1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*******************************************************************************
3 * Filename: target_core_transport.c
4 *
5 * This file contains the Generic Target Engine Core.
6 *
7 * (c) Copyright 2002-2013 Datera, Inc.
8 *
9 * Nicholas A. Bellinger <nab@kernel.org>
10 *
11 ******************************************************************************/
12
13 #include <linux/net.h>
14 #include <linux/delay.h>
15 #include <linux/string.h>
16 #include <linux/timer.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/kthread.h>
20 #include <linux/in.h>
21 #include <linux/cdrom.h>
22 #include <linux/module.h>
23 #include <linux/ratelimit.h>
24 #include <linux/vmalloc.h>
25 #include <asm/unaligned.h>
26 #include <net/sock.h>
27 #include <net/tcp.h>
28 #include <scsi/scsi_proto.h>
29 #include <scsi/scsi_common.h>
30
31 #include <target/target_core_base.h>
32 #include <target/target_core_backend.h>
33 #include <target/target_core_fabric.h>
34
35 #include "target_core_internal.h"
36 #include "target_core_alua.h"
37 #include "target_core_pr.h"
38 #include "target_core_ua.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/target.h>
42
43 static struct workqueue_struct *target_completion_wq;
44 static struct workqueue_struct *target_submission_wq;
45 static struct kmem_cache *se_sess_cache;
46 struct kmem_cache *se_ua_cache;
47 struct kmem_cache *t10_pr_reg_cache;
48 struct kmem_cache *t10_alua_lu_gp_cache;
49 struct kmem_cache *t10_alua_lu_gp_mem_cache;
50 struct kmem_cache *t10_alua_tg_pt_gp_cache;
51 struct kmem_cache *t10_alua_lba_map_cache;
52 struct kmem_cache *t10_alua_lba_map_mem_cache;
53
54 static void transport_complete_task_attr(struct se_cmd *cmd);
55 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
56 static void transport_handle_queue_full(struct se_cmd *cmd,
57 struct se_device *dev, int err, bool write_pending);
58 static void target_complete_ok_work(struct work_struct *work);
59
init_se_kmem_caches(void)60 int init_se_kmem_caches(void)
61 {
62 se_sess_cache = kmem_cache_create("se_sess_cache",
63 sizeof(struct se_session), __alignof__(struct se_session),
64 0, NULL);
65 if (!se_sess_cache) {
66 pr_err("kmem_cache_create() for struct se_session"
67 " failed\n");
68 goto out;
69 }
70 se_ua_cache = kmem_cache_create("se_ua_cache",
71 sizeof(struct se_ua), __alignof__(struct se_ua),
72 0, NULL);
73 if (!se_ua_cache) {
74 pr_err("kmem_cache_create() for struct se_ua failed\n");
75 goto out_free_sess_cache;
76 }
77 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
78 sizeof(struct t10_pr_registration),
79 __alignof__(struct t10_pr_registration), 0, NULL);
80 if (!t10_pr_reg_cache) {
81 pr_err("kmem_cache_create() for struct t10_pr_registration"
82 " failed\n");
83 goto out_free_ua_cache;
84 }
85 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
86 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
87 0, NULL);
88 if (!t10_alua_lu_gp_cache) {
89 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
90 " failed\n");
91 goto out_free_pr_reg_cache;
92 }
93 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
94 sizeof(struct t10_alua_lu_gp_member),
95 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
96 if (!t10_alua_lu_gp_mem_cache) {
97 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
98 "cache failed\n");
99 goto out_free_lu_gp_cache;
100 }
101 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
102 sizeof(struct t10_alua_tg_pt_gp),
103 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
104 if (!t10_alua_tg_pt_gp_cache) {
105 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
106 "cache failed\n");
107 goto out_free_lu_gp_mem_cache;
108 }
109 t10_alua_lba_map_cache = kmem_cache_create(
110 "t10_alua_lba_map_cache",
111 sizeof(struct t10_alua_lba_map),
112 __alignof__(struct t10_alua_lba_map), 0, NULL);
113 if (!t10_alua_lba_map_cache) {
114 pr_err("kmem_cache_create() for t10_alua_lba_map_"
115 "cache failed\n");
116 goto out_free_tg_pt_gp_cache;
117 }
118 t10_alua_lba_map_mem_cache = kmem_cache_create(
119 "t10_alua_lba_map_mem_cache",
120 sizeof(struct t10_alua_lba_map_member),
121 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
122 if (!t10_alua_lba_map_mem_cache) {
123 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
124 "cache failed\n");
125 goto out_free_lba_map_cache;
126 }
127
128 target_completion_wq = alloc_workqueue("target_completion",
129 WQ_MEM_RECLAIM, 0);
130 if (!target_completion_wq)
131 goto out_free_lba_map_mem_cache;
132
133 target_submission_wq = alloc_workqueue("target_submission",
134 WQ_MEM_RECLAIM, 0);
135 if (!target_submission_wq)
136 goto out_free_completion_wq;
137
138 return 0;
139
140 out_free_completion_wq:
141 destroy_workqueue(target_completion_wq);
142 out_free_lba_map_mem_cache:
143 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
144 out_free_lba_map_cache:
145 kmem_cache_destroy(t10_alua_lba_map_cache);
146 out_free_tg_pt_gp_cache:
147 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
148 out_free_lu_gp_mem_cache:
149 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
150 out_free_lu_gp_cache:
151 kmem_cache_destroy(t10_alua_lu_gp_cache);
152 out_free_pr_reg_cache:
153 kmem_cache_destroy(t10_pr_reg_cache);
154 out_free_ua_cache:
155 kmem_cache_destroy(se_ua_cache);
156 out_free_sess_cache:
157 kmem_cache_destroy(se_sess_cache);
158 out:
159 return -ENOMEM;
160 }
161
release_se_kmem_caches(void)162 void release_se_kmem_caches(void)
163 {
164 destroy_workqueue(target_submission_wq);
165 destroy_workqueue(target_completion_wq);
166 kmem_cache_destroy(se_sess_cache);
167 kmem_cache_destroy(se_ua_cache);
168 kmem_cache_destroy(t10_pr_reg_cache);
169 kmem_cache_destroy(t10_alua_lu_gp_cache);
170 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
171 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
172 kmem_cache_destroy(t10_alua_lba_map_cache);
173 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
174 }
175
176 /* This code ensures unique mib indexes are handed out. */
177 static DEFINE_SPINLOCK(scsi_mib_index_lock);
178 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
179
180 /*
181 * Allocate a new row index for the entry type specified
182 */
scsi_get_new_index(scsi_index_t type)183 u32 scsi_get_new_index(scsi_index_t type)
184 {
185 u32 new_index;
186
187 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
188
189 spin_lock(&scsi_mib_index_lock);
190 new_index = ++scsi_mib_index[type];
191 spin_unlock(&scsi_mib_index_lock);
192
193 return new_index;
194 }
195
transport_subsystem_check_init(void)196 void transport_subsystem_check_init(void)
197 {
198 int ret;
199 static int sub_api_initialized;
200
201 if (sub_api_initialized)
202 return;
203
204 ret = IS_ENABLED(CONFIG_TCM_IBLOCK) && request_module("target_core_iblock");
205 if (ret != 0)
206 pr_err("Unable to load target_core_iblock\n");
207
208 ret = IS_ENABLED(CONFIG_TCM_FILEIO) && request_module("target_core_file");
209 if (ret != 0)
210 pr_err("Unable to load target_core_file\n");
211
212 ret = IS_ENABLED(CONFIG_TCM_PSCSI) && request_module("target_core_pscsi");
213 if (ret != 0)
214 pr_err("Unable to load target_core_pscsi\n");
215
216 ret = IS_ENABLED(CONFIG_TCM_USER2) && request_module("target_core_user");
217 if (ret != 0)
218 pr_err("Unable to load target_core_user\n");
219
220 sub_api_initialized = 1;
221 }
222
target_release_sess_cmd_refcnt(struct percpu_ref * ref)223 static void target_release_sess_cmd_refcnt(struct percpu_ref *ref)
224 {
225 struct se_session *sess = container_of(ref, typeof(*sess), cmd_count);
226
227 wake_up(&sess->cmd_count_wq);
228 }
229
230 /**
231 * transport_init_session - initialize a session object
232 * @se_sess: Session object pointer.
233 *
234 * The caller must have zero-initialized @se_sess before calling this function.
235 */
transport_init_session(struct se_session * se_sess)236 int transport_init_session(struct se_session *se_sess)
237 {
238 INIT_LIST_HEAD(&se_sess->sess_list);
239 INIT_LIST_HEAD(&se_sess->sess_acl_list);
240 spin_lock_init(&se_sess->sess_cmd_lock);
241 init_waitqueue_head(&se_sess->cmd_count_wq);
242 init_completion(&se_sess->stop_done);
243 atomic_set(&se_sess->stopped, 0);
244 return percpu_ref_init(&se_sess->cmd_count,
245 target_release_sess_cmd_refcnt, 0, GFP_KERNEL);
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
transport_uninit_session(struct se_session * se_sess)249 void transport_uninit_session(struct se_session *se_sess)
250 {
251 /*
252 * Drivers like iscsi and loop do not call target_stop_session
253 * during session shutdown so we have to drop the ref taken at init
254 * time here.
255 */
256 if (!atomic_read(&se_sess->stopped))
257 percpu_ref_put(&se_sess->cmd_count);
258
259 percpu_ref_exit(&se_sess->cmd_count);
260 }
261
262 /**
263 * transport_alloc_session - allocate a session object and initialize it
264 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
265 */
transport_alloc_session(enum target_prot_op sup_prot_ops)266 struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
267 {
268 struct se_session *se_sess;
269 int ret;
270
271 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
272 if (!se_sess) {
273 pr_err("Unable to allocate struct se_session from"
274 " se_sess_cache\n");
275 return ERR_PTR(-ENOMEM);
276 }
277 ret = transport_init_session(se_sess);
278 if (ret < 0) {
279 kmem_cache_free(se_sess_cache, se_sess);
280 return ERR_PTR(ret);
281 }
282 se_sess->sup_prot_ops = sup_prot_ops;
283
284 return se_sess;
285 }
286 EXPORT_SYMBOL(transport_alloc_session);
287
288 /**
289 * transport_alloc_session_tags - allocate target driver private data
290 * @se_sess: Session pointer.
291 * @tag_num: Maximum number of in-flight commands between initiator and target.
292 * @tag_size: Size in bytes of the private data a target driver associates with
293 * each command.
294 */
transport_alloc_session_tags(struct se_session * se_sess,unsigned int tag_num,unsigned int tag_size)295 int transport_alloc_session_tags(struct se_session *se_sess,
296 unsigned int tag_num, unsigned int tag_size)
297 {
298 int rc;
299
300 se_sess->sess_cmd_map = kvcalloc(tag_size, tag_num,
301 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
302 if (!se_sess->sess_cmd_map) {
303 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
304 return -ENOMEM;
305 }
306
307 rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
308 false, GFP_KERNEL, NUMA_NO_NODE);
309 if (rc < 0) {
310 pr_err("Unable to init se_sess->sess_tag_pool,"
311 " tag_num: %u\n", tag_num);
312 kvfree(se_sess->sess_cmd_map);
313 se_sess->sess_cmd_map = NULL;
314 return -ENOMEM;
315 }
316
317 return 0;
318 }
319 EXPORT_SYMBOL(transport_alloc_session_tags);
320
321 /**
322 * transport_init_session_tags - allocate a session and target driver private data
323 * @tag_num: Maximum number of in-flight commands between initiator and target.
324 * @tag_size: Size in bytes of the private data a target driver associates with
325 * each command.
326 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
327 */
328 static struct se_session *
transport_init_session_tags(unsigned int tag_num,unsigned int tag_size,enum target_prot_op sup_prot_ops)329 transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
330 enum target_prot_op sup_prot_ops)
331 {
332 struct se_session *se_sess;
333 int rc;
334
335 if (tag_num != 0 && !tag_size) {
336 pr_err("init_session_tags called with percpu-ida tag_num:"
337 " %u, but zero tag_size\n", tag_num);
338 return ERR_PTR(-EINVAL);
339 }
340 if (!tag_num && tag_size) {
341 pr_err("init_session_tags called with percpu-ida tag_size:"
342 " %u, but zero tag_num\n", tag_size);
343 return ERR_PTR(-EINVAL);
344 }
345
346 se_sess = transport_alloc_session(sup_prot_ops);
347 if (IS_ERR(se_sess))
348 return se_sess;
349
350 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
351 if (rc < 0) {
352 transport_free_session(se_sess);
353 return ERR_PTR(-ENOMEM);
354 }
355
356 return se_sess;
357 }
358
359 /*
360 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
361 */
__transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)362 void __transport_register_session(
363 struct se_portal_group *se_tpg,
364 struct se_node_acl *se_nacl,
365 struct se_session *se_sess,
366 void *fabric_sess_ptr)
367 {
368 const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
369 unsigned char buf[PR_REG_ISID_LEN];
370 unsigned long flags;
371
372 se_sess->se_tpg = se_tpg;
373 se_sess->fabric_sess_ptr = fabric_sess_ptr;
374 /*
375 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
376 *
377 * Only set for struct se_session's that will actually be moving I/O.
378 * eg: *NOT* discovery sessions.
379 */
380 if (se_nacl) {
381 /*
382 *
383 * Determine if fabric allows for T10-PI feature bits exposed to
384 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
385 *
386 * If so, then always save prot_type on a per se_node_acl node
387 * basis and re-instate the previous sess_prot_type to avoid
388 * disabling PI from below any previously initiator side
389 * registered LUNs.
390 */
391 if (se_nacl->saved_prot_type)
392 se_sess->sess_prot_type = se_nacl->saved_prot_type;
393 else if (tfo->tpg_check_prot_fabric_only)
394 se_sess->sess_prot_type = se_nacl->saved_prot_type =
395 tfo->tpg_check_prot_fabric_only(se_tpg);
396 /*
397 * If the fabric module supports an ISID based TransportID,
398 * save this value in binary from the fabric I_T Nexus now.
399 */
400 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
401 memset(&buf[0], 0, PR_REG_ISID_LEN);
402 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
403 &buf[0], PR_REG_ISID_LEN);
404 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
405 }
406
407 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
408 /*
409 * The se_nacl->nacl_sess pointer will be set to the
410 * last active I_T Nexus for each struct se_node_acl.
