1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17
18 #include "tb.h"
19
20 /* Switch NVM support */
21
22 #define NVM_DEVID 0x05
23 #define NVM_VERSION 0x08
24 #define NVM_CSS 0x10
25 #define NVM_FLASH_SIZE 0x45
26
27 #define NVM_MIN_SIZE SZ_32K
28 #define NVM_MAX_SIZE SZ_512K
29
30 static DEFINE_IDA(nvm_ida);
31
32 struct nvm_auth_status {
33 struct list_head list;
34 uuid_t uuid;
35 u32 status;
36 };
37
38 /*
39 * Hold NVM authentication failure status per switch This information
40 * needs to stay around even when the switch gets power cycled so we
41 * keep it separately.
42 */
43 static LIST_HEAD(nvm_auth_status_cache);
44 static DEFINE_MUTEX(nvm_auth_status_lock);
45
__nvm_get_auth_status(const struct tb_switch * sw)46 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
47 {
48 struct nvm_auth_status *st;
49
50 list_for_each_entry(st, &nvm_auth_status_cache, list) {
51 if (uuid_equal(&st->uuid, sw->uuid))
52 return st;
53 }
54
55 return NULL;
56 }
57
nvm_get_auth_status(const struct tb_switch * sw,u32 * status)58 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
59 {
60 struct nvm_auth_status *st;
61
62 mutex_lock(&nvm_auth_status_lock);
63 st = __nvm_get_auth_status(sw);
64 mutex_unlock(&nvm_auth_status_lock);
65
66 *status = st ? st->status : 0;
67 }
68
nvm_set_auth_status(const struct tb_switch * sw,u32 status)69 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
70 {
71 struct nvm_auth_status *st;
72
73 if (WARN_ON(!sw->uuid))
74 return;
75
76 mutex_lock(&nvm_auth_status_lock);
77 st = __nvm_get_auth_status(sw);
78
79 if (!st) {
80 st = kzalloc(sizeof(*st), GFP_KERNEL);
81 if (!st)
82 goto unlock;
83
84 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
85 INIT_LIST_HEAD(&st->list);
86 list_add_tail(&st->list, &nvm_auth_status_cache);
87 }
88
89 st->status = status;
90 unlock:
91 mutex_unlock(&nvm_auth_status_lock);
92 }
93
nvm_clear_auth_status(const struct tb_switch * sw)94 static void nvm_clear_auth_status(const struct tb_switch *sw)
95 {
96 struct nvm_auth_status *st;
97
98 mutex_lock(&nvm_auth_status_lock);
99 st = __nvm_get_auth_status(sw);
100 if (st) {
101 list_del(&st->list);
102 kfree(st);
103 }
104 mutex_unlock(&nvm_auth_status_lock);
105 }
106
nvm_validate_and_write(struct tb_switch * sw)107 static int nvm_validate_and_write(struct tb_switch *sw)
108 {
109 unsigned int image_size, hdr_size;
110 const u8 *buf = sw->nvm->buf;
111 u16 ds_size;
112 int ret;
113
114 if (!buf)
115 return -EINVAL;
116
117 image_size = sw->nvm->buf_data_size;
118 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
119 return -EINVAL;
120
121 /*
122 * FARB pointer must point inside the image and must at least
123 * contain parts of the digital section we will be reading here.
124 */
125 hdr_size = (*(u32 *)buf) & 0xffffff;
126 if (hdr_size + NVM_DEVID + 2 >= image_size)
127 return -EINVAL;
128
129 /* Digital section start should be aligned to 4k page */
130 if (!IS_ALIGNED(hdr_size, SZ_4K))
131 return -EINVAL;
132
133 /*
134 * Read digital section size and check that it also fits inside
135 * the image.
136 */
137 ds_size = *(u16 *)(buf + hdr_size);
138 if (ds_size >= image_size)
139 return -EINVAL;
140
141 if (!sw->safe_mode) {
142 u16 device_id;
143
144 /*
145 * Make sure the device ID in the image matches the one
146 * we read from the switch config space.
147 */
148 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
149 if (device_id != sw->config.device_id)
150 return -EINVAL;
151
152 if (sw->generation < 3) {
153 /* Write CSS headers first */
154 ret = dma_port_flash_write(sw->dma_port,
155 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
156 DMA_PORT_CSS_MAX_SIZE);
157 if (ret)
158 return ret;
159 }
160
161 /* Skip headers in the image */
162 buf += hdr_size;
163 image_size -= hdr_size;
164 }
165
166 return dma_port_flash_write(sw->dma_port, 0, buf, image_size);
167 }
168
nvm_authenticate_host(struct tb_switch * sw)169 static int nvm_authenticate_host(struct tb_switch *sw)
170 {
171 int ret;
172
173 /*
174 * Root switch NVM upgrade requires that we disconnect the
175 * existing paths first (in case it is not in safe mode
176 * already).
177 */
178 if (!sw->safe_mode) {
179 ret = tb_domain_disconnect_all_paths(sw->tb);
180 if (ret)
181 return ret;
182 /*
183 * The host controller goes away pretty soon after this if
184 * everything goes well so getting timeout is expected.
185 */
186 ret = dma_port_flash_update_auth(sw->dma_port);
187 return ret == -ETIMEDOUT ? 0 : ret;
188 }
189
190 /*
191 * From safe mode we can get out by just power cycling the
192 * switch.
193 */
194 dma_port_power_cycle(sw->dma_port);
195 return 0;
196 }
197
nvm_authenticate_device(struct tb_switch * sw)198 static int nvm_authenticate_device(struct tb_switch *sw)
199 {
200 int ret, retries = 10;
201
202 ret = dma_port_flash_update_auth(sw->dma_port);
203 if (ret && ret != -ETIMEDOUT)
204 return ret;
205
206 /*
207 * Poll here for the authentication status. It takes some time
208 * for the device to respond (we get timeout for a while). Once
209 * we get response the device needs to be power cycled in order
210 * to the new NVM to be taken into use.
211 */
212 do {
213 u32 status;
214
215 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
216 if (ret < 0 && ret != -ETIMEDOUT)
217 return ret;
218 if (ret > 0) {
219 if (status) {
220 tb_sw_warn(sw, "failed to authenticate NVM\n");
221 nvm_set_auth_status(sw, status);
222 }
223
224 tb_sw_info(sw, "power cycling the switch now\n");
225 dma_port_power_cycle(sw->dma_port);
226 return 0;
227 }
228
229 msleep(500);
230 } while (--retries);
231
232 return -ETIMEDOUT;
233 }
234
tb_switch_nvm_read(void * priv,unsigned int offset,void * val,size_t bytes)235 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
236 size_t bytes)
237 {
238 struct tb_switch *sw = priv;
239 int ret;
240
241 pm_runtime_get_sync(&sw->dev);
242
243 if (!mutex_trylock(&sw->tb->lock)) {
244 ret = restart_syscall();
245 goto out;
246 }
247
248 ret = dma_port_flash_read(sw->dma_port, offset, val, bytes);
249 mutex_unlock(&sw->tb->lock);
250
251 out:
252 pm_runtime_mark_last_busy(&sw->dev);
253 pm_runtime_put_autosuspend(&sw->dev);
254
255 return ret;
256 }
257
tb_switch_nvm_write(void * priv,unsigned int offset,void * val,size_t bytes)258 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
259 size_t bytes)
260 {
261 struct tb_switch *sw = priv;
262 int ret = 0;
263
264 if (!mutex_trylock(&sw->tb->lock))
265 return restart_syscall();
266
267 /*
268 * Since writing the NVM image might require some special steps,
269 * for example when CSS headers are written, we cache the image
270 * locally here and handle the special cases when the user asks
271 * us to authenticate the image.
