
576 */
577 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
578 return 0;
579
580 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
581 if (credits < 0)
582 credits = max_t(int, -nfc_credits, credits);
583
584 nfc_credits += credits;
585
586 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
587 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
588
589 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
590 port->config.nfc_credits |= nfc_credits;
591
592 return tb_port_write(port, &port->config.nfc_credits,
593 TB_CFG_PORT, ADP_CS_4, 1);
594 }
595
596 /**
597 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
598 * @port: Port whose counters to clear
599 * @counter: Counter index to clear
600 *
601 * Return: Returns 0 on success or an error code on failure.
602 */
tb_port_clear_counter(struct tb_port * port,int counter)603 int tb_port_clear_counter(struct tb_port *port, int counter)
604 {
605 u32 zero[3] = { 0, 0, 0 };
606 tb_port_dbg(port, "clearing counter %d\n", counter);
607 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
608 }
609
610 /**
611 * tb_port_unlock() - Unlock downstream port
612 * @port: Port to unlock
613 *
614 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
615 * downstream router accessible for CM.
616 */
tb_port_unlock(struct tb_port * port)617 int tb_port_unlock(struct tb_port *port)
618 {
619 if (tb_switch_is_icm(port->sw))
620 return 0;
621 if (!tb_port_is_null(port))
622 return -EINVAL;
623 if (tb_switch_is_usb4(port->sw))
624 return usb4_port_unlock(port);
625 return 0;
626 }
627
__tb_port_enable(struct tb_port * port,bool enable)628 static int __tb_port_enable(struct tb_port *port, bool enable)
629 {
630 int ret;
631 u32 phy;
632
633 if (!tb_port_is_null(port))
634 return -EINVAL;
635
636 ret = tb_port_read(port, &phy, TB_CFG_PORT,
637 port->cap_phy + LANE_ADP_CS_1, 1);
638 if (ret)
639 return ret;
640
641 if (enable)
642 phy &= ~LANE_ADP_CS_1_LD;
643 else
644 phy |= LANE_ADP_CS_1_LD;
645
646
647 ret = tb_port_write(port, &phy, TB_CFG_PORT,
648 port->cap_phy + LANE_ADP_CS_1, 1);
649 if (ret)
650 return ret;
651
652 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
653 return 0;
654 }
655
656 /**
657 * tb_port_enable() - Enable lane adapter
658 * @port: Port to enable (can be %NULL)
659 *
660 * This is used for lane 0 and 1 adapters to enable it.
661 */
tb_port_enable(struct tb_port * port)662 int tb_port_enable(struct tb_port *port)
663 {
664 return __tb_port_enable(port, true);
665 }
666
667 /**
668 * tb_port_disable() - Disable lane adapter
669 * @port: Port to disable (can be %NULL)
670 *
671 * This is used for lane 0 and 1 adapters to disable it.
672 */
tb_port_disable(struct tb_port * port)673 int tb_port_disable(struct tb_port *port)
674 {
675 return __tb_port_enable(port, false);
676 }
677
678 /*
679 * tb_init_port() - initialize a port
680 *
681 * This is a helper method for tb_switch_alloc. Does not check or initialize
682 * any downstream switches.
683 *
684 * Return: Returns 0 on success or an error code on failure.
685 */
tb_init_port(struct tb_port * port)686 static int tb_init_port(struct tb_port *port)
687 {
688 int res;
689 int cap;
690
691 INIT_LIST_HEAD(&port->list);
692
693 /* Control adapter does not have configuration space */
694 if (!port->port)
695 return 0;
696
697 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
698 if (res) {
699 if (res == -ENODEV) {
700 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
701 port->port);
702 port->disabled = true;
703 return 0;
704 }
705 return res;
706 }
707
708 /* Port 0 is the switch itself and has no PHY. */
709 if (port->config.type == TB_TYPE_PORT) {
710 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
711
712 if (cap > 0)
713 port->cap_phy = cap;
714 else
715 tb_port_WARN(port, "non switch port without a PHY\n");
716
717 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
718 if (cap > 0)
719 port->cap_usb4 = cap;
720
721 /*
722 * USB4 ports the buffers allocated for the control path
723 * can be read from the path config space. Legacy
724 * devices we use hard-coded value.
725 */
726 if (port->cap_usb4) {
727 struct tb_regs_hop hop;
728
729 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
730 port->ctl_credits = hop.initial_credits;
731 }
732 if (!port->ctl_credits)
733 port->ctl_credits = 2;
734
735 } else {
736 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
737 if (cap > 0)
738 port->cap_adap = cap;
739 }
740
741 port->total_credits =
742 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
743 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
744
745 tb_dump_port(port->sw->tb, port);
746 return 0;
747 }
748
tb_port_alloc_hopid(struct tb_port * port,bool in,int min_hopid,int max_hopid)749 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
750 int max_hopid)
751 {
752 int port_max_hopid;
753 struct ida *ida;
754
755 if (in) {
756 port_max_hopid = port->config.max_in_hop_id;
757 ida = &port->in_hopids;
758 } else {
759 port_max_hopid = port->config.max_out_hop_id;
760 ida = &port->out_hopids;
761 }
762
763 /*
764 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
765 * reserved.
766 */
767 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
768 min_hopid = TB_PATH_MIN_HOPID;
769
770 if (max_hopid < 0 || max_hopid > port_max_hopid)
771 max_hopid = port_max_hopid;
772
773 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
774 }
775
776 /**
777 * tb_port_alloc_in_hopid() - Allocate input HopID from port
778 * @port: Port to allocate HopID for
779 * @min_hopid: Minimum acceptable input HopID
780 * @max_hopid: Maximum acceptable input HopID
781 *
782 * Return: HopID between @min_hopid and @max_hopid or negative errno in
783 * case of error.
784 */
tb_port_alloc_in_hopid(struct tb_port * port,int min_hopid,int max_hopid)785 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
786 {
787 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
788 }
789
790 /**
791 * tb_port_alloc_out_hopid() - Allocate output HopID from port
792 * @port: Port to allocate HopID for
793 * @min_hopid: Minimum acceptable output HopID
794 * @max_hopid: Maximum acceptable output HopID
795 *
796 * Return: HopID between @min_hopid and @max_hopid or negative errno in
797 * case of error.
798 */
tb_port_alloc_out_hopid(struct tb_port * port,int min_hopid,int max_hopid)799 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
800 {
801 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
802 }
803
804 /**
805 * tb_port_release_in_hopid() - Release allocated input HopID from port
806 * @port: Port whose HopID to release
807 * @hopid: HopID to release
808 */
tb_port_release_in_hopid(struct tb_port * port,int hopid)809 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
810 {
811 ida_simple_remove(&port->in_hopids, hopid);
812 }
813
814 /**
815 * tb_port_release_out_hopid() - Release allocated output HopID from port
816 * @port: Port whose HopID to release
817 * @hopid: HopID to release
818 */
tb_port_release_out_hopid(struct tb_port * port,int hopid)819 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
820 {
821 ida_simple_remove(&port->out_hopids, hopid);
822 }
823
tb_switch_is_reachable(const struct tb_switch * parent,const struct tb_switch * sw)824 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
825 const struct tb_switch *sw)
826 {
827 u64 mask = (1ULL << parent->config.depth * 8) - 1;
828 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
829 }
830
831 /**
832 * tb_next_port_on_path() - Return next port for given port on a path
833 * @start: Start port of the walk
834 * @end: End port of the walk
835 * @prev: Previous port (%NULL if this is the first)
836 *
837 * This function can be used to walk from one port to another if they
838 * are connected through zero or more switches. If the @prev is dual
839 * link port, the function follows that link and returns another end on
840 * that same link.
841 *
842 * If the @end port has been reached, return %NULL.
843 *
844 * Domain tb->lock must be held when this function is called.
845 */
tb_next_port_on_path(struct tb_port * start,struct tb_port * end,struct tb_port * prev)846 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
847 struct tb_port *prev)
848 {
849 struct tb_port *next;
850
851 if (!prev)
852 return start;
853
854 if (prev->sw == end->sw) {
855 if (prev == end)
856 return NULL;
857 return end;
858 }
859
860 if (tb_switch_is_reachable(prev->sw, end->sw)) {
861 next = tb_port_at(tb_route(end->sw), prev->sw);
862 /* Walk down the topology if next == prev */
863 if (prev->remote &&
864 (next == prev || next->dual_link_port == prev))
865 next = prev->remote;
866 } else {
867 if (tb_is_upstream_port(prev)) {
868 next = prev->remote;
869 } else {
870 next = tb_upstream_port(prev->sw);
871 /*
872 * Keep the same link if prev and next are both
873 * dual link ports.
874 */
875 if (next->dual_link_port &&
876 next->link_nr != prev->link_nr) {
877 next = next->dual_link_port;
878 }
879 }
880 }
881
882 return next != prev ? next : NULL;
883 }
884
885 /**
886 * tb_port_get_link_speed() - Get current link speed
887 * @port: Port to check (USB4 or CIO)
888 *
889 * Returns link speed in Gb/s or negative errno in case of failure.
890 */
tb_port_get_link_speed(struct tb_port * port)891 int tb_port_get_link_speed(struct tb_port *port)
892 {
893 u32 val, speed;
894 int ret;
895
896 if (!port->cap_phy)
897 return -EINVAL;
898
899 ret = tb_port_read(port, &val, TB_CFG_PORT,
900 port->cap_phy + LANE_ADP_CS_1, 1);
901 if (ret)
902 return ret;
903
904 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
905 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
906
907 switch (speed) {
908 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
909 return 40;
910 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
911 return 20;
912 default:
913 return 10;
914 }
915 }
916
917 /**
918 * tb_port_get_link_width() - Get current link width
919 * @port: Port to check (USB4 or CIO)
920 *
921 * Returns link width. Return the link width as encoded in &enum
922 * tb_link_width or negative errno in case of failure.
923 */
tb_port_get_link_width(struct tb_port * port)924 int tb_port_get_link_width(struct tb_port *port)
925 {
926 u32 val;
927 int ret;
928
929 if (!port->cap_phy)
930 return -EINVAL;
931
932 ret = tb_port_read(port, &val, TB_CFG_PORT,
933 port->cap_phy + LANE_ADP_CS_1, 1);
934 if (ret)
935 return ret;
936
937 /* Matches the values in enum tb_link_width */
938 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
939 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
940 }
941
tb_port_is_width_supported(struct tb_port * port,unsigned int width_mask)942 static bool tb_port_is_width_supported(struct tb_port *port,
943 unsigned int width_mask)
944 {
945 u32 phy, widths;
946 int ret;
947
948 if (!port->cap_phy)
949 return false;
950
951 ret = tb_port_read(port, &phy, TB_CFG_PORT,
952 port->cap_phy + LANE_ADP_CS_0, 1);
953 if (ret)
954 return false;
955
956 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
957 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
958
959 return widths & width_mask;
960 }
961
is_gen4_link(struct tb_port * port)962 static bool is_gen4_link(struct tb_port *port)
963 {
964 return tb_port_get_link_speed(port) > 20;
965 }
966
967 /**
968 * tb_port_set_link_width() - Set target link width of the lane adapter
969 * @port: Lane adapter
970 * @width: Target link width
971 *
972 * Sets the target link width of the lane adapter to @width. Does not
973 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
974 *
975 * Return: %0 in case of success and negative errno in case of error
976 */
tb_port_set_link_width(struct tb_port * port,enum tb_link_width width)977 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
978 {
979 u32 val;
980 int ret;
981
982 if (!port->cap_phy)
983 return -EINVAL;
984
985 ret = tb_port_read(port, &val, TB_CFG_PORT,
986 port->cap_phy + LANE_ADP_CS_1, 1);
987 if (ret)
988 return ret;
989
990 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
991 switch (width) {
992 case TB_LINK_WIDTH_SINGLE:
993 /* Gen 4 link cannot be single */
994 if (is_gen4_link(port))
995 return -EOPNOTSUPP;
996 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
997 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
998 break;
999 case TB_LINK_WIDTH_DUAL:
1000 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1001 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1002 break;
1003 default:
1004 return -EINVAL;
1005 }
1006
1007 return tb_port_write(port, &val, TB_CFG_PORT,
1008 port->cap_phy + LANE_ADP_CS_1, 1);
1009 }
1010
1011 /**
1012 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1013 * @port: Lane adapter
1014 * @bonding: enable/disable bonding
1015 *
1016 * Enables or disables lane bonding. This should be called after target
1017 * link width has been set (tb_port_set_link_width()). Note in most
1018 * cases one should use tb_port_lane_bonding_enable() instead to enable
1019 * lane bonding.
