1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/pci.h>
37
38 #include "t4vf_common.h"
39 #include "t4vf_defs.h"
40
41 #include "../cxgb4/t4_regs.h"
42 #include "../cxgb4/t4_values.h"
43 #include "../cxgb4/t4fw_api.h"
44
45 /*
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's). Return an error if it doesn't
48 * become ready ...
49 */
t4vf_wait_dev_ready(struct adapter * adapter)50 int t4vf_wait_dev_ready(struct adapter *adapter)
51 {
52 const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
53 const u32 notready1 = 0xffffffff;
54 const u32 notready2 = 0xeeeeeeee;
55 u32 val;
56
57 val = t4_read_reg(adapter, whoami);
58 if (val != notready1 && val != notready2)
59 return 0;
60 msleep(500);
61 val = t4_read_reg(adapter, whoami);
62 if (val != notready1 && val != notready2)
63 return 0;
64 else
65 return -EIO;
66 }
67
68 /*
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
71 */
get_mbox_rpl(struct adapter * adapter,__be64 * rpl,int size,u32 mbox_data)72 static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
73 u32 mbox_data)
74 {
75 for ( ; size; size -= 8, mbox_data += 8)
76 *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
77 }
78
79 /**
80 * t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
81 * @adapter: the adapter
82 * @cmd: the Firmware Mailbox Command or Reply
83 * @size: command length in bytes
84 * @access: the time (ms) needed to access the Firmware Mailbox
85 * @execute: the time (ms) the command spent being executed
86 */
t4vf_record_mbox(struct adapter * adapter,const __be64 * cmd,int size,int access,int execute)87 static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
88 int size, int access, int execute)
89 {
90 struct mbox_cmd_log *log = adapter->mbox_log;
91 struct mbox_cmd *entry;
92 int i;
93
94 entry = mbox_cmd_log_entry(log, log->cursor++);
95 if (log->cursor == log->size)
96 log->cursor = 0;
97
98 for (i = 0; i < size / 8; i++)
99 entry->cmd[i] = be64_to_cpu(cmd[i]);
100 while (i < MBOX_LEN / 8)
101 entry->cmd[i++] = 0;
102 entry->timestamp = jiffies;
103 entry->seqno = log->seqno++;
104 entry->access = access;
105 entry->execute = execute;
106 }
107
108 /**
109 * t4vf_wr_mbox_core - send a command to FW through the mailbox
110 * @adapter: the adapter
111 * @cmd: the command to write
112 * @size: command length in bytes
113 * @rpl: where to optionally store the reply
114 * @sleep_ok: if true we may sleep while awaiting command completion
115 *
116 * Sends the given command to FW through the mailbox and waits for the
117 * FW to execute the command. If @rpl is not %NULL it is used to store
118 * the FW's reply to the command. The command and its optional reply
119 * are of the same length. FW can take up to 500 ms to respond.
120 * @sleep_ok determines whether we may sleep while awaiting the response.
121 * If sleeping is allowed we use progressive backoff otherwise we spin.
122 *
123 * The return value is 0 on success or a negative errno on failure. A
124 * failure can happen either because we are not able to execute the
125 * command or FW executes it but signals an error. In the latter case
126 * the return value is the error code indicated by FW (negated).
127 */
t4vf_wr_mbox_core(struct adapter * adapter,const void * cmd,int size,void * rpl,bool sleep_ok)128 int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
129 void *rpl, bool sleep_ok)
130 {
131 static const int delay[] = {
132 1, 1, 3, 5, 10, 10, 20, 50, 100
133 };
134
135 u16 access = 0, execute = 0;
136 u32 v, mbox_data;
137 int i, ms, delay_idx, ret;
138 const __be64 *p;
139 u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
140 u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
141 __be64 cmd_rpl[MBOX_LEN / 8];
142 struct mbox_list entry;
143
144 /* In T6, mailbox size is changed to 128 bytes to avoid
145 * invalidating the entire prefetch buffer.
146 */
147 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
148 mbox_data = T4VF_MBDATA_BASE_ADDR;
149 else
150 mbox_data = T6VF_MBDATA_BASE_ADDR;
151
152 /*
153 * Commands must be multiples of 16 bytes in length and may not be
154 * larger than the size of the Mailbox Data register array.
155 */
156 if ((size % 16) != 0 ||
157 size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
158 return -EINVAL;
159
160 /* Queue ourselves onto the mailbox access list. When our entry is at
161 * the front of the list, we have rights to access the mailbox. So we
162 * wait [for a while] till we're at the front [or bail out with an
163 * EBUSY] ...
164 */
165 spin_lock(&adapter->mbox_lock);
166 list_add_tail(&entry.list, &adapter->mlist.list);
167 spin_unlock(&adapter->mbox_lock);
168
169 delay_idx = 0;
170 ms = delay[0];
171
172 for (i = 0; ; i += ms) {
173 /* If we've waited too long, return a busy indication. This
174 * really ought to be based on our initial position in the
175 * mailbox access list but this is a start. We very rearely
176 * contend on access to the mailbox ...
177 */
178 if (i > FW_CMD_MAX_TIMEOUT) {
179 spin_lock(&adapter->mbox_lock);
180 list_del(&entry.list);
181 spin_unlock(&adapter->mbox_lock);
182 ret = -EBUSY;
183 t4vf_record_mbox(adapter, cmd, size, access, ret);
184 return ret;
185 }
186
187 /* If we're at the head, break out and start the mailbox
188 * protocol.
189 */
190 if (list_first_entry(&adapter->mlist.list, struct mbox_list,
191 list) == &entry)
192 break;
193
194 /* Delay for a bit before checking again ... */
195 if (sleep_ok) {
196 ms = delay[delay_idx]; /* last element may repeat */
197 if (delay_idx < ARRAY_SIZE(delay) - 1)
198 delay_idx++;
199 msleep(ms);
200 } else {
201 mdelay(ms);
202 }
203 }
204
205 /*
206 * Loop trying to get ownership of the mailbox. Return an error
207 * if we can't gain ownership.
208 */
209 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
210 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
211 v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
212 if (v != MBOX_OWNER_DRV) {
213 spin_lock(&adapter->mbox_lock);
214 list_del(&entry.list);
215 spin_unlock(&adapter->mbox_lock);
216 ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
217 t4vf_record_mbox(adapter, cmd, size, access, ret);
218 return ret;
219 }
220
221 /*
222 * Write the command array into the Mailbox Data register array and
223 * transfer ownership of the mailbox to the firmware.
224 *
225 * For the VFs, the Mailbox Data "registers" are actually backed by
226 * T4's "MA" interface rather than PL Registers (as is the case for
227 * the PFs). Because these are in different coherency domains, the
228 * write to the VF's PL-register-backed Mailbox Control can race in
229 * front of the writes to the MA-backed VF Mailbox Data "registers".
230 * So we need to do a read-back on at least one byte of the VF Mailbox
231 * Data registers before doing the write to the VF Mailbox Control
232 * register.
233 */
234 if (cmd_op != FW_VI_STATS_CMD)
235 t4vf_record_mbox(adapter, cmd, size, access, 0);
236 for (i = 0, p = cmd; i < size; i += 8)
237 t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
238 t4_read_reg(adapter, mbox_data); /* flush write */
239
240 t4_write_reg(adapter, mbox_ctl,
241 MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
242 t4_read_reg(adapter, mbox_ctl); /* flush write */
243
244 /*
245 * Spin waiting for firmware to acknowledge processing our command.
246 */
247 delay_idx = 0;
248 ms = delay[0];
249
250 for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
251 if (sleep_ok) {
252 ms = delay[delay_idx];
253 if (delay_idx < ARRAY_SIZE(delay) - 1)
254 delay_idx++;
255 msleep(ms);
256 } else
257 mdelay(ms);
258
259 /*
260 * If we're the owner, see if this is the reply we wanted.
261 */
262 v = t4_read_reg(adapter, mbox_ctl);
263 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
264 /*
265 * If the Message Valid bit isn't on, revoke ownership
266 * of the mailbox and continue waiting for our reply.
267 */
268 if ((v & MBMSGVALID_F) == 0) {
269 t4_write_reg(adapter, mbox_ctl,
270 MBOWNER_V(MBOX_OWNER_NONE));
271 continue;
272 }
273
274 /*
275 * We now have our reply. Extract the command return
276 * value, copy the reply back to our caller's buffer
277 * (if specified) and revoke ownership of the mailbox.
278 * We return the (negated) firmware command return
279 * code (this depends on FW_SUCCESS == 0).
280 */
281 get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
282
283 /* return value in low-order little-endian word */
284 v = be64_to_cpu(cmd_rpl[0]);
285
286 if (rpl) {
287 /* request bit in high-order BE word */
288 WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
289 & FW_CMD_REQUEST_F) == 0);
290 memcpy(rpl, cmd_rpl, size);
291 WARN_ON((be32_to_cpu(*(__be32 *)rpl)
292 & FW_CMD_REQUEST_F) != 0);
293 }
294 t4_write_reg(adapter, mbox_ctl,
295 MBOWNER_V(MBOX_OWNER_NONE));
296 execute = i + ms;
297 if (cmd_op != FW_VI_STATS_CMD)
298 t4vf_record_mbox(adapter, cmd_rpl, size, access,
299 execute);
300 spin_lock(&adapter->mbox_lock);
301 list_del(&entry.list);
302 spin_unlock(&adapter->mbox_lock);
303 return -FW_CMD_RETVAL_G(v);
304 }
305 }
306
307 /* We timed out. Return the error ... */
308 ret = -ETIMEDOUT;
309 t4vf_record_mbox(adapter, cmd, size, access, ret);
310 spin_lock(&adapter->mbox_lock);
311 list_del(&entry.list);
312 spin_unlock(&adapter->mbox_lock);
313 return ret;
314 }
315
316 #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
317 FW_PORT_CAP32_ANEG)
318
319 /**
320 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
321 * @caps16: a 16-bit Port Capabilities value
322 *
323 * Returns the equivalent 32-bit Port Capabilities value.