411 */
412 se_nacl->nacl_sess = se_sess;
413
414 list_add_tail(&se_sess->sess_acl_list,
415 &se_nacl->acl_sess_list);
416 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
417 }
418 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
419
420 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
421 se_tpg->se_tpg_tfo->fabric_name, se_sess->fabric_sess_ptr);
422 }
423 EXPORT_SYMBOL(__transport_register_session);
424
transport_register_session(struct se_portal_group * se_tpg,struct se_node_acl * se_nacl,struct se_session * se_sess,void * fabric_sess_ptr)425 void transport_register_session(
426 struct se_portal_group *se_tpg,
427 struct se_node_acl *se_nacl,
428 struct se_session *se_sess,
429 void *fabric_sess_ptr)
430 {
431 unsigned long flags;
432
433 spin_lock_irqsave(&se_tpg->session_lock, flags);
434 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
435 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
436 }
437 EXPORT_SYMBOL(transport_register_session);
438
439 struct se_session *
target_setup_session(struct se_portal_group * tpg,unsigned int tag_num,unsigned int tag_size,enum target_prot_op prot_op,const char * initiatorname,void * private,int (* callback)(struct se_portal_group *,struct se_session *,void *))440 target_setup_session(struct se_portal_group *tpg,
441 unsigned int tag_num, unsigned int tag_size,
442 enum target_prot_op prot_op,
443 const char *initiatorname, void *private,
444 int (*callback)(struct se_portal_group *,
445 struct se_session *, void *))
446 {
447 struct se_session *sess;
448
449 /*
450 * If the fabric driver is using percpu-ida based pre allocation
451 * of I/O descriptor tags, go ahead and perform that setup now..
452 */
453 if (tag_num != 0)
454 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
455 else
456 sess = transport_alloc_session(prot_op);
457
458 if (IS_ERR(sess))
459 return sess;
460
461 sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
462 (unsigned char *)initiatorname);
463 if (!sess->se_node_acl) {
464 transport_free_session(sess);
465 return ERR_PTR(-EACCES);
466 }
467 /*
468 * Go ahead and perform any remaining fabric setup that is
469 * required before transport_register_session().
470 */
471 if (callback != NULL) {
472 int rc = callback(tpg, sess, private);
473 if (rc) {
474 transport_free_session(sess);
475 return ERR_PTR(rc);
476 }
477 }
478
479 transport_register_session(tpg, sess->se_node_acl, sess, private);
480 return sess;
481 }
482 EXPORT_SYMBOL(target_setup_session);
483
target_show_dynamic_sessions(struct se_portal_group * se_tpg,char * page)484 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
485 {
486 struct se_session *se_sess;
487 ssize_t len = 0;
488
489 spin_lock_bh(&se_tpg->session_lock);
490 list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
491 if (!se_sess->se_node_acl)
492 continue;
493 if (!se_sess->se_node_acl->dynamic_node_acl)
494 continue;
495 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
496 break;
497
498 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
499 se_sess->se_node_acl->initiatorname);
500 len += 1; /* Include NULL terminator */
501 }
502 spin_unlock_bh(&se_tpg->session_lock);
503
504 return len;
505 }
506 EXPORT_SYMBOL(target_show_dynamic_sessions);
507
target_complete_nacl(struct kref * kref)508 static void target_complete_nacl(struct kref *kref)
509 {
510 struct se_node_acl *nacl = container_of(kref,
511 struct se_node_acl, acl_kref);
512 struct se_portal_group *se_tpg = nacl->se_tpg;
513
514 if (!nacl->dynamic_stop) {
515 complete(&nacl->acl_free_comp);
516 return;
517 }
518
519 mutex_lock(&se_tpg->acl_node_mutex);
520 list_del_init(&nacl->acl_list);
521 mutex_unlock(&se_tpg->acl_node_mutex);
522
523 core_tpg_wait_for_nacl_pr_ref(nacl);
524 core_free_device_list_for_node(nacl, se_tpg);
525 kfree(nacl);
526 }
527
target_put_nacl(struct se_node_acl * nacl)528 void target_put_nacl(struct se_node_acl *nacl)
529 {
530 kref_put(&nacl->acl_kref, target_complete_nacl);
531 }
532 EXPORT_SYMBOL(target_put_nacl);
533
transport_deregister_session_configfs(struct se_session * se_sess)534 void transport_deregister_session_configfs(struct se_session *se_sess)
535 {
536 struct se_node_acl *se_nacl;
537 unsigned long flags;
538 /*
539 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
540 */
541 se_nacl = se_sess->se_node_acl;
542 if (se_nacl) {
543 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
544 if (!list_empty(&se_sess->sess_acl_list))
545 list_del_init(&se_sess->sess_acl_list);
546 /*
547 * If the session list is empty, then clear the pointer.
548 * Otherwise, set the struct se_session pointer from the tail
549 * element of the per struct se_node_acl active session list.
550 */
551 if (list_empty(&se_nacl->acl_sess_list))
552 se_nacl->nacl_sess = NULL;
553 else {
554 se_nacl->nacl_sess = container_of(
555 se_nacl->acl_sess_list.prev,
556 struct se_session, sess_acl_list);
557 }
558 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
559 }
560 }
561 EXPORT_SYMBOL(transport_deregister_session_configfs);
562
transport_free_session(struct se_session * se_sess)563 void transport_free_session(struct se_session *se_sess)
564 {
565 struct se_node_acl *se_nacl = se_sess->se_node_acl;
566
567 /*
568 * Drop the se_node_acl->nacl_kref obtained from within
569 * core_tpg_get_initiator_node_acl().
570 */
571 if (se_nacl) {
572 struct se_portal_group *se_tpg = se_nacl->se_tpg;
573 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
574 unsigned long flags;
575
576 se_sess->se_node_acl = NULL;
577
578 /*
579 * Also determine if we need to drop the extra ->cmd_kref if
580 * it had been previously dynamically generated, and
581 * the endpoint is not caching dynamic ACLs.
582 */
583 mutex_lock(&se_tpg->acl_node_mutex);
584 if (se_nacl->dynamic_node_acl &&
585 !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
586 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
587 if (list_empty(&se_nacl->acl_sess_list))
588 se_nacl->dynamic_stop = true;
589 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
590
591 if (se_nacl->dynamic_stop)
592 list_del_init(&se_nacl->acl_list);
593 }
594 mutex_unlock(&se_tpg->acl_node_mutex);
595
596 if (se_nacl->dynamic_stop)
597 target_put_nacl(se_nacl);
598
599 target_put_nacl(se_nacl);
600 }
601 if (se_sess->sess_cmd_map) {
602 sbitmap_queue_free(&se_sess->sess_tag_pool);
603 kvfree(se_sess->sess_cmd_map);
604 }
605 transport_uninit_session(se_sess);
606 kmem_cache_free(se_sess_cache, se_sess);
607 }
608 EXPORT_SYMBOL(transport_free_session);
609
target_release_res(struct se_device * dev,void * data)610 static int target_release_res(struct se_device *dev, void *data)
611 {
612 struct se_session *sess = data;
613
614 if (dev->reservation_holder == sess)
615 target_release_reservation(dev);
616 return 0;
617 }
618
transport_deregister_session(struct se_session * se_sess)619 void transport_deregister_session(struct se_session *se_sess)
620 {
621 struct se_portal_group *se_tpg = se_sess->se_tpg;
622 unsigned long flags;
623
624 if (!se_tpg) {
625 transport_free_session(se_sess);
626 return;
627 }
628
629 spin_lock_irqsave(&se_tpg->session_lock, flags);
630 list_del(&se_sess->sess_list);
631 se_sess->se_tpg = NULL;
632 se_sess->fabric_sess_ptr = NULL;
633 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
634
635 /*
636 * Since the session is being removed, release SPC-2
637 * reservations held by the session that is disappearing.
638 */
639 target_for_each_device(target_release_res, se_sess);
640
641 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
642 se_tpg->se_tpg_tfo->fabric_name);
643 /*
644 * If last kref is dropping now for an explicit NodeACL, awake sleeping
645 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
646 * removal context from within transport_free_session() code.
647 *
648 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
649 * to release all remaining generate_node_acl=1 created ACL resources.
650 */
651
652 transport_free_session(se_sess);
653 }
654 EXPORT_SYMBOL(transport_deregister_session);
655
target_remove_session(struct se_session * se_sess)656 void target_remove_session(struct se_session *se_sess)
657 {
658 transport_deregister_session_configfs(se_sess);
659 transport_deregister_session(se_sess);
660 }
661 EXPORT_SYMBOL(target_remove_session);
662
target_remove_from_state_list(struct se_cmd * cmd)663 static void target_remove_from_state_list(struct se_cmd *cmd)
664 {
665 struct se_device *dev = cmd->se_dev;
666 unsigned long flags;
667
668 if (!dev)
669 return;
670
671 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
672 if (cmd->state_active) {
673 list_del(&cmd->state_list);
674 cmd->state_active = false;
675 }
676 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
677 }
678
679 /*
680 * This function is called by the target core after the target core has
681 * finished processing a SCSI command or SCSI TMF. Both the regular command
682 * processing code and the code for aborting commands can call this
683 * function. CMD_T_STOP is set if and only if another thread is waiting
684 * inside transport_wait_for_tasks() for t_transport_stop_comp.
685 */
transport_cmd_check_stop_to_fabric(struct se_cmd * cmd)686 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
687 {
688 unsigned long flags;
689
690 target_remove_from_state_list(cmd);
691
692 /*
693 * Clear struct se_cmd->se_lun before the handoff to FE.
694 */
695 cmd->se_lun = NULL;
696
697 spin_lock_irqsave(&cmd->t_state_lock, flags);
698 /*
699 * Determine if frontend context caller is requesting the stopping of
700 * this command for frontend exceptions.
701 */
702 if (cmd->transport_state & CMD_T_STOP) {
703 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
704 __func__, __LINE__, cmd->tag);
705
706 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
707
708 complete_all(&cmd->t_transport_stop_comp);
709 return 1;
710 }
711 cmd->transport_state &= ~CMD_T_ACTIVE;
712 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
713
714 /*
715 * Some fabric modules like tcm_loop can release their internally
716 * allocated I/O reference and struct se_cmd now.
717 *
718 * Fabric modules are expected to return '1' here if the se_cmd being
719 * passed is released at this point, or zero if not being released.
720 */
721 return cmd->se_tfo->check_stop_free(cmd);
722 }
723
transport_lun_remove_cmd(struct se_cmd * cmd)724 static void transport_lun_remove_cmd(struct se_cmd *cmd)
725 {
726 struct se_lun *lun = cmd->se_lun;
727
728 if (!lun)
729 return;
730
731 if (cmpxchg(&cmd->lun_ref_active, true, false))
732 percpu_ref_put(&lun->lun_ref);
733 }
734
target_complete_failure_work(struct work_struct * work)735 static void target_complete_failure_work(struct work_struct *work)
736 {
737 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
738
739 transport_generic_request_failure(cmd, cmd->sense_reason);
740 }
741
742 /*
743 * Used when asking transport to copy Sense Data from the underlying
744 * Linux/SCSI struct scsi_cmnd
745 */
transport_get_sense_buffer(struct se_cmd * cmd)746 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
747 {
748 struct se_device *dev = cmd->se_dev;
749
750 WARN_ON(!cmd->se_lun);
751
752 if (!dev)
753 return NULL;
754
755 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
756 return NULL;
757
758 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
759
760 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
761 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
762 return cmd->sense_buffer;
763 }
764
transport_copy_sense_to_cmd(struct se_cmd * cmd,unsigned char * sense)765 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
766 {
767 unsigned char *cmd_sense_buf;
768 unsigned long flags;
769
770 spin_lock_irqsave(&cmd->t_state_lock, flags);
771 cmd_sense_buf = transport_get_sense_buffer(cmd);
772 if (!cmd_sense_buf) {
773 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
774 return;
775 }
776
777 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
778 memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
779 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
780 }
781 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
782
target_handle_abort(struct se_cmd * cmd)783 static void target_handle_abort(struct se_cmd *cmd)
784 {
785 bool tas = cmd->transport_state & CMD_T_TAS;
786 bool ack_kref = cmd->se_cmd_flags & SCF_ACK_KREF;
787 int ret;
788
789 pr_debug("tag %#llx: send_abort_response = %d\n", cmd->tag, tas);
790
791 if (tas) {
792 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
793 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
794 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
795 cmd->t_task_cdb[0], cmd->tag);
796 trace_target_cmd_complete(cmd);
797 ret = cmd->se_tfo->queue_status(cmd);
798 if (ret) {
799 transport_handle_queue_full(cmd, cmd->se_dev,
800 ret, false);
801 return;
802 }
803 } else {
804 cmd->se_tmr_req->response = TMR_FUNCTION_REJECTED;
805 cmd->se_tfo->queue_tm_rsp(cmd);
806 }
807 } else {
808 /*
809 * Allow the fabric driver to unmap any resources before
810 * releasing the descriptor via TFO->release_cmd().
811 */
812 cmd->se_tfo->aborted_task(cmd);
813 if (ack_kref)
814 WARN_ON_ONCE(target_put_sess_cmd(cmd) != 0);
815 /*
816 * To do: establish a unit attention condition on the I_T
817 * nexus associated with cmd. See also the paragraph "Aborting
818 * commands" in SAM.
819 */
820 }
821
822 WARN_ON_ONCE(kref_read(&cmd->cmd_kref) == 0);
823
824 transport_lun_remove_cmd(cmd);
825
826 transport_cmd_check_stop_to_fabric(cmd);
827 }
828
target_abort_work(struct work_struct * work)829 static void target_abort_work(struct work_struct *work)
830 {
831 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
832
833 target_handle_abort(cmd);
834 }
835
target_cmd_interrupted(struct se_cmd * cmd)836 static bool target_cmd_interrupted(struct se_cmd *cmd)
837 {
838 int post_ret;
839
840 if (cmd->transport_state & CMD_T_ABORTED) {
841 if (cmd->transport_complete_callback)
842 cmd->transport_complete_callback(cmd, false, &post_ret);
843 INIT_WORK(&cmd->work, target_abort_work);
844 queue_work(target_completion_wq, &cmd->work);
845 return true;
846 } else if (cmd->transport_state & CMD_T_STOP) {
847 if (cmd->transport_complete_callback)
848 cmd->transport_complete_callback(cmd, false, &post_ret);
849 complete_all(&cmd->t_transport_stop_comp);
850 return true;
851 }
852
853 return false;
854 }
855
856 /* May be called from interrupt context so must not sleep. */
target_complete_cmd_with_sense(struct se_cmd * cmd,u8 scsi_status,sense_reason_t sense_reason)857 void target_complete_cmd_with_sense(struct se_cmd *cmd, u8 scsi_status,
858 sense_reason_t sense_reason)
859 {
860 struct se_wwn *wwn = cmd->se_sess->se_tpg->se_tpg_wwn;
861 int success, cpu;
862 unsigned long flags;
863
864 if (target_cmd_interrupted(cmd))
865 return;
866
867 cmd->scsi_status = scsi_status;
868 cmd->sense_reason = sense_reason;
869
870 spin_lock_irqsave(&cmd->t_state_lock, flags);
871 switch (cmd->scsi_status) {
872 case SAM_STAT_CHECK_CONDITION:
873 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
874 success = 1;
875 else
876 success = 0;
877 break;
878 default:
879 success = 1;
880 break;
881 }
882
883 cmd->t_state = TRANSPORT_COMPLETE;
884 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
885 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
886
887 INIT_WORK(&cmd->work, success ? target_complete_ok_work :
888 target_complete_failure_work);
889
890 if (!wwn || wwn->cmd_compl_affinity == SE_COMPL_AFFINITY_CPUID)
891 cpu = cmd->cpuid;
892 else
893 cpu = wwn->cmd_compl_affinity;
894
895 queue_work_on(cpu, target_completion_wq, &cmd->work);
896 }
897 EXPORT_SYMBOL(target_complete_cmd_with_sense);
898
target_complete_cmd(struct se_cmd * cmd,u8 scsi_status)899 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
900 {
901 target_complete_cmd_with_sense(cmd, scsi_status, scsi_status ?