1020 *
1021 * Return: %0 in case of success and negative errno in case of error
1022 */
tb_port_set_lane_bonding(struct tb_port * port,bool bonding)1023 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1024 {
1025 u32 val;
1026 int ret;
1027
1028 if (!port->cap_phy)
1029 return -EINVAL;
1030
1031 ret = tb_port_read(port, &val, TB_CFG_PORT,
1032 port->cap_phy + LANE_ADP_CS_1, 1);
1033 if (ret)
1034 return ret;
1035
1036 if (bonding)
1037 val |= LANE_ADP_CS_1_LB;
1038 else
1039 val &= ~LANE_ADP_CS_1_LB;
1040
1041 return tb_port_write(port, &val, TB_CFG_PORT,
1042 port->cap_phy + LANE_ADP_CS_1, 1);
1043 }
1044
1045 /**
1046 * tb_port_lane_bonding_enable() - Enable bonding on port
1047 * @port: port to enable
1048 *
1049 * Enable bonding by setting the link width of the port and the other
1050 * port in case of dual link port. Does not wait for the link to
1051 * actually reach the bonded state so caller needs to call
1052 * tb_port_wait_for_link_width() before enabling any paths through the
1053 * link to make sure the link is in expected state.
1054 *
1055 * Return: %0 in case of success and negative errno in case of error
1056 */
tb_port_lane_bonding_enable(struct tb_port * port)1057 int tb_port_lane_bonding_enable(struct tb_port *port)
1058 {
1059 enum tb_link_width width;
1060 int ret;
1061
1062 /*
1063 * Enable lane bonding for both links if not already enabled by
1064 * for example the boot firmware.
1065 */
1066 width = tb_port_get_link_width(port);
1067 if (width == TB_LINK_WIDTH_SINGLE) {
1068 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1069 if (ret)
1070 goto err_lane0;
1071 }
1072
1073 width = tb_port_get_link_width(port->dual_link_port);
1074 if (width == TB_LINK_WIDTH_SINGLE) {
1075 ret = tb_port_set_link_width(port->dual_link_port,
1076 TB_LINK_WIDTH_DUAL);
1077 if (ret)
1078 goto err_lane0;
1079 }
1080
1081 /*
1082 * Only set bonding if the link was not already bonded. This
1083 * avoids the lane adapter to re-enter bonding state.
1084 */
1085 if (width == TB_LINK_WIDTH_SINGLE) {
1086 ret = tb_port_set_lane_bonding(port, true);
1087 if (ret)
1088 goto err_lane1;
1089 }
1090
1091 /*
1092 * When lane 0 bonding is set it will affect lane 1 too so
1093 * update both.
1094 */
1095 port->bonded = true;
1096 port->dual_link_port->bonded = true;
1097
1098 return 0;
1099
1100 err_lane1:
1101 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1102 err_lane0:
1103 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1104
1105 return ret;
1106 }
1107
1108 /**
1109 * tb_port_lane_bonding_disable() - Disable bonding on port
1110 * @port: port to disable
1111 *
1112 * Disable bonding by setting the link width of the port and the
1113 * other port in case of dual link port.
1114 */
tb_port_lane_bonding_disable(struct tb_port * port)1115 void tb_port_lane_bonding_disable(struct tb_port *port)
1116 {
1117 tb_port_set_lane_bonding(port, false);
1118 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1119 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1120 port->dual_link_port->bonded = false;
1121 port->bonded = false;
1122 }
1123
1124 /**
1125 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1126 * @port: Port to wait for
1127 * @width_mask: Expected link width mask
1128 * @timeout_msec: Timeout in ms how long to wait
1129 *
1130 * Should be used after both ends of the link have been bonded (or
1131 * bonding has been disabled) to wait until the link actually reaches
1132 * the expected state. Returns %-ETIMEDOUT if the width was not reached
1133 * within the given timeout, %0 if it did. Can be passed a mask of
1134 * expected widths and succeeds if any of the widths is reached.
1135 */
tb_port_wait_for_link_width(struct tb_port * port,unsigned int width_mask,int timeout_msec)1136 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width_mask,
1137 int timeout_msec)
1138 {
1139 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1140 int ret;
1141
1142 /* Gen 4 link does not support single lane */
1143 if ((width_mask & TB_LINK_WIDTH_SINGLE) && is_gen4_link(port))
1144 return -EOPNOTSUPP;
1145
1146 do {
1147 ret = tb_port_get_link_width(port);
1148 if (ret < 0) {
1149 /*
1150 * Sometimes we get port locked error when
1151 * polling the lanes so we can ignore it and
1152 * retry.
1153 */
1154 if (ret != -EACCES)
1155 return ret;
1156 } else if (ret & width_mask) {
1157 return 0;
1158 }
1159
1160 usleep_range(1000, 2000);
1161 } while (ktime_before(ktime_get(), timeout));
1162
1163 return -ETIMEDOUT;
1164 }
1165
tb_port_do_update_credits(struct tb_port * port)1166 static int tb_port_do_update_credits(struct tb_port *port)
1167 {
1168 u32 nfc_credits;
1169 int ret;
1170
1171 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1172 if (ret)
1173 return ret;
1174
1175 if (nfc_credits != port->config.nfc_credits) {
1176 u32 total;
1177
1178 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1179 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1180
1181 tb_port_dbg(port, "total credits changed %u -> %u\n",
1182 port->total_credits, total);
1183
1184 port->config.nfc_credits = nfc_credits;
1185 port->total_credits = total;
1186 }
1187
1188 return 0;
1189 }
1190
1191 /**
1192 * tb_port_update_credits() - Re-read port total credits
1193 * @port: Port to update
1194 *
1195 * After the link is bonded (or bonding was disabled) the port total
1196 * credits may change, so this function needs to be called to re-read
1197 * the credits. Updates also the second lane adapter.
1198 */
tb_port_update_credits(struct tb_port * port)1199 int tb_port_update_credits(struct tb_port *port)
1200 {
1201 int ret;
1202
1203 ret = tb_port_do_update_credits(port);
1204 if (ret)
1205 return ret;
1206 return tb_port_do_update_credits(port->dual_link_port);
1207 }
1208
tb_port_start_lane_initialization(struct tb_port * port)1209 static int tb_port_start_lane_initialization(struct tb_port *port)
1210 {
1211 int ret;
1212
1213 if (tb_switch_is_usb4(port->sw))
1214 return 0;
1215
1216 ret = tb_lc_start_lane_initialization(port);
1217 return ret == -EINVAL ? 0 : ret;
1218 }
1219
1220 /*
1221 * Returns true if the port had something (router, XDomain) connected
1222 * before suspend.
1223 */
tb_port_resume(struct tb_port * port)1224 static bool tb_port_resume(struct tb_port *port)
1225 {
1226 bool has_remote = tb_port_has_remote(port);
1227
1228 if (port->usb4) {
1229 usb4_port_device_resume(port->usb4);
1230 } else if (!has_remote) {
1231 /*
1232 * For disconnected downstream lane adapters start lane
1233 * initialization now so we detect future connects.
1234 *
1235 * For XDomain start the lane initialzation now so the
1236 * link gets re-established.
1237 *
1238 * This is only needed for non-USB4 ports.
1239 */
1240 if (!tb_is_upstream_port(port) || port->xdomain)
1241 tb_port_start_lane_initialization(port);
1242 }
1243
1244 return has_remote || port->xdomain;
1245 }
1246
1247 /**
1248 * tb_port_is_enabled() - Is the adapter port enabled
1249 * @port: Port to check
1250 */
tb_port_is_enabled(struct tb_port * port)1251 bool tb_port_is_enabled(struct tb_port *port)
1252 {
1253 switch (port->config.type) {
1254 case TB_TYPE_PCIE_UP:
1255 case TB_TYPE_PCIE_DOWN:
1256 return tb_pci_port_is_enabled(port);
1257
1258 case TB_TYPE_DP_HDMI_IN:
1259 case TB_TYPE_DP_HDMI_OUT:
1260 return tb_dp_port_is_enabled(port);
1261
1262 case TB_TYPE_USB3_UP:
1263 case TB_TYPE_USB3_DOWN:
1264 return tb_usb3_port_is_enabled(port);
1265
1266 default:
1267 return false;
1268 }
1269 }
1270
1271 /**
1272 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1273 * @port: USB3 adapter port to check
1274 */
tb_usb3_port_is_enabled(struct tb_port * port)1275 bool tb_usb3_port_is_enabled(struct tb_port *port)
1276 {
1277 u32 data;
1278
1279 if (tb_port_read(port, &data, TB_CFG_PORT,
1280 port->cap_adap + ADP_USB3_CS_0, 1))
1281 return false;
1282
1283 return !!(data & ADP_USB3_CS_0_PE);
1284 }
1285
1286 /**
1287 * tb_usb3_port_enable() - Enable USB3 adapter port
1288 * @port: USB3 adapter port to enable
1289 * @enable: Enable/disable the USB3 adapter
1290 */
tb_usb3_port_enable(struct tb_port * port,bool enable)1291 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1292 {
1293 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1294 : ADP_USB3_CS_0_V;
1295
1296 if (!port->cap_adap)
1297 return -ENXIO;
1298 return tb_port_write(port, &word, TB_CFG_PORT,
1299 port->cap_adap + ADP_USB3_CS_0, 1);
1300 }
1301
1302 /**
1303 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1304 * @port: PCIe port to check
1305 */
tb_pci_port_is_enabled(struct tb_port * port)1306 bool tb_pci_port_is_enabled(struct tb_port *port)
1307 {
1308 u32 data;
1309
1310 if (tb_port_read(port, &data, TB_CFG_PORT,
1311 port->cap_adap + ADP_PCIE_CS_0, 1))
1312 return false;
1313
1314 return !!(data & ADP_PCIE_CS_0_PE);
1315 }
1316
1317 /**
1318 * tb_pci_port_enable() - Enable PCIe adapter port
1319 * @port: PCIe port to enable
1320 * @enable: Enable/disable the PCIe adapter
1321 */
tb_pci_port_enable(struct tb_port * port,bool enable)1322 int tb_pci_port_enable(struct tb_port *port, bool enable)
1323 {
1324 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1325 if (!port->cap_adap)
1326 return -ENXIO;
1327 return tb_port_write(port, &word, TB_CFG_PORT,
1328 port->cap_adap + ADP_PCIE_CS_0, 1);
1329 }
1330
1331 /**
1332 * tb_dp_port_hpd_is_active() - Is HPD already active
1333 * @port: DP out port to check
1334 *
1335 * Checks if the DP OUT adapter port has HDP bit already set.
