1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/xfrm.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/busy_poll.h>
48 #ifdef CONFIG_CHELSIO_T4_FCOE
49 #include <scsi/fc/fc_fcoe.h>
50 #endif /* CONFIG_CHELSIO_T4_FCOE */
51 #include "cxgb4.h"
52 #include "t4_regs.h"
53 #include "t4_values.h"
54 #include "t4_msg.h"
55 #include "t4fw_api.h"
56 #include "cxgb4_ptp.h"
57 #include "cxgb4_uld.h"
58 #include "cxgb4_tc_mqprio.h"
59 #include "sched.h"
60
61 /*
62 * Rx buffer size. We use largish buffers if possible but settle for single
63 * pages under memory shortage.
64 */
65 #if PAGE_SHIFT >= 16
66 # define FL_PG_ORDER 0
67 #else
68 # define FL_PG_ORDER (16 - PAGE_SHIFT)
69 #endif
70
71 /* RX_PULL_LEN should be <= RX_COPY_THRES */
72 #define RX_COPY_THRES 256
73 #define RX_PULL_LEN 128
74
75 /*
76 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
77 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
78 */
79 #define RX_PKT_SKB_LEN 512
80
81 /*
82 * Max number of Tx descriptors we clean up at a time. Should be modest as
83 * freeing skbs isn't cheap and it happens while holding locks. We just need
84 * to free packets faster than they arrive, we eventually catch up and keep
85 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES. It should
86 * also match the CIDX Flush Threshold.
87 */
88 #define MAX_TX_RECLAIM 32
89
90 /*
91 * Max number of Rx buffers we replenish at a time. Again keep this modest,
92 * allocating buffers isn't cheap either.
93 */
94 #define MAX_RX_REFILL 16U
95
96 /*
97 * Period of the Rx queue check timer. This timer is infrequent as it has
98 * something to do only when the system experiences severe memory shortage.
99 */
100 #define RX_QCHECK_PERIOD (HZ / 2)
101
102 /*
103 * Period of the Tx queue check timer.
104 */
105 #define TX_QCHECK_PERIOD (HZ / 2)
106
107 /*
108 * Max number of Tx descriptors to be reclaimed by the Tx timer.
109 */
110 #define MAX_TIMER_TX_RECLAIM 100
111
112 /*
113 * Timer index used when backing off due to memory shortage.
114 */
115 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
116
117 /*
118 * Suspension threshold for non-Ethernet Tx queues. We require enough room
119 * for a full sized WR.
120 */
121 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
122
123 /*
124 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
125 * into a WR.
126 */
127 #define MAX_IMM_TX_PKT_LEN 256
128
129 /*
130 * Max size of a WR sent through a control Tx queue.
131 */
132 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
133
134 struct rx_sw_desc { /* SW state per Rx descriptor */
135 struct page *page;
136 dma_addr_t dma_addr;
137 };
138
139 /*
140 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
141 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
142 * We could easily support more but there doesn't seem to be much need for
143 * that ...
144 */
145 #define FL_MTU_SMALL 1500
146 #define FL_MTU_LARGE 9000
147
fl_mtu_bufsize(struct adapter * adapter,unsigned int mtu)148 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
149 unsigned int mtu)
150 {
151 struct sge *s = &adapter->sge;
152
153 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
154 }
155
156 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
157 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
158
159 /*
160 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
161 * these to specify the buffer size as an index into the SGE Free List Buffer
162 * Size register array. We also use bit 4, when the buffer has been unmapped
163 * for DMA, but this is of course never sent to the hardware and is only used
164 * to prevent double unmappings. All of the above requires that the Free List
165 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
166 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
167 * Free List Buffer alignment is 32 bytes, this works out for us ...
168 */
169 enum {
170 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
171 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
172 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
173
174 /*
175 * XXX We shouldn't depend on being able to use these indices.
176 * XXX Especially when some other Master PF has initialized the
177 * XXX adapter or we use the Firmware Configuration File. We
178 * XXX should really search through the Host Buffer Size register
179 * XXX array for the appropriately sized buffer indices.
180 */
181 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
182 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
183
184 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
185 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
186 };
187
188 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
189 #define MIN_NAPI_WORK 1
190
get_buf_addr(const struct rx_sw_desc * d)191 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
192 {
193 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
194 }
195
is_buf_mapped(const struct rx_sw_desc * d)196 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
197 {
198 return !(d->dma_addr & RX_UNMAPPED_BUF);
199 }
200
201 /**
202 * txq_avail - return the number of available slots in a Tx queue
203 * @q: the Tx queue
204 *
205 * Returns the number of descriptors in a Tx queue available to write new
206 * packets.
207 */
txq_avail(const struct sge_txq * q)208 static inline unsigned int txq_avail(const struct sge_txq *q)
209 {
210 return q->size - 1 - q->in_use;
211 }
212
213 /**
214 * fl_cap - return the capacity of a free-buffer list
215 * @fl: the FL
216 *
217 * Returns the capacity of a free-buffer list. The capacity is less than
218 * the size because one descriptor needs to be left unpopulated, otherwise
219 * HW will think the FL is empty.
220 */
fl_cap(const struct sge_fl * fl)221 static inline unsigned int fl_cap(const struct sge_fl *fl)
222 {
223 return fl->size - 8; /* 1 descriptor = 8 buffers */
224 }
225
226 /**
227 * fl_starving - return whether a Free List is starving.
228 * @adapter: pointer to the adapter
229 * @fl: the Free List
230 *
231 * Tests specified Free List to see whether the number of buffers
232 * available to the hardware has falled below our "starvation"
233 * threshold.
234 */
fl_starving(const struct adapter * adapter,const struct sge_fl * fl)235 static inline bool fl_starving(const struct adapter *adapter,
236 const struct sge_fl *fl)
237 {
238 const struct sge *s = &adapter->sge;
239
240 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
241 }
242
cxgb4_map_skb(struct device * dev,const struct sk_buff * skb,dma_addr_t * addr)243 int cxgb4_map_skb(struct device *dev, const struct sk_buff *skb,
244 dma_addr_t *addr)
245 {
246 const skb_frag_t *fp, *end;
247 const struct skb_shared_info *si;
248
249 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
250 if (dma_mapping_error(dev, *addr))
251 goto out_err;
252
253 si = skb_shinfo(skb);
254 end = &si->frags[si->nr_frags];
255
256 for (fp = si->frags; fp < end; fp++) {
257 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
258 DMA_TO_DEVICE);
259 if (dma_mapping_error(dev, *addr))
260 goto unwind;
261 }
262 return 0;
263
264 unwind:
265 while (fp-- > si->frags)
266 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
267
268 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
269 out_err:
270 return -ENOMEM;
271 }
272 EXPORT_SYMBOL(cxgb4_map_skb);
273
unmap_skb(struct device * dev,const struct sk_buff * skb,const dma_addr_t * addr)274 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
275 const dma_addr_t *addr)
276 {
277 const skb_frag_t *fp, *end;
278 const struct skb_shared_info *si;
279
280 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
281
282 si = skb_shinfo(skb);
283 end = &si->frags[si->nr_frags];
284 for (fp = si->frags; fp < end; fp++)
285 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
286 }
287
288 #ifdef CONFIG_NEED_DMA_MAP_STATE
289 /**
290 * deferred_unmap_destructor - unmap a packet when it is freed
291 * @skb: the packet
292 *
293 * This is the packet destructor used for Tx packets that need to remain
294 * mapped until they are freed rather than until their Tx descriptors are
295 * freed.
296 */
deferred_unmap_destructor(struct sk_buff * skb)297 static void deferred_unmap_destructor(struct sk_buff *skb)
298 {
299 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
300 }
301 #endif
302
303 /**
304 * free_tx_desc - reclaims Tx descriptors and their buffers
305 * @adap: the adapter
306 * @q: the Tx queue to reclaim descriptors from
307 * @n: the number of descriptors to reclaim
308 * @unmap: whether the buffers should be unmapped for DMA
309 *
310 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
311 * Tx buffers. Called with the Tx queue lock held.
312 */
free_tx_desc(struct adapter * adap,struct sge_txq * q,unsigned int n,bool unmap)313 void free_tx_desc(struct adapter *adap, struct sge_txq *q,
314 unsigned int n, bool unmap)
315 {
316 unsigned int cidx = q->cidx;
317 struct tx_sw_desc *d;
318
319 d = &q->sdesc[cidx];
320 while (n--) {
321 if (d->skb) { /* an SGL is present */
322 if (unmap && d->addr[0]) {
323 unmap_skb(adap->pdev_dev, d->skb, d->addr);
324 memset(d->addr, 0, sizeof(d->addr));
325 }
326 dev_consume_skb_any(d->skb);
327 d->skb = NULL;
328 }
329 ++d;
330 if (++cidx == q->size) {
331 cidx = 0;
332 d = q->sdesc;
333 }
334 }
335 q->cidx = cidx;
336 }
337
338 /*
339 * Return the number of reclaimable descriptors in a Tx queue.
340 */
reclaimable(const struct sge_txq * q)341 static inline int reclaimable(const struct sge_txq *q)
342 {
343 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
344 hw_cidx -= q->cidx;
345 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
346 }
347
348 /**
349 * reclaim_completed_tx - reclaims completed TX Descriptors
350 * @adap: the adapter
351 * @q: the Tx queue to reclaim completed descriptors from
352 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
353 * @unmap: whether the buffers should be unmapped for DMA
354 *
355 * Reclaims Tx Descriptors that the SGE has indicated it has processed,
356 * and frees the associated buffers if possible. If @max == -1, then
357 * we'll use a defaiult maximum. Called with the TX Queue locked.
358 */
reclaim_completed_tx(struct adapter * adap,struct sge_txq * q,int maxreclaim,bool unmap)359 static inline int reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
360 int maxreclaim, bool unmap)
361 {
362 int reclaim = reclaimable(q);
363
364 if (reclaim) {
365 /*
366 * Limit the amount of clean up work we do at a time to keep
367 * the Tx lock hold time O(1).
368 */
369 if (maxreclaim < 0)
370 maxreclaim = MAX_TX_RECLAIM;
371 if (reclaim > maxreclaim)
372 reclaim = maxreclaim;
373
374 free_tx_desc(adap, q, reclaim, unmap);
375 q->in_use -= reclaim;
376 }
377
378 return reclaim;
379 }
380
381 /**
382 * cxgb4_reclaim_completed_tx - reclaims completed Tx descriptors
383 * @adap: the adapter
384 * @q: the Tx queue to reclaim completed descriptors from
385 * @unmap: whether the buffers should be unmapped for DMA
386 *
387 * Reclaims Tx descriptors that the SGE has indicated it has processed,
388 * and frees the associated buffers if possible. Called with the Tx
389 * queue locked.
390 */
cxgb4_reclaim_completed_tx(struct adapter * adap,struct sge_txq * q,bool unmap)391 void cxgb4_reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
392 bool unmap)
393 {
394 (void)reclaim_completed_tx(adap, q, -1, unmap);
395 }
396 EXPORT_SYMBOL(cxgb4_reclaim_completed_tx);
397
get_buf_size(struct adapter * adapter,const struct rx_sw_desc * d)398 static inline int get_buf_size(struct adapter *adapter,
399 const struct rx_sw_desc *d)
400 {
401 struct sge *s = &adapter->sge;
402 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
403 int buf_size;
404
405 switch (rx_buf_size_idx) {
406 case RX_SMALL_PG_BUF:
407 buf_size = PAGE_SIZE;
408 break;
409
410 case RX_LARGE_PG_BUF:
411 buf_size = PAGE_SIZE << s->fl_pg_order;
412 break;
413
414 case RX_SMALL_MTU_BUF:
415 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
416 break;
417
418 case RX_LARGE_MTU_BUF:
419 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
420 break;
421
422 default:
423 BUG();
424 }
425
426 return buf_size;
427 }
428
429 /**
430 * free_rx_bufs - free the Rx buffers on an SGE free list
431 * @adap: the adapter
432 * @q: the SGE free list to free buffers from
433 * @n: how many buffers to free
434 *
435 * Release the next @n buffers on an SGE free-buffer Rx queue. The
436 * buffers must be made inaccessible to HW before calling this function.
437 */
free_rx_bufs(struct adapter * adap,struct sge_fl * q,int n)438 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
439 {
440 while (n--) {
441 struct rx_sw_desc *d = &q->sdesc[q->cidx];
442
443 if (is_buf_mapped(d))
444 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
445 get_buf_size(adap, d),
446 DMA_FROM_DEVICE);
447 put_page(d->page);
448 d->page = NULL;
449 if (++q->cidx == q->size)
450 q->cidx = 0;
451 q->avail--;
452 }
453 }
454
455 /**
456 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
457 * @adap: the adapter
458 * @q: the SGE free list
459 *
460 * Unmap the current buffer on an SGE free-buffer Rx queue. The
461 * buffer must be made inaccessible to HW before calling this function.
462 *
463 * This is similar to @free_rx_bufs above but does not free the buffer.
464 * Do note that the FL still loses any further access to the buffer.
465 */
unmap_rx_buf(struct adapter * adap,struct sge_fl * q)466 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
467 {
468 struct rx_sw_desc *d = &q->sdesc[q->cidx];
469
470 if (is_buf_mapped(d))
471 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
472 get_buf_size(adap, d), DMA_FROM_DEVICE);
473 d->page = NULL;
474 if (++q->cidx == q->size)
475 q->cidx = 0;
476 q->avail--;
477 }
478
ring_fl_db(struct adapter * adap,struct sge_fl * q)479 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
480 {
481 if (q->pend_cred >= 8) {
482 u32 val = adap->params.arch.sge_fl_db;
483
484 if (is_t4(adap->params.chip))
485 val |= PIDX_V(q->pend_cred / 8);
486 else
487 val |= PIDX_T5_V(q->pend_cred / 8);
488
489 /* Make sure all memory writes to the Free List queue are
490 * committed before we tell the hardware about them.
491 */
492 wmb();
493
494 /* If we don't have access to the new User Doorbell (T5+), use
495 * the old doorbell mechanism; otherwise use the new BAR2
496 * mechanism.
497 */
498 if (unlikely(q->bar2_addr == NULL)) {
499 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
500 val | QID_V(q->cntxt_id));
501 } else {
502 writel(val | QID_V(q->bar2_qid),
503 q->bar2_addr + SGE_UDB_KDOORBELL);
504
505 /* This Write memory Barrier will force the write to
506 * the User Doorbell area to be flushed.
507 */
508 wmb();
509 }
510 q->pend_cred &= 7;
511 }
512 }
513
set_rx_sw_desc(struct rx_sw_desc * sd,struct page * pg,dma_addr_t mapping)514 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
515 dma_addr_t mapping)
516 {
517 sd->page = pg;
518 sd->dma_addr = mapping; /* includes size low bits */
519 }
520
521 /**
522 * refill_fl - refill an SGE Rx buffer ring
523 * @adap: the adapter
524 * @q: the ring to refill
525 * @n: the number of new buffers to allocate
526 * @gfp: the gfp flags for the allocations
527 *
528 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
529 * allocated with the supplied gfp flags. The caller must assure that
530 * @n does not exceed the queue's capacity. If afterwards the queue is
531 * found critically low mark it as starving in the bitmap of starving FLs.
532 *
533 * Returns the number of buffers allocated.
534 */
refill_fl(struct adapter * adap,struct sge_fl * q,int n,gfp_t gfp)535 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
536 gfp_t gfp)
537 {
538 struct sge *s = &adap->sge;
539 struct page *pg;
540 dma_addr_t mapping;
541 unsigned int cred = q->avail;
542 __be64 *d = &q->desc[q->pidx];
543 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
544 int node;
545
546 #ifdef CONFIG_DEBUG_FS
547 if (test_bit(q->cntxt_id - adap->sge.egr_start, adap->sge.blocked_fl))
548 goto out;
549 #endif
550
551 gfp |= __GFP_NOWARN;
552 node = dev_to_node(adap->pdev_dev);
553
554 if (s->fl_pg_order == 0)
555 goto alloc_small_pages;
556
557 /*
558 * Prefer large buffers
559 */
560 while (n) {
561 pg = alloc_pages_node(node, gfp | __GFP_COMP, s->fl_pg_order);
562 if (unlikely(!pg)) {
563 q->large_alloc_failed++;
564 break; /* fall back to single pages */
565 }
566
567 mapping = dma_map_page(adap->pdev_dev, pg, 0,
568 PAGE_SIZE << s->fl_pg_order,
569 DMA_FROM_DEVICE);
570 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
571 __free_pages(pg, s->fl_pg_order);
572 q->mapping_err++;
573 goto out; /* do not try small pages for this error */
574 }
575 mapping |= RX_LARGE_PG_BUF;
576 *d++ = cpu_to_be64(mapping);
577
578 set_rx_sw_desc(sd, pg, mapping);
579 sd++;
580
581 q->avail++;
582 if (++q->pidx == q->size) {
583 q->pidx = 0;
584 sd = q->sdesc;
585 d = q->desc;
586 }
587 n--;
588 }
589
590 alloc_small_pages:
591 while (n--) {
592 pg = alloc_pages_node(node, gfp, 0);
593 if (unlikely(!pg)) {
594 q->alloc_failed++;
595 break;
596 }
597
598 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
599 DMA_FROM_DEVICE);
600 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
601 put_page(pg);
602 q->mapping_err++;
603 goto out;
604 }
605 *d++ = cpu_to_be64(mapping);
606
607 set_rx_sw_desc(sd, pg, mapping);
608 sd++;
609
610 q->avail++;
611 if (++q->pidx == q->size) {
612 q->pidx = 0;
613 sd = q->sdesc;
614 d = q->desc;
615 }
616 }
617
618 out: cred = q->avail - cred;
619 q->pend_cred += cred;
620 ring_fl_db(adap, q);
621
622 if (unlikely(fl_starving(adap, q))) {
623 smp_wmb();
624 q->low++;
625 set_bit(q->cntxt_id - adap->sge.egr_start,
626 adap->sge.starving_fl);
627 }
628
629 return cred;
630 }
631
__refill_fl(struct adapter * adap,struct sge_fl * fl)632 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
633 {
634 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
635 GFP_ATOMIC);
636 }
637
638 /**
639 * alloc_ring - allocate resources for an SGE descriptor ring
640 * @dev: the PCI device's core device
641 * @nelem: the number of descriptors
642 * @elem_size: the size of each descriptor
643 * @sw_size: the size of the SW state associated with each ring element
644 * @phys: the physical address of the allocated ring
645 * @metadata: address of the array holding the SW state for the ring
646 * @stat_size: extra space in HW ring for status information
647 * @node: preferred node for memory allocations
648 *
649 * Allocates resources for an SGE descriptor ring, such as Tx queues,
650 * free buffer lists, or response queues. Each SGE ring requires
651 * space for its HW descriptors plus, optionally, space for the SW state
652 * associated with each HW entry (the metadata). The function returns
653 * three values: the virtual address for the HW ring (the return value
654 * of the function), the bus address of the HW ring, and the address
655 * of the SW ring.
656 */
alloc_ring(struct device * dev,size_t nelem,size_t elem_size,size_t sw_size,dma_addr_t * phys,void * metadata,size_t stat_size,int node)657 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
658 size_t sw_size, dma_addr_t *phys, void *metadata,
659 size_t stat_size, int node)
660 {
661 size_t len = nelem * elem_size + stat_size;
662 void *s = NULL;
663 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
664
665 if (!p)
666 return NULL;
667 if (sw_size) {
668 s = kcalloc_node(sw_size, nelem, GFP_KERNEL, node);
669
670 if (!s) {
671 dma_free_coherent(dev, len, p, *phys);
672 return NULL;
673 }
674 }
675 if (metadata)
676 *(void **)metadata = s;
677 return p;
678 }
679
680 /**
681 * sgl_len - calculates the size of an SGL of the given capacity
682 * @n: the number of SGL entries
683 *
684 * Calculates the number of flits needed for a scatter/gather list that
685 * can hold the given number of entries.
686 */
sgl_len(unsigned int n)687 static inline unsigned int sgl_len(unsigned int n)
688 {
689 /* A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
690 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
691 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
692 * repeated sequences of { Length[i], Length[i+1], Address[i],
693 * Address[i+1] } (this ensures that all addresses are on 64-bit
694 * boundaries). If N is even, then Length[N+1] should be set to 0 and
695 * Address[N+1] is omitted.
696 *
697 * The following calculation incorporates all of the above. It's
698 * somewhat hard to follow but, briefly: the "+2" accounts for the
699 * first two flits which include the DSGL header, Length0 and
700 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
701 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
702 * finally the "+((n-1)&1)" adds the one remaining flit needed if
703 * (n-1) is odd ...
704 */
705 n--;
706 return (3 * n) / 2 + (n & 1) + 2;
707 }
708
709 /**
710 * flits_to_desc - returns the num of Tx descriptors for the given flits
711 * @n: the number of flits
712 *
713 * Returns the number of Tx descriptors needed for the supplied number
714 * of flits.
715 */
flits_to_desc(unsigned int n)716 static inline unsigned int flits_to_desc(unsigned int n)
717 {
718 BUG_ON(n > SGE_MAX_WR_LEN / 8);
719 return DIV_ROUND_UP(n, 8);
720 }
721
722 /**
723 * is_eth_imm - can an Ethernet packet be sent as immediate data?
724 * @skb: the packet
725 * @chip_ver: chip version
726 *
727 * Returns whether an Ethernet packet is small enough to fit as
728 * immediate data. Return value corresponds to headroom required.
729 */
is_eth_imm(const struct sk_buff * skb,unsigned int chip_ver)730 static inline int is_eth_imm(const struct sk_buff *skb, unsigned int chip_ver)
731 {
732 int hdrlen = 0;
733
734 if (skb->encapsulation && skb_shinfo(skb)->gso_size &&
735 chip_ver > CHELSIO_T5) {
736 hdrlen = sizeof(struct cpl_tx_tnl_lso);
737 hdrlen += sizeof(struct cpl_tx_pkt_core);
738 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
739 return 0;
740 } else {
741 hdrlen = skb_shinfo(skb)->gso_size ?
742 sizeof(struct cpl_tx_pkt_lso_core) : 0;
743 hdrlen += sizeof(struct cpl_tx_pkt);
744 }
745 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
746 return hdrlen;
747 return 0;
748 }
749
750 /**
751 * calc_tx_flits - calculate the number of flits for a packet Tx WR
752 * @skb: the packet
753 * @chip_ver: chip version
754 *
755 * Returns the number of flits needed for a Tx WR for the given Ethernet
756 * packet, including the needed WR and CPL headers.
757 */
calc_tx_flits(const struct sk_buff * skb,unsigned int chip_ver)758 static inline unsigned int calc_tx_flits(const struct sk_buff *skb,
759 unsigned int chip_ver)
760 {
761 unsigned int flits;
762 int hdrlen = is_eth_imm(skb, chip_ver);
763
764 /* If the skb is small enough, we can pump it out as a work request
765 * with only immediate data. In that case we just have to have the
766 * TX Packet header plus the skb data in the Work Request.
767 */
768
769 if (hdrlen)
770 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
771
772 /* Otherwise, we're going to have to construct a Scatter gather list
773 * of the skb body and fragments. We also include the flits necessary
774 * for the TX Packet Work Request and CPL. We always have a firmware
775 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
776 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
777 * message or, if we're doing a Large Send Offload, an LSO CPL message
778 * with an embedded TX Packet Write CPL message.
779 */
780 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
781 if (skb_shinfo(skb)->gso_size) {
782 if (skb->encapsulation && chip_ver > CHELSIO_T5) {
783 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
784 sizeof(struct cpl_tx_tnl_lso);
785 } else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
786 u32 pkt_hdrlen;
787
788 pkt_hdrlen = eth_get_headlen(skb->dev, skb->data,
789 skb_headlen(skb));
790 hdrlen = sizeof(struct fw_eth_tx_eo_wr) +
791 round_up(pkt_hdrlen, 16);
792 } else {
793 hdrlen = sizeof(struct fw_eth_tx_pkt_wr) +
794 sizeof(struct cpl_tx_pkt_lso_core);
795 }
796
797 hdrlen += sizeof(struct cpl_tx_pkt_core);
798 flits += (hdrlen / sizeof(__be64));
799 } else {
800 flits += (sizeof(struct fw_eth_tx_pkt_wr) +
801 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
802 }
803 return flits;
804 }
805
806 /**
807 * calc_tx_descs - calculate the number of Tx descriptors for a packet
808 * @skb: the packet
809 * @chip_ver: chip version
810 *
811 * Returns the number of Tx descriptors needed for the given Ethernet
812 * packet, including the needed WR and CPL headers.
813 */
calc_tx_descs(const struct sk_buff * skb,unsigned int chip_ver)814 static inline unsigned int calc_tx_descs(const struct sk_buff *skb,
815 unsigned int chip_ver)
816 {
817 return flits_to_desc(calc_tx_flits(skb, chip_ver));
818 }
819
820 /**
821 * cxgb4_write_sgl - populate a scatter/gather list for a packet
822 * @skb: the packet
823 * @q: the Tx queue we are writing into
824 * @sgl: starting location for writing the SGL
825 * @end: points right after the end of the SGL
826 * @start: start offset into skb main-body data to include in the SGL
827 * @addr: the list of bus addresses for the SGL elements
828 *
829 * Generates a gather list for the buffers that make up a packet.