324 */
fwcaps16_to_caps32(fw_port_cap16_t caps16)325 static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
326 {
327 fw_port_cap32_t caps32 = 0;
328
329 #define CAP16_TO_CAP32(__cap) \
330 do { \
331 if (caps16 & FW_PORT_CAP_##__cap) \
332 caps32 |= FW_PORT_CAP32_##__cap; \
333 } while (0)
334
335 CAP16_TO_CAP32(SPEED_100M);
336 CAP16_TO_CAP32(SPEED_1G);
337 CAP16_TO_CAP32(SPEED_25G);
338 CAP16_TO_CAP32(SPEED_10G);
339 CAP16_TO_CAP32(SPEED_40G);
340 CAP16_TO_CAP32(SPEED_100G);
341 CAP16_TO_CAP32(FC_RX);
342 CAP16_TO_CAP32(FC_TX);
343 CAP16_TO_CAP32(ANEG);
344 CAP16_TO_CAP32(MDIAUTO);
345 CAP16_TO_CAP32(MDISTRAIGHT);
346 CAP16_TO_CAP32(FEC_RS);
347 CAP16_TO_CAP32(FEC_BASER_RS);
348 CAP16_TO_CAP32(802_3_PAUSE);
349 CAP16_TO_CAP32(802_3_ASM_DIR);
350
351 #undef CAP16_TO_CAP32
352
353 return caps32;
354 }
355
356 /* Translate Firmware Pause specification to Common Code */
fwcap_to_cc_pause(fw_port_cap32_t fw_pause)357 static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
358 {
359 enum cc_pause cc_pause = 0;
360
361 if (fw_pause & FW_PORT_CAP32_FC_RX)
362 cc_pause |= PAUSE_RX;
363 if (fw_pause & FW_PORT_CAP32_FC_TX)
364 cc_pause |= PAUSE_TX;
365
366 return cc_pause;
367 }
368
369 /* Translate Firmware Forward Error Correction specification to Common Code */
fwcap_to_cc_fec(fw_port_cap32_t fw_fec)370 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
371 {
372 enum cc_fec cc_fec = 0;
373
374 if (fw_fec & FW_PORT_CAP32_FEC_RS)
375 cc_fec |= FEC_RS;
376 if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
377 cc_fec |= FEC_BASER_RS;
378
379 return cc_fec;
380 }
381
382 /**
383 * Return the highest speed set in the port capabilities, in Mb/s.
384 */
fwcap_to_speed(fw_port_cap32_t caps)385 static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
386 {
387 #define TEST_SPEED_RETURN(__caps_speed, __speed) \
388 do { \
389 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
390 return __speed; \
391 } while (0)
392
393 TEST_SPEED_RETURN(400G, 400000);
394 TEST_SPEED_RETURN(200G, 200000);
395 TEST_SPEED_RETURN(100G, 100000);
396 TEST_SPEED_RETURN(50G, 50000);
397 TEST_SPEED_RETURN(40G, 40000);
398 TEST_SPEED_RETURN(25G, 25000);
399 TEST_SPEED_RETURN(10G, 10000);
400 TEST_SPEED_RETURN(1G, 1000);
401 TEST_SPEED_RETURN(100M, 100);
402
403 #undef TEST_SPEED_RETURN
404
405 return 0;
406 }
407
408 /**
409 * fwcap_to_fwspeed - return highest speed in Port Capabilities
410 * @acaps: advertised Port Capabilities
411 *
412 * Get the highest speed for the port from the advertised Port
413 * Capabilities. It will be either the highest speed from the list of
414 * speeds or whatever user has set using ethtool.
415 */
fwcap_to_fwspeed(fw_port_cap32_t acaps)416 static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
417 {
418 #define TEST_SPEED_RETURN(__caps_speed) \
419 do { \
420 if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
421 return FW_PORT_CAP32_SPEED_##__caps_speed; \
422 } while (0)
423
424 TEST_SPEED_RETURN(400G);
425 TEST_SPEED_RETURN(200G);
426 TEST_SPEED_RETURN(100G);
427 TEST_SPEED_RETURN(50G);
428 TEST_SPEED_RETURN(40G);
429 TEST_SPEED_RETURN(25G);
430 TEST_SPEED_RETURN(10G);
431 TEST_SPEED_RETURN(1G);
432 TEST_SPEED_RETURN(100M);
433
434 #undef TEST_SPEED_RETURN
435 return 0;
436 }
437
438 /*
439 * init_link_config - initialize a link's SW state
440 * @lc: structure holding the link state
441 * @pcaps: link Port Capabilities
442 * @acaps: link current Advertised Port Capabilities
443 *
444 * Initializes the SW state maintained for each link, including the link's
445 * capabilities and default speed/flow-control/autonegotiation settings.
446 */
init_link_config(struct link_config * lc,fw_port_cap32_t pcaps,fw_port_cap32_t acaps)447 static void init_link_config(struct link_config *lc,
448 fw_port_cap32_t pcaps,
449 fw_port_cap32_t acaps)
450 {
451 lc->pcaps = pcaps;
452 lc->lpacaps = 0;
453 lc->speed_caps = 0;
454 lc->speed = 0;
455 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
456
457 /* For Forward Error Control, we default to whatever the Firmware
458 * tells us the Link is currently advertising.
459 */
460 lc->auto_fec = fwcap_to_cc_fec(acaps);
461 lc->requested_fec = FEC_AUTO;
462 lc->fec = lc->auto_fec;
463
464 /* If the Port is capable of Auto-Negtotiation, initialize it as
465 * "enabled" and copy over all of the Physical Port Capabilities
466 * to the Advertised Port Capabilities. Otherwise mark it as
467 * Auto-Negotiate disabled and select the highest supported speed
468 * for the link. Note parallel structure in t4_link_l1cfg_core()
469 * and t4_handle_get_port_info().
470 */
471 if (lc->pcaps & FW_PORT_CAP32_ANEG) {
472 lc->acaps = acaps & ADVERT_MASK;
473 lc->autoneg = AUTONEG_ENABLE;
474 lc->requested_fc |= PAUSE_AUTONEG;
475 } else {
476 lc->acaps = 0;
477 lc->autoneg = AUTONEG_DISABLE;
478 lc->speed_caps = fwcap_to_fwspeed(acaps);
479 }
480 }
481
482 /**
483 * t4vf_port_init - initialize port hardware/software state
484 * @adapter: the adapter
485 * @pidx: the adapter port index
486 */
t4vf_port_init(struct adapter * adapter,int pidx)487 int t4vf_port_init(struct adapter *adapter, int pidx)
488 {
489 struct port_info *pi = adap2pinfo(adapter, pidx);
490 unsigned int fw_caps = adapter->params.fw_caps_support;
491 struct fw_vi_cmd vi_cmd, vi_rpl;
492 struct fw_port_cmd port_cmd, port_rpl;
493 enum fw_port_type port_type;
494 int mdio_addr;
495 fw_port_cap32_t pcaps, acaps;
496 int ret;
497
498 /* If we haven't yet determined whether we're talking to Firmware
499 * which knows the new 32-bit Port Capabilities, it's time to find
500 * out now. This will also tell new Firmware to send us Port Status
501 * Updates using the new 32-bit Port Capabilities version of the
502 * Port Information message.
503 */
504 if (fw_caps == FW_CAPS_UNKNOWN) {
505 u32 param, val;
506
507 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
508 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
509 val = 1;
510 ret = t4vf_set_params(adapter, 1, ¶m, &val);
511 fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
512 adapter->params.fw_caps_support = fw_caps;
513 }
514
515 /*
516 * Execute a VI Read command to get our Virtual Interface information
517 * like MAC address, etc.
518 */
519 memset(&vi_cmd, 0, sizeof(vi_cmd));
520 vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
521 FW_CMD_REQUEST_F |
522 FW_CMD_READ_F);
523 vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
524 vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
525 ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
526 if (ret != FW_SUCCESS)
527 return ret;
528
529 BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
530 pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
531 t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
532
533 /*
534 * If we don't have read access to our port information, we're done
535 * now. Otherwise, execute a PORT Read command to get it ...
