1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/pci.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/if_vlan.h>
42 #include <linux/mdio.h>
43 #include <linux/sockios.h>
44 #include <linux/workqueue.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/firmware.h>
48 #include <linux/log2.h>
49 #include <linux/stringify.h>
50 #include <linux/sched.h>
51 #include <linux/slab.h>
52 #include <linux/uaccess.h>
53 #include <linux/nospec.h>
54
55 #include "common.h"
56 #include "cxgb3_ioctl.h"
57 #include "regs.h"
58 #include "cxgb3_offload.h"
59 #include "version.h"
60
61 #include "cxgb3_ctl_defs.h"
62 #include "t3_cpl.h"
63 #include "firmware_exports.h"
64
65 enum {
66 MAX_TXQ_ENTRIES = 16384,
67 MAX_CTRL_TXQ_ENTRIES = 1024,
68 MAX_RSPQ_ENTRIES = 16384,
69 MAX_RX_BUFFERS = 16384,
70 MAX_RX_JUMBO_BUFFERS = 16384,
71 MIN_TXQ_ENTRIES = 4,
72 MIN_CTRL_TXQ_ENTRIES = 4,
73 MIN_RSPQ_ENTRIES = 32,
74 MIN_FL_ENTRIES = 32
75 };
76
77 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
78
79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
80 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
81 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
82
83 #define EEPROM_MAGIC 0x38E2F10C
84
85 #define CH_DEVICE(devid, idx) \
86 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
87
88 static const struct pci_device_id cxgb3_pci_tbl[] = {
89 CH_DEVICE(0x20, 0), /* PE9000 */
90 CH_DEVICE(0x21, 1), /* T302E */
91 CH_DEVICE(0x22, 2), /* T310E */
92 CH_DEVICE(0x23, 3), /* T320X */
93 CH_DEVICE(0x24, 1), /* T302X */
94 CH_DEVICE(0x25, 3), /* T320E */
95 CH_DEVICE(0x26, 2), /* T310X */
96 CH_DEVICE(0x30, 2), /* T3B10 */
97 CH_DEVICE(0x31, 3), /* T3B20 */
98 CH_DEVICE(0x32, 1), /* T3B02 */
99 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
100 CH_DEVICE(0x36, 3), /* S320E-CR */
101 CH_DEVICE(0x37, 7), /* N320E-G2 */
102 {0,}
103 };
104
105 MODULE_DESCRIPTION(DRV_DESC);
106 MODULE_AUTHOR("Chelsio Communications");
107 MODULE_LICENSE("Dual BSD/GPL");
108 MODULE_VERSION(DRV_VERSION);
109 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
110
111 static int dflt_msg_enable = DFLT_MSG_ENABLE;
112
113 module_param(dflt_msg_enable, int, 0644);
114 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
115
116 /*
117 * The driver uses the best interrupt scheme available on a platform in the
118 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
119 * of these schemes the driver may consider as follows:
120 *
121 * msi = 2: choose from among all three options
122 * msi = 1: only consider MSI and pin interrupts
123 * msi = 0: force pin interrupts
124 */
125 static int msi = 2;
126
127 module_param(msi, int, 0644);
128 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
129
130 /*
131 * The driver enables offload as a default.
132 * To disable it, use ofld_disable = 1.
133 */
134
135 static int ofld_disable = 0;
136
137 module_param(ofld_disable, int, 0644);
138 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
139
140 /*
141 * We have work elements that we need to cancel when an interface is taken
142 * down. Normally the work elements would be executed by keventd but that
143 * can deadlock because of linkwatch. If our close method takes the rtnl
144 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
145 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
146 * for our work to complete. Get our own work queue to solve this.
147 */
148 struct workqueue_struct *cxgb3_wq;
149
150 /**
151 * link_report - show link status and link speed/duplex
152 * @p: the port whose settings are to be reported
153 *
154 * Shows the link status, speed, and duplex of a port.
155 */
link_report(struct net_device * dev)156 static void link_report(struct net_device *dev)
157 {
158 if (!netif_carrier_ok(dev))
159 netdev_info(dev, "link down\n");
160 else {
161 const char *s = "10Mbps";
162 const struct port_info *p = netdev_priv(dev);
163
164 switch (p->link_config.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168 case SPEED_1000:
169 s = "1000Mbps";
170 break;
171 case SPEED_100:
172 s = "100Mbps";
173 break;
174 }
175
176 netdev_info(dev, "link up, %s, %s-duplex\n",
177 s, p->link_config.duplex == DUPLEX_FULL
178 ? "full" : "half");
179 }
180 }
181
enable_tx_fifo_drain(struct adapter * adapter,struct port_info * pi)182 static void enable_tx_fifo_drain(struct adapter *adapter,
183 struct port_info *pi)
184 {
185 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
186 F_ENDROPPKT);
187 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
188 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
189 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
190 }
191
disable_tx_fifo_drain(struct adapter * adapter,struct port_info * pi)192 static void disable_tx_fifo_drain(struct adapter *adapter,
193 struct port_info *pi)
194 {
195 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
196 F_ENDROPPKT, 0);
197 }
198
t3_os_link_fault(struct adapter * adap,int port_id,int state)199 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
200 {
201 struct net_device *dev = adap->port[port_id];
202 struct port_info *pi = netdev_priv(dev);
203
204 if (state == netif_carrier_ok(dev))
205 return;
206
207 if (state) {
208 struct cmac *mac = &pi->mac;
209
210 netif_carrier_on(dev);
211
212 disable_tx_fifo_drain(adap, pi);
213
214 /* Clear local faults */
215 t3_xgm_intr_disable(adap, pi->port_id);
216 t3_read_reg(adap, A_XGM_INT_STATUS +
217 pi->mac.offset);
218 t3_write_reg(adap,
219 A_XGM_INT_CAUSE + pi->mac.offset,
220 F_XGM_INT);
221
222 t3_set_reg_field(adap,
223 A_XGM_INT_ENABLE +
224 pi->mac.offset,
225 F_XGM_INT, F_XGM_INT);
226 t3_xgm_intr_enable(adap, pi->port_id);
227
228 t3_mac_enable(mac, MAC_DIRECTION_TX);
229 } else {
230 netif_carrier_off(dev);
231
232 /* Flush TX FIFO */
233 enable_tx_fifo_drain(adap, pi);
234 }
235 link_report(dev);
236 }
237
238 /**
239 * t3_os_link_changed - handle link status changes
240 * @adapter: the adapter associated with the link change
241 * @port_id: the port index whose limk status has changed
242 * @link_stat: the new status of the link
243 * @speed: the new speed setting
244 * @duplex: the new duplex setting
245 * @pause: the new flow-control setting
246 *
247 * This is the OS-dependent handler for link status changes. The OS
248 * neutral handler takes care of most of the processing for these events,
249 * then calls this handler for any OS-specific processing.