830 * The caller must provide adequate space for the SGL that will be written.
831 * The SGL includes all of the packet's page fragments and the data in its
832 * main body except for the first @start bytes. @sgl must be 16-byte
833 * aligned and within a Tx descriptor with available space. @end points
834 * right after the end of the SGL but does not account for any potential
835 * wrap around, i.e., @end > @sgl.
836 */
cxgb4_write_sgl(const struct sk_buff * skb,struct sge_txq * q,struct ulptx_sgl * sgl,u64 * end,unsigned int start,const dma_addr_t * addr)837 void cxgb4_write_sgl(const struct sk_buff *skb, struct sge_txq *q,
838 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
839 const dma_addr_t *addr)
840 {
841 unsigned int i, len;
842 struct ulptx_sge_pair *to;
843 const struct skb_shared_info *si = skb_shinfo(skb);
844 unsigned int nfrags = si->nr_frags;
845 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
846
847 len = skb_headlen(skb) - start;
848 if (likely(len)) {
849 sgl->len0 = htonl(len);
850 sgl->addr0 = cpu_to_be64(addr[0] + start);
851 nfrags++;
852 } else {
853 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
854 sgl->addr0 = cpu_to_be64(addr[1]);
855 }
856
857 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
858 ULPTX_NSGE_V(nfrags));
859 if (likely(--nfrags == 0))
860 return;
861 /*
862 * Most of the complexity below deals with the possibility we hit the
863 * end of the queue in the middle of writing the SGL. For this case
864 * only we create the SGL in a temporary buffer and then copy it.
865 */
866 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
867
868 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
869 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
870 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
871 to->addr[0] = cpu_to_be64(addr[i]);
872 to->addr[1] = cpu_to_be64(addr[++i]);
873 }
874 if (nfrags) {
875 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
876 to->len[1] = cpu_to_be32(0);
877 to->addr[0] = cpu_to_be64(addr[i + 1]);
878 }
879 if (unlikely((u8 *)end > (u8 *)q->stat)) {
880 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
881
882 if (likely(part0))
883 memcpy(sgl->sge, buf, part0);
884 part1 = (u8 *)end - (u8 *)q->stat;
885 memcpy(q->desc, (u8 *)buf + part0, part1);
886 end = (void *)q->desc + part1;
887 }
888 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
889 *end = 0;
890 }
891 EXPORT_SYMBOL(cxgb4_write_sgl);
892
893 /* cxgb4_write_partial_sgl - populate SGL for partial packet
894 * @skb: the packet
895 * @q: the Tx queue we are writing into
896 * @sgl: starting location for writing the SGL
897 * @end: points right after the end of the SGL
898 * @addr: the list of bus addresses for the SGL elements
899 * @start: start offset in the SKB where partial data starts
900 * @len: length of data from @start to send out
901 *
902 * This API will handle sending out partial data of a skb if required.
903 * Unlike cxgb4_write_sgl, @start can be any offset into the skb data,
904 * and @len will decide how much data after @start offset to send out.
905 */
cxgb4_write_partial_sgl(const struct sk_buff * skb,struct sge_txq * q,struct ulptx_sgl * sgl,u64 * end,const dma_addr_t * addr,u32 start,u32 len)906 void cxgb4_write_partial_sgl(const struct sk_buff *skb, struct sge_txq *q,
907 struct ulptx_sgl *sgl, u64 *end,
908 const dma_addr_t *addr, u32 start, u32 len)
909 {
910 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1] = {0}, *to;
911 u32 frag_size, skb_linear_data_len = skb_headlen(skb);
912 struct skb_shared_info *si = skb_shinfo(skb);
913 u8 i = 0, frag_idx = 0, nfrags = 0;
914 skb_frag_t *frag;
915
916 /* Fill the first SGL either from linear data or from partial
917 * frag based on @start.
918 */
919 if (unlikely(start < skb_linear_data_len)) {
920 frag_size = min(len, skb_linear_data_len - start);
921 sgl->len0 = htonl(frag_size);
922 sgl->addr0 = cpu_to_be64(addr[0] + start);
923 len -= frag_size;
924 nfrags++;
925 } else {
926 start -= skb_linear_data_len;
927 frag = &si->frags[frag_idx];
928 frag_size = skb_frag_size(frag);
929 /* find the first frag */
930 while (start >= frag_size) {
931 start -= frag_size;
932 frag_idx++;
933 frag = &si->frags[frag_idx];
934 frag_size = skb_frag_size(frag);
935 }
936
937 frag_size = min(len, skb_frag_size(frag) - start);
938 sgl->len0 = cpu_to_be32(frag_size);
939 sgl->addr0 = cpu_to_be64(addr[frag_idx + 1] + start);
940 len -= frag_size;
941 nfrags++;
942 frag_idx++;
943 }
944
945 /* If the entire partial data fit in one SGL, then send it out
946 * now.
947 */
948 if (!len)
949 goto done;
950
951 /* Most of the complexity below deals with the possibility we hit the
952 * end of the queue in the middle of writing the SGL. For this case
953 * only we create the SGL in a temporary buffer and then copy it.
954 */
955 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
956
957 /* If the skb couldn't fit in first SGL completely, fill the
958 * rest of the frags in subsequent SGLs. Note that each SGL
959 * pair can store 2 frags.
960 */
961 while (len) {
962 frag_size = min(len, skb_frag_size(&si->frags[frag_idx]));
963 to->len[i & 1] = cpu_to_be32(frag_size);
964 to->addr[i & 1] = cpu_to_be64(addr[frag_idx + 1]);
965 if (i && (i & 1))
966 to++;
967 nfrags++;
968 frag_idx++;
969 i++;
970 len -= frag_size;
971 }
972
973 /* If we ended in an odd boundary, then set the second SGL's
974 * length in the pair to 0.
975 */
976 if (i & 1)
977 to->len[1] = cpu_to_be32(0);
978
979 /* Copy from temporary buffer to Tx ring, in case we hit the
980 * end of the queue in the middle of writing the SGL.
981 */
982 if (unlikely((u8 *)end > (u8 *)q->stat)) {
983 u32 part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
984
985 if (likely(part0))
986 memcpy(sgl->sge, buf, part0);
987 part1 = (u8 *)end - (u8 *)q->stat;
988 memcpy(q->desc, (u8 *)buf + part0, part1);
989 end = (void *)q->desc + part1;
990 }
991
992 /* 0-pad to multiple of 16 */
993 if ((uintptr_t)end & 8)
994 *end = 0;
995 done:
996 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
997 ULPTX_NSGE_V(nfrags));
998 }
999 EXPORT_SYMBOL(cxgb4_write_partial_sgl);
1000
1001 /* This function copies 64 byte coalesced work request to
1002 * memory mapped BAR2 space. For coalesced WR SGE fetches
1003 * data from the FIFO instead of from Host.
1004 */
cxgb_pio_copy(u64 __iomem * dst,u64 * src)1005 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
1006 {
1007 int count = 8;
1008
1009 while (count) {
1010 writeq(*src, dst);
1011 src++;
1012 dst++;
1013 count--;
1014 }
1015 }
1016
1017 /**
1018 * cxgb4_ring_tx_db - check and potentially ring a Tx queue's doorbell
1019 * @adap: the adapter
1020 * @q: the Tx queue
1021 * @n: number of new descriptors to give to HW
1022 *
1023 * Ring the doorbel for a Tx queue.
1024 */
cxgb4_ring_tx_db(struct adapter * adap,struct sge_txq * q,int n)1025 inline void cxgb4_ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
1026 {
1027 /* Make sure that all writes to the TX Descriptors are committed
1028 * before we tell the hardware about them.
1029 */
1030 wmb();
1031
1032 /* If we don't have access to the new User Doorbell (T5+), use the old
1033 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1034 */
1035 if (unlikely(q->bar2_addr == NULL)) {
1036 u32 val = PIDX_V(n);
1037 unsigned long flags;
1038
1039 /* For T4 we need to participate in the Doorbell Recovery
1040 * mechanism.
1041 */
1042 spin_lock_irqsave(&q->db_lock, flags);
1043 if (!q->db_disabled)
1044 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1045 QID_V(q->cntxt_id) | val);
1046 else
1047 q->db_pidx_inc += n;
1048 q->db_pidx = q->pidx;
1049 spin_unlock_irqrestore(&q->db_lock, flags);
1050 } else {
1051 u32 val = PIDX_T5_V(n);
1052
1053 /* T4 and later chips share the same PIDX field offset within
1054 * the doorbell, but T5 and later shrank the field in order to
1055 * gain a bit for Doorbell Priority. The field was absurdly
1056 * large in the first place (14 bits) so we just use the T5
1057 * and later limits and warn if a Queue ID is too large.
1058 */
1059 WARN_ON(val & DBPRIO_F);
1060
1061 /* If we're only writing a single TX Descriptor and we can use
1062 * Inferred QID registers, we can use the Write Combining
1063 * Gather Buffer; otherwise we use the simple doorbell.
1064 */
1065 if (n == 1 && q->bar2_qid == 0) {
1066 int index = (q->pidx
1067 ? (q->pidx - 1)
1068 : (q->size - 1));
1069 u64 *wr = (u64 *)&q->desc[index];
1070
1071 cxgb_pio_copy((u64 __iomem *)
1072 (q->bar2_addr + SGE_UDB_WCDOORBELL),
1073 wr);
1074 } else {
1075 writel(val | QID_V(q->bar2_qid),
1076 q->bar2_addr + SGE_UDB_KDOORBELL);
1077 }
1078
1079 /* This Write Memory Barrier will force the write to the User
1080 * Doorbell area to be flushed. This is needed to prevent
1081 * writes on different CPUs for the same queue from hitting
1082 * the adapter out of order. This is required when some Work
1083 * Requests take the Write Combine Gather Buffer path (user
1084 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1085 * take the traditional path where we simply increment the
1086 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1087 * hardware DMA read the actual Work Request.
1088 */
1089 wmb();
1090 }
1091 }
1092 EXPORT_SYMBOL(cxgb4_ring_tx_db);
1093
1094 /**
1095 * cxgb4_inline_tx_skb - inline a packet's data into Tx descriptors
1096 * @skb: the packet
1097 * @q: the Tx queue where the packet will be inlined
1098 * @pos: starting position in the Tx queue where to inline the packet
1099 *
1100 * Inline a packet's contents directly into Tx descriptors, starting at
1101 * the given position within the Tx DMA ring.
1102 * Most of the complexity of this operation is dealing with wrap arounds
1103 * in the middle of the packet we want to inline.
1104 */
cxgb4_inline_tx_skb(const struct sk_buff * skb,const struct sge_txq * q,void * pos)1105 void cxgb4_inline_tx_skb(const struct sk_buff *skb,
1106 const struct sge_txq *q, void *pos)
1107 {
1108 int left = (void *)q->stat - pos;
1109 u64 *p;
1110
1111 if (likely(skb->len <= left)) {
1112 if (likely(!skb->data_len))
1113 skb_copy_from_linear_data(skb, pos, skb->len);
1114 else
1115 skb_copy_bits(skb, 0, pos, skb->len);
1116 pos += skb->len;
1117 } else {
1118 skb_copy_bits(skb, 0, pos, left);
1119 skb_copy_bits(skb, left, q->desc, skb->len - left);
1120 pos = (void *)q->desc + (skb->len - left);
1121 }
1122
1123 /* 0-pad to multiple of 16 */
1124 p = PTR_ALIGN(pos, 8);
1125 if ((uintptr_t)p & 8)
1126 *p = 0;
1127 }
1128 EXPORT_SYMBOL(cxgb4_inline_tx_skb);
1129
inline_tx_skb_header(const struct sk_buff * skb,const struct sge_txq * q,void * pos,int length)1130 static void *inline_tx_skb_header(const struct sk_buff *skb,
1131 const struct sge_txq *q, void *pos,
1132 int length)
1133 {
1134 u64 *p;
1135 int left = (void *)q->stat - pos;
1136
1137 if (likely(length <= left)) {
1138 memcpy(pos, skb->data, length);
1139 pos += length;
1140 } else {
1141 memcpy(pos, skb->data, left);
1142 memcpy(q->desc, skb->data + left, length - left);
1143 pos = (void *)q->desc + (length - left);
1144 }
1145 /* 0-pad to multiple of 16 */
1146 p = PTR_ALIGN(pos, 8);
1147 if ((uintptr_t)p & 8) {
1148 *p = 0;
1149 return p + 1;
1150 }
1151 return p;
1152 }
1153
1154 /*
1155 * Figure out what HW csum a packet wants and return the appropriate control
1156 * bits.
1157 */
hwcsum(enum chip_type chip,const struct sk_buff * skb)1158 static u64 hwcsum(enum chip_type chip, const struct sk_buff *skb)
1159 {
1160 int csum_type;
1161 bool inner_hdr_csum = false;
1162 u16 proto, ver;
1163
1164 if (skb->encapsulation &&
1165 (CHELSIO_CHIP_VERSION(chip) > CHELSIO_T5))
1166 inner_hdr_csum = true;
1167
1168 if (inner_hdr_csum) {
1169 ver = inner_ip_hdr(skb)->version;
1170 proto = (ver == 4) ? inner_ip_hdr(skb)->protocol :
1171 inner_ipv6_hdr(skb)->nexthdr;
1172 } else {
1173 ver = ip_hdr(skb)->version;
1174 proto = (ver == 4) ? ip_hdr(skb)->protocol :
1175 ipv6_hdr(skb)->nexthdr;
1176 }
1177
1178 if (ver == 4) {
1179 if (proto == IPPROTO_TCP)
1180 csum_type = TX_CSUM_TCPIP;
1181 else if (proto == IPPROTO_UDP)
1182 csum_type = TX_CSUM_UDPIP;
1183 else {
1184 nocsum: /*
1185 * unknown protocol, disable HW csum
1186 * and hope a bad packet is detected
1187 */
1188 return TXPKT_L4CSUM_DIS_F;
1189 }
1190 } else {
1191 /*
1192 * this doesn't work with extension headers
1193 */
1194 if (proto == IPPROTO_TCP)
1195 csum_type = TX_CSUM_TCPIP6;
1196 else if (proto == IPPROTO_UDP)
1197 csum_type = TX_CSUM_UDPIP6;
1198 else
1199 goto nocsum;
1200 }
1201
1202 if (likely(csum_type >= TX_CSUM_TCPIP)) {
1203 int eth_hdr_len, l4_len;
1204 u64 hdr_len;
1205
1206 if (inner_hdr_csum) {
1207 /* This allows checksum offload for all encapsulated
1208 * packets like GRE etc..
1209 */
1210 l4_len = skb_inner_network_header_len(skb);
1211 eth_hdr_len = skb_inner_network_offset(skb) - ETH_HLEN;
1212 } else {
1213 l4_len = skb_network_header_len(skb);
1214 eth_hdr_len = skb_network_offset(skb) - ETH_HLEN;
1215 }
1216 hdr_len = TXPKT_IPHDR_LEN_V(l4_len);
1217
1218 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1219 hdr_len |= TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1220 else
1221 hdr_len |= T6_TXPKT_ETHHDR_LEN_V(eth_hdr_len);
1222 return TXPKT_CSUM_TYPE_V(csum_type) | hdr_len;
1223 } else {
1224 int start = skb_transport_offset(skb);
1225
1226 return TXPKT_CSUM_TYPE_V(csum_type) |
1227 TXPKT_CSUM_START_V(start) |
1228 TXPKT_CSUM_LOC_V(start + skb->csum_offset);
1229 }
1230 }
1231
eth_txq_stop(struct sge_eth_txq * q)1232 static void eth_txq_stop(struct sge_eth_txq *q)
1233 {
1234 netif_tx_stop_queue(q->txq);
1235 q->q.stops++;
1236 }
1237
txq_advance(struct sge_txq * q,unsigned int n)1238 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1239 {
1240 q->in_use += n;
1241 q->pidx += n;
1242 if (q->pidx >= q->size)
1243 q->pidx -= q->size;
1244 }
1245
1246 #ifdef CONFIG_CHELSIO_T4_FCOE
1247 static inline int
cxgb_fcoe_offload(struct sk_buff * skb,struct adapter * adap,const struct port_info * pi,u64 * cntrl)1248 cxgb_fcoe_offload(struct sk_buff *skb, struct adapter *adap,
1249 const struct port_info *pi, u64 *cntrl)
1250 {
1251 const struct cxgb_fcoe *fcoe = &pi->fcoe;
1252
1253 if (!(fcoe->flags & CXGB_FCOE_ENABLED))
1254 return 0;
1255
1256 if (skb->protocol != htons(ETH_P_FCOE))
1257 return 0;
1258
1259 skb_reset_mac_header(skb);
1260 skb->mac_len = sizeof(struct ethhdr);
1261
1262 skb_set_network_header(skb, skb->mac_len);
1263 skb_set_transport_header(skb, skb->mac_len + sizeof(struct fcoe_hdr));
1264
1265 if (!cxgb_fcoe_sof_eof_supported(adap, skb))
1266 return -ENOTSUPP;
1267
1268 /* FC CRC offload */
1269 *cntrl = TXPKT_CSUM_TYPE_V(TX_CSUM_FCOE) |
1270 TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F |
1271 TXPKT_CSUM_START_V(CXGB_FCOE_TXPKT_CSUM_START) |
1272 TXPKT_CSUM_END_V(CXGB_FCOE_TXPKT_CSUM_END) |
1273 TXPKT_CSUM_LOC_V(CXGB_FCOE_TXPKT_CSUM_END);
1274 return 0;
1275 }
1276 #endif /* CONFIG_CHELSIO_T4_FCOE */
1277
1278 /* Returns tunnel type if hardware supports offloading of the same.
1279 * It is called only for T5 and onwards.
1280 */
cxgb_encap_offload_supported(struct sk_buff * skb)1281 enum cpl_tx_tnl_lso_type cxgb_encap_offload_supported(struct sk_buff *skb)
1282 {
1283 u8 l4_hdr = 0;
1284 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1285 struct port_info *pi = netdev_priv(skb->dev);
1286 struct adapter *adapter = pi->adapter;
1287
1288 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1289 skb->inner_protocol != htons(ETH_P_TEB))
1290 return tnl_type;
1291
1292 switch (vlan_get_protocol(skb)) {
1293 case htons(ETH_P_IP):
1294 l4_hdr = ip_hdr(skb)->protocol;
1295 break;
1296 case htons(ETH_P_IPV6):
1297 l4_hdr = ipv6_hdr(skb)->nexthdr;
1298 break;
1299 default:
1300 return tnl_type;
1301 }
1302
1303 switch (l4_hdr) {
1304 case IPPROTO_UDP:
1305 if (adapter->vxlan_port == udp_hdr(skb)->dest)
1306 tnl_type = TX_TNL_TYPE_VXLAN;
1307 else if (adapter->geneve_port == udp_hdr(skb)->dest)
1308 tnl_type = TX_TNL_TYPE_GENEVE;
1309 break;
1310 default:
1311 return tnl_type;
1312 }
1313
1314 return tnl_type;
1315 }
1316
t6_fill_tnl_lso(struct sk_buff * skb,struct cpl_tx_tnl_lso * tnl_lso,enum cpl_tx_tnl_lso_type tnl_type)1317 static inline void t6_fill_tnl_lso(struct sk_buff *skb,
1318 struct cpl_tx_tnl_lso *tnl_lso,
1319 enum cpl_tx_tnl_lso_type tnl_type)
1320 {
1321 u32 val;
1322 int in_eth_xtra_len;
1323 int l3hdr_len = skb_network_header_len(skb);
1324 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1325 const struct skb_shared_info *ssi = skb_shinfo(skb);
1326 bool v6 = (ip_hdr(skb)->version == 6);
1327
1328 val = CPL_TX_TNL_LSO_OPCODE_V(CPL_TX_TNL_LSO) |
1329 CPL_TX_TNL_LSO_FIRST_F |
1330 CPL_TX_TNL_LSO_LAST_F |
1331 (v6 ? CPL_TX_TNL_LSO_IPV6OUT_F : 0) |
1332 CPL_TX_TNL_LSO_ETHHDRLENOUT_V(eth_xtra_len / 4) |
1333 CPL_TX_TNL_LSO_IPHDRLENOUT_V(l3hdr_len / 4) |
1334 (v6 ? 0 : CPL_TX_TNL_LSO_IPHDRCHKOUT_F) |
1335 CPL_TX_TNL_LSO_IPLENSETOUT_F |
1336 (v6 ? 0 : CPL_TX_TNL_LSO_IPIDINCOUT_F);
1337 tnl_lso->op_to_IpIdSplitOut = htonl(val);
1338
1339 tnl_lso->IpIdOffsetOut = 0;
1340
1341 /* Get the tunnel header length */
1342 val = skb_inner_mac_header(skb) - skb_mac_header(skb);
1343 in_eth_xtra_len = skb_inner_network_header(skb) -
1344 skb_inner_mac_header(skb) - ETH_HLEN;
1345
1346 switch (tnl_type) {
1347 case TX_TNL_TYPE_VXLAN:
1348 case TX_TNL_TYPE_GENEVE:
1349 tnl_lso->UdpLenSetOut_to_TnlHdrLen =
1350 htons(CPL_TX_TNL_LSO_UDPCHKCLROUT_F |
1351 CPL_TX_TNL_LSO_UDPLENSETOUT_F);
1352 break;
1353 default:
1354 tnl_lso->UdpLenSetOut_to_TnlHdrLen = 0;
1355 break;
1356 }
1357
1358 tnl_lso->UdpLenSetOut_to_TnlHdrLen |=
1359 htons(CPL_TX_TNL_LSO_TNLHDRLEN_V(val) |
1360 CPL_TX_TNL_LSO_TNLTYPE_V(tnl_type));
1361
1362 tnl_lso->r1 = 0;
1363
1364 val = CPL_TX_TNL_LSO_ETHHDRLEN_V(in_eth_xtra_len / 4) |
1365 CPL_TX_TNL_LSO_IPV6_V(inner_ip_hdr(skb)->version == 6) |
1366 CPL_TX_TNL_LSO_IPHDRLEN_V(skb_inner_network_header_len(skb) / 4) |
1367 CPL_TX_TNL_LSO_TCPHDRLEN_V(inner_tcp_hdrlen(skb) / 4);
1368 tnl_lso->Flow_to_TcpHdrLen = htonl(val);
1369
1370 tnl_lso->IpIdOffset = htons(0);
1371
1372 tnl_lso->IpIdSplit_to_Mss = htons(CPL_TX_TNL_LSO_MSS_V(ssi->gso_size));
1373 tnl_lso->TCPSeqOffset = htonl(0);
1374 tnl_lso->EthLenOffset_Size = htonl(CPL_TX_TNL_LSO_SIZE_V(skb->len));
1375 }
1376
write_tso_wr(struct adapter * adap,struct sk_buff * skb,struct cpl_tx_pkt_lso_core * lso)1377 static inline void *write_tso_wr(struct adapter *adap, struct sk_buff *skb,
1378 struct cpl_tx_pkt_lso_core *lso)
1379 {
1380 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1381 int l3hdr_len = skb_network_header_len(skb);
1382 const struct skb_shared_info *ssi;
1383 bool ipv6 = false;
1384
1385 ssi = skb_shinfo(skb);
1386 if (ssi->gso_type & SKB_GSO_TCPV6)
1387 ipv6 = true;
1388
1389 lso->lso_ctrl = htonl(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1390 LSO_FIRST_SLICE_F | LSO_LAST_SLICE_F |
1391 LSO_IPV6_V(ipv6) |
1392 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1393 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1394 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1395 lso->ipid_ofst = htons(0);
1396 lso->mss = htons(ssi->gso_size);
1397 lso->seqno_offset = htonl(0);
1398 if (is_t4(adap->params.chip))
1399 lso->len = htonl(skb->len);
1400 else
1401 lso->len = htonl(LSO_T5_XFER_SIZE_V(skb->len));
1402
1403 return (void *)(lso + 1);
1404 }
1405
1406 /**
1407 * t4_sge_eth_txq_egress_update - handle Ethernet TX Queue update
1408 * @adap: the adapter
1409 * @eq: the Ethernet TX Queue
1410 * @maxreclaim: the maximum number of TX Descriptors to reclaim or -1
1411 *
1412 * We're typically called here to update the state of an Ethernet TX
1413 * Queue with respect to the hardware's progress in consuming the TX
1414 * Work Requests that we've put on that Egress Queue. This happens
1415 * when we get Egress Queue Update messages and also prophylactically
1416 * in regular timer-based Ethernet TX Queue maintenance.
1417 */
t4_sge_eth_txq_egress_update(struct adapter * adap,struct sge_eth_txq * eq,int maxreclaim)1418 int t4_sge_eth_txq_egress_update(struct adapter *adap, struct sge_eth_txq *eq,
1419 int maxreclaim)
1420 {
1421 unsigned int reclaimed, hw_cidx;
1422 struct sge_txq *q = &eq->q;
1423 int hw_in_use;
1424
1425 if (!q->in_use || !__netif_tx_trylock(eq->txq))
1426 return 0;
1427
1428 /* Reclaim pending completed TX Descriptors. */
1429 reclaimed = reclaim_completed_tx(adap, &eq->q, maxreclaim, true);
1430
1431 hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
1432 hw_in_use = q->pidx - hw_cidx;
1433 if (hw_in_use < 0)
1434 hw_in_use += q->size;
1435
1436 /* If the TX Queue is currently stopped and there's now more than half
1437 * the queue available, restart it. Otherwise bail out since the rest
1438 * of what we want do here is with the possibility of shipping any
1439 * currently buffered Coalesced TX Work Request.