272 */
273 if (!sw->nvm->buf) {
274 sw->nvm->buf = vmalloc(NVM_MAX_SIZE);
275 if (!sw->nvm->buf) {
276 ret = -ENOMEM;
277 goto unlock;
278 }
279 }
280
281 sw->nvm->buf_data_size = offset + bytes;
282 memcpy(sw->nvm->buf + offset, val, bytes);
283
284 unlock:
285 mutex_unlock(&sw->tb->lock);
286
287 return ret;
288 }
289
register_nvmem(struct tb_switch * sw,int id,size_t size,bool active)290 static struct nvmem_device *register_nvmem(struct tb_switch *sw, int id,
291 size_t size, bool active)
292 {
293 struct nvmem_config config;
294
295 memset(&config, 0, sizeof(config));
296
297 if (active) {
298 config.name = "nvm_active";
299 config.reg_read = tb_switch_nvm_read;
300 config.read_only = true;
301 } else {
302 config.name = "nvm_non_active";
303 config.reg_write = tb_switch_nvm_write;
304 config.root_only = true;
305 }
306
307 config.id = id;
308 config.stride = 4;
309 config.word_size = 4;
310 config.size = size;
311 config.dev = &sw->dev;
312 config.owner = THIS_MODULE;
313 config.priv = sw;
314
315 return nvmem_register(&config);
316 }
317
tb_switch_nvm_add(struct tb_switch * sw)318 static int tb_switch_nvm_add(struct tb_switch *sw)
319 {
320 struct nvmem_device *nvm_dev;
321 struct tb_switch_nvm *nvm;
322 u32 val;
323 int ret;
324
325 if (!sw->dma_port)
326 return 0;
327
328 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
329 if (!nvm)
330 return -ENOMEM;
331
332 nvm->id = ida_simple_get(&nvm_ida, 0, 0, GFP_KERNEL);
333
334 /*
335 * If the switch is in safe-mode the only accessible portion of
336 * the NVM is the non-active one where userspace is expected to
337 * write new functional NVM.
338 */
339 if (!sw->safe_mode) {
340 u32 nvm_size, hdr_size;
341
342 ret = dma_port_flash_read(sw->dma_port, NVM_FLASH_SIZE, &val,
343 sizeof(val));
344 if (ret)
345 goto err_ida;
346
347 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
348 nvm_size = (SZ_1M << (val & 7)) / 8;
349 nvm_size = (nvm_size - hdr_size) / 2;
350
351 ret = dma_port_flash_read(sw->dma_port, NVM_VERSION, &val,
352 sizeof(val));
353 if (ret)
354 goto err_ida;
355
356 nvm->major = val >> 16;
357 nvm->minor = val >> 8;
358
359 nvm_dev = register_nvmem(sw, nvm->id, nvm_size, true);
360 if (IS_ERR(nvm_dev)) {
361 ret = PTR_ERR(nvm_dev);
362 goto err_ida;
363 }
364 nvm->active = nvm_dev;
365 }
366
367 if (!sw->no_nvm_upgrade) {
368 nvm_dev = register_nvmem(sw, nvm->id, NVM_MAX_SIZE, false);
369 if (IS_ERR(nvm_dev)) {
370 ret = PTR_ERR(nvm_dev);
371 goto err_nvm_active;
372 }
373 nvm->non_active = nvm_dev;
374 }
375
376 sw->nvm = nvm;
377 return 0;
378
379 err_nvm_active:
380 if (nvm->active)
381 nvmem_unregister(nvm->active);
382 err_ida:
383 ida_simple_remove(&nvm_ida, nvm->id);
384 kfree(nvm);
385
386 return ret;
387 }
388
tb_switch_nvm_remove(struct tb_switch * sw)389 static void tb_switch_nvm_remove(struct tb_switch *sw)
390 {
391 struct tb_switch_nvm *nvm;
392
393 nvm = sw->nvm;
394 sw->nvm = NULL;
395
396 if (!nvm)
397 return;
398
399 /* Remove authentication status in case the switch is unplugged */
400 if (!nvm->authenticating)
401 nvm_clear_auth_status(sw);
402
403 if (nvm->non_active)
404 nvmem_unregister(nvm->non_active);
405 if (nvm->active)
406 nvmem_unregister(nvm->active);
407 ida_simple_remove(&nvm_ida, nvm->id);
408 vfree(nvm->buf);
409 kfree(nvm);
410 }
411
412 /* port utility functions */
413
tb_port_type(struct tb_regs_port_header * port)414 static const char *tb_port_type(struct tb_regs_port_header *port)
415 {
416 switch (port->type >> 16) {
417 case 0:
418 switch ((u8) port->type) {
419 case 0:
420 return "Inactive";
421 case 1:
422 return "Port";
423 case 2:
424 return "NHI";
425 default:
426 return "unknown";
427 }
428 case 0x2:
429 return "Ethernet";
430 case 0x8:
431 return "SATA";
432 case 0xe:
433 return "DP/HDMI";
434 case 0x10:
435 return "PCIe";
436 case 0x20:
437 return "USB";
438 default:
439 return "unknown";
440 }
441 }
442
tb_dump_port(struct tb * tb,struct tb_regs_port_header * port)443 static void tb_dump_port(struct tb *tb, struct tb_regs_port_header *port)
444 {
445 tb_dbg(tb,
446 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
447 port->port_number, port->vendor_id, port->device_id,
448 port->revision, port->thunderbolt_version, tb_port_type(port),
449 port->type);
450 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
451 port->max_in_hop_id, port->max_out_hop_id);
452 tb_dbg(tb, " Max counters: %d\n", port->max_counters);
453 tb_dbg(tb, " NFC Credits: %#x\n", port->nfc_credits);
454 }
455
456 /**
457 * tb_port_state() - get connectedness state of a port
458 *
459 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
460 *
461 * Return: Returns an enum tb_port_state on success or an error code on failure.
462 */
tb_port_state(struct tb_port * port)463 static int tb_port_state(struct tb_port *port)
464 {
465 struct tb_cap_phy phy;
466 int res;
467 if (port->cap_phy == 0) {
468 tb_port_WARN(port, "does not have a PHY\n");
469 return -EINVAL;
470 }
471 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
472 if (res)
473 return res;
474 return phy.state;
475 }
476
477 /**
478 * tb_wait_for_port() - wait for a port to become ready
479 *
480 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
481 * wait_if_unplugged is set then we also wait if the port is in state
482 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
483 * switch resume). Otherwise we only wait if a device is registered but the link
484 * has not yet been established.
485 *
486 * Return: Returns an error code on failure. Returns 0 if the port is not
487 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
488 * if the port is connected and in state TB_PORT_UP.
489 */
tb_wait_for_port(struct tb_port * port,bool wait_if_unplugged)490 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
491 {
492 int retries = 10;
493 int state;
494 if (!port->cap_phy) {
495 tb_port_WARN(port, "does not have PHY\n");
496 return -EINVAL;
497 }
498 if (tb_is_upstream_port(port)) {
499 tb_port_WARN(port, "is the upstream port\n");
500 return -EINVAL;
501 }
502
503 while (retries--) {
504 state = tb_port_state(port);
505 if (state < 0)
506 return state;
507 if (state == TB_PORT_DISABLED) {
508 tb_port_dbg(port, "is disabled (state: 0)\n");
509 return 0;
510 }
511 if (state == TB_PORT_UNPLUGGED) {
512 if (wait_if_unplugged) {
513 /* used during resume */
514 tb_port_dbg(port,
515 "is unplugged (state: 7), retrying...\n");
516 msleep(100);
517 continue;
518 }
519 tb_port_dbg(port, "is unplugged (state: 7)\n");
520 return 0;
521 }
522 if (state == TB_PORT_UP) {
523 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
524 return 1;
525 }
526
527 /*
528 * After plug-in the state is TB_PORT_CONNECTING. Give it some
529 * time.
530 */
531 tb_port_dbg(port,
532 "is connected, link is not up (state: %d), retrying...\n",
533 state);
534 msleep(100);
535 }
536 tb_port_warn(port,
537 "failed to reach state TB_PORT_UP. Ignoring port...\n");
538 return 0;
539 }
540
541 /**
542 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
543 *
544 * Change the number of NFC credits allocated to @port by @credits. To remove
545 * NFC credits pass a negative amount of credits.
546 *
547 * Return: Returns 0 on success or an error code on failure.