1336 */
tb_dp_port_hpd_is_active(struct tb_port * port)1337 int tb_dp_port_hpd_is_active(struct tb_port *port)
1338 {
1339 u32 data;
1340 int ret;
1341
1342 ret = tb_port_read(port, &data, TB_CFG_PORT,
1343 port->cap_adap + ADP_DP_CS_2, 1);
1344 if (ret)
1345 return ret;
1346
1347 return !!(data & ADP_DP_CS_2_HDP);
1348 }
1349
1350 /**
1351 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1352 * @port: Port to clear HPD
1353 *
1354 * If the DP IN port has HDP set, this function can be used to clear it.
1355 */
tb_dp_port_hpd_clear(struct tb_port * port)1356 int tb_dp_port_hpd_clear(struct tb_port *port)
1357 {
1358 u32 data;
1359 int ret;
1360
1361 ret = tb_port_read(port, &data, TB_CFG_PORT,
1362 port->cap_adap + ADP_DP_CS_3, 1);
1363 if (ret)
1364 return ret;
1365
1366 data |= ADP_DP_CS_3_HDPC;
1367 return tb_port_write(port, &data, TB_CFG_PORT,
1368 port->cap_adap + ADP_DP_CS_3, 1);
1369 }
1370
1371 /**
1372 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1373 * @port: DP IN/OUT port to set hops
1374 * @video: Video Hop ID
1375 * @aux_tx: AUX TX Hop ID
1376 * @aux_rx: AUX RX Hop ID
1377 *
1378 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1379 * router DP adapters too but does not program the values as the fields
1380 * are read-only.
1381 */
tb_dp_port_set_hops(struct tb_port * port,unsigned int video,unsigned int aux_tx,unsigned int aux_rx)1382 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1383 unsigned int aux_tx, unsigned int aux_rx)
1384 {
1385 u32 data[2];
1386 int ret;
1387
1388 if (tb_switch_is_usb4(port->sw))
1389 return 0;
1390
1391 ret = tb_port_read(port, data, TB_CFG_PORT,
1392 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1393 if (ret)
1394 return ret;
1395
1396 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1397 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1398 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1399
1400 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1401 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1402 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1403 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1404 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1405
1406 return tb_port_write(port, data, TB_CFG_PORT,
1407 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1408 }
1409
1410 /**
1411 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1412 * @port: DP adapter port to check
1413 */
tb_dp_port_is_enabled(struct tb_port * port)1414 bool tb_dp_port_is_enabled(struct tb_port *port)
1415 {
1416 u32 data[2];
1417
1418 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1419 ARRAY_SIZE(data)))
1420 return false;
1421
1422 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1423 }
1424
1425 /**
1426 * tb_dp_port_enable() - Enables/disables DP paths of a port
1427 * @port: DP IN/OUT port
1428 * @enable: Enable/disable DP path
1429 *
1430 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1431 * calling this function.
1432 */
tb_dp_port_enable(struct tb_port * port,bool enable)1433 int tb_dp_port_enable(struct tb_port *port, bool enable)
1434 {
1435 u32 data[2];
1436 int ret;
1437
1438 ret = tb_port_read(port, data, TB_CFG_PORT,
1439 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1440 if (ret)
1441 return ret;
1442
1443 if (enable)
1444 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1445 else
1446 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1447
1448 return tb_port_write(port, data, TB_CFG_PORT,
1449 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1450 }
1451
1452 /* switch utility functions */
1453
tb_switch_generation_name(const struct tb_switch * sw)1454 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1455 {
1456 switch (sw->generation) {
1457 case 1:
1458 return "Thunderbolt 1";
1459 case 2:
1460 return "Thunderbolt 2";
1461 case 3:
1462 return "Thunderbolt 3";
1463 case 4:
1464 return "USB4";
1465 default:
1466 return "Unknown";
1467 }
1468 }
1469
tb_dump_switch(const struct tb * tb,const struct tb_switch * sw)1470 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1471 {
1472 const struct tb_regs_switch_header *regs = &sw->config;
1473
1474 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1475 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1476 regs->revision, regs->thunderbolt_version);
1477 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1478 tb_dbg(tb, " Config:\n");
1479 tb_dbg(tb,
1480 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1481 regs->upstream_port_number, regs->depth,
1482 (((u64) regs->route_hi) << 32) | regs->route_lo,
1483 regs->enabled, regs->plug_events_delay);
1484 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1485 regs->__unknown1, regs->__unknown4);
1486 }
1487
1488 /**
1489 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1490 * @sw: Switch to reset
1491 *
1492 * Return: Returns 0 on success or an error code on failure.
1493 */
tb_switch_reset(struct tb_switch * sw)1494 int tb_switch_reset(struct tb_switch *sw)
1495 {
1496 struct tb_cfg_result res;
1497
1498 if (sw->generation > 1)
1499 return 0;
1500
1501 tb_sw_dbg(sw, "resetting switch\n");
1502
1503 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1504 TB_CFG_SWITCH, 2, 2);
1505 if (res.err)
1506 return res.err;
1507 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1508 if (res.err > 0)
1509 return -EIO;
1510 return res.err;
1511 }
1512
1513 /**
1514 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1515 * @sw: Router to read the offset value from
1516 * @offset: Offset in the router config space to read from
1517 * @bit: Bit mask in the offset to wait for
1518 * @value: Value of the bits to wait for
1519 * @timeout_msec: Timeout in ms how long to wait
1520 *
1521 * Wait till the specified bits in specified offset reach specified value.
1522 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1523 * within the given timeout or a negative errno in case of failure.
1524 */
tb_switch_wait_for_bit(struct tb_switch * sw,u32 offset,u32 bit,u32 value,int timeout_msec)1525 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1526 u32 value, int timeout_msec)
1527 {
1528 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1529
1530 do {
1531 u32 val;
1532 int ret;
1533
1534 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1535 if (ret)
1536 return ret;
1537
1538 if ((val & bit) == value)
1539 return 0;
1540
1541 usleep_range(50, 100);
1542 } while (ktime_before(ktime_get(), timeout));
1543
1544 return -ETIMEDOUT;
1545 }
1546
1547 /*
1548 * tb_plug_events_active() - enable/disable plug events on a switch
1549 *
1550 * Also configures a sane plug_events_delay of 255ms.
1551 *
1552 * Return: Returns 0 on success or an error code on failure.
1553 */
tb_plug_events_active(struct tb_switch * sw,bool active)1554 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1555 {
1556 u32 data;
1557 int res;
1558
1559 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1560 return 0;
1561
1562 sw->config.plug_events_delay = 0xff;
1563 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1564 if (res)
1565 return res;
1566
1567 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1568 if (res)
1569 return res;
1570
1571 if (active) {
1572 data = data & 0xFFFFFF83;
1573 switch (sw->config.device_id) {
1574 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1575 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1576 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1577 break;
1578 default:
1579 /*
1580 * Skip Alpine Ridge, it needs to have vendor
1581 * specific USB hotplug event enabled for the
1582 * internal xHCI to work.
1583 */
1584 if (!tb_switch_is_alpine_ridge(sw))
1585 data |= TB_PLUG_EVENTS_USB_DISABLE;
1586 }
1587 } else {
1588 data = data | 0x7c;
1589 }
1590 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1591 sw->cap_plug_events + 1, 1);
1592 }
1593
authorized_show(struct device * dev,struct device_attribute * attr,char * buf)1594 static ssize_t authorized_show(struct device *dev,
1595 struct device_attribute *attr,
1596 char *buf)
1597 {
1598 struct tb_switch *sw = tb_to_switch(dev);
1599
1600 return sysfs_emit(buf, "%u\n", sw->authorized);
1601 }
1602
disapprove_switch(struct device * dev,void * not_used)1603 static int disapprove_switch(struct device *dev, void *not_used)
1604 {
1605 char *envp[] = { "AUTHORIZED=0", NULL };
1606 struct tb_switch *sw;
1607
1608 sw = tb_to_switch(dev);
1609 if (sw && sw->authorized) {
1610 int ret;
1611
1612 /* First children */
1613 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1614 if (ret)
1615 return ret;
1616
1617 ret = tb_domain_disapprove_switch(sw->tb, sw);
1618 if (ret)
1619 return ret;
1620
1621 sw->authorized = 0;
1622 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1623 }
1624
1625 return 0;
1626 }
1627
tb_switch_set_authorized(struct tb_switch * sw,unsigned int val)1628 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1629 {
1630 char envp_string[13];
1631 int ret = -EINVAL;
1632 char *envp[] = { envp_string, NULL };
1633
1634 if (!mutex_trylock(&sw->tb->lock))
1635 return restart_syscall();
1636
1637 if (!!sw->authorized == !!val)
1638 goto unlock;
1639
1640 switch (val) {
1641 /* Disapprove switch */
1642 case 0:
1643 if (tb_route(sw)) {
1644 ret = disapprove_switch(&sw->dev, NULL);
1645 goto unlock;
1646 }
1647 break;
1648
1649 /* Approve switch */
1650 case 1:
1651 if (sw->key)
1652 ret = tb_domain_approve_switch_key(sw->tb, sw);
1653 else
1654 ret = tb_domain_approve_switch(sw->tb, sw);
1655 break;
1656
1657 /* Challenge switch */
1658 case 2:
1659 if (sw->key)
1660 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1661 break;
1662
1663 default:
1664 break;
1665 }
1666
1667 if (!ret) {
1668 sw->authorized = val;
1669 /*
1670 * Notify status change to the userspace, informing the new
1671 * value of /sys/bus/thunderbolt/devices/.../authorized.
