1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/mutex.h>
18 #include <linux/plist.h>
19 #include <linux/hrtimer.h>
20 #include <linux/irqflags.h>
21 #include <linux/seccomp.h>
22 #include <linux/nodemask.h>
23 #include <linux/rcupdate.h>
24 #include <linux/refcount.h>
25 #include <linux/resource.h>
26 #include <linux/latencytop.h>
27 #include <linux/sched/prio.h>
28 #include <linux/sched/types.h>
29 #include <linux/signal_types.h>
30 #include <linux/syscall_user_dispatch.h>
31 #include <linux/mm_types_task.h>
32 #include <linux/task_io_accounting.h>
33 #include <linux/posix-timers.h>
34 #include <linux/rseq.h>
35 #include <linux/seqlock.h>
36 #include <linux/kcsan.h>
37 #include <asm/kmap_size.h>
38
39 /* task_struct member predeclarations (sorted alphabetically): */
40 struct audit_context;
41 struct backing_dev_info;
42 struct bio_list;
43 struct blk_plug;
44 struct bpf_local_storage;
45 struct bpf_run_ctx;
46 struct capture_control;
47 struct cfs_rq;
48 struct fs_struct;
49 struct futex_pi_state;
50 struct io_context;
51 struct io_uring_task;
52 struct mempolicy;
53 struct nameidata;
54 struct nsproxy;
55 struct perf_event_context;
56 struct pid_namespace;
57 struct pipe_inode_info;
58 struct rcu_node;
59 struct reclaim_state;
60 struct robust_list_head;
61 struct root_domain;
62 struct rq;
63 struct sched_attr;
64 struct sched_param;
65 struct seq_file;
66 struct sighand_struct;
67 struct signal_struct;
68 struct task_delay_info;
69 struct task_group;
70
71 /*
72 * Task state bitmask. NOTE! These bits are also
73 * encoded in fs/proc/array.c: get_task_state().
74 *
75 * We have two separate sets of flags: task->state
76 * is about runnability, while task->exit_state are
77 * about the task exiting. Confusing, but this way
78 * modifying one set can't modify the other one by
79 * mistake.
80 */
81
82 /* Used in tsk->state: */
83 #define TASK_RUNNING 0x0000
84 #define TASK_INTERRUPTIBLE 0x0001
85 #define TASK_UNINTERRUPTIBLE 0x0002
86 #define __TASK_STOPPED 0x0004
87 #define __TASK_TRACED 0x0008
88 /* Used in tsk->exit_state: */
89 #define EXIT_DEAD 0x0010
90 #define EXIT_ZOMBIE 0x0020
91 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
92 /* Used in tsk->state again: */
93 #define TASK_PARKED 0x0040
94 #define TASK_DEAD 0x0080
95 #define TASK_WAKEKILL 0x0100
96 #define TASK_WAKING 0x0200
97 #define TASK_NOLOAD 0x0400
98 #define TASK_NEW 0x0800
99 /* RT specific auxilliary flag to mark RT lock waiters */
100 #define TASK_RTLOCK_WAIT 0x1000
101 #define TASK_STATE_MAX 0x2000
102
103 /* Convenience macros for the sake of set_current_state: */
104 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
105 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
106 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
107
108 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
109
110 /* Convenience macros for the sake of wake_up(): */
111 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
112
113 /* get_task_state(): */
114 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
115 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
116 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
117 TASK_PARKED)
118
119 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
120
121 #define task_is_traced(task) ((READ_ONCE(task->__state) & __TASK_TRACED) != 0)
122
123 #define task_is_stopped(task) ((READ_ONCE(task->__state) & __TASK_STOPPED) != 0)
124
125 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->__state) & (__TASK_STOPPED | __TASK_TRACED)) != 0)
126
127 /*
128 * Special states are those that do not use the normal wait-loop pattern. See
129 * the comment with set_special_state().
130 */
131 #define is_special_task_state(state) \
132 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
133
134 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
135 # define debug_normal_state_change(state_value) \
136 do { \
137 WARN_ON_ONCE(is_special_task_state(state_value)); \
138 current->task_state_change = _THIS_IP_; \
139 } while (0)
140
141 # define debug_special_state_change(state_value) \
142 do { \
143 WARN_ON_ONCE(!is_special_task_state(state_value)); \
144 current->task_state_change = _THIS_IP_; \
145 } while (0)
146
147 # define debug_rtlock_wait_set_state() \
148 do { \
149 current->saved_state_change = current->task_state_change;\
150 current->task_state_change = _THIS_IP_; \
151 } while (0)
152
153 # define debug_rtlock_wait_restore_state() \
154 do { \
155 current->task_state_change = current->saved_state_change;\
156 } while (0)
157
158 #else
159 # define debug_normal_state_change(cond) do { } while (0)
160 # define debug_special_state_change(cond) do { } while (0)
161 # define debug_rtlock_wait_set_state() do { } while (0)
162 # define debug_rtlock_wait_restore_state() do { } while (0)
163 #endif
164
165 /*
166 * set_current_state() includes a barrier so that the write of current->state
167 * is correctly serialised wrt the caller's subsequent test of whether to
168 * actually sleep:
169 *
170 * for (;;) {
171 * set_current_state(TASK_UNINTERRUPTIBLE);
172 * if (CONDITION)
173 * break;
174 *
175 * schedule();
176 * }
177 * __set_current_state(TASK_RUNNING);
178 *
179 * If the caller does not need such serialisation (because, for instance, the
180 * CONDITION test and condition change and wakeup are under the same lock) then
181 * use __set_current_state().
182 *
183 * The above is typically ordered against the wakeup, which does:
184 *
185 * CONDITION = 1;
186 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
187 *
188 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
189 * accessing p->state.
190 *
191 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
192 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
193 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
194 *
195 * However, with slightly different timing the wakeup TASK_RUNNING store can
196 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
197 * a problem either because that will result in one extra go around the loop
198 * and our @cond test will save the day.
199 *
200 * Also see the comments of try_to_wake_up().
201 */
202 #define __set_current_state(state_value) \
203 do { \
204 debug_normal_state_change((state_value)); \
205 WRITE_ONCE(current->__state, (state_value)); \
206 } while (0)
207
208 #define set_current_state(state_value) \
209 do { \
210 debug_normal_state_change((state_value)); \
211 smp_store_mb(current->__state, (state_value)); \
212 } while (0)
213
214 /*
215 * set_special_state() should be used for those states when the blocking task
216 * can not use the regular condition based wait-loop. In that case we must
217 * serialize against wakeups such that any possible in-flight TASK_RUNNING
218 * stores will not collide with our state change.
219 */
220 #define set_special_state(state_value) \
221 do { \
222 unsigned long flags; /* may shadow */ \
223 \
224 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
225 debug_special_state_change((state_value)); \
226 WRITE_ONCE(current->__state, (state_value)); \
227 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
228 } while (0)
229
230 /*
231 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
232 *
233 * RT's spin/rwlock substitutions are state preserving. The state of the
234 * task when blocking on the lock is saved in task_struct::saved_state and
235 * restored after the lock has been acquired. These operations are
236 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
237 * lock related wakeups while the task is blocked on the lock are
238 * redirected to operate on task_struct::saved_state to ensure that these
239 * are not dropped. On restore task_struct::saved_state is set to
240 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
241 *
242 * The lock operation looks like this:
243 *
244 * current_save_and_set_rtlock_wait_state();
245 * for (;;) {
246 * if (try_lock())
247 * break;
248 * raw_spin_unlock_irq(&lock->wait_lock);
249 * schedule_rtlock();
250 * raw_spin_lock_irq(&lock->wait_lock);
251 * set_current_state(TASK_RTLOCK_WAIT);
252 * }
253 * current_restore_rtlock_saved_state();
254 */
255 #define current_save_and_set_rtlock_wait_state() \
256 do { \
257 lockdep_assert_irqs_disabled(); \
258 raw_spin_lock(¤t->pi_lock); \
259 current->saved_state = current->__state; \
260 debug_rtlock_wait_set_state(); \
261 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
262 raw_spin_unlock(¤t->pi_lock); \
263 } while (0);
264
265 #define current_restore_rtlock_saved_state() \
266 do { \
267 lockdep_assert_irqs_disabled(); \
268 raw_spin_lock(¤t->pi_lock); \
269 debug_rtlock_wait_restore_state(); \
270 WRITE_ONCE(current->__state, current->saved_state); \
271 current->saved_state = TASK_RUNNING; \
272 raw_spin_unlock(¤t->pi_lock); \
273 } while (0);
274
275 #define get_current_state() READ_ONCE(current->__state)
276
277 /* Task command name length: */
278 #define TASK_COMM_LEN 16
279
280 extern void scheduler_tick(void);
281
282 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
283
284 extern long schedule_timeout(long timeout);
285 extern long schedule_timeout_interruptible(long timeout);
286 extern long schedule_timeout_killable(long timeout);
287 extern long schedule_timeout_uninterruptible(long timeout);
288 extern long schedule_timeout_idle(long timeout);
289 asmlinkage void schedule(void);
290 extern void schedule_preempt_disabled(void);
291 asmlinkage void preempt_schedule_irq(void);
292 #ifdef CONFIG_PREEMPT_RT
293 extern void schedule_rtlock(void);
294 #endif
295
296 extern int __must_check io_schedule_prepare(void);
297 extern void io_schedule_finish(int token);
298 extern long io_schedule_timeout(long timeout);
299 extern void io_schedule(void);
300
301 /**
302 * struct prev_cputime - snapshot of system and user cputime
303 * @utime: time spent in user mode
304 * @stime: time spent in system mode
305 * @lock: protects the above two fields
306 *
307 * Stores previous user/system time values such that we can guarantee
308 * monotonicity.