902 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE :
903 TCM_NO_SENSE);
904 }
905 EXPORT_SYMBOL(target_complete_cmd);
906
target_set_cmd_data_length(struct se_cmd * cmd,int length)907 void target_set_cmd_data_length(struct se_cmd *cmd, int length)
908 {
909 if (length < cmd->data_length) {
910 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
911 cmd->residual_count += cmd->data_length - length;
912 } else {
913 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
914 cmd->residual_count = cmd->data_length - length;
915 }
916
917 cmd->data_length = length;
918 }
919 }
920 EXPORT_SYMBOL(target_set_cmd_data_length);
921
target_complete_cmd_with_length(struct se_cmd * cmd,u8 scsi_status,int length)922 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
923 {
924 if (scsi_status == SAM_STAT_GOOD ||
925 cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) {
926 target_set_cmd_data_length(cmd, length);
927 }
928
929 target_complete_cmd(cmd, scsi_status);
930 }
931 EXPORT_SYMBOL(target_complete_cmd_with_length);
932
target_add_to_state_list(struct se_cmd * cmd)933 static void target_add_to_state_list(struct se_cmd *cmd)
934 {
935 struct se_device *dev = cmd->se_dev;
936 unsigned long flags;
937
938 spin_lock_irqsave(&dev->queues[cmd->cpuid].lock, flags);
939 if (!cmd->state_active) {
940 list_add_tail(&cmd->state_list,
941 &dev->queues[cmd->cpuid].state_list);
942 cmd->state_active = true;
943 }
944 spin_unlock_irqrestore(&dev->queues[cmd->cpuid].lock, flags);
945 }
946
947 /*
948 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
949 */
950 static void transport_write_pending_qf(struct se_cmd *cmd);
951 static void transport_complete_qf(struct se_cmd *cmd);
952
target_qf_do_work(struct work_struct * work)953 void target_qf_do_work(struct work_struct *work)
954 {
955 struct se_device *dev = container_of(work, struct se_device,
956 qf_work_queue);
957 LIST_HEAD(qf_cmd_list);
958 struct se_cmd *cmd, *cmd_tmp;
959
960 spin_lock_irq(&dev->qf_cmd_lock);
961 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
962 spin_unlock_irq(&dev->qf_cmd_lock);
963
964 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
965 list_del(&cmd->se_qf_node);
966 atomic_dec_mb(&dev->dev_qf_count);
967
968 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
969 " context: %s\n", cmd->se_tfo->fabric_name, cmd,
970 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
971 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
972 : "UNKNOWN");
973
974 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
975 transport_write_pending_qf(cmd);
976 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
977 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
978 transport_complete_qf(cmd);
979 }
980 }
981
transport_dump_cmd_direction(struct se_cmd * cmd)982 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
983 {
984 switch (cmd->data_direction) {
985 case DMA_NONE:
986 return "NONE";
987 case DMA_FROM_DEVICE:
988 return "READ";
989 case DMA_TO_DEVICE:
990 return "WRITE";
991 case DMA_BIDIRECTIONAL:
992 return "BIDI";
993 default:
994 break;
995 }
996
997 return "UNKNOWN";
998 }
999
transport_dump_dev_state(struct se_device * dev,char * b,int * bl)1000 void transport_dump_dev_state(
1001 struct se_device *dev,
1002 char *b,
1003 int *bl)
1004 {
1005 *bl += sprintf(b + *bl, "Status: ");
1006 if (dev->export_count)
1007 *bl += sprintf(b + *bl, "ACTIVATED");
1008 else
1009 *bl += sprintf(b + *bl, "DEACTIVATED");
1010
1011 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
1012 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
1013 dev->dev_attrib.block_size,
1014 dev->dev_attrib.hw_max_sectors);
1015 *bl += sprintf(b + *bl, " ");
1016 }
1017
transport_dump_vpd_proto_id(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1018 void transport_dump_vpd_proto_id(
1019 struct t10_vpd *vpd,
1020 unsigned char *p_buf,
1021 int p_buf_len)
1022 {
1023 unsigned char buf[VPD_TMP_BUF_SIZE];
1024 int len;
1025
1026 memset(buf, 0, VPD_TMP_BUF_SIZE);
1027 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1028
1029 switch (vpd->protocol_identifier) {
1030 case 0x00:
1031 sprintf(buf+len, "Fibre Channel\n");
1032 break;
1033 case 0x10:
1034 sprintf(buf+len, "Parallel SCSI\n");
1035 break;
1036 case 0x20:
1037 sprintf(buf+len, "SSA\n");
1038 break;
1039 case 0x30:
1040 sprintf(buf+len, "IEEE 1394\n");
1041 break;
1042 case 0x40:
1043 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1044 " Protocol\n");
1045 break;
1046 case 0x50:
1047 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1048 break;
1049 case 0x60:
1050 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1051 break;
1052 case 0x70:
1053 sprintf(buf+len, "Automation/Drive Interface Transport"
1054 " Protocol\n");
1055 break;
1056 case 0x80:
1057 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1058 break;
1059 default:
1060 sprintf(buf+len, "Unknown 0x%02x\n",
1061 vpd->protocol_identifier);
1062 break;
1063 }
1064
1065 if (p_buf)
1066 strncpy(p_buf, buf, p_buf_len);
1067 else
1068 pr_debug("%s", buf);
1069 }
1070
1071 void
transport_set_vpd_proto_id(struct t10_vpd * vpd,unsigned char * page_83)1072 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1073 {
1074 /*
1075 * Check if the Protocol Identifier Valid (PIV) bit is set..
1076 *
1077 * from spc3r23.pdf section 7.5.1
1078 */
1079 if (page_83[1] & 0x80) {
1080 vpd->protocol_identifier = (page_83[0] & 0xf0);
1081 vpd->protocol_identifier_set = 1;
1082 transport_dump_vpd_proto_id(vpd, NULL, 0);
1083 }
1084 }
1085 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1086
transport_dump_vpd_assoc(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1087 int transport_dump_vpd_assoc(
1088 struct t10_vpd *vpd,
1089 unsigned char *p_buf,
1090 int p_buf_len)
1091 {
1092 unsigned char buf[VPD_TMP_BUF_SIZE];
1093 int ret = 0;
1094 int len;
1095
1096 memset(buf, 0, VPD_TMP_BUF_SIZE);
1097 len = sprintf(buf, "T10 VPD Identifier Association: ");
1098
1099 switch (vpd->association) {
1100 case 0x00:
1101 sprintf(buf+len, "addressed logical unit\n");
1102 break;
1103 case 0x10:
1104 sprintf(buf+len, "target port\n");
1105 break;
1106 case 0x20:
1107 sprintf(buf+len, "SCSI target device\n");
1108 break;
1109 default:
1110 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1111 ret = -EINVAL;
1112 break;
1113 }
1114
1115 if (p_buf)
1116 strncpy(p_buf, buf, p_buf_len);
1117 else
1118 pr_debug("%s", buf);
1119
1120 return ret;
1121 }
1122
transport_set_vpd_assoc(struct t10_vpd * vpd,unsigned char * page_83)1123 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1124 {
1125 /*
1126 * The VPD identification association..
1127 *
1128 * from spc3r23.pdf Section 7.6.3.1 Table 297
1129 */
1130 vpd->association = (page_83[1] & 0x30);
1131 return transport_dump_vpd_assoc(vpd, NULL, 0);
1132 }
1133 EXPORT_SYMBOL(transport_set_vpd_assoc);
1134
transport_dump_vpd_ident_type(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1135 int transport_dump_vpd_ident_type(
1136 struct t10_vpd *vpd,
1137 unsigned char *p_buf,
1138 int p_buf_len)
1139 {
1140 unsigned char buf[VPD_TMP_BUF_SIZE];
1141 int ret = 0;
1142 int len;
1143
1144 memset(buf, 0, VPD_TMP_BUF_SIZE);
1145 len = sprintf(buf, "T10 VPD Identifier Type: ");
1146
1147 switch (vpd->device_identifier_type) {
1148 case 0x00:
1149 sprintf(buf+len, "Vendor specific\n");
1150 break;
1151 case 0x01:
1152 sprintf(buf+len, "T10 Vendor ID based\n");
1153 break;
1154 case 0x02:
1155 sprintf(buf+len, "EUI-64 based\n");
1156 break;
1157 case 0x03:
1158 sprintf(buf+len, "NAA\n");
1159 break;
1160 case 0x04:
1161 sprintf(buf+len, "Relative target port identifier\n");
1162 break;
1163 case 0x08:
1164 sprintf(buf+len, "SCSI name string\n");
1165 break;
1166 default:
1167 sprintf(buf+len, "Unsupported: 0x%02x\n",
1168 vpd->device_identifier_type);
1169 ret = -EINVAL;
1170 break;
1171 }
1172
1173 if (p_buf) {
1174 if (p_buf_len < strlen(buf)+1)
1175 return -EINVAL;
1176 strncpy(p_buf, buf, p_buf_len);
1177 } else {
1178 pr_debug("%s", buf);
1179 }
1180
1181 return ret;
1182 }
1183
transport_set_vpd_ident_type(struct t10_vpd * vpd,unsigned char * page_83)1184 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1185 {
1186 /*
1187 * The VPD identifier type..
1188 *
1189 * from spc3r23.pdf Section 7.6.3.1 Table 298
1190 */
1191 vpd->device_identifier_type = (page_83[1] & 0x0f);
1192 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1193 }
1194 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1195
transport_dump_vpd_ident(struct t10_vpd * vpd,unsigned char * p_buf,int p_buf_len)1196 int transport_dump_vpd_ident(
1197 struct t10_vpd *vpd,
1198 unsigned char *p_buf,
1199 int p_buf_len)
1200 {
1201 unsigned char buf[VPD_TMP_BUF_SIZE];
1202 int ret = 0;
1203
1204 memset(buf, 0, VPD_TMP_BUF_SIZE);
1205
1206 switch (vpd->device_identifier_code_set) {
1207 case 0x01: /* Binary */
1208 snprintf(buf, sizeof(buf),
1209 "T10 VPD Binary Device Identifier: %s\n",
1210 &vpd->device_identifier[0]);
1211 break;
1212 case 0x02: /* ASCII */
1213 snprintf(buf, sizeof(buf),
1214 "T10 VPD ASCII Device Identifier: %s\n",
1215 &vpd->device_identifier[0]);
1216 break;
1217 case 0x03: /* UTF-8 */
1218 snprintf(buf, sizeof(buf),
1219 "T10 VPD UTF-8 Device Identifier: %s\n",
1220 &vpd->device_identifier[0]);
1221 break;
1222 default:
1223 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1224 " 0x%02x", vpd->device_identifier_code_set);
1225 ret = -EINVAL;
1226 break;
1227 }
1228
1229 if (p_buf)
1230 strncpy(p_buf, buf, p_buf_len);
1231 else
1232 pr_debug("%s", buf);
1233
1234 return ret;
1235 }
1236
1237 int
transport_set_vpd_ident(struct t10_vpd * vpd,unsigned char * page_83)1238 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1239 {
1240 static const char hex_str[] = "0123456789abcdef";
1241 int j = 0, i = 4; /* offset to start of the identifier */
1242
1243 /*
1244 * The VPD Code Set (encoding)
1245 *
1246 * from spc3r23.pdf Section 7.6.3.1 Table 296
1247 */
1248 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1249 switch (vpd->device_identifier_code_set) {
1250 case 0x01: /* Binary */
1251 vpd->device_identifier[j++] =
1252 hex_str[vpd->device_identifier_type];
1253 while (i < (4 + page_83[3])) {
1254 vpd->device_identifier[j++] =
1255 hex_str[(page_83[i] & 0xf0) >> 4];
1256 vpd->device_identifier[j++] =
1257 hex_str[page_83[i] & 0x0f];
1258 i++;
1259 }
1260 break;
1261 case 0x02: /* ASCII */
1262 case 0x03: /* UTF-8 */
1263 while (i < (4 + page_83[3]))
1264 vpd->device_identifier[j++] = page_83[i++];
1265 break;
1266 default:
1267 break;
1268 }
1269
1270 return transport_dump_vpd_ident(vpd, NULL, 0);
1271 }
1272 EXPORT_SYMBOL(transport_set_vpd_ident);
1273
1274 static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd * cmd,struct se_device * dev,unsigned int size)1275 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1276 unsigned int size)
1277 {
1278 u32 mtl;
1279
1280 if (!cmd->se_tfo->max_data_sg_nents)
1281 return TCM_NO_SENSE;
1282 /*
1283 * Check if fabric enforced maximum SGL entries per I/O descriptor
1284 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1285 * residual_count and reduce original cmd->data_length to maximum
1286 * length based on single PAGE_SIZE entry scatter-lists.
1287 */
1288 mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1289 if (cmd->data_length > mtl) {
1290 /*
1291 * If an existing CDB overflow is present, calculate new residual
1292 * based on CDB size minus fabric maximum transfer length.
1293 *
1294 * If an existing CDB underflow is present, calculate new residual
1295 * based on original cmd->data_length minus fabric maximum transfer
1296 * length.
1297 *
1298 * Otherwise, set the underflow residual based on cmd->data_length
1299 * minus fabric maximum transfer length.
1300 */
1301 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1302 cmd->residual_count = (size - mtl);
1303 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1304 u32 orig_dl = size + cmd->residual_count;
1305 cmd->residual_count = (orig_dl - mtl);
1306 } else {
1307 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1308 cmd->residual_count = (cmd->data_length - mtl);
1309 }
1310 cmd->data_length = mtl;
1311 /*
1312 * Reset sbc_check_prot() calculated protection payload
1313 * length based upon the new smaller MTL.
1314 */
1315 if (cmd->prot_length) {
1316 u32 sectors = (mtl / dev->dev_attrib.block_size);
1317 cmd->prot_length = dev->prot_length * sectors;
1318 }
1319 }
1320 return TCM_NO_SENSE;
1321 }
1322
1323 /**
1324 * target_cmd_size_check - Check whether there will be a residual.
1325 * @cmd: SCSI command.
1326 * @size: Data buffer size derived from CDB. The data buffer size provided by
1327 * the SCSI transport driver is available in @cmd->data_length.
1328 *
1329 * Compare the data buffer size from the CDB with the data buffer limit from the transport
1330 * header. Set @cmd->residual_count and SCF_OVERFLOW_BIT or SCF_UNDERFLOW_BIT if necessary.
1331 *
1332 * Note: target drivers set @cmd->data_length by calling __target_init_cmd().