250 */
t3_os_link_changed(struct adapter * adapter,int port_id,int link_stat,int speed,int duplex,int pause)251 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
252 int speed, int duplex, int pause)
253 {
254 struct net_device *dev = adapter->port[port_id];
255 struct port_info *pi = netdev_priv(dev);
256 struct cmac *mac = &pi->mac;
257
258 /* Skip changes from disabled ports. */
259 if (!netif_running(dev))
260 return;
261
262 if (link_stat != netif_carrier_ok(dev)) {
263 if (link_stat) {
264 disable_tx_fifo_drain(adapter, pi);
265
266 t3_mac_enable(mac, MAC_DIRECTION_RX);
267
268 /* Clear local faults */
269 t3_xgm_intr_disable(adapter, pi->port_id);
270 t3_read_reg(adapter, A_XGM_INT_STATUS +
271 pi->mac.offset);
272 t3_write_reg(adapter,
273 A_XGM_INT_CAUSE + pi->mac.offset,
274 F_XGM_INT);
275
276 t3_set_reg_field(adapter,
277 A_XGM_INT_ENABLE + pi->mac.offset,
278 F_XGM_INT, F_XGM_INT);
279 t3_xgm_intr_enable(adapter, pi->port_id);
280
281 netif_carrier_on(dev);
282 } else {
283 netif_carrier_off(dev);
284
285 t3_xgm_intr_disable(adapter, pi->port_id);
286 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
287 t3_set_reg_field(adapter,
288 A_XGM_INT_ENABLE + pi->mac.offset,
289 F_XGM_INT, 0);
290
291 if (is_10G(adapter))
292 pi->phy.ops->power_down(&pi->phy, 1);
293
294 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
295 t3_mac_disable(mac, MAC_DIRECTION_RX);
296 t3_link_start(&pi->phy, mac, &pi->link_config);
297
298 /* Flush TX FIFO */
299 enable_tx_fifo_drain(adapter, pi);
300 }
301
302 link_report(dev);
303 }
304 }
305
306 /**
307 * t3_os_phymod_changed - handle PHY module changes
308 * @phy: the PHY reporting the module change
309 * @mod_type: new module type
310 *
311 * This is the OS-dependent handler for PHY module changes. It is
312 * invoked when a PHY module is removed or inserted for any OS-specific
313 * processing.
314 */
t3_os_phymod_changed(struct adapter * adap,int port_id)315 void t3_os_phymod_changed(struct adapter *adap, int port_id)
316 {
317 static const char *mod_str[] = {
318 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
319 };
320
321 const struct net_device *dev = adap->port[port_id];
322 const struct port_info *pi = netdev_priv(dev);
323
324 if (pi->phy.modtype == phy_modtype_none)
325 netdev_info(dev, "PHY module unplugged\n");
326 else
327 netdev_info(dev, "%s PHY module inserted\n",
328 mod_str[pi->phy.modtype]);
329 }
330
cxgb_set_rxmode(struct net_device * dev)331 static void cxgb_set_rxmode(struct net_device *dev)
332 {
333 struct port_info *pi = netdev_priv(dev);
334
335 t3_mac_set_rx_mode(&pi->mac, dev);
336 }
337
338 /**
339 * link_start - enable a port
340 * @dev: the device to enable
341 *
342 * Performs the MAC and PHY actions needed to enable a port.
343 */
link_start(struct net_device * dev)344 static void link_start(struct net_device *dev)
345 {
346 struct port_info *pi = netdev_priv(dev);
347 struct cmac *mac = &pi->mac;
348
349 t3_mac_reset(mac);
350 t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
351 t3_mac_set_mtu(mac, dev->mtu);
352 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
353 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
354 t3_mac_set_rx_mode(mac, dev);
355 t3_link_start(&pi->phy, mac, &pi->link_config);
356 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
357 }
358
cxgb_disable_msi(struct adapter * adapter)359 static inline void cxgb_disable_msi(struct adapter *adapter)
360 {
361 if (adapter->flags & USING_MSIX) {
362 pci_disable_msix(adapter->pdev);
363 adapter->flags &= ~USING_MSIX;
364 } else if (adapter->flags & USING_MSI) {
365 pci_disable_msi(adapter->pdev);
366 adapter->flags &= ~USING_MSI;
367 }
368 }
369
370 /*
371 * Interrupt handler for asynchronous events used with MSI-X.
372 */
t3_async_intr_handler(int irq,void * cookie)373 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
374 {
375 t3_slow_intr_handler(cookie);
376 return IRQ_HANDLED;
377 }
378
379 /*
380 * Name the MSI-X interrupts.
381 */
name_msix_vecs(struct adapter * adap)382 static void name_msix_vecs(struct adapter *adap)
383 {
384 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
385
386 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
387 adap->msix_info[0].desc[n] = 0;
388
389 for_each_port(adap, j) {
390 struct net_device *d = adap->port[j];
391 const struct port_info *pi = netdev_priv(d);
392
393 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
394 snprintf(adap->msix_info[msi_idx].desc, n,
395 "%s-%d", d->name, pi->first_qset + i);
396 adap->msix_info[msi_idx].desc[n] = 0;
397 }
398 }
399 }
400
request_msix_data_irqs(struct adapter * adap)401 static int request_msix_data_irqs(struct adapter *adap)
402 {
403 int i, j, err, qidx = 0;
404
405 for_each_port(adap, i) {
406 int nqsets = adap2pinfo(adap, i)->nqsets;
407
408 for (j = 0; j < nqsets; ++j) {
409 err = request_irq(adap->msix_info[qidx + 1].vec,
410 t3_intr_handler(adap,
411 adap->sge.qs[qidx].
412 rspq.polling), 0,
413 adap->msix_info[qidx + 1].desc,
414 &adap->sge.qs[qidx]);
415 if (err) {
416 while (--qidx >= 0)
417 free_irq(adap->msix_info[qidx + 1].vec,
418 &adap->sge.qs[qidx]);
419 return err;
420 }
421 qidx++;
422 }
423 }
424 return 0;
425 }
426
free_irq_resources(struct adapter * adapter)427 static void free_irq_resources(struct adapter *adapter)
428 {
429 if (adapter->flags & USING_MSIX) {
430 int i, n = 0;
431
432 free_irq(adapter->msix_info[0].vec, adapter);
433 for_each_port(adapter, i)
434 n += adap2pinfo(adapter, i)->nqsets;
435
436 for (i = 0; i < n; ++i)
437 free_irq(adapter->msix_info[i + 1].vec,
438 &adapter->sge.qs[i]);
439 } else
440 free_irq(adapter->pdev->irq, adapter);
441 }
442
await_mgmt_replies(struct adapter * adap,unsigned long init_cnt,unsigned long n)443 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
444 unsigned long n)
445 {
446 int attempts = 10;
447
448 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
449 if (!--attempts)
450 return -ETIMEDOUT;
451 msleep(10);
452 }
453 return 0;
454 }
455
init_tp_parity(struct adapter * adap)456 static int init_tp_parity(struct adapter *adap)
457 {
458 int i;
459 struct sk_buff *skb;
460 struct cpl_set_tcb_field *greq;
461 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
462
463 t3_tp_set_offload_mode(adap, 1);
464
465 for (i = 0; i < 16; i++) {
466 struct cpl_smt_write_req *req;
467
468 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
469 if (!skb)
470 skb = adap->nofail_skb;
471 if (!skb)
472 goto alloc_skb_fail;
473
474 req = __skb_put_zero(skb, sizeof(*req));
475 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
476 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
477 req->mtu_idx = NMTUS - 1;
478 req->iff = i;
479 t3_mgmt_tx(adap, skb);
480 if (skb == adap->nofail_skb) {
481 await_mgmt_replies(adap, cnt, i + 1);
482 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
483 if (!adap->nofail_skb)
484 goto alloc_skb_fail;
485 }
486 }
487
488 for (i = 0; i < 2048; i++) {
489 struct cpl_l2t_write_req *req;
490
491 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
492 if (!skb)
493 skb = adap->nofail_skb;
494 if (!skb)
495 goto alloc_skb_fail;
496
497 req = __skb_put_zero(skb, sizeof(*req));
498 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
499 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
500 req->params = htonl(V_L2T_W_IDX(i));
501 t3_mgmt_tx(adap, skb);
502 if (skb == adap->nofail_skb) {
503 await_mgmt_replies(adap, cnt, 16 + i + 1);
504 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
505 if (!adap->nofail_skb)
506 goto alloc_skb_fail;
507 }
508 }
509
510 for (i = 0; i < 2048; i++) {
511 struct cpl_rte_write_req *req;
512
513 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
514 if (!skb)
515 skb = adap->nofail_skb;
516 if (!skb)
517 goto alloc_skb_fail;
518
519 req = __skb_put_zero(skb, sizeof(*req));
520 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
521 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
522 req->l2t_idx = htonl(V_L2T_W_IDX(i));
523 t3_mgmt_tx(adap, skb);
524 if (skb == adap->nofail_skb) {
525 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
526 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
527 if (!adap->nofail_skb)
528 goto alloc_skb_fail;
529 }
530 }
531
532 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
533 if (!skb)
534 skb = adap->nofail_skb;
535 if (!skb)
536 goto alloc_skb_fail;
537
538 greq = __skb_put_zero(skb, sizeof(*greq));
539 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541 greq->mask = cpu_to_be64(1);
542 t3_mgmt_tx(adap, skb);
543
544 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545 if (skb == adap->nofail_skb) {
546 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
548 }
549
550 t3_tp_set_offload_mode(adap, 0);
551 return i;
552
553 alloc_skb_fail:
554 t3_tp_set_offload_mode(adap, 0);
555 return -ENOMEM;
556 }
557
558 /**
559 * setup_rss - configure RSS
560 * @adap: the adapter
561 *
562 * Sets up RSS to distribute packets to multiple receive queues. We
563 * configure the RSS CPU lookup table to distribute to the number of HW
564 * receive queues, and the response queue lookup table to narrow that
565 * down to the response queues actually configured for each port.