309 */
310 struct prev_cputime {
311 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
312 u64 utime;
313 u64 stime;
314 raw_spinlock_t lock;
315 #endif
316 };
317
318 enum vtime_state {
319 /* Task is sleeping or running in a CPU with VTIME inactive: */
320 VTIME_INACTIVE = 0,
321 /* Task is idle */
322 VTIME_IDLE,
323 /* Task runs in kernelspace in a CPU with VTIME active: */
324 VTIME_SYS,
325 /* Task runs in userspace in a CPU with VTIME active: */
326 VTIME_USER,
327 /* Task runs as guests in a CPU with VTIME active: */
328 VTIME_GUEST,
329 };
330
331 struct vtime {
332 seqcount_t seqcount;
333 unsigned long long starttime;
334 enum vtime_state state;
335 unsigned int cpu;
336 u64 utime;
337 u64 stime;
338 u64 gtime;
339 };
340
341 /*
342 * Utilization clamp constraints.
343 * @UCLAMP_MIN: Minimum utilization
344 * @UCLAMP_MAX: Maximum utilization
345 * @UCLAMP_CNT: Utilization clamp constraints count
346 */
347 enum uclamp_id {
348 UCLAMP_MIN = 0,
349 UCLAMP_MAX,
350 UCLAMP_CNT
351 };
352
353 #ifdef CONFIG_SMP
354 extern struct root_domain def_root_domain;
355 extern struct mutex sched_domains_mutex;
356 #endif
357
358 struct sched_info {
359 #ifdef CONFIG_SCHED_INFO
360 /* Cumulative counters: */
361
362 /* # of times we have run on this CPU: */
363 unsigned long pcount;
364
365 /* Time spent waiting on a runqueue: */
366 unsigned long long run_delay;
367
368 /* Timestamps: */
369
370 /* When did we last run on a CPU? */
371 unsigned long long last_arrival;
372
373 /* When were we last queued to run? */
374 unsigned long long last_queued;
375
376 #endif /* CONFIG_SCHED_INFO */
377 };
378
379 /*
380 * Integer metrics need fixed point arithmetic, e.g., sched/fair
381 * has a few: load, load_avg, util_avg, freq, and capacity.
382 *
383 * We define a basic fixed point arithmetic range, and then formalize
384 * all these metrics based on that basic range.
385 */
386 # define SCHED_FIXEDPOINT_SHIFT 10
387 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
388
389 /* Increase resolution of cpu_capacity calculations */
390 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
391 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
392
393 struct load_weight {
394 unsigned long weight;
395 u32 inv_weight;
396 };
397
398 /**
399 * struct util_est - Estimation utilization of FAIR tasks
400 * @enqueued: instantaneous estimated utilization of a task/cpu
401 * @ewma: the Exponential Weighted Moving Average (EWMA)
402 * utilization of a task
403 *
404 * Support data structure to track an Exponential Weighted Moving Average
405 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
406 * average each time a task completes an activation. Sample's weight is chosen
407 * so that the EWMA will be relatively insensitive to transient changes to the
408 * task's workload.
409 *
410 * The enqueued attribute has a slightly different meaning for tasks and cpus:
411 * - task: the task's util_avg at last task dequeue time
412 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
413 * Thus, the util_est.enqueued of a task represents the contribution on the
414 * estimated utilization of the CPU where that task is currently enqueued.
415 *
416 * Only for tasks we track a moving average of the past instantaneous
417 * estimated utilization. This allows to absorb sporadic drops in utilization
418 * of an otherwise almost periodic task.
419 *
420 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
421 * updates. When a task is dequeued, its util_est should not be updated if its
422 * util_avg has not been updated in the meantime.
423 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
424 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
425 * for a task) it is safe to use MSB.
426 */
427 struct util_est {
428 unsigned int enqueued;
429 unsigned int ewma;
430 #define UTIL_EST_WEIGHT_SHIFT 2
431 #define UTIL_AVG_UNCHANGED 0x80000000
432 } __attribute__((__aligned__(sizeof(u64))));
433
434 /*
435 * The load/runnable/util_avg accumulates an infinite geometric series
436 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
437 *
438 * [load_avg definition]
439 *
440 * load_avg = runnable% * scale_load_down(load)
441 *
442 * [runnable_avg definition]
443 *
444 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
445 *
446 * [util_avg definition]
447 *
448 * util_avg = running% * SCHED_CAPACITY_SCALE
449 *
450 * where runnable% is the time ratio that a sched_entity is runnable and
451 * running% the time ratio that a sched_entity is running.
452 *
453 * For cfs_rq, they are the aggregated values of all runnable and blocked
454 * sched_entities.
455 *
456 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
457 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
458 * for computing those signals (see update_rq_clock_pelt())
459 *
460 * N.B., the above ratios (runnable% and running%) themselves are in the
461 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
462 * to as large a range as necessary. This is for example reflected by
463 * util_avg's SCHED_CAPACITY_SCALE.
464 *
465 * [Overflow issue]
466 *
467 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
468 * with the highest load (=88761), always runnable on a single cfs_rq,
469 * and should not overflow as the number already hits PID_MAX_LIMIT.
470 *
471 * For all other cases (including 32-bit kernels), struct load_weight's
472 * weight will overflow first before we do, because:
473 *
474 * Max(load_avg) <= Max(load.weight)
475 *
476 * Then it is the load_weight's responsibility to consider overflow
477 * issues.
478 */
479 struct sched_avg {
480 u64 last_update_time;
481 u64 load_sum;
482 u64 runnable_sum;
483 u32 util_sum;
484 u32 period_contrib;
485 unsigned long load_avg;
486 unsigned long runnable_avg;
487 unsigned long util_avg;
488 struct util_est util_est;
489 } ____cacheline_aligned;
490
491 struct sched_statistics {
492 #ifdef CONFIG_SCHEDSTATS
493 u64 wait_start;
494 u64 wait_max;
495 u64 wait_count;
496 u64 wait_sum;
497 u64 iowait_count;
498 u64 iowait_sum;
499
500 u64 sleep_start;
501 u64 sleep_max;
502 s64 sum_sleep_runtime;
503
504 u64 block_start;
505 u64 block_max;
506 u64 exec_max;
507 u64 slice_max;
508
509 u64 nr_migrations_cold;
510 u64 nr_failed_migrations_affine;
511 u64 nr_failed_migrations_running;
512 u64 nr_failed_migrations_hot;
513 u64 nr_forced_migrations;
514
515 u64 nr_wakeups;
516 u64 nr_wakeups_sync;
517 u64 nr_wakeups_migrate;
518 u64 nr_wakeups_local;
519 u64 nr_wakeups_remote;
520 u64 nr_wakeups_affine;
521 u64 nr_wakeups_affine_attempts;
522 u64 nr_wakeups_passive;
523 u64 nr_wakeups_idle;
524 #endif
525 };
526
527 struct sched_entity {
528 /* For load-balancing: */
529 struct load_weight load;
530 struct rb_node run_node;
531 struct list_head group_node;
532 unsigned int on_rq;
533
534 u64 exec_start;
535 u64 sum_exec_runtime;
536 u64 vruntime;
537 u64 prev_sum_exec_runtime;
538
539 u64 nr_migrations;
540
541 struct sched_statistics statistics;
542
543 #ifdef CONFIG_FAIR_GROUP_SCHED
544 int depth;
545 struct sched_entity *parent;
546 /* rq on which this entity is (to be) queued: */
547 struct cfs_rq *cfs_rq;
548 /* rq "owned" by this entity/group: */
549 struct cfs_rq *my_q;
550 /* cached value of my_q->h_nr_running */
551 unsigned long runnable_weight;
552 #endif
553
554 #ifdef CONFIG_SMP
555 /*
556 * Per entity load average tracking.
557 *
558 * Put into separate cache line so it does not
559 * collide with read-mostly values above.