536 */
537 if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
538 return 0;
539
540 memset(&port_cmd, 0, sizeof(port_cmd));
541 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
542 FW_CMD_REQUEST_F |
543 FW_CMD_READ_F |
544 FW_PORT_CMD_PORTID_V(pi->port_id));
545 port_cmd.action_to_len16 = cpu_to_be32(
546 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
547 ? FW_PORT_ACTION_GET_PORT_INFO
548 : FW_PORT_ACTION_GET_PORT_INFO32) |
549 FW_LEN16(port_cmd));
550 ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
551 if (ret != FW_SUCCESS)
552 return ret;
553
554 /* Extract the various fields from the Port Information message. */
555 if (fw_caps == FW_CAPS16) {
556 u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
557
558 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
559 mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
560 ? FW_PORT_CMD_MDIOADDR_G(lstatus)
561 : -1);
562 pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
563 acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
564 } else {
565 u32 lstatus32 =
566 be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
567
568 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
569 mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
570 ? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
571 : -1);
572 pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
573 acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
574 }
575
576 pi->port_type = port_type;
577 pi->mdio_addr = mdio_addr;
578 pi->mod_type = FW_PORT_MOD_TYPE_NA;
579
580 init_link_config(&pi->link_cfg, pcaps, acaps);
581 return 0;
582 }
583
584 /**
585 * t4vf_fw_reset - issue a reset to FW
586 * @adapter: the adapter
587 *
588 * Issues a reset command to FW. For a Physical Function this would
589 * result in the Firmware resetting all of its state. For a Virtual
590 * Function this just resets the state associated with the VF.
591 */
t4vf_fw_reset(struct adapter * adapter)592 int t4vf_fw_reset(struct adapter *adapter)
593 {
594 struct fw_reset_cmd cmd;
595
596 memset(&cmd, 0, sizeof(cmd));
597 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
598 FW_CMD_WRITE_F);
599 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
600 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
601 }
602
603 /**
604 * t4vf_query_params - query FW or device parameters
605 * @adapter: the adapter
606 * @nparams: the number of parameters
607 * @params: the parameter names
608 * @vals: the parameter values
609 *
610 * Reads the values of firmware or device parameters. Up to 7 parameters
611 * can be queried at once.
612 */
t4vf_query_params(struct adapter * adapter,unsigned int nparams,const u32 * params,u32 * vals)613 static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
614 const u32 *params, u32 *vals)
615 {
616 int i, ret;
617 struct fw_params_cmd cmd, rpl;
618 struct fw_params_param *p;
619 size_t len16;
620
621 if (nparams > 7)
622 return -EINVAL;
623
624 memset(&cmd, 0, sizeof(cmd));
625 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
626 FW_CMD_REQUEST_F |
627 FW_CMD_READ_F);
628 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
629 param[nparams].mnem), 16);
630 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
631 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
632 p->mnem = htonl(*params++);
633
634 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
635 if (ret == 0)
636 for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
637 *vals++ = be32_to_cpu(p->val);
638 return ret;
639 }
640
641 /**
642 * t4vf_set_params - sets FW or device parameters
643 * @adapter: the adapter
644 * @nparams: the number of parameters
645 * @params: the parameter names
646 * @vals: the parameter values
647 *
648 * Sets the values of firmware or device parameters. Up to 7 parameters
649 * can be specified at once.
650 */
t4vf_set_params(struct adapter * adapter,unsigned int nparams,const u32 * params,const u32 * vals)651 int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
652 const u32 *params, const u32 *vals)
653 {
654 int i;
655 struct fw_params_cmd cmd;
656 struct fw_params_param *p;
657 size_t len16;
658
659 if (nparams > 7)
660 return -EINVAL;
661
662 memset(&cmd, 0, sizeof(cmd));
663 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
664 FW_CMD_REQUEST_F |
665 FW_CMD_WRITE_F);
666 len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
667 param[nparams]), 16);
668 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
669 for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
670 p->mnem = cpu_to_be32(*params++);
671 p->val = cpu_to_be32(*vals++);
672 }
673
674 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
675 }
676
677 /**
678 * t4vf_fl_pkt_align - return the fl packet alignment
679 * @adapter: the adapter
680 *
681 * T4 has a single field to specify the packing and padding boundary.
682 * T5 onwards has separate fields for this and hence the alignment for
683 * next packet offset is maximum of these two. And T6 changes the
684 * Ingress Padding Boundary Shift, so it's all a mess and it's best
685 * if we put this in low-level Common Code ...
686 *
687 */
t4vf_fl_pkt_align(struct adapter * adapter)688 int t4vf_fl_pkt_align(struct adapter *adapter)
689 {
690 u32 sge_control, sge_control2;
691 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
692
693 sge_control = adapter->params.sge.sge_control;
694
695 /* T4 uses a single control field to specify both the PCIe Padding and
696 * Packing Boundary. T5 introduced the ability to specify these
697 * separately. The actual Ingress Packet Data alignment boundary
698 * within Packed Buffer Mode is the maximum of these two
699 * specifications. (Note that it makes no real practical sense to
700 * have the Pading Boudary be larger than the Packing Boundary but you
701 * could set the chip up that way and, in fact, legacy T4 code would
702 * end doing this because it would initialize the Padding Boundary and
703 * leave the Packing Boundary initialized to 0 (16 bytes).)
704 * Padding Boundary values in T6 starts from 8B,
705 * where as it is 32B for T4 and T5.
706 */
707 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
708 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
709 else
710 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
711
712 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
713
714 fl_align = ingpadboundary;
715 if (!is_t4(adapter->params.chip)) {
716 /* T5 has a different interpretation of one of the PCIe Packing
717 * Boundary values.
718 */
719 sge_control2 = adapter->params.sge.sge_control2;
720 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
721 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
722 ingpackboundary = 16;
723 else
724 ingpackboundary = 1 << (ingpackboundary +
725 INGPACKBOUNDARY_SHIFT_X);
726
727 fl_align = max(ingpadboundary, ingpackboundary);
728 }
729 return fl_align;
730 }
731
732 /**
733 * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
734 * @adapter: the adapter
735 * @qid: the Queue ID
736 * @qtype: the Ingress or Egress type for @qid
737 * @pbar2_qoffset: BAR2 Queue Offset
738 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
739 *
740 * Returns the BAR2 SGE Queue Registers information associated with the
741 * indicated Absolute Queue ID. These are passed back in return value
742 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
743 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
744 *
745 * This may return an error which indicates that BAR2 SGE Queue
746 * registers aren't available. If an error is not returned, then the
747 * following values are returned:
748 *
749 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
750 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
751 *
752 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
753 * require the "Inferred Queue ID" ability may be used. E.g. the
754 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
755 * then these "Inferred Queue ID" register may not be used.
756 */
t4vf_bar2_sge_qregs(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,u64 * pbar2_qoffset,unsigned int * pbar2_qid)757 int t4vf_bar2_sge_qregs(struct adapter *adapter,
758 unsigned int qid,
759 enum t4_bar2_qtype qtype,
760 u64 *pbar2_qoffset,
761 unsigned int *pbar2_qid)
762 {
763 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
764 u64 bar2_page_offset, bar2_qoffset;
765 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
766
767 /* T4 doesn't support BAR2 SGE Queue registers.
768 */
769 if (is_t4(adapter->params.chip))
770 return -EINVAL;
771
772 /* Get our SGE Page Size parameters.
773 */
774 page_shift = adapter->params.sge.sge_vf_hps + 10;
775 page_size = 1 << page_shift;
776
777 /* Get the right Queues per Page parameters for our Queue.
778 */
779 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
780 ? adapter->params.sge.sge_vf_eq_qpp
781 : adapter->params.sge.sge_vf_iq_qpp);
782 qpp_mask = (1 << qpp_shift) - 1;
783
784 /* Calculate the basics of the BAR2 SGE Queue register area:
785 * o The BAR2 page the Queue registers will be in.
786 * o The BAR2 Queue ID.
787 * o The BAR2 Queue ID Offset into the BAR2 page.
788 */
789 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
790 bar2_qid = qid & qpp_mask;
791 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
792
793 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
794 * hardware will infer the Absolute Queue ID simply from the writes to
795 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
796 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
797 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
798 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
799 * from the BAR2 Page and BAR2 Queue ID.
800 *
801 * One important censequence of this is that some BAR2 SGE registers
802 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
803 * there. But other registers synthesize the SGE Queue ID purely
804 * from the writes to the registers -- the Write Combined Doorbell
805 * Buffer is a good example. These BAR2 SGE Registers are only
806 * available for those BAR2 SGE Register areas where the SGE Absolute
807 * Queue ID can be inferred from simple writes.
808 */
809 bar2_qoffset = bar2_page_offset;
810 bar2_qinferred = (bar2_qid_offset < page_size);
811 if (bar2_qinferred) {
812 bar2_qoffset += bar2_qid_offset;
813 bar2_qid = 0;
814 }
815
816 *pbar2_qoffset = bar2_qoffset;
817 *pbar2_qid = bar2_qid;
818 return 0;
819 }
820
t4vf_get_pf_from_vf(struct adapter * adapter)821 unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
822 {
823 u32 whoami;
824
825 whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
826 return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
827 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
828 }
829
830 /**
831 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
832 * @adapter: the adapter
833 *
834 * Retrieves various core SGE parameters in the form of hardware SGE
835 * register values. The caller is responsible for decoding these as
836 * needed. The SGE parameters are stored in @adapter->params.sge.
