1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2013 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include "csio_hw.h"
35 #include "csio_init.h"
36
37 static int
csio_t5_set_mem_win(struct csio_hw * hw,uint32_t win)38 csio_t5_set_mem_win(struct csio_hw *hw, uint32_t win)
39 {
40 u32 mem_win_base;
41 /*
42 * Truncation intentional: we only read the bottom 32-bits of the
43 * 64-bit BAR0/BAR1 ... We use the hardware backdoor mechanism to
44 * read BAR0 instead of using pci_resource_start() because we could be
45 * operating from within a Virtual Machine which is trapping our
46 * accesses to our Configuration Space and we need to set up the PCI-E
47 * Memory Window decoders with the actual addresses which will be
48 * coming across the PCI-E link.
49 */
50
51 /* For T5, only relative offset inside the PCIe BAR is passed */
52 mem_win_base = MEMWIN_BASE;
53
54 /*
55 * Set up memory window for accessing adapter memory ranges. (Read
56 * back MA register to ensure that changes propagate before we attempt
57 * to use the new values.)
58 */
59 csio_wr_reg32(hw, mem_win_base | BIR_V(0) |
60 WINDOW_V(ilog2(MEMWIN_APERTURE) - 10),
61 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
62 csio_rd_reg32(hw,
63 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
64
65 return 0;
66 }
67
68 /*
69 * Interrupt handler for the PCIE module.
70 */
71 static void
csio_t5_pcie_intr_handler(struct csio_hw * hw)72 csio_t5_pcie_intr_handler(struct csio_hw *hw)
73 {
74 static struct intr_info pcie_intr_info[] = {
75 { MSTGRPPERR_F, "Master Response Read Queue parity error",
76 -1, 1 },
77 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
78 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
79 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
80 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
81 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
82 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
83 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
84 -1, 1 },
85 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
86 -1, 1 },
87 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
88 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
89 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
90 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
91 { DREQWRPERR_F, "PCI DMA channel write request parity error",
92 -1, 1 },
93 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
94 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
95 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
96 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
97 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
98 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
99 { FIDPERR_F, "PCI FID parity error", -1, 1 },
100 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
101 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
102 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
103 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
104 -1, 1 },
105 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
106 -1, 1 },
107 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
108 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
109 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
110 { READRSPERR_F, "Outbound read error", -1, 0 },
111 { 0, NULL, 0, 0 }
112 };
113
114 int fat;
115 fat = csio_handle_intr_status(hw, PCIE_INT_CAUSE_A, pcie_intr_info);
116 if (fat)
117 csio_hw_fatal_err(hw);
118 }
119
120 /*
121 * csio_t5_flash_cfg_addr - return the address of the flash configuration file
122 * @hw: the HW module
123 *
124 * Return the address within the flash where the Firmware Configuration
125 * File is stored.
126 */
127 static unsigned int
csio_t5_flash_cfg_addr(struct csio_hw * hw)128 csio_t5_flash_cfg_addr(struct csio_hw *hw)
129 {
130 return FLASH_CFG_START;
131 }
132
133 /*
134 * csio_t5_mc_read - read from MC through backdoor accesses
135 * @hw: the hw module
136 * @idx: index to the register
137 * @addr: address of first byte requested
138 * @data: 64 bytes of data containing the requested address
139 * @ecc: where to store the corresponding 64-bit ECC word
140 *
141 * Read 64 bytes of data from MC starting at a 64-byte-aligned address
142 * that covers the requested address @addr. If @parity is not %NULL it
143 * is assigned the 64-bit ECC word for the read data.
