1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/if.h>
35 #include <linux/if_vlan.h>
36 #include <linux/jhash.h>
37 #include <linux/slab.h>
38 #include <linux/export.h>
39 #include <net/neighbour.h>
40 #include "common.h"
41 #include "t3cdev.h"
42 #include "cxgb3_defs.h"
43 #include "l2t.h"
44 #include "t3_cpl.h"
45 #include "firmware_exports.h"
46 
47 #define VLAN_NONE 0xfff
48 
49 /*
50  * Module locking notes:  There is a RW lock protecting the L2 table as a
51  * whole plus a spinlock per L2T entry.  Entry lookups and allocations happen
52  * under the protection of the table lock, individual entry changes happen
53  * while holding that entry's spinlock.  The table lock nests outside the
54  * entry locks.  Allocations of new entries take the table lock as writers so
55  * no other lookups can happen while allocating new entries.  Entry updates
56  * take the table lock as readers so multiple entries can be updated in
57  * parallel.  An L2T entry can be dropped by decrementing its reference count
58  * and therefore can happen in parallel with entry allocation but no entry
59  * can change state or increment its ref count during allocation as both of
60  * these perform lookups.
61  */
62 
vlan_prio(const struct l2t_entry * e)63 static inline unsigned int vlan_prio(const struct l2t_entry *e)
64 {
65 	return e->vlan >> 13;
66 }
67 
arp_hash(u32 key,int ifindex,const struct l2t_data * d)68 static inline unsigned int arp_hash(u32 key, int ifindex,
69 				    const struct l2t_data *d)
70 {
71 	return jhash_2words(key, ifindex, 0) & (d->nentries - 1);
72 }
73 
neigh_replace(struct l2t_entry * e,struct neighbour * n)74 static inline void neigh_replace(struct l2t_entry *e, struct neighbour *n)
75 {
76 	neigh_hold(n);
77 	if (e->neigh)
78 		neigh_release(e->neigh);
79 	e->neigh = n;
80 }
81 
82 /*
83  * Set up an L2T entry and send any packets waiting in the arp queue.  The
84  * supplied skb is used for the CPL_L2T_WRITE_REQ.  Must be called with the
85  * entry locked.
86  */
setup_l2e_send_pending(struct t3cdev * dev,struct sk_buff * skb,struct l2t_entry * e)87 static int setup_l2e_send_pending(struct t3cdev *dev, struct sk_buff *skb,
88 				  struct l2t_entry *e)
89 {
90 	struct cpl_l2t_write_req *req;
91 	struct sk_buff *tmp;
92 
93 	if (!skb) {
94 		skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
95 		if (!skb)
96 			return -ENOMEM;
97 	}
98 
99 	req = __skb_put(skb, sizeof(*req));
100 	req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
101 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx));
102 	req->params = htonl(V_L2T_W_IDX(e->idx) | V_L2T_W_IFF(e->smt_idx) |
103 			    V_L2T_W_VLAN(e->vlan & VLAN_VID_MASK) |
104 			    V_L2T_W_PRIO(vlan_prio(e)));
105 	memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac));
106 	memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
107 	skb->priority = CPL_PRIORITY_CONTROL;
108 	cxgb3_ofld_send(dev, skb);
109 
110 	skb_queue_walk_safe(&e->arpq, skb, tmp) {
111 		__skb_unlink(skb, &e->arpq);
112 		cxgb3_ofld_send(dev, skb);
113 	}
114 	e->state = L2T_STATE_VALID;
115 
116 	return 0;
117 }
118 
119 /*
120  * Add a packet to the an L2T entry's queue of packets awaiting resolution.
121  * Must be called with the entry's lock held.