837 */
t4vf_get_sge_params(struct adapter * adapter)838 int t4vf_get_sge_params(struct adapter *adapter)
839 {
840 struct sge_params *sge_params = &adapter->params.sge;
841 u32 params[7], vals[7];
842 int v;
843
844 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
845 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
846 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
847 FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
848 params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
849 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
850 params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
851 FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
852 params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
853 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
854 params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
855 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
856 params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
857 FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
858 v = t4vf_query_params(adapter, 7, params, vals);
859 if (v)
860 return v;
861 sge_params->sge_control = vals[0];
862 sge_params->sge_host_page_size = vals[1];
863 sge_params->sge_fl_buffer_size[0] = vals[2];
864 sge_params->sge_fl_buffer_size[1] = vals[3];
865 sge_params->sge_timer_value_0_and_1 = vals[4];
866 sge_params->sge_timer_value_2_and_3 = vals[5];
867 sge_params->sge_timer_value_4_and_5 = vals[6];
868
869 /* T4 uses a single control field to specify both the PCIe Padding and
870 * Packing Boundary. T5 introduced the ability to specify these
871 * separately with the Padding Boundary in SGE_CONTROL and and Packing
872 * Boundary in SGE_CONTROL2. So for T5 and later we need to grab
873 * SGE_CONTROL in order to determine how ingress packet data will be
874 * laid out in Packed Buffer Mode. Unfortunately, older versions of
875 * the firmware won't let us retrieve SGE_CONTROL2 so if we get a
876 * failure grabbing it we throw an error since we can't figure out the
877 * right value.
878 */
879 if (!is_t4(adapter->params.chip)) {
880 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
881 FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
882 v = t4vf_query_params(adapter, 1, params, vals);
883 if (v != FW_SUCCESS) {
884 dev_err(adapter->pdev_dev,
885 "Unable to get SGE Control2; "
886 "probably old firmware.\n");
887 return v;
888 }
889 sge_params->sge_control2 = vals[0];
890 }
891
892 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
893 FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
894 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
895 FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
896 v = t4vf_query_params(adapter, 2, params, vals);
897 if (v)
898 return v;
899 sge_params->sge_ingress_rx_threshold = vals[0];
900 sge_params->sge_congestion_control = vals[1];
901
902 /* For T5 and later we want to use the new BAR2 Doorbells.
903 * Unfortunately, older firmware didn't allow the this register to be
904 * read.
905 */
906 if (!is_t4(adapter->params.chip)) {
907 unsigned int pf, s_hps, s_qpp;
908
909 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
910 FW_PARAMS_PARAM_XYZ_V(
911 SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
912 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
913 FW_PARAMS_PARAM_XYZ_V(
914 SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
915 v = t4vf_query_params(adapter, 2, params, vals);
916 if (v != FW_SUCCESS) {
917 dev_warn(adapter->pdev_dev,
918 "Unable to get VF SGE Queues/Page; "
919 "probably old firmware.\n");
920 return v;
921 }
922 sge_params->sge_egress_queues_per_page = vals[0];
923 sge_params->sge_ingress_queues_per_page = vals[1];
924
925 /* We need the Queues/Page for our VF. This is based on the
926 * PF from which we're instantiated and is indexed in the
927 * register we just read. Do it once here so other code in
928 * the driver can just use it.
929 */
930 pf = t4vf_get_pf_from_vf(adapter);
931 s_hps = (HOSTPAGESIZEPF0_S +
932 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
933 sge_params->sge_vf_hps =
934 ((sge_params->sge_host_page_size >> s_hps)
935 & HOSTPAGESIZEPF0_M);
936
937 s_qpp = (QUEUESPERPAGEPF0_S +
938 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
939 sge_params->sge_vf_eq_qpp =
940 ((sge_params->sge_egress_queues_per_page >> s_qpp)
941 & QUEUESPERPAGEPF0_M);
942 sge_params->sge_vf_iq_qpp =
943 ((sge_params->sge_ingress_queues_per_page >> s_qpp)
944 & QUEUESPERPAGEPF0_M);
945 }
946
947 return 0;
948 }
949
950 /**
951 * t4vf_get_vpd_params - retrieve device VPD paremeters
952 * @adapter: the adapter
953 *
954 * Retrives various device Vital Product Data parameters. The parameters
955 * are stored in @adapter->params.vpd.
956 */
t4vf_get_vpd_params(struct adapter * adapter)957 int t4vf_get_vpd_params(struct adapter *adapter)
958 {
959 struct vpd_params *vpd_params = &adapter->params.vpd;
960 u32 params[7], vals[7];
961 int v;
962
963 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
964 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
965 v = t4vf_query_params(adapter, 1, params, vals);
966 if (v)
967 return v;
968 vpd_params->cclk = vals[0];
969
970 return 0;
971 }
972
973 /**
974 * t4vf_get_dev_params - retrieve device paremeters
975 * @adapter: the adapter
976 *
977 * Retrives various device parameters. The parameters are stored in
978 * @adapter->params.dev.
979 */
t4vf_get_dev_params(struct adapter * adapter)980 int t4vf_get_dev_params(struct adapter *adapter)
981 {
982 struct dev_params *dev_params = &adapter->params.dev;
983 u32 params[7], vals[7];
984 int v;
985
986 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
987 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
988 params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
989 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
990 v = t4vf_query_params(adapter, 2, params, vals);
991 if (v)
992 return v;
993 dev_params->fwrev = vals[0];
994 dev_params->tprev = vals[1];
995
996 return 0;
997 }
998
999 /**
1000 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
1001 * @adapter: the adapter
1002 *
1003 * Retrieves global RSS mode and parameters with which we have to live
1004 * and stores them in the @adapter's RSS parameters.
1005 */
t4vf_get_rss_glb_config(struct adapter * adapter)1006 int t4vf_get_rss_glb_config(struct adapter *adapter)
1007 {
1008 struct rss_params *rss = &adapter->params.rss;
1009 struct fw_rss_glb_config_cmd cmd, rpl;
1010 int v;
1011
1012 /*
1013 * Execute an RSS Global Configuration read command to retrieve
1014 * our RSS configuration.
1015 */
1016 memset(&cmd, 0, sizeof(cmd));
1017 cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
1018 FW_CMD_REQUEST_F |
1019 FW_CMD_READ_F);
1020 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1021 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1022 if (v)
1023 return v;
1024
1025 /*
1026 * Transate the big-endian RSS Global Configuration into our
1027 * cpu-endian format based on the RSS mode. We also do first level
1028 * filtering at this point to weed out modes which don't support
1029 * VF Drivers ...
1030 */
1031 rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
1032 be32_to_cpu(rpl.u.manual.mode_pkd));
1033 switch (rss->mode) {
1034 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1035 u32 word = be32_to_cpu(
1036 rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
1037
1038 rss->u.basicvirtual.synmapen =
1039 ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
1040 rss->u.basicvirtual.syn4tupenipv6 =
1041 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
1042 rss->u.basicvirtual.syn2tupenipv6 =
1043 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
1044 rss->u.basicvirtual.syn4tupenipv4 =
1045 ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
1046 rss->u.basicvirtual.syn2tupenipv4 =
1047 ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
1048
1049 rss->u.basicvirtual.ofdmapen =
1050 ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
1051
1052 rss->u.basicvirtual.tnlmapen =
1053 ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
1054 rss->u.basicvirtual.tnlalllookup =
1055 ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
1056
1057 rss->u.basicvirtual.hashtoeplitz =
1058 ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
1059
1060 /* we need at least Tunnel Map Enable to be set */
1061 if (!rss->u.basicvirtual.tnlmapen)
1062 return -EINVAL;
1063 break;
1064 }
1065
1066 default:
1067 /* all unknown/unsupported RSS modes result in an error */
1068 return -EINVAL;
1069 }
1070
1071 return 0;
1072 }
1073
1074 /**
1075 * t4vf_get_vfres - retrieve VF resource limits
1076 * @adapter: the adapter
1077 *
1078 * Retrieves configured resource limits and capabilities for a virtual
1079 * function. The results are stored in @adapter->vfres.
1080 */
t4vf_get_vfres(struct adapter * adapter)1081 int t4vf_get_vfres(struct adapter *adapter)
1082 {
1083 struct vf_resources *vfres = &adapter->params.vfres;
1084 struct fw_pfvf_cmd cmd, rpl;
1085 int v;
1086 u32 word;
1087
1088 /*
1089 * Execute PFVF Read command to get VF resource limits; bail out early
1090 * with error on command failure.
1091 */
1092 memset(&cmd, 0, sizeof(cmd));
1093 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
1094 FW_CMD_REQUEST_F |
1095 FW_CMD_READ_F);
1096 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1097 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1098 if (v)
1099 return v;
1100
1101 /*
1102 * Extract VF resource limits and return success.
1103 */
1104 word = be32_to_cpu(rpl.niqflint_niq);
1105 vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
1106 vfres->niq = FW_PFVF_CMD_NIQ_G(word);
1107
1108 word = be32_to_cpu(rpl.type_to_neq);
1109 vfres->neq = FW_PFVF_CMD_NEQ_G(word);
1110 vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
1111
1112 word = be32_to_cpu(rpl.tc_to_nexactf);
1113 vfres->tc = FW_PFVF_CMD_TC_G(word);
1114 vfres->nvi = FW_PFVF_CMD_NVI_G(word);
1115 vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
1116
1117 word = be32_to_cpu(rpl.r_caps_to_nethctrl);
1118 vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
1119 vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
1120 vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
1121
1122 return 0;
1123 }
1124
1125 /**
1126 * t4vf_read_rss_vi_config - read a VI's RSS configuration
1127 * @adapter: the adapter
1128 * @viid: Virtual Interface ID
1129 * @config: pointer to host-native VI RSS Configuration buffer
1130 *
1131 * Reads the Virtual Interface's RSS configuration information and
1132 * translates it into CPU-native format.