1333 *
1334 * Return: TCM_NO_SENSE
1335 */
1336 sense_reason_t
target_cmd_size_check(struct se_cmd * cmd,unsigned int size)1337 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1338 {
1339 struct se_device *dev = cmd->se_dev;
1340
1341 if (cmd->unknown_data_length) {
1342 cmd->data_length = size;
1343 } else if (size != cmd->data_length) {
1344 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1345 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1346 " 0x%02x\n", cmd->se_tfo->fabric_name,
1347 cmd->data_length, size, cmd->t_task_cdb[0]);
1348 /*
1349 * For READ command for the overflow case keep the existing
1350 * fabric provided ->data_length. Otherwise for the underflow
1351 * case, reset ->data_length to the smaller SCSI expected data
1352 * transfer length.
1353 */
1354 if (size > cmd->data_length) {
1355 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1356 cmd->residual_count = (size - cmd->data_length);
1357 } else {
1358 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1359 cmd->residual_count = (cmd->data_length - size);
1360 /*
1361 * Do not truncate ->data_length for WRITE command to
1362 * dump all payload
1363 */
1364 if (cmd->data_direction == DMA_FROM_DEVICE) {
1365 cmd->data_length = size;
1366 }
1367 }
1368
1369 if (cmd->data_direction == DMA_TO_DEVICE) {
1370 if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1371 pr_err_ratelimited("Rejecting underflow/overflow"
1372 " for WRITE data CDB\n");
1373 return TCM_INVALID_FIELD_IN_COMMAND_IU;
1374 }
1375 /*
1376 * Some fabric drivers like iscsi-target still expect to
1377 * always reject overflow writes. Reject this case until
1378 * full fabric driver level support for overflow writes
1379 * is introduced tree-wide.
1380 */
1381 if (size > cmd->data_length) {
1382 pr_err_ratelimited("Rejecting overflow for"
1383 " WRITE control CDB\n");
1384 return TCM_INVALID_CDB_FIELD;
1385 }
1386 }
1387 }
1388
1389 return target_check_max_data_sg_nents(cmd, dev, size);
1390
1391 }
1392
1393 /*
1394 * Used by fabric modules containing a local struct se_cmd within their
1395 * fabric dependent per I/O descriptor.
1396 *
1397 * Preserves the value of @cmd->tag.
1398 */
__target_init_cmd(struct se_cmd * cmd,const struct target_core_fabric_ops * tfo,struct se_session * se_sess,u32 data_length,int data_direction,int task_attr,unsigned char * sense_buffer,u64 unpacked_lun)1399 void __target_init_cmd(
1400 struct se_cmd *cmd,
1401 const struct target_core_fabric_ops *tfo,
1402 struct se_session *se_sess,
1403 u32 data_length,
1404 int data_direction,
1405 int task_attr,
1406 unsigned char *sense_buffer, u64 unpacked_lun)
1407 {
1408 INIT_LIST_HEAD(&cmd->se_delayed_node);
1409 INIT_LIST_HEAD(&cmd->se_qf_node);
1410 INIT_LIST_HEAD(&cmd->state_list);
1411 init_completion(&cmd->t_transport_stop_comp);
1412 cmd->free_compl = NULL;
1413 cmd->abrt_compl = NULL;
1414 spin_lock_init(&cmd->t_state_lock);
1415 INIT_WORK(&cmd->work, NULL);
1416 kref_init(&cmd->cmd_kref);
1417
1418 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1419 cmd->se_tfo = tfo;
1420 cmd->se_sess = se_sess;
1421 cmd->data_length = data_length;
1422 cmd->data_direction = data_direction;
1423 cmd->sam_task_attr = task_attr;
1424 cmd->sense_buffer = sense_buffer;
1425 cmd->orig_fe_lun = unpacked_lun;
1426
1427 if (!(cmd->se_cmd_flags & SCF_USE_CPUID))
1428 cmd->cpuid = raw_smp_processor_id();
1429
1430 cmd->state_active = false;
1431 }
1432 EXPORT_SYMBOL(__target_init_cmd);
1433
1434 static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd * cmd)1435 transport_check_alloc_task_attr(struct se_cmd *cmd)
1436 {
1437 struct se_device *dev = cmd->se_dev;
1438
1439 /*
1440 * Check if SAM Task Attribute emulation is enabled for this
1441 * struct se_device storage object
1442 */
1443 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1444 return 0;
1445
1446 if (cmd->sam_task_attr == TCM_ACA_TAG) {
1447 pr_debug("SAM Task Attribute ACA"
1448 " emulation is not supported\n");
1449 return TCM_INVALID_CDB_FIELD;
1450 }
1451
1452 return 0;
1453 }
1454
1455 sense_reason_t
target_cmd_init_cdb(struct se_cmd * cmd,unsigned char * cdb,gfp_t gfp)1456 target_cmd_init_cdb(struct se_cmd *cmd, unsigned char *cdb, gfp_t gfp)
1457 {
1458 sense_reason_t ret;
1459
1460 /*
1461 * Ensure that the received CDB is less than the max (252 + 8) bytes
1462 * for VARIABLE_LENGTH_CMD
1463 */
1464 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1465 pr_err("Received SCSI CDB with command_size: %d that"
1466 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1467 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1468 ret = TCM_INVALID_CDB_FIELD;
1469 goto err;
1470 }
1471 /*
1472 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1473 * allocate the additional extended CDB buffer now.. Otherwise
1474 * setup the pointer from __t_task_cdb to t_task_cdb.
1475 */
1476 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1477 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb), gfp);
1478 if (!cmd->t_task_cdb) {
1479 pr_err("Unable to allocate cmd->t_task_cdb"
1480 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1481 scsi_command_size(cdb),
1482 (unsigned long)sizeof(cmd->__t_task_cdb));
1483 ret = TCM_OUT_OF_RESOURCES;
1484 goto err;
1485 }
1486 }
1487 /*
1488 * Copy the original CDB into cmd->
1489 */
1490 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1491
1492 trace_target_sequencer_start(cmd);
1493 return 0;
1494
1495 err:
1496 /*
1497 * Copy the CDB here to allow trace_target_cmd_complete() to
1498 * print the cdb to the trace buffers.
1499 */
1500 memcpy(cmd->t_task_cdb, cdb, min(scsi_command_size(cdb),
1501 (unsigned int)TCM_MAX_COMMAND_SIZE));
1502 return ret;
1503 }
1504 EXPORT_SYMBOL(target_cmd_init_cdb);
1505
1506 sense_reason_t
target_cmd_parse_cdb(struct se_cmd * cmd)1507 target_cmd_parse_cdb(struct se_cmd *cmd)
1508 {
1509 struct se_device *dev = cmd->se_dev;
1510 sense_reason_t ret;
1511
1512 ret = dev->transport->parse_cdb(cmd);
1513 if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1514 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1515 cmd->se_tfo->fabric_name,
1516 cmd->se_sess->se_node_acl->initiatorname,
1517 cmd->t_task_cdb[0]);
1518 if (ret)
1519 return ret;
1520
1521 ret = transport_check_alloc_task_attr(cmd);
1522 if (ret)
1523 return ret;
1524
1525 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1526 atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1527 return 0;
1528 }
1529 EXPORT_SYMBOL(target_cmd_parse_cdb);
1530
1531 /*
1532 * Used by fabric module frontends to queue tasks directly.
1533 * May only be used from process context.
1534 */
transport_handle_cdb_direct(struct se_cmd * cmd)1535 int transport_handle_cdb_direct(
1536 struct se_cmd *cmd)
1537 {
1538 sense_reason_t ret;
1539
1540 might_sleep();
1541
1542 if (!cmd->se_lun) {
1543 dump_stack();
1544 pr_err("cmd->se_lun is NULL\n");
1545 return -EINVAL;
1546 }
1547
1548 /*
1549 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1550 * outstanding descriptors are handled correctly during shutdown via
1551 * transport_wait_for_tasks()
1552 *
1553 * Also, we don't take cmd->t_state_lock here as we only expect
1554 * this to be called for initial descriptor submission.
1555 */
1556 cmd->t_state = TRANSPORT_NEW_CMD;
1557 cmd->transport_state |= CMD_T_ACTIVE;
1558
1559 /*
1560 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1561 * so follow TRANSPORT_NEW_CMD processing thread context usage
1562 * and call transport_generic_request_failure() if necessary..
1563 */
1564 ret = transport_generic_new_cmd(cmd);
1565 if (ret)
1566 transport_generic_request_failure(cmd, ret);
1567 return 0;
1568 }
1569 EXPORT_SYMBOL(transport_handle_cdb_direct);
1570
1571 sense_reason_t
transport_generic_map_mem_to_cmd(struct se_cmd * cmd,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count)1572 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1573 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1574 {
1575 if (!sgl || !sgl_count)
1576 return 0;
1577
1578 /*
1579 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1580 * scatterlists already have been set to follow what the fabric
1581 * passes for the original expected data transfer length.
1582 */
1583 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1584 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1585 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1586 return TCM_INVALID_CDB_FIELD;
1587 }
1588
1589 cmd->t_data_sg = sgl;
1590 cmd->t_data_nents = sgl_count;
1591 cmd->t_bidi_data_sg = sgl_bidi;
1592 cmd->t_bidi_data_nents = sgl_bidi_count;
1593
1594 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1595 return 0;
1596 }
1597
1598 /**
1599 * target_init_cmd - initialize se_cmd
1600 * @se_cmd: command descriptor to init
1601 * @se_sess: associated se_sess for endpoint
1602 * @sense: pointer to SCSI sense buffer
1603 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1604 * @data_length: fabric expected data transfer length
1605 * @task_attr: SAM task attribute
1606 * @data_dir: DMA data direction
1607 * @flags: flags for command submission from target_sc_flags_tables
1608 *
1609 * Task tags are supported if the caller has set @se_cmd->tag.
1610 *
1611 * Returns:
1612 * - less than zero to signal active I/O shutdown failure.
1613 * - zero on success.
1614 *
1615 * If the fabric driver calls target_stop_session, then it must check the
1616 * return code and handle failures. This will never fail for other drivers,
1617 * and the return code can be ignored.
1618 */
target_init_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1619 int target_init_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1620 unsigned char *sense, u64 unpacked_lun,
1621 u32 data_length, int task_attr, int data_dir, int flags)
1622 {
1623 struct se_portal_group *se_tpg;
1624
1625 se_tpg = se_sess->se_tpg;
1626 BUG_ON(!se_tpg);
1627 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1628
1629 if (flags & TARGET_SCF_USE_CPUID)
1630 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1631 /*
1632 * Signal bidirectional data payloads to target-core
1633 */
1634 if (flags & TARGET_SCF_BIDI_OP)
1635 se_cmd->se_cmd_flags |= SCF_BIDI;
1636
1637 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1638 se_cmd->unknown_data_length = 1;
1639 /*
1640 * Initialize se_cmd for target operation. From this point
1641 * exceptions are handled by sending exception status via
1642 * target_core_fabric_ops->queue_status() callback
1643 */
1644 __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess, data_length,
1645 data_dir, task_attr, sense, unpacked_lun);
1646
1647 /*
1648 * Obtain struct se_cmd->cmd_kref reference. A second kref_get here is
1649 * necessary for fabrics using TARGET_SCF_ACK_KREF that expect a second
1650 * kref_put() to happen during fabric packet acknowledgement.
1651 */
1652 return target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1653 }
1654 EXPORT_SYMBOL_GPL(target_init_cmd);
1655
1656 /**
1657 * target_submit_prep - prepare cmd for submission
1658 * @se_cmd: command descriptor to prep
1659 * @cdb: pointer to SCSI CDB
1660 * @sgl: struct scatterlist memory for unidirectional mapping
1661 * @sgl_count: scatterlist count for unidirectional mapping
1662 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1663 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1664 * @sgl_prot: struct scatterlist memory protection information
1665 * @sgl_prot_count: scatterlist count for protection information
1666 * @gfp: gfp allocation type
1667 *
1668 * Returns:
1669 * - less than zero to signal failure.
1670 * - zero on success.
1671 *
1672 * If failure is returned, lio will the callers queue_status to complete
1673 * the cmd.
1674 */
target_submit_prep(struct se_cmd * se_cmd,unsigned char * cdb,struct scatterlist * sgl,u32 sgl_count,struct scatterlist * sgl_bidi,u32 sgl_bidi_count,struct scatterlist * sgl_prot,u32 sgl_prot_count,gfp_t gfp)1675 int target_submit_prep(struct se_cmd *se_cmd, unsigned char *cdb,
1676 struct scatterlist *sgl, u32 sgl_count,
1677 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1678 struct scatterlist *sgl_prot, u32 sgl_prot_count,
1679 gfp_t gfp)
1680 {
1681 sense_reason_t rc;
1682
1683 rc = target_cmd_init_cdb(se_cmd, cdb, gfp);
1684 if (rc)
1685 goto send_cc_direct;
1686
1687 /*
1688 * Locate se_lun pointer and attach it to struct se_cmd
1689 */
1690 rc = transport_lookup_cmd_lun(se_cmd);
1691 if (rc)
1692 goto send_cc_direct;
1693
1694 rc = target_cmd_parse_cdb(se_cmd);
1695 if (rc != 0)
1696 goto generic_fail;
1697
1698 /*
1699 * Save pointers for SGLs containing protection information,
1700 * if present.
1701 */
1702 if (sgl_prot_count) {
1703 se_cmd->t_prot_sg = sgl_prot;
1704 se_cmd->t_prot_nents = sgl_prot_count;
1705 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1706 }
1707
1708 /*
1709 * When a non zero sgl_count has been passed perform SGL passthrough
1710 * mapping for pre-allocated fabric memory instead of having target
1711 * core perform an internal SGL allocation..
1712 */
1713 if (sgl_count != 0) {
1714 BUG_ON(!sgl);
1715
1716 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1717 sgl_bidi, sgl_bidi_count);
1718 if (rc != 0)
1719 goto generic_fail;
1720 }
1721
1722 return 0;
1723
1724 send_cc_direct:
1725 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1726 target_put_sess_cmd(se_cmd);
1727 return -EIO;
1728
1729 generic_fail:
1730 transport_generic_request_failure(se_cmd, rc);
1731 return -EIO;
1732 }
1733 EXPORT_SYMBOL_GPL(target_submit_prep);
1734
1735 /**
1736 * target_submit - perform final initialization and submit cmd to LIO core
1737 * @se_cmd: command descriptor to submit
1738 *
1739 * target_submit_prep must have been called on the cmd, and this must be
1740 * called from process context.
1741 */
target_submit(struct se_cmd * se_cmd)1742 void target_submit(struct se_cmd *se_cmd)
1743 {
1744 struct scatterlist *sgl = se_cmd->t_data_sg;
1745 unsigned char *buf = NULL;
1746
1747 might_sleep();
1748
1749 if (se_cmd->t_data_nents != 0) {
1750 BUG_ON(!sgl);
1751 /*
1752 * A work-around for tcm_loop as some userspace code via
1753 * scsi-generic do not memset their associated read buffers,
1754 * so go ahead and do that here for type non-data CDBs. Also
1755 * note that this is currently guaranteed to be a single SGL
1756 * for this case by target core in target_setup_cmd_from_cdb()
1757 * -> transport_generic_cmd_sequencer().