144 */
145 static int
csio_t5_mc_read(struct csio_hw * hw,int idx,uint32_t addr,__be32 * data,uint64_t * ecc)146 csio_t5_mc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
147 uint64_t *ecc)
148 {
149 int i;
150 uint32_t mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
151 uint32_t mc_bist_data_pattern_reg;
152
153 mc_bist_cmd_reg = MC_REG(MC_P_BIST_CMD_A, idx);
154 mc_bist_cmd_addr_reg = MC_REG(MC_P_BIST_CMD_ADDR_A, idx);
155 mc_bist_cmd_len_reg = MC_REG(MC_P_BIST_CMD_LEN_A, idx);
156 mc_bist_data_pattern_reg = MC_REG(MC_P_BIST_DATA_PATTERN_A, idx);
157
158 if (csio_rd_reg32(hw, mc_bist_cmd_reg) & START_BIST_F)
159 return -EBUSY;
160 csio_wr_reg32(hw, addr & ~0x3fU, mc_bist_cmd_addr_reg);
161 csio_wr_reg32(hw, 64, mc_bist_cmd_len_reg);
162 csio_wr_reg32(hw, 0xc, mc_bist_data_pattern_reg);
163 csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F | BIST_CMD_GAP_V(1),
164 mc_bist_cmd_reg);
165 i = csio_hw_wait_op_done_val(hw, mc_bist_cmd_reg, START_BIST_F,
166 0, 10, 1, NULL);
167 if (i)
168 return i;
169
170 #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA_A, i)
171
172 for (i = 15; i >= 0; i--)
173 *data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
174 if (ecc)
175 *ecc = csio_rd_reg64(hw, MC_DATA(16));
176 #undef MC_DATA
177 return 0;
178 }
179
180 /*
181 * csio_t5_edc_read - read from EDC through backdoor accesses
182 * @hw: the hw module
183 * @idx: which EDC to access
184 * @addr: address of first byte requested
185 * @data: 64 bytes of data containing the requested address
186 * @ecc: where to store the corresponding 64-bit ECC word
187 *
188 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address
189 * that covers the requested address @addr. If @parity is not %NULL it
190 * is assigned the 64-bit ECC word for the read data.
191 */
192 static int
csio_t5_edc_read(struct csio_hw * hw,int idx,uint32_t addr,__be32 * data,uint64_t * ecc)193 csio_t5_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
194 uint64_t *ecc)
195 {
196 int i;
197 uint32_t edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
198 uint32_t edc_bist_cmd_data_pattern;
199
200 /*
201 * These macro are missing in t4_regs.h file.
202 */
203 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
204 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
205
206 edc_bist_cmd_reg = EDC_REG_T5(EDC_H_BIST_CMD_A, idx);
207 edc_bist_cmd_addr_reg = EDC_REG_T5(EDC_H_BIST_CMD_ADDR_A, idx);
208 edc_bist_cmd_len_reg = EDC_REG_T5(EDC_H_BIST_CMD_LEN_A, idx);
209 edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN_A, idx);
210 #undef EDC_REG_T5
211 #undef EDC_STRIDE_T5
212
213 if (csio_rd_reg32(hw, edc_bist_cmd_reg) & START_BIST_F)
214 return -EBUSY;
215 csio_wr_reg32(hw, addr & ~0x3fU, edc_bist_cmd_addr_reg);
216 csio_wr_reg32(hw, 64, edc_bist_cmd_len_reg);
217 csio_wr_reg32(hw, 0xc, edc_bist_cmd_data_pattern);
218 csio_wr_reg32(hw, BIST_OPCODE_V(1) | START_BIST_F | BIST_CMD_GAP_V(1),
219 edc_bist_cmd_reg);
220 i = csio_hw_wait_op_done_val(hw, edc_bist_cmd_reg, START_BIST_F,
221 0, 10, 1, NULL);
222 if (i)
223 return i;
224
225 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA_A, i) + idx)
226
227 for (i = 15; i >= 0; i--)
228 *data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
229 if (ecc)
230 *ecc = csio_rd_reg64(hw, EDC_DATA(16));
231 #undef EDC_DATA
232 return 0;
233 }
234
235 /*
236 * csio_t5_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
237 * @hw: the csio_hw
238 * @win: PCI-E memory Window to use
239 * @mtype: memory type: MEM_EDC0, MEM_EDC1, MEM_MC0 (or MEM_MC) or MEM_MC1
240 * @addr: address within indicated memory type
241 * @len: amount of memory to transfer
242 * @buf: host memory buffer
243 * @dir: direction of transfer 1 => read, 0 => write
244 *
245 * Reads/writes an [almost] arbitrary memory region in the firmware: the
246 * firmware memory address, length and host buffer must be aligned on
247 * 32-bit boudaries. The memory is transferred as a raw byte sequence
248 * from/to the firmware's memory. If this memory contains data
249 * structures which contain multi-byte integers, it's the callers
250 * responsibility to perform appropriate byte order conversions.
251 */
252 static int
csio_t5_memory_rw(struct csio_hw * hw,u32 win,int mtype,u32 addr,u32 len,uint32_t * buf,int dir)253 csio_t5_memory_rw(struct csio_hw *hw, u32 win, int mtype, u32 addr,
254 u32 len, uint32_t *buf, int dir)
255 {
256 u32 pos, start, offset, memoffset;
257 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
258
259 /*
260 * Argument sanity checks ...