1133 */
t4vf_read_rss_vi_config(struct adapter * adapter,unsigned int viid,union rss_vi_config * config)1134 int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
1135 union rss_vi_config *config)
1136 {
1137 struct fw_rss_vi_config_cmd cmd, rpl;
1138 int v;
1139
1140 memset(&cmd, 0, sizeof(cmd));
1141 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1142 FW_CMD_REQUEST_F |
1143 FW_CMD_READ_F |
1144 FW_RSS_VI_CONFIG_CMD_VIID(viid));
1145 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1146 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1147 if (v)
1148 return v;
1149
1150 switch (adapter->params.rss.mode) {
1151 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1152 u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
1153
1154 config->basicvirtual.ip6fourtupen =
1155 ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
1156 config->basicvirtual.ip6twotupen =
1157 ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
1158 config->basicvirtual.ip4fourtupen =
1159 ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
1160 config->basicvirtual.ip4twotupen =
1161 ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
1162 config->basicvirtual.udpen =
1163 ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
1164 config->basicvirtual.defaultq =
1165 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
1166 break;
1167 }
1168
1169 default:
1170 return -EINVAL;
1171 }
1172
1173 return 0;
1174 }
1175
1176 /**
1177 * t4vf_write_rss_vi_config - write a VI's RSS configuration
1178 * @adapter: the adapter
1179 * @viid: Virtual Interface ID
1180 * @config: pointer to host-native VI RSS Configuration buffer
1181 *
1182 * Write the Virtual Interface's RSS configuration information
1183 * (translating it into firmware-native format before writing).
1184 */
t4vf_write_rss_vi_config(struct adapter * adapter,unsigned int viid,union rss_vi_config * config)1185 int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
1186 union rss_vi_config *config)
1187 {
1188 struct fw_rss_vi_config_cmd cmd, rpl;
1189
1190 memset(&cmd, 0, sizeof(cmd));
1191 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
1192 FW_CMD_REQUEST_F |
1193 FW_CMD_WRITE_F |
1194 FW_RSS_VI_CONFIG_CMD_VIID(viid));
1195 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1196 switch (adapter->params.rss.mode) {
1197 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
1198 u32 word = 0;
1199
1200 if (config->basicvirtual.ip6fourtupen)
1201 word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
1202 if (config->basicvirtual.ip6twotupen)
1203 word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
1204 if (config->basicvirtual.ip4fourtupen)
1205 word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
1206 if (config->basicvirtual.ip4twotupen)
1207 word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
1208 if (config->basicvirtual.udpen)
1209 word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
1210 word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
1211 config->basicvirtual.defaultq);
1212 cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
1213 break;
1214 }
1215
1216 default:
1217 return -EINVAL;
1218 }
1219
1220 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1221 }
1222
1223 /**
1224 * t4vf_config_rss_range - configure a portion of the RSS mapping table
1225 * @adapter: the adapter
1226 * @viid: Virtual Interface of RSS Table Slice
1227 * @start: starting entry in the table to write
1228 * @n: how many table entries to write
1229 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
1230 * @nrspq: number of values in @rspq
1231 *
1232 * Programs the selected part of the VI's RSS mapping table with the
1233 * provided values. If @nrspq < @n the supplied values are used repeatedly
1234 * until the full table range is populated.
1235 *
1236 * The caller must ensure the values in @rspq are in the range 0..1023.
1237 */
t4vf_config_rss_range(struct adapter * adapter,unsigned int viid,int start,int n,const u16 * rspq,int nrspq)1238 int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
1239 int start, int n, const u16 *rspq, int nrspq)
1240 {
1241 const u16 *rsp = rspq;
1242 const u16 *rsp_end = rspq+nrspq;
1243 struct fw_rss_ind_tbl_cmd cmd;
1244
1245 /*
1246 * Initialize firmware command template to write the RSS table.
1247 */
1248 memset(&cmd, 0, sizeof(cmd));
1249 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
1250 FW_CMD_REQUEST_F |
1251 FW_CMD_WRITE_F |
1252 FW_RSS_IND_TBL_CMD_VIID_V(viid));
1253 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1254
1255 /*
1256 * Each firmware RSS command can accommodate up to 32 RSS Ingress
1257 * Queue Identifiers. These Ingress Queue IDs are packed three to
1258 * a 32-bit word as 10-bit values with the upper remaining 2 bits
1259 * reserved.
1260 */
1261 while (n > 0) {
1262 __be32 *qp = &cmd.iq0_to_iq2;
1263 int nq = min(n, 32);
1264 int ret;
1265
1266 /*
1267 * Set up the firmware RSS command header to send the next
1268 * "nq" Ingress Queue IDs to the firmware.
1269 */
1270 cmd.niqid = cpu_to_be16(nq);
1271 cmd.startidx = cpu_to_be16(start);
1272
1273 /*
1274 * "nq" more done for the start of the next loop.
1275 */
1276 start += nq;
1277 n -= nq;
1278
1279 /*
1280 * While there are still Ingress Queue IDs to stuff into the
1281 * current firmware RSS command, retrieve them from the
1282 * Ingress Queue ID array and insert them into the command.
1283 */
1284 while (nq > 0) {
1285 /*
1286 * Grab up to the next 3 Ingress Queue IDs (wrapping
1287 * around the Ingress Queue ID array if necessary) and
1288 * insert them into the firmware RSS command at the
1289 * current 3-tuple position within the commad.
1290 */
1291 u16 qbuf[3];
1292 u16 *qbp = qbuf;
1293 int nqbuf = min(3, nq);
1294
1295 nq -= nqbuf;
1296 qbuf[0] = qbuf[1] = qbuf[2] = 0;
1297 while (nqbuf) {
1298 nqbuf--;
1299 *qbp++ = *rsp++;
1300 if (rsp >= rsp_end)
1301 rsp = rspq;
1302 }
1303 *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
1304 FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
1305 FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
1306 }
1307
1308 /*
1309 * Send this portion of the RRS table update to the firmware;
1310 * bail out on any errors.
1311 */
1312 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1313 if (ret)
1314 return ret;
1315 }
1316 return 0;
1317 }
1318
1319 /**
1320 * t4vf_alloc_vi - allocate a virtual interface on a port
1321 * @adapter: the adapter
1322 * @port_id: physical port associated with the VI
1323 *
1324 * Allocate a new Virtual Interface and bind it to the indicated
1325 * physical port. Return the new Virtual Interface Identifier on
1326 * success, or a [negative] error number on failure.
1327 */
t4vf_alloc_vi(struct adapter * adapter,int port_id)1328 int t4vf_alloc_vi(struct adapter *adapter, int port_id)
1329 {
1330 struct fw_vi_cmd cmd, rpl;
1331 int v;
1332
1333 /*
1334 * Execute a VI command to allocate Virtual Interface and return its
1335 * VIID.
1336 */
1337 memset(&cmd, 0, sizeof(cmd));
1338 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1339 FW_CMD_REQUEST_F |
1340 FW_CMD_WRITE_F |
1341 FW_CMD_EXEC_F);
1342 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1343 FW_VI_CMD_ALLOC_F);
1344 cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
1345 v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1346 if (v)
1347 return v;
1348
1349 return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
1350 }
1351
1352 /**
1353 * t4vf_free_vi -- free a virtual interface
1354 * @adapter: the adapter
1355 * @viid: the virtual interface identifier
1356 *
1357 * Free a previously allocated Virtual Interface. Return an error on
1358 * failure.
1359 */
t4vf_free_vi(struct adapter * adapter,int viid)1360 int t4vf_free_vi(struct adapter *adapter, int viid)
1361 {
1362 struct fw_vi_cmd cmd;
1363
1364 /*
1365 * Execute a VI command to free the Virtual Interface.
1366 */
1367 memset(&cmd, 0, sizeof(cmd));
1368 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
1369 FW_CMD_REQUEST_F |
1370 FW_CMD_EXEC_F);
1371 cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
1372 FW_VI_CMD_FREE_F);
1373 cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
1374 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1375 }
1376
1377 /**
1378 * t4vf_enable_vi - enable/disable a virtual interface
1379 * @adapter: the adapter
1380 * @viid: the Virtual Interface ID
1381 * @rx_en: 1=enable Rx, 0=disable Rx
1382 * @tx_en: 1=enable Tx, 0=disable Tx
1383 *
1384 * Enables/disables a virtual interface.
1385 */
t4vf_enable_vi(struct adapter * adapter,unsigned int viid,bool rx_en,bool tx_en)1386 int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
1387 bool rx_en, bool tx_en)
1388 {
1389 struct fw_vi_enable_cmd cmd;
1390
1391 memset(&cmd, 0, sizeof(cmd));
1392 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1393 FW_CMD_REQUEST_F |
1394 FW_CMD_EXEC_F |
1395 FW_VI_ENABLE_CMD_VIID_V(viid));
1396 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
1397 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
1398 FW_LEN16(cmd));
1399 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1400 }
1401
1402 /**
1403 * t4vf_enable_pi - enable/disable a Port's virtual interface
1404 * @adapter: the adapter
1405 * @pi: the Port Information structure
1406 * @rx_en: 1=enable Rx, 0=disable Rx
1407 * @tx_en: 1=enable Tx, 0=disable Tx
1408 *
1409 * Enables/disables a Port's virtual interface. If the Virtual
1410 * Interface enable/disable operation is successful, we notify the
1411 * OS-specific code of a potential Link Status change via the OS Contract
1412 * API t4vf_os_link_changed().
