1 /*
2  * VGICv3 MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/irqchip/arm-gic-v3.h>
15 #include <linux/kvm.h>
16 #include <linux/kvm_host.h>
17 #include <kvm/iodev.h>
18 #include <kvm/arm_vgic.h>
19 
20 #include <asm/kvm_emulate.h>
21 #include <asm/kvm_arm.h>
22 #include <asm/kvm_mmu.h>
23 
24 #include "vgic.h"
25 #include "vgic-mmio.h"
26 
27 /* extract @num bytes at @offset bytes offset in data */
extract_bytes(u64 data,unsigned int offset,unsigned int num)28 unsigned long extract_bytes(u64 data, unsigned int offset,
29 			    unsigned int num)
30 {
31 	return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
32 }
33 
34 /* allows updates of any half of a 64-bit register (or the whole thing) */
update_64bit_reg(u64 reg,unsigned int offset,unsigned int len,unsigned long val)35 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
36 		     unsigned long val)
37 {
38 	int lower = (offset & 4) * 8;
39 	int upper = lower + 8 * len - 1;
40 
41 	reg &= ~GENMASK_ULL(upper, lower);
42 	val &= GENMASK_ULL(len * 8 - 1, 0);
43 
44 	return reg | ((u64)val << lower);
45 }
46 
vgic_has_its(struct kvm * kvm)47 bool vgic_has_its(struct kvm *kvm)
48 {
49 	struct vgic_dist *dist = &kvm->arch.vgic;
50 
51 	if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
52 		return false;
53 
54 	return dist->has_its;
55 }
56 
vgic_supports_direct_msis(struct kvm * kvm)57 bool vgic_supports_direct_msis(struct kvm *kvm)
58 {
59 	return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
60 }
61 
62 /*
63  * The Revision field in the IIDR have the following meanings:
64  *
65  * Revision 2: Interrupt groups are guest-configurable and signaled using
66  * 	       their configured groups.
67  */
68 
vgic_mmio_read_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)69 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
70 					    gpa_t addr, unsigned int len)
71 {
72 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
73 	u32 value = 0;
74 
75 	switch (addr & 0x0c) {
76 	case GICD_CTLR:
77 		if (vgic->enabled)
78 			value |= GICD_CTLR_ENABLE_SS_G1;
79 		value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
80 		break;
81 	case GICD_TYPER:
82 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
83 		value = (value >> 5) - 1;
84 		if (vgic_has_its(vcpu->kvm)) {
85 			value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
86 			value |= GICD_TYPER_LPIS;
87 		} else {
88 			value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
89 		}
90 		break;
91 	case GICD_IIDR:
92 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
93 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
94 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
95 		break;
96 	default:
97 		return 0;
98 	}
99 
100 	return value;
101 }
102 
vgic_mmio_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)103 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
104 				    gpa_t addr, unsigned int len,
105 				    unsigned long val)
106 {
107 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
108 	bool was_enabled = dist->enabled;
109 
110 	switch (addr & 0x0c) {
111 	case GICD_CTLR:
112 		dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
113 
114 		if (!was_enabled && dist->enabled)
115 			vgic_kick_vcpus(vcpu->kvm);
116 		break;
117 	case GICD_TYPER:
118 	case GICD_IIDR:
119 		return;
120 	}
121 }
122 
vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)123 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
124 					   gpa_t addr, unsigned int len,
125 					   unsigned long val)
126 {
127 	switch (addr & 0x0c) {
128 	case GICD_IIDR:
129 		if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
130 			return -EINVAL;
131 	}
132 
133 	vgic_mmio_write_v3_misc(vcpu, addr, len, val);
134 	return 0;
135 }
136 
vgic_mmio_read_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)137 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
138 					    gpa_t addr, unsigned int len)
139 {
140 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
141 	struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
142 	unsigned long ret = 0;
143 
144 	if (!irq)
145 		return 0;
146 
147 	/* The upper word is RAZ for us. */
148 	if (!(addr & 4))
149 		ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
150 
151 	vgic_put_irq(vcpu->kvm, irq);
152 	return ret;
153 }
154 
vgic_mmio_write_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)155 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