566 * We always configure the RSS mapping for two ports since the mapping
567 * table has plenty of entries.
568 */
setup_rss(struct adapter * adap)569 static void setup_rss(struct adapter *adap)
570 {
571 int i;
572 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574 u8 cpus[SGE_QSETS + 1];
575 u16 rspq_map[RSS_TABLE_SIZE + 1];
576
577 for (i = 0; i < SGE_QSETS; ++i)
578 cpus[i] = i;
579 cpus[SGE_QSETS] = 0xff; /* terminator */
580
581 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582 rspq_map[i] = i % nq0;
583 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
584 }
585 rspq_map[RSS_TABLE_SIZE] = 0xffff; /* terminator */
586
587 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
588 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
589 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
590 }
591
ring_dbs(struct adapter * adap)592 static void ring_dbs(struct adapter *adap)
593 {
594 int i, j;
595
596 for (i = 0; i < SGE_QSETS; i++) {
597 struct sge_qset *qs = &adap->sge.qs[i];
598
599 if (qs->adap)
600 for (j = 0; j < SGE_TXQ_PER_SET; j++)
601 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
602 }
603 }
604
init_napi(struct adapter * adap)605 static void init_napi(struct adapter *adap)
606 {
607 int i;
608
609 for (i = 0; i < SGE_QSETS; i++) {
610 struct sge_qset *qs = &adap->sge.qs[i];
611
612 if (qs->adap)
613 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
614 64);
615 }
616
617 /*
618 * netif_napi_add() can be called only once per napi_struct because it
619 * adds each new napi_struct to a list. Be careful not to call it a
620 * second time, e.g., during EEH recovery, by making a note of it.
621 */
622 adap->flags |= NAPI_INIT;
623 }
624
625 /*
626 * Wait until all NAPI handlers are descheduled. This includes the handlers of
627 * both netdevices representing interfaces and the dummy ones for the extra
628 * queues.
629 */
quiesce_rx(struct adapter * adap)630 static void quiesce_rx(struct adapter *adap)
631 {
632 int i;
633
634 for (i = 0; i < SGE_QSETS; i++)
635 if (adap->sge.qs[i].adap)
636 napi_disable(&adap->sge.qs[i].napi);
637 }
638
enable_all_napi(struct adapter * adap)639 static void enable_all_napi(struct adapter *adap)
640 {
641 int i;
642 for (i = 0; i < SGE_QSETS; i++)
643 if (adap->sge.qs[i].adap)
644 napi_enable(&adap->sge.qs[i].napi);
645 }
646
647 /**
648 * setup_sge_qsets - configure SGE Tx/Rx/response queues
649 * @adap: the adapter
650 *
651 * Determines how many sets of SGE queues to use and initializes them.
652 * We support multiple queue sets per port if we have MSI-X, otherwise
653 * just one queue set per port.
654 */
setup_sge_qsets(struct adapter * adap)655 static int setup_sge_qsets(struct adapter *adap)
656 {
657 int i, j, err, irq_idx = 0, qset_idx = 0;
658 unsigned int ntxq = SGE_TXQ_PER_SET;
659
660 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
661 irq_idx = -1;
662
663 for_each_port(adap, i) {
664 struct net_device *dev = adap->port[i];
665 struct port_info *pi = netdev_priv(dev);
666
667 pi->qs = &adap->sge.qs[pi->first_qset];
668 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
669 err = t3_sge_alloc_qset(adap, qset_idx, 1,
670 (adap->flags & USING_MSIX) ? qset_idx + 1 :
671 irq_idx,
672 &adap->params.sge.qset[qset_idx], ntxq, dev,
673 netdev_get_tx_queue(dev, j));
674 if (err) {
675 t3_free_sge_resources(adap);
676 return err;
677 }
678 }
679 }
680
681 return 0;
682 }
683
attr_show(struct device * d,char * buf,ssize_t (* format)(struct net_device *,char *))684 static ssize_t attr_show(struct device *d, char *buf,
685 ssize_t(*format) (struct net_device *, char *))
686 {
687 ssize_t len;
688
689 /* Synchronize with ioctls that may shut down the device */
690 rtnl_lock();
691 len = (*format) (to_net_dev(d), buf);
692 rtnl_unlock();
693 return len;
694 }
695
attr_store(struct device * d,const char * buf,size_t len,ssize_t (* set)(struct net_device *,unsigned int),unsigned int min_val,unsigned int max_val)696 static ssize_t attr_store(struct device *d,
697 const char *buf, size_t len,
698 ssize_t(*set) (struct net_device *, unsigned int),
699 unsigned int min_val, unsigned int max_val)
700 {
701 ssize_t ret;
702 unsigned int val;
703
704 if (!capable(CAP_NET_ADMIN))
705 return -EPERM;
706
707 ret = kstrtouint(buf, 0, &val);
708 if (ret)
709 return ret;
710 if (val < min_val || val > max_val)
711 return -EINVAL;
712
713 rtnl_lock();
714 ret = (*set) (to_net_dev(d), val);
715 if (!ret)
716 ret = len;
717 rtnl_unlock();
718 return ret;
719 }
720
721 #define CXGB3_SHOW(name, val_expr) \
722 static ssize_t format_##name(struct net_device *dev, char *buf) \
723 { \
724 struct port_info *pi = netdev_priv(dev); \
725 struct adapter *adap = pi->adapter; \
726 return sprintf(buf, "%u\n", val_expr); \
727 } \
728 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
729 char *buf) \
730 { \
731 return attr_show(d, buf, format_##name); \
732 }
733
set_nfilters(struct net_device * dev,unsigned int val)734 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
735 {
736 struct port_info *pi = netdev_priv(dev);
737 struct adapter *adap = pi->adapter;
738 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
739
740 if (adap->flags & FULL_INIT_DONE)
741 return -EBUSY;
742 if (val && adap->params.rev == 0)
743 return -EINVAL;
744 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
745 min_tids)
746 return -EINVAL;
747 adap->params.mc5.nfilters = val;
748 return 0;
749 }
750
store_nfilters(struct device * d,struct device_attribute * attr,const char * buf,size_t len)751 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
752 const char *buf, size_t len)
753 {
754 return attr_store(d, buf, len, set_nfilters, 0, ~0);
755 }
756
set_nservers(struct net_device * dev,unsigned int val)757 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
758 {
759 struct port_info *pi = netdev_priv(dev);
760 struct adapter *adap = pi->adapter;
761
762 if (adap->flags & FULL_INIT_DONE)
763 return -EBUSY;
764 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
765 MC5_MIN_TIDS)
766 return -EINVAL;
767 adap->params.mc5.nservers = val;
768 return 0;
769 }
770
store_nservers(struct device * d,struct device_attribute * attr,const char * buf,size_t len)771 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
772 const char *buf, size_t len)
773 {
774 return attr_store(d, buf, len, set_nservers, 0, ~0);
775 }
776
777 #define CXGB3_ATTR_R(name, val_expr) \
778 CXGB3_SHOW(name, val_expr) \
779 static DEVICE_ATTR(name, 0444, show_##name, NULL)
780
781 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
782 CXGB3_SHOW(name, val_expr) \
783 static DEVICE_ATTR(name, 0644, show_##name, store_method)
784
785 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
786 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
787 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
788
789 static struct attribute *cxgb3_attrs[] = {
790 &dev_attr_cam_size.attr,
791 &dev_attr_nfilters.attr,
792 &dev_attr_nservers.attr,
793 NULL
794 };
795
796 static const struct attribute_group cxgb3_attr_group = {
797 .attrs = cxgb3_attrs,
798 };
799
tm_attr_show(struct device * d,char * buf,int sched)800 static ssize_t tm_attr_show(struct device *d,
801 char *buf, int sched)
802 {
803 struct port_info *pi = netdev_priv(to_net_dev(d));