1440 */
1441 if (netif_tx_queue_stopped(eq->txq) && hw_in_use < (q->size / 2)) {
1442 netif_tx_wake_queue(eq->txq);
1443 eq->q.restarts++;
1444 }
1445
1446 __netif_tx_unlock(eq->txq);
1447 return reclaimed;
1448 }
1449
cxgb4_validate_skb(struct sk_buff * skb,struct net_device * dev,u32 min_pkt_len)1450 static inline int cxgb4_validate_skb(struct sk_buff *skb,
1451 struct net_device *dev,
1452 u32 min_pkt_len)
1453 {
1454 u32 max_pkt_len;
1455
1456 /* The chip min packet length is 10 octets but some firmware
1457 * commands have a minimum packet length requirement. So, play
1458 * safe and reject anything shorter than @min_pkt_len.
1459 */
1460 if (unlikely(skb->len < min_pkt_len))
1461 return -EINVAL;
1462
1463 /* Discard the packet if the length is greater than mtu */
1464 max_pkt_len = ETH_HLEN + dev->mtu;
1465
1466 if (skb_vlan_tagged(skb))
1467 max_pkt_len += VLAN_HLEN;
1468
1469 if (!skb_shinfo(skb)->gso_size && (unlikely(skb->len > max_pkt_len)))
1470 return -EINVAL;
1471
1472 return 0;
1473 }
1474
write_eo_udp_wr(struct sk_buff * skb,struct fw_eth_tx_eo_wr * wr,u32 hdr_len)1475 static void *write_eo_udp_wr(struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
1476 u32 hdr_len)
1477 {
1478 wr->u.udpseg.type = FW_ETH_TX_EO_TYPE_UDPSEG;
1479 wr->u.udpseg.ethlen = skb_network_offset(skb);
1480 wr->u.udpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
1481 wr->u.udpseg.udplen = sizeof(struct udphdr);
1482 wr->u.udpseg.rtplen = 0;
1483 wr->u.udpseg.r4 = 0;
1484 if (skb_shinfo(skb)->gso_size)
1485 wr->u.udpseg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
1486 else
1487 wr->u.udpseg.mss = cpu_to_be16(skb->len - hdr_len);
1488 wr->u.udpseg.schedpktsize = wr->u.udpseg.mss;
1489 wr->u.udpseg.plen = cpu_to_be32(skb->len - hdr_len);
1490
1491 return (void *)(wr + 1);
1492 }
1493
1494 /**
1495 * cxgb4_eth_xmit - add a packet to an Ethernet Tx queue
1496 * @skb: the packet
1497 * @dev: the egress net device
1498 *
1499 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1500 */
cxgb4_eth_xmit(struct sk_buff * skb,struct net_device * dev)1501 static netdev_tx_t cxgb4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1502 {
1503 enum cpl_tx_tnl_lso_type tnl_type = TX_TNL_TYPE_OPAQUE;
1504 bool ptp_enabled = is_ptp_enabled(skb, dev);
1505 unsigned int last_desc, flits, ndesc;
1506 u32 wr_mid, ctrl0, op, sgl_off = 0;
1507 const struct skb_shared_info *ssi;
1508 int len, qidx, credits, ret, left;
1509 struct tx_sw_desc *sgl_sdesc;
1510 struct fw_eth_tx_eo_wr *eowr;
1511 struct fw_eth_tx_pkt_wr *wr;
1512 struct cpl_tx_pkt_core *cpl;
1513 const struct port_info *pi;
1514 bool immediate = false;
1515 u64 cntrl, *end, *sgl;
1516 struct sge_eth_txq *q;
1517 unsigned int chip_ver;
1518 struct adapter *adap;
1519
1520 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
1521 if (ret)
1522 goto out_free;
1523
1524 pi = netdev_priv(dev);
1525 adap = pi->adapter;
1526 ssi = skb_shinfo(skb);
1527 #if IS_ENABLED(CONFIG_CHELSIO_IPSEC_INLINE)
1528 if (xfrm_offload(skb) && !ssi->gso_size)
1529 return adap->uld[CXGB4_ULD_IPSEC].tx_handler(skb, dev);
1530 #endif /* CHELSIO_IPSEC_INLINE */
1531
1532 #if IS_ENABLED(CONFIG_CHELSIO_TLS_DEVICE)
1533 if (cxgb4_is_ktls_skb(skb) &&
1534 (skb->len - (skb_transport_offset(skb) + tcp_hdrlen(skb))))
1535 return adap->uld[CXGB4_ULD_KTLS].tx_handler(skb, dev);
1536 #endif /* CHELSIO_TLS_DEVICE */
1537
1538 qidx = skb_get_queue_mapping(skb);
1539 if (ptp_enabled) {
1540 if (!(adap->ptp_tx_skb)) {
1541 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1542 adap->ptp_tx_skb = skb_get(skb);
1543 } else {
1544 goto out_free;
1545 }
1546 q = &adap->sge.ptptxq;
1547 } else {
1548 q = &adap->sge.ethtxq[qidx + pi->first_qset];
1549 }
1550 skb_tx_timestamp(skb);
1551
1552 reclaim_completed_tx(adap, &q->q, -1, true);
1553 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1554
1555 #ifdef CONFIG_CHELSIO_T4_FCOE
1556 ret = cxgb_fcoe_offload(skb, adap, pi, &cntrl);
1557 if (unlikely(ret == -EOPNOTSUPP))
1558 goto out_free;
1559 #endif /* CONFIG_CHELSIO_T4_FCOE */
1560
1561 chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
1562 flits = calc_tx_flits(skb, chip_ver);
1563 ndesc = flits_to_desc(flits);
1564 credits = txq_avail(&q->q) - ndesc;
1565
1566 if (unlikely(credits < 0)) {
1567 eth_txq_stop(q);
1568 dev_err(adap->pdev_dev,
1569 "%s: Tx ring %u full while queue awake!\n",
1570 dev->name, qidx);
1571 return NETDEV_TX_BUSY;
1572 }
1573
1574 if (is_eth_imm(skb, chip_ver))
1575 immediate = true;
1576
1577 if (skb->encapsulation && chip_ver > CHELSIO_T5)
1578 tnl_type = cxgb_encap_offload_supported(skb);
1579
1580 last_desc = q->q.pidx + ndesc - 1;
1581 if (last_desc >= q->q.size)
1582 last_desc -= q->q.size;
1583 sgl_sdesc = &q->q.sdesc[last_desc];
1584
1585 if (!immediate &&
1586 unlikely(cxgb4_map_skb(adap->pdev_dev, skb, sgl_sdesc->addr) < 0)) {
1587 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1588 q->mapping_err++;
1589 goto out_free;
1590 }
1591
1592 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1593 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1594 /* After we're done injecting the Work Request for this
1595 * packet, we'll be below our "stop threshold" so stop the TX
1596 * Queue now and schedule a request for an SGE Egress Queue
1597 * Update message. The queue will get started later on when
1598 * the firmware processes this Work Request and sends us an
1599 * Egress Queue Status Update message indicating that space
1600 * has opened up.
1601 */
1602 eth_txq_stop(q);
1603 if (chip_ver > CHELSIO_T5)
1604 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1605 }
1606
1607 wr = (void *)&q->q.desc[q->q.pidx];
1608 eowr = (void *)&q->q.desc[q->q.pidx];
1609 wr->equiq_to_len16 = htonl(wr_mid);
1610 wr->r3 = cpu_to_be64(0);
1611 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
1612 end = (u64 *)eowr + flits;
1613 else
1614 end = (u64 *)wr + flits;
1615
1616 len = immediate ? skb->len : 0;
1617 len += sizeof(*cpl);
1618 if (ssi->gso_size && !(ssi->gso_type & SKB_GSO_UDP_L4)) {
1619 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1620 struct cpl_tx_tnl_lso *tnl_lso = (void *)(wr + 1);
1621
1622 if (tnl_type)
1623 len += sizeof(*tnl_lso);
1624 else
1625 len += sizeof(*lso);
1626
1627 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1628 FW_WR_IMMDLEN_V(len));
1629 if (tnl_type) {
1630 struct iphdr *iph = ip_hdr(skb);
1631
1632 t6_fill_tnl_lso(skb, tnl_lso, tnl_type);
1633 cpl = (void *)(tnl_lso + 1);
1634 /* Driver is expected to compute partial checksum that
1635 * does not include the IP Total Length.
1636 */
1637 if (iph->version == 4) {
1638 iph->check = 0;
1639 iph->tot_len = 0;
1640 iph->check = ~ip_fast_csum((u8 *)iph, iph->ihl);
1641 }
1642 if (skb->ip_summed == CHECKSUM_PARTIAL)
1643 cntrl = hwcsum(adap->params.chip, skb);
1644 } else {
1645 cpl = write_tso_wr(adap, skb, lso);
1646 cntrl = hwcsum(adap->params.chip, skb);
1647 }
1648 sgl = (u64 *)(cpl + 1); /* sgl start here */
1649 q->tso++;
1650 q->tx_cso += ssi->gso_segs;
1651 } else if (ssi->gso_size) {
1652 u64 *start;
1653 u32 hdrlen;
1654
1655 hdrlen = eth_get_headlen(dev, skb->data, skb_headlen(skb));
1656 len += hdrlen;
1657 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
1658 FW_ETH_TX_EO_WR_IMMDLEN_V(len));
1659 cpl = write_eo_udp_wr(skb, eowr, hdrlen);
1660 cntrl = hwcsum(adap->params.chip, skb);
1661
1662 start = (u64 *)(cpl + 1);
1663 sgl = (u64 *)inline_tx_skb_header(skb, &q->q, (void *)start,
1664 hdrlen);
1665 if (unlikely(start > sgl)) {
1666 left = (u8 *)end - (u8 *)q->q.stat;
1667 end = (void *)q->q.desc + left;
1668 }
1669 sgl_off = hdrlen;
1670 q->uso++;
1671 q->tx_cso += ssi->gso_segs;
1672 } else {
1673 if (ptp_enabled)
1674 op = FW_PTP_TX_PKT_WR;
1675 else
1676 op = FW_ETH_TX_PKT_WR;
1677 wr->op_immdlen = htonl(FW_WR_OP_V(op) |
1678 FW_WR_IMMDLEN_V(len));
1679 cpl = (void *)(wr + 1);
1680 sgl = (u64 *)(cpl + 1);
1681 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1682 cntrl = hwcsum(adap->params.chip, skb) |
1683 TXPKT_IPCSUM_DIS_F;
1684 q->tx_cso++;
1685 }
1686 }
1687
1688 if (unlikely((u8 *)sgl >= (u8 *)q->q.stat)) {
1689 /* If current position is already at the end of the
1690 * txq, reset the current to point to start of the queue
1691 * and update the end ptr as well.
1692 */
1693 left = (u8 *)end - (u8 *)q->q.stat;
1694 end = (void *)q->q.desc + left;
1695 sgl = (void *)q->q.desc;
1696 }
1697
1698 if (skb_vlan_tag_present(skb)) {
1699 q->vlan_ins++;
1700 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
1701 #ifdef CONFIG_CHELSIO_T4_FCOE
1702 if (skb->protocol == htons(ETH_P_FCOE))
1703 cntrl |= TXPKT_VLAN_V(
1704 ((skb->priority & 0x7) << VLAN_PRIO_SHIFT));
1705 #endif /* CONFIG_CHELSIO_T4_FCOE */
1706 }
1707
1708 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_INTF_V(pi->tx_chan) |
1709 TXPKT_PF_V(adap->pf);
1710 if (ptp_enabled)
1711 ctrl0 |= TXPKT_TSTAMP_F;
1712 #ifdef CONFIG_CHELSIO_T4_DCB
1713 if (is_t4(adap->params.chip))
1714 ctrl0 |= TXPKT_OVLAN_IDX_V(q->dcb_prio);
1715 else
1716 ctrl0 |= TXPKT_T5_OVLAN_IDX_V(q->dcb_prio);
1717 #endif
1718 cpl->ctrl0 = htonl(ctrl0);
1719 cpl->pack = htons(0);
1720 cpl->len = htons(skb->len);
1721 cpl->ctrl1 = cpu_to_be64(cntrl);
1722
1723 if (immediate) {
1724 cxgb4_inline_tx_skb(skb, &q->q, sgl);
1725 dev_consume_skb_any(skb);
1726 } else {
1727 cxgb4_write_sgl(skb, &q->q, (void *)sgl, end, sgl_off,
1728 sgl_sdesc->addr);
1729 skb_orphan(skb);
1730 sgl_sdesc->skb = skb;
1731 }
1732
1733 txq_advance(&q->q, ndesc);
1734
1735 cxgb4_ring_tx_db(adap, &q->q, ndesc);
1736 return NETDEV_TX_OK;
1737
1738 out_free:
1739 dev_kfree_skb_any(skb);
1740 return NETDEV_TX_OK;
1741 }
1742
1743 /* Constants ... */
1744 enum {
1745 /* Egress Queue sizes, producer and consumer indices are all in units
1746 * of Egress Context Units bytes. Note that as far as the hardware is
1747 * concerned, the free list is an Egress Queue (the host produces free
1748 * buffers which the hardware consumes) and free list entries are
1749 * 64-bit PCI DMA addresses.
1750 */
1751 EQ_UNIT = SGE_EQ_IDXSIZE,
1752 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1753 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
1754
1755 T4VF_ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1756 sizeof(struct cpl_tx_pkt_lso_core) +
1757 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
1758 };
1759
1760 /**
1761 * t4vf_is_eth_imm - can an Ethernet packet be sent as immediate data?
1762 * @skb: the packet
1763 *
1764 * Returns whether an Ethernet packet is small enough to fit completely as
1765 * immediate data.
1766 */
t4vf_is_eth_imm(const struct sk_buff * skb)1767 static inline int t4vf_is_eth_imm(const struct sk_buff *skb)
1768 {
1769 /* The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
1770 * which does not accommodate immediate data. We could dike out all
1771 * of the support code for immediate data but that would tie our hands
1772 * too much if we ever want to enhace the firmware. It would also
1773 * create more differences between the PF and VF Drivers.
1774 */
1775 return false;
1776 }
1777
1778 /**
1779 * t4vf_calc_tx_flits - calculate the number of flits for a packet TX WR
1780 * @skb: the packet
1781 *
1782 * Returns the number of flits needed for a TX Work Request for the
1783 * given Ethernet packet, including the needed WR and CPL headers.
1784 */
t4vf_calc_tx_flits(const struct sk_buff * skb)1785 static inline unsigned int t4vf_calc_tx_flits(const struct sk_buff *skb)
1786 {
1787 unsigned int flits;
1788
1789 /* If the skb is small enough, we can pump it out as a work request
1790 * with only immediate data. In that case we just have to have the
1791 * TX Packet header plus the skb data in the Work Request.
1792 */
1793 if (t4vf_is_eth_imm(skb))
1794 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
1795 sizeof(__be64));
1796
1797 /* Otherwise, we're going to have to construct a Scatter gather list
1798 * of the skb body and fragments. We also include the flits necessary
1799 * for the TX Packet Work Request and CPL. We always have a firmware
1800 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
1801 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
1802 * message or, if we're doing a Large Send Offload, an LSO CPL message
1803 * with an embedded TX Packet Write CPL message.
1804 */
1805 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
1806 if (skb_shinfo(skb)->gso_size)
1807 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1808 sizeof(struct cpl_tx_pkt_lso_core) +
1809 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1810 else
1811 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
1812 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
1813 return flits;
1814 }
1815
1816 /**
1817 * cxgb4_vf_eth_xmit - add a packet to an Ethernet TX queue
1818 * @skb: the packet
1819 * @dev: the egress net device
1820 *
1821 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1822 */
cxgb4_vf_eth_xmit(struct sk_buff * skb,struct net_device * dev)1823 static netdev_tx_t cxgb4_vf_eth_xmit(struct sk_buff *skb,
1824 struct net_device *dev)
1825 {
1826 unsigned int last_desc, flits, ndesc;
1827 const struct skb_shared_info *ssi;
1828 struct fw_eth_tx_pkt_vm_wr *wr;
1829 struct tx_sw_desc *sgl_sdesc;
1830 struct cpl_tx_pkt_core *cpl;
1831 const struct port_info *pi;
1832 struct sge_eth_txq *txq;
1833 struct adapter *adapter;
1834 int qidx, credits, ret;
1835 size_t fw_hdr_copy_len;
1836 unsigned int chip_ver;
1837 u64 cntrl, *end;
1838 u32 wr_mid;
1839
1840 /* The chip minimum packet length is 10 octets but the firmware
1841 * command that we are using requires that we copy the Ethernet header
1842 * (including the VLAN tag) into the header so we reject anything
1843 * smaller than that ...
1844 */
1845 fw_hdr_copy_len = sizeof(wr->ethmacdst) + sizeof(wr->ethmacsrc) +
1846 sizeof(wr->ethtype) + sizeof(wr->vlantci);
1847 ret = cxgb4_validate_skb(skb, dev, fw_hdr_copy_len);
1848 if (ret)
1849 goto out_free;
1850
1851 /* Figure out which TX Queue we're going to use. */
1852 pi = netdev_priv(dev);
1853 adapter = pi->adapter;
1854 qidx = skb_get_queue_mapping(skb);
1855 WARN_ON(qidx >= pi->nqsets);
1856 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1857
1858 /* Take this opportunity to reclaim any TX Descriptors whose DMA
1859 * transfers have completed.
1860 */
1861 reclaim_completed_tx(adapter, &txq->q, -1, true);
1862
1863 /* Calculate the number of flits and TX Descriptors we're going to
1864 * need along with how many TX Descriptors will be left over after
1865 * we inject our Work Request.
1866 */
1867 flits = t4vf_calc_tx_flits(skb);
1868 ndesc = flits_to_desc(flits);
1869 credits = txq_avail(&txq->q) - ndesc;
1870
1871 if (unlikely(credits < 0)) {
1872 /* Not enough room for this packet's Work Request. Stop the
1873 * TX Queue and return a "busy" condition. The queue will get
1874 * started later on when the firmware informs us that space
1875 * has opened up.
1876 */
1877 eth_txq_stop(txq);
1878 dev_err(adapter->pdev_dev,
1879 "%s: TX ring %u full while queue awake!\n",
1880 dev->name, qidx);
1881 return NETDEV_TX_BUSY;
1882 }
1883
1884 last_desc = txq->q.pidx + ndesc - 1;
1885 if (last_desc >= txq->q.size)
1886 last_desc -= txq->q.size;
1887 sgl_sdesc = &txq->q.sdesc[last_desc];
1888
1889 if (!t4vf_is_eth_imm(skb) &&
1890 unlikely(cxgb4_map_skb(adapter->pdev_dev, skb,
1891 sgl_sdesc->addr) < 0)) {
1892 /* We need to map the skb into PCI DMA space (because it can't
1893 * be in-lined directly into the Work Request) and the mapping
1894 * operation failed. Record the error and drop the packet.
1895 */
1896 memset(sgl_sdesc->addr, 0, sizeof(sgl_sdesc->addr));
1897 txq->mapping_err++;
1898 goto out_free;
1899 }
1900
1901 chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
1902 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1903 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1904 /* After we're done injecting the Work Request for this
1905 * packet, we'll be below our "stop threshold" so stop the TX
1906 * Queue now and schedule a request for an SGE Egress Queue
1907 * Update message. The queue will get started later on when
1908 * the firmware processes this Work Request and sends us an
1909 * Egress Queue Status Update message indicating that space
1910 * has opened up.
1911 */
1912 eth_txq_stop(txq);
1913 if (chip_ver > CHELSIO_T5)
1914 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1915 }
1916
1917 /* Start filling in our Work Request. Note that we do _not_ handle
1918 * the WR Header wrapping around the TX Descriptor Ring. If our
1919 * maximum header size ever exceeds one TX Descriptor, we'll need to
1920 * do something else here.
1921 */
1922 WARN_ON(DIV_ROUND_UP(T4VF_ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1923 wr = (void *)&txq->q.desc[txq->q.pidx];
1924 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1925 wr->r3[0] = cpu_to_be32(0);
1926 wr->r3[1] = cpu_to_be32(0);
1927 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1928 end = (u64 *)wr + flits;
1929
1930 /* If this is a Large Send Offload packet we'll put in an LSO CPL
1931 * message with an encapsulated TX Packet CPL message. Otherwise we
1932 * just use a TX Packet CPL message.
1933 */
1934 ssi = skb_shinfo(skb);
1935 if (ssi->gso_size) {
1936 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1937 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1938 int l3hdr_len = skb_network_header_len(skb);
1939 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1940
1941 wr->op_immdlen =
1942 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1943 FW_WR_IMMDLEN_V(sizeof(*lso) +
1944 sizeof(*cpl)));
1945 /* Fill in the LSO CPL message. */
1946 lso->lso_ctrl =
1947 cpu_to_be32(LSO_OPCODE_V(CPL_TX_PKT_LSO) |
1948 LSO_FIRST_SLICE_F |
1949 LSO_LAST_SLICE_F |
1950 LSO_IPV6_V(v6) |
1951 LSO_ETHHDR_LEN_V(eth_xtra_len / 4) |
1952 LSO_IPHDR_LEN_V(l3hdr_len / 4) |
1953 LSO_TCPHDR_LEN_V(tcp_hdr(skb)->doff));
1954 lso->ipid_ofst = cpu_to_be16(0);
1955 lso->mss = cpu_to_be16(ssi->gso_size);
1956 lso->seqno_offset = cpu_to_be32(0);
1957 if (is_t4(adapter->params.chip))
1958 lso->len = cpu_to_be32(skb->len);
1959 else
1960 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE_V(skb->len));
1961
1962 /* Set up TX Packet CPL pointer, control word and perform
1963 * accounting.
1964 */
1965 cpl = (void *)(lso + 1);
1966
1967 if (chip_ver <= CHELSIO_T5)
1968 cntrl = TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1969 else
1970 cntrl = T6_TXPKT_ETHHDR_LEN_V(eth_xtra_len);
1971
1972 cntrl |= TXPKT_CSUM_TYPE_V(v6 ?
1973 TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1974 TXPKT_IPHDR_LEN_V(l3hdr_len);
1975 txq->tso++;
1976 txq->tx_cso += ssi->gso_segs;
1977 } else {
1978 int len;
1979
1980 len = (t4vf_is_eth_imm(skb)
1981 ? skb->len + sizeof(*cpl)
1982 : sizeof(*cpl));
1983 wr->op_immdlen =
1984 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1985 FW_WR_IMMDLEN_V(len));
1986
1987 /* Set up TX Packet CPL pointer, control word and perform
1988 * accounting.
1989 */
1990 cpl = (void *)(wr + 1);
1991 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1992 cntrl = hwcsum(adapter->params.chip, skb) |
1993 TXPKT_IPCSUM_DIS_F;
1994 txq->tx_cso++;
1995 } else {
1996 cntrl = TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F;
1997 }
1998 }
1999
2000 /* If there's a VLAN tag present, add that to the list of things to
2001 * do in this Work Request.
2002 */
2003 if (skb_vlan_tag_present(skb)) {
2004 txq->vlan_ins++;
2005 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2006 }
2007
2008 /* Fill in the TX Packet CPL message header. */
2009 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2010 TXPKT_INTF_V(pi->port_id) |
2011 TXPKT_PF_V(0));
2012 cpl->pack = cpu_to_be16(0);
2013 cpl->len = cpu_to_be16(skb->len);
2014 cpl->ctrl1 = cpu_to_be64(cntrl);
2015
2016 /* Fill in the body of the TX Packet CPL message with either in-lined
2017 * data or a Scatter/Gather List.
2018 */
2019 if (t4vf_is_eth_imm(skb)) {
2020 /* In-line the packet's data and free the skb since we don't
2021 * need it any longer.
2022 */
2023 cxgb4_inline_tx_skb(skb, &txq->q, cpl + 1);
2024 dev_consume_skb_any(skb);
2025 } else {
2026 /* Write the skb's Scatter/Gather list into the TX Packet CPL
2027 * message and retain a pointer to the skb so we can free it
2028 * later when its DMA completes. (We store the skb pointer
2029 * in the Software Descriptor corresponding to the last TX
2030 * Descriptor used by the Work Request.)
2031 *
2032 * The retained skb will be freed when the corresponding TX
2033 * Descriptors are reclaimed after their DMAs complete.
2034 * However, this could take quite a while since, in general,
2035 * the hardware is set up to be lazy about sending DMA
2036 * completion notifications to us and we mostly perform TX
2037 * reclaims in the transmit routine.
2038 *
2039 * This is good for performamce but means that we rely on new
2040 * TX packets arriving to run the destructors of completed
2041 * packets, which open up space in their sockets' send queues.
2042 * Sometimes we do not get such new packets causing TX to
2043 * stall. A single UDP transmitter is a good example of this
2044 * situation. We have a clean up timer that periodically
2045 * reclaims completed packets but it doesn't run often enough
2046 * (nor do we want it to) to prevent lengthy stalls. A
2047 * solution to this problem is to run the destructor early,
2048 * after the packet is queued but before it's DMAd. A con is
2049 * that we lie to socket memory accounting, but the amount of
2050 * extra memory is reasonable (limited by the number of TX
2051 * descriptors), the packets do actually get freed quickly by
2052 * new packets almost always, and for protocols like TCP that
2053 * wait for acks to really free up the data the extra memory
2054 * is even less. On the positive side we run the destructors
2055 * on the sending CPU rather than on a potentially different
2056 * completing CPU, usually a good thing.