1672 */
1673 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1674 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1675 }
1676
1677 unlock:
1678 mutex_unlock(&sw->tb->lock);
1679 return ret;
1680 }
1681
authorized_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1682 static ssize_t authorized_store(struct device *dev,
1683 struct device_attribute *attr,
1684 const char *buf, size_t count)
1685 {
1686 struct tb_switch *sw = tb_to_switch(dev);
1687 unsigned int val;
1688 ssize_t ret;
1689
1690 ret = kstrtouint(buf, 0, &val);
1691 if (ret)
1692 return ret;
1693 if (val > 2)
1694 return -EINVAL;
1695
1696 pm_runtime_get_sync(&sw->dev);
1697 ret = tb_switch_set_authorized(sw, val);
1698 pm_runtime_mark_last_busy(&sw->dev);
1699 pm_runtime_put_autosuspend(&sw->dev);
1700
1701 return ret ? ret : count;
1702 }
1703 static DEVICE_ATTR_RW(authorized);
1704
boot_show(struct device * dev,struct device_attribute * attr,char * buf)1705 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1706 char *buf)
1707 {
1708 struct tb_switch *sw = tb_to_switch(dev);
1709
1710 return sysfs_emit(buf, "%u\n", sw->boot);
1711 }
1712 static DEVICE_ATTR_RO(boot);
1713
device_show(struct device * dev,struct device_attribute * attr,char * buf)1714 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1715 char *buf)
1716 {
1717 struct tb_switch *sw = tb_to_switch(dev);
1718
1719 return sysfs_emit(buf, "%#x\n", sw->device);
1720 }
1721 static DEVICE_ATTR_RO(device);
1722
1723 static ssize_t
device_name_show(struct device * dev,struct device_attribute * attr,char * buf)1724 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1725 {
1726 struct tb_switch *sw = tb_to_switch(dev);
1727
1728 return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1729 }
1730 static DEVICE_ATTR_RO(device_name);
1731
1732 static ssize_t
generation_show(struct device * dev,struct device_attribute * attr,char * buf)1733 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1734 {
1735 struct tb_switch *sw = tb_to_switch(dev);
1736
1737 return sysfs_emit(buf, "%u\n", sw->generation);
1738 }
1739 static DEVICE_ATTR_RO(generation);
1740
key_show(struct device * dev,struct device_attribute * attr,char * buf)1741 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1742 char *buf)
1743 {
1744 struct tb_switch *sw = tb_to_switch(dev);
1745 ssize_t ret;
1746
1747 if (!mutex_trylock(&sw->tb->lock))
1748 return restart_syscall();
1749
1750 if (sw->key)
1751 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1752 else
1753 ret = sysfs_emit(buf, "\n");
1754
1755 mutex_unlock(&sw->tb->lock);
1756 return ret;
1757 }
1758
key_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1759 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1760 const char *buf, size_t count)
1761 {
1762 struct tb_switch *sw = tb_to_switch(dev);
1763 u8 key[TB_SWITCH_KEY_SIZE];
1764 ssize_t ret = count;
1765 bool clear = false;
1766
1767 if (!strcmp(buf, "\n"))
1768 clear = true;
1769 else if (hex2bin(key, buf, sizeof(key)))
1770 return -EINVAL;
1771
1772 if (!mutex_trylock(&sw->tb->lock))
1773 return restart_syscall();
1774
1775 if (sw->authorized) {
1776 ret = -EBUSY;
1777 } else {
1778 kfree(sw->key);
1779 if (clear) {
1780 sw->key = NULL;
1781 } else {
1782 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1783 if (!sw->key)
1784 ret = -ENOMEM;
1785 }
1786 }
1787
1788 mutex_unlock(&sw->tb->lock);
1789 return ret;
1790 }
1791 static DEVICE_ATTR(key, 0600, key_show, key_store);
1792
speed_show(struct device * dev,struct device_attribute * attr,char * buf)1793 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1794 char *buf)
1795 {
1796 struct tb_switch *sw = tb_to_switch(dev);
1797
1798 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1799 }
1800
1801 /*
1802 * Currently all lanes must run at the same speed but we expose here
1803 * both directions to allow possible asymmetric links in the future.
1804 */
1805 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1806 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1807
rx_lanes_show(struct device * dev,struct device_attribute * attr,char * buf)1808 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1809 char *buf)
1810 {
1811 struct tb_switch *sw = tb_to_switch(dev);
1812 unsigned int width;
1813
1814 switch (sw->link_width) {
1815 case TB_LINK_WIDTH_SINGLE:
1816 case TB_LINK_WIDTH_ASYM_TX:
1817 width = 1;
1818 break;
1819 case TB_LINK_WIDTH_DUAL:
1820 width = 2;
1821 break;
1822 case TB_LINK_WIDTH_ASYM_RX:
1823 width = 3;
1824 break;
1825 default:
1826 WARN_ON_ONCE(1);
1827 return -EINVAL;
1828 }
1829
1830 return sysfs_emit(buf, "%u\n", width);
1831 }
1832 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1833
tx_lanes_show(struct device * dev,struct device_attribute * attr,char * buf)1834 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1835 char *buf)
1836 {
1837 struct tb_switch *sw = tb_to_switch(dev);
1838 unsigned int width;
1839
1840 switch (sw->link_width) {
1841 case TB_LINK_WIDTH_SINGLE:
1842 case TB_LINK_WIDTH_ASYM_RX:
1843 width = 1;
1844 break;
1845 case TB_LINK_WIDTH_DUAL:
1846 width = 2;
1847 break;
1848 case TB_LINK_WIDTH_ASYM_TX:
1849 width = 3;
1850 break;
1851 default:
1852 WARN_ON_ONCE(1);
1853 return -EINVAL;
1854 }
1855
1856 return sysfs_emit(buf, "%u\n", width);
1857 }
1858 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
1859
nvm_authenticate_show(struct device * dev,struct device_attribute * attr,char * buf)1860 static ssize_t nvm_authenticate_show(struct device *dev,
1861 struct device_attribute *attr, char *buf)
1862 {
1863 struct tb_switch *sw = tb_to_switch(dev);
1864 u32 status;
1865
1866 nvm_get_auth_status(sw, &status);
1867 return sysfs_emit(buf, "%#x\n", status);
1868 }
1869
nvm_authenticate_sysfs(struct device * dev,const char * buf,bool disconnect)1870 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1871 bool disconnect)
1872 {
1873 struct tb_switch *sw = tb_to_switch(dev);
1874 int val, ret;
1875
1876 pm_runtime_get_sync(&sw->dev);
1877
1878 if (!mutex_trylock(&sw->tb->lock)) {
1879 ret = restart_syscall();
1880 goto exit_rpm;
1881 }
1882
1883 if (sw->no_nvm_upgrade) {
1884 ret = -EOPNOTSUPP;
1885 goto exit_unlock;
1886 }
1887
1888 /* If NVMem devices are not yet added */
1889 if (!sw->nvm) {
1890 ret = -EAGAIN;
1891 goto exit_unlock;
1892 }
1893
1894 ret = kstrtoint(buf, 10, &val);
1895 if (ret)
1896 goto exit_unlock;
1897
1898 /* Always clear the authentication status */
1899 nvm_clear_auth_status(sw);
1900
1901 if (val > 0) {
1902 if (val == AUTHENTICATE_ONLY) {
1903 if (disconnect)
1904 ret = -EINVAL;
1905 else
1906 ret = nvm_authenticate(sw, true);
1907 } else {
1908 if (!sw->nvm->flushed) {
1909 if (!sw->nvm->buf) {
1910 ret = -EINVAL;
1911 goto exit_unlock;
1912 }
1913
1914 ret = nvm_validate_and_write(sw);
1915 if (ret || val == WRITE_ONLY)
1916 goto exit_unlock;
1917 }
1918 if (val == WRITE_AND_AUTHENTICATE) {
1919 if (disconnect)
1920 ret = tb_lc_force_power(sw);
1921 else
1922 ret = nvm_authenticate(sw, false);
1923 }
1924 }
1925 }
1926
1927 exit_unlock:
1928 mutex_unlock(&sw->tb->lock);
1929 exit_rpm:
1930 pm_runtime_mark_last_busy(&sw->dev);
1931 pm_runtime_put_autosuspend(&sw->dev);
1932
1933 return ret;
1934 }
1935
nvm_authenticate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1936 static ssize_t nvm_authenticate_store(struct device *dev,
1937 struct device_attribute *attr, const char *buf, size_t count)
1938 {
1939 int ret = nvm_authenticate_sysfs(dev, buf, false);
1940 if (ret)
1941 return ret;
1942 return count;
1943 }
1944 static DEVICE_ATTR_RW(nvm_authenticate);
1945
nvm_authenticate_on_disconnect_show(struct device * dev,struct device_attribute * attr,char * buf)1946 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1947 struct device_attribute *attr, char *buf)
1948 {
1949 return nvm_authenticate_show(dev, attr, buf);
1950 }
1951
nvm_authenticate_on_disconnect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1952 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1953 struct device_attribute *attr, const char *buf, size_t count)
1954 {
1955 int ret;
1956
1957 ret = nvm_authenticate_sysfs(dev, buf, true);
1958 return ret ? ret : count;
1959 }
1960 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1961
nvm_version_show(struct device * dev,struct device_attribute * attr,char * buf)1962 static ssize_t nvm_version_show(struct device *dev,
1963 struct device_attribute *attr, char *buf)
1964 {
1965 struct tb_switch *sw = tb_to_switch(dev);
1966 int ret;
1967
1968 if (!mutex_trylock(&sw->tb->lock))
1969 return restart_syscall();
1970
1971 if (sw->safe_mode)
1972 ret = -ENODATA;
1973 else if (!sw->nvm)
1974 ret = -EAGAIN;
1975 else
1976 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1977
1978 mutex_unlock(&sw->tb->lock);
1979
1980 return ret;
1981 }
1982 static DEVICE_ATTR_RO(nvm_version);
1983
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1984 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1985 char *buf)
1986 {
1987 struct tb_switch *sw = tb_to_switch(dev);
1988
1989 return sysfs_emit(buf, "%#x\n", sw->vendor);
1990 }
1991 static DEVICE_ATTR_RO(vendor);
1992
1993 static ssize_t
vendor_name_show(struct device * dev,struct device_attribute * attr,char * buf)1994 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1995 {
1996 struct tb_switch *sw = tb_to_switch(dev);
1997
1998 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
1999 }
2000 static DEVICE_ATTR_RO(vendor_name);
2001
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)2002 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2003 char *buf)
2004 {
2005 struct tb_switch *sw = tb_to_switch(dev);
2006
2007 return sysfs_emit(buf, "%pUb\n", sw->uuid);
2008 }
2009 static DEVICE_ATTR_RO(unique_id);
2010
2011 static struct attribute *switch_attrs[] = {
2012 &dev_attr_authorized.attr,
2013 &dev_attr_boot.attr,
2014 &dev_attr_device.attr,
2015 &dev_attr_device_name.attr,
2016 &dev_attr_generation.attr,
2017 &dev_attr_key.attr,
2018 &dev_attr_nvm_authenticate.attr,
2019 &dev_attr_nvm_authenticate_on_disconnect.attr,
2020 &dev_attr_nvm_version.attr,
2021 &dev_attr_rx_speed.attr,
2022 &dev_attr_rx_lanes.attr,
2023 &dev_attr_tx_speed.attr,
2024 &dev_attr_tx_lanes.attr,
2025 &dev_attr_vendor.attr,
2026 &dev_attr_vendor_name.attr,
2027 &dev_attr_unique_id.attr,
2028 NULL,
2029 };
2030
switch_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)2031 static umode_t switch_attr_is_visible(struct kobject *kobj,
2032 struct attribute *attr, int n)
2033 {
2034 struct device *dev = kobj_to_dev(kobj);
2035 struct tb_switch *sw = tb_to_switch(dev);
2036
2037 if (attr == &dev_attr_authorized.attr) {
2038 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2039 sw->tb->security_level == TB_SECURITY_DPONLY)
2040 return 0;
2041 } else if (attr == &dev_attr_device.attr) {
2042 if (!sw->device)
2043 return 0;
2044 } else if (attr == &dev_attr_device_name.attr) {
2045 if (!sw->device_name)
2046 return 0;
2047 } else if (attr == &dev_attr_vendor.attr) {
2048 if (!sw->vendor)
2049 return 0;
2050 } else if (attr == &dev_attr_vendor_name.attr) {
2051 if (!sw->vendor_name)
2052 return 0;
2053 } else if (attr == &dev_attr_key.attr) {
2054 if (tb_route(sw) &&
2055 sw->tb->security_level == TB_SECURITY_SECURE &&
2056 sw->security_level == TB_SECURITY_SECURE)
2057 return attr->mode;
2058 return 0;
2059 } else if (attr == &dev_attr_rx_speed.attr ||
2060 attr == &dev_attr_rx_lanes.attr ||
2061 attr == &dev_attr_tx_speed.attr ||
2062 attr == &dev_attr_tx_lanes.attr) {
2063 if (tb_route(sw))
2064 return attr->mode;
2065 return 0;
2066 } else if (attr == &dev_attr_nvm_authenticate.attr) {
2067 if (nvm_upgradeable(sw))
2068 return attr->mode;
2069 return 0;
2070 } else if (attr == &dev_attr_nvm_version.attr) {
2071 if (nvm_readable(sw))
2072 return attr->mode;
2073 return 0;
2074 } else if (attr == &dev_attr_boot.attr) {
2075 if (tb_route(sw))
2076 return attr->mode;
2077 return 0;
2078 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2079 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2080 return attr->mode;
2081 return 0;
2082 }
2083
2084 return sw->safe_mode ? 0 : attr->mode;
2085 }
2086
2087 static const struct attribute_group switch_group = {
2088 .is_visible = switch_attr_is_visible,
2089 .attrs = switch_attrs,
2090 };
2091
2092 static const struct attribute_group *switch_groups[] = {
2093 &switch_group,
2094 NULL,
2095 };
2096
tb_switch_release(struct device * dev)2097 static void tb_switch_release(struct device *dev)
2098 {
2099 struct tb_switch *sw = tb_to_switch(dev);
2100 struct tb_port *port;
2101
2102 dma_port_free(sw->dma_port);
2103
2104 tb_switch_for_each_port(sw, port) {
2105 ida_destroy(&port->in_hopids);
2106 ida_destroy(&port->out_hopids);
2107 }
2108
2109 kfree(sw->uuid);
2110 kfree(sw->device_name);
2111 kfree(sw->vendor_name);
2112 kfree(sw->ports);
2113 kfree(sw->drom);
2114 kfree(sw->key);
2115 kfree(sw);
2116 }
2117
tb_switch_uevent(const struct device * dev,struct kobj_uevent_env * env)2118 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2119 {
2120 const struct tb_switch *sw = tb_to_switch(dev);
2121 const char *type;
2122
2123 if (tb_switch_is_usb4(sw)) {
2124 if (add_uevent_var(env, "USB4_VERSION=%u.0",
2125 usb4_switch_version(sw)))
2126 return -ENOMEM;
2127 }
2128
2129 if (!tb_route(sw)) {
2130 type = "host";
2131 } else {
2132 const struct tb_port *port;
2133 bool hub = false;
2134
2135 /* Device is hub if it has any downstream ports */
2136 tb_switch_for_each_port(sw, port) {
2137 if (!port->disabled && !tb_is_upstream_port(port) &&
2138 tb_port_is_null(port)) {
2139 hub = true;
2140 break;
2141 }
2142 }
2143
2144 type = hub ? "hub" : "device";
2145 }
2146
2147 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2148 return -ENOMEM;
2149 return 0;
2150 }
2151
2152 /*
2153 * Currently only need to provide the callbacks. Everything else is handled
2154 * in the connection manager.