156 				    gpa_t addr, unsigned int len,
157 				    unsigned long val)
158 {
159 	int intid = VGIC_ADDR_TO_INTID(addr, 64);
160 	struct vgic_irq *irq;
161 	unsigned long flags;
162 
163 	/* The upper word is WI for us since we don't implement Aff3. */
164 	if (addr & 4)
165 		return;
166 
167 	irq = vgic_get_irq(vcpu->kvm, NULL, intid);
168 
169 	if (!irq)
170 		return;
171 
172 	spin_lock_irqsave(&irq->irq_lock, flags);
173 
174 	/* We only care about and preserve Aff0, Aff1 and Aff2. */
175 	irq->mpidr = val & GENMASK(23, 0);
176 	irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
177 
178 	spin_unlock_irqrestore(&irq->irq_lock, flags);
179 	vgic_put_irq(vcpu->kvm, irq);
180 }
181 
vgic_mmio_read_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)182 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
183 					     gpa_t addr, unsigned int len)
184 {
185 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
186 
187 	return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
188 }
189 
190 
vgic_mmio_write_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)191 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
192 				     gpa_t addr, unsigned int len,
193 				     unsigned long val)
194 {
195 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
196 	bool was_enabled = vgic_cpu->lpis_enabled;
197 
198 	if (!vgic_has_its(vcpu->kvm))
199 		return;
200 
201 	vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
202 
203 	if (!was_enabled && vgic_cpu->lpis_enabled)
204 		vgic_enable_lpis(vcpu);
205 }
206 
vgic_mmio_read_v3r_typer(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)207 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
208 					      gpa_t addr, unsigned int len)
209 {
210 	unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
211 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
212 	struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
213 	int target_vcpu_id = vcpu->vcpu_id;
214 	gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
215 			(rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
216 	u64 value;
217 
218 	value = (u64)(mpidr & GENMASK(23, 0)) << 32;
219 	value |= ((target_vcpu_id & 0xffff) << 8);
220 
221 	if (addr == last_rdist_typer)
222 		value |= GICR_TYPER_LAST;
223 	if (vgic_has_its(vcpu->kvm))
224 		value |= GICR_TYPER_PLPIS;
225 
226 	return extract_bytes(value, addr & 7, len);
227 }
228 
vgic_mmio_read_v3r_iidr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)229 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
230 					     gpa_t addr, unsigned int len)
231 {
232 	return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
233 }
234 
vgic_mmio_read_v3_idregs(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)235 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
236 					      gpa_t addr, unsigned int len)
237 {
238 	switch (addr & 0xffff) {
239 	case GICD_PIDR2:
240 		/* report a GICv3 compliant implementation */
241 		return 0x3b;
242 	}
243 
244 	return 0;
245 }
246 
vgic_v3_uaccess_read_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)247 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
248 						  gpa_t addr, unsigned int len)
249 {
250 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
251 	u32 value = 0;
252 	int i;
253 
254 	/*
255 	 * pending state of interrupt is latched in pending_latch variable.
256 	 * Userspace will save and restore pending state and line_level
257 	 * separately.
258 	 * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
259 	 * for handling of ISPENDR and ICPENDR.
260 	 */
261 	for (i = 0; i < len * 8; i++) {
262 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
263 
264 		if (irq->pending_latch)
265 			value |= (1U << i);
266 
267 		vgic_put_irq(vcpu->kvm, irq);
268 	}
269 
270 	return value;
271 }
272 
vgic_v3_uaccess_write_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)273 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
274 					 gpa_t addr, unsigned int len,
275 					 unsigned long val)
276 {
277 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
278 	int i;
279 	unsigned long flags;
280 
281 	for (i = 0; i < len * 8; i++) {
282 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
283 
284 		spin_lock_irqsave(&irq->irq_lock, flags);
285 		if (test_bit(i, &val)) {
286 			/*
287 			 * pending_latch is set irrespective of irq type
288 			 * (level or edge) to avoid dependency that VM should
289 			 * restore irq config before pending info.