261 */
262 if ((addr & 0x3) || (len & 0x3))
263 return -EINVAL;
264
265 /* Offset into the region of memory which is being accessed
266 * MEM_EDC0 = 0
267 * MEM_EDC1 = 1
268 * MEM_MC = 2 -- T4
269 * MEM_MC0 = 2 -- For T5
270 * MEM_MC1 = 3 -- For T5
271 */
272 edc_size = EDRAM0_SIZE_G(csio_rd_reg32(hw, MA_EDRAM0_BAR_A));
273 if (mtype != MEM_MC1)
274 memoffset = (mtype * (edc_size * 1024 * 1024));
275 else {
276 mc_size = EXT_MEM_SIZE_G(csio_rd_reg32(hw,
277 MA_EXT_MEMORY_BAR_A));
278 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
279 }
280
281 /* Determine the PCIE_MEM_ACCESS_OFFSET */
282 addr = addr + memoffset;
283
284 /*
285 * Each PCI-E Memory Window is programmed with a window size -- or
286 * "aperture" -- which controls the granularity of its mapping onto
287 * adapter memory. We need to grab that aperture in order to know
288 * how to use the specified window. The window is also programmed
289 * with the base address of the Memory Window in BAR0's address
290 * space. For T4 this is an absolute PCI-E Bus Address. For T5
291 * the address is relative to BAR0.
292 */
293 mem_reg = csio_rd_reg32(hw,
294 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, win));
295 mem_aperture = 1 << (WINDOW_V(mem_reg) + 10);
296 mem_base = PCIEOFST_G(mem_reg) << 10;
297
298 start = addr & ~(mem_aperture-1);
299 offset = addr - start;
300 win_pf = PFNUM_V(hw->pfn);
301
302 csio_dbg(hw, "csio_t5_memory_rw: mem_reg: 0x%x, mem_aperture: 0x%x\n",
303 mem_reg, mem_aperture);
304 csio_dbg(hw, "csio_t5_memory_rw: mem_base: 0x%x, mem_offset: 0x%x\n",
305 mem_base, memoffset);
306 csio_dbg(hw, "csio_t5_memory_rw: start:0x%x, offset:0x%x, win_pf:%d\n",
307 start, offset, win_pf);
308 csio_dbg(hw, "csio_t5_memory_rw: mtype: %d, addr: 0x%x, len: %d\n",
309 mtype, addr, len);
310
311 for (pos = start; len > 0; pos += mem_aperture, offset = 0) {
312 /*
313 * Move PCI-E Memory Window to our current transfer
314 * position. Read it back to ensure that changes propagate
315 * before we attempt to use the new value.
316 */
317 csio_wr_reg32(hw, pos | win_pf,
318 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
319 csio_rd_reg32(hw,
320 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
321
322 while (offset < mem_aperture && len > 0) {
323 if (dir)
324 *buf++ = csio_rd_reg32(hw, mem_base + offset);
325 else
326 csio_wr_reg32(hw, *buf++, mem_base + offset);
327
328 offset += sizeof(__be32);
329 len -= sizeof(__be32);
330 }
331 }
332 return 0;
333 }
334
335 /*
336 * csio_t5_dfs_create_ext_mem - setup debugfs for MC0 or MC1 to read the values
337 * @hw: the csio_hw
338 *
339 * This function creates files in the debugfs with external memory region
340 * MC0 & MC1.
341 */
342 static void
csio_t5_dfs_create_ext_mem(struct csio_hw * hw)343 csio_t5_dfs_create_ext_mem(struct csio_hw *hw)
344 {
345 u32 size;
346 int i = csio_rd_reg32(hw, MA_TARGET_MEM_ENABLE_A);
347
348 if (i & EXT_MEM_ENABLE_F) {
349 size = csio_rd_reg32(hw, MA_EXT_MEMORY_BAR_A);
350 csio_add_debugfs_mem(hw, "mc0", MEM_MC0,
351 EXT_MEM_SIZE_G(size));
352 }
353 if (i & EXT_MEM1_ENABLE_F) {
354 size = csio_rd_reg32(hw, MA_EXT_MEMORY1_BAR_A);
355 csio_add_debugfs_mem(hw, "mc1", MEM_MC1,
356 EXT_MEM_SIZE_G(size));
357 }
358 }
359
360 /* T5 adapter specific function */
361 struct csio_hw_chip_ops t5_ops = {
362 .chip_set_mem_win = csio_t5_set_mem_win,
363 .chip_pcie_intr_handler = csio_t5_pcie_intr_handler,
364 .chip_flash_cfg_addr = csio_t5_flash_cfg_addr,
365 .chip_mc_read = csio_t5_mc_read,
366 .chip_edc_read = csio_t5_edc_read,
367 .chip_memory_rw = csio_t5_memory_rw,
368 .chip_dfs_create_ext_mem = csio_t5_dfs_create_ext_mem,
369 };
370