804 struct adapter *adap = pi->adapter;
805 unsigned int v, addr, bpt, cpt;
806 ssize_t len;
807
808 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
809 rtnl_lock();
810 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
811 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
812 if (sched & 1)
813 v >>= 16;
814 bpt = (v >> 8) & 0xff;
815 cpt = v & 0xff;
816 if (!cpt)
817 len = sprintf(buf, "disabled\n");
818 else {
819 v = (adap->params.vpd.cclk * 1000) / cpt;
820 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
821 }
822 rtnl_unlock();
823 return len;
824 }
825
tm_attr_store(struct device * d,const char * buf,size_t len,int sched)826 static ssize_t tm_attr_store(struct device *d,
827 const char *buf, size_t len, int sched)
828 {
829 struct port_info *pi = netdev_priv(to_net_dev(d));
830 struct adapter *adap = pi->adapter;
831 unsigned int val;
832 ssize_t ret;
833
834 if (!capable(CAP_NET_ADMIN))
835 return -EPERM;
836
837 ret = kstrtouint(buf, 0, &val);
838 if (ret)
839 return ret;
840 if (val > 10000000)
841 return -EINVAL;
842
843 rtnl_lock();
844 ret = t3_config_sched(adap, val, sched);
845 if (!ret)
846 ret = len;
847 rtnl_unlock();
848 return ret;
849 }
850
851 #define TM_ATTR(name, sched) \
852 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
853 char *buf) \
854 { \
855 return tm_attr_show(d, buf, sched); \
856 } \
857 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
858 const char *buf, size_t len) \
859 { \
860 return tm_attr_store(d, buf, len, sched); \
861 } \
862 static DEVICE_ATTR(name, 0644, show_##name, store_##name)
863
864 TM_ATTR(sched0, 0);
865 TM_ATTR(sched1, 1);
866 TM_ATTR(sched2, 2);
867 TM_ATTR(sched3, 3);
868 TM_ATTR(sched4, 4);
869 TM_ATTR(sched5, 5);
870 TM_ATTR(sched6, 6);
871 TM_ATTR(sched7, 7);
872
873 static struct attribute *offload_attrs[] = {
874 &dev_attr_sched0.attr,
875 &dev_attr_sched1.attr,
876 &dev_attr_sched2.attr,
877 &dev_attr_sched3.attr,
878 &dev_attr_sched4.attr,
879 &dev_attr_sched5.attr,
880 &dev_attr_sched6.attr,
881 &dev_attr_sched7.attr,
882 NULL
883 };
884
885 static const struct attribute_group offload_attr_group = {
886 .attrs = offload_attrs,
887 };
888
889 /*
890 * Sends an sk_buff to an offload queue driver
891 * after dealing with any active network taps.
892 */
offload_tx(struct t3cdev * tdev,struct sk_buff * skb)893 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
894 {
895 int ret;
896
897 local_bh_disable();
898 ret = t3_offload_tx(tdev, skb);
899 local_bh_enable();
900 return ret;
901 }
902
write_smt_entry(struct adapter * adapter,int idx)903 static int write_smt_entry(struct adapter *adapter, int idx)
904 {
905 struct cpl_smt_write_req *req;
906 struct port_info *pi = netdev_priv(adapter->port[idx]);
907 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
908
909 if (!skb)
910 return -ENOMEM;
911
912 req = __skb_put(skb, sizeof(*req));
913 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
914 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
915 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
916 req->iff = idx;
917 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
918 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
919 skb->priority = 1;
920 offload_tx(&adapter->tdev, skb);
921 return 0;
922 }
923
init_smt(struct adapter * adapter)924 static int init_smt(struct adapter *adapter)
925 {
926 int i;
927
928 for_each_port(adapter, i)
929 write_smt_entry(adapter, i);
930 return 0;
931 }
932
init_port_mtus(struct adapter * adapter)933 static void init_port_mtus(struct adapter *adapter)
934 {
935 unsigned int mtus = adapter->port[0]->mtu;
936
937 if (adapter->port[1])
938 mtus |= adapter->port[1]->mtu << 16;
939 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
940 }
941
send_pktsched_cmd(struct adapter * adap,int sched,int qidx,int lo,int hi,int port)942 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
943 int hi, int port)
944 {
945 struct sk_buff *skb;
946 struct mngt_pktsched_wr *req;
947 int ret;
948
949 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
950 if (!skb)
951 skb = adap->nofail_skb;
952 if (!skb)
953 return -ENOMEM;
954
955 req = skb_put(skb, sizeof(*req));
956 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
957 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
958 req->sched = sched;
959 req->idx = qidx;
960 req->min = lo;
961 req->max = hi;
962 req->binding = port;
963 ret = t3_mgmt_tx(adap, skb);
964 if (skb == adap->nofail_skb) {
965 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
966 GFP_KERNEL);
967 if (!adap->nofail_skb)
968 ret = -ENOMEM;
969 }
970
971 return ret;
972 }
973
bind_qsets(struct adapter * adap)974 static int bind_qsets(struct adapter *adap)
975 {
976 int i, j, err = 0;
977
978 for_each_port(adap, i) {
979 const struct port_info *pi = adap2pinfo(adap, i);
980
981 for (j = 0; j < pi->nqsets; ++j) {
982 int ret = send_pktsched_cmd(adap, 1,
983 pi->first_qset + j, -1,
984 -1, i);
985 if (ret)
986 err = ret;
987 }
988 }
989
990 return err;
991 }
992
993 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \
994 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
995 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
996 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \
997 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
998 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
999 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
1000 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1001 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1002 MODULE_FIRMWARE(FW_FNAME);
1003 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1004 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1005 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1006 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1007 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1008
get_edc_fw_name(int edc_idx)1009 static inline const char *get_edc_fw_name(int edc_idx)
1010 {
1011 const char *fw_name = NULL;
1012
1013 switch (edc_idx) {
1014 case EDC_OPT_AEL2005:
1015 fw_name = AEL2005_OPT_EDC_NAME;
1016 break;
1017 case EDC_TWX_AEL2005:
1018 fw_name = AEL2005_TWX_EDC_NAME;
1019 break;
1020 case EDC_TWX_AEL2020:
1021 fw_name = AEL2020_TWX_EDC_NAME;
1022 break;
1023 }
1024 return fw_name;
1025 }
1026
t3_get_edc_fw(struct cphy * phy,int edc_idx,int size)1027 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1028 {
1029 struct adapter *adapter = phy->adapter;
1030 const struct firmware *fw;
1031 const char *fw_name;
1032 u32 csum;
1033 const __be32 *p;
1034 u16 *cache = phy->phy_cache;
1035 int i, ret = -EINVAL;
1036
1037 fw_name = get_edc_fw_name(edc_idx);
1038 if (fw_name)
1039 ret = request_firmware(&fw, fw_name, &adapter->pdev->dev);
1040 if (ret < 0) {
1041 dev_err(&adapter->pdev->dev,
1042 "could not upgrade firmware: unable to load %s\n",
1043 fw_name);
1044 return ret;
1045 }
1046
1047 /* check size, take checksum in account */
1048 if (fw->size > size + 4) {
1049 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1050 (unsigned int)fw->size, size + 4);
1051 ret = -EINVAL;
1052 }
1053
1054 /* compute checksum */
1055 p = (const __be32 *)fw->data;
1056 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1057 csum += ntohl(p[i]);
1058
1059 if (csum != 0xffffffff) {