548 */
tb_port_add_nfc_credits(struct tb_port * port,int credits)549 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
550 {
551 u32 nfc_credits;
552
553 if (credits == 0 || port->sw->is_unplugged)
554 return 0;
555
556 nfc_credits = port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK;
557 nfc_credits += credits;
558
559 tb_port_dbg(port, "adding %d NFC credits to %lu",
560 credits, port->config.nfc_credits & TB_PORT_NFC_CREDITS_MASK);
561
562 port->config.nfc_credits &= ~TB_PORT_NFC_CREDITS_MASK;
563 port->config.nfc_credits |= nfc_credits;
564
565 return tb_port_write(port, &port->config.nfc_credits,
566 TB_CFG_PORT, 4, 1);
567 }
568
569 /**
570 * tb_port_set_initial_credits() - Set initial port link credits allocated
571 * @port: Port to set the initial credits
572 * @credits: Number of credits to to allocate
573 *
574 * Set initial credits value to be used for ingress shared buffering.
575 */
tb_port_set_initial_credits(struct tb_port * port,u32 credits)576 int tb_port_set_initial_credits(struct tb_port *port, u32 credits)
577 {
578 u32 data;
579 int ret;
580
581 ret = tb_port_read(port, &data, TB_CFG_PORT, 5, 1);
582 if (ret)
583 return ret;
584
585 data &= ~TB_PORT_LCA_MASK;
586 data |= (credits << TB_PORT_LCA_SHIFT) & TB_PORT_LCA_MASK;
587
588 return tb_port_write(port, &data, TB_CFG_PORT, 5, 1);
589 }
590
591 /**
592 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
593 *
594 * Return: Returns 0 on success or an error code on failure.
595 */
tb_port_clear_counter(struct tb_port * port,int counter)596 int tb_port_clear_counter(struct tb_port *port, int counter)
597 {
598 u32 zero[3] = { 0, 0, 0 };
599 tb_port_dbg(port, "clearing counter %d\n", counter);
600 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
601 }
602
603 /**
604 * tb_init_port() - initialize a port
605 *
606 * This is a helper method for tb_switch_alloc. Does not check or initialize
607 * any downstream switches.
608 *
609 * Return: Returns 0 on success or an error code on failure.
610 */
tb_init_port(struct tb_port * port)611 static int tb_init_port(struct tb_port *port)
612 {
613 int res;
614 int cap;
615
616 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
617 if (res) {
618 if (res == -ENODEV) {
619 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
620 port->port);
621 return 0;
622 }
623 return res;
624 }
625
626 /* Port 0 is the switch itself and has no PHY. */
627 if (port->config.type == TB_TYPE_PORT && port->port != 0) {
628 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
629
630 if (cap > 0)
631 port->cap_phy = cap;
632 else
633 tb_port_WARN(port, "non switch port without a PHY\n");
634 } else if (port->port != 0) {
635 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
636 if (cap > 0)
637 port->cap_adap = cap;
638 }
639
640 tb_dump_port(port->sw->tb, &port->config);
641
642 /* Control port does not need HopID allocation */
643 if (port->port) {
644 ida_init(&port->in_hopids);
645 ida_init(&port->out_hopids);
646 }
647
648 return 0;
649
650 }
651
tb_port_alloc_hopid(struct tb_port * port,bool in,int min_hopid,int max_hopid)652 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
653 int max_hopid)
654 {
655 int port_max_hopid;
656 struct ida *ida;
657
658 if (in) {
659 port_max_hopid = port->config.max_in_hop_id;
660 ida = &port->in_hopids;
661 } else {
662 port_max_hopid = port->config.max_out_hop_id;
663 ida = &port->out_hopids;
664 }
665
666 /* HopIDs 0-7 are reserved */
667 if (min_hopid < TB_PATH_MIN_HOPID)
668 min_hopid = TB_PATH_MIN_HOPID;
669
670 if (max_hopid < 0 || max_hopid > port_max_hopid)
671 max_hopid = port_max_hopid;
672
673 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
674 }
675
676 /**
677 * tb_port_alloc_in_hopid() - Allocate input HopID from port
678 * @port: Port to allocate HopID for
679 * @min_hopid: Minimum acceptable input HopID
680 * @max_hopid: Maximum acceptable input HopID
681 *
682 * Return: HopID between @min_hopid and @max_hopid or negative errno in
683 * case of error.
684 */
tb_port_alloc_in_hopid(struct tb_port * port,int min_hopid,int max_hopid)685 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
686 {
687 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
688 }
689
690 /**
691 * tb_port_alloc_out_hopid() - Allocate output HopID from port
692 * @port: Port to allocate HopID for
693 * @min_hopid: Minimum acceptable output HopID
694 * @max_hopid: Maximum acceptable output HopID
695 *
696 * Return: HopID between @min_hopid and @max_hopid or negative errno in
697 * case of error.
698 */
tb_port_alloc_out_hopid(struct tb_port * port,int min_hopid,int max_hopid)699 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
700 {
701 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
702 }
703
704 /**
705 * tb_port_release_in_hopid() - Release allocated input HopID from port
706 * @port: Port whose HopID to release
707 * @hopid: HopID to release
708 */
tb_port_release_in_hopid(struct tb_port * port,int hopid)709 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
710 {
711 ida_simple_remove(&port->in_hopids, hopid);
712 }
713
714 /**
715 * tb_port_release_out_hopid() - Release allocated output HopID from port
716 * @port: Port whose HopID to release
717 * @hopid: HopID to release
718 */
tb_port_release_out_hopid(struct tb_port * port,int hopid)719 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
720 {
721 ida_simple_remove(&port->out_hopids, hopid);
722 }
723
724 /**
725 * tb_next_port_on_path() - Return next port for given port on a path
726 * @start: Start port of the walk
727 * @end: End port of the walk
728 * @prev: Previous port (%NULL if this is the first)
729 *
730 * This function can be used to walk from one port to another if they
731 * are connected through zero or more switches. If the @prev is dual
732 * link port, the function follows that link and returns another end on
733 * that same link.
734 *
735 * If the @end port has been reached, return %NULL.
736 *
737 * Domain tb->lock must be held when this function is called.
738 */
tb_next_port_on_path(struct tb_port * start,struct tb_port * end,struct tb_port * prev)739 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
740 struct tb_port *prev)
741 {
742 struct tb_port *next;
743
744 if (!prev)
745 return start;
746
747 if (prev->sw == end->sw) {
748 if (prev == end)
749 return NULL;
750 return end;
751 }
752
753 if (start->sw->config.depth < end->sw->config.depth) {
754 if (prev->remote &&
755 prev->remote->sw->config.depth > prev->sw->config.depth)
756 next = prev->remote;
757 else
758 next = tb_port_at(tb_route(end->sw), prev->sw);
759 } else {
760 if (tb_is_upstream_port(prev)) {
761 next = prev->remote;
762 } else {
763 next = tb_upstream_port(prev->sw);
764 /*
765 * Keep the same link if prev and next are both
766 * dual link ports.
767 */
768 if (next->dual_link_port &&
769 next->link_nr != prev->link_nr) {
770 next = next->dual_link_port;
771 }
772 }
773 }
774
775 return next;
776 }
777
778 /**
779 * tb_port_is_enabled() - Is the adapter port enabled
780 * @port: Port to check
781 */
tb_port_is_enabled(struct tb_port * port)782 bool tb_port_is_enabled(struct tb_port *port)
783 {
784 switch (port->config.type) {
785 case TB_TYPE_PCIE_UP:
786 case TB_TYPE_PCIE_DOWN:
787 return tb_pci_port_is_enabled(port);
788
789 case TB_TYPE_DP_HDMI_IN:
790 case TB_TYPE_DP_HDMI_OUT:
791 return tb_dp_port_is_enabled(port);
792
793 default:
794 return false;
795 }
796 }
797
798 /**
799 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
800 * @port: PCIe port to check
801 */
tb_pci_port_is_enabled(struct tb_port * port)802 bool tb_pci_port_is_enabled(struct tb_port *port)
803 {
804 u32 data;
805
806 if (tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap, 1))
807 return false;
808
809 return !!(data & TB_PCI_EN);
810 }
811
812 /**
813 * tb_pci_port_enable() - Enable PCIe adapter port
814 * @port: PCIe port to enable
815 * @enable: Enable/disable the PCIe adapter
816 */
tb_pci_port_enable(struct tb_port * port,bool enable)817 int tb_pci_port_enable(struct tb_port *port, bool enable)
818 {
819 u32 word = enable ? TB_PCI_EN : 0x0;
820 if (!port->cap_adap)
821 return -ENXIO;
822 return tb_port_write(port, &word, TB_CFG_PORT, port->cap_adap, 1);
823 }
824
825 /**
826 * tb_dp_port_hpd_is_active() - Is HPD already active
827 * @port: DP out port to check
828 *
829 * Checks if the DP OUT adapter port has HDP bit already set.