560 */
561 struct sched_avg avg;
562 #endif
563 };
564
565 struct sched_rt_entity {
566 struct list_head run_list;
567 unsigned long timeout;
568 unsigned long watchdog_stamp;
569 unsigned int time_slice;
570 unsigned short on_rq;
571 unsigned short on_list;
572
573 struct sched_rt_entity *back;
574 #ifdef CONFIG_RT_GROUP_SCHED
575 struct sched_rt_entity *parent;
576 /* rq on which this entity is (to be) queued: */
577 struct rt_rq *rt_rq;
578 /* rq "owned" by this entity/group: */
579 struct rt_rq *my_q;
580 #endif
581 } __randomize_layout;
582
583 struct sched_dl_entity {
584 struct rb_node rb_node;
585
586 /*
587 * Original scheduling parameters. Copied here from sched_attr
588 * during sched_setattr(), they will remain the same until
589 * the next sched_setattr().
590 */
591 u64 dl_runtime; /* Maximum runtime for each instance */
592 u64 dl_deadline; /* Relative deadline of each instance */
593 u64 dl_period; /* Separation of two instances (period) */
594 u64 dl_bw; /* dl_runtime / dl_period */
595 u64 dl_density; /* dl_runtime / dl_deadline */
596
597 /*
598 * Actual scheduling parameters. Initialized with the values above,
599 * they are continuously updated during task execution. Note that
600 * the remaining runtime could be < 0 in case we are in overrun.
601 */
602 s64 runtime; /* Remaining runtime for this instance */
603 u64 deadline; /* Absolute deadline for this instance */
604 unsigned int flags; /* Specifying the scheduler behaviour */
605
606 /*
607 * Some bool flags:
608 *
609 * @dl_throttled tells if we exhausted the runtime. If so, the
610 * task has to wait for a replenishment to be performed at the
611 * next firing of dl_timer.
612 *
613 * @dl_boosted tells if we are boosted due to DI. If so we are
614 * outside bandwidth enforcement mechanism (but only until we
615 * exit the critical section);
616 *
617 * @dl_yielded tells if task gave up the CPU before consuming
618 * all its available runtime during the last job.
619 *
620 * @dl_non_contending tells if the task is inactive while still
621 * contributing to the active utilization. In other words, it
622 * indicates if the inactive timer has been armed and its handler
623 * has not been executed yet. This flag is useful to avoid race
624 * conditions between the inactive timer handler and the wakeup
625 * code.
626 *
627 * @dl_overrun tells if the task asked to be informed about runtime
628 * overruns.
629 */
630 unsigned int dl_throttled : 1;
631 unsigned int dl_yielded : 1;
632 unsigned int dl_non_contending : 1;
633 unsigned int dl_overrun : 1;
634
635 /*
636 * Bandwidth enforcement timer. Each -deadline task has its
637 * own bandwidth to be enforced, thus we need one timer per task.
638 */
639 struct hrtimer dl_timer;
640
641 /*
642 * Inactive timer, responsible for decreasing the active utilization
643 * at the "0-lag time". When a -deadline task blocks, it contributes
644 * to GRUB's active utilization until the "0-lag time", hence a
645 * timer is needed to decrease the active utilization at the correct
646 * time.
647 */
648 struct hrtimer inactive_timer;
649
650 #ifdef CONFIG_RT_MUTEXES
651 /*
652 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
653 * pi_se points to the donor, otherwise points to the dl_se it belongs
654 * to (the original one/itself).
655 */
656 struct sched_dl_entity *pi_se;
657 #endif
658 };
659
660 #ifdef CONFIG_UCLAMP_TASK
661 /* Number of utilization clamp buckets (shorter alias) */
662 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
663
664 /*
665 * Utilization clamp for a scheduling entity
666 * @value: clamp value "assigned" to a se
667 * @bucket_id: bucket index corresponding to the "assigned" value
668 * @active: the se is currently refcounted in a rq's bucket
669 * @user_defined: the requested clamp value comes from user-space
670 *
671 * The bucket_id is the index of the clamp bucket matching the clamp value
672 * which is pre-computed and stored to avoid expensive integer divisions from
673 * the fast path.
674 *
675 * The active bit is set whenever a task has got an "effective" value assigned,
676 * which can be different from the clamp value "requested" from user-space.
677 * This allows to know a task is refcounted in the rq's bucket corresponding
678 * to the "effective" bucket_id.
679 *
680 * The user_defined bit is set whenever a task has got a task-specific clamp
681 * value requested from userspace, i.e. the system defaults apply to this task
682 * just as a restriction. This allows to relax default clamps when a less
683 * restrictive task-specific value has been requested, thus allowing to
684 * implement a "nice" semantic. For example, a task running with a 20%
685 * default boost can still drop its own boosting to 0%.
686 */
687 struct uclamp_se {
688 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
689 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
690 unsigned int active : 1;
691 unsigned int user_defined : 1;
692 };
693 #endif /* CONFIG_UCLAMP_TASK */
694
695 union rcu_special {
696 struct {
697 u8 blocked;
698 u8 need_qs;
699 u8 exp_hint; /* Hint for performance. */
700 u8 need_mb; /* Readers need smp_mb(). */
701 } b; /* Bits. */
702 u32 s; /* Set of bits. */
703 };
704
705 enum perf_event_task_context {
706 perf_invalid_context = -1,
707 perf_hw_context = 0,
708 perf_sw_context,
709 perf_nr_task_contexts,
710 };
711
712 struct wake_q_node {
713 struct wake_q_node *next;
714 };
715
716 struct kmap_ctrl {
717 #ifdef CONFIG_KMAP_LOCAL
718 int idx;
719 pte_t pteval[KM_MAX_IDX];
720 #endif
721 };
722
723 struct task_struct {
724 #ifdef CONFIG_THREAD_INFO_IN_TASK
725 /*
726 * For reasons of header soup (see current_thread_info()), this
727 * must be the first element of task_struct.
728 */
729 struct thread_info thread_info;
730 #endif
731 unsigned int __state;
732
733 #ifdef CONFIG_PREEMPT_RT
734 /* saved state for "spinlock sleepers" */
735 unsigned int saved_state;
736 #endif
737
738 /*
739 * This begins the randomizable portion of task_struct. Only
740 * scheduling-critical items should be added above here.
741 */
742 randomized_struct_fields_start
743
744 void *stack;
745 refcount_t usage;
746 /* Per task flags (PF_*), defined further below: */
747 unsigned int flags;
748 unsigned int ptrace;
749
750 #ifdef CONFIG_SMP
751 int on_cpu;
752 struct __call_single_node wake_entry;
753 #ifdef CONFIG_THREAD_INFO_IN_TASK
754 /* Current CPU: */
755 unsigned int cpu;
756 #endif
757 unsigned int wakee_flips;
758 unsigned long wakee_flip_decay_ts;
759 struct task_struct *last_wakee;
760
761 /*
762 * recent_used_cpu is initially set as the last CPU used by a task
763 * that wakes affine another task. Waker/wakee relationships can
764 * push tasks around a CPU where each wakeup moves to the next one.
765 * Tracking a recently used CPU allows a quick search for a recently
766 * used CPU that may be idle.
767 */
768 int recent_used_cpu;
769 int wake_cpu;
770 #endif
771 int on_rq;
772
773 int prio;
774 int static_prio;
775 int normal_prio;
776 unsigned int rt_priority;
777
778 const struct sched_class *sched_class;
779 struct sched_entity se;
780 struct sched_rt_entity rt;
781 struct sched_dl_entity dl;
782
783 #ifdef CONFIG_SCHED_CORE
784 struct rb_node core_node;
785 unsigned long core_cookie;
786 unsigned int core_occupation;
787 #endif
788
789 #ifdef CONFIG_CGROUP_SCHED
790 struct task_group *sched_task_group;
791 #endif
792
793 #ifdef CONFIG_UCLAMP_TASK
794 /*
795 * Clamp values requested for a scheduling entity.
796 * Must be updated with task_rq_lock() held.
797 */
798 struct uclamp_se uclamp_req[UCLAMP_CNT];
799 /*
800 * Effective clamp values used for a scheduling entity.
801 * Must be updated with task_rq_lock() held.