1060 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1061 csum);
1062 ret = -EINVAL;
1063 }
1064
1065 for (i = 0; i < size / 4 ; i++) {
1066 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1067 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1068 }
1069
1070 release_firmware(fw);
1071
1072 return ret;
1073 }
1074
upgrade_fw(struct adapter * adap)1075 static int upgrade_fw(struct adapter *adap)
1076 {
1077 int ret;
1078 const struct firmware *fw;
1079 struct device *dev = &adap->pdev->dev;
1080
1081 ret = request_firmware(&fw, FW_FNAME, dev);
1082 if (ret < 0) {
1083 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1084 FW_FNAME);
1085 return ret;
1086 }
1087 ret = t3_load_fw(adap, fw->data, fw->size);
1088 release_firmware(fw);
1089
1090 if (ret == 0)
1091 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1092 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1093 else
1094 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1095 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1096
1097 return ret;
1098 }
1099
t3rev2char(struct adapter * adapter)1100 static inline char t3rev2char(struct adapter *adapter)
1101 {
1102 char rev = 0;
1103
1104 switch(adapter->params.rev) {
1105 case T3_REV_B:
1106 case T3_REV_B2:
1107 rev = 'b';
1108 break;
1109 case T3_REV_C:
1110 rev = 'c';
1111 break;
1112 }
1113 return rev;
1114 }
1115
update_tpsram(struct adapter * adap)1116 static int update_tpsram(struct adapter *adap)
1117 {
1118 const struct firmware *tpsram;
1119 char buf[64];
1120 struct device *dev = &adap->pdev->dev;
1121 int ret;
1122 char rev;
1123
1124 rev = t3rev2char(adap);
1125 if (!rev)
1126 return 0;
1127
1128 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1129
1130 ret = request_firmware(&tpsram, buf, dev);
1131 if (ret < 0) {
1132 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1133 buf);
1134 return ret;
1135 }
1136
1137 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1138 if (ret)
1139 goto release_tpsram;
1140
1141 ret = t3_set_proto_sram(adap, tpsram->data);
1142 if (ret == 0)
1143 dev_info(dev,
1144 "successful update of protocol engine "
1145 "to %d.%d.%d\n",
1146 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1147 else
1148 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1149 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1150 if (ret)
1151 dev_err(dev, "loading protocol SRAM failed\n");
1152
1153 release_tpsram:
1154 release_firmware(tpsram);
1155
1156 return ret;
1157 }
1158
1159 /**
1160 * t3_synchronize_rx - wait for current Rx processing on a port to complete
1161 * @adap: the adapter
1162 * @p: the port
1163 *
1164 * Ensures that current Rx processing on any of the queues associated with
1165 * the given port completes before returning. We do this by acquiring and
1166 * releasing the locks of the response queues associated with the port.
1167 */
t3_synchronize_rx(struct adapter * adap,const struct port_info * p)1168 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
1169 {
1170 int i;
1171
1172 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1173 struct sge_rspq *q = &adap->sge.qs[i].rspq;
1174
1175 spin_lock_irq(&q->lock);
1176 spin_unlock_irq(&q->lock);
1177 }
1178 }
1179
cxgb_vlan_mode(struct net_device * dev,netdev_features_t features)1180 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
1181 {
1182 struct port_info *pi = netdev_priv(dev);
1183 struct adapter *adapter = pi->adapter;
1184
1185 if (adapter->params.rev > 0) {
1186 t3_set_vlan_accel(adapter, 1 << pi->port_id,
1187 features & NETIF_F_HW_VLAN_CTAG_RX);
1188 } else {
1189 /* single control for all ports */
1190 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_CTAG_RX;
1191
1192 for_each_port(adapter, i)
1193 have_vlans |=
1194 adapter->port[i]->features &
1195 NETIF_F_HW_VLAN_CTAG_RX;
1196
1197 t3_set_vlan_accel(adapter, 1, have_vlans);
1198 }
1199 t3_synchronize_rx(adapter, pi);
1200 }
1201
1202 /**
1203 * cxgb_up - enable the adapter
1204 * @adapter: adapter being enabled
1205 *
1206 * Called when the first port is enabled, this function performs the
1207 * actions necessary to make an adapter operational, such as completing
1208 * the initialization of HW modules, and enabling interrupts.
1209 *
1210 * Must be called with the rtnl lock held.
1211 */
cxgb_up(struct adapter * adap)1212 static int cxgb_up(struct adapter *adap)
1213 {
1214 int i, err;
1215
1216 if (!(adap->flags & FULL_INIT_DONE)) {
1217 err = t3_check_fw_version(adap);
1218 if (err == -EINVAL) {
1219 err = upgrade_fw(adap);
1220 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1221 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1222 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1223 }
1224
1225 err = t3_check_tpsram_version(adap);
1226 if (err == -EINVAL) {
1227 err = update_tpsram(adap);
1228 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1229 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1230 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1231 }
1232
1233 /*
1234 * Clear interrupts now to catch errors if t3_init_hw fails.
1235 * We clear them again later as initialization may trigger
1236 * conditions that can interrupt.
1237 */
1238 t3_intr_clear(adap);
1239
1240 err = t3_init_hw(adap, 0);
1241 if (err)
1242 goto out;
1243
1244 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1245 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1246
1247 err = setup_sge_qsets(adap);
1248 if (err)
1249 goto out;
1250
1251 for_each_port(adap, i)
1252 cxgb_vlan_mode(adap->port[i], adap->port[i]->features);
1253
1254 setup_rss(adap);
1255 if (!(adap->flags & NAPI_INIT))
1256 init_napi(adap);
1257
1258 t3_start_sge_timers(adap);
1259 adap->flags |= FULL_INIT_DONE;
1260 }
1261
1262 t3_intr_clear(adap);
1263
1264 if (adap->flags & USING_MSIX) {
1265 name_msix_vecs(adap);
1266 err = request_irq(adap->msix_info[0].vec,
1267 t3_async_intr_handler, 0,
1268 adap->msix_info[0].desc, adap);
1269 if (err)
1270 goto irq_err;
1271
1272 err = request_msix_data_irqs(adap);
1273 if (err) {
1274 free_irq(adap->msix_info[0].vec, adap);
1275 goto irq_err;
1276 }
1277 } else if ((err = request_irq(adap->pdev->irq,
1278 t3_intr_handler(adap,
1279 adap->sge.qs[0].rspq.
1280 polling),
1281 (adap->flags & USING_MSI) ?
1282 0 : IRQF_SHARED,
1283 adap->name, adap)))
1284 goto irq_err;
1285
1286 enable_all_napi(adap);
1287 t3_sge_start(adap);
1288 t3_intr_enable(adap);
1289
1290 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1291 is_offload(adap) && init_tp_parity(adap) == 0)
1292 adap->flags |= TP_PARITY_INIT;
1293
1294 if (adap->flags & TP_PARITY_INIT) {
1295 t3_write_reg(adap, A_TP_INT_CAUSE,
1296 F_CMCACHEPERR | F_ARPLUTPERR);
1297 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1298 }
1299
1300 if (!(adap->flags & QUEUES_BOUND)) {
1301 int ret = bind_qsets(adap);
1302
1303 if (ret < 0) {
1304 CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1305 t3_intr_disable(adap);
1306 free_irq_resources(adap);
1307 err = ret;
1308 goto out;
1309 }
1310 adap->flags |= QUEUES_BOUND;
1311 }
1312
1313 out:
1314 return err;
1315 irq_err:
1316 CH_ERR(adap, "request_irq failed, err %d\n", err);
1317 goto out;
1318 }
1319
1320 /*
1321 * Release resources when all the ports and offloading have been stopped.