830 */
tb_dp_port_hpd_is_active(struct tb_port * port)831 int tb_dp_port_hpd_is_active(struct tb_port *port)
832 {
833 u32 data;
834 int ret;
835
836 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 2, 1);
837 if (ret)
838 return ret;
839
840 return !!(data & TB_DP_HDP);
841 }
842
843 /**
844 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
845 * @port: Port to clear HPD
846 *
847 * If the DP IN port has HDP set, this function can be used to clear it.
848 */
tb_dp_port_hpd_clear(struct tb_port * port)849 int tb_dp_port_hpd_clear(struct tb_port *port)
850 {
851 u32 data;
852 int ret;
853
854 ret = tb_port_read(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
855 if (ret)
856 return ret;
857
858 data |= TB_DP_HPDC;
859 return tb_port_write(port, &data, TB_CFG_PORT, port->cap_adap + 3, 1);
860 }
861
862 /**
863 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
864 * @port: DP IN/OUT port to set hops
865 * @video: Video Hop ID
866 * @aux_tx: AUX TX Hop ID
867 * @aux_rx: AUX RX Hop ID
868 *
869 * Programs specified Hop IDs for DP IN/OUT port.
870 */
tb_dp_port_set_hops(struct tb_port * port,unsigned int video,unsigned int aux_tx,unsigned int aux_rx)871 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
872 unsigned int aux_tx, unsigned int aux_rx)
873 {
874 u32 data[2];
875 int ret;
876
877 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
878 ARRAY_SIZE(data));
879 if (ret)
880 return ret;
881
882 data[0] &= ~TB_DP_VIDEO_HOPID_MASK;
883 data[1] &= ~(TB_DP_AUX_RX_HOPID_MASK | TB_DP_AUX_TX_HOPID_MASK);
884
885 data[0] |= (video << TB_DP_VIDEO_HOPID_SHIFT) & TB_DP_VIDEO_HOPID_MASK;
886 data[1] |= aux_tx & TB_DP_AUX_TX_HOPID_MASK;
887 data[1] |= (aux_rx << TB_DP_AUX_RX_HOPID_SHIFT) & TB_DP_AUX_RX_HOPID_MASK;
888
889 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap,
890 ARRAY_SIZE(data));
891 }
892
893 /**
894 * tb_dp_port_is_enabled() - Is DP adapter port enabled
895 * @port: DP adapter port to check
896 */
tb_dp_port_is_enabled(struct tb_port * port)897 bool tb_dp_port_is_enabled(struct tb_port *port)
898 {
899 u32 data[2];
900
901 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
902 ARRAY_SIZE(data)))
903 return false;
904
905 return !!(data[0] & (TB_DP_VIDEO_EN | TB_DP_AUX_EN));
906 }
907
908 /**
909 * tb_dp_port_enable() - Enables/disables DP paths of a port
910 * @port: DP IN/OUT port
911 * @enable: Enable/disable DP path
912 *
913 * Once Hop IDs are programmed DP paths can be enabled or disabled by
914 * calling this function.
915 */
tb_dp_port_enable(struct tb_port * port,bool enable)916 int tb_dp_port_enable(struct tb_port *port, bool enable)
917 {
918 u32 data[2];
919 int ret;
920
921 ret = tb_port_read(port, data, TB_CFG_PORT, port->cap_adap,
922 ARRAY_SIZE(data));
923 if (ret)
924 return ret;
925
926 if (enable)
927 data[0] |= TB_DP_VIDEO_EN | TB_DP_AUX_EN;
928 else
929 data[0] &= ~(TB_DP_VIDEO_EN | TB_DP_AUX_EN);
930
931 return tb_port_write(port, data, TB_CFG_PORT, port->cap_adap,
932 ARRAY_SIZE(data));
933 }
934
935 /* switch utility functions */
936
tb_dump_switch(struct tb * tb,struct tb_regs_switch_header * sw)937 static void tb_dump_switch(struct tb *tb, struct tb_regs_switch_header *sw)
938 {
939 tb_dbg(tb, " Switch: %x:%x (Revision: %d, TB Version: %d)\n",
940 sw->vendor_id, sw->device_id, sw->revision,
941 sw->thunderbolt_version);
942 tb_dbg(tb, " Max Port Number: %d\n", sw->max_port_number);
943 tb_dbg(tb, " Config:\n");
944 tb_dbg(tb,
945 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
946 sw->upstream_port_number, sw->depth,
947 (((u64) sw->route_hi) << 32) | sw->route_lo,
948 sw->enabled, sw->plug_events_delay);
949 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
950 sw->__unknown1, sw->__unknown4);
951 }
952
953 /**
954 * reset_switch() - reconfigure route, enable and send TB_CFG_PKG_RESET
955 *
956 * Return: Returns 0 on success or an error code on failure.
957 */
tb_switch_reset(struct tb * tb,u64 route)958 int tb_switch_reset(struct tb *tb, u64 route)
959 {
960 struct tb_cfg_result res;
961 struct tb_regs_switch_header header = {
962 header.route_hi = route >> 32,
963 header.route_lo = route,
964 header.enabled = true,
965 };
966 tb_dbg(tb, "resetting switch at %llx\n", route);
967 res.err = tb_cfg_write(tb->ctl, ((u32 *) &header) + 2, route,
968 0, 2, 2, 2);
969 if (res.err)
970 return res.err;
971 res = tb_cfg_reset(tb->ctl, route, TB_CFG_DEFAULT_TIMEOUT);
972 if (res.err > 0)
973 return -EIO;
974 return res.err;
975 }
976
977 /**
978 * tb_plug_events_active() - enable/disable plug events on a switch
979 *
980 * Also configures a sane plug_events_delay of 255ms.
981 *
982 * Return: Returns 0 on success or an error code on failure.