122  */
arpq_enqueue(struct l2t_entry * e,struct sk_buff * skb)123 static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb)
124 {
125 	__skb_queue_tail(&e->arpq, skb);
126 }
127 
t3_l2t_send_slow(struct t3cdev * dev,struct sk_buff * skb,struct l2t_entry * e)128 int t3_l2t_send_slow(struct t3cdev *dev, struct sk_buff *skb,
129 		     struct l2t_entry *e)
130 {
131 again:
132 	switch (e->state) {
133 	case L2T_STATE_STALE:	/* entry is stale, kick off revalidation */
134 		neigh_event_send(e->neigh, NULL);
135 		spin_lock_bh(&e->lock);
136 		if (e->state == L2T_STATE_STALE)
137 			e->state = L2T_STATE_VALID;
138 		spin_unlock_bh(&e->lock);
139 		/* fall through */
140 	case L2T_STATE_VALID:	/* fast-path, send the packet on */
141 		return cxgb3_ofld_send(dev, skb);
142 	case L2T_STATE_RESOLVING:
143 		spin_lock_bh(&e->lock);
144 		if (e->state != L2T_STATE_RESOLVING) {
145 			/* ARP already completed */
146 			spin_unlock_bh(&e->lock);
147 			goto again;
148 		}
149 		arpq_enqueue(e, skb);
150 		spin_unlock_bh(&e->lock);
151 
152 		/*
153 		 * Only the first packet added to the arpq should kick off
154 		 * resolution.  However, because the alloc_skb below can fail,
155 		 * we allow each packet added to the arpq to retry resolution
156 		 * as a way of recovering from transient memory exhaustion.
157 		 * A better way would be to use a work request to retry L2T
158 		 * entries when there's no memory.
159 		 */
160 		if (!neigh_event_send(e->neigh, NULL)) {
161 			skb = alloc_skb(sizeof(struct cpl_l2t_write_req),
162 					GFP_ATOMIC);
163 			if (!skb)
164 				break;
165 
166 			spin_lock_bh(&e->lock);
167 			if (!skb_queue_empty(&e->arpq))
168 				setup_l2e_send_pending(dev, skb, e);
169 			else	/* we lost the race */
170 				__kfree_skb(skb);
171 			spin_unlock_bh(&e->lock);
172 		}
173 	}
174 	return 0;
175 }
176 
177 EXPORT_SYMBOL(t3_l2t_send_slow);
178 
t3_l2t_send_event(struct t3cdev * dev,struct l2t_entry * e)179 void t3_l2t_send_event(struct t3cdev *dev, struct l2t_entry *e)
180 {
181 again:
182 	switch (e->state) {
183 	case L2T_STATE_STALE:	/* entry is stale, kick off revalidation */
184 		neigh_event_send(e->neigh, NULL);
185 		spin_lock_bh(&e->lock);
186 		if (e->state == L2T_STATE_STALE) {
187 			e->state = L2T_STATE_VALID;
188 		}
189 		spin_unlock_bh(&e->lock);
190 		return;
191 	case L2T_STATE_VALID:	/* fast-path, send the packet on */
192 		return;
193 	case L2T_STATE_RESOLVING:
194 		spin_lock_bh(&e->lock);
195 		if (e->state != L2T_STATE_RESOLVING) {
196 			/* ARP already completed */
197 			spin_unlock_bh(&e->lock);
198 			goto again;
199 		}
200 		spin_unlock_bh(&e->lock);
201 
202 		/*
203 		 * Only the first packet added to the arpq should kick off
204 		 * resolution.  However, because the alloc_skb below can fail,
205 		 * we allow each packet added to the arpq to retry resolution
206 		 * as a way of recovering from transient memory exhaustion.
207 		 * A better way would be to use a work request to retry L2T
208 		 * entries when there's no memory.
209 		 */
210 		neigh_event_send(e->neigh, NULL);
211 	}
212 }
213 
214 EXPORT_SYMBOL(t3_l2t_send_event);
215 
216 /*
217  * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
218  */
alloc_l2e(struct l2t_data * d)219 static struct l2t_entry *alloc_l2e(struct l2t_data *d)
220 {
221 	struct l2t_entry *end, *e, **p;
222 
223 	if (!atomic_read(&d->nfree))
224 		return NULL;
225 
226 	/* there's definitely a free entry */
227 	for (e = d->rover, end = &d->l2tab[d->nentries]; e != end; ++e)
228 		if (atomic_read(&e->refcnt) == 0)
229 			goto found;
230 
231 	for (e = &d->l2tab[1]; atomic_read(&e->refcnt); ++e) ;
232 found:
233 	d->rover = e + 1;
234 	atomic_dec(&d->nfree);
235 
236 	/*
237 	 * The entry we found may be an inactive entry that is
238 	 * presently in the hash table.  We need to remove it.
239 	 */
240 	if (e->state != L2T_STATE_UNUSED) {
241 		int hash = arp_hash(e->addr, e->ifindex, d);
242 
243 		for (p = &d->l2tab[hash].first; *p; p = &(*p)->next)
244 			if (*p == e) {
245 				*p = e->next;
246 				break;
247 			}
248 		e->state = L2T_STATE_UNUSED;
249 	}
250 	return e;
251 }
252 
253 /*
254  * Called when an L2T entry has no more users.  The entry is left in the hash
255  * table since it is likely to be reused but we also bump nfree to indicate
256  * that the entry can be reallocated for a different neighbor.  We also drop
257  * the existing neighbor reference in case the neighbor is going away and is
258  * waiting on our reference.