1758 */
1759 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1760 se_cmd->data_direction == DMA_FROM_DEVICE) {
1761 if (sgl)
1762 buf = kmap(sg_page(sgl)) + sgl->offset;
1763
1764 if (buf) {
1765 memset(buf, 0, sgl->length);
1766 kunmap(sg_page(sgl));
1767 }
1768 }
1769
1770 }
1771
1772 /*
1773 * Check if we need to delay processing because of ALUA
1774 * Active/NonOptimized primary access state..
1775 */
1776 core_alua_check_nonop_delay(se_cmd);
1777
1778 transport_handle_cdb_direct(se_cmd);
1779 }
1780 EXPORT_SYMBOL_GPL(target_submit);
1781
1782 /**
1783 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1784 *
1785 * @se_cmd: command descriptor to submit
1786 * @se_sess: associated se_sess for endpoint
1787 * @cdb: pointer to SCSI CDB
1788 * @sense: pointer to SCSI sense buffer
1789 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1790 * @data_length: fabric expected data transfer length
1791 * @task_attr: SAM task attribute
1792 * @data_dir: DMA data direction
1793 * @flags: flags for command submission from target_sc_flags_tables
1794 *
1795 * Task tags are supported if the caller has set @se_cmd->tag.
1796 *
1797 * This may only be called from process context, and also currently
1798 * assumes internal allocation of fabric payload buffer by target-core.
1799 *
1800 * It also assumes interal target core SGL memory allocation.
1801 *
1802 * This function must only be used by drivers that do their own
1803 * sync during shutdown and does not use target_stop_session. If there
1804 * is a failure this function will call into the fabric driver's
1805 * queue_status with a CHECK_CONDITION.
1806 */
target_submit_cmd(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * cdb,unsigned char * sense,u64 unpacked_lun,u32 data_length,int task_attr,int data_dir,int flags)1807 void target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1808 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1809 u32 data_length, int task_attr, int data_dir, int flags)
1810 {
1811 int rc;
1812
1813 rc = target_init_cmd(se_cmd, se_sess, sense, unpacked_lun, data_length,
1814 task_attr, data_dir, flags);
1815 WARN(rc, "Invalid target_submit_cmd use. Driver must not use target_stop_session or call target_init_cmd directly.\n");
1816 if (rc)
1817 return;
1818
1819 if (target_submit_prep(se_cmd, cdb, NULL, 0, NULL, 0, NULL, 0,
1820 GFP_KERNEL))
1821 return;
1822
1823 target_submit(se_cmd);
1824 }
1825 EXPORT_SYMBOL(target_submit_cmd);
1826
1827
target_plug_device(struct se_device * se_dev)1828 static struct se_dev_plug *target_plug_device(struct se_device *se_dev)
1829 {
1830 struct se_dev_plug *se_plug;
1831
1832 if (!se_dev->transport->plug_device)
1833 return NULL;
1834
1835 se_plug = se_dev->transport->plug_device(se_dev);
1836 if (!se_plug)
1837 return NULL;
1838
1839 se_plug->se_dev = se_dev;
1840 /*
1841 * We have a ref to the lun at this point, but the cmds could
1842 * complete before we unplug, so grab a ref to the se_device so we
1843 * can call back into the backend.
1844 */
1845 config_group_get(&se_dev->dev_group);
1846 return se_plug;
1847 }
1848
target_unplug_device(struct se_dev_plug * se_plug)1849 static void target_unplug_device(struct se_dev_plug *se_plug)
1850 {
1851 struct se_device *se_dev = se_plug->se_dev;
1852
1853 se_dev->transport->unplug_device(se_plug);
1854 config_group_put(&se_dev->dev_group);
1855 }
1856
target_queued_submit_work(struct work_struct * work)1857 void target_queued_submit_work(struct work_struct *work)
1858 {
1859 struct se_cmd_queue *sq = container_of(work, struct se_cmd_queue, work);
1860 struct se_cmd *se_cmd, *next_cmd;
1861 struct se_dev_plug *se_plug = NULL;
1862 struct se_device *se_dev = NULL;
1863 struct llist_node *cmd_list;
1864
1865 cmd_list = llist_del_all(&sq->cmd_list);
1866 if (!cmd_list)
1867 /* Previous call took what we were queued to submit */
1868 return;
1869
1870 cmd_list = llist_reverse_order(cmd_list);
1871 llist_for_each_entry_safe(se_cmd, next_cmd, cmd_list, se_cmd_list) {
1872 if (!se_dev) {
1873 se_dev = se_cmd->se_dev;
1874 se_plug = target_plug_device(se_dev);
1875 }
1876
1877 target_submit(se_cmd);
1878 }
1879
1880 if (se_plug)
1881 target_unplug_device(se_plug);
1882 }
1883
1884 /**
1885 * target_queue_submission - queue the cmd to run on the LIO workqueue
1886 * @se_cmd: command descriptor to submit
1887 */
target_queue_submission(struct se_cmd * se_cmd)1888 void target_queue_submission(struct se_cmd *se_cmd)
1889 {
1890 struct se_device *se_dev = se_cmd->se_dev;
1891 int cpu = se_cmd->cpuid;
1892 struct se_cmd_queue *sq;
1893
1894 sq = &se_dev->queues[cpu].sq;
1895 llist_add(&se_cmd->se_cmd_list, &sq->cmd_list);
1896 queue_work_on(cpu, target_submission_wq, &sq->work);
1897 }
1898 EXPORT_SYMBOL_GPL(target_queue_submission);
1899
target_complete_tmr_failure(struct work_struct * work)1900 static void target_complete_tmr_failure(struct work_struct *work)
1901 {
1902 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1903
1904 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1905 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1906
1907 transport_lun_remove_cmd(se_cmd);
1908 transport_cmd_check_stop_to_fabric(se_cmd);
1909 }
1910
1911 /**
1912 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1913 * for TMR CDBs
1914 *
1915 * @se_cmd: command descriptor to submit
1916 * @se_sess: associated se_sess for endpoint
1917 * @sense: pointer to SCSI sense buffer
1918 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1919 * @fabric_tmr_ptr: fabric context for TMR req
1920 * @tm_type: Type of TM request
1921 * @gfp: gfp type for caller
1922 * @tag: referenced task tag for TMR_ABORT_TASK
1923 * @flags: submit cmd flags
1924 *
1925 * Callable from all contexts.
1926 **/
1927
target_submit_tmr(struct se_cmd * se_cmd,struct se_session * se_sess,unsigned char * sense,u64 unpacked_lun,void * fabric_tmr_ptr,unsigned char tm_type,gfp_t gfp,u64 tag,int flags)1928 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1929 unsigned char *sense, u64 unpacked_lun,
1930 void *fabric_tmr_ptr, unsigned char tm_type,
1931 gfp_t gfp, u64 tag, int flags)
1932 {
1933 struct se_portal_group *se_tpg;
1934 int ret;
1935
1936 se_tpg = se_sess->se_tpg;
1937 BUG_ON(!se_tpg);
1938
1939 __target_init_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1940 0, DMA_NONE, TCM_SIMPLE_TAG, sense, unpacked_lun);
1941 /*
1942 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1943 * allocation failure.
1944 */
1945 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1946 if (ret < 0)
1947 return -ENOMEM;
1948
1949 if (tm_type == TMR_ABORT_TASK)
1950 se_cmd->se_tmr_req->ref_task_tag = tag;
1951
1952 /* See target_submit_cmd for commentary */
1953 ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1954 if (ret) {
1955 core_tmr_release_req(se_cmd->se_tmr_req);
1956 return ret;
1957 }
1958
1959 ret = transport_lookup_tmr_lun(se_cmd);
1960 if (ret)
1961 goto failure;
1962
1963 transport_generic_handle_tmr(se_cmd);
1964 return 0;
1965
1966 /*
1967 * For callback during failure handling, push this work off
1968 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1969 */
1970 failure:
1971 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1972 schedule_work(&se_cmd->work);
1973 return 0;
1974 }
1975 EXPORT_SYMBOL(target_submit_tmr);
1976
1977 /*
1978 * Handle SAM-esque emulation for generic transport request failures.
1979 */
transport_generic_request_failure(struct se_cmd * cmd,sense_reason_t sense_reason)1980 void transport_generic_request_failure(struct se_cmd *cmd,
1981 sense_reason_t sense_reason)
1982 {
1983 int ret = 0, post_ret;
1984
1985 pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1986 sense_reason);
1987 target_show_cmd("-----[ ", cmd);
1988
1989 /*
1990 * For SAM Task Attribute emulation for failed struct se_cmd
1991 */
1992 transport_complete_task_attr(cmd);
1993
1994 if (cmd->transport_complete_callback)
1995 cmd->transport_complete_callback(cmd, false, &post_ret);
1996
1997 if (cmd->transport_state & CMD_T_ABORTED) {
1998 INIT_WORK(&cmd->work, target_abort_work);
1999 queue_work(target_completion_wq, &cmd->work);
2000 return;
2001 }
2002
2003 switch (sense_reason) {
2004 case TCM_NON_EXISTENT_LUN:
2005 case TCM_UNSUPPORTED_SCSI_OPCODE:
2006 case TCM_INVALID_CDB_FIELD:
2007 case TCM_INVALID_PARAMETER_LIST:
2008 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2009 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2010 case TCM_UNKNOWN_MODE_PAGE:
2011 case TCM_WRITE_PROTECTED:
2012 case TCM_ADDRESS_OUT_OF_RANGE:
2013 case TCM_CHECK_CONDITION_ABORT_CMD:
2014 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2015 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2016 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2017 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2018 case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
2019 case TCM_TOO_MANY_TARGET_DESCS:
2020 case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
2021 case TCM_TOO_MANY_SEGMENT_DESCS:
2022 case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
2023 case TCM_INVALID_FIELD_IN_COMMAND_IU:
2024 case TCM_ALUA_TG_PT_STANDBY:
2025 case TCM_ALUA_TG_PT_UNAVAILABLE:
2026 case TCM_ALUA_STATE_TRANSITION:
2027 case TCM_ALUA_OFFLINE:
2028 break;
2029 case TCM_OUT_OF_RESOURCES:
2030 cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
2031 goto queue_status;
2032 case TCM_LUN_BUSY:
2033 cmd->scsi_status = SAM_STAT_BUSY;
2034 goto queue_status;
2035 case TCM_RESERVATION_CONFLICT:
2036 /*
2037 * No SENSE Data payload for this case, set SCSI Status
2038 * and queue the response to $FABRIC_MOD.
2039 *
2040 * Uses linux/include/scsi/scsi.h SAM status codes defs
2041 */
2042 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2043 /*
2044 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2045 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2046 * CONFLICT STATUS.
2047 *
2048 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2049 */
2050 if (cmd->se_sess &&
2051 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl
2052 == TARGET_UA_INTLCK_CTRL_ESTABLISH_UA) {
2053 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
2054 cmd->orig_fe_lun, 0x2C,
2055 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2056 }
2057
2058 goto queue_status;
2059 default:
2060 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
2061 cmd->t_task_cdb[0], sense_reason);
2062 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
2063 break;
2064 }
2065
2066 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
2067 if (ret)
2068 goto queue_full;
2069
2070 check_stop:
2071 transport_lun_remove_cmd(cmd);
2072 transport_cmd_check_stop_to_fabric(cmd);
2073 return;
2074
2075 queue_status:
2076 trace_target_cmd_complete(cmd);
2077 ret = cmd->se_tfo->queue_status(cmd);
2078 if (!ret)
2079 goto check_stop;
2080 queue_full:
2081 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2082 }
2083 EXPORT_SYMBOL(transport_generic_request_failure);
2084
__target_execute_cmd(struct se_cmd * cmd,bool do_checks)2085 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
2086 {
2087 sense_reason_t ret;
2088
2089 if (!cmd->execute_cmd) {
2090 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2091 goto err;
2092 }
2093 if (do_checks) {
2094 /*
2095 * Check for an existing UNIT ATTENTION condition after
2096 * target_handle_task_attr() has done SAM task attr
2097 * checking, and possibly have already defered execution
2098 * out to target_restart_delayed_cmds() context.
2099 */
2100 ret = target_scsi3_ua_check(cmd);
2101 if (ret)
2102 goto err;
2103
2104 ret = target_alua_state_check(cmd);
2105 if (ret)
2106 goto err;
2107
2108 ret = target_check_reservation(cmd);
2109 if (ret) {
2110 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2111 goto err;
2112 }
2113 }
2114
2115 ret = cmd->execute_cmd(cmd);
2116 if (!ret)
2117 return;
2118 err:
2119 spin_lock_irq(&cmd->t_state_lock);
2120 cmd->transport_state &= ~CMD_T_SENT;
2121 spin_unlock_irq(&cmd->t_state_lock);
2122
2123 transport_generic_request_failure(cmd, ret);
2124 }
2125
target_write_prot_action(struct se_cmd * cmd)2126 static int target_write_prot_action(struct se_cmd *cmd)
2127 {
2128 u32 sectors;
2129 /*
2130 * Perform WRITE_INSERT of PI using software emulation when backend
2131 * device has PI enabled, if the transport has not already generated
2132 * PI using hardware WRITE_INSERT offload.
2133 */
2134 switch (cmd->prot_op) {
2135 case TARGET_PROT_DOUT_INSERT:
2136 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
2137 sbc_dif_generate(cmd);
2138 break;
2139 case TARGET_PROT_DOUT_STRIP:
2140 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
2141 break;
2142
2143 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
2144 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2145 sectors, 0, cmd->t_prot_sg, 0);
2146 if (unlikely(cmd->pi_err)) {
2147 spin_lock_irq(&cmd->t_state_lock);
2148 cmd->transport_state &= ~CMD_T_SENT;
2149 spin_unlock_irq(&cmd->t_state_lock);
2150 transport_generic_request_failure(cmd, cmd->pi_err);
2151 return -1;
2152 }
2153 break;
2154 default:
2155 break;
2156 }
2157
2158 return 0;
2159 }
2160
target_handle_task_attr(struct se_cmd * cmd)2161 static bool target_handle_task_attr(struct se_cmd *cmd)
2162 {
2163 struct se_device *dev = cmd->se_dev;
2164
2165 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2166 return false;
2167
2168 cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
2169
2170 /*
2171 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2172 * to allow the passed struct se_cmd list of tasks to the front of the list.
2173 */
2174 switch (cmd->sam_task_attr) {
2175 case TCM_HEAD_TAG:
2176 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
2177 cmd->t_task_cdb[0]);
2178 return false;
2179 case TCM_ORDERED_TAG:
2180 atomic_inc_mb(&dev->dev_ordered_sync);
2181
2182 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
2183 cmd->t_task_cdb[0]);
2184
2185 /*
2186 * Execute an ORDERED command if no other older commands
2187 * exist that need to be completed first.