1413 */
t4vf_enable_pi(struct adapter * adapter,struct port_info * pi,bool rx_en,bool tx_en)1414 int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi,
1415 bool rx_en, bool tx_en)
1416 {
1417 int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en);
1418
1419 if (ret)
1420 return ret;
1421 t4vf_os_link_changed(adapter, pi->pidx,
1422 rx_en && tx_en && pi->link_cfg.link_ok);
1423 return 0;
1424 }
1425
1426 /**
1427 * t4vf_identify_port - identify a VI's port by blinking its LED
1428 * @adapter: the adapter
1429 * @viid: the Virtual Interface ID
1430 * @nblinks: how many times to blink LED at 2.5 Hz
1431 *
1432 * Identifies a VI's port by blinking its LED.
1433 */
t4vf_identify_port(struct adapter * adapter,unsigned int viid,unsigned int nblinks)1434 int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
1435 unsigned int nblinks)
1436 {
1437 struct fw_vi_enable_cmd cmd;
1438
1439 memset(&cmd, 0, sizeof(cmd));
1440 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
1441 FW_CMD_REQUEST_F |
1442 FW_CMD_EXEC_F |
1443 FW_VI_ENABLE_CMD_VIID_V(viid));
1444 cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
1445 FW_LEN16(cmd));
1446 cmd.blinkdur = cpu_to_be16(nblinks);
1447 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1448 }
1449
1450 /**
1451 * t4vf_set_rxmode - set Rx properties of a virtual interface
1452 * @adapter: the adapter
1453 * @viid: the VI id
1454 * @mtu: the new MTU or -1 for no change
1455 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
1456 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
1457 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
1458 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
1459 * -1 no change
1460 *
1461 * Sets Rx properties of a virtual interface.
1462 */
t4vf_set_rxmode(struct adapter * adapter,unsigned int viid,int mtu,int promisc,int all_multi,int bcast,int vlanex,bool sleep_ok)1463 int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
1464 int mtu, int promisc, int all_multi, int bcast, int vlanex,
1465 bool sleep_ok)
1466 {
1467 struct fw_vi_rxmode_cmd cmd;
1468
1469 /* convert to FW values */
1470 if (mtu < 0)
1471 mtu = FW_VI_RXMODE_CMD_MTU_M;
1472 if (promisc < 0)
1473 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
1474 if (all_multi < 0)
1475 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
1476 if (bcast < 0)
1477 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
1478 if (vlanex < 0)
1479 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
1480
1481 memset(&cmd, 0, sizeof(cmd));
1482 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
1483 FW_CMD_REQUEST_F |
1484 FW_CMD_WRITE_F |
1485 FW_VI_RXMODE_CMD_VIID_V(viid));
1486 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
1487 cmd.mtu_to_vlanexen =
1488 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
1489 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
1490 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
1491 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
1492 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
1493 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1494 }
1495
1496 /**
1497 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
1498 * @adapter: the adapter
1499 * @viid: the Virtual Interface Identifier
1500 * @free: if true any existing filters for this VI id are first removed
1501 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1502 * @addr: the MAC address(es)
1503 * @idx: where to store the index of each allocated filter
1504 * @hash: pointer to hash address filter bitmap
1505 * @sleep_ok: call is allowed to sleep
1506 *
1507 * Allocates an exact-match filter for each of the supplied addresses and
1508 * sets it to the corresponding address. If @idx is not %NULL it should
1509 * have at least @naddr entries, each of which will be set to the index of
1510 * the filter allocated for the corresponding MAC address. If a filter
1511 * could not be allocated for an address its index is set to 0xffff.
1512 * If @hash is not %NULL addresses that fail to allocate an exact filter
1513 * are hashed and update the hash filter bitmap pointed at by @hash.
1514 *
1515 * Returns a negative error number or the number of filters allocated.
1516 */
t4vf_alloc_mac_filt(struct adapter * adapter,unsigned int viid,bool free,unsigned int naddr,const u8 ** addr,u16 * idx,u64 * hash,bool sleep_ok)1517 int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
1518 unsigned int naddr, const u8 **addr, u16 *idx,
1519 u64 *hash, bool sleep_ok)
1520 {
1521 int offset, ret = 0;
1522 unsigned nfilters = 0;
1523 unsigned int rem = naddr;
1524 struct fw_vi_mac_cmd cmd, rpl;
1525 unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1526
1527 if (naddr > max_naddr)
1528 return -EINVAL;
1529
1530 for (offset = 0; offset < naddr; /**/) {
1531 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
1532 ? rem
1533 : ARRAY_SIZE(cmd.u.exact));
1534 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1535 u.exact[fw_naddr]), 16);
1536 struct fw_vi_mac_exact *p;
1537 int i;
1538
1539 memset(&cmd, 0, sizeof(cmd));
1540 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1541 FW_CMD_REQUEST_F |
1542 FW_CMD_WRITE_F |
1543 (free ? FW_CMD_EXEC_F : 0) |
1544 FW_VI_MAC_CMD_VIID_V(viid));
1545 cmd.freemacs_to_len16 =
1546 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
1547 FW_CMD_LEN16_V(len16));
1548
1549 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1550 p->valid_to_idx = cpu_to_be16(
1551 FW_VI_MAC_CMD_VALID_F |
1552 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
1553 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1554 }
1555
1556
1557 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
1558 sleep_ok);
1559 if (ret && ret != -ENOMEM)
1560 break;
1561
1562 for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
1563 u16 index = FW_VI_MAC_CMD_IDX_G(
1564 be16_to_cpu(p->valid_to_idx));
1565
1566 if (idx)
1567 idx[offset+i] =
1568 (index >= max_naddr
1569 ? 0xffff
1570 : index);
1571 if (index < max_naddr)
1572 nfilters++;
1573 else if (hash)
1574 *hash |= (1ULL << hash_mac_addr(addr[offset+i]));
1575 }
1576
1577 free = false;
1578 offset += fw_naddr;
1579 rem -= fw_naddr;
1580 }
1581
1582 /*
1583 * If there were no errors or we merely ran out of room in our MAC
1584 * address arena, return the number of filters actually written.
1585 */
1586 if (ret == 0 || ret == -ENOMEM)
1587 ret = nfilters;
1588 return ret;
1589 }
1590
1591 /**
1592 * t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
1593 * @adapter: the adapter
1594 * @viid: the VI id
1595 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
1596 * @addr: the MAC address(es)
1597 * @sleep_ok: call is allowed to sleep
1598 *
1599 * Frees the exact-match filter for each of the supplied addresses
1600 *
1601 * Returns a negative error number or the number of filters freed.
1602 */
t4vf_free_mac_filt(struct adapter * adapter,unsigned int viid,unsigned int naddr,const u8 ** addr,bool sleep_ok)1603 int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
1604 unsigned int naddr, const u8 **addr, bool sleep_ok)
1605 {
1606 int offset, ret = 0;
1607 struct fw_vi_mac_cmd cmd;
1608 unsigned int nfilters = 0;
1609 unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
1610 unsigned int rem = naddr;
1611
1612 if (naddr > max_naddr)
1613 return -EINVAL;
1614
1615 for (offset = 0; offset < (int)naddr ; /**/) {
1616 unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
1617 rem : ARRAY_SIZE(cmd.u.exact));
1618 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1619 u.exact[fw_naddr]), 16);
1620 struct fw_vi_mac_exact *p;
1621 int i;
1622
1623 memset(&cmd, 0, sizeof(cmd));
1624 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1625 FW_CMD_REQUEST_F |
1626 FW_CMD_WRITE_F |
1627 FW_CMD_EXEC_V(0) |
1628 FW_VI_MAC_CMD_VIID_V(viid));
1629 cmd.freemacs_to_len16 =
1630 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
1631 FW_CMD_LEN16_V(len16));
1632
1633 for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
1634 p->valid_to_idx = cpu_to_be16(
1635 FW_VI_MAC_CMD_VALID_F |
1636 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
1637 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
1638 }
1639
1640 ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
1641 sleep_ok);
1642 if (ret)
1643 break;
1644
1645 for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
1646 u16 index = FW_VI_MAC_CMD_IDX_G(
1647 be16_to_cpu(p->valid_to_idx));
1648
1649 if (index < max_naddr)
1650 nfilters++;
1651 }
1652
1653 offset += fw_naddr;
1654 rem -= fw_naddr;
1655 }
1656
1657 if (ret == 0)
1658 ret = nfilters;
1659 return ret;
1660 }
1661
1662 /**
1663 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1664 * @adapter: the adapter
1665 * @viid: the Virtual Interface ID
1666 * @idx: index of existing filter for old value of MAC address, or -1
1667 * @addr: the new MAC address value
1668 * @persist: if idx < 0, the new MAC allocation should be persistent
1669 *
1670 * Modifies an exact-match filter and sets it to the new MAC address.
1671 * Note that in general it is not possible to modify the value of a given
1672 * filter so the generic way to modify an address filter is to free the
1673 * one being used by the old address value and allocate a new filter for
1674 * the new address value. @idx can be -1 if the address is a new
1675 * addition.
1676 *
1677 * Returns a negative error number or the index of the filter with the new
1678 * MAC value.