802 */
803 struct uclamp_se uclamp[UCLAMP_CNT];
804 #endif
805
806 #ifdef CONFIG_PREEMPT_NOTIFIERS
807 /* List of struct preempt_notifier: */
808 struct hlist_head preempt_notifiers;
809 #endif
810
811 #ifdef CONFIG_BLK_DEV_IO_TRACE
812 unsigned int btrace_seq;
813 #endif
814
815 unsigned int policy;
816 int nr_cpus_allowed;
817 const cpumask_t *cpus_ptr;
818 cpumask_t *user_cpus_ptr;
819 cpumask_t cpus_mask;
820 void *migration_pending;
821 #ifdef CONFIG_SMP
822 unsigned short migration_disabled;
823 #endif
824 unsigned short migration_flags;
825
826 #ifdef CONFIG_PREEMPT_RCU
827 int rcu_read_lock_nesting;
828 union rcu_special rcu_read_unlock_special;
829 struct list_head rcu_node_entry;
830 struct rcu_node *rcu_blocked_node;
831 #endif /* #ifdef CONFIG_PREEMPT_RCU */
832
833 #ifdef CONFIG_TASKS_RCU
834 unsigned long rcu_tasks_nvcsw;
835 u8 rcu_tasks_holdout;
836 u8 rcu_tasks_idx;
837 int rcu_tasks_idle_cpu;
838 struct list_head rcu_tasks_holdout_list;
839 #endif /* #ifdef CONFIG_TASKS_RCU */
840
841 #ifdef CONFIG_TASKS_TRACE_RCU
842 int trc_reader_nesting;
843 int trc_ipi_to_cpu;
844 union rcu_special trc_reader_special;
845 bool trc_reader_checked;
846 struct list_head trc_holdout_list;
847 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
848
849 struct sched_info sched_info;
850
851 struct list_head tasks;
852 #ifdef CONFIG_SMP
853 struct plist_node pushable_tasks;
854 struct rb_node pushable_dl_tasks;
855 #endif
856
857 struct mm_struct *mm;
858 struct mm_struct *active_mm;
859
860 /* Per-thread vma caching: */
861 struct vmacache vmacache;
862
863 #ifdef SPLIT_RSS_COUNTING
864 struct task_rss_stat rss_stat;
865 #endif
866 int exit_state;
867 int exit_code;
868 int exit_signal;
869 /* The signal sent when the parent dies: */
870 int pdeath_signal;
871 /* JOBCTL_*, siglock protected: */
872 unsigned long jobctl;
873
874 /* Used for emulating ABI behavior of previous Linux versions: */
875 unsigned int personality;
876
877 /* Scheduler bits, serialized by scheduler locks: */
878 unsigned sched_reset_on_fork:1;
879 unsigned sched_contributes_to_load:1;
880 unsigned sched_migrated:1;
881 #ifdef CONFIG_PSI
882 unsigned sched_psi_wake_requeue:1;
883 #endif
884
885 /* Force alignment to the next boundary: */
886 unsigned :0;
887
888 /* Unserialized, strictly 'current' */
889
890 /*
891 * This field must not be in the scheduler word above due to wakelist
892 * queueing no longer being serialized by p->on_cpu. However:
893 *
894 * p->XXX = X; ttwu()
895 * schedule() if (p->on_rq && ..) // false
896 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
897 * deactivate_task() ttwu_queue_wakelist())
898 * p->on_rq = 0; p->sched_remote_wakeup = Y;
899 *
900 * guarantees all stores of 'current' are visible before
901 * ->sched_remote_wakeup gets used, so it can be in this word.
902 */
903 unsigned sched_remote_wakeup:1;
904
905 /* Bit to tell LSMs we're in execve(): */
906 unsigned in_execve:1;
907 unsigned in_iowait:1;
908 #ifndef TIF_RESTORE_SIGMASK
909 unsigned restore_sigmask:1;
910 #endif
911 #ifdef CONFIG_MEMCG
912 unsigned in_user_fault:1;
913 #endif
914 #ifdef CONFIG_COMPAT_BRK
915 unsigned brk_randomized:1;
916 #endif
917 #ifdef CONFIG_CGROUPS
918 /* disallow userland-initiated cgroup migration */
919 unsigned no_cgroup_migration:1;
920 /* task is frozen/stopped (used by the cgroup freezer) */
921 unsigned frozen:1;
922 #endif
923 #ifdef CONFIG_BLK_CGROUP
924 unsigned use_memdelay:1;
925 #endif
926 #ifdef CONFIG_PSI
927 /* Stalled due to lack of memory */
928 unsigned in_memstall:1;
929 #endif
930 #ifdef CONFIG_PAGE_OWNER
931 /* Used by page_owner=on to detect recursion in page tracking. */
932 unsigned in_page_owner:1;
933 #endif
934 #ifdef CONFIG_EVENTFD
935 /* Recursion prevention for eventfd_signal() */
936 unsigned in_eventfd_signal:1;
937 #endif
938
939 unsigned long atomic_flags; /* Flags requiring atomic access. */
940
941 struct restart_block restart_block;
942
943 pid_t pid;
944 pid_t tgid;
945
946 #ifdef CONFIG_STACKPROTECTOR
947 /* Canary value for the -fstack-protector GCC feature: */
948 unsigned long stack_canary;
949 #endif
950 /*
951 * Pointers to the (original) parent process, youngest child, younger sibling,
952 * older sibling, respectively. (p->father can be replaced with
953 * p->real_parent->pid)
954 */
955
956 /* Real parent process: */
957 struct task_struct __rcu *real_parent;
958
959 /* Recipient of SIGCHLD, wait4() reports: */
960 struct task_struct __rcu *parent;
961
962 /*
963 * Children/sibling form the list of natural children:
964 */
965 struct list_head children;
966 struct list_head sibling;
967 struct task_struct *group_leader;
968
969 /*
970 * 'ptraced' is the list of tasks this task is using ptrace() on.
971 *
972 * This includes both natural children and PTRACE_ATTACH targets.
973 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
974 */
975 struct list_head ptraced;
976 struct list_head ptrace_entry;
977
978 /* PID/PID hash table linkage. */
979 struct pid *thread_pid;
980 struct hlist_node pid_links[PIDTYPE_MAX];
981 struct list_head thread_group;
982 struct list_head thread_node;
983
984 struct completion *vfork_done;
985
986 /* CLONE_CHILD_SETTID: */
987 int __user *set_child_tid;
988
989 /* CLONE_CHILD_CLEARTID: */
990 int __user *clear_child_tid;
991
992 /* PF_IO_WORKER */
993 void *pf_io_worker;
994
995 u64 utime;
996 u64 stime;
997 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
998 u64 utimescaled;
999 u64 stimescaled;
1000 #endif
1001 u64 gtime;
1002 struct prev_cputime prev_cputime;
1003 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1004 struct vtime vtime;
1005 #endif
1006
1007 #ifdef CONFIG_NO_HZ_FULL
1008 atomic_t tick_dep_mask;
1009 #endif
1010 /* Context switch counts: */
1011 unsigned long nvcsw;
1012 unsigned long nivcsw;
1013
1014 /* Monotonic time in nsecs: */
1015 u64 start_time;
1016
1017 /* Boot based time in nsecs: */
1018 u64 start_boottime;
1019
1020 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1021 unsigned long min_flt;
1022 unsigned long maj_flt;
1023
1024 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1025 struct posix_cputimers posix_cputimers;
1026
1027 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1028 struct posix_cputimers_work posix_cputimers_work;
1029 #endif
1030
1031 /* Process credentials: */
1032
1033 /* Tracer's credentials at attach: */
1034 const struct cred __rcu *ptracer_cred;
1035
1036 /* Objective and real subjective task credentials (COW): */
1037 const struct cred __rcu *real_cred;
1038
1039 /* Effective (overridable) subjective task credentials (COW): */
1040 const struct cred __rcu *cred;
1041
1042 #ifdef CONFIG_KEYS
1043 /* Cached requested key. */
1044 struct key *cached_requested_key;
1045 #endif
1046
1047 /*
1048 * executable name, excluding path.