983 */
tb_plug_events_active(struct tb_switch * sw,bool active)984 static int tb_plug_events_active(struct tb_switch *sw, bool active)
985 {
986 u32 data;
987 int res;
988
989 if (!sw->config.enabled)
990 return 0;
991
992 sw->config.plug_events_delay = 0xff;
993 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
994 if (res)
995 return res;
996
997 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
998 if (res)
999 return res;
1000
1001 if (active) {
1002 data = data & 0xFFFFFF83;
1003 switch (sw->config.device_id) {
1004 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1005 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1006 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1007 break;
1008 default:
1009 data |= 4;
1010 }
1011 } else {
1012 data = data | 0x7c;
1013 }
1014 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1015 sw->cap_plug_events + 1, 1);
1016 }
1017
authorized_show(struct device * dev,struct device_attribute * attr,char * buf)1018 static ssize_t authorized_show(struct device *dev,
1019 struct device_attribute *attr,
1020 char *buf)
1021 {
1022 struct tb_switch *sw = tb_to_switch(dev);
1023
1024 return sprintf(buf, "%u\n", sw->authorized);
1025 }
1026
tb_switch_set_authorized(struct tb_switch * sw,unsigned int val)1027 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1028 {
1029 int ret = -EINVAL;
1030
1031 if (!mutex_trylock(&sw->tb->lock))
1032 return restart_syscall();
1033
1034 if (sw->authorized)
1035 goto unlock;
1036
1037 switch (val) {
1038 /* Approve switch */
1039 case 1:
1040 if (sw->key)
1041 ret = tb_domain_approve_switch_key(sw->tb, sw);
1042 else
1043 ret = tb_domain_approve_switch(sw->tb, sw);
1044 break;
1045
1046 /* Challenge switch */
1047 case 2:
1048 if (sw->key)
1049 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1050 break;
1051
1052 default:
1053 break;
1054 }
1055
1056 if (!ret) {
1057 sw->authorized = val;
1058 /* Notify status change to the userspace */
1059 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
1060 }
1061
1062 unlock:
1063 mutex_unlock(&sw->tb->lock);
1064 return ret;
1065 }
1066
authorized_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1067 static ssize_t authorized_store(struct device *dev,
1068 struct device_attribute *attr,
1069 const char *buf, size_t count)
1070 {
1071 struct tb_switch *sw = tb_to_switch(dev);
1072 unsigned int val;
1073 ssize_t ret;
1074
1075 ret = kstrtouint(buf, 0, &val);
1076 if (ret)
1077 return ret;
1078 if (val > 2)
1079 return -EINVAL;
1080
1081 pm_runtime_get_sync(&sw->dev);
1082 ret = tb_switch_set_authorized(sw, val);
1083 pm_runtime_mark_last_busy(&sw->dev);
1084 pm_runtime_put_autosuspend(&sw->dev);
1085
1086 return ret ? ret : count;
1087 }
1088 static DEVICE_ATTR_RW(authorized);
1089
boot_show(struct device * dev,struct device_attribute * attr,char * buf)1090 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1091 char *buf)
1092 {
1093 struct tb_switch *sw = tb_to_switch(dev);
1094
1095 return sprintf(buf, "%u\n", sw->boot);
1096 }
1097 static DEVICE_ATTR_RO(boot);
1098
device_show(struct device * dev,struct device_attribute * attr,char * buf)1099 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1100 char *buf)
1101 {
1102 struct tb_switch *sw = tb_to_switch(dev);
1103
1104 return sprintf(buf, "%#x\n", sw->device);
1105 }
1106 static DEVICE_ATTR_RO(device);
1107
1108 static ssize_t
device_name_show(struct device * dev,struct device_attribute * attr,char * buf)1109 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1110 {
1111 struct tb_switch *sw = tb_to_switch(dev);
1112
1113 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1114 }
1115 static DEVICE_ATTR_RO(device_name);
1116
key_show(struct device * dev,struct device_attribute * attr,char * buf)1117 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1118 char *buf)
1119 {
1120 struct tb_switch *sw = tb_to_switch(dev);
1121 ssize_t ret;
1122
1123 if (!mutex_trylock(&sw->tb->lock))
1124 return restart_syscall();
1125
1126 if (sw->key)
1127 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1128 else
1129 ret = sprintf(buf, "\n");
1130
1131 mutex_unlock(&sw->tb->lock);
1132 return ret;
1133 }
1134
key_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1135 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1136 const char *buf, size_t count)
1137 {
1138 struct tb_switch *sw = tb_to_switch(dev);
1139 u8 key[TB_SWITCH_KEY_SIZE];
1140 ssize_t ret = count;
1141 bool clear = false;
1142
1143 if (!strcmp(buf, "\n"))
1144 clear = true;
1145 else if (hex2bin(key, buf, sizeof(key)))
1146 return -EINVAL;
1147
1148 if (!mutex_trylock(&sw->tb->lock))
1149 return restart_syscall();
1150
1151 if (sw->authorized) {
1152 ret = -EBUSY;
1153 } else {
1154 kfree(sw->key);
1155 if (clear) {
1156 sw->key = NULL;
1157 } else {
1158 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1159 if (!sw->key)
1160 ret = -ENOMEM;
1161 }
1162 }
1163
1164 mutex_unlock(&sw->tb->lock);
1165 return ret;
1166 }
1167 static DEVICE_ATTR(key, 0600, key_show, key_store);
1168
nvm_authenticate_start(struct tb_switch * sw)1169 static void nvm_authenticate_start(struct tb_switch *sw)
1170 {
1171 struct pci_dev *root_port;
1172
1173 /*
1174 * During host router NVM upgrade we should not allow root port to
1175 * go into D3cold because some root ports cannot trigger PME
1176 * itself. To be on the safe side keep the root port in D0 during
1177 * the whole upgrade process.
1178 */
1179 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1180 if (root_port)
1181 pm_runtime_get_noresume(&root_port->dev);
1182 }
1183
nvm_authenticate_complete(struct tb_switch * sw)1184 static void nvm_authenticate_complete(struct tb_switch *sw)
1185 {
1186 struct pci_dev *root_port;
1187
1188 root_port = pci_find_pcie_root_port(sw->tb->nhi->pdev);
1189 if (root_port)
1190 pm_runtime_put(&root_port->dev);
1191 }
1192
nvm_authenticate_show(struct device * dev,struct device_attribute * attr,char * buf)1193 static ssize_t nvm_authenticate_show(struct device *dev,
1194 struct device_attribute *attr, char *buf)
1195 {
1196 struct tb_switch *sw = tb_to_switch(dev);
1197 u32 status;
1198
1199 nvm_get_auth_status(sw, &status);
1200 return sprintf(buf, "%#x\n", status);
1201 }
1202
nvm_authenticate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1203 static ssize_t nvm_authenticate_store(struct device *dev,
1204 struct device_attribute *attr, const char *buf, size_t count)
1205 {
1206 struct tb_switch *sw = tb_to_switch(dev);
1207 bool val;
1208 int ret;
1209
1210 pm_runtime_get_sync(&sw->dev);
1211
1212 if (!mutex_trylock(&sw->tb->lock)) {
1213 ret = restart_syscall();
1214 goto exit_rpm;
1215 }
1216
1217 /* If NVMem devices are not yet added */
1218 if (!sw->nvm) {
1219 ret = -EAGAIN;
1220 goto exit_unlock;
1221 }
1222
1223 ret = kstrtobool(buf, &val);
1224 if (ret)
1225 goto exit_unlock;
1226
1227 /* Always clear the authentication status */
1228 nvm_clear_auth_status(sw);
1229
1230 if (val) {
1231 if (!sw->nvm->buf) {
1232 ret = -EINVAL;
1233 goto exit_unlock;
1234 }
1235
1236 ret = nvm_validate_and_write(sw);
1237 if (ret)
1238 goto exit_unlock;
1239
1240 sw->nvm->authenticating = true;
1241
1242 if (!tb_route(sw)) {
1243 /*
1244 * Keep root port from suspending as long as the
1245 * NVM upgrade process is running.
1246 */
1247 nvm_authenticate_start(sw);
1248 ret = nvm_authenticate_host(sw);
1249 if (ret)
1250 nvm_authenticate_complete(sw);
1251 } else {
1252 ret = nvm_authenticate_device(sw);
1253 }
1254 }
1255
1256 exit_unlock:
1257 mutex_unlock(&sw->tb->lock);
1258 exit_rpm:
1259 pm_runtime_mark_last_busy(&sw->dev);
1260 pm_runtime_put_autosuspend(&sw->dev);
1261
1262 if (ret)
1263 return ret;
1264 return count;
1265 }
1266 static DEVICE_ATTR_RW(nvm_authenticate);
1267
nvm_version_show(struct device * dev,struct device_attribute * attr,char * buf)1268 static ssize_t nvm_version_show(struct device *dev,
1269 struct device_attribute *attr, char *buf)
1270 {
1271 struct tb_switch *sw = tb_to_switch(dev);
1272 int ret;
1273
1274 if (!mutex_trylock(&sw->tb->lock))
1275 return restart_syscall();
1276
1277 if (sw->safe_mode)
1278 ret = -ENODATA;
1279 else if (!sw->nvm)
1280 ret = -EAGAIN;
1281 else
1282 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1283
1284 mutex_unlock(&sw->tb->lock);
1285
1286 return ret;
1287 }
1288 static DEVICE_ATTR_RO(nvm_version);
1289
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1290 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1291 char *buf)
1292 {
1293 struct tb_switch *sw = tb_to_switch(dev);
1294
1295 return sprintf(buf, "%#x\n", sw->vendor);
1296 }
1297 static DEVICE_ATTR_RO(vendor);
1298
1299 static ssize_t
vendor_name_show(struct device * dev,struct device_attribute * attr,char * buf)1300 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1301 {
1302 struct tb_switch *sw = tb_to_switch(dev);
1303
1304 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1305 }