2155 */
tb_switch_runtime_suspend(struct device * dev)2156 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2157 {
2158 struct tb_switch *sw = tb_to_switch(dev);
2159 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2160
2161 if (cm_ops->runtime_suspend_switch)
2162 return cm_ops->runtime_suspend_switch(sw);
2163
2164 return 0;
2165 }
2166
tb_switch_runtime_resume(struct device * dev)2167 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2168 {
2169 struct tb_switch *sw = tb_to_switch(dev);
2170 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2171
2172 if (cm_ops->runtime_resume_switch)
2173 return cm_ops->runtime_resume_switch(sw);
2174 return 0;
2175 }
2176
2177 static const struct dev_pm_ops tb_switch_pm_ops = {
2178 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2179 NULL)
2180 };
2181
2182 struct device_type tb_switch_type = {
2183 .name = "thunderbolt_device",
2184 .release = tb_switch_release,
2185 .uevent = tb_switch_uevent,
2186 .pm = &tb_switch_pm_ops,
2187 };
2188
tb_switch_get_generation(struct tb_switch * sw)2189 static int tb_switch_get_generation(struct tb_switch *sw)
2190 {
2191 if (tb_switch_is_usb4(sw))
2192 return 4;
2193
2194 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2195 switch (sw->config.device_id) {
2196 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2197 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2198 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2199 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2200 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2201 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2202 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2203 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2204 return 1;
2205
2206 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2207 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2208 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2209 return 2;
2210
2211 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2212 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2213 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2214 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2215 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2216 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2217 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2218 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2219 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2220 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2221 return 3;
2222 }
2223 }
2224
2225 /*
2226 * For unknown switches assume generation to be 1 to be on the
2227 * safe side.
2228 */
2229 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2230 sw->config.device_id);
2231 return 1;
2232 }
2233
tb_switch_exceeds_max_depth(const struct tb_switch * sw,int depth)2234 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2235 {
2236 int max_depth;
2237
2238 if (tb_switch_is_usb4(sw) ||
2239 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2240 max_depth = USB4_SWITCH_MAX_DEPTH;
2241 else
2242 max_depth = TB_SWITCH_MAX_DEPTH;
2243
2244 return depth > max_depth;
2245 }
2246
2247 /**
2248 * tb_switch_alloc() - allocate a switch
2249 * @tb: Pointer to the owning domain
2250 * @parent: Parent device for this switch
2251 * @route: Route string for this switch
2252 *
2253 * Allocates and initializes a switch. Will not upload configuration to
2254 * the switch. For that you need to call tb_switch_configure()
2255 * separately. The returned switch should be released by calling
2256 * tb_switch_put().
2257 *
2258 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2259 * failure.
2260 */
tb_switch_alloc(struct tb * tb,struct device * parent,u64 route)2261 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2262 u64 route)
2263 {
2264 struct tb_switch *sw;
2265 int upstream_port;
2266 int i, ret, depth;
2267
2268 /* Unlock the downstream port so we can access the switch below */
2269 if (route) {
2270 struct tb_switch *parent_sw = tb_to_switch(parent);
2271 struct tb_port *down;
2272
2273 down = tb_port_at(route, parent_sw);
2274 tb_port_unlock(down);
2275 }
2276
2277 depth = tb_route_length(route);
2278
2279 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2280 if (upstream_port < 0)
2281 return ERR_PTR(upstream_port);
2282
2283 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2284 if (!sw)
2285 return ERR_PTR(-ENOMEM);
2286
2287 sw->tb = tb;
2288 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2289 if (ret)
2290 goto err_free_sw_ports;
2291
2292 sw->generation = tb_switch_get_generation(sw);
2293
2294 tb_dbg(tb, "current switch config:\n");
2295 tb_dump_switch(tb, sw);
2296
2297 /* configure switch */
2298 sw->config.upstream_port_number = upstream_port;
2299 sw->config.depth = depth;
2300 sw->config.route_hi = upper_32_bits(route);
2301 sw->config.route_lo = lower_32_bits(route);
2302 sw->config.enabled = 0;
2303
2304 /* Make sure we do not exceed maximum topology limit */
2305 if (tb_switch_exceeds_max_depth(sw, depth)) {
2306 ret = -EADDRNOTAVAIL;
2307 goto err_free_sw_ports;
2308 }
2309
2310 /* initialize ports */
2311 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2312 GFP_KERNEL);
2313 if (!sw->ports) {
2314 ret = -ENOMEM;
2315 goto err_free_sw_ports;
2316 }
2317
2318 for (i = 0; i <= sw->config.max_port_number; i++) {
2319 /* minimum setup for tb_find_cap and tb_drom_read to work */
2320 sw->ports[i].sw = sw;
2321 sw->ports[i].port = i;
2322
2323 /* Control port does not need HopID allocation */
2324 if (i) {
2325 ida_init(&sw->ports[i].in_hopids);
2326 ida_init(&sw->ports[i].out_hopids);
2327 }
2328 }
2329
2330 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2331 if (ret > 0)
2332 sw->cap_plug_events = ret;
2333
2334 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2335 if (ret > 0)
2336 sw->cap_vsec_tmu = ret;
2337
2338 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2339 if (ret > 0)
2340 sw->cap_lc = ret;
2341
2342 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2343 if (ret > 0)
2344 sw->cap_lp = ret;
2345
2346 /* Root switch is always authorized */
2347 if (!route)
2348 sw->authorized = true;
2349
2350 device_initialize(&sw->dev);
2351 sw->dev.parent = parent;
2352 sw->dev.bus = &tb_bus_type;
2353 sw->dev.type = &tb_switch_type;
2354 sw->dev.groups = switch_groups;
2355 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2356
2357 return sw;
2358
2359 err_free_sw_ports:
2360 kfree(sw->ports);
2361 kfree(sw);
2362
2363 return ERR_PTR(ret);
2364 }
2365
2366 /**
2367 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2368 * @tb: Pointer to the owning domain
2369 * @parent: Parent device for this switch
2370 * @route: Route string for this switch
2371 *
2372 * This creates a switch in safe mode. This means the switch pretty much
2373 * lacks all capabilities except DMA configuration port before it is
2374 * flashed with a valid NVM firmware.
2375 *
2376 * The returned switch must be released by calling tb_switch_put().
2377 *
2378 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2379 */
2380 struct tb_switch *
tb_switch_alloc_safe_mode(struct tb * tb,struct device * parent,u64 route)2381 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2382 {
2383 struct tb_switch *sw;
2384
2385 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2386 if (!sw)
2387 return ERR_PTR(-ENOMEM);
2388
2389 sw->tb = tb;
2390 sw->config.depth = tb_route_length(route);
2391 sw->config.route_hi = upper_32_bits(route);
2392 sw->config.route_lo = lower_32_bits(route);
2393 sw->safe_mode = true;
2394
2395 device_initialize(&sw->dev);
2396 sw->dev.parent = parent;
2397 sw->dev.bus = &tb_bus_type;
2398 sw->dev.type = &tb_switch_type;
2399 sw->dev.groups = switch_groups;
2400 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2401
2402 return sw;
2403 }
2404
2405 /**
2406 * tb_switch_configure() - Uploads configuration to the switch
2407 * @sw: Switch to configure
2408 *
2409 * Call this function before the switch is added to the system. It will
2410 * upload configuration to the switch and makes it available for the
2411 * connection manager to use. Can be called to the switch again after
2412 * resume from low power states to re-initialize it.
2413 *
2414 * Return: %0 in case of success and negative errno in case of failure
2415 */
tb_switch_configure(struct tb_switch * sw)2416 int tb_switch_configure(struct tb_switch *sw)
2417 {
2418 struct tb *tb = sw->tb;
2419 u64 route;
2420 int ret;
2421
2422 route = tb_route(sw);
2423
2424 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2425 sw->config.enabled ? "restoring" : "initializing", route,
2426 tb_route_length(route), sw->config.upstream_port_number);
2427
2428 sw->config.enabled = 1;
2429
2430 if (tb_switch_is_usb4(sw)) {
2431 /*
2432 * For USB4 devices, we need to program the CM version
2433 * accordingly so that it knows to expose all the
2434 * additional capabilities. Program it according to USB4
2435 * version to avoid changing existing (v1) routers behaviour.
2436 */
2437 if (usb4_switch_version(sw) < 2)
2438 sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2439 else
2440 sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2441 sw->config.plug_events_delay = 0xa;
2442
2443 /* Enumerate the switch */
2444 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2445 ROUTER_CS_1, 4);
2446 if (ret)
2447 return ret;
2448
2449 ret = usb4_switch_setup(sw);
2450 } else {
2451 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2452 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2453 sw->config.vendor_id);
2454
2455 if (!sw->cap_plug_events) {
2456 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2457 return -ENODEV;
2458 }
2459
2460 /* Enumerate the switch */
2461 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2462 ROUTER_CS_1, 3);
2463 }
2464 if (ret)
2465 return ret;
2466
2467 return tb_plug_events_active(sw, true);
2468 }
2469
2470 /**
2471 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2472 * @sw: Router to configure
2473 *
2474 * Needs to be called before any tunnels can be setup through the
2475 * router. Can be called to any router.