1322 */
cxgb_down(struct adapter * adapter,int on_wq)1323 static void cxgb_down(struct adapter *adapter, int on_wq)
1324 {
1325 t3_sge_stop(adapter);
1326 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1327 t3_intr_disable(adapter);
1328 spin_unlock_irq(&adapter->work_lock);
1329
1330 free_irq_resources(adapter);
1331 quiesce_rx(adapter);
1332 t3_sge_stop(adapter);
1333 if (!on_wq)
1334 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1335 }
1336
schedule_chk_task(struct adapter * adap)1337 static void schedule_chk_task(struct adapter *adap)
1338 {
1339 unsigned int timeo;
1340
1341 timeo = adap->params.linkpoll_period ?
1342 (HZ * adap->params.linkpoll_period) / 10 :
1343 adap->params.stats_update_period * HZ;
1344 if (timeo)
1345 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1346 }
1347
offload_open(struct net_device * dev)1348 static int offload_open(struct net_device *dev)
1349 {
1350 struct port_info *pi = netdev_priv(dev);
1351 struct adapter *adapter = pi->adapter;
1352 struct t3cdev *tdev = dev2t3cdev(dev);
1353 int adap_up = adapter->open_device_map & PORT_MASK;
1354 int err;
1355
1356 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1357 return 0;
1358
1359 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1360 goto out;
1361
1362 t3_tp_set_offload_mode(adapter, 1);
1363 tdev->lldev = adapter->port[0];
1364 err = cxgb3_offload_activate(adapter);
1365 if (err)
1366 goto out;
1367
1368 init_port_mtus(adapter);
1369 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1370 adapter->params.b_wnd,
1371 adapter->params.rev == 0 ?
1372 adapter->port[0]->mtu : 0xffff);
1373 init_smt(adapter);
1374
1375 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1376 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1377
1378 /* Call back all registered clients */
1379 cxgb3_add_clients(tdev);
1380
1381 out:
1382 /* restore them in case the offload module has changed them */
1383 if (err) {
1384 t3_tp_set_offload_mode(adapter, 0);
1385 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1386 cxgb3_set_dummy_ops(tdev);
1387 }
1388 return err;
1389 }
1390
offload_close(struct t3cdev * tdev)1391 static int offload_close(struct t3cdev *tdev)
1392 {
1393 struct adapter *adapter = tdev2adap(tdev);
1394 struct t3c_data *td = T3C_DATA(tdev);
1395
1396 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1397 return 0;
1398
1399 /* Call back all registered clients */
1400 cxgb3_remove_clients(tdev);
1401
1402 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1403
1404 /* Flush work scheduled while releasing TIDs */
1405 flush_work(&td->tid_release_task);
1406
1407 tdev->lldev = NULL;
1408 cxgb3_set_dummy_ops(tdev);
1409 t3_tp_set_offload_mode(adapter, 0);
1410 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1411
1412 if (!adapter->open_device_map)
1413 cxgb_down(adapter, 0);
1414
1415 cxgb3_offload_deactivate(adapter);
1416 return 0;
1417 }
1418
cxgb_open(struct net_device * dev)1419 static int cxgb_open(struct net_device *dev)
1420 {
1421 struct port_info *pi = netdev_priv(dev);
1422 struct adapter *adapter = pi->adapter;
1423 int other_ports = adapter->open_device_map & PORT_MASK;
1424 int err;
1425
1426 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1427 return err;
1428
1429 set_bit(pi->port_id, &adapter->open_device_map);
1430 if (is_offload(adapter) && !ofld_disable) {
1431 err = offload_open(dev);
1432 if (err)
1433 pr_warn("Could not initialize offload capabilities\n");
1434 }
1435
1436 netif_set_real_num_tx_queues(dev, pi->nqsets);
1437 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1438 if (err)
1439 return err;
1440 link_start(dev);
1441 t3_port_intr_enable(adapter, pi->port_id);
1442 netif_tx_start_all_queues(dev);
1443 if (!other_ports)
1444 schedule_chk_task(adapter);
1445
1446 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1447 return 0;
1448 }
1449
__cxgb_close(struct net_device * dev,int on_wq)1450 static int __cxgb_close(struct net_device *dev, int on_wq)
1451 {
1452 struct port_info *pi = netdev_priv(dev);
1453 struct adapter *adapter = pi->adapter;
1454
1455
1456 if (!adapter->open_device_map)
1457 return 0;
1458
1459 /* Stop link fault interrupts */
1460 t3_xgm_intr_disable(adapter, pi->port_id);
1461 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1462
1463 t3_port_intr_disable(adapter, pi->port_id);
1464 netif_tx_stop_all_queues(dev);
1465 pi->phy.ops->power_down(&pi->phy, 1);
1466 netif_carrier_off(dev);
1467 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1468
1469 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1470 clear_bit(pi->port_id, &adapter->open_device_map);
1471 spin_unlock_irq(&adapter->work_lock);
1472
1473 if (!(adapter->open_device_map & PORT_MASK))
1474 cancel_delayed_work_sync(&adapter->adap_check_task);
1475
1476 if (!adapter->open_device_map)
1477 cxgb_down(adapter, on_wq);
1478
1479 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1480 return 0;
1481 }
1482
cxgb_close(struct net_device * dev)1483 static int cxgb_close(struct net_device *dev)
1484 {
1485 return __cxgb_close(dev, 0);
1486 }
1487
cxgb_get_stats(struct net_device * dev)1488 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1489 {
1490 struct port_info *pi = netdev_priv(dev);
1491 struct adapter *adapter = pi->adapter;
1492 struct net_device_stats *ns = &dev->stats;
1493 const struct mac_stats *pstats;
1494
1495 spin_lock(&adapter->stats_lock);
1496 pstats = t3_mac_update_stats(&pi->mac);
1497 spin_unlock(&adapter->stats_lock);
1498
1499 ns->tx_bytes = pstats->tx_octets;
1500 ns->tx_packets = pstats->tx_frames;
1501 ns->rx_bytes = pstats->rx_octets;
1502 ns->rx_packets = pstats->rx_frames;
1503 ns->multicast = pstats->rx_mcast_frames;
1504
1505 ns->tx_errors = pstats->tx_underrun;
1506 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1507 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1508 pstats->rx_fifo_ovfl;
1509
1510 /* detailed rx_errors */
1511 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1512 ns->rx_over_errors = 0;
1513 ns->rx_crc_errors = pstats->rx_fcs_errs;
1514 ns->rx_frame_errors = pstats->rx_symbol_errs;
1515 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1516 ns->rx_missed_errors = pstats->rx_cong_drops;
1517
1518 /* detailed tx_errors */
1519 ns->tx_aborted_errors = 0;
1520 ns->tx_carrier_errors = 0;
1521 ns->tx_fifo_errors = pstats->tx_underrun;
1522 ns->tx_heartbeat_errors = 0;
1523 ns->tx_window_errors = 0;
1524 return ns;
1525 }
1526
get_msglevel(struct net_device * dev)1527 static u32 get_msglevel(struct net_device *dev)
1528 {
1529 struct port_info *pi = netdev_priv(dev);
1530 struct adapter *adapter = pi->adapter;