290 			 */
291 			irq->pending_latch = true;
292 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
293 		} else {
294 			irq->pending_latch = false;
295 			spin_unlock_irqrestore(&irq->irq_lock, flags);
296 		}
297 
298 		vgic_put_irq(vcpu->kvm, irq);
299 	}
300 
301 	return 0;
302 }
303 
304 /* We want to avoid outer shareable. */
vgic_sanitise_shareability(u64 field)305 u64 vgic_sanitise_shareability(u64 field)
306 {
307 	switch (field) {
308 	case GIC_BASER_OuterShareable:
309 		return GIC_BASER_InnerShareable;
310 	default:
311 		return field;
312 	}
313 }
314 
315 /* Avoid any inner non-cacheable mapping. */
vgic_sanitise_inner_cacheability(u64 field)316 u64 vgic_sanitise_inner_cacheability(u64 field)
317 {
318 	switch (field) {
319 	case GIC_BASER_CACHE_nCnB:
320 	case GIC_BASER_CACHE_nC:
321 		return GIC_BASER_CACHE_RaWb;
322 	default:
323 		return field;
324 	}
325 }
326 
327 /* Non-cacheable or same-as-inner are OK. */
vgic_sanitise_outer_cacheability(u64 field)328 u64 vgic_sanitise_outer_cacheability(u64 field)
329 {
330 	switch (field) {
331 	case GIC_BASER_CACHE_SameAsInner:
332 	case GIC_BASER_CACHE_nC:
333 		return field;
334 	default:
335 		return GIC_BASER_CACHE_nC;
336 	}
337 }
338 
vgic_sanitise_field(u64 reg,u64 field_mask,int field_shift,u64 (* sanitise_fn)(u64))339 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
340 			u64 (*sanitise_fn)(u64))
341 {
342 	u64 field = (reg & field_mask) >> field_shift;
343 
344 	field = sanitise_fn(field) << field_shift;
345 	return (reg & ~field_mask) | field;
346 }
347 
348 #define PROPBASER_RES0_MASK						\
349 	(GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
350 #define PENDBASER_RES0_MASK						\
351 	(BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |	\
352 	 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
353 
vgic_sanitise_pendbaser(u64 reg)354 static u64 vgic_sanitise_pendbaser(u64 reg)
355 {
356 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
357 				  GICR_PENDBASER_SHAREABILITY_SHIFT,
358 				  vgic_sanitise_shareability);
359 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
360 				  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
361 				  vgic_sanitise_inner_cacheability);
362 	reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
363 				  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
364 				  vgic_sanitise_outer_cacheability);
365 
366 	reg &= ~PENDBASER_RES0_MASK;
367 	reg &= ~GENMASK_ULL(51, 48);
368 
369 	return reg;
370 }
371 
vgic_sanitise_propbaser(u64 reg)372 static u64 vgic_sanitise_propbaser(u64 reg)
373 {
374 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
375 				  GICR_PROPBASER_SHAREABILITY_SHIFT,
376 				  vgic_sanitise_shareability);
377 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
378 				  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
379 				  vgic_sanitise_inner_cacheability);
380 	reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
381 				  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
382 				  vgic_sanitise_outer_cacheability);
383 
384 	reg &= ~PROPBASER_RES0_MASK;
385 	reg &= ~GENMASK_ULL(51, 48);
386 	return reg;
387 }
388 
vgic_mmio_read_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)389 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
390 					     gpa_t addr, unsigned int len)
391 {
392 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
393 
394 	return extract_bytes(dist->propbaser, addr & 7, len);
395 }
396 
vgic_mmio_write_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)397 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
398 				     gpa_t addr, unsigned int len,
399 				     unsigned long val)
400 {
401 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
402 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
403 	u64 old_propbaser, propbaser;
404 
405 	/* Storing a value with LPIs already enabled is undefined */
406 	if (vgic_cpu->lpis_enabled)
407 		return;
408 
409 	do {
410 		old_propbaser = READ_ONCE(dist->propbaser);
411 		propbaser = old_propbaser;
412 		propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
413 		propbaser = vgic_sanitise_propbaser(propbaser);
414 	} while (cmpxchg64(&dist->propbaser, old_propbaser,
415 			   propbaser) != old_propbaser);
416 }
417 
vgic_mmio_read_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)418 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
419 					     gpa_t addr, unsigned int len)
420 {
421 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
422 
423 	return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
424 }
425 
vgic_mmio_write_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)426 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
427 				     gpa_t addr, unsigned int len,
428 				     unsigned long val)
429 {
430 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
431 	u64 old_pendbaser, pendbaser;
432 
433 	/* Storing a value with LPIs already enabled is undefined */
434 	if (vgic_cpu->lpis_enabled)
435 		return;
436 
437 	do {
438 		old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
439 		pendbaser = old_pendbaser;
440 		pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
441 		pendbaser = vgic_sanitise_pendbaser(pendbaser);
442 	} while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
443 			   pendbaser) != old_pendbaser);
444 }
445 
446 /*
447  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
448  * redistributors, while SPIs are covered by registers in the distributor
449  * block. Trying to set private IRQs in this block gets ignored.