2476 *
2477 * Returns %0 in success and negative errno otherwise.
2478 */
tb_switch_configuration_valid(struct tb_switch * sw)2479 int tb_switch_configuration_valid(struct tb_switch *sw)
2480 {
2481 if (tb_switch_is_usb4(sw))
2482 return usb4_switch_configuration_valid(sw);
2483 return 0;
2484 }
2485
tb_switch_set_uuid(struct tb_switch * sw)2486 static int tb_switch_set_uuid(struct tb_switch *sw)
2487 {
2488 bool uid = false;
2489 u32 uuid[4];
2490 int ret;
2491
2492 if (sw->uuid)
2493 return 0;
2494
2495 if (tb_switch_is_usb4(sw)) {
2496 ret = usb4_switch_read_uid(sw, &sw->uid);
2497 if (ret)
2498 return ret;
2499 uid = true;
2500 } else {
2501 /*
2502 * The newer controllers include fused UUID as part of
2503 * link controller specific registers
2504 */
2505 ret = tb_lc_read_uuid(sw, uuid);
2506 if (ret) {
2507 if (ret != -EINVAL)
2508 return ret;
2509 uid = true;
2510 }
2511 }
2512
2513 if (uid) {
2514 /*
2515 * ICM generates UUID based on UID and fills the upper
2516 * two words with ones. This is not strictly following
2517 * UUID format but we want to be compatible with it so
2518 * we do the same here.
2519 */
2520 uuid[0] = sw->uid & 0xffffffff;
2521 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2522 uuid[2] = 0xffffffff;
2523 uuid[3] = 0xffffffff;
2524 }
2525
2526 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2527 if (!sw->uuid)
2528 return -ENOMEM;
2529 return 0;
2530 }
2531
tb_switch_add_dma_port(struct tb_switch * sw)2532 static int tb_switch_add_dma_port(struct tb_switch *sw)
2533 {
2534 u32 status;
2535 int ret;
2536
2537 switch (sw->generation) {
2538 case 2:
2539 /* Only root switch can be upgraded */
2540 if (tb_route(sw))
2541 return 0;
2542
2543 fallthrough;
2544 case 3:
2545 case 4:
2546 ret = tb_switch_set_uuid(sw);
2547 if (ret)
2548 return ret;
2549 break;
2550
2551 default:
2552 /*
2553 * DMA port is the only thing available when the switch
2554 * is in safe mode.
2555 */
2556 if (!sw->safe_mode)
2557 return 0;
2558 break;
2559 }
2560
2561 if (sw->no_nvm_upgrade)
2562 return 0;
2563
2564 if (tb_switch_is_usb4(sw)) {
2565 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2566 if (ret)
2567 return ret;
2568
2569 if (status) {
2570 tb_sw_info(sw, "switch flash authentication failed\n");
2571 nvm_set_auth_status(sw, status);
2572 }
2573
2574 return 0;
2575 }
2576
2577 /* Root switch DMA port requires running firmware */
2578 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2579 return 0;
2580
2581 sw->dma_port = dma_port_alloc(sw);
2582 if (!sw->dma_port)
2583 return 0;
2584
2585 /*
2586 * If there is status already set then authentication failed
2587 * when the dma_port_flash_update_auth() returned. Power cycling
2588 * is not needed (it was done already) so only thing we do here
2589 * is to unblock runtime PM of the root port.
2590 */
2591 nvm_get_auth_status(sw, &status);
2592 if (status) {
2593 if (!tb_route(sw))
2594 nvm_authenticate_complete_dma_port(sw);
2595 return 0;
2596 }
2597
2598 /*
2599 * Check status of the previous flash authentication. If there
2600 * is one we need to power cycle the switch in any case to make
2601 * it functional again.
2602 */
2603 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2604 if (ret <= 0)
2605 return ret;
2606
2607 /* Now we can allow root port to suspend again */
2608 if (!tb_route(sw))
2609 nvm_authenticate_complete_dma_port(sw);
2610
2611 if (status) {
2612 tb_sw_info(sw, "switch flash authentication failed\n");
2613 nvm_set_auth_status(sw, status);
2614 }
2615
2616 tb_sw_info(sw, "power cycling the switch now\n");
2617 dma_port_power_cycle(sw->dma_port);
2618
2619 /*
2620 * We return error here which causes the switch adding failure.
2621 * It should appear back after power cycle is complete.
2622 */
2623 return -ESHUTDOWN;
2624 }
2625
tb_switch_default_link_ports(struct tb_switch * sw)2626 static void tb_switch_default_link_ports(struct tb_switch *sw)
2627 {
2628 int i;
2629
2630 for (i = 1; i <= sw->config.max_port_number; i++) {
2631 struct tb_port *port = &sw->ports[i];
2632 struct tb_port *subordinate;
2633
2634 if (!tb_port_is_null(port))
2635 continue;
2636
2637 /* Check for the subordinate port */
2638 if (i == sw->config.max_port_number ||
2639 !tb_port_is_null(&sw->ports[i + 1]))
2640 continue;
2641
2642 /* Link them if not already done so (by DROM) */
2643 subordinate = &sw->ports[i + 1];
2644 if (!port->dual_link_port && !subordinate->dual_link_port) {
2645 port->link_nr = 0;
2646 port->dual_link_port = subordinate;
2647 subordinate->link_nr = 1;
2648 subordinate->dual_link_port = port;
2649
2650 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2651 port->port, subordinate->port);
2652 }
2653 }
2654 }
2655
tb_switch_lane_bonding_possible(struct tb_switch * sw)2656 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2657 {
2658 const struct tb_port *up = tb_upstream_port(sw);
2659
2660 if (!up->dual_link_port || !up->dual_link_port->remote)
2661 return false;
2662
2663 if (tb_switch_is_usb4(sw))
2664 return usb4_switch_lane_bonding_possible(sw);
2665 return tb_lc_lane_bonding_possible(sw);
2666 }
2667
tb_switch_update_link_attributes(struct tb_switch * sw)2668 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2669 {
2670 struct tb_port *up;
2671 bool change = false;
2672 int ret;
2673
2674 if (!tb_route(sw) || tb_switch_is_icm(sw))
2675 return 0;
2676
2677 up = tb_upstream_port(sw);
2678
2679 ret = tb_port_get_link_speed(up);
2680 if (ret < 0)
2681 return ret;
2682 if (sw->link_speed != ret)
2683 change = true;
2684 sw->link_speed = ret;
2685
2686 ret = tb_port_get_link_width(up);
2687 if (ret < 0)
2688 return ret;
2689 if (sw->link_width != ret)
2690 change = true;
2691 sw->link_width = ret;
2692
2693 /* Notify userspace that there is possible link attribute change */
2694 if (device_is_registered(&sw->dev) && change)
2695 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2696
2697 return 0;
2698 }
2699
2700 /**
2701 * tb_switch_lane_bonding_enable() - Enable lane bonding
2702 * @sw: Switch to enable lane bonding
2703 *
2704 * Connection manager can call this function to enable lane bonding of a
2705 * switch. If conditions are correct and both switches support the feature,
2706 * lanes are bonded. It is safe to call this to any switch.
2707 */
tb_switch_lane_bonding_enable(struct tb_switch * sw)2708 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2709 {
2710 struct tb_port *up, *down;
2711 u64 route = tb_route(sw);
2712 unsigned int width_mask;
2713 int ret;
2714
2715 if (!route)
2716 return 0;
2717
2718 if (!tb_switch_lane_bonding_possible(sw))
2719 return 0;
2720
2721 up = tb_upstream_port(sw);
2722 down = tb_switch_downstream_port(sw);
2723
2724 if (!tb_port_is_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2725 !tb_port_is_width_supported(down, TB_LINK_WIDTH_DUAL))
2726 return 0;
2727
2728 /*
2729 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2730 * CL0 and check just for lane 1.
2731 */
2732 if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2733 return -ENOTCONN;
2734
2735 ret = tb_port_lane_bonding_enable(up);
2736 if (ret) {
2737 tb_port_warn(up, "failed to enable lane bonding\n");
2738 return ret;
2739 }
2740
2741 ret = tb_port_lane_bonding_enable(down);
2742 if (ret) {
2743 tb_port_warn(down, "failed to enable lane bonding\n");
2744 tb_port_lane_bonding_disable(up);
2745 return ret;
2746 }
2747
2748 /* Any of the widths are all bonded */
2749 width_mask = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2750 TB_LINK_WIDTH_ASYM_RX;
2751
2752 ret = tb_port_wait_for_link_width(down, width_mask, 100);
2753 if (ret) {
2754 tb_port_warn(down, "timeout enabling lane bonding\n");
2755 return ret;
2756 }
2757
2758 tb_port_update_credits(down);
2759 tb_port_update_credits(up);
2760 tb_switch_update_link_attributes(sw);
2761
2762 tb_sw_dbg(sw, "lane bonding enabled\n");
2763 return ret;
2764 }
2765
2766 /**
2767 * tb_switch_lane_bonding_disable() - Disable lane bonding
2768 * @sw: Switch whose lane bonding to disable
2769 *
2770 * Disables lane bonding between @sw and parent. This can be called even
2771 * if lanes were not bonded originally.
2772 */
tb_switch_lane_bonding_disable(struct tb_switch * sw)2773 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2774 {
2775 struct tb_port *up, *down;
2776 int ret;
2777
2778 if (!tb_route(sw))
2779 return;
2780
2781 up = tb_upstream_port(sw);
2782 if (!up->bonded)
2783 return;
2784
2785 down = tb_switch_downstream_port(sw);
2786
2787 tb_port_lane_bonding_disable(up);
2788 tb_port_lane_bonding_disable(down);
2789
2790 /*
2791 * It is fine if we get other errors as the router might have
2792 * been unplugged.
2793 */
2794 ret = tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2795 if (ret == -ETIMEDOUT)
2796 tb_sw_warn(sw, "timeout disabling lane bonding\n");
2797
2798 tb_port_update_credits(down);
2799 tb_port_update_credits(up);
2800 tb_switch_update_link_attributes(sw);
2801
2802 tb_sw_dbg(sw, "lane bonding disabled\n");
2803 }
2804
2805 /**
2806 * tb_switch_configure_link() - Set link configured
2807 * @sw: Switch whose link is configured
2808 *
2809 * Sets the link upstream from @sw configured (from both ends) so that
2810 * it will not be disconnected when the domain exits sleep. Can be
2811 * called for any switch.
2812 *
2813 * It is recommended that this is called after lane bonding is enabled.
2814 *
2815 * Returns %0 on success and negative errno in case of error.
2816 */
tb_switch_configure_link(struct tb_switch * sw)2817 int tb_switch_configure_link(struct tb_switch *sw)
2818 {
2819 struct tb_port *up, *down;
2820 int ret;
2821
2822 if (!tb_route(sw) || tb_switch_is_icm(sw))
2823 return 0;
2824
2825 up = tb_upstream_port(sw);
2826 if (tb_switch_is_usb4(up->sw))
2827 ret = usb4_port_configure(up);
2828 else
2829 ret = tb_lc_configure_port(up);
2830 if (ret)
2831 return ret;
2832
2833 down = up->remote;
2834 if (tb_switch_is_usb4(down->sw))
2835 return usb4_port_configure(down);
2836 return tb_lc_configure_port(down);
2837 }
2838
2839 /**
2840 * tb_switch_unconfigure_link() - Unconfigure link
2841 * @sw: Switch whose link is unconfigured
2842 *
2843 * Sets the link unconfigured so the @sw will be disconnected if the
2844 * domain exists sleep.