2057 *
2058 * Run the destructor before telling the DMA engine about the
2059 * packet to make sure it doesn't complete and get freed
2060 * prematurely.
2061 */
2062 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
2063 struct sge_txq *tq = &txq->q;
2064
2065 /* If the Work Request header was an exact multiple of our TX
2066 * Descriptor length, then it's possible that the starting SGL
2067 * pointer lines up exactly with the end of our TX Descriptor
2068 * ring. If that's the case, wrap around to the beginning
2069 * here ...
2070 */
2071 if (unlikely((void *)sgl == (void *)tq->stat)) {
2072 sgl = (void *)tq->desc;
2073 end = (void *)((void *)tq->desc +
2074 ((void *)end - (void *)tq->stat));
2075 }
2076
2077 cxgb4_write_sgl(skb, tq, sgl, end, 0, sgl_sdesc->addr);
2078 skb_orphan(skb);
2079 sgl_sdesc->skb = skb;
2080 }
2081
2082 /* Advance our internal TX Queue state, tell the hardware about
2083 * the new TX descriptors and return success.
2084 */
2085 txq_advance(&txq->q, ndesc);
2086
2087 cxgb4_ring_tx_db(adapter, &txq->q, ndesc);
2088 return NETDEV_TX_OK;
2089
2090 out_free:
2091 /* An error of some sort happened. Free the TX skb and tell the
2092 * OS that we've "dealt" with the packet ...
2093 */
2094 dev_kfree_skb_any(skb);
2095 return NETDEV_TX_OK;
2096 }
2097
2098 /**
2099 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
2100 * @q: the SGE control Tx queue
2101 *
2102 * This is a variant of cxgb4_reclaim_completed_tx() that is used
2103 * for Tx queues that send only immediate data (presently just
2104 * the control queues) and thus do not have any sk_buffs to release.
2105 */
reclaim_completed_tx_imm(struct sge_txq * q)2106 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
2107 {
2108 int hw_cidx = ntohs(READ_ONCE(q->stat->cidx));
2109 int reclaim = hw_cidx - q->cidx;
2110
2111 if (reclaim < 0)
2112 reclaim += q->size;
2113
2114 q->in_use -= reclaim;
2115 q->cidx = hw_cidx;
2116 }
2117
eosw_txq_advance_index(u32 * idx,u32 n,u32 max)2118 static inline void eosw_txq_advance_index(u32 *idx, u32 n, u32 max)
2119 {
2120 u32 val = *idx + n;
2121
2122 if (val >= max)
2123 val -= max;
2124
2125 *idx = val;
2126 }
2127
cxgb4_eosw_txq_free_desc(struct adapter * adap,struct sge_eosw_txq * eosw_txq,u32 ndesc)2128 void cxgb4_eosw_txq_free_desc(struct adapter *adap,
2129 struct sge_eosw_txq *eosw_txq, u32 ndesc)
2130 {
2131 struct tx_sw_desc *d;
2132
2133 d = &eosw_txq->desc[eosw_txq->last_cidx];
2134 while (ndesc--) {
2135 if (d->skb) {
2136 if (d->addr[0]) {
2137 unmap_skb(adap->pdev_dev, d->skb, d->addr);
2138 memset(d->addr, 0, sizeof(d->addr));
2139 }
2140 dev_consume_skb_any(d->skb);
2141 d->skb = NULL;
2142 }
2143 eosw_txq_advance_index(&eosw_txq->last_cidx, 1,
2144 eosw_txq->ndesc);
2145 d = &eosw_txq->desc[eosw_txq->last_cidx];
2146 }
2147 }
2148
eosw_txq_advance(struct sge_eosw_txq * eosw_txq,u32 n)2149 static inline void eosw_txq_advance(struct sge_eosw_txq *eosw_txq, u32 n)
2150 {
2151 eosw_txq_advance_index(&eosw_txq->pidx, n, eosw_txq->ndesc);
2152 eosw_txq->inuse += n;
2153 }
2154
eosw_txq_enqueue(struct sge_eosw_txq * eosw_txq,struct sk_buff * skb)2155 static inline int eosw_txq_enqueue(struct sge_eosw_txq *eosw_txq,
2156 struct sk_buff *skb)
2157 {
2158 if (eosw_txq->inuse == eosw_txq->ndesc)
2159 return -ENOMEM;
2160
2161 eosw_txq->desc[eosw_txq->pidx].skb = skb;
2162 return 0;
2163 }
2164
eosw_txq_peek(struct sge_eosw_txq * eosw_txq)2165 static inline struct sk_buff *eosw_txq_peek(struct sge_eosw_txq *eosw_txq)
2166 {
2167 return eosw_txq->desc[eosw_txq->last_pidx].skb;
2168 }
2169
ethofld_calc_tx_flits(struct adapter * adap,struct sk_buff * skb,u32 hdr_len)2170 static inline u8 ethofld_calc_tx_flits(struct adapter *adap,
2171 struct sk_buff *skb, u32 hdr_len)
2172 {
2173 u8 flits, nsgl = 0;
2174 u32 wrlen;
2175
2176 wrlen = sizeof(struct fw_eth_tx_eo_wr) + sizeof(struct cpl_tx_pkt_core);
2177 if (skb_shinfo(skb)->gso_size &&
2178 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2179 wrlen += sizeof(struct cpl_tx_pkt_lso_core);
2180
2181 wrlen += roundup(hdr_len, 16);
2182
2183 /* Packet headers + WR + CPLs */
2184 flits = DIV_ROUND_UP(wrlen, 8);
2185
2186 if (skb_shinfo(skb)->nr_frags > 0) {
2187 if (skb_headlen(skb) - hdr_len)
2188 nsgl = sgl_len(skb_shinfo(skb)->nr_frags + 1);
2189 else
2190 nsgl = sgl_len(skb_shinfo(skb)->nr_frags);
2191 } else if (skb->len - hdr_len) {
2192 nsgl = sgl_len(1);
2193 }
2194
2195 return flits + nsgl;
2196 }
2197
write_eo_wr(struct adapter * adap,struct sge_eosw_txq * eosw_txq,struct sk_buff * skb,struct fw_eth_tx_eo_wr * wr,u32 hdr_len,u32 wrlen)2198 static void *write_eo_wr(struct adapter *adap, struct sge_eosw_txq *eosw_txq,
2199 struct sk_buff *skb, struct fw_eth_tx_eo_wr *wr,
2200 u32 hdr_len, u32 wrlen)
2201 {
2202 const struct skb_shared_info *ssi = skb_shinfo(skb);
2203 struct cpl_tx_pkt_core *cpl;
2204 u32 immd_len, wrlen16;
2205 bool compl = false;
2206 u8 ver, proto;
2207
2208 ver = ip_hdr(skb)->version;
2209 proto = (ver == 6) ? ipv6_hdr(skb)->nexthdr : ip_hdr(skb)->protocol;
2210
2211 wrlen16 = DIV_ROUND_UP(wrlen, 16);
2212 immd_len = sizeof(struct cpl_tx_pkt_core);
2213 if (skb_shinfo(skb)->gso_size &&
2214 !(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4))
2215 immd_len += sizeof(struct cpl_tx_pkt_lso_core);
2216 immd_len += hdr_len;
2217
2218 if (!eosw_txq->ncompl ||
2219 (eosw_txq->last_compl + wrlen16) >=
2220 (adap->params.ofldq_wr_cred / 2)) {
2221 compl = true;
2222 eosw_txq->ncompl++;
2223 eosw_txq->last_compl = 0;
2224 }
2225
2226 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_EO_WR) |
2227 FW_ETH_TX_EO_WR_IMMDLEN_V(immd_len) |
2228 FW_WR_COMPL_V(compl));
2229 wr->equiq_to_len16 = cpu_to_be32(FW_WR_LEN16_V(wrlen16) |
2230 FW_WR_FLOWID_V(eosw_txq->hwtid));
2231 wr->r3 = 0;
2232 if (proto == IPPROTO_UDP) {
2233 cpl = write_eo_udp_wr(skb, wr, hdr_len);
2234 } else {
2235 wr->u.tcpseg.type = FW_ETH_TX_EO_TYPE_TCPSEG;
2236 wr->u.tcpseg.ethlen = skb_network_offset(skb);
2237 wr->u.tcpseg.iplen = cpu_to_be16(skb_network_header_len(skb));
2238 wr->u.tcpseg.tcplen = tcp_hdrlen(skb);
2239 wr->u.tcpseg.tsclk_tsoff = 0;
2240 wr->u.tcpseg.r4 = 0;
2241 wr->u.tcpseg.r5 = 0;
2242 wr->u.tcpseg.plen = cpu_to_be32(skb->len - hdr_len);
2243
2244 if (ssi->gso_size) {
2245 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2246
2247 wr->u.tcpseg.mss = cpu_to_be16(ssi->gso_size);
2248 cpl = write_tso_wr(adap, skb, lso);
2249 } else {
2250 wr->u.tcpseg.mss = cpu_to_be16(0xffff);
2251 cpl = (void *)(wr + 1);
2252 }
2253 }
2254
2255 eosw_txq->cred -= wrlen16;
2256 eosw_txq->last_compl += wrlen16;
2257 return cpl;
2258 }
2259
ethofld_hard_xmit(struct net_device * dev,struct sge_eosw_txq * eosw_txq)2260 static int ethofld_hard_xmit(struct net_device *dev,
2261 struct sge_eosw_txq *eosw_txq)
2262 {
2263 struct port_info *pi = netdev2pinfo(dev);
2264 struct adapter *adap = netdev2adap(dev);
2265 u32 wrlen, wrlen16, hdr_len, data_len;
2266 enum sge_eosw_state next_state;
2267 u64 cntrl, *start, *end, *sgl;
2268 struct sge_eohw_txq *eohw_txq;
2269 struct cpl_tx_pkt_core *cpl;
2270 struct fw_eth_tx_eo_wr *wr;
2271 bool skip_eotx_wr = false;
2272 struct tx_sw_desc *d;
2273 struct sk_buff *skb;
2274 int left, ret = 0;
2275 u8 flits, ndesc;
2276
2277 eohw_txq = &adap->sge.eohw_txq[eosw_txq->hwqid];
2278 spin_lock(&eohw_txq->lock);
2279 reclaim_completed_tx_imm(&eohw_txq->q);
2280
2281 d = &eosw_txq->desc[eosw_txq->last_pidx];
2282 skb = d->skb;
2283 skb_tx_timestamp(skb);
2284
2285 wr = (struct fw_eth_tx_eo_wr *)&eohw_txq->q.desc[eohw_txq->q.pidx];
2286 if (unlikely(eosw_txq->state != CXGB4_EO_STATE_ACTIVE &&
2287 eosw_txq->last_pidx == eosw_txq->flowc_idx)) {
2288 hdr_len = skb->len;
2289 data_len = 0;
2290 flits = DIV_ROUND_UP(hdr_len, 8);
2291 if (eosw_txq->state == CXGB4_EO_STATE_FLOWC_OPEN_SEND)
2292 next_state = CXGB4_EO_STATE_FLOWC_OPEN_REPLY;
2293 else
2294 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_REPLY;
2295 skip_eotx_wr = true;
2296 } else {
2297 hdr_len = eth_get_headlen(dev, skb->data, skb_headlen(skb));
2298 data_len = skb->len - hdr_len;
2299 flits = ethofld_calc_tx_flits(adap, skb, hdr_len);
2300 }
2301 ndesc = flits_to_desc(flits);
2302 wrlen = flits * 8;
2303 wrlen16 = DIV_ROUND_UP(wrlen, 16);
2304
2305 left = txq_avail(&eohw_txq->q) - ndesc;
2306
2307 /* If there are no descriptors left in hardware queues or no
2308 * CPL credits left in software queues, then wait for them
2309 * to come back and retry again. Note that we always request
2310 * for credits update via interrupt for every half credits
2311 * consumed. So, the interrupt will eventually restore the
2312 * credits and invoke the Tx path again.
2313 */
2314 if (unlikely(left < 0 || wrlen16 > eosw_txq->cred)) {
2315 ret = -ENOMEM;
2316 goto out_unlock;
2317 }
2318
2319 if (unlikely(skip_eotx_wr)) {
2320 start = (u64 *)wr;
2321 eosw_txq->state = next_state;
2322 eosw_txq->cred -= wrlen16;
2323 eosw_txq->ncompl++;
2324 eosw_txq->last_compl = 0;
2325 goto write_wr_headers;
2326 }
2327
2328 cpl = write_eo_wr(adap, eosw_txq, skb, wr, hdr_len, wrlen);
2329 cntrl = hwcsum(adap->params.chip, skb);
2330 if (skb_vlan_tag_present(skb))
2331 cntrl |= TXPKT_VLAN_VLD_F | TXPKT_VLAN_V(skb_vlan_tag_get(skb));
2332
2333 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE_V(CPL_TX_PKT_XT) |
2334 TXPKT_INTF_V(pi->tx_chan) |
2335 TXPKT_PF_V(adap->pf));
2336 cpl->pack = 0;
2337 cpl->len = cpu_to_be16(skb->len);
2338 cpl->ctrl1 = cpu_to_be64(cntrl);
2339
2340 start = (u64 *)(cpl + 1);
2341
2342 write_wr_headers:
2343 sgl = (u64 *)inline_tx_skb_header(skb, &eohw_txq->q, (void *)start,
2344 hdr_len);
2345 if (data_len) {
2346 ret = cxgb4_map_skb(adap->pdev_dev, skb, d->addr);
2347 if (unlikely(ret)) {
2348 memset(d->addr, 0, sizeof(d->addr));
2349 eohw_txq->mapping_err++;
2350 goto out_unlock;
2351 }
2352
2353 end = (u64 *)wr + flits;
2354 if (unlikely(start > sgl)) {
2355 left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2356 end = (void *)eohw_txq->q.desc + left;
2357 }
2358
2359 if (unlikely((u8 *)sgl >= (u8 *)eohw_txq->q.stat)) {
2360 /* If current position is already at the end of the
2361 * txq, reset the current to point to start of the queue
2362 * and update the end ptr as well.
2363 */
2364 left = (u8 *)end - (u8 *)eohw_txq->q.stat;
2365
2366 end = (void *)eohw_txq->q.desc + left;
2367 sgl = (void *)eohw_txq->q.desc;
2368 }
2369
2370 cxgb4_write_sgl(skb, &eohw_txq->q, (void *)sgl, end, hdr_len,
2371 d->addr);
2372 }
2373
2374 if (skb_shinfo(skb)->gso_size) {
2375 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4)
2376 eohw_txq->uso++;
2377 else
2378 eohw_txq->tso++;
2379 eohw_txq->tx_cso += skb_shinfo(skb)->gso_segs;
2380 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2381 eohw_txq->tx_cso++;
2382 }
2383
2384 if (skb_vlan_tag_present(skb))
2385 eohw_txq->vlan_ins++;
2386
2387 txq_advance(&eohw_txq->q, ndesc);
2388 cxgb4_ring_tx_db(adap, &eohw_txq->q, ndesc);
2389 eosw_txq_advance_index(&eosw_txq->last_pidx, 1, eosw_txq->ndesc);
2390
2391 out_unlock:
2392 spin_unlock(&eohw_txq->lock);
2393 return ret;
2394 }
2395
ethofld_xmit(struct net_device * dev,struct sge_eosw_txq * eosw_txq)2396 static void ethofld_xmit(struct net_device *dev, struct sge_eosw_txq *eosw_txq)
2397 {
2398 struct sk_buff *skb;
2399 int pktcount, ret;
2400
2401 switch (eosw_txq->state) {
2402 case CXGB4_EO_STATE_ACTIVE:
2403 case CXGB4_EO_STATE_FLOWC_OPEN_SEND:
2404 case CXGB4_EO_STATE_FLOWC_CLOSE_SEND:
2405 pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2406 if (pktcount < 0)
2407 pktcount += eosw_txq->ndesc;
2408 break;
2409 case CXGB4_EO_STATE_FLOWC_OPEN_REPLY:
2410 case CXGB4_EO_STATE_FLOWC_CLOSE_REPLY:
2411 case CXGB4_EO_STATE_CLOSED:
2412 default:
2413 return;
2414 }
2415
2416 while (pktcount--) {
2417 skb = eosw_txq_peek(eosw_txq);
2418 if (!skb) {
2419 eosw_txq_advance_index(&eosw_txq->last_pidx, 1,
2420 eosw_txq->ndesc);
2421 continue;
2422 }
2423
2424 ret = ethofld_hard_xmit(dev, eosw_txq);
2425 if (ret)
2426 break;
2427 }
2428 }
2429
cxgb4_ethofld_xmit(struct sk_buff * skb,struct net_device * dev)2430 static netdev_tx_t cxgb4_ethofld_xmit(struct sk_buff *skb,
2431 struct net_device *dev)
2432 {
2433 struct cxgb4_tc_port_mqprio *tc_port_mqprio;
2434 struct port_info *pi = netdev2pinfo(dev);
2435 struct adapter *adap = netdev2adap(dev);
2436 struct sge_eosw_txq *eosw_txq;
2437 u32 qid;
2438 int ret;
2439
2440 ret = cxgb4_validate_skb(skb, dev, ETH_HLEN);
2441 if (ret)
2442 goto out_free;
2443
2444 tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
2445 qid = skb_get_queue_mapping(skb) - pi->nqsets;
2446 eosw_txq = &tc_port_mqprio->eosw_txq[qid];
2447 spin_lock_bh(&eosw_txq->lock);
2448 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2449 goto out_unlock;
2450
2451 ret = eosw_txq_enqueue(eosw_txq, skb);
2452 if (ret)
2453 goto out_unlock;
2454
2455 /* SKB is queued for processing until credits are available.
2456 * So, call the destructor now and we'll free the skb later
2457 * after it has been successfully transmitted.
2458 */
2459 skb_orphan(skb);
2460
2461 eosw_txq_advance(eosw_txq, 1);
2462 ethofld_xmit(dev, eosw_txq);
2463 spin_unlock_bh(&eosw_txq->lock);
2464 return NETDEV_TX_OK;
2465
2466 out_unlock:
2467 spin_unlock_bh(&eosw_txq->lock);
2468 out_free:
2469 dev_kfree_skb_any(skb);
2470 return NETDEV_TX_OK;
2471 }
2472
t4_start_xmit(struct sk_buff * skb,struct net_device * dev)2473 netdev_tx_t t4_start_xmit(struct sk_buff *skb, struct net_device *dev)
2474 {
2475 struct port_info *pi = netdev_priv(dev);
2476 u16 qid = skb_get_queue_mapping(skb);
2477
2478 if (unlikely(pi->eth_flags & PRIV_FLAG_PORT_TX_VM))
2479 return cxgb4_vf_eth_xmit(skb, dev);
2480
2481 if (unlikely(qid >= pi->nqsets))
2482 return cxgb4_ethofld_xmit(skb, dev);
2483
2484 if (is_ptp_enabled(skb, dev)) {
2485 struct adapter *adap = netdev2adap(dev);
2486 netdev_tx_t ret;
2487
2488 spin_lock(&adap->ptp_lock);
2489 ret = cxgb4_eth_xmit(skb, dev);
2490 spin_unlock(&adap->ptp_lock);
2491 return ret;
2492 }
2493
2494 return cxgb4_eth_xmit(skb, dev);
2495 }
2496
eosw_txq_flush_pending_skbs(struct sge_eosw_txq * eosw_txq)2497 static void eosw_txq_flush_pending_skbs(struct sge_eosw_txq *eosw_txq)
2498 {
2499 int pktcount = eosw_txq->pidx - eosw_txq->last_pidx;
2500 int pidx = eosw_txq->pidx;
2501 struct sk_buff *skb;
2502
2503 if (!pktcount)
2504 return;
2505
2506 if (pktcount < 0)
2507 pktcount += eosw_txq->ndesc;
2508
2509 while (pktcount--) {
2510 pidx--;
2511 if (pidx < 0)
2512 pidx += eosw_txq->ndesc;
2513
2514 skb = eosw_txq->desc[pidx].skb;
2515 if (skb) {
2516 dev_consume_skb_any(skb);
2517 eosw_txq->desc[pidx].skb = NULL;
2518 eosw_txq->inuse--;
2519 }
2520 }
2521
2522 eosw_txq->pidx = eosw_txq->last_pidx + 1;
2523 }
2524
2525 /**
2526 * cxgb4_ethofld_send_flowc - Send ETHOFLD flowc request to bind eotid to tc.
2527 * @dev: netdevice
2528 * @eotid: ETHOFLD tid to bind/unbind
2529 * @tc: traffic class. If set to FW_SCHED_CLS_NONE, then unbinds the @eotid
2530 *
2531 * Send a FLOWC work request to bind an ETHOFLD TID to a traffic class.
2532 * If @tc is set to FW_SCHED_CLS_NONE, then the @eotid is unbound from
2533 * a traffic class.
2534 */
cxgb4_ethofld_send_flowc(struct net_device * dev,u32 eotid,u32 tc)2535 int cxgb4_ethofld_send_flowc(struct net_device *dev, u32 eotid, u32 tc)
2536 {
2537 struct port_info *pi = netdev2pinfo(dev);
2538 struct adapter *adap = netdev2adap(dev);
2539 enum sge_eosw_state next_state;
2540 struct sge_eosw_txq *eosw_txq;
2541 u32 len, len16, nparams = 6;
2542 struct fw_flowc_wr *flowc;
2543 struct eotid_entry *entry;
2544 struct sge_ofld_rxq *rxq;
2545 struct sk_buff *skb;
2546 int ret = 0;
2547
2548 len = struct_size(flowc, mnemval, nparams);
2549 len16 = DIV_ROUND_UP(len, 16);
2550
2551 entry = cxgb4_lookup_eotid(&adap->tids, eotid);
2552 if (!entry)
2553 return -ENOMEM;
2554
2555 eosw_txq = (struct sge_eosw_txq *)entry->data;
2556 if (!eosw_txq)
2557 return -ENOMEM;
2558
2559 if (!(adap->flags & CXGB4_FW_OK)) {
2560 /* Don't stall caller when access to FW is lost */
2561 complete(&eosw_txq->completion);
2562 return -EIO;
2563 }
2564
2565 skb = alloc_skb(len, GFP_KERNEL);
2566 if (!skb)
2567 return -ENOMEM;
2568
2569 spin_lock_bh(&eosw_txq->lock);
2570 if (tc != FW_SCHED_CLS_NONE) {
2571 if (eosw_txq->state != CXGB4_EO_STATE_CLOSED)
2572 goto out_free_skb;
2573
2574 next_state = CXGB4_EO_STATE_FLOWC_OPEN_SEND;
2575 } else {
2576 if (eosw_txq->state != CXGB4_EO_STATE_ACTIVE)
2577 goto out_free_skb;
2578
2579 next_state = CXGB4_EO_STATE_FLOWC_CLOSE_SEND;
2580 }
2581
2582 flowc = __skb_put(skb, len);
2583 memset(flowc, 0, len);
2584
2585 rxq = &adap->sge.eohw_rxq[eosw_txq->hwqid];
2586 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(len16) |
2587 FW_WR_FLOWID_V(eosw_txq->hwtid));
2588 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
2589 FW_FLOWC_WR_NPARAMS_V(nparams) |
2590 FW_WR_COMPL_V(1));
2591 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
2592 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V(adap->pf));
2593 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
2594 flowc->mnemval[1].val = cpu_to_be32(pi->tx_chan);
2595 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
2596 flowc->mnemval[2].val = cpu_to_be32(pi->tx_chan);
2597 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
2598 flowc->mnemval[3].val = cpu_to_be32(rxq->rspq.abs_id);
2599 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
2600 flowc->mnemval[4].val = cpu_to_be32(tc);
2601 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_EOSTATE;
2602 flowc->mnemval[5].val = cpu_to_be32(tc == FW_SCHED_CLS_NONE ?
2603 FW_FLOWC_MNEM_EOSTATE_CLOSING :
2604 FW_FLOWC_MNEM_EOSTATE_ESTABLISHED);
2605
2606 /* Free up any pending skbs to ensure there's room for
2607 * termination FLOWC.
2608 */
2609 if (tc == FW_SCHED_CLS_NONE)
2610 eosw_txq_flush_pending_skbs(eosw_txq);
2611
2612 ret = eosw_txq_enqueue(eosw_txq, skb);
2613 if (ret)
2614 goto out_free_skb;
2615
2616 eosw_txq->state = next_state;
2617 eosw_txq->flowc_idx = eosw_txq->pidx;
2618 eosw_txq_advance(eosw_txq, 1);
2619 ethofld_xmit(dev, eosw_txq);
2620
2621 spin_unlock_bh(&eosw_txq->lock);
2622 return 0;
2623
2624 out_free_skb:
2625 dev_consume_skb_any(skb);
2626 spin_unlock_bh(&eosw_txq->lock);
2627 return ret;
2628 }
2629
2630 /**
2631 * is_imm - check whether a packet can be sent as immediate data
2632 * @skb: the packet
2633 *
2634 * Returns true if a packet can be sent as a WR with immediate data.