259  *
260  * Because entries can be reallocated to other neighbors once their ref count
261  * drops to 0 we need to take the entry's lock to avoid races with a new
262  * incarnation.
263  */
t3_l2e_free(struct l2t_data * d,struct l2t_entry * e)264 void t3_l2e_free(struct l2t_data *d, struct l2t_entry *e)
265 {
266 	spin_lock_bh(&e->lock);
267 	if (atomic_read(&e->refcnt) == 0) {	/* hasn't been recycled */
268 		if (e->neigh) {
269 			neigh_release(e->neigh);
270 			e->neigh = NULL;
271 		}
272 	}
273 	spin_unlock_bh(&e->lock);
274 	atomic_inc(&d->nfree);
275 }
276 
277 EXPORT_SYMBOL(t3_l2e_free);
278 
279 /*
280  * Update an L2T entry that was previously used for the same next hop as neigh.
281  * Must be called with softirqs disabled.
282  */
reuse_entry(struct l2t_entry * e,struct neighbour * neigh)283 static inline void reuse_entry(struct l2t_entry *e, struct neighbour *neigh)
284 {
285 	unsigned int nud_state;
286 
287 	spin_lock(&e->lock);	/* avoid race with t3_l2t_free */
288 
289 	if (neigh != e->neigh)
290 		neigh_replace(e, neigh);
291 	nud_state = neigh->nud_state;
292 	if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) ||
293 	    !(nud_state & NUD_VALID))
294 		e->state = L2T_STATE_RESOLVING;
295 	else if (nud_state & NUD_CONNECTED)
296 		e->state = L2T_STATE_VALID;
297 	else
298 		e->state = L2T_STATE_STALE;
299 	spin_unlock(&e->lock);
300 }
301 
t3_l2t_get(struct t3cdev * cdev,struct dst_entry * dst,struct net_device * dev,const void * daddr)302 struct l2t_entry *t3_l2t_get(struct t3cdev *cdev, struct dst_entry *dst,
303 			     struct net_device *dev, const void *daddr)
304 {
305 	struct l2t_entry *e = NULL;
306 	struct neighbour *neigh;
307 	struct port_info *p;
308 	struct l2t_data *d;
309 	int hash;
310 	u32 addr;
311 	int ifidx;
312 	int smt_idx;
313 
314 	rcu_read_lock();
315 	neigh = dst_neigh_lookup(dst, daddr);
316 	if (!neigh)
317 		goto done_rcu;
318 
319 	addr = *(u32 *) neigh->primary_key;
320 	ifidx = neigh->dev->ifindex;
321 
322 	if (!dev)
323 		dev = neigh->dev;
324 	p = netdev_priv(dev);
325 	smt_idx = p->port_id;
326 
327 	d = L2DATA(cdev);
328 	if (!d)
329 		goto done_rcu;
330 
331 	hash = arp_hash(addr, ifidx, d);
332 
333 	write_lock_bh(&d->lock);
334 	for (e = d->l2tab[hash].first; e; e = e->next)
335 		if (e->addr == addr && e->ifindex == ifidx &&
336 		    e->smt_idx == smt_idx) {
337 			l2t_hold(d, e);
338 			if (atomic_read(&e->refcnt) == 1)
339 				reuse_entry(e, neigh);
340 			goto done_unlock;
341 		}
342 
343 	/* Need to allocate a new entry */
344 	e = alloc_l2e(d);
345 	if (e) {
346 		spin_lock(&e->lock);	/* avoid race with t3_l2t_free */
347 		e->next = d->l2tab[hash].first;
348 		d->l2tab[hash].first = e;
349 		e->state = L2T_STATE_RESOLVING;
350 		e->addr = addr;
351 		e->ifindex = ifidx;
352 		e->smt_idx = smt_idx;
353 		atomic_set(&e->refcnt, 1);
354 		neigh_replace(e, neigh);
355 		if (is_vlan_dev(neigh->dev))
356 			e->vlan = vlan_dev_vlan_id(neigh->dev);
357 		else
358 			e->vlan = VLAN_NONE;
359 		spin_unlock(&e->lock);
360 	}
361 done_unlock:
362 	write_unlock_bh(&d->lock);
363 done_rcu:
364 	if (neigh)
365 		neigh_release(neigh);
366 	rcu_read_unlock();
367 	return e;
368 }
369 
370 EXPORT_SYMBOL(t3_l2t_get);
371 
372 /*
373  * Called when address resolution fails for an L2T entry to handle packets
374  * on the arpq head.  If a packet specifies a failure handler it is invoked,
375  * otherwise the packets is sent to the offload device.