2188 */
2189 if (!atomic_read(&dev->simple_cmds))
2190 return false;
2191 break;
2192 default:
2193 /*
2194 * For SIMPLE and UNTAGGED Task Attribute commands
2195 */
2196 atomic_inc_mb(&dev->simple_cmds);
2197 break;
2198 }
2199
2200 if (atomic_read(&dev->dev_ordered_sync) == 0)
2201 return false;
2202
2203 spin_lock(&dev->delayed_cmd_lock);
2204 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
2205 spin_unlock(&dev->delayed_cmd_lock);
2206
2207 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
2208 cmd->t_task_cdb[0], cmd->sam_task_attr);
2209 return true;
2210 }
2211
target_execute_cmd(struct se_cmd * cmd)2212 void target_execute_cmd(struct se_cmd *cmd)
2213 {
2214 /*
2215 * Determine if frontend context caller is requesting the stopping of
2216 * this command for frontend exceptions.
2217 *
2218 * If the received CDB has already been aborted stop processing it here.
2219 */
2220 if (target_cmd_interrupted(cmd))
2221 return;
2222
2223 spin_lock_irq(&cmd->t_state_lock);
2224 cmd->t_state = TRANSPORT_PROCESSING;
2225 cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2226 spin_unlock_irq(&cmd->t_state_lock);
2227
2228 if (target_write_prot_action(cmd))
2229 return;
2230
2231 if (target_handle_task_attr(cmd)) {
2232 spin_lock_irq(&cmd->t_state_lock);
2233 cmd->transport_state &= ~CMD_T_SENT;
2234 spin_unlock_irq(&cmd->t_state_lock);
2235 return;
2236 }
2237
2238 __target_execute_cmd(cmd, true);
2239 }
2240 EXPORT_SYMBOL(target_execute_cmd);
2241
2242 /*
2243 * Process all commands up to the last received ORDERED task attribute which
2244 * requires another blocking boundary
2245 */
target_restart_delayed_cmds(struct se_device * dev)2246 static void target_restart_delayed_cmds(struct se_device *dev)
2247 {
2248 for (;;) {
2249 struct se_cmd *cmd;
2250
2251 spin_lock(&dev->delayed_cmd_lock);
2252 if (list_empty(&dev->delayed_cmd_list)) {
2253 spin_unlock(&dev->delayed_cmd_lock);
2254 break;
2255 }
2256
2257 cmd = list_entry(dev->delayed_cmd_list.next,
2258 struct se_cmd, se_delayed_node);
2259 list_del(&cmd->se_delayed_node);
2260 spin_unlock(&dev->delayed_cmd_lock);
2261
2262 cmd->transport_state |= CMD_T_SENT;
2263
2264 __target_execute_cmd(cmd, true);
2265
2266 if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2267 break;
2268 }
2269 }
2270
2271 /*
2272 * Called from I/O completion to determine which dormant/delayed
2273 * and ordered cmds need to have their tasks added to the execution queue.
2274 */
transport_complete_task_attr(struct se_cmd * cmd)2275 static void transport_complete_task_attr(struct se_cmd *cmd)
2276 {
2277 struct se_device *dev = cmd->se_dev;
2278
2279 if (dev->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2280 return;
2281
2282 if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2283 goto restart;
2284
2285 if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2286 atomic_dec_mb(&dev->simple_cmds);
2287 dev->dev_cur_ordered_id++;
2288 } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2289 dev->dev_cur_ordered_id++;
2290 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2291 dev->dev_cur_ordered_id);
2292 } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2293 atomic_dec_mb(&dev->dev_ordered_sync);
2294
2295 dev->dev_cur_ordered_id++;
2296 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2297 dev->dev_cur_ordered_id);
2298 }
2299 cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2300
2301 restart:
2302 target_restart_delayed_cmds(dev);
2303 }
2304
transport_complete_qf(struct se_cmd * cmd)2305 static void transport_complete_qf(struct se_cmd *cmd)
2306 {
2307 int ret = 0;
2308
2309 transport_complete_task_attr(cmd);
2310 /*
2311 * If a fabric driver ->write_pending() or ->queue_data_in() callback
2312 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2313 * the same callbacks should not be retried. Return CHECK_CONDITION
2314 * if a scsi_status is not already set.
2315 *
2316 * If a fabric driver ->queue_status() has returned non zero, always
2317 * keep retrying no matter what..
2318 */
2319 if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2320 if (cmd->scsi_status)
2321 goto queue_status;
2322
2323 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2324 goto queue_status;
2325 }
2326
2327 /*
2328 * Check if we need to send a sense buffer from
2329 * the struct se_cmd in question. We do NOT want
2330 * to take this path of the IO has been marked as
2331 * needing to be treated like a "normal read". This
2332 * is the case if it's a tape read, and either the
2333 * FM, EOM, or ILI bits are set, but there is no
2334 * sense data.
2335 */
2336 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2337 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2338 goto queue_status;
2339
2340 switch (cmd->data_direction) {
2341 case DMA_FROM_DEVICE:
2342 /* queue status if not treating this as a normal read */
2343 if (cmd->scsi_status &&
2344 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2345 goto queue_status;
2346
2347 trace_target_cmd_complete(cmd);
2348 ret = cmd->se_tfo->queue_data_in(cmd);
2349 break;
2350 case DMA_TO_DEVICE:
2351 if (cmd->se_cmd_flags & SCF_BIDI) {
2352 ret = cmd->se_tfo->queue_data_in(cmd);
2353 break;
2354 }
2355 fallthrough;
2356 case DMA_NONE:
2357 queue_status:
2358 trace_target_cmd_complete(cmd);
2359 ret = cmd->se_tfo->queue_status(cmd);
2360 break;
2361 default:
2362 break;
2363 }
2364
2365 if (ret < 0) {
2366 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2367 return;
2368 }
2369 transport_lun_remove_cmd(cmd);
2370 transport_cmd_check_stop_to_fabric(cmd);
2371 }
2372
transport_handle_queue_full(struct se_cmd * cmd,struct se_device * dev,int err,bool write_pending)2373 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2374 int err, bool write_pending)
2375 {
2376 /*
2377 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2378 * ->queue_data_in() callbacks from new process context.
2379 *
2380 * Otherwise for other errors, transport_complete_qf() will send
2381 * CHECK_CONDITION via ->queue_status() instead of attempting to
2382 * retry associated fabric driver data-transfer callbacks.
2383 */
2384 if (err == -EAGAIN || err == -ENOMEM) {
2385 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2386 TRANSPORT_COMPLETE_QF_OK;
2387 } else {
2388 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2389 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2390 }
2391
2392 spin_lock_irq(&dev->qf_cmd_lock);
2393 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2394 atomic_inc_mb(&dev->dev_qf_count);
2395 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2396
2397 schedule_work(&cmd->se_dev->qf_work_queue);
2398 }
2399
target_read_prot_action(struct se_cmd * cmd)2400 static bool target_read_prot_action(struct se_cmd *cmd)
2401 {
2402 switch (cmd->prot_op) {
2403 case TARGET_PROT_DIN_STRIP:
2404 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2405 u32 sectors = cmd->data_length >>
2406 ilog2(cmd->se_dev->dev_attrib.block_size);
2407
2408 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2409 sectors, 0, cmd->t_prot_sg,
2410 0);
2411 if (cmd->pi_err)
2412 return true;
2413 }
2414 break;
2415 case TARGET_PROT_DIN_INSERT:
2416 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2417 break;
2418
2419 sbc_dif_generate(cmd);
2420 break;
2421 default:
2422 break;
2423 }
2424
2425 return false;
2426 }
2427
target_complete_ok_work(struct work_struct * work)2428 static void target_complete_ok_work(struct work_struct *work)
2429 {
2430 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2431 int ret;
2432
2433 /*
2434 * Check if we need to move delayed/dormant tasks from cmds on the
2435 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2436 * Attribute.
2437 */
2438 transport_complete_task_attr(cmd);
2439
2440 /*
2441 * Check to schedule QUEUE_FULL work, or execute an existing
2442 * cmd->transport_qf_callback()
2443 */
2444 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2445 schedule_work(&cmd->se_dev->qf_work_queue);
2446
2447 /*
2448 * Check if we need to send a sense buffer from
2449 * the struct se_cmd in question. We do NOT want
2450 * to take this path of the IO has been marked as
2451 * needing to be treated like a "normal read". This
2452 * is the case if it's a tape read, and either the
2453 * FM, EOM, or ILI bits are set, but there is no
2454 * sense data.
2455 */
2456 if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
2457 cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2458 WARN_ON(!cmd->scsi_status);
2459 ret = transport_send_check_condition_and_sense(
2460 cmd, 0, 1);
2461 if (ret)
2462 goto queue_full;
2463
2464 transport_lun_remove_cmd(cmd);
2465 transport_cmd_check_stop_to_fabric(cmd);
2466 return;
2467 }
2468 /*
2469 * Check for a callback, used by amongst other things
2470 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2471 */
2472 if (cmd->transport_complete_callback) {
2473 sense_reason_t rc;
2474 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2475 bool zero_dl = !(cmd->data_length);
2476 int post_ret = 0;
2477
2478 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2479 if (!rc && !post_ret) {
2480 if (caw && zero_dl)
2481 goto queue_rsp;
2482
2483 return;
2484 } else if (rc) {
2485 ret = transport_send_check_condition_and_sense(cmd,
2486 rc, 0);
2487 if (ret)
2488 goto queue_full;
2489
2490 transport_lun_remove_cmd(cmd);
2491 transport_cmd_check_stop_to_fabric(cmd);
2492 return;
2493 }
2494 }
2495
2496 queue_rsp:
2497 switch (cmd->data_direction) {
2498 case DMA_FROM_DEVICE:
2499 /*
2500 * if this is a READ-type IO, but SCSI status
2501 * is set, then skip returning data and just
2502 * return the status -- unless this IO is marked
2503 * as needing to be treated as a normal read,
2504 * in which case we want to go ahead and return
2505 * the data. This happens, for example, for tape
2506 * reads with the FM, EOM, or ILI bits set, with
2507 * no sense data.
2508 */
2509 if (cmd->scsi_status &&
2510 !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2511 goto queue_status;
2512
2513 atomic_long_add(cmd->data_length,
2514 &cmd->se_lun->lun_stats.tx_data_octets);
2515 /*
2516 * Perform READ_STRIP of PI using software emulation when
2517 * backend had PI enabled, if the transport will not be
2518 * performing hardware READ_STRIP offload.
2519 */
2520 if (target_read_prot_action(cmd)) {
2521 ret = transport_send_check_condition_and_sense(cmd,
2522 cmd->pi_err, 0);
2523 if (ret)
2524 goto queue_full;
2525
2526 transport_lun_remove_cmd(cmd);
2527 transport_cmd_check_stop_to_fabric(cmd);
2528 return;
2529 }
2530
2531 trace_target_cmd_complete(cmd);
2532 ret = cmd->se_tfo->queue_data_in(cmd);
2533 if (ret)
2534 goto queue_full;
2535 break;
2536 case DMA_TO_DEVICE:
2537 atomic_long_add(cmd->data_length,
2538 &cmd->se_lun->lun_stats.rx_data_octets);
2539 /*
2540 * Check if we need to send READ payload for BIDI-COMMAND
2541 */
2542 if (cmd->se_cmd_flags & SCF_BIDI) {
2543 atomic_long_add(cmd->data_length,
2544 &cmd->se_lun->lun_stats.tx_data_octets);
2545 ret = cmd->se_tfo->queue_data_in(cmd);
2546 if (ret)
2547 goto queue_full;
2548 break;
2549 }
2550 fallthrough;
2551 case DMA_NONE:
2552 queue_status:
2553 trace_target_cmd_complete(cmd);
2554 ret = cmd->se_tfo->queue_status(cmd);
2555 if (ret)
2556 goto queue_full;
2557 break;
2558 default:
2559 break;
2560 }
2561
2562 transport_lun_remove_cmd(cmd);
2563 transport_cmd_check_stop_to_fabric(cmd);
2564 return;
2565
2566 queue_full:
2567 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2568 " data_direction: %d\n", cmd, cmd->data_direction);
2569
2570 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2571 }
2572
target_free_sgl(struct scatterlist * sgl,int nents)2573 void target_free_sgl(struct scatterlist *sgl, int nents)
2574 {
2575 sgl_free_n_order(sgl, nents, 0);
2576 }
2577 EXPORT_SYMBOL(target_free_sgl);
2578
transport_reset_sgl_orig(struct se_cmd * cmd)2579 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2580 {
2581 /*
2582 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2583 * emulation, and free + reset pointers if necessary..
2584 */
2585 if (!cmd->t_data_sg_orig)
2586 return;
2587
2588 kfree(cmd->t_data_sg);
2589 cmd->t_data_sg = cmd->t_data_sg_orig;
2590 cmd->t_data_sg_orig = NULL;
2591 cmd->t_data_nents = cmd->t_data_nents_orig;
2592 cmd->t_data_nents_orig = 0;
2593 }
2594
transport_free_pages(struct se_cmd * cmd)2595 static inline void transport_free_pages(struct se_cmd *cmd)
2596 {
2597 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2598 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2599 cmd->t_prot_sg = NULL;
2600 cmd->t_prot_nents = 0;
2601 }
2602
2603 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2604 /*
2605 * Release special case READ buffer payload required for
2606 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2607 */
2608 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2609 target_free_sgl(cmd->t_bidi_data_sg,
2610 cmd->t_bidi_data_nents);
2611 cmd->t_bidi_data_sg = NULL;
2612 cmd->t_bidi_data_nents = 0;
2613 }
2614 transport_reset_sgl_orig(cmd);
2615 return;
2616 }
2617 transport_reset_sgl_orig(cmd);
2618
2619 target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2620 cmd->t_data_sg = NULL;
2621 cmd->t_data_nents = 0;
2622
2623 target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2624 cmd->t_bidi_data_sg = NULL;
2625 cmd->t_bidi_data_nents = 0;
2626 }
2627
transport_kmap_data_sg(struct se_cmd * cmd)2628 void *transport_kmap_data_sg(struct se_cmd *cmd)
2629 {
2630 struct scatterlist *sg = cmd->t_data_sg;
2631 struct page **pages;
2632 int i;
2633
2634 /*
2635 * We need to take into account a possible offset here for fabrics like
2636 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2637 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2638 */
2639 if (!cmd->t_data_nents)
2640 return NULL;
2641
2642 BUG_ON(!sg);
2643 if (cmd->t_data_nents == 1)
2644 return kmap(sg_page(sg)) + sg->offset;
2645
2646 /* >1 page. use vmap */
2647 pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2648 if (!pages)
2649 return NULL;
2650
2651 /* convert sg[] to pages[] */
2652 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2653 pages[i] = sg_page(sg);
2654 }
2655
2656 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2657 kfree(pages);
2658 if (!cmd->t_data_vmap)
2659 return NULL;
2660
2661 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2662 }
2663 EXPORT_SYMBOL(transport_kmap_data_sg);
2664
transport_kunmap_data_sg(struct se_cmd * cmd)2665 void transport_kunmap_data_sg(struct se_cmd *cmd)
2666 {
2667 if (!cmd->t_data_nents) {
2668 return;
2669 } else if (cmd->t_data_nents == 1) {
2670 kunmap(sg_page(cmd->t_data_sg));
2671 return;
2672 }
2673
2674 vunmap(cmd->t_data_vmap);
2675 cmd->t_data_vmap = NULL;
2676 }
2677 EXPORT_SYMBOL(transport_kunmap_data_sg);
2678
2679 int
target_alloc_sgl(struct scatterlist ** sgl,unsigned int * nents,u32 length,bool zero_page,bool chainable)2680 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2681 bool zero_page, bool chainable)
2682 {
2683 gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2684
2685 *sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
2686 return *sgl ? 0 : -ENOMEM;
2687 }
2688 EXPORT_SYMBOL(target_alloc_sgl);
2689
2690 /*
2691 * Allocate any required resources to execute the command. For writes we
2692 * might not have the payload yet, so notify the fabric via a call to
2693 * ->write_pending instead. Otherwise place it on the execution queue.