1306 static DEVICE_ATTR_RO(vendor_name);
1307
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)1308 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1309 char *buf)
1310 {
1311 struct tb_switch *sw = tb_to_switch(dev);
1312
1313 return sprintf(buf, "%pUb\n", sw->uuid);
1314 }
1315 static DEVICE_ATTR_RO(unique_id);
1316
1317 static struct attribute *switch_attrs[] = {
1318 &dev_attr_authorized.attr,
1319 &dev_attr_boot.attr,
1320 &dev_attr_device.attr,
1321 &dev_attr_device_name.attr,
1322 &dev_attr_key.attr,
1323 &dev_attr_nvm_authenticate.attr,
1324 &dev_attr_nvm_version.attr,
1325 &dev_attr_vendor.attr,
1326 &dev_attr_vendor_name.attr,
1327 &dev_attr_unique_id.attr,
1328 NULL,
1329 };
1330
switch_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)1331 static umode_t switch_attr_is_visible(struct kobject *kobj,
1332 struct attribute *attr, int n)
1333 {
1334 struct device *dev = container_of(kobj, struct device, kobj);
1335 struct tb_switch *sw = tb_to_switch(dev);
1336
1337 if (attr == &dev_attr_device.attr) {
1338 if (!sw->device)
1339 return 0;
1340 } else if (attr == &dev_attr_device_name.attr) {
1341 if (!sw->device_name)
1342 return 0;
1343 } else if (attr == &dev_attr_vendor.attr) {
1344 if (!sw->vendor)
1345 return 0;
1346 } else if (attr == &dev_attr_vendor_name.attr) {
1347 if (!sw->vendor_name)
1348 return 0;
1349 } else if (attr == &dev_attr_key.attr) {
1350 if (tb_route(sw) &&
1351 sw->tb->security_level == TB_SECURITY_SECURE &&
1352 sw->security_level == TB_SECURITY_SECURE)
1353 return attr->mode;
1354 return 0;
1355 } else if (attr == &dev_attr_nvm_authenticate.attr) {
1356 if (sw->dma_port && !sw->no_nvm_upgrade)
1357 return attr->mode;
1358 return 0;
1359 } else if (attr == &dev_attr_nvm_version.attr) {
1360 if (sw->dma_port)
1361 return attr->mode;
1362 return 0;
1363 } else if (attr == &dev_attr_boot.attr) {
1364 if (tb_route(sw))
1365 return attr->mode;
1366 return 0;
1367 }
1368
1369 return sw->safe_mode ? 0 : attr->mode;
1370 }
1371
1372 static struct attribute_group switch_group = {
1373 .is_visible = switch_attr_is_visible,
1374 .attrs = switch_attrs,
1375 };
1376
1377 static const struct attribute_group *switch_groups[] = {
1378 &switch_group,
1379 NULL,
1380 };
1381
tb_switch_release(struct device * dev)1382 static void tb_switch_release(struct device *dev)
1383 {
1384 struct tb_switch *sw = tb_to_switch(dev);
1385 int i;
1386
1387 dma_port_free(sw->dma_port);
1388
1389 for (i = 1; i <= sw->config.max_port_number; i++) {
1390 if (!sw->ports[i].disabled) {
1391 ida_destroy(&sw->ports[i].in_hopids);
1392 ida_destroy(&sw->ports[i].out_hopids);
1393 }
1394 }
1395
1396 kfree(sw->uuid);
1397 kfree(sw->device_name);
1398 kfree(sw->vendor_name);
1399 kfree(sw->ports);
1400 kfree(sw->drom);
1401 kfree(sw->key);
1402 kfree(sw);
1403 }
1404
1405 /*
1406 * Currently only need to provide the callbacks. Everything else is handled
1407 * in the connection manager.
1408 */
tb_switch_runtime_suspend(struct device * dev)1409 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
1410 {
1411 struct tb_switch *sw = tb_to_switch(dev);
1412 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1413
1414 if (cm_ops->runtime_suspend_switch)
1415 return cm_ops->runtime_suspend_switch(sw);
1416
1417 return 0;
1418 }
1419
tb_switch_runtime_resume(struct device * dev)1420 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
1421 {
1422 struct tb_switch *sw = tb_to_switch(dev);
1423 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
1424
1425 if (cm_ops->runtime_resume_switch)
1426 return cm_ops->runtime_resume_switch(sw);
1427 return 0;
1428 }
1429
1430 static const struct dev_pm_ops tb_switch_pm_ops = {
1431 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
1432 NULL)
1433 };
1434
1435 struct device_type tb_switch_type = {
1436 .name = "thunderbolt_device",
1437 .release = tb_switch_release,
1438 .pm = &tb_switch_pm_ops,
1439 };
1440
tb_switch_get_generation(struct tb_switch * sw)1441 static int tb_switch_get_generation(struct tb_switch *sw)
1442 {
1443 switch (sw->config.device_id) {
1444 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1445 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1446 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
1447 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
1448 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1449 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1450 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
1451 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
1452 return 1;
1453
1454 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
1455 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
1456 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
1457 return 2;
1458
1459 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
1460 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
1461 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
1462 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
1463 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
1464 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
1465 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
1466 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
1467 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
1468 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
1469 return 3;
1470
1471 default:
1472 /*
1473 * For unknown switches assume generation to be 1 to be
1474 * on the safe side.
1475 */
1476 tb_sw_warn(sw, "unsupported switch device id %#x\n",
1477 sw->config.device_id);
1478 return 1;
1479 }
1480 }
1481
1482 /**
1483 * tb_switch_alloc() - allocate a switch
1484 * @tb: Pointer to the owning domain
1485 * @parent: Parent device for this switch
1486 * @route: Route string for this switch
1487 *
1488 * Allocates and initializes a switch. Will not upload configuration to
1489 * the switch. For that you need to call tb_switch_configure()
1490 * separately. The returned switch should be released by calling
1491 * tb_switch_put().
1492 *
1493 * Return: Pointer to the allocated switch or ERR_PTR() in case of
1494 * failure.
1495 */
tb_switch_alloc(struct tb * tb,struct device * parent,u64 route)1496 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
1497 u64 route)
1498 {
1499 struct tb_switch *sw;
1500 int upstream_port;
1501 int i, ret, depth;
1502
1503 /* Make sure we do not exceed maximum topology limit */
1504 depth = tb_route_length(route);
1505 if (depth > TB_SWITCH_MAX_DEPTH)
1506 return ERR_PTR(-EADDRNOTAVAIL);
1507
1508 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
1509 if (upstream_port < 0)
1510 return ERR_PTR(upstream_port);
1511
1512 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1513 if (!sw)
1514 return ERR_PTR(-ENOMEM);
1515
1516 sw->tb = tb;
1517 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
1518 if (ret)
1519 goto err_free_sw_ports;
1520
1521 tb_dbg(tb, "current switch config:\n");
1522 tb_dump_switch(tb, &sw->config);
1523
1524 /* configure switch */
1525 sw->config.upstream_port_number = upstream_port;
1526 sw->config.depth = depth;
1527 sw->config.route_hi = upper_32_bits(route);
1528 sw->config.route_lo = lower_32_bits(route);
1529 sw->config.enabled = 0;
1530
1531 /* initialize ports */
1532 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
1533 GFP_KERNEL);
1534 if (!sw->ports) {
1535 ret = -ENOMEM;
1536 goto err_free_sw_ports;
1537 }
1538
1539 for (i = 0; i <= sw->config.max_port_number; i++) {
1540 /* minimum setup for tb_find_cap and tb_drom_read to work */
1541 sw->ports[i].sw = sw;
1542 sw->ports[i].port = i;
1543 }
1544
1545 sw->generation = tb_switch_get_generation(sw);
1546
1547 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
1548 if (ret < 0) {
1549 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
1550 goto err_free_sw_ports;
1551 }
1552 sw->cap_plug_events = ret;
1553
1554 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
1555 if (ret > 0)
1556 sw->cap_lc = ret;
1557
1558 /* Root switch is always authorized */
1559 if (!route)
1560 sw->authorized = true;
1561
1562 device_initialize(&sw->dev);
1563 sw->dev.parent = parent;
1564 sw->dev.bus = &tb_bus_type;
1565 sw->dev.type = &tb_switch_type;
1566 sw->dev.groups = switch_groups;
1567 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1568
1569 return sw;
1570
1571 err_free_sw_ports:
1572 kfree(sw->ports);
1573 kfree(sw);
1574
1575 return ERR_PTR(ret);
1576 }
1577
1578 /**
1579 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
1580 * @tb: Pointer to the owning domain
1581 * @parent: Parent device for this switch
1582 * @route: Route string for this switch
1583 *
1584 * This creates a switch in safe mode. This means the switch pretty much
1585 * lacks all capabilities except DMA configuration port before it is
1586 * flashed with a valid NVM firmware.
1587 *
1588 * The returned switch must be released by calling tb_switch_put().