450  * We take some special care here to fix the calculation of the register
451  * offset.
452  */
453 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
454 	{								\
455 		.reg_offset = off,					\
456 		.bits_per_irq = bpi,					\
457 		.len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,		\
458 		.access_flags = acc,					\
459 		.read = vgic_mmio_read_raz,				\
460 		.write = vgic_mmio_write_wi,				\
461 	}, {								\
462 		.reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,	\
463 		.bits_per_irq = bpi,					\
464 		.len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,	\
465 		.access_flags = acc,					\
466 		.read = rd,						\
467 		.write = wr,						\
468 		.uaccess_read = ur,					\
469 		.uaccess_write = uw,					\
470 	}
471 
472 static const struct vgic_register_region vgic_v3_dist_registers[] = {
473 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
474 		vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
475 		NULL, vgic_mmio_uaccess_write_v3_misc,
476 		16, VGIC_ACCESS_32bit),
477 	REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
478 		vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
479 		VGIC_ACCESS_32bit),
480 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
481 		vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
482 		VGIC_ACCESS_32bit),
483 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
484 		vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
485 		VGIC_ACCESS_32bit),
486 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
487 		vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
488 		VGIC_ACCESS_32bit),
489 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
490 		vgic_mmio_read_pending, vgic_mmio_write_spending,
491 		vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
492 		VGIC_ACCESS_32bit),
493 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
494 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
495 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
496 		VGIC_ACCESS_32bit),
497 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
498 		vgic_mmio_read_active, vgic_mmio_write_sactive,
499 		NULL, vgic_mmio_uaccess_write_sactive, 1,
500 		VGIC_ACCESS_32bit),
501 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
502 		vgic_mmio_read_active, vgic_mmio_write_cactive,
503 		NULL, vgic_mmio_uaccess_write_cactive,
504 		1, VGIC_ACCESS_32bit),
505 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
506 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
507 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
508 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
509 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
510 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
511 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
512 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
513 		VGIC_ACCESS_32bit),
514 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
515 		vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
516 		VGIC_ACCESS_32bit),
517 	REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
518 		vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
519 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
520 	REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
521 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
522 		VGIC_ACCESS_32bit),
523 };
524 
525 static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
526 	REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
527 		vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
528 		VGIC_ACCESS_32bit),
529 	REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
530 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
531 		VGIC_ACCESS_32bit),
532 	REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
533 		vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
534 		VGIC_ACCESS_32bit),
535 	REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
536 		vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
537 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
538 	REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
539 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
540 		VGIC_ACCESS_32bit),
541 	REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
542 		vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
543 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
544 	REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
545 		vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
546 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
547 	REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
548 		vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
549 		VGIC_ACCESS_32bit),
550 };
551 
552 static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
553 	REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
554 		vgic_mmio_read_group, vgic_mmio_write_group, 4,
555 		VGIC_ACCESS_32bit),
556 	REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
557 		vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
558 		VGIC_ACCESS_32bit),
559 	REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
560 		vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
561 		VGIC_ACCESS_32bit),
562 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
563 		vgic_mmio_read_pending, vgic_mmio_write_spending,
564 		vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
565 		VGIC_ACCESS_32bit),
566 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
567 		vgic_mmio_read_pending, vgic_mmio_write_cpending,
568 		vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
569 		VGIC_ACCESS_32bit),
570 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
571 		vgic_mmio_read_active, vgic_mmio_write_sactive,
572 		NULL, vgic_mmio_uaccess_write_sactive,
573 		4, VGIC_ACCESS_32bit),
574 	REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
575 		vgic_mmio_read_active, vgic_mmio_write_cactive,
576 		NULL, vgic_mmio_uaccess_write_cactive,
577 		4, VGIC_ACCESS_32bit),
578 	REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
579 		vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
580 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
581 	REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
582 		vgic_mmio_read_config, vgic_mmio_write_config, 8,
583 		VGIC_ACCESS_32bit),
584 	REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
585 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
586 		VGIC_ACCESS_32bit),
587 	REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
588 		vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
589 		VGIC_ACCESS_32bit),
590 };
591 
vgic_v3_init_dist_iodev(struct vgic_io_device * dev)592 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
593 {
594 	dev->regions = vgic_v3_dist_registers;
595 	dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
596 
597 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
598 
599 	return SZ_64K;
600 }
601 
602 /**
603  * vgic_register_redist_iodev - register a single redist iodev
604  * @vcpu:    The VCPU to which the redistributor belongs
605  *
606  * Register a KVM iodev for this VCPU's redistributor using the address
607  * provided.