2694 */
2695 sense_reason_t
transport_generic_new_cmd(struct se_cmd * cmd)2696 transport_generic_new_cmd(struct se_cmd *cmd)
2697 {
2698 unsigned long flags;
2699 int ret = 0;
2700 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2701
2702 if (cmd->prot_op != TARGET_PROT_NORMAL &&
2703 !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2704 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2705 cmd->prot_length, true, false);
2706 if (ret < 0)
2707 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2708 }
2709
2710 /*
2711 * Determine if the TCM fabric module has already allocated physical
2712 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2713 * beforehand.
2714 */
2715 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2716 cmd->data_length) {
2717
2718 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2719 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2720 u32 bidi_length;
2721
2722 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2723 bidi_length = cmd->t_task_nolb *
2724 cmd->se_dev->dev_attrib.block_size;
2725 else
2726 bidi_length = cmd->data_length;
2727
2728 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2729 &cmd->t_bidi_data_nents,
2730 bidi_length, zero_flag, false);
2731 if (ret < 0)
2732 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2733 }
2734
2735 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2736 cmd->data_length, zero_flag, false);
2737 if (ret < 0)
2738 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2739 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2740 cmd->data_length) {
2741 /*
2742 * Special case for COMPARE_AND_WRITE with fabrics
2743 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2744 */
2745 u32 caw_length = cmd->t_task_nolb *
2746 cmd->se_dev->dev_attrib.block_size;
2747
2748 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2749 &cmd->t_bidi_data_nents,
2750 caw_length, zero_flag, false);
2751 if (ret < 0)
2752 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2753 }
2754 /*
2755 * If this command is not a write we can execute it right here,
2756 * for write buffers we need to notify the fabric driver first
2757 * and let it call back once the write buffers are ready.
2758 */
2759 target_add_to_state_list(cmd);
2760 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2761 target_execute_cmd(cmd);
2762 return 0;
2763 }
2764
2765 spin_lock_irqsave(&cmd->t_state_lock, flags);
2766 cmd->t_state = TRANSPORT_WRITE_PENDING;
2767 /*
2768 * Determine if frontend context caller is requesting the stopping of
2769 * this command for frontend exceptions.
2770 */
2771 if (cmd->transport_state & CMD_T_STOP &&
2772 !cmd->se_tfo->write_pending_must_be_called) {
2773 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2774 __func__, __LINE__, cmd->tag);
2775
2776 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2777
2778 complete_all(&cmd->t_transport_stop_comp);
2779 return 0;
2780 }
2781 cmd->transport_state &= ~CMD_T_ACTIVE;
2782 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2783
2784 ret = cmd->se_tfo->write_pending(cmd);
2785 if (ret)
2786 goto queue_full;
2787
2788 return 0;
2789
2790 queue_full:
2791 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2792 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2793 return 0;
2794 }
2795 EXPORT_SYMBOL(transport_generic_new_cmd);
2796
transport_write_pending_qf(struct se_cmd * cmd)2797 static void transport_write_pending_qf(struct se_cmd *cmd)
2798 {
2799 unsigned long flags;
2800 int ret;
2801 bool stop;
2802
2803 spin_lock_irqsave(&cmd->t_state_lock, flags);
2804 stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2805 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2806
2807 if (stop) {
2808 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2809 __func__, __LINE__, cmd->tag);
2810 complete_all(&cmd->t_transport_stop_comp);
2811 return;
2812 }
2813
2814 ret = cmd->se_tfo->write_pending(cmd);
2815 if (ret) {
2816 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2817 cmd);
2818 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2819 }
2820 }
2821
2822 static bool
2823 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2824 unsigned long *flags);
2825
target_wait_free_cmd(struct se_cmd * cmd,bool * aborted,bool * tas)2826 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2827 {
2828 unsigned long flags;
2829
2830 spin_lock_irqsave(&cmd->t_state_lock, flags);
2831 __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2832 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2833 }
2834
2835 /*
2836 * Call target_put_sess_cmd() and wait until target_release_cmd_kref(@cmd) has
2837 * finished.
2838 */
target_put_cmd_and_wait(struct se_cmd * cmd)2839 void target_put_cmd_and_wait(struct se_cmd *cmd)
2840 {
2841 DECLARE_COMPLETION_ONSTACK(compl);
2842
2843 WARN_ON_ONCE(cmd->abrt_compl);
2844 cmd->abrt_compl = &compl;
2845 target_put_sess_cmd(cmd);
2846 wait_for_completion(&compl);
2847 }
2848
2849 /*
2850 * This function is called by frontend drivers after processing of a command
2851 * has finished.
2852 *
2853 * The protocol for ensuring that either the regular frontend command
2854 * processing flow or target_handle_abort() code drops one reference is as
2855 * follows:
2856 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
2857 * the frontend driver to call this function synchronously or asynchronously.
2858 * That will cause one reference to be dropped.
2859 * - During regular command processing the target core sets CMD_T_COMPLETE
2860 * before invoking one of the .queue_*() functions.
2861 * - The code that aborts commands skips commands and TMFs for which
2862 * CMD_T_COMPLETE has been set.
2863 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
2864 * commands that will be aborted.
2865 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
2866 * transport_generic_free_cmd() skips its call to target_put_sess_cmd().
2867 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
2868 * be called and will drop a reference.
2869 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
2870 * will be called. target_handle_abort() will drop the final reference.
2871 */
transport_generic_free_cmd(struct se_cmd * cmd,int wait_for_tasks)2872 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2873 {
2874 DECLARE_COMPLETION_ONSTACK(compl);
2875 int ret = 0;
2876 bool aborted = false, tas = false;
2877
2878 if (wait_for_tasks)
2879 target_wait_free_cmd(cmd, &aborted, &tas);
2880
2881 if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2882 /*
2883 * Handle WRITE failure case where transport_generic_new_cmd()
2884 * has already added se_cmd to state_list, but fabric has
2885 * failed command before I/O submission.
2886 */
2887 if (cmd->state_active)
2888 target_remove_from_state_list(cmd);
2889
2890 if (cmd->se_lun)
2891 transport_lun_remove_cmd(cmd);
2892 }
2893 if (aborted)
2894 cmd->free_compl = &compl;
2895 ret = target_put_sess_cmd(cmd);
2896 if (aborted) {
2897 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2898 wait_for_completion(&compl);
2899 ret = 1;
2900 }
2901 return ret;
2902 }
2903 EXPORT_SYMBOL(transport_generic_free_cmd);
2904
2905 /**
2906 * target_get_sess_cmd - Verify the session is accepting cmds and take ref
2907 * @se_cmd: command descriptor to add
2908 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2909 */
target_get_sess_cmd(struct se_cmd * se_cmd,bool ack_kref)2910 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2911 {
2912 struct se_session *se_sess = se_cmd->se_sess;
2913 int ret = 0;
2914
2915 /*
2916 * Add a second kref if the fabric caller is expecting to handle
2917 * fabric acknowledgement that requires two target_put_sess_cmd()
2918 * invocations before se_cmd descriptor release.
2919 */
2920 if (ack_kref) {
2921 kref_get(&se_cmd->cmd_kref);
2922 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2923 }
2924
2925 if (!percpu_ref_tryget_live(&se_sess->cmd_count))
2926 ret = -ESHUTDOWN;
2927
2928 if (ret && ack_kref)
2929 target_put_sess_cmd(se_cmd);
2930
2931 return ret;
2932 }
2933 EXPORT_SYMBOL(target_get_sess_cmd);
2934
target_free_cmd_mem(struct se_cmd * cmd)2935 static void target_free_cmd_mem(struct se_cmd *cmd)
2936 {
2937 transport_free_pages(cmd);
2938
2939 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2940 core_tmr_release_req(cmd->se_tmr_req);
2941 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2942 kfree(cmd->t_task_cdb);
2943 }
2944
target_release_cmd_kref(struct kref * kref)2945 static void target_release_cmd_kref(struct kref *kref)
2946 {
2947 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2948 struct se_session *se_sess = se_cmd->se_sess;
2949 struct completion *free_compl = se_cmd->free_compl;
2950 struct completion *abrt_compl = se_cmd->abrt_compl;
2951
2952 target_free_cmd_mem(se_cmd);
2953 se_cmd->se_tfo->release_cmd(se_cmd);
2954 if (free_compl)
2955 complete(free_compl);
2956 if (abrt_compl)
2957 complete(abrt_compl);
2958
2959 percpu_ref_put(&se_sess->cmd_count);
2960 }
2961
2962 /**
2963 * target_put_sess_cmd - decrease the command reference count
2964 * @se_cmd: command to drop a reference from
2965 *
2966 * Returns 1 if and only if this target_put_sess_cmd() call caused the
2967 * refcount to drop to zero. Returns zero otherwise.
2968 */
target_put_sess_cmd(struct se_cmd * se_cmd)2969 int target_put_sess_cmd(struct se_cmd *se_cmd)
2970 {
2971 return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2972 }
2973 EXPORT_SYMBOL(target_put_sess_cmd);
2974
data_dir_name(enum dma_data_direction d)2975 static const char *data_dir_name(enum dma_data_direction d)
2976 {
2977 switch (d) {
2978 case DMA_BIDIRECTIONAL: return "BIDI";
2979 case DMA_TO_DEVICE: return "WRITE";
2980 case DMA_FROM_DEVICE: return "READ";
2981 case DMA_NONE: return "NONE";
2982 }
2983
2984 return "(?)";
2985 }
2986
cmd_state_name(enum transport_state_table t)2987 static const char *cmd_state_name(enum transport_state_table t)
2988 {
2989 switch (t) {
2990 case TRANSPORT_NO_STATE: return "NO_STATE";
2991 case TRANSPORT_NEW_CMD: return "NEW_CMD";
2992 case TRANSPORT_WRITE_PENDING: return "WRITE_PENDING";
2993 case TRANSPORT_PROCESSING: return "PROCESSING";
2994 case TRANSPORT_COMPLETE: return "COMPLETE";
2995 case TRANSPORT_ISTATE_PROCESSING:
2996 return "ISTATE_PROCESSING";
2997 case TRANSPORT_COMPLETE_QF_WP: return "COMPLETE_QF_WP";
2998 case TRANSPORT_COMPLETE_QF_OK: return "COMPLETE_QF_OK";
2999 case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
3000 }
3001
3002 return "(?)";
3003 }
3004
target_append_str(char ** str,const char * txt)3005 static void target_append_str(char **str, const char *txt)
3006 {
3007 char *prev = *str;
3008
3009 *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
3010 kstrdup(txt, GFP_ATOMIC);
3011 kfree(prev);
3012 }
3013
3014 /*
3015 * Convert a transport state bitmask into a string. The caller is
3016 * responsible for freeing the returned pointer.
3017 */
target_ts_to_str(u32 ts)3018 static char *target_ts_to_str(u32 ts)
3019 {
3020 char *str = NULL;
3021
3022 if (ts & CMD_T_ABORTED)
3023 target_append_str(&str, "aborted");
3024 if (ts & CMD_T_ACTIVE)
3025 target_append_str(&str, "active");
3026 if (ts & CMD_T_COMPLETE)
3027 target_append_str(&str, "complete");
3028 if (ts & CMD_T_SENT)
3029 target_append_str(&str, "sent");
3030 if (ts & CMD_T_STOP)
3031 target_append_str(&str, "stop");
3032 if (ts & CMD_T_FABRIC_STOP)
3033 target_append_str(&str, "fabric_stop");
3034
3035 return str;
3036 }
3037
target_tmf_name(enum tcm_tmreq_table tmf)3038 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
3039 {
3040 switch (tmf) {
3041 case TMR_ABORT_TASK: return "ABORT_TASK";
3042 case TMR_ABORT_TASK_SET: return "ABORT_TASK_SET";
3043 case TMR_CLEAR_ACA: return "CLEAR_ACA";
3044 case TMR_CLEAR_TASK_SET: return "CLEAR_TASK_SET";
3045 case TMR_LUN_RESET: return "LUN_RESET";
3046 case TMR_TARGET_WARM_RESET: return "TARGET_WARM_RESET";
3047 case TMR_TARGET_COLD_RESET: return "TARGET_COLD_RESET";
3048 case TMR_LUN_RESET_PRO: return "LUN_RESET_PRO";
3049 case TMR_UNKNOWN: break;
3050 }
3051 return "(?)";
3052 }
3053
target_show_cmd(const char * pfx,struct se_cmd * cmd)3054 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
3055 {
3056 char *ts_str = target_ts_to_str(cmd->transport_state);
3057 const u8 *cdb = cmd->t_task_cdb;
3058 struct se_tmr_req *tmf = cmd->se_tmr_req;
3059
3060 if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
3061 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
3062 pfx, cdb[0], cdb[1], cmd->tag,
3063 data_dir_name(cmd->data_direction),
3064 cmd->se_tfo->get_cmd_state(cmd),
3065 cmd_state_name(cmd->t_state), cmd->data_length,
3066 kref_read(&cmd->cmd_kref), ts_str);
3067 } else {
3068 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
3069 pfx, target_tmf_name(tmf->function), cmd->tag,
3070 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
3071 cmd_state_name(cmd->t_state),
3072 kref_read(&cmd->cmd_kref), ts_str);
3073 }
3074 kfree(ts_str);
3075 }
3076 EXPORT_SYMBOL(target_show_cmd);
3077
target_stop_session_confirm(struct percpu_ref * ref)3078 static void target_stop_session_confirm(struct percpu_ref *ref)
3079 {
3080 struct se_session *se_sess = container_of(ref, struct se_session,
3081 cmd_count);
3082 complete_all(&se_sess->stop_done);
3083 }
3084
3085 /**
3086 * target_stop_session - Stop new IO from being queued on the session.