1679 */
t4vf_change_mac(struct adapter * adapter,unsigned int viid,int idx,const u8 * addr,bool persist)1680 int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
1681 int idx, const u8 *addr, bool persist)
1682 {
1683 int ret;
1684 struct fw_vi_mac_cmd cmd, rpl;
1685 struct fw_vi_mac_exact *p = &cmd.u.exact[0];
1686 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1687 u.exact[1]), 16);
1688 unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
1689
1690 /*
1691 * If this is a new allocation, determine whether it should be
1692 * persistent (across a "freemacs" operation) or not.
1693 */
1694 if (idx < 0)
1695 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
1696
1697 memset(&cmd, 0, sizeof(cmd));
1698 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1699 FW_CMD_REQUEST_F |
1700 FW_CMD_WRITE_F |
1701 FW_VI_MAC_CMD_VIID_V(viid));
1702 cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1703 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
1704 FW_VI_MAC_CMD_IDX_V(idx));
1705 memcpy(p->macaddr, addr, sizeof(p->macaddr));
1706
1707 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
1708 if (ret == 0) {
1709 p = &rpl.u.exact[0];
1710 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
1711 if (ret >= max_mac_addr)
1712 ret = -ENOMEM;
1713 }
1714 return ret;
1715 }
1716
1717 /**
1718 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1719 * @adapter: the adapter
1720 * @viid: the Virtual Interface Identifier
1721 * @ucast: whether the hash filter should also match unicast addresses
1722 * @vec: the value to be written to the hash filter
1723 * @sleep_ok: call is allowed to sleep
1724 *
1725 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1726 */
t4vf_set_addr_hash(struct adapter * adapter,unsigned int viid,bool ucast,u64 vec,bool sleep_ok)1727 int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
1728 bool ucast, u64 vec, bool sleep_ok)
1729 {
1730 struct fw_vi_mac_cmd cmd;
1731 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
1732 u.exact[0]), 16);
1733
1734 memset(&cmd, 0, sizeof(cmd));
1735 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
1736 FW_CMD_REQUEST_F |
1737 FW_CMD_WRITE_F |
1738 FW_VI_ENABLE_CMD_VIID_V(viid));
1739 cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
1740 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
1741 FW_CMD_LEN16_V(len16));
1742 cmd.u.hash.hashvec = cpu_to_be64(vec);
1743 return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
1744 }
1745
1746 /**
1747 * t4vf_get_port_stats - collect "port" statistics
1748 * @adapter: the adapter
1749 * @pidx: the port index
1750 * @s: the stats structure to fill
1751 *
1752 * Collect statistics for the "port"'s Virtual Interface.
1753 */
t4vf_get_port_stats(struct adapter * adapter,int pidx,struct t4vf_port_stats * s)1754 int t4vf_get_port_stats(struct adapter *adapter, int pidx,
1755 struct t4vf_port_stats *s)
1756 {
1757 struct port_info *pi = adap2pinfo(adapter, pidx);
1758 struct fw_vi_stats_vf fwstats;
1759 unsigned int rem = VI_VF_NUM_STATS;
1760 __be64 *fwsp = (__be64 *)&fwstats;
1761
1762 /*
1763 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1764 * commands. We could use a Work Request and get all of them at once
1765 * but that's an asynchronous interface which is awkward to use.
1766 */
1767 while (rem) {
1768 unsigned int ix = VI_VF_NUM_STATS - rem;
1769 unsigned int nstats = min(6U, rem);
1770 struct fw_vi_stats_cmd cmd, rpl;
1771 size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
1772 sizeof(struct fw_vi_stats_ctl));
1773 size_t len16 = DIV_ROUND_UP(len, 16);
1774 int ret;
1775
1776 memset(&cmd, 0, sizeof(cmd));
1777 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
1778 FW_VI_STATS_CMD_VIID_V(pi->viid) |
1779 FW_CMD_REQUEST_F |
1780 FW_CMD_READ_F);
1781 cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
1782 cmd.u.ctl.nstats_ix =
1783 cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
1784 FW_VI_STATS_CMD_NSTATS_V(nstats));
1785 ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
1786 if (ret)
1787 return ret;
1788
1789 memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
1790
1791 rem -= nstats;
1792 fwsp += nstats;
1793 }
1794
1795 /*
1796 * Translate firmware statistics into host native statistics.
1797 */
1798 s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
1799 s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
1800 s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
1801 s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
1802 s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
1803 s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
1804 s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
1805 s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
1806 s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
1807
1808 s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
1809 s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
1810 s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
1811 s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
1812 s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
1813 s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
1814
1815 s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
1816
1817 return 0;
1818 }
1819
1820 /**
1821 * t4vf_iq_free - free an ingress queue and its free lists
1822 * @adapter: the adapter
1823 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1824 * @iqid: ingress queue ID
1825 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1826 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1827 *
1828 * Frees an ingress queue and its associated free lists, if any.
1829 */
t4vf_iq_free(struct adapter * adapter,unsigned int iqtype,unsigned int iqid,unsigned int fl0id,unsigned int fl1id)1830 int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
1831 unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
1832 {
1833 struct fw_iq_cmd cmd;
1834
1835 memset(&cmd, 0, sizeof(cmd));
1836 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
1837 FW_CMD_REQUEST_F |
1838 FW_CMD_EXEC_F);
1839 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
1840 FW_LEN16(cmd));
1841 cmd.type_to_iqandstindex =
1842 cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
1843
1844 cmd.iqid = cpu_to_be16(iqid);
1845 cmd.fl0id = cpu_to_be16(fl0id);
1846 cmd.fl1id = cpu_to_be16(fl1id);
1847 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1848 }
1849
1850 /**
1851 * t4vf_eth_eq_free - free an Ethernet egress queue
1852 * @adapter: the adapter
1853 * @eqid: egress queue ID
1854 *
1855 * Frees an Ethernet egress queue.
1856 */
t4vf_eth_eq_free(struct adapter * adapter,unsigned int eqid)1857 int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
1858 {
1859 struct fw_eq_eth_cmd cmd;
1860
1861 memset(&cmd, 0, sizeof(cmd));
1862 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
1863 FW_CMD_REQUEST_F |
1864 FW_CMD_EXEC_F);
1865 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
1866 FW_LEN16(cmd));
1867 cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
1868 return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
1869 }
1870
1871 /**
1872 * t4vf_link_down_rc_str - return a string for a Link Down Reason Code
1873 * @link_down_rc: Link Down Reason Code
1874 *
1875 * Returns a string representation of the Link Down Reason Code.
1876 */
t4vf_link_down_rc_str(unsigned char link_down_rc)1877 static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
1878 {
1879 static const char * const reason[] = {
1880 "Link Down",
1881 "Remote Fault",
1882 "Auto-negotiation Failure",
1883 "Reserved",
1884 "Insufficient Airflow",
1885 "Unable To Determine Reason",
1886 "No RX Signal Detected",
1887 "Reserved",
1888 };
1889
1890 if (link_down_rc >= ARRAY_SIZE(reason))
1891 return "Bad Reason Code";
1892
1893 return reason[link_down_rc];
1894 }
1895
1896 /**
1897 * t4vf_handle_get_port_info - process a FW reply message
1898 * @pi: the port info
1899 * @rpl: start of the FW message
1900 *
1901 * Processes a GET_PORT_INFO FW reply message.
1902 */
t4vf_handle_get_port_info(struct port_info * pi,const struct fw_port_cmd * cmd)1903 static void t4vf_handle_get_port_info(struct port_info *pi,
1904 const struct fw_port_cmd *cmd)
1905 {
1906 int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
1907 struct adapter *adapter = pi->adapter;
1908 struct link_config *lc = &pi->link_cfg;
1909 int link_ok, linkdnrc;
1910 enum fw_port_type port_type;
1911 enum fw_port_module_type mod_type;
1912 unsigned int speed, fc, fec;
1913 fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
1914
1915 /* Extract the various fields from the Port Information message. */
1916 switch (action) {
1917 case FW_PORT_ACTION_GET_PORT_INFO: {
1918 u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
1919
1920 link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
1921 linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
1922 port_type = FW_PORT_CMD_PTYPE_G(lstatus);
1923 mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
1924 pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
1925 acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
1926 lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
1927
1928 /* Unfortunately the format of the Link Status in the old
1929 * 16-bit Port Information message isn't the same as the
1930 * 16-bit Port Capabilities bitfield used everywhere else ...
1931 */
1932 linkattr = 0;
1933 if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1934 linkattr |= FW_PORT_CAP32_FC_RX;
1935 if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1936 linkattr |= FW_PORT_CAP32_FC_TX;
1937 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1938 linkattr |= FW_PORT_CAP32_SPEED_100M;
1939 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1940 linkattr |= FW_PORT_CAP32_SPEED_1G;
1941 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1942 linkattr |= FW_PORT_CAP32_SPEED_10G;
1943 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1944 linkattr |= FW_PORT_CAP32_SPEED_25G;
1945 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1946 linkattr |= FW_PORT_CAP32_SPEED_40G;
1947 if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1948 linkattr |= FW_PORT_CAP32_SPEED_100G;
1949
1950 break;
1951 }
1952
1953 case FW_PORT_ACTION_GET_PORT_INFO32: {
1954 u32 lstatus32;
1955
1956 lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
1957 link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
1958 linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
1959 port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
1960 mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
1961 pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
1962 acaps = be32_to_cpu(cmd->u.info32.acaps32);
1963 lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
1964 linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
1965 break;
1966 }
1967
1968 default:
1969 dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
1970 be32_to_cpu(cmd->action_to_len16));
1971 return;
1972 }
1973
1974 fec = fwcap_to_cc_fec(acaps);
1975 fc = fwcap_to_cc_pause(linkattr);
1976 speed = fwcap_to_speed(linkattr);
1977
1978 if (mod_type != pi->mod_type) {
1979 /* When a new Transceiver Module is inserted, the Firmware
1980 * will examine any Forward Error Correction parameters
1981 * present in the Transceiver Module i2c EPROM and determine
1982 * the supported and recommended FEC settings from those
1983 * based on IEEE 802.3 standards. We always record the
1984 * IEEE 802.3 recommended "automatic" settings.