608  *
609  * Return 0 on success, -ERRNO otherwise.
610  */
vgic_register_redist_iodev(struct kvm_vcpu * vcpu)611 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
612 {
613 	struct kvm *kvm = vcpu->kvm;
614 	struct vgic_dist *vgic = &kvm->arch.vgic;
615 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
616 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
617 	struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
618 	struct vgic_redist_region *rdreg;
619 	gpa_t rd_base, sgi_base;
620 	int ret;
621 
622 	if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
623 		return 0;
624 
625 	/*
626 	 * We may be creating VCPUs before having set the base address for the
627 	 * redistributor region, in which case we will come back to this
628 	 * function for all VCPUs when the base address is set.  Just return
629 	 * without doing any work for now.
630 	 */
631 	rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
632 	if (!rdreg)
633 		return 0;
634 
635 	if (!vgic_v3_check_base(kvm))
636 		return -EINVAL;
637 
638 	vgic_cpu->rdreg = rdreg;
639 
640 	rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
641 	sgi_base = rd_base + SZ_64K;
642 
643 	kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
644 	rd_dev->base_addr = rd_base;
645 	rd_dev->iodev_type = IODEV_REDIST;
646 	rd_dev->regions = vgic_v3_rdbase_registers;
647 	rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
648 	rd_dev->redist_vcpu = vcpu;
649 
650 	mutex_lock(&kvm->slots_lock);
651 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
652 				      SZ_64K, &rd_dev->dev);
653 	mutex_unlock(&kvm->slots_lock);
654 
655 	if (ret)
656 		return ret;
657 
658 	kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
659 	sgi_dev->base_addr = sgi_base;
660 	sgi_dev->iodev_type = IODEV_REDIST;
661 	sgi_dev->regions = vgic_v3_sgibase_registers;
662 	sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
663 	sgi_dev->redist_vcpu = vcpu;
664 
665 	mutex_lock(&kvm->slots_lock);
666 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
667 				      SZ_64K, &sgi_dev->dev);
668 	if (ret) {
669 		kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
670 					  &rd_dev->dev);
671 		goto out;
672 	}
673 
674 	rdreg->free_index++;
675 out:
676 	mutex_unlock(&kvm->slots_lock);
677 	return ret;
678 }
679 
vgic_unregister_redist_iodev(struct kvm_vcpu * vcpu)680 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
681 {
682 	struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
683 	struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
684 
685 	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
686 	kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
687 }
688 
vgic_register_all_redist_iodevs(struct kvm * kvm)689 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
690 {
691 	struct kvm_vcpu *vcpu;
692 	int c, ret = 0;
693 
694 	kvm_for_each_vcpu(c, vcpu, kvm) {
695 		ret = vgic_register_redist_iodev(vcpu);
696 		if (ret)
697 			break;
698 	}
699 
700 	if (ret) {
701 		/* The current c failed, so we start with the previous one. */
702 		mutex_lock(&kvm->slots_lock);
703 		for (c--; c >= 0; c--) {
704 			vcpu = kvm_get_vcpu(kvm, c);
705 			vgic_unregister_redist_iodev(vcpu);
706 		}
707 		mutex_unlock(&kvm->slots_lock);
708 	}
709 
710 	return ret;
711 }
712 
713 /**
714  * vgic_v3_insert_redist_region - Insert a new redistributor region
715  *
716  * Performs various checks before inserting the rdist region in the list.
717  * Those tests depend on whether the size of the rdist region is known
718  * (ie. count != 0). The list is sorted by rdist region index.