376  *
377  * XXX: maybe we should abandon the latter behavior and just require a failure
378  * handler.
379  */
handle_failed_resolution(struct t3cdev * dev,struct sk_buff_head * arpq)380 static void handle_failed_resolution(struct t3cdev *dev, struct sk_buff_head *arpq)
381 {
382 	struct sk_buff *skb, *tmp;
383 
384 	skb_queue_walk_safe(arpq, skb, tmp) {
385 		struct l2t_skb_cb *cb = L2T_SKB_CB(skb);
386 
387 		__skb_unlink(skb, arpq);
388 		if (cb->arp_failure_handler)
389 			cb->arp_failure_handler(dev, skb);
390 		else
391 			cxgb3_ofld_send(dev, skb);
392 	}
393 }
394 
395 /*
396  * Called when the host's ARP layer makes a change to some entry that is
397  * loaded into the HW L2 table.
398  */
t3_l2t_update(struct t3cdev * dev,struct neighbour * neigh)399 void t3_l2t_update(struct t3cdev *dev, struct neighbour *neigh)
400 {
401 	struct sk_buff_head arpq;
402 	struct l2t_entry *e;
403 	struct l2t_data *d = L2DATA(dev);
404 	u32 addr = *(u32 *) neigh->primary_key;
405 	int ifidx = neigh->dev->ifindex;
406 	int hash = arp_hash(addr, ifidx, d);
407 
408 	read_lock_bh(&d->lock);
409 	for (e = d->l2tab[hash].first; e; e = e->next)
410 		if (e->addr == addr && e->ifindex == ifidx) {
411 			spin_lock(&e->lock);
412 			goto found;
413 		}
414 	read_unlock_bh(&d->lock);
415 	return;
416 
417 found:
418 	__skb_queue_head_init(&arpq);
419 
420 	read_unlock(&d->lock);
421 	if (atomic_read(&e->refcnt)) {
422 		if (neigh != e->neigh)
423 			neigh_replace(e, neigh);
424 
425 		if (e->state == L2T_STATE_RESOLVING) {
426 			if (neigh->nud_state & NUD_FAILED) {
427 				skb_queue_splice_init(&e->arpq, &arpq);
428 			} else if (neigh->nud_state & (NUD_CONNECTED|NUD_STALE))
429 				setup_l2e_send_pending(dev, NULL, e);
430 		} else {
431 			e->state = neigh->nud_state & NUD_CONNECTED ?
432 			    L2T_STATE_VALID : L2T_STATE_STALE;
433 			if (!ether_addr_equal(e->dmac, neigh->ha))
434 				setup_l2e_send_pending(dev, NULL, e);
435 		}
436 	}
437 	spin_unlock_bh(&e->lock);
438 
439 	if (!skb_queue_empty(&arpq))
440 		handle_failed_resolution(dev, &arpq);
441 }
442 
t3_init_l2t(unsigned int l2t_capacity)443 struct l2t_data *t3_init_l2t(unsigned int l2t_capacity)
444 {
445 	struct l2t_data *d;
446 	int i, size = sizeof(*d) + l2t_capacity * sizeof(struct l2t_entry);
447 
448 	d = kvzalloc(size, GFP_KERNEL);
449 	if (!d)
450 		return NULL;
451 
452 	d->nentries = l2t_capacity;
453 	d->rover = &d->l2tab[1];	/* entry 0 is not used */
454 	atomic_set(&d->nfree, l2t_capacity - 1);
455 	rwlock_init(&d->lock);
456 
457 	for (i = 0; i < l2t_capacity; ++i) {
458 		d->l2tab[i].idx = i;
459 		d->l2tab[i].state = L2T_STATE_UNUSED;
460 		__skb_queue_head_init(&d->l2tab[i].arpq);
461 		spin_lock_init(&d->l2tab[i].lock);
462 		atomic_set(&d->l2tab[i].refcnt, 0);
463 	}
464 	return d;
465 }
466