1049 *
1050 * - normally initialized setup_new_exec()
1051 * - access it with [gs]et_task_comm()
1052 * - lock it with task_lock()
1053 */
1054 char comm[TASK_COMM_LEN];
1055
1056 struct nameidata *nameidata;
1057
1058 #ifdef CONFIG_SYSVIPC
1059 struct sysv_sem sysvsem;
1060 struct sysv_shm sysvshm;
1061 #endif
1062 #ifdef CONFIG_DETECT_HUNG_TASK
1063 unsigned long last_switch_count;
1064 unsigned long last_switch_time;
1065 #endif
1066 /* Filesystem information: */
1067 struct fs_struct *fs;
1068
1069 /* Open file information: */
1070 struct files_struct *files;
1071
1072 #ifdef CONFIG_IO_URING
1073 struct io_uring_task *io_uring;
1074 #endif
1075
1076 /* Namespaces: */
1077 struct nsproxy *nsproxy;
1078
1079 /* Signal handlers: */
1080 struct signal_struct *signal;
1081 struct sighand_struct __rcu *sighand;
1082 sigset_t blocked;
1083 sigset_t real_blocked;
1084 /* Restored if set_restore_sigmask() was used: */
1085 sigset_t saved_sigmask;
1086 struct sigpending pending;
1087 unsigned long sas_ss_sp;
1088 size_t sas_ss_size;
1089 unsigned int sas_ss_flags;
1090
1091 struct callback_head *task_works;
1092
1093 #ifdef CONFIG_AUDIT
1094 #ifdef CONFIG_AUDITSYSCALL
1095 struct audit_context *audit_context;
1096 #endif
1097 kuid_t loginuid;
1098 unsigned int sessionid;
1099 #endif
1100 struct seccomp seccomp;
1101 struct syscall_user_dispatch syscall_dispatch;
1102
1103 /* Thread group tracking: */
1104 u64 parent_exec_id;
1105 u64 self_exec_id;
1106
1107 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1108 spinlock_t alloc_lock;
1109
1110 /* Protection of the PI data structures: */
1111 raw_spinlock_t pi_lock;
1112
1113 struct wake_q_node wake_q;
1114
1115 #ifdef CONFIG_RT_MUTEXES
1116 /* PI waiters blocked on a rt_mutex held by this task: */
1117 struct rb_root_cached pi_waiters;
1118 /* Updated under owner's pi_lock and rq lock */
1119 struct task_struct *pi_top_task;
1120 /* Deadlock detection and priority inheritance handling: */
1121 struct rt_mutex_waiter *pi_blocked_on;
1122 #endif
1123
1124 #ifdef CONFIG_DEBUG_MUTEXES
1125 /* Mutex deadlock detection: */
1126 struct mutex_waiter *blocked_on;
1127 #endif
1128
1129 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1130 int non_block_count;
1131 #endif
1132
1133 #ifdef CONFIG_TRACE_IRQFLAGS
1134 struct irqtrace_events irqtrace;
1135 unsigned int hardirq_threaded;
1136 u64 hardirq_chain_key;
1137 int softirqs_enabled;
1138 int softirq_context;
1139 int irq_config;
1140 #endif
1141 #ifdef CONFIG_PREEMPT_RT
1142 int softirq_disable_cnt;
1143 #endif
1144
1145 #ifdef CONFIG_LOCKDEP
1146 # define MAX_LOCK_DEPTH 48UL
1147 u64 curr_chain_key;
1148 int lockdep_depth;
1149 unsigned int lockdep_recursion;
1150 struct held_lock held_locks[MAX_LOCK_DEPTH];
1151 #endif
1152
1153 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1154 unsigned int in_ubsan;
1155 #endif
1156
1157 /* Journalling filesystem info: */
1158 void *journal_info;
1159
1160 /* Stacked block device info: */
1161 struct bio_list *bio_list;
1162
1163 #ifdef CONFIG_BLOCK
1164 /* Stack plugging: */
1165 struct blk_plug *plug;
1166 #endif
1167
1168 /* VM state: */
1169 struct reclaim_state *reclaim_state;
1170
1171 struct backing_dev_info *backing_dev_info;
1172
1173 struct io_context *io_context;
1174
1175 #ifdef CONFIG_COMPACTION
1176 struct capture_control *capture_control;
1177 #endif
1178 /* Ptrace state: */
1179 unsigned long ptrace_message;
1180 kernel_siginfo_t *last_siginfo;
1181
1182 struct task_io_accounting ioac;
1183 #ifdef CONFIG_PSI
1184 /* Pressure stall state */
1185 unsigned int psi_flags;
1186 #endif
1187 #ifdef CONFIG_TASK_XACCT
1188 /* Accumulated RSS usage: */
1189 u64 acct_rss_mem1;
1190 /* Accumulated virtual memory usage: */
1191 u64 acct_vm_mem1;
1192 /* stime + utime since last update: */
1193 u64 acct_timexpd;
1194 #endif
1195 #ifdef CONFIG_CPUSETS
1196 /* Protected by ->alloc_lock: */
1197 nodemask_t mems_allowed;
1198 /* Sequence number to catch updates: */
1199 seqcount_spinlock_t mems_allowed_seq;
1200 int cpuset_mem_spread_rotor;
1201 int cpuset_slab_spread_rotor;
1202 #endif
1203 #ifdef CONFIG_CGROUPS
1204 /* Control Group info protected by css_set_lock: */
1205 struct css_set __rcu *cgroups;
1206 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1207 struct list_head cg_list;
1208 #endif
1209 #ifdef CONFIG_X86_CPU_RESCTRL
1210 u32 closid;
1211 u32 rmid;
1212 #endif
1213 #ifdef CONFIG_FUTEX
1214 struct robust_list_head __user *robust_list;
1215 #ifdef CONFIG_COMPAT
1216 struct compat_robust_list_head __user *compat_robust_list;
1217 #endif
1218 struct list_head pi_state_list;
1219 struct futex_pi_state *pi_state_cache;
1220 struct mutex futex_exit_mutex;
1221 unsigned int futex_state;
1222 #endif
1223 #ifdef CONFIG_PERF_EVENTS
1224 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1225 struct mutex perf_event_mutex;
1226 struct list_head perf_event_list;
1227 #endif
1228 #ifdef CONFIG_DEBUG_PREEMPT
1229 unsigned long preempt_disable_ip;
1230 #endif
1231 #ifdef CONFIG_NUMA
1232 /* Protected by alloc_lock: */
1233 struct mempolicy *mempolicy;
1234 short il_prev;
1235 short pref_node_fork;
1236 #endif
1237 #ifdef CONFIG_NUMA_BALANCING
1238 int numa_scan_seq;
1239 unsigned int numa_scan_period;
1240 unsigned int numa_scan_period_max;
1241 int numa_preferred_nid;
1242 unsigned long numa_migrate_retry;
1243 /* Migration stamp: */
1244 u64 node_stamp;
1245 u64 last_task_numa_placement;
1246 u64 last_sum_exec_runtime;
1247 struct callback_head numa_work;
1248
1249 /*
1250 * This pointer is only modified for current in syscall and
1251 * pagefault context (and for tasks being destroyed), so it can be read
1252 * from any of the following contexts:
1253 * - RCU read-side critical section
1254 * - current->numa_group from everywhere
1255 * - task's runqueue locked, task not running
1256 */
1257 struct numa_group __rcu *numa_group;
1258
1259 /*
1260 * numa_faults is an array split into four regions:
1261 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1262 * in this precise order.
1263 *
1264 * faults_memory: Exponential decaying average of faults on a per-node
1265 * basis. Scheduling placement decisions are made based on these
1266 * counts. The values remain static for the duration of a PTE scan.
1267 * faults_cpu: Track the nodes the process was running on when a NUMA
1268 * hinting fault was incurred.
1269 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1270 * during the current scan window. When the scan completes, the counts
1271 * in faults_memory and faults_cpu decay and these values are copied.
1272 */
1273 unsigned long *numa_faults;
1274 unsigned long total_numa_faults;
1275
1276 /*
1277 * numa_faults_locality tracks if faults recorded during the last
1278 * scan window were remote/local or failed to migrate. The task scan
1279 * period is adapted based on the locality of the faults with different
1280 * weights depending on whether they were shared or private faults
1281 */
1282 unsigned long numa_faults_locality[3];
1283
1284 unsigned long numa_pages_migrated;
1285 #endif /* CONFIG_NUMA_BALANCING */
1286
1287 #ifdef CONFIG_RSEQ
1288 struct rseq __user *rseq;
1289 u32 rseq_sig;
1290 /*
1291 * RmW on rseq_event_mask must be performed atomically
1292 * with respect to preemption.
1293 */
1294 unsigned long rseq_event_mask;
1295 #endif
1296
1297 struct tlbflush_unmap_batch tlb_ubc;
1298
1299 union {
1300 refcount_t rcu_users;
1301 struct rcu_head rcu;
1302 };
1303
1304 /* Cache last used pipe for splice(): */
1305 struct pipe_inode_info *splice_pipe;
1306
1307 struct page_frag task_frag;
1308
1309 #ifdef CONFIG_TASK_DELAY_ACCT
1310 struct task_delay_info *delays;
1311 #endif
1312
1313 #ifdef CONFIG_FAULT_INJECTION
1314 int make_it_fail;
1315 unsigned int fail_nth;
1316 #endif
1317 /*
1318 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1319 * balance_dirty_pages() for a dirty throttling pause:
1320 */
1321 int nr_dirtied;
1322 int nr_dirtied_pause;
1323 /* Start of a write-and-pause period: */
1324 unsigned long dirty_paused_when;
1325
1326 #ifdef CONFIG_LATENCYTOP
1327 int latency_record_count;
1328 struct latency_record latency_record[LT_SAVECOUNT];
1329 #endif
1330 /*
1331 * Time slack values; these are used to round up poll() and
1332 * select() etc timeout values. These are in nanoseconds.