3087 * @se_sess: session to stop
3088 */
target_stop_session(struct se_session * se_sess)3089 void target_stop_session(struct se_session *se_sess)
3090 {
3091 pr_debug("Stopping session queue.\n");
3092 if (atomic_cmpxchg(&se_sess->stopped, 0, 1) == 0)
3093 percpu_ref_kill_and_confirm(&se_sess->cmd_count,
3094 target_stop_session_confirm);
3095 }
3096 EXPORT_SYMBOL(target_stop_session);
3097
3098 /**
3099 * target_wait_for_sess_cmds - Wait for outstanding commands
3100 * @se_sess: session to wait for active I/O
3101 */
target_wait_for_sess_cmds(struct se_session * se_sess)3102 void target_wait_for_sess_cmds(struct se_session *se_sess)
3103 {
3104 int ret;
3105
3106 WARN_ON_ONCE(!atomic_read(&se_sess->stopped));
3107
3108 do {
3109 pr_debug("Waiting for running cmds to complete.\n");
3110 ret = wait_event_timeout(se_sess->cmd_count_wq,
3111 percpu_ref_is_zero(&se_sess->cmd_count),
3112 180 * HZ);
3113 } while (ret <= 0);
3114
3115 wait_for_completion(&se_sess->stop_done);
3116 pr_debug("Waiting for cmds done.\n");
3117 }
3118 EXPORT_SYMBOL(target_wait_for_sess_cmds);
3119
3120 /*
3121 * Prevent that new percpu_ref_tryget_live() calls succeed and wait until
3122 * all references to the LUN have been released. Called during LUN shutdown.
3123 */
transport_clear_lun_ref(struct se_lun * lun)3124 void transport_clear_lun_ref(struct se_lun *lun)
3125 {
3126 percpu_ref_kill(&lun->lun_ref);
3127 wait_for_completion(&lun->lun_shutdown_comp);
3128 }
3129
3130 static bool
__transport_wait_for_tasks(struct se_cmd * cmd,bool fabric_stop,bool * aborted,bool * tas,unsigned long * flags)3131 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
3132 bool *aborted, bool *tas, unsigned long *flags)
3133 __releases(&cmd->t_state_lock)
3134 __acquires(&cmd->t_state_lock)
3135 {
3136 lockdep_assert_held(&cmd->t_state_lock);
3137
3138 if (fabric_stop)
3139 cmd->transport_state |= CMD_T_FABRIC_STOP;
3140
3141 if (cmd->transport_state & CMD_T_ABORTED)
3142 *aborted = true;
3143
3144 if (cmd->transport_state & CMD_T_TAS)
3145 *tas = true;
3146
3147 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3148 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3149 return false;
3150
3151 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3152 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3153 return false;
3154
3155 if (!(cmd->transport_state & CMD_T_ACTIVE))
3156 return false;
3157
3158 if (fabric_stop && *aborted)
3159 return false;
3160
3161 cmd->transport_state |= CMD_T_STOP;
3162
3163 target_show_cmd("wait_for_tasks: Stopping ", cmd);
3164
3165 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3166
3167 while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3168 180 * HZ))
3169 target_show_cmd("wait for tasks: ", cmd);
3170
3171 spin_lock_irqsave(&cmd->t_state_lock, *flags);
3172 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3173
3174 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3175 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3176
3177 return true;
3178 }
3179
3180 /**
3181 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3182 * @cmd: command to wait on
3183 */
transport_wait_for_tasks(struct se_cmd * cmd)3184 bool transport_wait_for_tasks(struct se_cmd *cmd)
3185 {
3186 unsigned long flags;
3187 bool ret, aborted = false, tas = false;
3188
3189 spin_lock_irqsave(&cmd->t_state_lock, flags);
3190 ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3191 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3192
3193 return ret;
3194 }
3195 EXPORT_SYMBOL(transport_wait_for_tasks);
3196
3197 struct sense_detail {
3198 u8 key;
3199 u8 asc;
3200 u8 ascq;
3201 bool add_sense_info;
3202 };
3203
3204 static const struct sense_detail sense_detail_table[] = {
3205 [TCM_NO_SENSE] = {
3206 .key = NOT_READY
3207 },
3208 [TCM_NON_EXISTENT_LUN] = {
3209 .key = ILLEGAL_REQUEST,
3210 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3211 },
3212 [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3213 .key = ILLEGAL_REQUEST,
3214 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3215 },
3216 [TCM_SECTOR_COUNT_TOO_MANY] = {
3217 .key = ILLEGAL_REQUEST,
3218 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3219 },
3220 [TCM_UNKNOWN_MODE_PAGE] = {
3221 .key = ILLEGAL_REQUEST,
3222 .asc = 0x24, /* INVALID FIELD IN CDB */
3223 },
3224 [TCM_CHECK_CONDITION_ABORT_CMD] = {
3225 .key = ABORTED_COMMAND,
3226 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3227 .ascq = 0x03,
3228 },
3229 [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3230 .key = ABORTED_COMMAND,
3231 .asc = 0x0c, /* WRITE ERROR */
3232 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3233 },
3234 [TCM_INVALID_CDB_FIELD] = {
3235 .key = ILLEGAL_REQUEST,
3236 .asc = 0x24, /* INVALID FIELD IN CDB */
3237 },
3238 [TCM_INVALID_PARAMETER_LIST] = {
3239 .key = ILLEGAL_REQUEST,
3240 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3241 },
3242 [TCM_TOO_MANY_TARGET_DESCS] = {
3243 .key = ILLEGAL_REQUEST,
3244 .asc = 0x26,
3245 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3246 },
3247 [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3248 .key = ILLEGAL_REQUEST,
3249 .asc = 0x26,
3250 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3251 },
3252 [TCM_TOO_MANY_SEGMENT_DESCS] = {
3253 .key = ILLEGAL_REQUEST,
3254 .asc = 0x26,
3255 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3256 },
3257 [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3258 .key = ILLEGAL_REQUEST,
3259 .asc = 0x26,
3260 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3261 },
3262 [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3263 .key = ILLEGAL_REQUEST,
3264 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3265 },
3266 [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3267 .key = ILLEGAL_REQUEST,
3268 .asc = 0x0c, /* WRITE ERROR */
3269 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3270 },
3271 [TCM_SERVICE_CRC_ERROR] = {
3272 .key = ABORTED_COMMAND,
3273 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3274 .ascq = 0x05, /* N/A */
3275 },
3276 [TCM_SNACK_REJECTED] = {
3277 .key = ABORTED_COMMAND,
3278 .asc = 0x11, /* READ ERROR */
3279 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3280 },
3281 [TCM_WRITE_PROTECTED] = {
3282 .key = DATA_PROTECT,
3283 .asc = 0x27, /* WRITE PROTECTED */
3284 },
3285 [TCM_ADDRESS_OUT_OF_RANGE] = {
3286 .key = ILLEGAL_REQUEST,
3287 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3288 },
3289 [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3290 .key = UNIT_ATTENTION,
3291 },
3292 [TCM_MISCOMPARE_VERIFY] = {
3293 .key = MISCOMPARE,
3294 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3295 .ascq = 0x00,
3296 .add_sense_info = true,
3297 },
3298 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3299 .key = ABORTED_COMMAND,
3300 .asc = 0x10,
3301 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3302 .add_sense_info = true,
3303 },
3304 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3305 .key = ABORTED_COMMAND,
3306 .asc = 0x10,
3307 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3308 .add_sense_info = true,
3309 },
3310 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3311 .key = ABORTED_COMMAND,
3312 .asc = 0x10,
3313 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3314 .add_sense_info = true,
3315 },
3316 [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3317 .key = COPY_ABORTED,
3318 .asc = 0x0d,
3319 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3320
3321 },
3322 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3323 /*
3324 * Returning ILLEGAL REQUEST would cause immediate IO errors on
3325 * Solaris initiators. Returning NOT READY instead means the
3326 * operations will be retried a finite number of times and we
3327 * can survive intermittent errors.
3328 */
3329 .key = NOT_READY,
3330 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3331 },
3332 [TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
3333 /*
3334 * From spc4r22 section5.7.7,5.7.8
3335 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
3336 * or a REGISTER AND IGNORE EXISTING KEY service action or
3337 * REGISTER AND MOVE service actionis attempted,
3338 * but there are insufficient device server resources to complete the
3339 * operation, then the command shall be terminated with CHECK CONDITION
3340 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
3341 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
3342 */
3343 .key = ILLEGAL_REQUEST,
3344 .asc = 0x55,
3345 .ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
3346 },
3347 [TCM_INVALID_FIELD_IN_COMMAND_IU] = {
3348 .key = ILLEGAL_REQUEST,
3349 .asc = 0x0e,
3350 .ascq = 0x03, /* INVALID FIELD IN COMMAND INFORMATION UNIT */
3351 },
3352 [TCM_ALUA_TG_PT_STANDBY] = {
3353 .key = NOT_READY,
3354 .asc = 0x04,
3355 .ascq = ASCQ_04H_ALUA_TG_PT_STANDBY,
3356 },
3357 [TCM_ALUA_TG_PT_UNAVAILABLE] = {
3358 .key = NOT_READY,
3359 .asc = 0x04,
3360 .ascq = ASCQ_04H_ALUA_TG_PT_UNAVAILABLE,
3361 },
3362 [TCM_ALUA_STATE_TRANSITION] = {
3363 .key = NOT_READY,
3364 .asc = 0x04,
3365 .ascq = ASCQ_04H_ALUA_STATE_TRANSITION,
3366 },
3367 [TCM_ALUA_OFFLINE] = {
3368 .key = NOT_READY,
3369 .asc = 0x04,
3370 .ascq = ASCQ_04H_ALUA_OFFLINE,
3371 },
3372 };
3373
3374 /**
3375 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
3376 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
3377 * be stored.
3378 * @reason: LIO sense reason code. If this argument has the value
3379 * TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
3380 * dequeuing a unit attention fails due to multiple commands being processed
3381 * concurrently, set the command status to BUSY.
3382 *
3383 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
3384 */
translate_sense_reason(struct se_cmd * cmd,sense_reason_t reason)3385 static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3386 {
3387 const struct sense_detail *sd;
3388 u8 *buffer = cmd->sense_buffer;
3389 int r = (__force int)reason;
3390 u8 key, asc, ascq;
3391 bool desc_format = target_sense_desc_format(cmd->se_dev);
3392
3393 if (r < ARRAY_SIZE(sense_detail_table) && sense_detail_table[r].key)
3394 sd = &sense_detail_table[r];
3395 else
3396 sd = &sense_detail_table[(__force int)
3397 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3398
3399 key = sd->key;
3400 if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3401 if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
3402 &ascq)) {
3403 cmd->scsi_status = SAM_STAT_BUSY;
3404 return;
3405 }
3406 } else {
3407 WARN_ON_ONCE(sd->asc == 0);
3408 asc = sd->asc;
3409 ascq = sd->ascq;
3410 }
3411
3412 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3413 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3414 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
3415 scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3416 if (sd->add_sense_info)
3417 WARN_ON_ONCE(scsi_set_sense_information(buffer,
3418 cmd->scsi_sense_length,
3419 cmd->sense_info) < 0);
3420 }
3421
3422 int
transport_send_check_condition_and_sense(struct se_cmd * cmd,sense_reason_t reason,int from_transport)3423 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3424 sense_reason_t reason, int from_transport)
3425 {
3426 unsigned long flags;
3427
3428 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3429
3430 spin_lock_irqsave(&cmd->t_state_lock, flags);
3431 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3432 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3433 return 0;
3434 }
3435 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3436 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3437
3438 if (!from_transport)
3439 translate_sense_reason(cmd, reason);
3440
3441 trace_target_cmd_complete(cmd);
3442 return cmd->se_tfo->queue_status(cmd);
3443 }
3444 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3445
3446 /**
3447 * target_send_busy - Send SCSI BUSY status back to the initiator
3448 * @cmd: SCSI command for which to send a BUSY reply.
3449 *
3450 * Note: Only call this function if target_submit_cmd*() failed.
3451 */
target_send_busy(struct se_cmd * cmd)3452 int target_send_busy(struct se_cmd *cmd)
3453 {
3454 WARN_ON_ONCE(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB);
3455
3456 cmd->scsi_status = SAM_STAT_BUSY;
3457 trace_target_cmd_complete(cmd);
3458 return cmd->se_tfo->queue_status(cmd);
3459 }
3460 EXPORT_SYMBOL(target_send_busy);
3461
target_tmr_work(struct work_struct * work)3462 static void target_tmr_work(struct work_struct *work)
3463 {
3464 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3465 struct se_device *dev = cmd->se_dev;
3466 struct se_tmr_req *tmr = cmd->se_tmr_req;
3467 int ret;
3468
3469 if (cmd->transport_state & CMD_T_ABORTED)
3470 goto aborted;
3471
3472 switch (tmr->function) {
3473 case TMR_ABORT_TASK:
3474 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3475 break;
3476 case TMR_ABORT_TASK_SET:
3477 case TMR_CLEAR_ACA:
3478 case TMR_CLEAR_TASK_SET:
3479 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3480 break;
3481 case TMR_LUN_RESET:
3482 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3483 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3484 TMR_FUNCTION_REJECTED;
3485 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3486 target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3487 cmd->orig_fe_lun, 0x29,
3488 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3489 }
3490 break;
3491 case TMR_TARGET_WARM_RESET:
3492 tmr->response = TMR_FUNCTION_REJECTED;
3493 break;
3494 case TMR_TARGET_COLD_RESET:
3495 tmr->response = TMR_FUNCTION_REJECTED;
3496 break;
3497 default:
3498 pr_err("Unknown TMR function: 0x%02x.\n",
3499 tmr->function);
3500 tmr->response = TMR_FUNCTION_REJECTED;
3501 break;
3502 }
3503
3504 if (cmd->transport_state & CMD_T_ABORTED)
3505 goto aborted;
3506
3507 cmd->se_tfo->queue_tm_rsp(cmd);
3508
3509 transport_lun_remove_cmd(cmd);
3510 transport_cmd_check_stop_to_fabric(cmd);
3511 return;
3512
3513 aborted:
3514 target_handle_abort(cmd);
3515 }
3516
transport_generic_handle_tmr(struct se_cmd * cmd)3517 int transport_generic_handle_tmr(
3518 struct se_cmd *cmd)
3519 {
3520 unsigned long flags;
3521 bool aborted = false;
3522
3523 spin_lock_irqsave(&cmd->t_state_lock, flags);
3524 if (cmd->transport_state & CMD_T_ABORTED) {
3525 aborted = true;
3526 } else {
3527 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3528 cmd->transport_state |= CMD_T_ACTIVE;
3529 }
3530 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3531
3532 if (aborted) {
3533 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d ref_tag: %llu tag: %llu\n",
3534 cmd->se_tmr_req->function,
3535 cmd->se_tmr_req->ref_task_tag, cmd->tag);
3536 target_handle_abort(cmd);
3537 return 0;
3538 }
3539
3540 INIT_WORK(&cmd->work, target_tmr_work);
3541 schedule_work(&cmd->work);
3542 return 0;
3543 }
3544 EXPORT_SYMBOL(transport_generic_handle_tmr);
3545
3546 bool
target_check_wce(struct se_device * dev)3547 target_check_wce(struct se_device *dev)
3548 {
3549 bool wce = false;
3550
3551 if (dev->transport->get_write_cache)
3552 wce = dev->transport->get_write_cache(dev);
3553 else if (dev->dev_attrib.emulate_write_cache > 0)
3554 wce = true;
3555
3556 return wce;
3557 }
3558
3559 bool
target_check_fua(struct se_device * dev)3560 target_check_fua(struct se_device *dev)
3561 {
3562 return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3563 }
3564