719  *
720  * @kvm: kvm handle
721  * @index: redist region index
722  * @base: base of the new rdist region
723  * @count: number of redistributors the region is made of (0 in the old style
724  * single region, whose size is induced from the number of vcpus)
725  *
726  * Return 0 on success, < 0 otherwise
727  */
vgic_v3_insert_redist_region(struct kvm * kvm,uint32_t index,gpa_t base,uint32_t count)728 static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
729 					gpa_t base, uint32_t count)
730 {
731 	struct vgic_dist *d = &kvm->arch.vgic;
732 	struct vgic_redist_region *rdreg;
733 	struct list_head *rd_regions = &d->rd_regions;
734 	size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
735 	int ret;
736 
737 	/* single rdist region already set ?*/
738 	if (!count && !list_empty(rd_regions))
739 		return -EINVAL;
740 
741 	/* cross the end of memory ? */
742 	if (base + size < base)
743 		return -EINVAL;
744 
745 	if (list_empty(rd_regions)) {
746 		if (index != 0)
747 			return -EINVAL;
748 	} else {
749 		rdreg = list_last_entry(rd_regions,
750 					struct vgic_redist_region, list);
751 		if (index != rdreg->index + 1)
752 			return -EINVAL;
753 
754 		/* Cannot add an explicitly sized regions after legacy region */
755 		if (!rdreg->count)
756 			return -EINVAL;
757 	}
758 
759 	/*
760 	 * For legacy single-region redistributor regions (!count),
761 	 * check that the redistributor region does not overlap with the
762 	 * distributor's address space.
763 	 */
764 	if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
765 		vgic_dist_overlap(kvm, base, size))
766 		return -EINVAL;
767 
768 	/* collision with any other rdist region? */
769 	if (vgic_v3_rdist_overlap(kvm, base, size))
770 		return -EINVAL;
771 
772 	rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
773 	if (!rdreg)
774 		return -ENOMEM;
775 
776 	rdreg->base = VGIC_ADDR_UNDEF;
777 
778 	ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
779 	if (ret)
780 		goto free;
781 
782 	rdreg->base = base;
783 	rdreg->count = count;
784 	rdreg->free_index = 0;
785 	rdreg->index = index;
786 
787 	list_add_tail(&rdreg->list, rd_regions);
788 	return 0;
789 free:
790 	kfree(rdreg);
791 	return ret;
792 }
793 
vgic_v3_set_redist_base(struct kvm * kvm,u32 index,u64 addr,u32 count)794 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
795 {
796 	int ret;
797 
798 	ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
799 	if (ret)
800 		return ret;
801 
802 	/*
803 	 * Register iodevs for each existing VCPU.  Adding more VCPUs
804 	 * afterwards will register the iodevs when needed.
805 	 */
806 	ret = vgic_register_all_redist_iodevs(kvm);
807 	if (ret)
808 		return ret;
809 
810 	return 0;
811 }
812 
vgic_v3_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)813 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
814 {
815 	const struct vgic_register_region *region;
816 	struct vgic_io_device iodev;
817 	struct vgic_reg_attr reg_attr;
818 	struct kvm_vcpu *vcpu;
819 	gpa_t addr;
820 	int ret;
821 
822 	ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
823 	if (ret)
824 		return ret;
825 
826 	vcpu = reg_attr.vcpu;
827 	addr = reg_attr.addr;
828 
829 	switch (attr->group) {
830 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
831 		iodev.regions = vgic_v3_dist_registers;
832 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
833 		iodev.base_addr = 0;
834 		break;
835 	case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
836 		iodev.regions = vgic_v3_rdbase_registers;
837 		iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
838 		iodev.base_addr = 0;
839 		break;
840 	}
841 	case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
842 		u64 reg, id;
843 
844 		id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
845 		return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
846 	}
847 	default:
848 		return -ENXIO;
849 	}
850 
851 	/* We only support aligned 32-bit accesses. */
852 	if (addr & 3)
853 		return -ENXIO;
854 
855 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
856 	if (!region)
857 		return -ENXIO;
858 
859 	return 0;
860 }
861 /*
862  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
863  * generation register ICC_SGI1R_EL1) with a given VCPU.
864  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
865  * return -1.
866  */
match_mpidr(u64 sgi_aff,u16 sgi_cpu_mask,struct kvm_vcpu * vcpu)867 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
868 {
869 	unsigned long affinity;
870 	int level0;
871 
872 	/*
873 	 * Split the current VCPU's MPIDR into affinity level 0 and the
874 	 * rest as this is what we have to compare against.