1531
1532 return adapter->msg_enable;
1533 }
1534
set_msglevel(struct net_device * dev,u32 val)1535 static void set_msglevel(struct net_device *dev, u32 val)
1536 {
1537 struct port_info *pi = netdev_priv(dev);
1538 struct adapter *adapter = pi->adapter;
1539
1540 adapter->msg_enable = val;
1541 }
1542
1543 static const char stats_strings[][ETH_GSTRING_LEN] = {
1544 "TxOctetsOK ",
1545 "TxFramesOK ",
1546 "TxMulticastFramesOK",
1547 "TxBroadcastFramesOK",
1548 "TxPauseFrames ",
1549 "TxUnderrun ",
1550 "TxExtUnderrun ",
1551
1552 "TxFrames64 ",
1553 "TxFrames65To127 ",
1554 "TxFrames128To255 ",
1555 "TxFrames256To511 ",
1556 "TxFrames512To1023 ",
1557 "TxFrames1024To1518 ",
1558 "TxFrames1519ToMax ",
1559
1560 "RxOctetsOK ",
1561 "RxFramesOK ",
1562 "RxMulticastFramesOK",
1563 "RxBroadcastFramesOK",
1564 "RxPauseFrames ",
1565 "RxFCSErrors ",
1566 "RxSymbolErrors ",
1567 "RxShortErrors ",
1568 "RxJabberErrors ",
1569 "RxLengthErrors ",
1570 "RxFIFOoverflow ",
1571
1572 "RxFrames64 ",
1573 "RxFrames65To127 ",
1574 "RxFrames128To255 ",
1575 "RxFrames256To511 ",
1576 "RxFrames512To1023 ",
1577 "RxFrames1024To1518 ",
1578 "RxFrames1519ToMax ",
1579
1580 "PhyFIFOErrors ",
1581 "TSO ",
1582 "VLANextractions ",
1583 "VLANinsertions ",
1584 "TxCsumOffload ",
1585 "RxCsumGood ",
1586 "LroAggregated ",
1587 "LroFlushed ",
1588 "LroNoDesc ",
1589 "RxDrops ",
1590
1591 "CheckTXEnToggled ",
1592 "CheckResets ",
1593
1594 "LinkFaults ",
1595 };
1596
get_sset_count(struct net_device * dev,int sset)1597 static int get_sset_count(struct net_device *dev, int sset)
1598 {
1599 switch (sset) {
1600 case ETH_SS_STATS:
1601 return ARRAY_SIZE(stats_strings);
1602 default:
1603 return -EOPNOTSUPP;
1604 }
1605 }
1606
1607 #define T3_REGMAP_SIZE (3 * 1024)
1608
get_regs_len(struct net_device * dev)1609 static int get_regs_len(struct net_device *dev)
1610 {
1611 return T3_REGMAP_SIZE;
1612 }
1613
get_eeprom_len(struct net_device * dev)1614 static int get_eeprom_len(struct net_device *dev)
1615 {
1616 return EEPROMSIZE;
1617 }
1618
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1619 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1620 {
1621 struct port_info *pi = netdev_priv(dev);
1622 struct adapter *adapter = pi->adapter;
1623 u32 fw_vers = 0;
1624 u32 tp_vers = 0;
1625
1626 spin_lock(&adapter->stats_lock);
1627 t3_get_fw_version(adapter, &fw_vers);
1628 t3_get_tp_version(adapter, &tp_vers);
1629 spin_unlock(&adapter->stats_lock);
1630
1631 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1632 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1633 strlcpy(info->bus_info, pci_name(adapter->pdev),
1634 sizeof(info->bus_info));
1635 if (fw_vers)
1636 snprintf(info->fw_version, sizeof(info->fw_version),
1637 "%s %u.%u.%u TP %u.%u.%u",
1638 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1639 G_FW_VERSION_MAJOR(fw_vers),
1640 G_FW_VERSION_MINOR(fw_vers),
1641 G_FW_VERSION_MICRO(fw_vers),
1642 G_TP_VERSION_MAJOR(tp_vers),
1643 G_TP_VERSION_MINOR(tp_vers),
1644 G_TP_VERSION_MICRO(tp_vers));
1645 }
1646
get_strings(struct net_device * dev,u32 stringset,u8 * data)1647 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1648 {
1649 if (stringset == ETH_SS_STATS)
1650 memcpy(data, stats_strings, sizeof(stats_strings));
1651 }
1652
collect_sge_port_stats(struct adapter * adapter,struct port_info * p,int idx)1653 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1654 struct port_info *p, int idx)
1655 {
1656 int i;
1657 unsigned long tot = 0;
1658
1659 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1660 tot += adapter->sge.qs[i].port_stats[idx];
1661 return tot;
1662 }
1663
get_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1664 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1665 u64 *data)
1666 {
1667 struct port_info *pi = netdev_priv(dev);
1668 struct adapter *adapter = pi->adapter;
1669 const struct mac_stats *s;
1670
1671 spin_lock(&adapter->stats_lock);
1672 s = t3_mac_update_stats(&pi->mac);
1673 spin_unlock(&adapter->stats_lock);
1674
1675 *data++ = s->tx_octets;
1676 *data++ = s->tx_frames;
1677 *data++ = s->tx_mcast_frames;
1678 *data++ = s->tx_bcast_frames;
1679 *data++ = s->tx_pause;
1680 *data++ = s->tx_underrun;
1681 *data++ = s->tx_fifo_urun;
1682
1683 *data++ = s->tx_frames_64;
1684 *data++ = s->tx_frames_65_127;
1685 *data++ = s->tx_frames_128_255;
1686 *data++ = s->tx_frames_256_511;
1687 *data++ = s->tx_frames_512_1023;
1688 *data++ = s->tx_frames_1024_1518;
1689 *data++ = s->tx_frames_1519_max;
1690
1691 *data++ = s->rx_octets;
1692 *data++ = s->rx_frames;
1693 *data++ = s->rx_mcast_frames;
1694 *data++ = s->rx_bcast_frames;
1695 *data++ = s->rx_pause;
1696 *data++ = s->rx_fcs_errs;
1697 *data++ = s->rx_symbol_errs;
1698 *data++ = s->rx_short;
1699 *data++ = s->rx_jabber;
1700 *data++ = s->rx_too_long;
1701 *data++ = s->rx_fifo_ovfl;
1702
1703 *data++ = s->rx_frames_64;
1704 *data++ = s->rx_frames_65_127;
1705 *data++ = s->rx_frames_128_255;
1706 *data++ = s->rx_frames_256_511;
1707 *data++ = s->rx_frames_512_1023;
1708 *data++ = s->rx_frames_1024_1518;
1709 *data++ = s->rx_frames_1519_max;
1710
1711 *data++ = pi->phy.fifo_errors;
1712
1713 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1714 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1715 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1716 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1717 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1718 *data++ = 0;
1719 *data++ = 0;
1720 *data++ = 0;
1721 *data++ = s->rx_cong_drops;
1722
1723 *data++ = s->num_toggled;
1724 *data++ = s->num_resets;
1725
1726 *data++ = s->link_faults;
1727 }
1728
reg_block_dump(struct adapter * ap,void * buf,unsigned int start,unsigned int end)1729 static inline void reg_block_dump(struct adapter *ap, void *buf,
1730 unsigned int start, unsigned int end)
1731 {
1732 u32 *p = buf + start;
1733
1734 for (; start <= end; start += sizeof(u32))
1735 *p++ = t3_read_reg(ap, start);
1736 }
1737
get_regs(struct net_device * dev,struct ethtool_regs * regs,void * buf)1738 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1739 void *buf)
1740 {
1741 struct port_info *pi = netdev_priv(dev);
1742 struct adapter *ap = pi->adapter;
1743
1744 /*
1745 * Version scheme:
1746 * bits 0..9: chip version
1747 * bits 10..15: chip revision
1748 * bit 31: set for PCIe cards
1749 */
1750 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1751
1752 /*
1753 * We skip the MAC statistics registers because they are clear-on-read.
1754 * Also reading multi-register stats would need to synchronize with the
1755 * periodic mac stats accumulation. Hard to justify the complexity.