2635 */
is_imm(const struct sk_buff * skb)2636 static inline int is_imm(const struct sk_buff *skb)
2637 {
2638 return skb->len <= MAX_CTRL_WR_LEN;
2639 }
2640
2641 /**
2642 * ctrlq_check_stop - check if a control queue is full and should stop
2643 * @q: the queue
2644 * @wr: most recent WR written to the queue
2645 *
2646 * Check if a control queue has become full and should be stopped.
2647 * We clean up control queue descriptors very lazily, only when we are out.
2648 * If the queue is still full after reclaiming any completed descriptors
2649 * we suspend it and have the last WR wake it up.
2650 */
ctrlq_check_stop(struct sge_ctrl_txq * q,struct fw_wr_hdr * wr)2651 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
2652 {
2653 reclaim_completed_tx_imm(&q->q);
2654 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2655 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2656 q->q.stops++;
2657 q->full = 1;
2658 }
2659 }
2660
2661 #define CXGB4_SELFTEST_LB_STR "CHELSIO_SELFTEST"
2662
cxgb4_selftest_lb_pkt(struct net_device * netdev)2663 int cxgb4_selftest_lb_pkt(struct net_device *netdev)
2664 {
2665 struct port_info *pi = netdev_priv(netdev);
2666 struct adapter *adap = pi->adapter;
2667 struct cxgb4_ethtool_lb_test *lb;
2668 int ret, i = 0, pkt_len, credits;
2669 struct fw_eth_tx_pkt_wr *wr;
2670 struct cpl_tx_pkt_core *cpl;
2671 u32 ctrl0, ndesc, flits;
2672 struct sge_eth_txq *q;
2673 u8 *sgl;
2674
2675 pkt_len = ETH_HLEN + sizeof(CXGB4_SELFTEST_LB_STR);
2676
2677 flits = DIV_ROUND_UP(pkt_len + sizeof(*cpl) + sizeof(*wr),
2678 sizeof(__be64));
2679 ndesc = flits_to_desc(flits);
2680
2681 lb = &pi->ethtool_lb;
2682 lb->loopback = 1;
2683
2684 q = &adap->sge.ethtxq[pi->first_qset];
2685 __netif_tx_lock(q->txq, smp_processor_id());
2686
2687 reclaim_completed_tx(adap, &q->q, -1, true);
2688 credits = txq_avail(&q->q) - ndesc;
2689 if (unlikely(credits < 0)) {
2690 __netif_tx_unlock(q->txq);
2691 return -ENOMEM;
2692 }
2693
2694 wr = (void *)&q->q.desc[q->q.pidx];
2695 memset(wr, 0, sizeof(struct tx_desc));
2696
2697 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
2698 FW_WR_IMMDLEN_V(pkt_len +
2699 sizeof(*cpl)));
2700 wr->equiq_to_len16 = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2)));
2701 wr->r3 = cpu_to_be64(0);
2702
2703 cpl = (void *)(wr + 1);
2704 sgl = (u8 *)(cpl + 1);
2705
2706 ctrl0 = TXPKT_OPCODE_V(CPL_TX_PKT_XT) | TXPKT_PF_V(adap->pf) |
2707 TXPKT_INTF_V(pi->tx_chan + 4);
2708
2709 cpl->ctrl0 = htonl(ctrl0);
2710 cpl->pack = htons(0);
2711 cpl->len = htons(pkt_len);
2712 cpl->ctrl1 = cpu_to_be64(TXPKT_L4CSUM_DIS_F | TXPKT_IPCSUM_DIS_F);
2713
2714 eth_broadcast_addr(sgl);
2715 i += ETH_ALEN;
2716 ether_addr_copy(&sgl[i], netdev->dev_addr);
2717 i += ETH_ALEN;
2718
2719 snprintf(&sgl[i], sizeof(CXGB4_SELFTEST_LB_STR), "%s",
2720 CXGB4_SELFTEST_LB_STR);
2721
2722 init_completion(&lb->completion);
2723 txq_advance(&q->q, ndesc);
2724 cxgb4_ring_tx_db(adap, &q->q, ndesc);
2725 __netif_tx_unlock(q->txq);
2726
2727 /* wait for the pkt to return */
2728 ret = wait_for_completion_timeout(&lb->completion, 10 * HZ);
2729 if (!ret)
2730 ret = -ETIMEDOUT;
2731 else
2732 ret = lb->result;
2733
2734 lb->loopback = 0;
2735
2736 return ret;
2737 }
2738
2739 /**
2740 * ctrl_xmit - send a packet through an SGE control Tx queue
2741 * @q: the control queue
2742 * @skb: the packet
2743 *
2744 * Send a packet through an SGE control Tx queue. Packets sent through
2745 * a control queue must fit entirely as immediate data.
2746 */
ctrl_xmit(struct sge_ctrl_txq * q,struct sk_buff * skb)2747 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
2748 {
2749 unsigned int ndesc;
2750 struct fw_wr_hdr *wr;
2751
2752 if (unlikely(!is_imm(skb))) {
2753 WARN_ON(1);
2754 dev_kfree_skb(skb);
2755 return NET_XMIT_DROP;
2756 }
2757
2758 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
2759 spin_lock(&q->sendq.lock);
2760
2761 if (unlikely(q->full)) {
2762 skb->priority = ndesc; /* save for restart */
2763 __skb_queue_tail(&q->sendq, skb);
2764 spin_unlock(&q->sendq.lock);
2765 return NET_XMIT_CN;
2766 }
2767
2768 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2769 cxgb4_inline_tx_skb(skb, &q->q, wr);
2770
2771 txq_advance(&q->q, ndesc);
2772 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
2773 ctrlq_check_stop(q, wr);
2774
2775 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
2776 spin_unlock(&q->sendq.lock);
2777
2778 kfree_skb(skb);
2779 return NET_XMIT_SUCCESS;
2780 }
2781
2782 /**
2783 * restart_ctrlq - restart a suspended control queue
2784 * @t: pointer to the tasklet associated with this handler
2785 *
2786 * Resumes transmission on a suspended Tx control queue.
2787 */
restart_ctrlq(struct tasklet_struct * t)2788 static void restart_ctrlq(struct tasklet_struct *t)
2789 {
2790 struct sk_buff *skb;
2791 unsigned int written = 0;
2792 struct sge_ctrl_txq *q = from_tasklet(q, t, qresume_tsk);
2793
2794 spin_lock(&q->sendq.lock);
2795 reclaim_completed_tx_imm(&q->q);
2796 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
2797
2798 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
2799 struct fw_wr_hdr *wr;
2800 unsigned int ndesc = skb->priority; /* previously saved */
2801
2802 written += ndesc;
2803 /* Write descriptors and free skbs outside the lock to limit
2804 * wait times. q->full is still set so new skbs will be queued.
2805 */
2806 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
2807 txq_advance(&q->q, ndesc);
2808 spin_unlock(&q->sendq.lock);
2809
2810 cxgb4_inline_tx_skb(skb, &q->q, wr);
2811 kfree_skb(skb);
2812
2813 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
2814 unsigned long old = q->q.stops;
2815
2816 ctrlq_check_stop(q, wr);
2817 if (q->q.stops != old) { /* suspended anew */
2818 spin_lock(&q->sendq.lock);
2819 goto ringdb;
2820 }
2821 }
2822 if (written > 16) {
2823 cxgb4_ring_tx_db(q->adap, &q->q, written);
2824 written = 0;
2825 }
2826 spin_lock(&q->sendq.lock);
2827 }
2828 q->full = 0;
2829 ringdb:
2830 if (written)
2831 cxgb4_ring_tx_db(q->adap, &q->q, written);
2832 spin_unlock(&q->sendq.lock);
2833 }
2834
2835 /**
2836 * t4_mgmt_tx - send a management message
2837 * @adap: the adapter
2838 * @skb: the packet containing the management message
2839 *
2840 * Send a management message through control queue 0.
2841 */
t4_mgmt_tx(struct adapter * adap,struct sk_buff * skb)2842 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
2843 {
2844 int ret;
2845
2846 local_bh_disable();
2847 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
2848 local_bh_enable();
2849 return ret;
2850 }
2851
2852 /**
2853 * is_ofld_imm - check whether a packet can be sent as immediate data
2854 * @skb: the packet
2855 *
2856 * Returns true if a packet can be sent as an offload WR with immediate
2857 * data.
2858 * FW_OFLD_TX_DATA_WR limits the payload to 255 bytes due to 8-bit field.
2859 * However, FW_ULPTX_WR commands have a 256 byte immediate only
2860 * payload limit.
2861 */
is_ofld_imm(const struct sk_buff * skb)2862 static inline int is_ofld_imm(const struct sk_buff *skb)
2863 {
2864 struct work_request_hdr *req = (struct work_request_hdr *)skb->data;
2865 unsigned long opcode = FW_WR_OP_G(ntohl(req->wr_hi));
2866
2867 if (unlikely(opcode == FW_ULPTX_WR))
2868 return skb->len <= MAX_IMM_ULPTX_WR_LEN;
2869 else if (opcode == FW_CRYPTO_LOOKASIDE_WR)
2870 return skb->len <= SGE_MAX_WR_LEN;
2871 else
2872 return skb->len <= MAX_IMM_OFLD_TX_DATA_WR_LEN;
2873 }
2874
2875 /**
2876 * calc_tx_flits_ofld - calculate # of flits for an offload packet
2877 * @skb: the packet
2878 *
2879 * Returns the number of flits needed for the given offload packet.
2880 * These packets are already fully constructed and no additional headers
2881 * will be added.
2882 */
calc_tx_flits_ofld(const struct sk_buff * skb)2883 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
2884 {
2885 unsigned int flits, cnt;
2886
2887 if (is_ofld_imm(skb))
2888 return DIV_ROUND_UP(skb->len, 8);
2889
2890 flits = skb_transport_offset(skb) / 8U; /* headers */
2891 cnt = skb_shinfo(skb)->nr_frags;
2892 if (skb_tail_pointer(skb) != skb_transport_header(skb))
2893 cnt++;
2894 return flits + sgl_len(cnt);
2895 }
2896
2897 /**
2898 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
2899 * @q: the queue to stop
2900 *
2901 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
2902 * inability to map packets. A periodic timer attempts to restart
2903 * queues so marked.
2904 */
txq_stop_maperr(struct sge_uld_txq * q)2905 static void txq_stop_maperr(struct sge_uld_txq *q)
2906 {
2907 q->mapping_err++;
2908 q->q.stops++;
2909 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
2910 q->adap->sge.txq_maperr);
2911 }
2912
2913 /**
2914 * ofldtxq_stop - stop an offload Tx queue that has become full
2915 * @q: the queue to stop
2916 * @wr: the Work Request causing the queue to become full
2917 *
2918 * Stops an offload Tx queue that has become full and modifies the packet
2919 * being written to request a wakeup.
2920 */
ofldtxq_stop(struct sge_uld_txq * q,struct fw_wr_hdr * wr)2921 static void ofldtxq_stop(struct sge_uld_txq *q, struct fw_wr_hdr *wr)
2922 {
2923 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
2924 q->q.stops++;
2925 q->full = 1;
2926 }
2927
2928 /**
2929 * service_ofldq - service/restart a suspended offload queue
2930 * @q: the offload queue
2931 *
2932 * Services an offload Tx queue by moving packets from its Pending Send
2933 * Queue to the Hardware TX ring. The function starts and ends with the
2934 * Send Queue locked, but drops the lock while putting the skb at the
2935 * head of the Send Queue onto the Hardware TX Ring. Dropping the lock
2936 * allows more skbs to be added to the Send Queue by other threads.
2937 * The packet being processed at the head of the Pending Send Queue is
2938 * left on the queue in case we experience DMA Mapping errors, etc.
2939 * and need to give up and restart later.
2940 *
2941 * service_ofldq() can be thought of as a task which opportunistically
2942 * uses other threads execution contexts. We use the Offload Queue
2943 * boolean "service_ofldq_running" to make sure that only one instance
2944 * is ever running at a time ...
2945 */
service_ofldq(struct sge_uld_txq * q)2946 static void service_ofldq(struct sge_uld_txq *q)
2947 __must_hold(&q->sendq.lock)
2948 {
2949 u64 *pos, *before, *end;
2950 int credits;
2951 struct sk_buff *skb;
2952 struct sge_txq *txq;
2953 unsigned int left;
2954 unsigned int written = 0;
2955 unsigned int flits, ndesc;
2956
2957 /* If another thread is currently in service_ofldq() processing the
2958 * Pending Send Queue then there's nothing to do. Otherwise, flag
2959 * that we're doing the work and continue. Examining/modifying
2960 * the Offload Queue boolean "service_ofldq_running" must be done
2961 * while holding the Pending Send Queue Lock.
2962 */
2963 if (q->service_ofldq_running)
2964 return;
2965 q->service_ofldq_running = true;
2966
2967 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
2968 /* We drop the lock while we're working with the skb at the
2969 * head of the Pending Send Queue. This allows more skbs to
2970 * be added to the Pending Send Queue while we're working on
2971 * this one. We don't need to lock to guard the TX Ring
2972 * updates because only one thread of execution is ever
2973 * allowed into service_ofldq() at a time.
2974 */
2975 spin_unlock(&q->sendq.lock);
2976
2977 cxgb4_reclaim_completed_tx(q->adap, &q->q, false);
2978
2979 flits = skb->priority; /* previously saved */
2980 ndesc = flits_to_desc(flits);
2981 credits = txq_avail(&q->q) - ndesc;
2982 BUG_ON(credits < 0);
2983 if (unlikely(credits < TXQ_STOP_THRES))
2984 ofldtxq_stop(q, (struct fw_wr_hdr *)skb->data);
2985
2986 pos = (u64 *)&q->q.desc[q->q.pidx];
2987 if (is_ofld_imm(skb))
2988 cxgb4_inline_tx_skb(skb, &q->q, pos);
2989 else if (cxgb4_map_skb(q->adap->pdev_dev, skb,
2990 (dma_addr_t *)skb->head)) {
2991 txq_stop_maperr(q);
2992 spin_lock(&q->sendq.lock);
2993 break;
2994 } else {
2995 int last_desc, hdr_len = skb_transport_offset(skb);
2996
2997 /* The WR headers may not fit within one descriptor.
2998 * So we need to deal with wrap-around here.
2999 */
3000 before = (u64 *)pos;
3001 end = (u64 *)pos + flits;
3002 txq = &q->q;
3003 pos = (void *)inline_tx_skb_header(skb, &q->q,
3004 (void *)pos,
3005 hdr_len);
3006 if (before > (u64 *)pos) {
3007 left = (u8 *)end - (u8 *)txq->stat;
3008 end = (void *)txq->desc + left;
3009 }
3010
3011 /* If current position is already at the end of the
3012 * ofld queue, reset the current to point to
3013 * start of the queue and update the end ptr as well.
3014 */
3015 if (pos == (u64 *)txq->stat) {
3016 left = (u8 *)end - (u8 *)txq->stat;
3017 end = (void *)txq->desc + left;
3018 pos = (void *)txq->desc;
3019 }
3020
3021 cxgb4_write_sgl(skb, &q->q, (void *)pos,
3022 end, hdr_len,
3023 (dma_addr_t *)skb->head);
3024 #ifdef CONFIG_NEED_DMA_MAP_STATE
3025 skb->dev = q->adap->port[0];
3026 skb->destructor = deferred_unmap_destructor;
3027 #endif
3028 last_desc = q->q.pidx + ndesc - 1;
3029 if (last_desc >= q->q.size)
3030 last_desc -= q->q.size;
3031 q->q.sdesc[last_desc].skb = skb;
3032 }
3033
3034 txq_advance(&q->q, ndesc);
3035 written += ndesc;
3036 if (unlikely(written > 32)) {
3037 cxgb4_ring_tx_db(q->adap, &q->q, written);
3038 written = 0;
3039 }
3040
3041 /* Reacquire the Pending Send Queue Lock so we can unlink the
3042 * skb we've just successfully transferred to the TX Ring and
3043 * loop for the next skb which may be at the head of the
3044 * Pending Send Queue.
3045 */
3046 spin_lock(&q->sendq.lock);
3047 __skb_unlink(skb, &q->sendq);
3048 if (is_ofld_imm(skb))
3049 kfree_skb(skb);
3050 }
3051 if (likely(written))
3052 cxgb4_ring_tx_db(q->adap, &q->q, written);
3053
3054 /*Indicate that no thread is processing the Pending Send Queue
3055 * currently.
3056 */
3057 q->service_ofldq_running = false;
3058 }
3059
3060 /**
3061 * ofld_xmit - send a packet through an offload queue
3062 * @q: the Tx offload queue
3063 * @skb: the packet
3064 *
3065 * Send an offload packet through an SGE offload queue.
3066 */
ofld_xmit(struct sge_uld_txq * q,struct sk_buff * skb)3067 static int ofld_xmit(struct sge_uld_txq *q, struct sk_buff *skb)
3068 {
3069 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
3070 spin_lock(&q->sendq.lock);
3071
3072 /* Queue the new skb onto the Offload Queue's Pending Send Queue. If
3073 * that results in this new skb being the only one on the queue, start
3074 * servicing it. If there are other skbs already on the list, then
3075 * either the queue is currently being processed or it's been stopped
3076 * for some reason and it'll be restarted at a later time. Restart
3077 * paths are triggered by events like experiencing a DMA Mapping Error
3078 * or filling the Hardware TX Ring.
3079 */
3080 __skb_queue_tail(&q->sendq, skb);
3081 if (q->sendq.qlen == 1)
3082 service_ofldq(q);
3083
3084 spin_unlock(&q->sendq.lock);
3085 return NET_XMIT_SUCCESS;
3086 }
3087
3088 /**
3089 * restart_ofldq - restart a suspended offload queue
3090 * @t: pointer to the tasklet associated with this handler
3091 *
3092 * Resumes transmission on a suspended Tx offload queue.
3093 */
restart_ofldq(struct tasklet_struct * t)3094 static void restart_ofldq(struct tasklet_struct *t)
3095 {
3096 struct sge_uld_txq *q = from_tasklet(q, t, qresume_tsk);
3097
3098 spin_lock(&q->sendq.lock);
3099 q->full = 0; /* the queue actually is completely empty now */
3100 service_ofldq(q);
3101 spin_unlock(&q->sendq.lock);
3102 }
3103
3104 /**
3105 * skb_txq - return the Tx queue an offload packet should use
3106 * @skb: the packet
3107 *
3108 * Returns the Tx queue an offload packet should use as indicated by bits
3109 * 1-15 in the packet's queue_mapping.
3110 */
skb_txq(const struct sk_buff * skb)3111 static inline unsigned int skb_txq(const struct sk_buff *skb)
3112 {
3113 return skb->queue_mapping >> 1;
3114 }
3115
3116 /**
3117 * is_ctrl_pkt - return whether an offload packet is a control packet
3118 * @skb: the packet
3119 *
3120 * Returns whether an offload packet should use an OFLD or a CTRL
3121 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
3122 */
is_ctrl_pkt(const struct sk_buff * skb)3123 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
3124 {
3125 return skb->queue_mapping & 1;
3126 }
3127
uld_send(struct adapter * adap,struct sk_buff * skb,unsigned int tx_uld_type)3128 static inline int uld_send(struct adapter *adap, struct sk_buff *skb,
3129 unsigned int tx_uld_type)
3130 {
3131 struct sge_uld_txq_info *txq_info;
3132 struct sge_uld_txq *txq;
3133 unsigned int idx = skb_txq(skb);
3134
3135 if (unlikely(is_ctrl_pkt(skb))) {
3136 /* Single ctrl queue is a requirement for LE workaround path */
3137 if (adap->tids.nsftids)
3138 idx = 0;
3139 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
3140 }
3141
3142 txq_info = adap->sge.uld_txq_info[tx_uld_type];
3143 if (unlikely(!txq_info)) {
3144 WARN_ON(true);
3145 kfree_skb(skb);
3146 return NET_XMIT_DROP;
3147 }
3148
3149 txq = &txq_info->uldtxq[idx];
3150 return ofld_xmit(txq, skb);
3151 }
3152
3153 /**
3154 * t4_ofld_send - send an offload packet
3155 * @adap: the adapter
3156 * @skb: the packet
3157 *
3158 * Sends an offload packet. We use the packet queue_mapping to select the
3159 * appropriate Tx queue as follows: bit 0 indicates whether the packet
3160 * should be sent as regular or control, bits 1-15 select the queue.
3161 */
t4_ofld_send(struct adapter * adap,struct sk_buff * skb)3162 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
3163 {
3164 int ret;
3165
3166 local_bh_disable();
3167 ret = uld_send(adap, skb, CXGB4_TX_OFLD);
3168 local_bh_enable();
3169 return ret;
3170 }
3171
3172 /**
3173 * cxgb4_ofld_send - send an offload packet
3174 * @dev: the net device
3175 * @skb: the packet
3176 *
3177 * Sends an offload packet. This is an exported version of @t4_ofld_send,
3178 * intended for ULDs.
3179 */
cxgb4_ofld_send(struct net_device * dev,struct sk_buff * skb)3180 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
3181 {
3182 return t4_ofld_send(netdev2adap(dev), skb);
3183 }
3184 EXPORT_SYMBOL(cxgb4_ofld_send);
3185
inline_tx_header(const void * src,const struct sge_txq * q,void * pos,int length)3186 static void *inline_tx_header(const void *src,
3187 const struct sge_txq *q,
3188 void *pos, int length)
3189 {
3190 int left = (void *)q->stat - pos;
3191 u64 *p;
3192
3193 if (likely(length <= left)) {
3194 memcpy(pos, src, length);
3195 pos += length;
3196 } else {
3197 memcpy(pos, src, left);
3198 memcpy(q->desc, src + left, length - left);
3199 pos = (void *)q->desc + (length - left);
3200 }
3201 /* 0-pad to multiple of 16 */
3202 p = PTR_ALIGN(pos, 8);
3203 if ((uintptr_t)p & 8) {
3204 *p = 0;
3205 return p + 1;
3206 }
3207 return p;
3208 }
3209
3210 /**
3211 * ofld_xmit_direct - copy a WR into offload queue
3212 * @q: the Tx offload queue
3213 * @src: location of WR
3214 * @len: WR length
3215 *
3216 * Copy an immediate WR into an uncontended SGE offload queue.
3217 */
ofld_xmit_direct(struct sge_uld_txq * q,const void * src,unsigned int len)3218 static int ofld_xmit_direct(struct sge_uld_txq *q, const void *src,
3219 unsigned int len)
3220 {
3221 unsigned int ndesc;
3222 int credits;
3223 u64 *pos;
3224
3225 /* Use the lower limit as the cut-off */
3226 if (len > MAX_IMM_OFLD_TX_DATA_WR_LEN) {
3227 WARN_ON(1);
3228 return NET_XMIT_DROP;
3229 }
3230
3231 /* Don't return NET_XMIT_CN here as the current
3232 * implementation doesn't queue the request
3233 * using an skb when the following conditions not met
3234 */
3235 if (!spin_trylock(&q->sendq.lock))
3236 return NET_XMIT_DROP;
3237
3238 if (q->full || !skb_queue_empty(&q->sendq) ||
3239 q->service_ofldq_running) {
3240 spin_unlock(&q->sendq.lock);
3241 return NET_XMIT_DROP;
3242 }
3243 ndesc = flits_to_desc(DIV_ROUND_UP(len, 8));
3244 credits = txq_avail(&q->q) - ndesc;
3245 pos = (u64 *)&q->q.desc[q->q.pidx];
3246
3247 /* ofldtxq_stop modifies WR header in-situ */
3248 inline_tx_header(src, &q->q, pos, len);
3249 if (unlikely(credits < TXQ_STOP_THRES))
3250 ofldtxq_stop(q, (struct fw_wr_hdr *)pos);
3251 txq_advance(&q->q, ndesc);
3252 cxgb4_ring_tx_db(q->adap, &q->q, ndesc);
3253
3254 spin_unlock(&q->sendq.lock);
3255 return NET_XMIT_SUCCESS;
3256 }
3257
cxgb4_immdata_send(struct net_device * dev,unsigned int idx,const void * src,unsigned int len)3258 int cxgb4_immdata_send(struct net_device *dev, unsigned int idx,
3259 const void *src, unsigned int len)
3260 {
3261 struct sge_uld_txq_info *txq_info;
3262 struct sge_uld_txq *txq;
3263 struct adapter *adap;
3264 int ret;
3265
3266 adap = netdev2adap(dev);
3267
3268 local_bh_disable();
3269 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
3270 if (unlikely(!txq_info)) {
3271 WARN_ON(true);
3272 local_bh_enable();
3273 return NET_XMIT_DROP;
3274 }
3275 txq = &txq_info->uldtxq[idx];
3276
3277 ret = ofld_xmit_direct(txq, src, len);
3278 local_bh_enable();
3279 return net_xmit_eval(ret);
3280 }
3281 EXPORT_SYMBOL(cxgb4_immdata_send);
3282
3283 /**
3284 * t4_crypto_send - send crypto packet
3285 * @adap: the adapter
3286 * @skb: the packet
3287 *
3288 * Sends crypto packet. We use the packet queue_mapping to select the
3289 * appropriate Tx queue as follows: bit 0 indicates whether the packet
3290 * should be sent as regular or control, bits 1-15 select the queue.