875 	 */
876 	affinity = kvm_vcpu_get_mpidr_aff(vcpu);
877 	level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
878 	affinity &= ~MPIDR_LEVEL_MASK;
879 
880 	/* bail out if the upper three levels don't match */
881 	if (sgi_aff != affinity)
882 		return -1;
883 
884 	/* Is this VCPU's bit set in the mask ? */
885 	if (!(sgi_cpu_mask & BIT(level0)))
886 		return -1;
887 
888 	return level0;
889 }
890 
891 /*
892  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
893  * so provide a wrapper to use the existing defines to isolate a certain
894  * affinity level.
895  */
896 #define SGI_AFFINITY_LEVEL(reg, level) \
897 	((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
898 	>> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
899 
900 /**
901  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
902  * @vcpu: The VCPU requesting a SGI
903  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
904  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
905  *
906  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
907  * This will trap in sys_regs.c and call this function.
908  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
909  * target processors as well as a bitmask of 16 Aff0 CPUs.
910  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
911  * check for matching ones. If this bit is set, we signal all, but not the
912  * calling VCPU.
913  */
vgic_v3_dispatch_sgi(struct kvm_vcpu * vcpu,u64 reg,bool allow_group1)914 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
915 {
916 	struct kvm *kvm = vcpu->kvm;
917 	struct kvm_vcpu *c_vcpu;
918 	u16 target_cpus;
919 	u64 mpidr;
920 	int sgi, c;
921 	int vcpu_id = vcpu->vcpu_id;
922 	bool broadcast;
923 	unsigned long flags;
924 
925 	sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
926 	broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
927 	target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
928 	mpidr = SGI_AFFINITY_LEVEL(reg, 3);
929 	mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
930 	mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
931 
932 	/*
933 	 * We iterate over all VCPUs to find the MPIDRs matching the request.
934 	 * If we have handled one CPU, we clear its bit to detect early
935 	 * if we are already finished. This avoids iterating through all
936 	 * VCPUs when most of the times we just signal a single VCPU.
937 	 */
938 	kvm_for_each_vcpu(c, c_vcpu, kvm) {
939 		struct vgic_irq *irq;
940 
941 		/* Exit early if we have dealt with all requested CPUs */
942 		if (!broadcast && target_cpus == 0)
943 			break;
944 
945 		/* Don't signal the calling VCPU */
946 		if (broadcast && c == vcpu_id)
947 			continue;
948 
949 		if (!broadcast) {
950 			int level0;
951 
952 			level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
953 			if (level0 == -1)
954 				continue;
955 
956 			/* remove this matching VCPU from the mask */
957 			target_cpus &= ~BIT(level0);
958 		}
959 
960 		irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
961 
962 		spin_lock_irqsave(&irq->irq_lock, flags);
963 
964 		/*
965 		 * An access targetting Group0 SGIs can only generate
966 		 * those, while an access targetting Group1 SGIs can
967 		 * generate interrupts of either group.
968 		 */
969 		if (!irq->group || allow_group1) {
970 			irq->pending_latch = true;
971 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
972 		} else {
973 			spin_unlock_irqrestore(&irq->irq_lock, flags);
974 		}
975 
976 		vgic_put_irq(vcpu->kvm, irq);
977 	}
978 }
979 
vgic_v3_dist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)980 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
981 			 int offset, u32 *val)
982 {
983 	struct vgic_io_device dev = {
984 		.regions = vgic_v3_dist_registers,
985 		.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
986 	};
987 
988 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
989 }
990 
vgic_v3_redist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)991 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
992 			   int offset, u32 *val)
993 {
994 	struct vgic_io_device rd_dev = {
995 		.regions = vgic_v3_rdbase_registers,
996 		.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
997 	};
998 
999 	struct vgic_io_device sgi_dev = {
1000 		.regions = vgic_v3_sgibase_registers,
1001 		.nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
1002 	};
1003 
1004 	/* SGI_base is the next 64K frame after RD_base */
1005 	if (offset >= SZ_64K)
1006 		return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
1007 				    val);
1008 	else
1009 		return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1010 }
1011 
vgic_v3_line_level_info_uaccess(struct kvm_vcpu * vcpu,bool is_write,u32 intid,u64 * val)1012 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1013 				    u32 intid, u64 *val)
1014 {
1015 	if (intid % 32)
1016 		return -EINVAL;
1017 
1018 	if (is_write)
1019 		vgic_write_irq_line_level_info(vcpu, intid, *val);
1020 	else
1021 		*val = vgic_read_irq_line_level_info(vcpu, intid);
1022 
1023 	return 0;
1024 }
1025