2845 */
tb_switch_unconfigure_link(struct tb_switch * sw)2846 void tb_switch_unconfigure_link(struct tb_switch *sw)
2847 {
2848 struct tb_port *up, *down;
2849
2850 if (sw->is_unplugged)
2851 return;
2852 if (!tb_route(sw) || tb_switch_is_icm(sw))
2853 return;
2854
2855 up = tb_upstream_port(sw);
2856 if (tb_switch_is_usb4(up->sw))
2857 usb4_port_unconfigure(up);
2858 else
2859 tb_lc_unconfigure_port(up);
2860
2861 down = up->remote;
2862 if (tb_switch_is_usb4(down->sw))
2863 usb4_port_unconfigure(down);
2864 else
2865 tb_lc_unconfigure_port(down);
2866 }
2867
tb_switch_credits_init(struct tb_switch * sw)2868 static void tb_switch_credits_init(struct tb_switch *sw)
2869 {
2870 if (tb_switch_is_icm(sw))
2871 return;
2872 if (!tb_switch_is_usb4(sw))
2873 return;
2874 if (usb4_switch_credits_init(sw))
2875 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2876 }
2877
tb_switch_port_hotplug_enable(struct tb_switch * sw)2878 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
2879 {
2880 struct tb_port *port;
2881
2882 if (tb_switch_is_icm(sw))
2883 return 0;
2884
2885 tb_switch_for_each_port(sw, port) {
2886 int res;
2887
2888 if (!port->cap_usb4)
2889 continue;
2890
2891 res = usb4_port_hotplug_enable(port);
2892 if (res)
2893 return res;
2894 }
2895 return 0;
2896 }
2897
2898 /**
2899 * tb_switch_add() - Add a switch to the domain
2900 * @sw: Switch to add
2901 *
2902 * This is the last step in adding switch to the domain. It will read
2903 * identification information from DROM and initializes ports so that
2904 * they can be used to connect other switches. The switch will be
2905 * exposed to the userspace when this function successfully returns. To
2906 * remove and release the switch, call tb_switch_remove().
2907 *
2908 * Return: %0 in case of success and negative errno in case of failure
2909 */
tb_switch_add(struct tb_switch * sw)2910 int tb_switch_add(struct tb_switch *sw)
2911 {
2912 int i, ret;
2913
2914 /*
2915 * Initialize DMA control port now before we read DROM. Recent
2916 * host controllers have more complete DROM on NVM that includes
2917 * vendor and model identification strings which we then expose
2918 * to the userspace. NVM can be accessed through DMA
2919 * configuration based mailbox.
2920 */
2921 ret = tb_switch_add_dma_port(sw);
2922 if (ret) {
2923 dev_err(&sw->dev, "failed to add DMA port\n");
2924 return ret;
2925 }
2926
2927 if (!sw->safe_mode) {
2928 tb_switch_credits_init(sw);
2929
2930 /* read drom */
2931 ret = tb_drom_read(sw);
2932 if (ret)
2933 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
2934 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2935
2936 ret = tb_switch_set_uuid(sw);
2937 if (ret) {
2938 dev_err(&sw->dev, "failed to set UUID\n");
2939 return ret;
2940 }
2941
2942 for (i = 0; i <= sw->config.max_port_number; i++) {
2943 if (sw->ports[i].disabled) {
2944 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2945 continue;
2946 }
2947 ret = tb_init_port(&sw->ports[i]);
2948 if (ret) {
2949 dev_err(&sw->dev, "failed to initialize port %d\n", i);
2950 return ret;
2951 }
2952 }
2953
2954 tb_check_quirks(sw);
2955
2956 tb_switch_default_link_ports(sw);
2957
2958 ret = tb_switch_update_link_attributes(sw);
2959 if (ret)
2960 return ret;
2961
2962 ret = tb_switch_clx_init(sw);
2963 if (ret)
2964 return ret;
2965
2966 ret = tb_switch_tmu_init(sw);
2967 if (ret)
2968 return ret;
2969 }
2970
2971 ret = tb_switch_port_hotplug_enable(sw);
2972 if (ret)
2973 return ret;
2974
2975 ret = device_add(&sw->dev);
2976 if (ret) {
2977 dev_err(&sw->dev, "failed to add device: %d\n", ret);
2978 return ret;
2979 }
2980
2981 if (tb_route(sw)) {
2982 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2983 sw->vendor, sw->device);
2984 if (sw->vendor_name && sw->device_name)
2985 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2986 sw->device_name);
2987 }
2988
2989 ret = usb4_switch_add_ports(sw);
2990 if (ret) {
2991 dev_err(&sw->dev, "failed to add USB4 ports\n");
2992 goto err_del;
2993 }
2994
2995 ret = tb_switch_nvm_add(sw);
2996 if (ret) {
2997 dev_err(&sw->dev, "failed to add NVM devices\n");
2998 goto err_ports;
2999 }
3000
3001 /*
3002 * Thunderbolt routers do not generate wakeups themselves but
3003 * they forward wakeups from tunneled protocols, so enable it
3004 * here.
3005 */
3006 device_init_wakeup(&sw->dev, true);
3007
3008 pm_runtime_set_active(&sw->dev);
3009 if (sw->rpm) {
3010 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3011 pm_runtime_use_autosuspend(&sw->dev);
3012 pm_runtime_mark_last_busy(&sw->dev);
3013 pm_runtime_enable(&sw->dev);
3014 pm_request_autosuspend(&sw->dev);
3015 }
3016
3017 tb_switch_debugfs_init(sw);
3018 return 0;
3019
3020 err_ports:
3021 usb4_switch_remove_ports(sw);
3022 err_del:
3023 device_del(&sw->dev);
3024
3025 return ret;
3026 }
3027
3028 /**
3029 * tb_switch_remove() - Remove and release a switch
3030 * @sw: Switch to remove
3031 *
3032 * This will remove the switch from the domain and release it after last
3033 * reference count drops to zero. If there are switches connected below
3034 * this switch, they will be removed as well.
3035 */
tb_switch_remove(struct tb_switch * sw)3036 void tb_switch_remove(struct tb_switch *sw)
3037 {
3038 struct tb_port *port;
3039
3040 tb_switch_debugfs_remove(sw);
3041
3042 if (sw->rpm) {
3043 pm_runtime_get_sync(&sw->dev);
3044 pm_runtime_disable(&sw->dev);
3045 }
3046
3047 /* port 0 is the switch itself and never has a remote */
3048 tb_switch_for_each_port(sw, port) {
3049 if (tb_port_has_remote(port)) {
3050 tb_switch_remove(port->remote->sw);
3051 port->remote = NULL;
3052 } else if (port->xdomain) {
3053 tb_xdomain_remove(port->xdomain);
3054 port->xdomain = NULL;
3055 }
3056
3057 /* Remove any downstream retimers */
3058 tb_retimer_remove_all(port);
3059 }
3060
3061 if (!sw->is_unplugged)
3062 tb_plug_events_active(sw, false);
3063
3064 tb_switch_nvm_remove(sw);
3065 usb4_switch_remove_ports(sw);
3066
3067 if (tb_route(sw))
3068 dev_info(&sw->dev, "device disconnected\n");
3069 device_unregister(&sw->dev);
3070 }
3071
3072 /**
3073 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3074 * @sw: Router to mark unplugged
3075 */
tb_sw_set_unplugged(struct tb_switch * sw)3076 void tb_sw_set_unplugged(struct tb_switch *sw)
3077 {
3078 struct tb_port *port;
3079
3080 if (sw == sw->tb->root_switch) {
3081 tb_sw_WARN(sw, "cannot unplug root switch\n");
3082 return;
3083 }
3084 if (sw->is_unplugged) {
3085 tb_sw_WARN(sw, "is_unplugged already set\n");
3086 return;
3087 }
3088 sw->is_unplugged = true;
3089 tb_switch_for_each_port(sw, port) {
3090 if (tb_port_has_remote(port))
3091 tb_sw_set_unplugged(port->remote->sw);
3092 else if (port->xdomain)
3093 port->xdomain->is_unplugged = true;
3094 }
3095 }
3096
tb_switch_set_wake(struct tb_switch * sw,unsigned int flags)3097 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3098 {
3099 if (flags)
3100 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3101 else
3102 tb_sw_dbg(sw, "disabling wakeup\n");
3103
3104 if (tb_switch_is_usb4(sw))
3105 return usb4_switch_set_wake(sw, flags);
3106 return tb_lc_set_wake(sw, flags);
3107 }
3108
tb_switch_resume(struct tb_switch * sw)3109 int tb_switch_resume(struct tb_switch *sw)
3110 {
3111 struct tb_port *port;
3112 int err;
3113
3114 tb_sw_dbg(sw, "resuming switch\n");
3115
3116 /*
3117 * Check for UID of the connected switches except for root
3118 * switch which we assume cannot be removed.
3119 */
3120 if (tb_route(sw)) {
3121 u64 uid;
3122
3123 /*
3124 * Check first that we can still read the switch config
3125 * space. It may be that there is now another domain
3126 * connected.
3127 */
3128 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3129 if (err < 0) {
3130 tb_sw_info(sw, "switch not present anymore\n");
3131 return err;
3132 }
3133
3134 /* We don't have any way to confirm this was the same device */
3135 if (!sw->uid)
3136 return -ENODEV;
3137
3138 if (tb_switch_is_usb4(sw))
3139 err = usb4_switch_read_uid(sw, &uid);
3140 else
3141 err = tb_drom_read_uid_only(sw, &uid);
3142 if (err) {
3143 tb_sw_warn(sw, "uid read failed\n");
3144 return err;
3145 }
3146 if (sw->uid != uid) {
3147 tb_sw_info(sw,
3148 "changed while suspended (uid %#llx -> %#llx)\n",
3149 sw->uid, uid);
3150 return -ENODEV;
3151 }
3152 }
3153
3154 err = tb_switch_configure(sw);
3155 if (err)
3156 return err;
3157
3158 /* Disable wakes */
3159 tb_switch_set_wake(sw, 0);
3160
3161 err = tb_switch_tmu_init(sw);
3162 if (err)
3163 return err;
3164
3165 /* check for surviving downstream switches */
3166 tb_switch_for_each_port(sw, port) {
3167 if (!tb_port_is_null(port))
3168 continue;
3169
3170 if (!tb_port_resume(port))
3171 continue;
3172
3173 if (tb_wait_for_port(port, true) <= 0) {
3174 tb_port_warn(port,
3175 "lost during suspend, disconnecting\n");
3176 if (tb_port_has_remote(port))
3177 tb_sw_set_unplugged(port->remote->sw);
3178 else if (port->xdomain)
3179 port->xdomain->is_unplugged = true;
3180 } else {
3181 /*
3182 * Always unlock the port so the downstream
3183 * switch/domain is accessible.
3184 */
3185 if (tb_port_unlock(port))
3186 tb_port_warn(port, "failed to unlock port\n");
3187 if (port->remote && tb_switch_resume(port->remote->sw)) {
3188 tb_port_warn(port,
3189 "lost during suspend, disconnecting\n");
3190 tb_sw_set_unplugged(port->remote->sw);
3191 }
3192 }
3193 }
3194 return 0;
3195 }
3196
3197 /**
3198 * tb_switch_suspend() - Put a switch to sleep
3199 * @sw: Switch to suspend
3200 * @runtime: Is this runtime suspend or system sleep
3201 *
3202 * Suspends router and all its children. Enables wakes according to
3203 * value of @runtime and then sets sleep bit for the router. If @sw is
3204 * host router the domain is ready to go to sleep once this function
3205 * returns.