1333 */
1334 u64 timer_slack_ns;
1335 u64 default_timer_slack_ns;
1336
1337 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1338 unsigned int kasan_depth;
1339 #endif
1340
1341 #ifdef CONFIG_KCSAN
1342 struct kcsan_ctx kcsan_ctx;
1343 #ifdef CONFIG_TRACE_IRQFLAGS
1344 struct irqtrace_events kcsan_save_irqtrace;
1345 #endif
1346 #endif
1347
1348 #if IS_ENABLED(CONFIG_KUNIT)
1349 struct kunit *kunit_test;
1350 #endif
1351
1352 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1353 /* Index of current stored address in ret_stack: */
1354 int curr_ret_stack;
1355 int curr_ret_depth;
1356
1357 /* Stack of return addresses for return function tracing: */
1358 struct ftrace_ret_stack *ret_stack;
1359
1360 /* Timestamp for last schedule: */
1361 unsigned long long ftrace_timestamp;
1362
1363 /*
1364 * Number of functions that haven't been traced
1365 * because of depth overrun:
1366 */
1367 atomic_t trace_overrun;
1368
1369 /* Pause tracing: */
1370 atomic_t tracing_graph_pause;
1371 #endif
1372
1373 #ifdef CONFIG_TRACING
1374 /* State flags for use by tracers: */
1375 unsigned long trace;
1376
1377 /* Bitmask and counter of trace recursion: */
1378 unsigned long trace_recursion;
1379 #endif /* CONFIG_TRACING */
1380
1381 #ifdef CONFIG_KCOV
1382 /* See kernel/kcov.c for more details. */
1383
1384 /* Coverage collection mode enabled for this task (0 if disabled): */
1385 unsigned int kcov_mode;
1386
1387 /* Size of the kcov_area: */
1388 unsigned int kcov_size;
1389
1390 /* Buffer for coverage collection: */
1391 void *kcov_area;
1392
1393 /* KCOV descriptor wired with this task or NULL: */
1394 struct kcov *kcov;
1395
1396 /* KCOV common handle for remote coverage collection: */
1397 u64 kcov_handle;
1398
1399 /* KCOV sequence number: */
1400 int kcov_sequence;
1401
1402 /* Collect coverage from softirq context: */
1403 unsigned int kcov_softirq;
1404 #endif
1405
1406 #ifdef CONFIG_MEMCG
1407 struct mem_cgroup *memcg_in_oom;
1408 gfp_t memcg_oom_gfp_mask;
1409 int memcg_oom_order;
1410
1411 /* Number of pages to reclaim on returning to userland: */
1412 unsigned int memcg_nr_pages_over_high;
1413
1414 /* Used by memcontrol for targeted memcg charge: */
1415 struct mem_cgroup *active_memcg;
1416 #endif
1417
1418 #ifdef CONFIG_BLK_CGROUP
1419 struct request_queue *throttle_queue;
1420 #endif
1421
1422 #ifdef CONFIG_UPROBES
1423 struct uprobe_task *utask;
1424 #endif
1425 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1426 unsigned int sequential_io;
1427 unsigned int sequential_io_avg;
1428 #endif
1429 struct kmap_ctrl kmap_ctrl;
1430 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1431 unsigned long task_state_change;
1432 # ifdef CONFIG_PREEMPT_RT
1433 unsigned long saved_state_change;
1434 # endif
1435 #endif
1436 int pagefault_disabled;
1437 #ifdef CONFIG_MMU
1438 struct task_struct *oom_reaper_list;
1439 #endif
1440 #ifdef CONFIG_VMAP_STACK
1441 struct vm_struct *stack_vm_area;
1442 #endif
1443 #ifdef CONFIG_THREAD_INFO_IN_TASK
1444 /* A live task holds one reference: */
1445 refcount_t stack_refcount;
1446 #endif
1447 #ifdef CONFIG_LIVEPATCH
1448 int patch_state;
1449 #endif
1450 #ifdef CONFIG_SECURITY
1451 /* Used by LSM modules for access restriction: */
1452 void *security;
1453 #endif
1454 #ifdef CONFIG_BPF_SYSCALL
1455 /* Used by BPF task local storage */
1456 struct bpf_local_storage __rcu *bpf_storage;
1457 /* Used for BPF run context */
1458 struct bpf_run_ctx *bpf_ctx;
1459 #endif
1460
1461 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1462 unsigned long lowest_stack;
1463 unsigned long prev_lowest_stack;
1464 #endif
1465
1466 #ifdef CONFIG_X86_MCE
1467 void __user *mce_vaddr;
1468 __u64 mce_kflags;
1469 u64 mce_addr;
1470 __u64 mce_ripv : 1,
1471 mce_whole_page : 1,
1472 __mce_reserved : 62;
1473 struct callback_head mce_kill_me;
1474 int mce_count;
1475 #endif
1476
1477 #ifdef CONFIG_KRETPROBES
1478 struct llist_head kretprobe_instances;
1479 #endif
1480
1481 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1482 /*
1483 * If L1D flush is supported on mm context switch
1484 * then we use this callback head to queue kill work
1485 * to kill tasks that are not running on SMT disabled
1486 * cores
1487 */
1488 struct callback_head l1d_flush_kill;
1489 #endif
1490
1491 /*
1492 * New fields for task_struct should be added above here, so that
1493 * they are included in the randomized portion of task_struct.
1494 */
1495 randomized_struct_fields_end
1496
1497 /* CPU-specific state of this task: */
1498 struct thread_struct thread;
1499
1500 /*
1501 * WARNING: on x86, 'thread_struct' contains a variable-sized
1502 * structure. It *MUST* be at the end of 'task_struct'.
1503 *
1504 * Do not put anything below here!
1505 */
1506 };
1507
task_pid(struct task_struct * task)1508 static inline struct pid *task_pid(struct task_struct *task)
1509 {
1510 return task->thread_pid;
1511 }
1512
1513 /*
1514 * the helpers to get the task's different pids as they are seen
1515 * from various namespaces
1516 *
1517 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1518 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1519 * current.
1520 * task_xid_nr_ns() : id seen from the ns specified;
1521 *
1522 * see also pid_nr() etc in include/linux/pid.h
1523 */
1524 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1525
task_pid_nr(struct task_struct * tsk)1526 static inline pid_t task_pid_nr(struct task_struct *tsk)
1527 {
1528 return tsk->pid;
1529 }
1530
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1531 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1532 {
1533 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1534 }
1535
task_pid_vnr(struct task_struct * tsk)1536 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1537 {
1538 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1539 }
1540
1541
task_tgid_nr(struct task_struct * tsk)1542 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1543 {
1544 return tsk->tgid;
1545 }
1546
1547 /**
1548 * pid_alive - check that a task structure is not stale
1549 * @p: Task structure to be checked.
1550 *
1551 * Test if a process is not yet dead (at most zombie state)
1552 * If pid_alive fails, then pointers within the task structure
1553 * can be stale and must not be dereferenced.
1554 *
1555 * Return: 1 if the process is alive. 0 otherwise.
1556 */
pid_alive(const struct task_struct * p)1557 static inline int pid_alive(const struct task_struct *p)
1558 {
1559 return p->thread_pid != NULL;
1560 }
1561
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1562 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1563 {
1564 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1565 }
1566
task_pgrp_vnr(struct task_struct * tsk)1567 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1568 {
1569 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1570 }
1571
1572
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1573 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1574 {
1575 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1576 }
1577
task_session_vnr(struct task_struct * tsk)1578 static inline pid_t task_session_vnr(struct task_struct *tsk)
1579 {
1580 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1581 }
1582
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1583 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1584 {
1585 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1586 }
1587
task_tgid_vnr(struct task_struct * tsk)1588 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1589 {
1590 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1591 }
1592
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1593 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1594 {
1595 pid_t pid = 0;
1596
1597 rcu_read_lock();
1598 if (pid_alive(tsk))
1599 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1600 rcu_read_unlock();
1601
1602 return pid;
1603 }
1604
task_ppid_nr(const struct task_struct * tsk)1605 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1606 {
1607 return task_ppid_nr_ns(tsk, &init_pid_ns);
1608 }
1609
1610 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1611 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1612 {
1613 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1614 }
1615
1616 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1617 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1618
task_state_index(struct task_struct * tsk)1619 static inline unsigned int task_state_index(struct task_struct *tsk)
1620 {
1621 unsigned int tsk_state = READ_ONCE(tsk->__state);
1622 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1623
1624 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1625
1626 if (tsk_state == TASK_IDLE)
1627 state = TASK_REPORT_IDLE;
1628
1629 return fls(state);
1630 }
1631
task_index_to_char(unsigned int state)1632 static inline char task_index_to_char(unsigned int state)
1633 {
1634 static const char state_char[] = "RSDTtXZPI";
1635
1636 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1637
1638 return state_char[state];
1639 }
1640
task_state_to_char(struct task_struct * tsk)1641 static inline char task_state_to_char(struct task_struct *tsk)
1642 {
1643 return task_index_to_char(task_state_index(tsk));
1644 }
1645
1646 /**
1647 * is_global_init - check if a task structure is init. Since init
1648 * is free to have sub-threads we need to check tgid.
1649 * @tsk: Task structure to be checked.
1650 *
1651 * Check if a task structure is the first user space task the kernel created.
1652 *
1653 * Return: 1 if the task structure is init. 0 otherwise.