1985 */
1986 lc->auto_fec = fec;
1987
1988 /* Some versions of the early T6 Firmware "cheated" when
1989 * handling different Transceiver Modules by changing the
1990 * underlaying Port Type reported to the Host Drivers. As
1991 * such we need to capture whatever Port Type the Firmware
1992 * sends us and record it in case it's different from what we
1993 * were told earlier. Unfortunately, since Firmware is
1994 * forever, we'll need to keep this code here forever, but in
1995 * later T6 Firmware it should just be an assignment of the
1996 * same value already recorded.
1997 */
1998 pi->port_type = port_type;
1999
2000 pi->mod_type = mod_type;
2001 t4vf_os_portmod_changed(adapter, pi->pidx);
2002 }
2003
2004 if (link_ok != lc->link_ok || speed != lc->speed ||
2005 fc != lc->fc || fec != lc->fec) { /* something changed */
2006 if (!link_ok && lc->link_ok) {
2007 lc->link_down_rc = linkdnrc;
2008 dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
2009 pi->port_id, t4vf_link_down_rc_str(linkdnrc));
2010 }
2011 lc->link_ok = link_ok;
2012 lc->speed = speed;
2013 lc->fc = fc;
2014 lc->fec = fec;
2015
2016 lc->pcaps = pcaps;
2017 lc->lpacaps = lpacaps;
2018 lc->acaps = acaps & ADVERT_MASK;
2019
2020 /* If we're not physically capable of Auto-Negotiation, note
2021 * this as Auto-Negotiation disabled. Otherwise, we track
2022 * what Auto-Negotiation settings we have. Note parallel
2023 * structure in init_link_config().
2024 */
2025 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
2026 lc->autoneg = AUTONEG_DISABLE;
2027 } else if (lc->acaps & FW_PORT_CAP32_ANEG) {
2028 lc->autoneg = AUTONEG_ENABLE;
2029 } else {
2030 /* When Autoneg is disabled, user needs to set
2031 * single speed.
2032 * Similar to cxgb4_ethtool.c: set_link_ksettings
2033 */
2034 lc->acaps = 0;
2035 lc->speed_caps = fwcap_to_speed(acaps);
2036 lc->autoneg = AUTONEG_DISABLE;
2037 }
2038
2039 t4vf_os_link_changed(adapter, pi->pidx, link_ok);
2040 }
2041 }
2042
2043 /**
2044 * t4vf_update_port_info - retrieve and update port information if changed
2045 * @pi: the port_info
2046 *
2047 * We issue a Get Port Information Command to the Firmware and, if
2048 * successful, we check to see if anything is different from what we
2049 * last recorded and update things accordingly.
2050 */
t4vf_update_port_info(struct port_info * pi)2051 int t4vf_update_port_info(struct port_info *pi)
2052 {
2053 unsigned int fw_caps = pi->adapter->params.fw_caps_support;
2054 struct fw_port_cmd port_cmd;
2055 int ret;
2056
2057 memset(&port_cmd, 0, sizeof(port_cmd));
2058 port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
2059 FW_CMD_REQUEST_F | FW_CMD_READ_F |
2060 FW_PORT_CMD_PORTID_V(pi->port_id));
2061 port_cmd.action_to_len16 = cpu_to_be32(
2062 FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
2063 ? FW_PORT_ACTION_GET_PORT_INFO
2064 : FW_PORT_ACTION_GET_PORT_INFO32) |
2065 FW_LEN16(port_cmd));
2066 ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
2067 &port_cmd);
2068 if (ret)
2069 return ret;
2070 t4vf_handle_get_port_info(pi, &port_cmd);
2071 return 0;
2072 }
2073
2074 /**
2075 * t4vf_handle_fw_rpl - process a firmware reply message
2076 * @adapter: the adapter
2077 * @rpl: start of the firmware message
2078 *
2079 * Processes a firmware message, such as link state change messages.
2080 */
t4vf_handle_fw_rpl(struct adapter * adapter,const __be64 * rpl)2081 int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
2082 {
2083 const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
2084 u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
2085
2086 switch (opcode) {
2087 case FW_PORT_CMD: {
2088 /*
2089 * Link/module state change message.
2090 */
2091 const struct fw_port_cmd *port_cmd =
2092 (const struct fw_port_cmd *)rpl;
2093 int action = FW_PORT_CMD_ACTION_G(
2094 be32_to_cpu(port_cmd->action_to_len16));
2095 int port_id, pidx;
2096
2097 if (action != FW_PORT_ACTION_GET_PORT_INFO &&
2098 action != FW_PORT_ACTION_GET_PORT_INFO32) {
2099 dev_err(adapter->pdev_dev,
2100 "Unknown firmware PORT reply action %x\n",
2101 action);
2102 break;
2103 }
2104
2105 port_id = FW_PORT_CMD_PORTID_G(
2106 be32_to_cpu(port_cmd->op_to_portid));
2107 for_each_port(adapter, pidx) {
2108 struct port_info *pi = adap2pinfo(adapter, pidx);
2109
2110 if (pi->port_id != port_id)
2111 continue;
2112 t4vf_handle_get_port_info(pi, port_cmd);
2113 }
2114 break;
2115 }
2116
2117 default:
2118 dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
2119 opcode);
2120 }
2121 return 0;
2122 }
2123
2124 /**
2125 */
t4vf_prep_adapter(struct adapter * adapter)2126 int t4vf_prep_adapter(struct adapter *adapter)
2127 {
2128 int err;
2129 unsigned int chipid;
2130
2131 /* Wait for the device to become ready before proceeding ...
2132 */
2133 err = t4vf_wait_dev_ready(adapter);
2134 if (err)
2135 return err;
2136
2137 /* Default port and clock for debugging in case we can't reach
2138 * firmware.
2139 */
2140 adapter->params.nports = 1;
2141 adapter->params.vfres.pmask = 1;
2142 adapter->params.vpd.cclk = 50000;
2143
2144 adapter->params.chip = 0;
2145 switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
2146 case CHELSIO_T4:
2147 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2148 adapter->params.arch.sge_fl_db = DBPRIO_F;
2149 adapter->params.arch.mps_tcam_size =
2150 NUM_MPS_CLS_SRAM_L_INSTANCES;
2151 break;
2152
2153 case CHELSIO_T5:
2154 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2155 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2156 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
2157 adapter->params.arch.mps_tcam_size =
2158 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2159 break;
2160
2161 case CHELSIO_T6:
2162 chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
2163 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
2164 adapter->params.arch.sge_fl_db = 0;
2165 adapter->params.arch.mps_tcam_size =
2166 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
2167 break;
2168 }
2169
2170 return 0;
2171 }
2172
2173 /**
2174 * t4vf_get_vf_mac_acl - Get the MAC address to be set to
2175 * the VI of this VF.
2176 * @adapter: The adapter
2177 * @pf: The pf associated with vf
2178 * @naddr: the number of ACL MAC addresses returned in addr
2179 * @addr: Placeholder for MAC addresses
2180 *
2181 * Find the MAC address to be set to the VF's VI. The requested MAC address
2182 * is from the host OS via callback in the PF driver.
2183 */
t4vf_get_vf_mac_acl(struct adapter * adapter,unsigned int pf,unsigned int * naddr,u8 * addr)2184 int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
2185 unsigned int *naddr, u8 *addr)
2186 {
2187 struct fw_acl_mac_cmd cmd;
2188 int ret;
2189
2190 memset(&cmd, 0, sizeof(cmd));
2191 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
2192 FW_CMD_REQUEST_F |
2193 FW_CMD_READ_F);
2194 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2195 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2196 if (ret)
2197 return ret;
2198
2199 if (cmd.nmac < *naddr)
2200 *naddr = cmd.nmac;
2201
2202 switch (pf) {
2203 case 3:
2204 memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
2205 break;
2206 case 2:
2207 memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
2208 break;
2209 case 1:
2210 memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
2211 break;
2212 case 0:
2213 memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
2214 break;
2215 }
2216
2217 return ret;
2218 }
2219
2220 /**
2221 * t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
2222 * the VI of this VF.
2223 * @adapter: The adapter
2224 *
2225 * Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
2226 * is from the host OS via callback in the PF driver.
2227 */
t4vf_get_vf_vlan_acl(struct adapter * adapter)2228 int t4vf_get_vf_vlan_acl(struct adapter *adapter)
2229 {
2230 struct fw_acl_vlan_cmd cmd;
2231 int vlan = 0;
2232 int ret = 0;
2233
2234 cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
2235 FW_CMD_REQUEST_F | FW_CMD_READ_F);
2236
2237 /* Note: Do not enable the ACL */
2238 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
2239
2240 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
2241
2242 if (!ret)
2243 vlan = be16_to_cpu(cmd.vlanid[0]);
2244
2245 return vlan;
2246 }
2247