3206 */
tb_switch_suspend(struct tb_switch * sw,bool runtime)3207 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3208 {
3209 unsigned int flags = 0;
3210 struct tb_port *port;
3211 int err;
3212
3213 tb_sw_dbg(sw, "suspending switch\n");
3214
3215 /*
3216 * Actually only needed for Titan Ridge but for simplicity can be
3217 * done for USB4 device too as CLx is re-enabled at resume.
3218 */
3219 tb_switch_clx_disable(sw);
3220
3221 err = tb_plug_events_active(sw, false);
3222 if (err)
3223 return;
3224
3225 tb_switch_for_each_port(sw, port) {
3226 if (tb_port_has_remote(port))
3227 tb_switch_suspend(port->remote->sw, runtime);
3228 }
3229
3230 if (runtime) {
3231 /* Trigger wake when something is plugged in/out */
3232 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3233 flags |= TB_WAKE_ON_USB4;
3234 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3235 } else if (device_may_wakeup(&sw->dev)) {
3236 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3237 }
3238
3239 tb_switch_set_wake(sw, flags);
3240
3241 if (tb_switch_is_usb4(sw))
3242 usb4_switch_set_sleep(sw);
3243 else
3244 tb_lc_set_sleep(sw);
3245 }
3246
3247 /**
3248 * tb_switch_query_dp_resource() - Query availability of DP resource
3249 * @sw: Switch whose DP resource is queried
3250 * @in: DP IN port
3251 *
3252 * Queries availability of DP resource for DP tunneling using switch
3253 * specific means. Returns %true if resource is available.
3254 */
tb_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)3255 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3256 {
3257 if (tb_switch_is_usb4(sw))
3258 return usb4_switch_query_dp_resource(sw, in);
3259 return tb_lc_dp_sink_query(sw, in);
3260 }
3261
3262 /**
3263 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3264 * @sw: Switch whose DP resource is allocated
3265 * @in: DP IN port
3266 *
3267 * Allocates DP resource for DP tunneling. The resource must be
3268 * available for this to succeed (see tb_switch_query_dp_resource()).
3269 * Returns %0 in success and negative errno otherwise.
3270 */
tb_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)3271 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3272 {
3273 int ret;
3274
3275 if (tb_switch_is_usb4(sw))
3276 ret = usb4_switch_alloc_dp_resource(sw, in);
3277 else
3278 ret = tb_lc_dp_sink_alloc(sw, in);
3279
3280 if (ret)
3281 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3282 in->port);
3283 else
3284 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3285
3286 return ret;
3287 }
3288
3289 /**
3290 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3291 * @sw: Switch whose DP resource is de-allocated
3292 * @in: DP IN port
3293 *
3294 * De-allocates DP resource that was previously allocated for DP
3295 * tunneling.
3296 */
tb_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)3297 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3298 {
3299 int ret;
3300
3301 if (tb_switch_is_usb4(sw))
3302 ret = usb4_switch_dealloc_dp_resource(sw, in);
3303 else
3304 ret = tb_lc_dp_sink_dealloc(sw, in);
3305
3306 if (ret)
3307 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3308 in->port);
3309 else
3310 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3311 }
3312
3313 struct tb_sw_lookup {
3314 struct tb *tb;
3315 u8 link;
3316 u8 depth;
3317 const uuid_t *uuid;
3318 u64 route;
3319 };
3320
tb_switch_match(struct device * dev,const void * data)3321 static int tb_switch_match(struct device *dev, const void *data)
3322 {
3323 struct tb_switch *sw = tb_to_switch(dev);
3324 const struct tb_sw_lookup *lookup = data;
3325
3326 if (!sw)
3327 return 0;
3328 if (sw->tb != lookup->tb)
3329 return 0;
3330
3331 if (lookup->uuid)
3332 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3333
3334 if (lookup->route) {
3335 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3336 sw->config.route_hi == upper_32_bits(lookup->route);
3337 }
3338
3339 /* Root switch is matched only by depth */
3340 if (!lookup->depth)
3341 return !sw->depth;
3342
3343 return sw->link == lookup->link && sw->depth == lookup->depth;
3344 }
3345
3346 /**
3347 * tb_switch_find_by_link_depth() - Find switch by link and depth
3348 * @tb: Domain the switch belongs
3349 * @link: Link number the switch is connected
3350 * @depth: Depth of the switch in link
3351 *
3352 * Returned switch has reference count increased so the caller needs to
3353 * call tb_switch_put() when done with the switch.
3354 */
tb_switch_find_by_link_depth(struct tb * tb,u8 link,u8 depth)3355 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3356 {
3357 struct tb_sw_lookup lookup;
3358 struct device *dev;
3359
3360 memset(&lookup, 0, sizeof(lookup));
3361 lookup.tb = tb;
3362 lookup.link = link;
3363 lookup.depth = depth;
3364
3365 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3366 if (dev)
3367 return tb_to_switch(dev);
3368
3369 return NULL;
3370 }
3371
3372 /**
3373 * tb_switch_find_by_uuid() - Find switch by UUID
3374 * @tb: Domain the switch belongs
3375 * @uuid: UUID to look for
3376 *
3377 * Returned switch has reference count increased so the caller needs to
3378 * call tb_switch_put() when done with the switch.
3379 */
tb_switch_find_by_uuid(struct tb * tb,const uuid_t * uuid)3380 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3381 {
3382 struct tb_sw_lookup lookup;
3383 struct device *dev;
3384
3385 memset(&lookup, 0, sizeof(lookup));
3386 lookup.tb = tb;
3387 lookup.uuid = uuid;
3388
3389 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3390 if (dev)
3391 return tb_to_switch(dev);
3392
3393 return NULL;
3394 }
3395
3396 /**
3397 * tb_switch_find_by_route() - Find switch by route string
3398 * @tb: Domain the switch belongs
3399 * @route: Route string to look for
3400 *
3401 * Returned switch has reference count increased so the caller needs to
3402 * call tb_switch_put() when done with the switch.
3403 */
tb_switch_find_by_route(struct tb * tb,u64 route)3404 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3405 {
3406 struct tb_sw_lookup lookup;
3407 struct device *dev;
3408
3409 if (!route)
3410 return tb_switch_get(tb->root_switch);
3411
3412 memset(&lookup, 0, sizeof(lookup));
3413 lookup.tb = tb;
3414 lookup.route = route;
3415
3416 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3417 if (dev)
3418 return tb_to_switch(dev);
3419
3420 return NULL;
3421 }
3422
3423 /**
3424 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3425 * @sw: Switch to find the port from
3426 * @type: Port type to look for
3427 */
tb_switch_find_port(struct tb_switch * sw,enum tb_port_type type)3428 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3429 enum tb_port_type type)
3430 {
3431 struct tb_port *port;
3432
3433 tb_switch_for_each_port(sw, port) {
3434 if (port->config.type == type)
3435 return port;
3436 }
3437
3438 return NULL;
3439 }
3440
3441 /*
3442 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3443 * device. For now used only for Titan Ridge.
3444 */
tb_switch_pcie_bridge_write(struct tb_switch * sw,unsigned int bridge,unsigned int pcie_offset,u32 value)3445 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3446 unsigned int pcie_offset, u32 value)
3447 {
3448 u32 offset, command, val;
3449 int ret;
3450
3451 if (sw->generation != 3)
3452 return -EOPNOTSUPP;
3453
3454 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3455 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3456 if (ret)
3457 return ret;
3458
3459 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3460 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3461 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3462 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3463 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3464 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3465
3466 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3467
3468 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3469 if (ret)
3470 return ret;
3471
3472 ret = tb_switch_wait_for_bit(sw, offset,
3473 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3474 if (ret)
3475 return ret;
3476
3477 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3478 if (ret)
3479 return ret;
3480
3481 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3482 return -ETIMEDOUT;
3483
3484 return 0;
3485 }
3486
3487 /**
3488 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3489 * @sw: Router to enable PCIe L1
3490 *
3491 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3492 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3493 * was configured. Due to Intel platforms limitation, shall be called only
3494 * for first hop switch.
3495 */
tb_switch_pcie_l1_enable(struct tb_switch * sw)3496 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3497 {
3498 struct tb_switch *parent = tb_switch_parent(sw);
3499 int ret;
3500
3501 if (!tb_route(sw))
3502 return 0;
3503
3504 if (!tb_switch_is_titan_ridge(sw))
3505 return 0;
3506
3507 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3508 if (tb_route(parent))
3509 return 0;
3510
3511 /* Write to downstream PCIe bridge #5 aka Dn4 */
3512 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3513 if (ret)
3514 return ret;
3515
3516 /* Write to Upstream PCIe bridge #0 aka Up0 */
3517 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3518 }
3519
3520 /**
3521 * tb_switch_xhci_connect() - Connect internal xHCI
3522 * @sw: Router whose xHCI to connect
3523 *
3524 * Can be called to any router. For Alpine Ridge and Titan Ridge
3525 * performs special flows that bring the xHCI functional for any device
3526 * connected to the type-C port. Call only after PCIe tunnel has been
3527 * established. The function only does the connect if not done already
3528 * so can be called several times for the same router.
3529 */
tb_switch_xhci_connect(struct tb_switch * sw)3530 int tb_switch_xhci_connect(struct tb_switch *sw)
3531 {
3532 struct tb_port *port1, *port3;
3533 int ret;
3534
3535 if (sw->generation != 3)
3536 return 0;
3537
3538 port1 = &sw->ports[1];
3539 port3 = &sw->ports[3];
3540
3541 if (tb_switch_is_alpine_ridge(sw)) {
3542 bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3543
3544 usb_port1 = tb_lc_is_usb_plugged(port1);
3545 usb_port3 = tb_lc_is_usb_plugged(port3);
3546 xhci_port1 = tb_lc_is_xhci_connected(port1);
3547 xhci_port3 = tb_lc_is_xhci_connected(port3);
3548
3549 /* Figure out correct USB port to connect */
3550 if (usb_port1 && !xhci_port1) {
3551 ret = tb_lc_xhci_connect(port1);
3552 if (ret)
3553 return ret;
3554 }
3555 if (usb_port3 && !xhci_port3)
3556 return tb_lc_xhci_connect(port3);
3557 } else if (tb_switch_is_titan_ridge(sw)) {
3558 ret = tb_lc_xhci_connect(port1);
3559 if (ret)
3560 return ret;
3561 return tb_lc_xhci_connect(port3);
3562 }
3563
3564 return 0;
3565 }
3566
3567 /**
3568 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3569 * @sw: Router whose xHCI to disconnect
3570 *
3571 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3572 * ports.
3573 */
tb_switch_xhci_disconnect(struct tb_switch * sw)3574 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3575 {
3576 if (sw->generation == 3) {
3577 struct tb_port *port1 = &sw->ports[1];
3578 struct tb_port *port3 = &sw->ports[3];
3579
3580 tb_lc_xhci_disconnect(port1);
3581 tb_port_dbg(port1, "disconnected xHCI\n");
3582 tb_lc_xhci_disconnect(port3);
3583 tb_port_dbg(port3, "disconnected xHCI\n");
3584 }
3585 }
3586