1654 */
is_global_init(struct task_struct * tsk)1655 static inline int is_global_init(struct task_struct *tsk)
1656 {
1657 return task_tgid_nr(tsk) == 1;
1658 }
1659
1660 extern struct pid *cad_pid;
1661
1662 /*
1663 * Per process flags
1664 */
1665 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1666 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1667 #define PF_EXITING 0x00000004 /* Getting shut down */
1668 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1669 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1670 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1671 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1672 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1673 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1674 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1675 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1676 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1677 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1678 #define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1679 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1680 #define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1681 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1682 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1683 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1684 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1685 * I am cleaning dirty pages from some other bdi. */
1686 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1687 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1688 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1689 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1690 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1691 #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1692 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1693 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1694
1695 /*
1696 * Only the _current_ task can read/write to tsk->flags, but other
1697 * tasks can access tsk->flags in readonly mode for example
1698 * with tsk_used_math (like during threaded core dumping).
1699 * There is however an exception to this rule during ptrace
1700 * or during fork: the ptracer task is allowed to write to the
1701 * child->flags of its traced child (same goes for fork, the parent
1702 * can write to the child->flags), because we're guaranteed the
1703 * child is not running and in turn not changing child->flags
1704 * at the same time the parent does it.
1705 */
1706 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1707 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1708 #define clear_used_math() clear_stopped_child_used_math(current)
1709 #define set_used_math() set_stopped_child_used_math(current)
1710
1711 #define conditional_stopped_child_used_math(condition, child) \
1712 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1713
1714 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1715
1716 #define copy_to_stopped_child_used_math(child) \
1717 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1718
1719 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1720 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1721 #define used_math() tsk_used_math(current)
1722
is_percpu_thread(void)1723 static __always_inline bool is_percpu_thread(void)
1724 {
1725 #ifdef CONFIG_SMP
1726 return (current->flags & PF_NO_SETAFFINITY) &&
1727 (current->nr_cpus_allowed == 1);
1728 #else
1729 return true;
1730 #endif
1731 }
1732
1733 /* Per-process atomic flags. */
1734 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1735 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1736 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1737 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1738 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1739 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1740 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1741 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1742
1743 #define TASK_PFA_TEST(name, func) \
1744 static inline bool task_##func(struct task_struct *p) \
1745 { return test_bit(PFA_##name, &p->atomic_flags); }
1746
1747 #define TASK_PFA_SET(name, func) \
1748 static inline void task_set_##func(struct task_struct *p) \
1749 { set_bit(PFA_##name, &p->atomic_flags); }
1750
1751 #define TASK_PFA_CLEAR(name, func) \
1752 static inline void task_clear_##func(struct task_struct *p) \
1753 { clear_bit(PFA_##name, &p->atomic_flags); }
1754
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1755 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1756 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1757
1758 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1759 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1760 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1761
1762 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1763 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1764 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1765
1766 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1767 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1768 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1769
1770 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1771 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1772 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1773
1774 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1775 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1776
1777 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1778 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1779 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1780
1781 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1782 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1783
1784 static inline void
1785 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1786 {
1787 current->flags &= ~flags;
1788 current->flags |= orig_flags & flags;
1789 }
1790
1791 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1792 extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1793 #ifdef CONFIG_SMP
1794 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1795 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1796 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1797 extern void release_user_cpus_ptr(struct task_struct *p);
1798 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1799 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1800 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1801 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1802 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1803 {
1804 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1805 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1806 {
1807 if (!cpumask_test_cpu(0, new_mask))
1808 return -EINVAL;
1809 return 0;
1810 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1811 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1812 {
1813 if (src->user_cpus_ptr)
1814 return -EINVAL;
1815 return 0;
1816 }
release_user_cpus_ptr(struct task_struct * p)1817 static inline void release_user_cpus_ptr(struct task_struct *p)
1818 {
1819 WARN_ON(p->user_cpus_ptr);
1820 }
1821
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1822 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1823 {
1824 return 0;
1825 }
1826 #endif
1827
1828 extern int yield_to(struct task_struct *p, bool preempt);
1829 extern void set_user_nice(struct task_struct *p, long nice);
1830 extern int task_prio(const struct task_struct *p);
1831
1832 /**
1833 * task_nice - return the nice value of a given task.
1834 * @p: the task in question.
1835 *
1836 * Return: The nice value [ -20 ... 0 ... 19 ].
1837 */
task_nice(const struct task_struct * p)1838 static inline int task_nice(const struct task_struct *p)
1839 {
1840 return PRIO_TO_NICE((p)->static_prio);
1841 }
1842
1843 extern int can_nice(const struct task_struct *p, const int nice);
1844 extern int task_curr(const struct task_struct *p);
1845 extern int idle_cpu(int cpu);
1846 extern int available_idle_cpu(int cpu);
1847 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1848 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1849 extern void sched_set_fifo(struct task_struct *p);
1850 extern void sched_set_fifo_low(struct task_struct *p);
1851 extern void sched_set_normal(struct task_struct *p, int nice);
1852 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1853 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1854 extern struct task_struct *idle_task(int cpu);
1855
1856 /**
1857 * is_idle_task - is the specified task an idle task?
1858 * @p: the task in question.
1859 *
1860 * Return: 1 if @p is an idle task. 0 otherwise.
1861 */
is_idle_task(const struct task_struct * p)1862 static __always_inline bool is_idle_task(const struct task_struct *p)
1863 {
1864 return !!(p->flags & PF_IDLE);
1865 }
1866
1867 extern struct task_struct *curr_task(int cpu);
1868 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1869
1870 void yield(void);
1871
1872 union thread_union {
1873 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1874 struct task_struct task;
1875 #endif
1876 #ifndef CONFIG_THREAD_INFO_IN_TASK
1877 struct thread_info thread_info;
1878 #endif
1879 unsigned long stack[THREAD_SIZE/sizeof(long)];
1880 };
1881
1882 #ifndef CONFIG_THREAD_INFO_IN_TASK
1883 extern struct thread_info init_thread_info;
1884 #endif
1885
1886 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1887
1888 #ifdef CONFIG_THREAD_INFO_IN_TASK
task_thread_info(struct task_struct * task)1889 static inline struct thread_info *task_thread_info(struct task_struct *task)
1890 {
1891 return &task->thread_info;
1892 }
1893 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1894 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1895 #endif
1896
1897 /*
1898 * find a task by one of its numerical ids
1899 *
1900 * find_task_by_pid_ns():
1901 * finds a task by its pid in the specified namespace
1902 * find_task_by_vpid():
1903 * finds a task by its virtual pid
1904 *
1905 * see also find_vpid() etc in include/linux/pid.h
1906 */
1907
1908 extern struct task_struct *find_task_by_vpid(pid_t nr);
1909 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1910
1911 /*
1912 * find a task by its virtual pid and get the task struct
1913 */
1914 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1915
1916 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1917 extern int wake_up_process(struct task_struct *tsk);
1918 extern void wake_up_new_task(struct task_struct *tsk);
1919
1920 #ifdef CONFIG_SMP
1921 extern void kick_process(struct task_struct *tsk);
1922 #else
kick_process(struct task_struct * tsk)1923 static inline void kick_process(struct task_struct *tsk) { }
1924 #endif
1925
1926 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1927
set_task_comm(struct task_struct * tsk,const char * from)1928 static inline void set_task_comm(struct task_struct *tsk, const char *from)
1929 {
1930 __set_task_comm(tsk, from, false);
1931 }
1932
1933 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1934 #define get_task_comm(buf, tsk) ({ \
1935 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1936 __get_task_comm(buf, sizeof(buf), tsk); \
1937 })
1938
1939 #ifdef CONFIG_SMP
scheduler_ipi(void)1940 static __always_inline void scheduler_ipi(void)
1941 {
1942 /*
1943 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1944 * TIF_NEED_RESCHED remotely (for the first time) will also send
1945 * this IPI.
1946 */
1947 preempt_fold_need_resched();
1948 }
1949 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
1950 #else
scheduler_ipi(void)1951 static inline void scheduler_ipi(void) { }
wait_task_inactive(struct task_struct * p,unsigned int match_state)1952 static inline unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
1953 {
1954 return 1;
1955 }
1956 #endif
1957
1958 /*
1959 * Set thread flags in other task's structures.
1960 * See asm/thread_info.h for TIF_xxxx flags available:
1961 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)1962 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1963 {
1964 set_ti_thread_flag(task_thread_info(tsk), flag);
1965 }
1966
clear_tsk_thread_flag(struct task_struct * tsk,int flag)1967 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1968 {
1969 clear_ti_thread_flag(task_thread_info(tsk), flag);
1970 }
1971
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)1972 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1973 bool value)
1974 {
1975 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1976 }
1977
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)1978 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1979 {
1980 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1981 }
1982
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)1983 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1984 {
1985 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1986 }
1987
test_tsk_thread_flag(struct task_struct * tsk,int flag)1988 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1989 {
1990 return test_ti_thread_flag(task_thread_info(tsk), flag);
1991 }
1992
set_tsk_need_resched(struct task_struct * tsk)1993 static inline void set_tsk_need_resched(struct task_struct *tsk)
1994 {
1995 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1996 }
1997
clear_tsk_need_resched(struct task_struct * tsk)1998 static inline void clear_tsk_need_resched(struct task_struct *tsk)
1999 {
2000 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2001 }
2002
test_tsk_need_resched(struct task_struct * tsk)2003 static inline int test_tsk_need_resched(struct task_struct *tsk)
2004 {
2005 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2006 }
2007
2008 /*
2009 * cond_resched() and cond_resched_lock(): latency reduction via
2010 * explicit rescheduling in places that are safe. The return
2011 * value indicates whether a reschedule was done in fact.