3291 */
t4_crypto_send(struct adapter * adap,struct sk_buff * skb)3292 static int t4_crypto_send(struct adapter *adap, struct sk_buff *skb)
3293 {
3294 int ret;
3295
3296 local_bh_disable();
3297 ret = uld_send(adap, skb, CXGB4_TX_CRYPTO);
3298 local_bh_enable();
3299 return ret;
3300 }
3301
3302 /**
3303 * cxgb4_crypto_send - send crypto packet
3304 * @dev: the net device
3305 * @skb: the packet
3306 *
3307 * Sends crypto packet. This is an exported version of @t4_crypto_send,
3308 * intended for ULDs.
3309 */
cxgb4_crypto_send(struct net_device * dev,struct sk_buff * skb)3310 int cxgb4_crypto_send(struct net_device *dev, struct sk_buff *skb)
3311 {
3312 return t4_crypto_send(netdev2adap(dev), skb);
3313 }
3314 EXPORT_SYMBOL(cxgb4_crypto_send);
3315
copy_frags(struct sk_buff * skb,const struct pkt_gl * gl,unsigned int offset)3316 static inline void copy_frags(struct sk_buff *skb,
3317 const struct pkt_gl *gl, unsigned int offset)
3318 {
3319 int i;
3320
3321 /* usually there's just one frag */
3322 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
3323 gl->frags[0].offset + offset,
3324 gl->frags[0].size - offset);
3325 skb_shinfo(skb)->nr_frags = gl->nfrags;
3326 for (i = 1; i < gl->nfrags; i++)
3327 __skb_fill_page_desc(skb, i, gl->frags[i].page,
3328 gl->frags[i].offset,
3329 gl->frags[i].size);
3330
3331 /* get a reference to the last page, we don't own it */
3332 get_page(gl->frags[gl->nfrags - 1].page);
3333 }
3334
3335 /**
3336 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
3337 * @gl: the gather list
3338 * @skb_len: size of sk_buff main body if it carries fragments
3339 * @pull_len: amount of data to move to the sk_buff's main body
3340 *
3341 * Builds an sk_buff from the given packet gather list. Returns the
3342 * sk_buff or %NULL if sk_buff allocation failed.
3343 */
cxgb4_pktgl_to_skb(const struct pkt_gl * gl,unsigned int skb_len,unsigned int pull_len)3344 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
3345 unsigned int skb_len, unsigned int pull_len)
3346 {
3347 struct sk_buff *skb;
3348
3349 /*
3350 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
3351 * size, which is expected since buffers are at least PAGE_SIZEd.
3352 * In this case packets up to RX_COPY_THRES have only one fragment.
3353 */
3354 if (gl->tot_len <= RX_COPY_THRES) {
3355 skb = dev_alloc_skb(gl->tot_len);
3356 if (unlikely(!skb))
3357 goto out;
3358 __skb_put(skb, gl->tot_len);
3359 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
3360 } else {
3361 skb = dev_alloc_skb(skb_len);
3362 if (unlikely(!skb))
3363 goto out;
3364 __skb_put(skb, pull_len);
3365 skb_copy_to_linear_data(skb, gl->va, pull_len);
3366
3367 copy_frags(skb, gl, pull_len);
3368 skb->len = gl->tot_len;
3369 skb->data_len = skb->len - pull_len;
3370 skb->truesize += skb->data_len;
3371 }
3372 out: return skb;
3373 }
3374 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
3375
3376 /**
3377 * t4_pktgl_free - free a packet gather list
3378 * @gl: the gather list
3379 *
3380 * Releases the pages of a packet gather list. We do not own the last
3381 * page on the list and do not free it.
3382 */
t4_pktgl_free(const struct pkt_gl * gl)3383 static void t4_pktgl_free(const struct pkt_gl *gl)
3384 {
3385 int n;
3386 const struct page_frag *p;
3387
3388 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
3389 put_page(p->page);
3390 }
3391
3392 /*
3393 * Process an MPS trace packet. Give it an unused protocol number so it won't
3394 * be delivered to anyone and send it to the stack for capture.
3395 */
handle_trace_pkt(struct adapter * adap,const struct pkt_gl * gl)3396 static noinline int handle_trace_pkt(struct adapter *adap,
3397 const struct pkt_gl *gl)
3398 {
3399 struct sk_buff *skb;
3400
3401 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
3402 if (unlikely(!skb)) {
3403 t4_pktgl_free(gl);
3404 return 0;
3405 }
3406
3407 if (is_t4(adap->params.chip))
3408 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
3409 else
3410 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
3411
3412 skb_reset_mac_header(skb);
3413 skb->protocol = htons(0xffff);
3414 skb->dev = adap->port[0];
3415 netif_receive_skb(skb);
3416 return 0;
3417 }
3418
3419 /**
3420 * cxgb4_sgetim_to_hwtstamp - convert sge time stamp to hw time stamp
3421 * @adap: the adapter
3422 * @hwtstamps: time stamp structure to update
3423 * @sgetstamp: 60bit iqe timestamp
3424 *
3425 * Every ingress queue entry has the 60-bit timestamp, convert that timestamp
3426 * which is in Core Clock ticks into ktime_t and assign it
3427 **/
cxgb4_sgetim_to_hwtstamp(struct adapter * adap,struct skb_shared_hwtstamps * hwtstamps,u64 sgetstamp)3428 static void cxgb4_sgetim_to_hwtstamp(struct adapter *adap,
3429 struct skb_shared_hwtstamps *hwtstamps,
3430 u64 sgetstamp)
3431 {
3432 u64 ns;
3433 u64 tmp = (sgetstamp * 1000 * 1000 + adap->params.vpd.cclk / 2);
3434
3435 ns = div_u64(tmp, adap->params.vpd.cclk);
3436
3437 memset(hwtstamps, 0, sizeof(*hwtstamps));
3438 hwtstamps->hwtstamp = ns_to_ktime(ns);
3439 }
3440
do_gro(struct sge_eth_rxq * rxq,const struct pkt_gl * gl,const struct cpl_rx_pkt * pkt,unsigned long tnl_hdr_len)3441 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
3442 const struct cpl_rx_pkt *pkt, unsigned long tnl_hdr_len)
3443 {
3444 struct adapter *adapter = rxq->rspq.adap;
3445 struct sge *s = &adapter->sge;
3446 struct port_info *pi;
3447 int ret;
3448 struct sk_buff *skb;
3449
3450 skb = napi_get_frags(&rxq->rspq.napi);
3451 if (unlikely(!skb)) {
3452 t4_pktgl_free(gl);
3453 rxq->stats.rx_drops++;
3454 return;
3455 }
3456
3457 copy_frags(skb, gl, s->pktshift);
3458 if (tnl_hdr_len)
3459 skb->csum_level = 1;
3460 skb->len = gl->tot_len - s->pktshift;
3461 skb->data_len = skb->len;
3462 skb->truesize += skb->data_len;
3463 skb->ip_summed = CHECKSUM_UNNECESSARY;
3464 skb_record_rx_queue(skb, rxq->rspq.idx);
3465 pi = netdev_priv(skb->dev);
3466 if (pi->rxtstamp)
3467 cxgb4_sgetim_to_hwtstamp(adapter, skb_hwtstamps(skb),
3468 gl->sgetstamp);
3469 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
3470 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3471 PKT_HASH_TYPE_L3);
3472
3473 if (unlikely(pkt->vlan_ex)) {
3474 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3475 rxq->stats.vlan_ex++;
3476 }
3477 ret = napi_gro_frags(&rxq->rspq.napi);
3478 if (ret == GRO_HELD)
3479 rxq->stats.lro_pkts++;
3480 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
3481 rxq->stats.lro_merged++;
3482 rxq->stats.pkts++;
3483 rxq->stats.rx_cso++;
3484 }
3485
3486 enum {
3487 RX_NON_PTP_PKT = 0,
3488 RX_PTP_PKT_SUC = 1,
3489 RX_PTP_PKT_ERR = 2
3490 };
3491
3492 /**
3493 * t4_systim_to_hwstamp - read hardware time stamp
3494 * @adapter: the adapter
3495 * @skb: the packet
3496 *
3497 * Read Time Stamp from MPS packet and insert in skb which
3498 * is forwarded to PTP application
3499 */
t4_systim_to_hwstamp(struct adapter * adapter,struct sk_buff * skb)3500 static noinline int t4_systim_to_hwstamp(struct adapter *adapter,
3501 struct sk_buff *skb)
3502 {
3503 struct skb_shared_hwtstamps *hwtstamps;
3504 struct cpl_rx_mps_pkt *cpl = NULL;
3505 unsigned char *data;
3506 int offset;
3507
3508 cpl = (struct cpl_rx_mps_pkt *)skb->data;
3509 if (!(CPL_RX_MPS_PKT_TYPE_G(ntohl(cpl->op_to_r1_hi)) &
3510 X_CPL_RX_MPS_PKT_TYPE_PTP))
3511 return RX_PTP_PKT_ERR;
3512
3513 data = skb->data + sizeof(*cpl);
3514 skb_pull(skb, 2 * sizeof(u64) + sizeof(struct cpl_rx_mps_pkt));
3515 offset = ETH_HLEN + IPV4_HLEN(skb->data) + UDP_HLEN;
3516 if (skb->len < offset + OFF_PTP_SEQUENCE_ID + sizeof(short))
3517 return RX_PTP_PKT_ERR;
3518
3519 hwtstamps = skb_hwtstamps(skb);
3520 memset(hwtstamps, 0, sizeof(*hwtstamps));
3521 hwtstamps->hwtstamp = ns_to_ktime(get_unaligned_be64(data));
3522
3523 return RX_PTP_PKT_SUC;
3524 }
3525
3526 /**
3527 * t4_rx_hststamp - Recv PTP Event Message
3528 * @adapter: the adapter
3529 * @rsp: the response queue descriptor holding the RX_PKT message
3530 * @rxq: the response queue holding the RX_PKT message
3531 * @skb: the packet
3532 *
3533 * PTP enabled and MPS packet, read HW timestamp
3534 */
t4_rx_hststamp(struct adapter * adapter,const __be64 * rsp,struct sge_eth_rxq * rxq,struct sk_buff * skb)3535 static int t4_rx_hststamp(struct adapter *adapter, const __be64 *rsp,
3536 struct sge_eth_rxq *rxq, struct sk_buff *skb)
3537 {
3538 int ret;
3539
3540 if (unlikely((*(u8 *)rsp == CPL_RX_MPS_PKT) &&
3541 !is_t4(adapter->params.chip))) {
3542 ret = t4_systim_to_hwstamp(adapter, skb);
3543 if (ret == RX_PTP_PKT_ERR) {
3544 kfree_skb(skb);
3545 rxq->stats.rx_drops++;
3546 }
3547 return ret;
3548 }
3549 return RX_NON_PTP_PKT;
3550 }
3551
3552 /**
3553 * t4_tx_hststamp - Loopback PTP Transmit Event Message
3554 * @adapter: the adapter
3555 * @skb: the packet
3556 * @dev: the ingress net device
3557 *
3558 * Read hardware timestamp for the loopback PTP Tx event message
3559 */
t4_tx_hststamp(struct adapter * adapter,struct sk_buff * skb,struct net_device * dev)3560 static int t4_tx_hststamp(struct adapter *adapter, struct sk_buff *skb,
3561 struct net_device *dev)
3562 {
3563 struct port_info *pi = netdev_priv(dev);
3564
3565 if (!is_t4(adapter->params.chip) && adapter->ptp_tx_skb) {
3566 cxgb4_ptp_read_hwstamp(adapter, pi);
3567 kfree_skb(skb);
3568 return 0;
3569 }
3570 return 1;
3571 }
3572
3573 /**
3574 * t4_tx_completion_handler - handle CPL_SGE_EGR_UPDATE messages
3575 * @rspq: Ethernet RX Response Queue associated with Ethernet TX Queue
3576 * @rsp: Response Entry pointer into Response Queue
3577 * @gl: Gather List pointer
3578 *
3579 * For adapters which support the SGE Doorbell Queue Timer facility,
3580 * we configure the Ethernet TX Queues to send CIDX Updates to the
3581 * Associated Ethernet RX Response Queue with CPL_SGE_EGR_UPDATE
3582 * messages. This adds a small load to PCIe Link RX bandwidth and,
3583 * potentially, higher CPU Interrupt load, but allows us to respond
3584 * much more quickly to the CIDX Updates. This is important for
3585 * Upper Layer Software which isn't willing to have a large amount
3586 * of TX Data outstanding before receiving DMA Completions.
3587 */
t4_tx_completion_handler(struct sge_rspq * rspq,const __be64 * rsp,const struct pkt_gl * gl)3588 static void t4_tx_completion_handler(struct sge_rspq *rspq,
3589 const __be64 *rsp,
3590 const struct pkt_gl *gl)
3591 {
3592 u8 opcode = ((const struct rss_header *)rsp)->opcode;
3593 struct port_info *pi = netdev_priv(rspq->netdev);
3594 struct adapter *adapter = rspq->adap;
3595 struct sge *s = &adapter->sge;
3596 struct sge_eth_txq *txq;
3597
3598 /* skip RSS header */
3599 rsp++;
3600
3601 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
3602 */
3603 if (unlikely(opcode == CPL_FW4_MSG &&
3604 ((const struct cpl_fw4_msg *)rsp)->type ==
3605 FW_TYPE_RSSCPL)) {
3606 rsp++;
3607 opcode = ((const struct rss_header *)rsp)->opcode;
3608 rsp++;
3609 }
3610
3611 if (unlikely(opcode != CPL_SGE_EGR_UPDATE)) {
3612 pr_info("%s: unexpected FW4/CPL %#x on Rx queue\n",
3613 __func__, opcode);
3614 return;
3615 }
3616
3617 txq = &s->ethtxq[pi->first_qset + rspq->idx];
3618
3619 /* We've got the Hardware Consumer Index Update in the Egress Update
3620 * message. These Egress Update messages will be our sole CIDX Updates
3621 * we get since we don't want to chew up PCIe bandwidth for both Ingress
3622 * Messages and Status Page writes. However, The code which manages
3623 * reclaiming successfully DMA'ed TX Work Requests uses the CIDX value
3624 * stored in the Status Page at the end of the TX Queue. It's easiest
3625 * to simply copy the CIDX Update value from the Egress Update message
3626 * to the Status Page. Also note that no Endian issues need to be
3627 * considered here since both are Big Endian and we're just copying
3628 * bytes consistently ...
3629 */
3630 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
3631 struct cpl_sge_egr_update *egr;
3632
3633 egr = (struct cpl_sge_egr_update *)rsp;
3634 WRITE_ONCE(txq->q.stat->cidx, egr->cidx);
3635 }
3636
3637 t4_sge_eth_txq_egress_update(adapter, txq, -1);
3638 }
3639
cxgb4_validate_lb_pkt(struct port_info * pi,const struct pkt_gl * si)3640 static int cxgb4_validate_lb_pkt(struct port_info *pi, const struct pkt_gl *si)
3641 {
3642 struct adapter *adap = pi->adapter;
3643 struct cxgb4_ethtool_lb_test *lb;
3644 struct sge *s = &adap->sge;
3645 struct net_device *netdev;
3646 u8 *data;
3647 int i;
3648
3649 netdev = adap->port[pi->port_id];
3650 lb = &pi->ethtool_lb;
3651 data = si->va + s->pktshift;
3652
3653 i = ETH_ALEN;
3654 if (!ether_addr_equal(data + i, netdev->dev_addr))
3655 return -1;
3656
3657 i += ETH_ALEN;
3658 if (strcmp(&data[i], CXGB4_SELFTEST_LB_STR))
3659 lb->result = -EIO;
3660
3661 complete(&lb->completion);
3662 return 0;
3663 }
3664
3665 /**
3666 * t4_ethrx_handler - process an ingress ethernet packet
3667 * @q: the response queue that received the packet
3668 * @rsp: the response queue descriptor holding the RX_PKT message
3669 * @si: the gather list of packet fragments
3670 *
3671 * Process an ingress ethernet packet and deliver it to the stack.
3672 */
t4_ethrx_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * si)3673 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
3674 const struct pkt_gl *si)
3675 {
3676 bool csum_ok;
3677 struct sk_buff *skb;
3678 const struct cpl_rx_pkt *pkt;
3679 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3680 struct adapter *adapter = q->adap;
3681 struct sge *s = &q->adap->sge;
3682 int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
3683 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
3684 u16 err_vec, tnl_hdr_len = 0;
3685 struct port_info *pi;
3686 int ret = 0;
3687
3688 pi = netdev_priv(q->netdev);
3689 /* If we're looking at TX Queue CIDX Update, handle that separately
3690 * and return.
3691 */
3692 if (unlikely((*(u8 *)rsp == CPL_FW4_MSG) ||
3693 (*(u8 *)rsp == CPL_SGE_EGR_UPDATE))) {
3694 t4_tx_completion_handler(q, rsp, si);
3695 return 0;
3696 }
3697
3698 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
3699 return handle_trace_pkt(q->adap, si);
3700
3701 pkt = (const struct cpl_rx_pkt *)rsp;
3702 /* Compressed error vector is enabled for T6 only */
3703 if (q->adap->params.tp.rx_pkt_encap) {
3704 err_vec = T6_COMPR_RXERR_VEC_G(be16_to_cpu(pkt->err_vec));
3705 tnl_hdr_len = T6_RX_TNLHDR_LEN_G(ntohs(pkt->err_vec));
3706 } else {
3707 err_vec = be16_to_cpu(pkt->err_vec);
3708 }
3709
3710 csum_ok = pkt->csum_calc && !err_vec &&
3711 (q->netdev->features & NETIF_F_RXCSUM);
3712
3713 if (err_vec)
3714 rxq->stats.bad_rx_pkts++;
3715
3716 if (unlikely(pi->ethtool_lb.loopback && pkt->iff >= NCHAN)) {
3717 ret = cxgb4_validate_lb_pkt(pi, si);
3718 if (!ret)
3719 return 0;
3720 }
3721
3722 if (((pkt->l2info & htonl(RXF_TCP_F)) ||
3723 tnl_hdr_len) &&
3724 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
3725 do_gro(rxq, si, pkt, tnl_hdr_len);
3726 return 0;
3727 }
3728
3729 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
3730 if (unlikely(!skb)) {
3731 t4_pktgl_free(si);
3732 rxq->stats.rx_drops++;
3733 return 0;
3734 }
3735
3736 /* Handle PTP Event Rx packet */
3737 if (unlikely(pi->ptp_enable)) {
3738 ret = t4_rx_hststamp(adapter, rsp, rxq, skb);
3739 if (ret == RX_PTP_PKT_ERR)
3740 return 0;
3741 }
3742 if (likely(!ret))
3743 __skb_pull(skb, s->pktshift); /* remove ethernet header pad */
3744
3745 /* Handle the PTP Event Tx Loopback packet */
3746 if (unlikely(pi->ptp_enable && !ret &&
3747 (pkt->l2info & htonl(RXF_UDP_F)) &&
3748 cxgb4_ptp_is_ptp_rx(skb))) {
3749 if (!t4_tx_hststamp(adapter, skb, q->netdev))
3750 return 0;
3751 }
3752
3753 skb->protocol = eth_type_trans(skb, q->netdev);
3754 skb_record_rx_queue(skb, q->idx);
3755 if (skb->dev->features & NETIF_F_RXHASH)
3756 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
3757 PKT_HASH_TYPE_L3);
3758
3759 rxq->stats.pkts++;
3760
3761 if (pi->rxtstamp)
3762 cxgb4_sgetim_to_hwtstamp(q->adap, skb_hwtstamps(skb),
3763 si->sgetstamp);
3764 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
3765 if (!pkt->ip_frag) {
3766 skb->ip_summed = CHECKSUM_UNNECESSARY;
3767 rxq->stats.rx_cso++;
3768 } else if (pkt->l2info & htonl(RXF_IP_F)) {
3769 __sum16 c = (__force __sum16)pkt->csum;
3770 skb->csum = csum_unfold(c);
3771
3772 if (tnl_hdr_len) {
3773 skb->ip_summed = CHECKSUM_UNNECESSARY;
3774 skb->csum_level = 1;
3775 } else {
3776 skb->ip_summed = CHECKSUM_COMPLETE;
3777 }
3778 rxq->stats.rx_cso++;
3779 }
3780 } else {
3781 skb_checksum_none_assert(skb);
3782 #ifdef CONFIG_CHELSIO_T4_FCOE
3783 #define CPL_RX_PKT_FLAGS (RXF_PSH_F | RXF_SYN_F | RXF_UDP_F | \
3784 RXF_TCP_F | RXF_IP_F | RXF_IP6_F | RXF_LRO_F)
3785
3786 if (!(pkt->l2info & cpu_to_be32(CPL_RX_PKT_FLAGS))) {
3787 if ((pkt->l2info & cpu_to_be32(RXF_FCOE_F)) &&
3788 (pi->fcoe.flags & CXGB_FCOE_ENABLED)) {
3789 if (q->adap->params.tp.rx_pkt_encap)
3790 csum_ok = err_vec &
3791 T6_COMPR_RXERR_SUM_F;
3792 else
3793 csum_ok = err_vec & RXERR_CSUM_F;
3794 if (!csum_ok)
3795 skb->ip_summed = CHECKSUM_UNNECESSARY;
3796 }
3797 }
3798
3799 #undef CPL_RX_PKT_FLAGS
3800 #endif /* CONFIG_CHELSIO_T4_FCOE */
3801 }
3802
3803 if (unlikely(pkt->vlan_ex)) {
3804 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
3805 rxq->stats.vlan_ex++;
3806 }
3807 skb_mark_napi_id(skb, &q->napi);
3808 netif_receive_skb(skb);
3809 return 0;
3810 }
3811
3812 /**
3813 * restore_rx_bufs - put back a packet's Rx buffers
3814 * @si: the packet gather list
3815 * @q: the SGE free list
3816 * @frags: number of FL buffers to restore
3817 *
3818 * Puts back on an FL the Rx buffers associated with @si. The buffers
3819 * have already been unmapped and are left unmapped, we mark them so to
3820 * prevent further unmapping attempts.
3821 *
3822 * This function undoes a series of @unmap_rx_buf calls when we find out
3823 * that the current packet can't be processed right away afterall and we
3824 * need to come back to it later. This is a very rare event and there's
3825 * no effort to make this particularly efficient.
3826 */
restore_rx_bufs(const struct pkt_gl * si,struct sge_fl * q,int frags)3827 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
3828 int frags)
3829 {
3830 struct rx_sw_desc *d;
3831
3832 while (frags--) {
3833 if (q->cidx == 0)
3834 q->cidx = q->size - 1;
3835 else
3836 q->cidx--;
3837 d = &q->sdesc[q->cidx];
3838 d->page = si->frags[frags].page;
3839 d->dma_addr |= RX_UNMAPPED_BUF;
3840 q->avail++;
3841 }
3842 }
3843
3844 /**
3845 * is_new_response - check if a response is newly written
3846 * @r: the response descriptor
3847 * @q: the response queue
3848 *
3849 * Returns true if a response descriptor contains a yet unprocessed
3850 * response.
3851 */
is_new_response(const struct rsp_ctrl * r,const struct sge_rspq * q)3852 static inline bool is_new_response(const struct rsp_ctrl *r,
3853 const struct sge_rspq *q)
3854 {
3855 return (r->type_gen >> RSPD_GEN_S) == q->gen;
3856 }
3857
3858 /**
3859 * rspq_next - advance to the next entry in a response queue
3860 * @q: the queue
3861 *
3862 * Updates the state of a response queue to advance it to the next entry.
3863 */
rspq_next(struct sge_rspq * q)3864 static inline void rspq_next(struct sge_rspq *q)
3865 {
3866 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
3867 if (unlikely(++q->cidx == q->size)) {
3868 q->cidx = 0;
3869 q->gen ^= 1;
3870 q->cur_desc = q->desc;
3871 }
3872 }
3873
3874 /**
3875 * process_responses - process responses from an SGE response queue
3876 * @q: the ingress queue to process
3877 * @budget: how many responses can be processed in this round
3878 *
3879 * Process responses from an SGE response queue up to the supplied budget.
3880 * Responses include received packets as well as control messages from FW
3881 * or HW.
3882 *
3883 * Additionally choose the interrupt holdoff time for the next interrupt
3884 * on this queue. If the system is under memory shortage use a fairly
3885 * long delay to help recovery.
3886 */
process_responses(struct sge_rspq * q,int budget)3887 static int process_responses(struct sge_rspq *q, int budget)
3888 {
3889 int ret, rsp_type;
3890 int budget_left = budget;
3891 const struct rsp_ctrl *rc;
3892 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
3893 struct adapter *adapter = q->adap;
3894 struct sge *s = &adapter->sge;
3895
3896 while (likely(budget_left)) {
3897 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
3898 if (!is_new_response(rc, q)) {
3899 if (q->flush_handler)
3900 q->flush_handler(q);
3901 break;
3902 }
3903
3904 dma_rmb();
3905 rsp_type = RSPD_TYPE_G(rc->type_gen);
3906 if (likely(rsp_type == RSPD_TYPE_FLBUF_X)) {
3907 struct page_frag *fp;
3908 struct pkt_gl si;
3909 const struct rx_sw_desc *rsd;
3910 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
3911
3912 if (len & RSPD_NEWBUF_F) {
3913 if (likely(q->offset > 0)) {
3914 free_rx_bufs(q->adap, &rxq->fl, 1);
3915 q->offset = 0;
3916 }
3917 len = RSPD_LEN_G(len);
3918 }
3919 si.tot_len = len;
3920
3921 /* gather packet fragments */
3922 for (frags = 0, fp = si.frags; ; frags++, fp++) {
3923 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
3924 bufsz = get_buf_size(adapter, rsd);
3925 fp->page = rsd->page;
3926 fp->offset = q->offset;
3927 fp->size = min(bufsz, len);
3928 len -= fp->size;
3929 if (!len)
3930 break;
3931 unmap_rx_buf(q->adap, &rxq->fl);
3932 }
3933
3934 si.sgetstamp = SGE_TIMESTAMP_G(
3935 be64_to_cpu(rc->last_flit));
3936 /*
3937 * Last buffer remains mapped so explicitly make it
3938 * coherent for CPU access.