1589 *
1590 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
1591 */
1592 struct tb_switch *
tb_switch_alloc_safe_mode(struct tb * tb,struct device * parent,u64 route)1593 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
1594 {
1595 struct tb_switch *sw;
1596
1597 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
1598 if (!sw)
1599 return ERR_PTR(-ENOMEM);
1600
1601 sw->tb = tb;
1602 sw->config.depth = tb_route_length(route);
1603 sw->config.route_hi = upper_32_bits(route);
1604 sw->config.route_lo = lower_32_bits(route);
1605 sw->safe_mode = true;
1606
1607 device_initialize(&sw->dev);
1608 sw->dev.parent = parent;
1609 sw->dev.bus = &tb_bus_type;
1610 sw->dev.type = &tb_switch_type;
1611 sw->dev.groups = switch_groups;
1612 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
1613
1614 return sw;
1615 }
1616
1617 /**
1618 * tb_switch_configure() - Uploads configuration to the switch
1619 * @sw: Switch to configure
1620 *
1621 * Call this function before the switch is added to the system. It will
1622 * upload configuration to the switch and makes it available for the
1623 * connection manager to use.
1624 *
1625 * Return: %0 in case of success and negative errno in case of failure
1626 */
tb_switch_configure(struct tb_switch * sw)1627 int tb_switch_configure(struct tb_switch *sw)
1628 {
1629 struct tb *tb = sw->tb;
1630 u64 route;
1631 int ret;
1632
1633 route = tb_route(sw);
1634 tb_dbg(tb, "initializing Switch at %#llx (depth: %d, up port: %d)\n",
1635 route, tb_route_length(route), sw->config.upstream_port_number);
1636
1637 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
1638 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
1639 sw->config.vendor_id);
1640
1641 sw->config.enabled = 1;
1642
1643 /* upload configuration */
1644 ret = tb_sw_write(sw, 1 + (u32 *)&sw->config, TB_CFG_SWITCH, 1, 3);
1645 if (ret)
1646 return ret;
1647
1648 ret = tb_lc_configure_link(sw);
1649 if (ret)
1650 return ret;
1651
1652 return tb_plug_events_active(sw, true);
1653 }
1654
tb_switch_set_uuid(struct tb_switch * sw)1655 static int tb_switch_set_uuid(struct tb_switch *sw)
1656 {
1657 u32 uuid[4];
1658 int ret;
1659
1660 if (sw->uuid)
1661 return 0;
1662
1663 /*
1664 * The newer controllers include fused UUID as part of link
1665 * controller specific registers
1666 */
1667 ret = tb_lc_read_uuid(sw, uuid);
1668 if (ret) {
1669 /*
1670 * ICM generates UUID based on UID and fills the upper
1671 * two words with ones. This is not strictly following
1672 * UUID format but we want to be compatible with it so
1673 * we do the same here.
1674 */
1675 uuid[0] = sw->uid & 0xffffffff;
1676 uuid[1] = (sw->uid >> 32) & 0xffffffff;
1677 uuid[2] = 0xffffffff;
1678 uuid[3] = 0xffffffff;
1679 }
1680
1681 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
1682 if (!sw->uuid)
1683 return -ENOMEM;
1684 return 0;
1685 }
1686
tb_switch_add_dma_port(struct tb_switch * sw)1687 static int tb_switch_add_dma_port(struct tb_switch *sw)
1688 {
1689 u32 status;
1690 int ret;
1691
1692 switch (sw->generation) {
1693 case 3:
1694 break;
1695
1696 case 2:
1697 /* Only root switch can be upgraded */
1698 if (tb_route(sw))
1699 return 0;
1700 break;
1701
1702 default:
1703 /*
1704 * DMA port is the only thing available when the switch
1705 * is in safe mode.
1706 */
1707 if (!sw->safe_mode)
1708 return 0;
1709 break;
1710 }
1711
1712 /* Root switch DMA port requires running firmware */
1713 if (!tb_route(sw) && sw->config.enabled)
1714 return 0;
1715
1716 sw->dma_port = dma_port_alloc(sw);
1717 if (!sw->dma_port)
1718 return 0;
1719
1720 if (sw->no_nvm_upgrade)
1721 return 0;
1722
1723 /*
1724 * Check status of the previous flash authentication. If there
1725 * is one we need to power cycle the switch in any case to make
1726 * it functional again.
1727 */
1728 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
1729 if (ret <= 0)
1730 return ret;
1731
1732 /* Now we can allow root port to suspend again */
1733 if (!tb_route(sw))
1734 nvm_authenticate_complete(sw);
1735
1736 if (status) {
1737 tb_sw_info(sw, "switch flash authentication failed\n");
1738 ret = tb_switch_set_uuid(sw);
1739 if (ret)
1740 return ret;
1741 nvm_set_auth_status(sw, status);
1742 }
1743
1744 tb_sw_info(sw, "power cycling the switch now\n");
1745 dma_port_power_cycle(sw->dma_port);
1746
1747 /*
1748 * We return error here which causes the switch adding failure.
1749 * It should appear back after power cycle is complete.
1750 */
1751 return -ESHUTDOWN;
1752 }
1753
1754 /**
1755 * tb_switch_add() - Add a switch to the domain
1756 * @sw: Switch to add
1757 *
1758 * This is the last step in adding switch to the domain. It will read
1759 * identification information from DROM and initializes ports so that
1760 * they can be used to connect other switches. The switch will be
1761 * exposed to the userspace when this function successfully returns. To
1762 * remove and release the switch, call tb_switch_remove().
1763 *
1764 * Return: %0 in case of success and negative errno in case of failure
1765 */
tb_switch_add(struct tb_switch * sw)1766 int tb_switch_add(struct tb_switch *sw)
1767 {
1768 int i, ret;
1769
1770 /*
1771 * Initialize DMA control port now before we read DROM. Recent
1772 * host controllers have more complete DROM on NVM that includes
1773 * vendor and model identification strings which we then expose
1774 * to the userspace. NVM can be accessed through DMA
1775 * configuration based mailbox.
1776 */
1777 ret = tb_switch_add_dma_port(sw);
1778 if (ret)
1779 return ret;
1780
1781 if (!sw->safe_mode) {
1782 /* read drom */
1783 ret = tb_drom_read(sw);
1784 if (ret) {
1785 tb_sw_warn(sw, "tb_eeprom_read_rom failed\n");
1786 return ret;
1787 }
1788 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
1789
1790 ret = tb_switch_set_uuid(sw);
1791 if (ret)
1792 return ret;
1793
1794 for (i = 0; i <= sw->config.max_port_number; i++) {
1795 if (sw->ports[i].disabled) {
1796 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
1797 continue;
1798 }
1799 ret = tb_init_port(&sw->ports[i]);
1800 if (ret)
1801 return ret;
1802 }
1803 }
1804
1805 ret = device_add(&sw->dev);
1806 if (ret)
1807 return ret;
1808
1809 if (tb_route(sw)) {
1810 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
1811 sw->vendor, sw->device);
1812 if (sw->vendor_name && sw->device_name)
1813 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
1814 sw->device_name);
1815 }
1816
1817 ret = tb_switch_nvm_add(sw);
1818 if (ret) {
1819 device_del(&sw->dev);
1820 return ret;
1821 }
1822
1823 pm_runtime_set_active(&sw->dev);
1824 if (sw->rpm) {
1825 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
1826 pm_runtime_use_autosuspend(&sw->dev);
1827 pm_runtime_mark_last_busy(&sw->dev);
1828 pm_runtime_enable(&sw->dev);
1829 pm_request_autosuspend(&sw->dev);
1830 }
1831
1832 return 0;
1833 }
1834
1835 /**
1836 * tb_switch_remove() - Remove and release a switch
1837 * @sw: Switch to remove
1838 *
1839 * This will remove the switch from the domain and release it after last
1840 * reference count drops to zero. If there are switches connected below
1841 * this switch, they will be removed as well.