2012 * cond_resched_lock() will drop the spinlock before scheduling,
2013 */
2014 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2015 extern int __cond_resched(void);
2016
2017 #ifdef CONFIG_PREEMPT_DYNAMIC
2018
2019 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2020
_cond_resched(void)2021 static __always_inline int _cond_resched(void)
2022 {
2023 return static_call_mod(cond_resched)();
2024 }
2025
2026 #else
2027
_cond_resched(void)2028 static inline int _cond_resched(void)
2029 {
2030 return __cond_resched();
2031 }
2032
2033 #endif /* CONFIG_PREEMPT_DYNAMIC */
2034
2035 #else
2036
_cond_resched(void)2037 static inline int _cond_resched(void) { return 0; }
2038
2039 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2040
2041 #define cond_resched() ({ \
2042 ___might_sleep(__FILE__, __LINE__, 0); \
2043 _cond_resched(); \
2044 })
2045
2046 extern int __cond_resched_lock(spinlock_t *lock);
2047 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2048 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2049
2050 #define cond_resched_lock(lock) ({ \
2051 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
2052 __cond_resched_lock(lock); \
2053 })
2054
2055 #define cond_resched_rwlock_read(lock) ({ \
2056 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2057 __cond_resched_rwlock_read(lock); \
2058 })
2059
2060 #define cond_resched_rwlock_write(lock) ({ \
2061 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
2062 __cond_resched_rwlock_write(lock); \
2063 })
2064
cond_resched_rcu(void)2065 static inline void cond_resched_rcu(void)
2066 {
2067 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2068 rcu_read_unlock();
2069 cond_resched();
2070 rcu_read_lock();
2071 #endif
2072 }
2073
2074 /*
2075 * Does a critical section need to be broken due to another
2076 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2077 * but a general need for low latency)
2078 */
spin_needbreak(spinlock_t * lock)2079 static inline int spin_needbreak(spinlock_t *lock)
2080 {
2081 #ifdef CONFIG_PREEMPTION
2082 return spin_is_contended(lock);
2083 #else
2084 return 0;
2085 #endif
2086 }
2087
2088 /*
2089 * Check if a rwlock is contended.
2090 * Returns non-zero if there is another task waiting on the rwlock.
2091 * Returns zero if the lock is not contended or the system / underlying
2092 * rwlock implementation does not support contention detection.
2093 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2094 * for low latency.
2095 */
rwlock_needbreak(rwlock_t * lock)2096 static inline int rwlock_needbreak(rwlock_t *lock)
2097 {
2098 #ifdef CONFIG_PREEMPTION
2099 return rwlock_is_contended(lock);
2100 #else
2101 return 0;
2102 #endif
2103 }
2104
need_resched(void)2105 static __always_inline bool need_resched(void)
2106 {
2107 return unlikely(tif_need_resched());
2108 }
2109
2110 /*
2111 * Wrappers for p->thread_info->cpu access. No-op on UP.
2112 */
2113 #ifdef CONFIG_SMP
2114
task_cpu(const struct task_struct * p)2115 static inline unsigned int task_cpu(const struct task_struct *p)
2116 {
2117 #ifdef CONFIG_THREAD_INFO_IN_TASK
2118 return READ_ONCE(p->cpu);
2119 #else
2120 return READ_ONCE(task_thread_info(p)->cpu);
2121 #endif
2122 }
2123
2124 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2125
2126 #else
2127
task_cpu(const struct task_struct * p)2128 static inline unsigned int task_cpu(const struct task_struct *p)
2129 {
2130 return 0;
2131 }
2132
set_task_cpu(struct task_struct * p,unsigned int cpu)2133 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2134 {
2135 }
2136
2137 #endif /* CONFIG_SMP */
2138
2139 extern bool sched_task_on_rq(struct task_struct *p);
2140
2141 /*
2142 * In order to reduce various lock holder preemption latencies provide an
2143 * interface to see if a vCPU is currently running or not.
2144 *
2145 * This allows us to terminate optimistic spin loops and block, analogous to
2146 * the native optimistic spin heuristic of testing if the lock owner task is
2147 * running or not.
2148 */
2149 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2150 static inline bool vcpu_is_preempted(int cpu)
2151 {
2152 return false;
2153 }
2154 #endif
2155
2156 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2157 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2158
2159 #ifndef TASK_SIZE_OF
2160 #define TASK_SIZE_OF(tsk) TASK_SIZE
2161 #endif
2162
2163 #ifdef CONFIG_SMP
2164 /* Returns effective CPU energy utilization, as seen by the scheduler */
2165 unsigned long sched_cpu_util(int cpu, unsigned long max);
2166 #endif /* CONFIG_SMP */
2167
2168 #ifdef CONFIG_RSEQ
2169
2170 /*
2171 * Map the event mask on the user-space ABI enum rseq_cs_flags
2172 * for direct mask checks.
2173 */
2174 enum rseq_event_mask_bits {
2175 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2176 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2177 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2178 };
2179
2180 enum rseq_event_mask {
2181 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2182 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2183 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2184 };
2185
rseq_set_notify_resume(struct task_struct * t)2186 static inline void rseq_set_notify_resume(struct task_struct *t)
2187 {
2188 if (t->rseq)
2189 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2190 }
2191
2192 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2193
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2194 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2195 struct pt_regs *regs)
2196 {
2197 if (current->rseq)
2198 __rseq_handle_notify_resume(ksig, regs);
2199 }
2200
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2201 static inline void rseq_signal_deliver(struct ksignal *ksig,
2202 struct pt_regs *regs)
2203 {
2204 preempt_disable();
2205 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2206 preempt_enable();
2207 rseq_handle_notify_resume(ksig, regs);
2208 }
2209
2210 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2211 static inline void rseq_preempt(struct task_struct *t)
2212 {
2213 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2214 rseq_set_notify_resume(t);
2215 }
2216
2217 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2218 static inline void rseq_migrate(struct task_struct *t)
2219 {
2220 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2221 rseq_set_notify_resume(t);
2222 }
2223
2224 /*
2225 * If parent process has a registered restartable sequences area, the
2226 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2227 */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2228 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2229 {
2230 if (clone_flags & CLONE_VM) {
2231 t->rseq = NULL;
2232 t->rseq_sig = 0;
2233 t->rseq_event_mask = 0;
2234 } else {
2235 t->rseq = current->rseq;
2236 t->rseq_sig = current->rseq_sig;
2237 t->rseq_event_mask = current->rseq_event_mask;
2238 }
2239 }
2240
rseq_execve(struct task_struct * t)2241 static inline void rseq_execve(struct task_struct *t)
2242 {
2243 t->rseq = NULL;
2244 t->rseq_sig = 0;
2245 t->rseq_event_mask = 0;
2246 }
2247
2248 #else
2249
rseq_set_notify_resume(struct task_struct * t)2250 static inline void rseq_set_notify_resume(struct task_struct *t)
2251 {
2252 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2253 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2254 struct pt_regs *regs)
2255 {
2256 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2257 static inline void rseq_signal_deliver(struct ksignal *ksig,
2258 struct pt_regs *regs)
2259 {
2260 }
rseq_preempt(struct task_struct * t)2261 static inline void rseq_preempt(struct task_struct *t)
2262 {
2263 }
rseq_migrate(struct task_struct * t)2264 static inline void rseq_migrate(struct task_struct *t)
2265 {
2266 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2267 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2268 {
2269 }
rseq_execve(struct task_struct * t)2270 static inline void rseq_execve(struct task_struct *t)
2271 {
2272 }
2273
2274 #endif
2275
2276 #ifdef CONFIG_DEBUG_RSEQ
2277
2278 void rseq_syscall(struct pt_regs *regs);
2279
2280 #else
2281
rseq_syscall(struct pt_regs * regs)2282 static inline void rseq_syscall(struct pt_regs *regs)
2283 {
2284 }
2285
2286 #endif
2287
2288 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2289 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2290 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2291
2292 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2293 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2294 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2295
2296 int sched_trace_rq_cpu(struct rq *rq);
2297 int sched_trace_rq_cpu_capacity(struct rq *rq);
2298 int sched_trace_rq_nr_running(struct rq *rq);
2299
2300 const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2301
2302 #ifdef CONFIG_SCHED_CORE
2303 extern void sched_core_free(struct task_struct *tsk);
2304 extern void sched_core_fork(struct task_struct *p);
2305 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2306 unsigned long uaddr);
2307 #else
sched_core_free(struct task_struct * tsk)2308 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2309 static inline void sched_core_fork(struct task_struct *p) { }
2310 #endif
2311
2312 #endif
2313