3939 */
3940 dma_sync_single_for_cpu(q->adap->pdev_dev,
3941 get_buf_addr(rsd),
3942 fp->size, DMA_FROM_DEVICE);
3943
3944 si.va = page_address(si.frags[0].page) +
3945 si.frags[0].offset;
3946 prefetch(si.va);
3947
3948 si.nfrags = frags + 1;
3949 ret = q->handler(q, q->cur_desc, &si);
3950 if (likely(ret == 0))
3951 q->offset += ALIGN(fp->size, s->fl_align);
3952 else
3953 restore_rx_bufs(&si, &rxq->fl, frags);
3954 } else if (likely(rsp_type == RSPD_TYPE_CPL_X)) {
3955 ret = q->handler(q, q->cur_desc, NULL);
3956 } else {
3957 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
3958 }
3959
3960 if (unlikely(ret)) {
3961 /* couldn't process descriptor, back off for recovery */
3962 q->next_intr_params = QINTR_TIMER_IDX_V(NOMEM_TMR_IDX);
3963 break;
3964 }
3965
3966 rspq_next(q);
3967 budget_left--;
3968 }
3969
3970 if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 16)
3971 __refill_fl(q->adap, &rxq->fl);
3972 return budget - budget_left;
3973 }
3974
3975 /**
3976 * napi_rx_handler - the NAPI handler for Rx processing
3977 * @napi: the napi instance
3978 * @budget: how many packets we can process in this round
3979 *
3980 * Handler for new data events when using NAPI. This does not need any
3981 * locking or protection from interrupts as data interrupts are off at
3982 * this point and other adapter interrupts do not interfere (the latter
3983 * in not a concern at all with MSI-X as non-data interrupts then have
3984 * a separate handler).
3985 */
napi_rx_handler(struct napi_struct * napi,int budget)3986 static int napi_rx_handler(struct napi_struct *napi, int budget)
3987 {
3988 unsigned int params;
3989 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
3990 int work_done;
3991 u32 val;
3992
3993 work_done = process_responses(q, budget);
3994 if (likely(work_done < budget)) {
3995 int timer_index;
3996
3997 napi_complete_done(napi, work_done);
3998 timer_index = QINTR_TIMER_IDX_G(q->next_intr_params);
3999
4000 if (q->adaptive_rx) {
4001 if (work_done > max(timer_pkt_quota[timer_index],
4002 MIN_NAPI_WORK))
4003 timer_index = (timer_index + 1);
4004 else
4005 timer_index = timer_index - 1;
4006
4007 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
4008 q->next_intr_params =
4009 QINTR_TIMER_IDX_V(timer_index) |
4010 QINTR_CNT_EN_V(0);
4011 params = q->next_intr_params;
4012 } else {
4013 params = q->next_intr_params;
4014 q->next_intr_params = q->intr_params;
4015 }
4016 } else
4017 params = QINTR_TIMER_IDX_V(7);
4018
4019 val = CIDXINC_V(work_done) | SEINTARM_V(params);
4020
4021 /* If we don't have access to the new User GTS (T5+), use the old
4022 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4023 */
4024 if (unlikely(q->bar2_addr == NULL)) {
4025 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
4026 val | INGRESSQID_V((u32)q->cntxt_id));
4027 } else {
4028 writel(val | INGRESSQID_V(q->bar2_qid),
4029 q->bar2_addr + SGE_UDB_GTS);
4030 wmb();
4031 }
4032 return work_done;
4033 }
4034
cxgb4_ethofld_restart(struct tasklet_struct * t)4035 void cxgb4_ethofld_restart(struct tasklet_struct *t)
4036 {
4037 struct sge_eosw_txq *eosw_txq = from_tasklet(eosw_txq, t,
4038 qresume_tsk);
4039 int pktcount;
4040
4041 spin_lock(&eosw_txq->lock);
4042 pktcount = eosw_txq->cidx - eosw_txq->last_cidx;
4043 if (pktcount < 0)
4044 pktcount += eosw_txq->ndesc;
4045
4046 if (pktcount) {
4047 cxgb4_eosw_txq_free_desc(netdev2adap(eosw_txq->netdev),
4048 eosw_txq, pktcount);
4049 eosw_txq->inuse -= pktcount;
4050 }
4051
4052 /* There may be some packets waiting for completions. So,
4053 * attempt to send these packets now.
4054 */
4055 ethofld_xmit(eosw_txq->netdev, eosw_txq);
4056 spin_unlock(&eosw_txq->lock);
4057 }
4058
4059 /* cxgb4_ethofld_rx_handler - Process ETHOFLD Tx completions
4060 * @q: the response queue that received the packet
4061 * @rsp: the response queue descriptor holding the CPL message
4062 * @si: the gather list of packet fragments
4063 *
4064 * Process a ETHOFLD Tx completion. Increment the cidx here, but
4065 * free up the descriptors in a tasklet later.
4066 */
cxgb4_ethofld_rx_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * si)4067 int cxgb4_ethofld_rx_handler(struct sge_rspq *q, const __be64 *rsp,
4068 const struct pkt_gl *si)
4069 {
4070 u8 opcode = ((const struct rss_header *)rsp)->opcode;
4071
4072 /* skip RSS header */
4073 rsp++;
4074
4075 if (opcode == CPL_FW4_ACK) {
4076 const struct cpl_fw4_ack *cpl;
4077 struct sge_eosw_txq *eosw_txq;
4078 struct eotid_entry *entry;
4079 struct sk_buff *skb;
4080 u32 hdr_len, eotid;
4081 u8 flits, wrlen16;
4082 int credits;
4083
4084 cpl = (const struct cpl_fw4_ack *)rsp;
4085 eotid = CPL_FW4_ACK_FLOWID_G(ntohl(OPCODE_TID(cpl))) -
4086 q->adap->tids.eotid_base;
4087 entry = cxgb4_lookup_eotid(&q->adap->tids, eotid);
4088 if (!entry)
4089 goto out_done;
4090
4091 eosw_txq = (struct sge_eosw_txq *)entry->data;
4092 if (!eosw_txq)
4093 goto out_done;
4094
4095 spin_lock(&eosw_txq->lock);
4096 credits = cpl->credits;
4097 while (credits > 0) {
4098 skb = eosw_txq->desc[eosw_txq->cidx].skb;
4099 if (!skb)
4100 break;
4101
4102 if (unlikely((eosw_txq->state ==
4103 CXGB4_EO_STATE_FLOWC_OPEN_REPLY ||
4104 eosw_txq->state ==
4105 CXGB4_EO_STATE_FLOWC_CLOSE_REPLY) &&
4106 eosw_txq->cidx == eosw_txq->flowc_idx)) {
4107 flits = DIV_ROUND_UP(skb->len, 8);
4108 if (eosw_txq->state ==
4109 CXGB4_EO_STATE_FLOWC_OPEN_REPLY)
4110 eosw_txq->state = CXGB4_EO_STATE_ACTIVE;
4111 else
4112 eosw_txq->state = CXGB4_EO_STATE_CLOSED;
4113 complete(&eosw_txq->completion);
4114 } else {
4115 hdr_len = eth_get_headlen(eosw_txq->netdev,
4116 skb->data,
4117 skb_headlen(skb));
4118 flits = ethofld_calc_tx_flits(q->adap, skb,
4119 hdr_len);
4120 }
4121 eosw_txq_advance_index(&eosw_txq->cidx, 1,
4122 eosw_txq->ndesc);
4123 wrlen16 = DIV_ROUND_UP(flits * 8, 16);
4124 credits -= wrlen16;
4125 }
4126
4127 eosw_txq->cred += cpl->credits;
4128 eosw_txq->ncompl--;
4129
4130 spin_unlock(&eosw_txq->lock);
4131
4132 /* Schedule a tasklet to reclaim SKBs and restart ETHOFLD Tx,
4133 * if there were packets waiting for completion.
4134 */
4135 tasklet_schedule(&eosw_txq->qresume_tsk);
4136 }
4137
4138 out_done:
4139 return 0;
4140 }
4141
4142 /*
4143 * The MSI-X interrupt handler for an SGE response queue.
4144 */
t4_sge_intr_msix(int irq,void * cookie)4145 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
4146 {
4147 struct sge_rspq *q = cookie;
4148
4149 napi_schedule(&q->napi);
4150 return IRQ_HANDLED;
4151 }
4152
4153 /*
4154 * Process the indirect interrupt entries in the interrupt queue and kick off
4155 * NAPI for each queue that has generated an entry.
4156 */
process_intrq(struct adapter * adap)4157 static unsigned int process_intrq(struct adapter *adap)
4158 {
4159 unsigned int credits;
4160 const struct rsp_ctrl *rc;
4161 struct sge_rspq *q = &adap->sge.intrq;
4162 u32 val;
4163
4164 spin_lock(&adap->sge.intrq_lock);
4165 for (credits = 0; ; credits++) {
4166 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
4167 if (!is_new_response(rc, q))
4168 break;
4169
4170 dma_rmb();
4171 if (RSPD_TYPE_G(rc->type_gen) == RSPD_TYPE_INTR_X) {
4172 unsigned int qid = ntohl(rc->pldbuflen_qid);
4173
4174 qid -= adap->sge.ingr_start;
4175 napi_schedule(&adap->sge.ingr_map[qid]->napi);
4176 }
4177
4178 rspq_next(q);
4179 }
4180
4181 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
4182
4183 /* If we don't have access to the new User GTS (T5+), use the old
4184 * doorbell mechanism; otherwise use the new BAR2 mechanism.
4185 */
4186 if (unlikely(q->bar2_addr == NULL)) {
4187 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
4188 val | INGRESSQID_V(q->cntxt_id));
4189 } else {
4190 writel(val | INGRESSQID_V(q->bar2_qid),
4191 q->bar2_addr + SGE_UDB_GTS);
4192 wmb();
4193 }
4194 spin_unlock(&adap->sge.intrq_lock);
4195 return credits;
4196 }
4197
4198 /*
4199 * The MSI interrupt handler, which handles data events from SGE response queues
4200 * as well as error and other async events as they all use the same MSI vector.
4201 */
t4_intr_msi(int irq,void * cookie)4202 static irqreturn_t t4_intr_msi(int irq, void *cookie)
4203 {
4204 struct adapter *adap = cookie;
4205
4206 if (adap->flags & CXGB4_MASTER_PF)
4207 t4_slow_intr_handler(adap);
4208 process_intrq(adap);
4209 return IRQ_HANDLED;
4210 }
4211
4212 /*
4213 * Interrupt handler for legacy INTx interrupts.
4214 * Handles data events from SGE response queues as well as error and other
4215 * async events as they all use the same interrupt line.
4216 */
t4_intr_intx(int irq,void * cookie)4217 static irqreturn_t t4_intr_intx(int irq, void *cookie)
4218 {
4219 struct adapter *adap = cookie;
4220
4221 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
4222 if (((adap->flags & CXGB4_MASTER_PF) && t4_slow_intr_handler(adap)) |
4223 process_intrq(adap))
4224 return IRQ_HANDLED;
4225 return IRQ_NONE; /* probably shared interrupt */
4226 }
4227
4228 /**
4229 * t4_intr_handler - select the top-level interrupt handler
4230 * @adap: the adapter
4231 *
4232 * Selects the top-level interrupt handler based on the type of interrupts
4233 * (MSI-X, MSI, or INTx).
4234 */
t4_intr_handler(struct adapter * adap)4235 irq_handler_t t4_intr_handler(struct adapter *adap)
4236 {
4237 if (adap->flags & CXGB4_USING_MSIX)
4238 return t4_sge_intr_msix;
4239 if (adap->flags & CXGB4_USING_MSI)
4240 return t4_intr_msi;
4241 return t4_intr_intx;
4242 }
4243
sge_rx_timer_cb(struct timer_list * t)4244 static void sge_rx_timer_cb(struct timer_list *t)
4245 {
4246 unsigned long m;
4247 unsigned int i;
4248 struct adapter *adap = from_timer(adap, t, sge.rx_timer);
4249 struct sge *s = &adap->sge;
4250
4251 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4252 for (m = s->starving_fl[i]; m; m &= m - 1) {
4253 struct sge_eth_rxq *rxq;
4254 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
4255 struct sge_fl *fl = s->egr_map[id];
4256
4257 clear_bit(id, s->starving_fl);
4258 smp_mb__after_atomic();
4259
4260 if (fl_starving(adap, fl)) {
4261 rxq = container_of(fl, struct sge_eth_rxq, fl);
4262 if (napi_reschedule(&rxq->rspq.napi))
4263 fl->starving++;
4264 else
4265 set_bit(id, s->starving_fl);
4266 }
4267 }
4268 /* The remainder of the SGE RX Timer Callback routine is dedicated to
4269 * global Master PF activities like checking for chip ingress stalls,
4270 * etc.
4271 */
4272 if (!(adap->flags & CXGB4_MASTER_PF))
4273 goto done;
4274
4275 t4_idma_monitor(adap, &s->idma_monitor, HZ, RX_QCHECK_PERIOD);
4276
4277 done:
4278 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
4279 }
4280
sge_tx_timer_cb(struct timer_list * t)4281 static void sge_tx_timer_cb(struct timer_list *t)
4282 {
4283 struct adapter *adap = from_timer(adap, t, sge.tx_timer);
4284 struct sge *s = &adap->sge;
4285 unsigned long m, period;
4286 unsigned int i, budget;
4287
4288 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
4289 for (m = s->txq_maperr[i]; m; m &= m - 1) {
4290 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
4291 struct sge_uld_txq *txq = s->egr_map[id];
4292
4293 clear_bit(id, s->txq_maperr);
4294 tasklet_schedule(&txq->qresume_tsk);
4295 }
4296
4297 if (!is_t4(adap->params.chip)) {
4298 struct sge_eth_txq *q = &s->ptptxq;
4299 int avail;
4300
4301 spin_lock(&adap->ptp_lock);
4302 avail = reclaimable(&q->q);
4303
4304 if (avail) {
4305 free_tx_desc(adap, &q->q, avail, false);
4306 q->q.in_use -= avail;
4307 }
4308 spin_unlock(&adap->ptp_lock);
4309 }
4310
4311 budget = MAX_TIMER_TX_RECLAIM;
4312 i = s->ethtxq_rover;
4313 do {
4314 budget -= t4_sge_eth_txq_egress_update(adap, &s->ethtxq[i],
4315 budget);
4316 if (!budget)
4317 break;
4318
4319 if (++i >= s->ethqsets)
4320 i = 0;
4321 } while (i != s->ethtxq_rover);
4322 s->ethtxq_rover = i;
4323
4324 if (budget == 0) {
4325 /* If we found too many reclaimable packets schedule a timer
4326 * in the near future to continue where we left off.
4327 */
4328 period = 2;
4329 } else {
4330 /* We reclaimed all reclaimable TX Descriptors, so reschedule
4331 * at the normal period.
4332 */
4333 period = TX_QCHECK_PERIOD;
4334 }
4335
4336 mod_timer(&s->tx_timer, jiffies + period);
4337 }
4338
4339 /**
4340 * bar2_address - return the BAR2 address for an SGE Queue's Registers
4341 * @adapter: the adapter
4342 * @qid: the SGE Queue ID
4343 * @qtype: the SGE Queue Type (Egress or Ingress)
4344 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
4345 *
4346 * Returns the BAR2 address for the SGE Queue Registers associated with
4347 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
4348 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
4349 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
4350 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
4351 */
bar2_address(struct adapter * adapter,unsigned int qid,enum t4_bar2_qtype qtype,unsigned int * pbar2_qid)4352 static void __iomem *bar2_address(struct adapter *adapter,
4353 unsigned int qid,
4354 enum t4_bar2_qtype qtype,
4355 unsigned int *pbar2_qid)
4356 {
4357 u64 bar2_qoffset;
4358 int ret;
4359
4360 ret = t4_bar2_sge_qregs(adapter, qid, qtype, 0,
4361 &bar2_qoffset, pbar2_qid);
4362 if (ret)
4363 return NULL;
4364
4365 return adapter->bar2 + bar2_qoffset;
4366 }
4367
4368 /* @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0
4369 * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map
4370 */
t4_sge_alloc_rxq(struct adapter * adap,struct sge_rspq * iq,bool fwevtq,struct net_device * dev,int intr_idx,struct sge_fl * fl,rspq_handler_t hnd,rspq_flush_handler_t flush_hnd,int cong)4371 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
4372 struct net_device *dev, int intr_idx,
4373 struct sge_fl *fl, rspq_handler_t hnd,
4374 rspq_flush_handler_t flush_hnd, int cong)
4375 {
4376 int ret, flsz = 0;
4377 struct fw_iq_cmd c;
4378 struct sge *s = &adap->sge;
4379 struct port_info *pi = netdev_priv(dev);
4380 int relaxed = !(adap->flags & CXGB4_ROOT_NO_RELAXED_ORDERING);
4381
4382 /* Size needs to be multiple of 16, including status entry. */
4383 iq->size = roundup(iq->size, 16);
4384
4385 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
4386 &iq->phys_addr, NULL, 0,
4387 dev_to_node(adap->pdev_dev));
4388 if (!iq->desc)
4389 return -ENOMEM;
4390
4391 memset(&c, 0, sizeof(c));
4392 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
4393 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4394 FW_IQ_CMD_PFN_V(adap->pf) | FW_IQ_CMD_VFN_V(0));
4395 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
4396 FW_LEN16(c));
4397 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
4398 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
4399 FW_IQ_CMD_IQANDST_V(intr_idx < 0) |
4400 FW_IQ_CMD_IQANUD_V(UPDATEDELIVERY_INTERRUPT_X) |
4401 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
4402 -intr_idx - 1));
4403 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
4404 FW_IQ_CMD_IQGTSMODE_F |
4405 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
4406 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
4407 c.iqsize = htons(iq->size);
4408 c.iqaddr = cpu_to_be64(iq->phys_addr);
4409 if (cong >= 0)
4410 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_IQFLINTCONGEN_F |
4411 FW_IQ_CMD_IQTYPE_V(cong ? FW_IQ_IQTYPE_NIC
4412 : FW_IQ_IQTYPE_OFLD));
4413
4414 if (fl) {
4415 unsigned int chip_ver =
4416 CHELSIO_CHIP_VERSION(adap->params.chip);
4417
4418 /* Allocate the ring for the hardware free list (with space
4419 * for its status page) along with the associated software
4420 * descriptor ring. The free list size needs to be a multiple
4421 * of the Egress Queue Unit and at least 2 Egress Units larger
4422 * than the SGE's Egress Congrestion Threshold
4423 * (fl_starve_thres - 1).
4424 */
4425 if (fl->size < s->fl_starve_thres - 1 + 2 * 8)
4426 fl->size = s->fl_starve_thres - 1 + 2 * 8;
4427 fl->size = roundup(fl->size, 8);
4428 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
4429 sizeof(struct rx_sw_desc), &fl->addr,
4430 &fl->sdesc, s->stat_len,
4431 dev_to_node(adap->pdev_dev));
4432 if (!fl->desc)
4433 goto fl_nomem;
4434
4435 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
4436 c.iqns_to_fl0congen |= htonl(FW_IQ_CMD_FL0PACKEN_F |
4437 FW_IQ_CMD_FL0FETCHRO_V(relaxed) |
4438 FW_IQ_CMD_FL0DATARO_V(relaxed) |
4439 FW_IQ_CMD_FL0PADEN_F);
4440 if (cong >= 0)
4441 c.iqns_to_fl0congen |=
4442 htonl(FW_IQ_CMD_FL0CNGCHMAP_V(cong) |
4443 FW_IQ_CMD_FL0CONGCIF_F |
4444 FW_IQ_CMD_FL0CONGEN_F);
4445 /* In T6, for egress queue type FL there is internal overhead
4446 * of 16B for header going into FLM module. Hence the maximum
4447 * allowed burst size is 448 bytes. For T4/T5, the hardware
4448 * doesn't coalesce fetch requests if more than 64 bytes of
4449 * Free List pointers are provided, so we use a 128-byte Fetch
4450 * Burst Minimum there (T6 implements coalescing so we can use
4451 * the smaller 64-byte value there).
4452 */
4453 c.fl0dcaen_to_fl0cidxfthresh =
4454 htons(FW_IQ_CMD_FL0FBMIN_V(chip_ver <= CHELSIO_T5 ?
4455 FETCHBURSTMIN_128B_X :
4456 FETCHBURSTMIN_64B_T6_X) |
4457 FW_IQ_CMD_FL0FBMAX_V((chip_ver <= CHELSIO_T5) ?
4458 FETCHBURSTMAX_512B_X :
4459 FETCHBURSTMAX_256B_X));
4460 c.fl0size = htons(flsz);
4461 c.fl0addr = cpu_to_be64(fl->addr);
4462 }
4463
4464 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4465 if (ret)
4466 goto err;
4467
4468 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
4469 iq->cur_desc = iq->desc;
4470 iq->cidx = 0;
4471 iq->gen = 1;
4472 iq->next_intr_params = iq->intr_params;
4473 iq->cntxt_id = ntohs(c.iqid);
4474 iq->abs_id = ntohs(c.physiqid);
4475 iq->bar2_addr = bar2_address(adap,
4476 iq->cntxt_id,
4477 T4_BAR2_QTYPE_INGRESS,
4478 &iq->bar2_qid);
4479 iq->size--; /* subtract status entry */
4480 iq->netdev = dev;
4481 iq->handler = hnd;
4482 iq->flush_handler = flush_hnd;
4483
4484 memset(&iq->lro_mgr, 0, sizeof(struct t4_lro_mgr));
4485 skb_queue_head_init(&iq->lro_mgr.lroq);
4486
4487 /* set offset to -1 to distinguish ingress queues without FL */
4488 iq->offset = fl ? 0 : -1;
4489
4490 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
4491
4492 if (fl) {
4493 fl->cntxt_id = ntohs(c.fl0id);
4494 fl->avail = fl->pend_cred = 0;
4495 fl->pidx = fl->cidx = 0;
4496 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
4497 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
4498
4499 /* Note, we must initialize the BAR2 Free List User Doorbell
4500 * information before refilling the Free List!
4501 */
4502 fl->bar2_addr = bar2_address(adap,
4503 fl->cntxt_id,
4504 T4_BAR2_QTYPE_EGRESS,
4505 &fl->bar2_qid);
4506 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
4507 }
4508
4509 /* For T5 and later we attempt to set up the Congestion Manager values
4510 * of the new RX Ethernet Queue. This should really be handled by
4511 * firmware because it's more complex than any host driver wants to
4512 * get involved with and it's different per chip and this is almost
4513 * certainly wrong. Firmware would be wrong as well, but it would be
4514 * a lot easier to fix in one place ... For now we do something very
4515 * simple (and hopefully less wrong).