1842 */
tb_switch_remove(struct tb_switch * sw)1843 void tb_switch_remove(struct tb_switch *sw)
1844 {
1845 int i;
1846
1847 if (sw->rpm) {
1848 pm_runtime_get_sync(&sw->dev);
1849 pm_runtime_disable(&sw->dev);
1850 }
1851
1852 /* port 0 is the switch itself and never has a remote */
1853 for (i = 1; i <= sw->config.max_port_number; i++) {
1854 if (tb_port_has_remote(&sw->ports[i])) {
1855 tb_switch_remove(sw->ports[i].remote->sw);
1856 sw->ports[i].remote = NULL;
1857 } else if (sw->ports[i].xdomain) {
1858 tb_xdomain_remove(sw->ports[i].xdomain);
1859 sw->ports[i].xdomain = NULL;
1860 }
1861 }
1862
1863 if (!sw->is_unplugged)
1864 tb_plug_events_active(sw, false);
1865 tb_lc_unconfigure_link(sw);
1866
1867 tb_switch_nvm_remove(sw);
1868
1869 if (tb_route(sw))
1870 dev_info(&sw->dev, "device disconnected\n");
1871 device_unregister(&sw->dev);
1872 }
1873
1874 /**
1875 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
1876 */
tb_sw_set_unplugged(struct tb_switch * sw)1877 void tb_sw_set_unplugged(struct tb_switch *sw)
1878 {
1879 int i;
1880 if (sw == sw->tb->root_switch) {
1881 tb_sw_WARN(sw, "cannot unplug root switch\n");
1882 return;
1883 }
1884 if (sw->is_unplugged) {
1885 tb_sw_WARN(sw, "is_unplugged already set\n");
1886 return;
1887 }
1888 sw->is_unplugged = true;
1889 for (i = 0; i <= sw->config.max_port_number; i++) {
1890 if (tb_port_has_remote(&sw->ports[i]))
1891 tb_sw_set_unplugged(sw->ports[i].remote->sw);
1892 else if (sw->ports[i].xdomain)
1893 sw->ports[i].xdomain->is_unplugged = true;
1894 }
1895 }
1896
tb_switch_resume(struct tb_switch * sw)1897 int tb_switch_resume(struct tb_switch *sw)
1898 {
1899 int i, err;
1900 tb_sw_dbg(sw, "resuming switch\n");
1901
1902 /*
1903 * Check for UID of the connected switches except for root
1904 * switch which we assume cannot be removed.
1905 */
1906 if (tb_route(sw)) {
1907 u64 uid;
1908
1909 /*
1910 * Check first that we can still read the switch config
1911 * space. It may be that there is now another domain
1912 * connected.
1913 */
1914 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
1915 if (err < 0) {
1916 tb_sw_info(sw, "switch not present anymore\n");
1917 return err;
1918 }
1919
1920 err = tb_drom_read_uid_only(sw, &uid);
1921 if (err) {
1922 tb_sw_warn(sw, "uid read failed\n");
1923 return err;
1924 }
1925 if (sw->uid != uid) {
1926 tb_sw_info(sw,
1927 "changed while suspended (uid %#llx -> %#llx)\n",
1928 sw->uid, uid);
1929 return -ENODEV;
1930 }
1931 }
1932
1933 /* upload configuration */
1934 err = tb_sw_write(sw, 1 + (u32 *) &sw->config, TB_CFG_SWITCH, 1, 3);
1935 if (err)
1936 return err;
1937
1938 err = tb_lc_configure_link(sw);
1939 if (err)
1940 return err;
1941
1942 err = tb_plug_events_active(sw, true);
1943 if (err)
1944 return err;
1945
1946 /* check for surviving downstream switches */
1947 for (i = 1; i <= sw->config.max_port_number; i++) {
1948 struct tb_port *port = &sw->ports[i];
1949
1950 if (!tb_port_has_remote(port) && !port->xdomain)
1951 continue;
1952
1953 if (tb_wait_for_port(port, true) <= 0) {
1954 tb_port_warn(port,
1955 "lost during suspend, disconnecting\n");
1956 if (tb_port_has_remote(port))
1957 tb_sw_set_unplugged(port->remote->sw);
1958 else if (port->xdomain)
1959 port->xdomain->is_unplugged = true;
1960 } else if (tb_port_has_remote(port)) {
1961 if (tb_switch_resume(port->remote->sw)) {
1962 tb_port_warn(port,
1963 "lost during suspend, disconnecting\n");
1964 tb_sw_set_unplugged(port->remote->sw);
1965 }
1966 }
1967 }
1968 return 0;
1969 }
1970
tb_switch_suspend(struct tb_switch * sw)1971 void tb_switch_suspend(struct tb_switch *sw)
1972 {
1973 int i, err;
1974 err = tb_plug_events_active(sw, false);
1975 if (err)
1976 return;
1977
1978 for (i = 1; i <= sw->config.max_port_number; i++) {
1979 if (tb_port_has_remote(&sw->ports[i]))
1980 tb_switch_suspend(sw->ports[i].remote->sw);
1981 }
1982
1983 tb_lc_set_sleep(sw);
1984 }
1985
1986 struct tb_sw_lookup {
1987 struct tb *tb;
1988 u8 link;
1989 u8 depth;
1990 const uuid_t *uuid;
1991 u64 route;
1992 };
1993
tb_switch_match(struct device * dev,const void * data)1994 static int tb_switch_match(struct device *dev, const void *data)
1995 {
1996 struct tb_switch *sw = tb_to_switch(dev);
1997 const struct tb_sw_lookup *lookup = data;
1998
1999 if (!sw)
2000 return 0;
2001 if (sw->tb != lookup->tb)
2002 return 0;
2003
2004 if (lookup->uuid)
2005 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
2006
2007 if (lookup->route) {
2008 return sw->config.route_lo == lower_32_bits(lookup->route) &&
2009 sw->config.route_hi == upper_32_bits(lookup->route);
2010 }
2011
2012 /* Root switch is matched only by depth */
2013 if (!lookup->depth)
2014 return !sw->depth;
2015
2016 return sw->link == lookup->link && sw->depth == lookup->depth;
2017 }
2018
2019 /**
2020 * tb_switch_find_by_link_depth() - Find switch by link and depth
2021 * @tb: Domain the switch belongs
2022 * @link: Link number the switch is connected
2023 * @depth: Depth of the switch in link
2024 *
2025 * Returned switch has reference count increased so the caller needs to
2026 * call tb_switch_put() when done with the switch.
2027 */
tb_switch_find_by_link_depth(struct tb * tb,u8 link,u8 depth)2028 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
2029 {
2030 struct tb_sw_lookup lookup;
2031 struct device *dev;
2032
2033 memset(&lookup, 0, sizeof(lookup));
2034 lookup.tb = tb;
2035 lookup.link = link;
2036 lookup.depth = depth;
2037
2038 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2039 if (dev)
2040 return tb_to_switch(dev);
2041
2042 return NULL;
2043 }
2044
2045 /**
2046 * tb_switch_find_by_uuid() - Find switch by UUID
2047 * @tb: Domain the switch belongs
2048 * @uuid: UUID to look for
2049 *
2050 * Returned switch has reference count increased so the caller needs to
2051 * call tb_switch_put() when done with the switch.
2052 */
tb_switch_find_by_uuid(struct tb * tb,const uuid_t * uuid)2053 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
2054 {
2055 struct tb_sw_lookup lookup;
2056 struct device *dev;
2057
2058 memset(&lookup, 0, sizeof(lookup));
2059 lookup.tb = tb;
2060 lookup.uuid = uuid;
2061
2062 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2063 if (dev)
2064 return tb_to_switch(dev);
2065
2066 return NULL;
2067 }
2068
2069 /**
2070 * tb_switch_find_by_route() - Find switch by route string
2071 * @tb: Domain the switch belongs
2072 * @route: Route string to look for
2073 *
2074 * Returned switch has reference count increased so the caller needs to
2075 * call tb_switch_put() when done with the switch.
2076 */
tb_switch_find_by_route(struct tb * tb,u64 route)2077 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
2078 {
2079 struct tb_sw_lookup lookup;
2080 struct device *dev;
2081
2082 if (!route)
2083 return tb_switch_get(tb->root_switch);
2084
2085 memset(&lookup, 0, sizeof(lookup));
2086 lookup.tb = tb;
2087 lookup.route = route;
2088
2089 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
2090 if (dev)
2091 return tb_to_switch(dev);
2092
2093 return NULL;
2094 }
2095
tb_switch_exit(void)2096 void tb_switch_exit(void)
2097 {
2098 ida_destroy(&nvm_ida);
2099 }
2100