4516 */
4517 if (!is_t4(adap->params.chip) && cong >= 0) {
4518 u32 param, val, ch_map = 0;
4519 int i;
4520 u16 cng_ch_bits_log = adap->params.arch.cng_ch_bits_log;
4521
4522 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4523 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
4524 FW_PARAMS_PARAM_YZ_V(iq->cntxt_id));
4525 if (cong == 0) {
4526 val = CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_QUEUE_X);
4527 } else {
4528 val =
4529 CONMCTXT_CNGTPMODE_V(CONMCTXT_CNGTPMODE_CHANNEL_X);
4530 for (i = 0; i < 4; i++) {
4531 if (cong & (1 << i))
4532 ch_map |= 1 << (i << cng_ch_bits_log);
4533 }
4534 val |= CONMCTXT_CNGCHMAP_V(ch_map);
4535 }
4536 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
4537 ¶m, &val);
4538 if (ret)
4539 dev_warn(adap->pdev_dev, "Failed to set Congestion"
4540 " Manager Context for Ingress Queue %d: %d\n",
4541 iq->cntxt_id, -ret);
4542 }
4543
4544 return 0;
4545
4546 fl_nomem:
4547 ret = -ENOMEM;
4548 err:
4549 if (iq->desc) {
4550 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
4551 iq->desc, iq->phys_addr);
4552 iq->desc = NULL;
4553 }
4554 if (fl && fl->desc) {
4555 kfree(fl->sdesc);
4556 fl->sdesc = NULL;
4557 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
4558 fl->desc, fl->addr);
4559 fl->desc = NULL;
4560 }
4561 return ret;
4562 }
4563
init_txq(struct adapter * adap,struct sge_txq * q,unsigned int id)4564 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
4565 {
4566 q->cntxt_id = id;
4567 q->bar2_addr = bar2_address(adap,
4568 q->cntxt_id,
4569 T4_BAR2_QTYPE_EGRESS,
4570 &q->bar2_qid);
4571 q->in_use = 0;
4572 q->cidx = q->pidx = 0;
4573 q->stops = q->restarts = 0;
4574 q->stat = (void *)&q->desc[q->size];
4575 spin_lock_init(&q->db_lock);
4576 adap->sge.egr_map[id - adap->sge.egr_start] = q;
4577 }
4578
4579 /**
4580 * t4_sge_alloc_eth_txq - allocate an Ethernet TX Queue
4581 * @adap: the adapter
4582 * @txq: the SGE Ethernet TX Queue to initialize
4583 * @dev: the Linux Network Device
4584 * @netdevq: the corresponding Linux TX Queue
4585 * @iqid: the Ingress Queue to which to deliver CIDX Update messages
4586 * @dbqt: whether this TX Queue will use the SGE Doorbell Queue Timers
4587 */
t4_sge_alloc_eth_txq(struct adapter * adap,struct sge_eth_txq * txq,struct net_device * dev,struct netdev_queue * netdevq,unsigned int iqid,u8 dbqt)4588 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
4589 struct net_device *dev, struct netdev_queue *netdevq,
4590 unsigned int iqid, u8 dbqt)
4591 {
4592 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4593 struct port_info *pi = netdev_priv(dev);
4594 struct sge *s = &adap->sge;
4595 struct fw_eq_eth_cmd c;
4596 int ret, nentries;
4597
4598 /* Add status entries */
4599 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4600
4601 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
4602 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
4603 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
4604 netdev_queue_numa_node_read(netdevq));
4605 if (!txq->q.desc)
4606 return -ENOMEM;
4607
4608 memset(&c, 0, sizeof(c));
4609 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
4610 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4611 FW_EQ_ETH_CMD_PFN_V(adap->pf) |
4612 FW_EQ_ETH_CMD_VFN_V(0));
4613 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
4614 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
4615
4616 /* For TX Ethernet Queues using the SGE Doorbell Queue Timer
4617 * mechanism, we use Ingress Queue messages for Hardware Consumer
4618 * Index Updates on the TX Queue. Otherwise we have the Hardware
4619 * write the CIDX Updates into the Status Page at the end of the
4620 * TX Queue.
4621 */
4622 c.autoequiqe_to_viid = htonl(((chip_ver <= CHELSIO_T5) ?
4623 FW_EQ_ETH_CMD_AUTOEQUIQE_F :
4624 FW_EQ_ETH_CMD_AUTOEQUEQE_F) |
4625 FW_EQ_ETH_CMD_VIID_V(pi->viid));
4626
4627 c.fetchszm_to_iqid =
4628 htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V((chip_ver <= CHELSIO_T5) ?
4629 HOSTFCMODE_INGRESS_QUEUE_X :
4630 HOSTFCMODE_STATUS_PAGE_X) |
4631 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
4632 FW_EQ_ETH_CMD_FETCHRO_F | FW_EQ_ETH_CMD_IQID_V(iqid));
4633
4634 /* Note that the CIDX Flush Threshold should match MAX_TX_RECLAIM. */
4635 c.dcaen_to_eqsize =
4636 htonl(FW_EQ_ETH_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4637 ? FETCHBURSTMIN_64B_X
4638 : FETCHBURSTMIN_64B_T6_X) |
4639 FW_EQ_ETH_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4640 FW_EQ_ETH_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4641 FW_EQ_ETH_CMD_CIDXFTHRESHO_V(chip_ver == CHELSIO_T5) |
4642 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
4643
4644 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4645
4646 /* If we're using the SGE Doorbell Queue Timer mechanism, pass in the
4647 * currently configured Timer Index. THis can be changed later via an
4648 * ethtool -C tx-usecs {Timer Val} command. Note that the SGE
4649 * Doorbell Queue mode is currently automatically enabled in the
4650 * Firmware by setting either AUTOEQUEQE or AUTOEQUIQE ...
4651 */
4652 if (dbqt)
4653 c.timeren_timerix =
4654 cpu_to_be32(FW_EQ_ETH_CMD_TIMEREN_F |
4655 FW_EQ_ETH_CMD_TIMERIX_V(txq->dbqtimerix));
4656
4657 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4658 if (ret) {
4659 kfree(txq->q.sdesc);
4660 txq->q.sdesc = NULL;
4661 dma_free_coherent(adap->pdev_dev,
4662 nentries * sizeof(struct tx_desc),
4663 txq->q.desc, txq->q.phys_addr);
4664 txq->q.desc = NULL;
4665 return ret;
4666 }
4667
4668 txq->q.q_type = CXGB4_TXQ_ETH;
4669 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
4670 txq->txq = netdevq;
4671 txq->tso = 0;
4672 txq->uso = 0;
4673 txq->tx_cso = 0;
4674 txq->vlan_ins = 0;
4675 txq->mapping_err = 0;
4676 txq->dbqt = dbqt;
4677
4678 return 0;
4679 }
4680
t4_sge_alloc_ctrl_txq(struct adapter * adap,struct sge_ctrl_txq * txq,struct net_device * dev,unsigned int iqid,unsigned int cmplqid)4681 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
4682 struct net_device *dev, unsigned int iqid,
4683 unsigned int cmplqid)
4684 {
4685 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4686 struct port_info *pi = netdev_priv(dev);
4687 struct sge *s = &adap->sge;
4688 struct fw_eq_ctrl_cmd c;
4689 int ret, nentries;
4690
4691 /* Add status entries */
4692 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
4693
4694 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
4695 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
4696 NULL, 0, dev_to_node(adap->pdev_dev));
4697 if (!txq->q.desc)
4698 return -ENOMEM;
4699
4700 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
4701 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4702 FW_EQ_CTRL_CMD_PFN_V(adap->pf) |
4703 FW_EQ_CTRL_CMD_VFN_V(0));
4704 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
4705 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
4706 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
4707 c.physeqid_pkd = htonl(0);
4708 c.fetchszm_to_iqid =
4709 htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4710 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
4711 FW_EQ_CTRL_CMD_FETCHRO_F | FW_EQ_CTRL_CMD_IQID_V(iqid));
4712 c.dcaen_to_eqsize =
4713 htonl(FW_EQ_CTRL_CMD_FBMIN_V(chip_ver <= CHELSIO_T5
4714 ? FETCHBURSTMIN_64B_X
4715 : FETCHBURSTMIN_64B_T6_X) |
4716 FW_EQ_CTRL_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4717 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4718 FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
4719 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
4720
4721 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4722 if (ret) {
4723 dma_free_coherent(adap->pdev_dev,
4724 nentries * sizeof(struct tx_desc),
4725 txq->q.desc, txq->q.phys_addr);
4726 txq->q.desc = NULL;
4727 return ret;
4728 }
4729
4730 txq->q.q_type = CXGB4_TXQ_CTRL;
4731 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
4732 txq->adap = adap;
4733 skb_queue_head_init(&txq->sendq);
4734 tasklet_setup(&txq->qresume_tsk, restart_ctrlq);
4735 txq->full = 0;
4736 return 0;
4737 }
4738
t4_sge_mod_ctrl_txq(struct adapter * adap,unsigned int eqid,unsigned int cmplqid)4739 int t4_sge_mod_ctrl_txq(struct adapter *adap, unsigned int eqid,
4740 unsigned int cmplqid)
4741 {
4742 u32 param, val;
4743
4744 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
4745 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DMAQ_EQ_CMPLIQID_CTRL) |
4746 FW_PARAMS_PARAM_YZ_V(eqid));
4747 val = cmplqid;
4748 return t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val);
4749 }
4750
t4_sge_alloc_ofld_txq(struct adapter * adap,struct sge_txq * q,struct net_device * dev,u32 cmd,u32 iqid)4751 static int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_txq *q,
4752 struct net_device *dev, u32 cmd, u32 iqid)
4753 {
4754 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip);
4755 struct port_info *pi = netdev_priv(dev);
4756 struct sge *s = &adap->sge;
4757 struct fw_eq_ofld_cmd c;
4758 u32 fb_min, nentries;
4759 int ret;
4760
4761 /* Add status entries */
4762 nentries = q->size + s->stat_len / sizeof(struct tx_desc);
4763 q->desc = alloc_ring(adap->pdev_dev, q->size, sizeof(struct tx_desc),
4764 sizeof(struct tx_sw_desc), &q->phys_addr,
4765 &q->sdesc, s->stat_len, NUMA_NO_NODE);
4766 if (!q->desc)
4767 return -ENOMEM;
4768
4769 if (chip_ver <= CHELSIO_T5)
4770 fb_min = FETCHBURSTMIN_64B_X;
4771 else
4772 fb_min = FETCHBURSTMIN_64B_T6_X;
4773
4774 memset(&c, 0, sizeof(c));
4775 c.op_to_vfn = htonl(FW_CMD_OP_V(cmd) | FW_CMD_REQUEST_F |
4776 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
4777 FW_EQ_OFLD_CMD_PFN_V(adap->pf) |
4778 FW_EQ_OFLD_CMD_VFN_V(0));
4779 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
4780 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
4781 c.fetchszm_to_iqid =
4782 htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(HOSTFCMODE_STATUS_PAGE_X) |
4783 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
4784 FW_EQ_OFLD_CMD_FETCHRO_F | FW_EQ_OFLD_CMD_IQID_V(iqid));
4785 c.dcaen_to_eqsize =
4786 htonl(FW_EQ_OFLD_CMD_FBMIN_V(fb_min) |
4787 FW_EQ_OFLD_CMD_FBMAX_V(FETCHBURSTMAX_512B_X) |
4788 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(CIDXFLUSHTHRESH_32_X) |
4789 FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
4790 c.eqaddr = cpu_to_be64(q->phys_addr);
4791
4792 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4793 if (ret) {
4794 kfree(q->sdesc);
4795 q->sdesc = NULL;
4796 dma_free_coherent(adap->pdev_dev,
4797 nentries * sizeof(struct tx_desc),
4798 q->desc, q->phys_addr);
4799 q->desc = NULL;
4800 return ret;
4801 }
4802
4803 init_txq(adap, q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
4804 return 0;
4805 }
4806
t4_sge_alloc_uld_txq(struct adapter * adap,struct sge_uld_txq * txq,struct net_device * dev,unsigned int iqid,unsigned int uld_type)4807 int t4_sge_alloc_uld_txq(struct adapter *adap, struct sge_uld_txq *txq,
4808 struct net_device *dev, unsigned int iqid,
4809 unsigned int uld_type)
4810 {
4811 u32 cmd = FW_EQ_OFLD_CMD;
4812 int ret;
4813
4814 if (unlikely(uld_type == CXGB4_TX_CRYPTO))
4815 cmd = FW_EQ_CTRL_CMD;
4816
4817 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, cmd, iqid);
4818 if (ret)
4819 return ret;
4820
4821 txq->q.q_type = CXGB4_TXQ_ULD;
4822 txq->adap = adap;
4823 skb_queue_head_init(&txq->sendq);
4824 tasklet_setup(&txq->qresume_tsk, restart_ofldq);
4825 txq->full = 0;
4826 txq->mapping_err = 0;
4827 return 0;
4828 }
4829
t4_sge_alloc_ethofld_txq(struct adapter * adap,struct sge_eohw_txq * txq,struct net_device * dev,u32 iqid)4830 int t4_sge_alloc_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq,
4831 struct net_device *dev, u32 iqid)
4832 {
4833 int ret;
4834
4835 ret = t4_sge_alloc_ofld_txq(adap, &txq->q, dev, FW_EQ_OFLD_CMD, iqid);
4836 if (ret)
4837 return ret;
4838
4839 txq->q.q_type = CXGB4_TXQ_ULD;
4840 spin_lock_init(&txq->lock);
4841 txq->adap = adap;
4842 txq->tso = 0;
4843 txq->uso = 0;
4844 txq->tx_cso = 0;
4845 txq->vlan_ins = 0;
4846 txq->mapping_err = 0;
4847 return 0;
4848 }
4849
free_txq(struct adapter * adap,struct sge_txq * q)4850 void free_txq(struct adapter *adap, struct sge_txq *q)
4851 {
4852 struct sge *s = &adap->sge;
4853
4854 dma_free_coherent(adap->pdev_dev,
4855 q->size * sizeof(struct tx_desc) + s->stat_len,
4856 q->desc, q->phys_addr);
4857 q->cntxt_id = 0;
4858 q->sdesc = NULL;
4859 q->desc = NULL;
4860 }
4861
free_rspq_fl(struct adapter * adap,struct sge_rspq * rq,struct sge_fl * fl)4862 void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
4863 struct sge_fl *fl)
4864 {
4865 struct sge *s = &adap->sge;
4866 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
4867
4868 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
4869 t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP,
4870 rq->cntxt_id, fl_id, 0xffff);
4871 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
4872 rq->desc, rq->phys_addr);
4873 netif_napi_del(&rq->napi);
4874 rq->netdev = NULL;
4875 rq->cntxt_id = rq->abs_id = 0;
4876 rq->desc = NULL;
4877
4878 if (fl) {
4879 free_rx_bufs(adap, fl, fl->avail);
4880 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
4881 fl->desc, fl->addr);
4882 kfree(fl->sdesc);
4883 fl->sdesc = NULL;
4884 fl->cntxt_id = 0;
4885 fl->desc = NULL;
4886 }
4887 }
4888
4889 /**
4890 * t4_free_ofld_rxqs - free a block of consecutive Rx queues
4891 * @adap: the adapter
4892 * @n: number of queues
4893 * @q: pointer to first queue
4894 *
4895 * Release the resources of a consecutive block of offload Rx queues.
4896 */
t4_free_ofld_rxqs(struct adapter * adap,int n,struct sge_ofld_rxq * q)4897 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
4898 {
4899 for ( ; n; n--, q++)
4900 if (q->rspq.desc)
4901 free_rspq_fl(adap, &q->rspq,
4902 q->fl.size ? &q->fl : NULL);
4903 }
4904
t4_sge_free_ethofld_txq(struct adapter * adap,struct sge_eohw_txq * txq)4905 void t4_sge_free_ethofld_txq(struct adapter *adap, struct sge_eohw_txq *txq)
4906 {
4907 if (txq->q.desc) {
4908 t4_ofld_eq_free(adap, adap->mbox, adap->pf, 0,
4909 txq->q.cntxt_id);
4910 free_tx_desc(adap, &txq->q, txq->q.in_use, false);
4911 kfree(txq->q.sdesc);
4912 free_txq(adap, &txq->q);
4913 }
4914 }
4915
4916 /**
4917 * t4_free_sge_resources - free SGE resources
4918 * @adap: the adapter
4919 *
4920 * Frees resources used by the SGE queue sets.
4921 */
t4_free_sge_resources(struct adapter * adap)4922 void t4_free_sge_resources(struct adapter *adap)
4923 {
4924 int i;
4925 struct sge_eth_rxq *eq;
4926 struct sge_eth_txq *etq;
4927
4928 /* stop all Rx queues in order to start them draining */
4929 for (i = 0; i < adap->sge.ethqsets; i++) {
4930 eq = &adap->sge.ethrxq[i];
4931 if (eq->rspq.desc)
4932 t4_iq_stop(adap, adap->mbox, adap->pf, 0,
4933 FW_IQ_TYPE_FL_INT_CAP,
4934 eq->rspq.cntxt_id,
4935 eq->fl.size ? eq->fl.cntxt_id : 0xffff,
4936 0xffff);
4937 }
4938
4939 /* clean up Ethernet Tx/Rx queues */
4940 for (i = 0; i < adap->sge.ethqsets; i++) {
4941 eq = &adap->sge.ethrxq[i];
4942 if (eq->rspq.desc)
4943 free_rspq_fl(adap, &eq->rspq,
4944 eq->fl.size ? &eq->fl : NULL);
4945 if (eq->msix) {
4946 cxgb4_free_msix_idx_in_bmap(adap, eq->msix->idx);
4947 eq->msix = NULL;
4948 }
4949
4950 etq = &adap->sge.ethtxq[i];
4951 if (etq->q.desc) {
4952 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4953 etq->q.cntxt_id);
4954 __netif_tx_lock_bh(etq->txq);
4955 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4956 __netif_tx_unlock_bh(etq->txq);
4957 kfree(etq->q.sdesc);
4958 free_txq(adap, &etq->q);
4959 }
4960 }
4961
4962 /* clean up control Tx queues */
4963 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
4964 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
4965
4966 if (cq->q.desc) {
4967 tasklet_kill(&cq->qresume_tsk);
4968 t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0,
4969 cq->q.cntxt_id);
4970 __skb_queue_purge(&cq->sendq);
4971 free_txq(adap, &cq->q);
4972 }
4973 }
4974
4975 if (adap->sge.fw_evtq.desc) {
4976 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
4977 if (adap->sge.fwevtq_msix_idx >= 0)
4978 cxgb4_free_msix_idx_in_bmap(adap,
4979 adap->sge.fwevtq_msix_idx);
4980 }
4981
4982 if (adap->sge.nd_msix_idx >= 0)
4983 cxgb4_free_msix_idx_in_bmap(adap, adap->sge.nd_msix_idx);
4984
4985 if (adap->sge.intrq.desc)
4986 free_rspq_fl(adap, &adap->sge.intrq, NULL);
4987
4988 if (!is_t4(adap->params.chip)) {
4989 etq = &adap->sge.ptptxq;
4990 if (etq->q.desc) {
4991 t4_eth_eq_free(adap, adap->mbox, adap->pf, 0,
4992 etq->q.cntxt_id);
4993 spin_lock_bh(&adap->ptp_lock);
4994 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
4995 spin_unlock_bh(&adap->ptp_lock);
4996 kfree(etq->q.sdesc);
4997 free_txq(adap, &etq->q);
4998 }
4999 }
5000
5001 /* clear the reverse egress queue map */
5002 memset(adap->sge.egr_map, 0,
5003 adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
5004 }
5005
t4_sge_start(struct adapter * adap)5006 void t4_sge_start(struct adapter *adap)
5007 {
5008 adap->sge.ethtxq_rover = 0;
5009 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
5010 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
5011 }
5012
5013 /**
5014 * t4_sge_stop - disable SGE operation
5015 * @adap: the adapter
5016 *
5017 * Stop tasklets and timers associated with the DMA engine. Note that
5018 * this is effective only if measures have been taken to disable any HW
5019 * events that may restart them.
5020 */
t4_sge_stop(struct adapter * adap)5021 void t4_sge_stop(struct adapter *adap)
5022 {
5023 int i;
5024 struct sge *s = &adap->sge;
5025
5026 if (s->rx_timer.function)
5027 del_timer_sync(&s->rx_timer);
5028 if (s->tx_timer.function)
5029 del_timer_sync(&s->tx_timer);
5030
5031 if (is_offload(adap)) {
5032 struct sge_uld_txq_info *txq_info;
5033
5034 txq_info = adap->sge.uld_txq_info[CXGB4_TX_OFLD];
5035 if (txq_info) {
5036 struct sge_uld_txq *txq = txq_info->uldtxq;
5037
5038 for_each_ofldtxq(&adap->sge, i) {
5039 if (txq->q.desc)
5040 tasklet_kill(&txq->qresume_tsk);
5041 }
5042 }
5043 }
5044
5045 if (is_pci_uld(adap)) {
5046 struct sge_uld_txq_info *txq_info;
5047
5048 txq_info = adap->sge.uld_txq_info[CXGB4_TX_CRYPTO];
5049 if (txq_info) {
5050 struct sge_uld_txq *txq = txq_info->uldtxq;
5051
5052 for_each_ofldtxq(&adap->sge, i) {
5053 if (txq->q.desc)
5054 tasklet_kill(&txq->qresume_tsk);
5055 }
5056 }
5057 }
5058
5059 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
5060 struct sge_ctrl_txq *cq = &s->ctrlq[i];
5061
5062 if (cq->q.desc)
5063 tasklet_kill(&cq->qresume_tsk);
5064 }
5065 }
5066
5067 /**
5068 * t4_sge_init_soft - grab core SGE values needed by SGE code
5069 * @adap: the adapter
5070 *
5071 * We need to grab the SGE operating parameters that we need to have
5072 * in order to do our job and make sure we can live with them.
5073 */
5074
t4_sge_init_soft(struct adapter * adap)5075 static int t4_sge_init_soft(struct adapter *adap)
5076 {
5077 struct sge *s = &adap->sge;
5078 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
5079 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
5080 u32 ingress_rx_threshold;
5081
5082 /*
5083 * Verify that CPL messages are going to the Ingress Queue for
5084 * process_responses() and that only packet data is going to the
5085 * Free Lists.
5086 */
5087 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
5088 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
5089 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
5090 return -EINVAL;
5091 }
5092
5093 /*
5094 * Validate the Host Buffer Register Array indices that we want to
5095 * use ...
5096 *
5097 * XXX Note that we should really read through the Host Buffer Size
5098 * XXX register array and find the indices of the Buffer Sizes which
5099 * XXX meet our needs!
5100 */
5101 #define READ_FL_BUF(x) \
5102 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
5103
5104 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
5105 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
5106 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
5107 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
5108
5109 /* We only bother using the Large Page logic if the Large Page Buffer
5110 * is larger than our Page Size Buffer.
5111 */
5112 if (fl_large_pg <= fl_small_pg)
5113 fl_large_pg = 0;
5114
5115 #undef READ_FL_BUF
5116
5117 /* The Page Size Buffer must be exactly equal to our Page Size and the
5118 * Large Page Size Buffer should be 0 (per above) or a power of 2.
5119 */
5120 if (fl_small_pg != PAGE_SIZE ||
5121 (fl_large_pg & (fl_large_pg-1)) != 0) {
5122 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
5123 fl_small_pg, fl_large_pg);
5124 return -EINVAL;
5125 }
5126 if (fl_large_pg)
5127 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
5128
5129 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
5130 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
5131 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
5132 fl_small_mtu, fl_large_mtu);
5133 return -EINVAL;
5134 }
5135
5136 /*
5137 * Retrieve our RX interrupt holdoff timer values and counter
5138 * threshold values from the SGE parameters.
5139 */
5140 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
5141 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
5142 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
5143 s->timer_val[0] = core_ticks_to_us(adap,
5144 TIMERVALUE0_G(timer_value_0_and_1));
5145 s->timer_val[1] = core_ticks_to_us(adap,
5146 TIMERVALUE1_G(timer_value_0_and_1));
5147 s->timer_val[2] = core_ticks_to_us(adap,
5148 TIMERVALUE2_G(timer_value_2_and_3));
5149 s->timer_val[3] = core_ticks_to_us(adap,
5150 TIMERVALUE3_G(timer_value_2_and_3));
5151 s->timer_val[4] = core_ticks_to_us(adap,
5152 TIMERVALUE4_G(timer_value_4_and_5));
5153 s->timer_val[5] = core_ticks_to_us(adap,
5154 TIMERVALUE5_G(timer_value_4_and_5));
5155
5156 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
5157 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
5158 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
5159 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
5160 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
5161
5162 return 0;
5163 }
5164
5165 /**
5166 * t4_sge_init - initialize SGE
5167 * @adap: the adapter
5168 *
5169 * Perform low-level SGE code initialization needed every time after a
5170 * chip reset.
5171 */
t4_sge_init(struct adapter * adap)5172 int t4_sge_init(struct adapter *adap)
5173 {
5174 struct sge *s = &adap->sge;
5175 u32 sge_control, sge_conm_ctrl;
5176 int ret, egress_threshold;
5177
5178 /*
5179 * Ingress Padding Boundary and Egress Status Page Size are set up by
5180 * t4_fixup_host_params().
5181 */
5182 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
5183 s->pktshift = PKTSHIFT_G(sge_control);
5184 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
5185
5186 s->fl_align = t4_fl_pkt_align(adap);
5187 ret = t4_sge_init_soft(adap);
5188 if (ret < 0)
5189 return ret;
5190
5191 /*
5192 * A FL with <= fl_starve_thres buffers is starving and a periodic
5193 * timer will attempt to refill it. This needs to be larger than the
5194 * SGE's Egress Congestion Threshold. If it isn't, then we can get
5195 * stuck waiting for new packets while the SGE is waiting for us to
5196 * give it more Free List entries. (Note that the SGE's Egress
5197 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
5198 * there was only a single field to control this. For T5 there's the
5199 * original field which now only applies to Unpacked Mode Free List
5200 * buffers and a new field which only applies to Packed Mode Free List
5201 * buffers.
5202 */
5203 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
5204 switch (CHELSIO_CHIP_VERSION(adap->params.chip)) {
5205 case CHELSIO_T4:
5206 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
5207 break;
5208 case CHELSIO_T5:
5209 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5210 break;
5211 case CHELSIO_T6:
5212 egress_threshold = T6_EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
5213 break;
5214 default:
5215 dev_err(adap->pdev_dev, "Unsupported Chip version %d\n",
5216 CHELSIO_CHIP_VERSION(adap->params.chip));
5217 return -EINVAL;
5218 }
5219 s->fl_starve_thres = 2*egress_threshold + 1;
5220
5221 t4_idma_monitor_init(adap, &s->idma_monitor);
5222
5223 /* Set up timers used for recuring callbacks to process RX and TX
5224 * administrative tasks.
5225 */
5226 timer_setup(&s->rx_timer, sge_rx_timer_cb, 0);
5227 timer_setup(&s->tx_timer, sge_tx_timer_cb, 0);
5228
5229 spin_lock_init(&s->intrq_lock);
5230
5231 return 0;
5232 }
5233