1756 */
1757 memset(buf, 0, T3_REGMAP_SIZE);
1758 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1759 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1760 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1761 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1762 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1763 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1764 XGM_REG(A_XGM_SERDES_STAT3, 1));
1765 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1766 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1767 }
1768
restart_autoneg(struct net_device * dev)1769 static int restart_autoneg(struct net_device *dev)
1770 {
1771 struct port_info *p = netdev_priv(dev);
1772
1773 if (!netif_running(dev))
1774 return -EAGAIN;
1775 if (p->link_config.autoneg != AUTONEG_ENABLE)
1776 return -EINVAL;
1777 p->phy.ops->autoneg_restart(&p->phy);
1778 return 0;
1779 }
1780
set_phys_id(struct net_device * dev,enum ethtool_phys_id_state state)1781 static int set_phys_id(struct net_device *dev,
1782 enum ethtool_phys_id_state state)
1783 {
1784 struct port_info *pi = netdev_priv(dev);
1785 struct adapter *adapter = pi->adapter;
1786
1787 switch (state) {
1788 case ETHTOOL_ID_ACTIVE:
1789 return 1; /* cycle on/off once per second */
1790
1791 case ETHTOOL_ID_OFF:
1792 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1793 break;
1794
1795 case ETHTOOL_ID_ON:
1796 case ETHTOOL_ID_INACTIVE:
1797 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1798 F_GPIO0_OUT_VAL);
1799 }
1800
1801 return 0;
1802 }
1803
get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1804 static int get_link_ksettings(struct net_device *dev,
1805 struct ethtool_link_ksettings *cmd)
1806 {
1807 struct port_info *p = netdev_priv(dev);
1808 u32 supported;
1809
1810 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1811 p->link_config.supported);
1812 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1813 p->link_config.advertising);
1814
1815 if (netif_carrier_ok(dev)) {
1816 cmd->base.speed = p->link_config.speed;
1817 cmd->base.duplex = p->link_config.duplex;
1818 } else {
1819 cmd->base.speed = SPEED_UNKNOWN;
1820 cmd->base.duplex = DUPLEX_UNKNOWN;
1821 }
1822
1823 ethtool_convert_link_mode_to_legacy_u32(&supported,
1824 cmd->link_modes.supported);
1825
1826 cmd->base.port = (supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1827 cmd->base.phy_address = p->phy.mdio.prtad;
1828 cmd->base.autoneg = p->link_config.autoneg;
1829 return 0;
1830 }
1831
speed_duplex_to_caps(int speed,int duplex)1832 static int speed_duplex_to_caps(int speed, int duplex)
1833 {
1834 int cap = 0;
1835
1836 switch (speed) {
1837 case SPEED_10:
1838 if (duplex == DUPLEX_FULL)
1839 cap = SUPPORTED_10baseT_Full;
1840 else
1841 cap = SUPPORTED_10baseT_Half;
1842 break;
1843 case SPEED_100:
1844 if (duplex == DUPLEX_FULL)
1845 cap = SUPPORTED_100baseT_Full;
1846 else
1847 cap = SUPPORTED_100baseT_Half;
1848 break;
1849 case SPEED_1000:
1850 if (duplex == DUPLEX_FULL)
1851 cap = SUPPORTED_1000baseT_Full;
1852 else
1853 cap = SUPPORTED_1000baseT_Half;
1854 break;
1855 case SPEED_10000:
1856 if (duplex == DUPLEX_FULL)
1857 cap = SUPPORTED_10000baseT_Full;
1858 }
1859 return cap;
1860 }
1861
1862 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1863 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1864 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1865 ADVERTISED_10000baseT_Full)
1866
set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1867 static int set_link_ksettings(struct net_device *dev,
1868 const struct ethtool_link_ksettings *cmd)
1869 {
1870 struct port_info *p = netdev_priv(dev);
1871 struct link_config *lc = &p->link_config;
1872 u32 advertising;
1873
1874 ethtool_convert_link_mode_to_legacy_u32(&advertising,
1875 cmd->link_modes.advertising);
1876
1877 if (!(lc->supported & SUPPORTED_Autoneg)) {
1878 /*
1879 * PHY offers a single speed/duplex. See if that's what's
1880 * being requested.
1881 */
1882 if (cmd->base.autoneg == AUTONEG_DISABLE) {
1883 u32 speed = cmd->base.speed;
1884 int cap = speed_duplex_to_caps(speed, cmd->base.duplex);
1885 if (lc->supported & cap)
1886 return 0;
1887 }
1888 return -EINVAL;
1889 }
1890
1891 if (cmd->base.autoneg == AUTONEG_DISABLE) {
1892 u32 speed = cmd->base.speed;
1893 int cap = speed_duplex_to_caps(speed, cmd->base.duplex);
1894
1895 if (!(lc->supported & cap) || (speed == SPEED_1000))
1896 return -EINVAL;
1897 lc->requested_speed = speed;
1898 lc->requested_duplex = cmd->base.duplex;
1899 lc->advertising = 0;
1900 } else {
1901 advertising &= ADVERTISED_MASK;
1902 advertising &= lc->supported;
1903 if (!advertising)
1904 return -EINVAL;
1905 lc->requested_speed = SPEED_INVALID;
1906 lc->requested_duplex = DUPLEX_INVALID;
1907 lc->advertising = advertising | ADVERTISED_Autoneg;
1908 }
1909 lc->autoneg = cmd->base.autoneg;
1910 if (netif_running(dev))
1911 t3_link_start(&p->phy, &p->mac, lc);
1912 return 0;
1913 }
1914
get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)1915 static void get_pauseparam(struct net_device *dev,
1916 struct ethtool_pauseparam *epause)
1917 {
1918 struct port_info *p = netdev_priv(dev);
1919
1920 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1921 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1922 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1923 }
1924
set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * epause)1925 static int set_pauseparam(struct net_device *dev,
1926 struct ethtool_pauseparam *epause)
1927 {
1928 struct port_info *p = netdev_priv(dev);
1929 struct link_config *lc = &p->link_config;
1930
1931 if (epause->autoneg == AUTONEG_DISABLE)
1932 lc->requested_fc = 0;
1933 else if (lc->supported & SUPPORTED_Autoneg)
1934 lc->requested_fc = PAUSE_AUTONEG;
1935 else
1936 return -EINVAL;
1937
1938 if (epause->rx_pause)
1939 lc->requested_fc |= PAUSE_RX;
1940 if (epause->tx_pause)
1941 lc->requested_fc |= PAUSE_TX;
1942 if (lc->autoneg == AUTONEG_ENABLE) {
1943 if (netif_running(dev))
1944 t3_link_start(&p->phy, &p->mac, lc);
1945 } else {
1946 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1947 if (netif_running(dev))
1948 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1949 }
1950 return 0;
1951 }
1952
get_sge_param(struct net_device * dev,struct ethtool_ringparam * e)1953 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1954 {
1955 struct port_info *pi = netdev_priv(dev);
1956 struct adapter *adapter = pi->adapter;
1957 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1958
1959 e->rx_max_pending = MAX_RX_BUFFERS;
1960 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1961 e->tx_max_pending = MAX_TXQ_ENTRIES;
1962
1963 e->rx_pending = q->fl_size;
1964 e->rx_mini_pending = q->rspq_size;
1965 e->rx_jumbo_pending = q->jumbo_size;
1966 e->tx_pending = q->txq_size[0];
1967 }
1968
set_sge_param(struct net_device * dev,struct ethtool_ringparam * e)1969 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1970 {
1971 struct port_info *pi = netdev_priv(dev);
1972 struct adapter *adapter = pi->adapter;
1973 struct qset_params *q;
1974 int i;
1975
1976 if (e->rx_pending > MAX_RX_BUFFERS ||
1977 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1978 e->tx_pending > MAX_TXQ_ENTRIES ||
1979 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1980 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1981 e->rx_pending < MIN_FL_ENTRIES ||
1982 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1983 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1984 return -EINVAL;
1985
1986 if (adapter->flags & FULL_INIT_DONE)
1987 return -EBUSY;
1988
1989 q = &adapter->params.sge.qset[pi->first_qset];
1990 for (i = 0; i < pi->nqsets; ++i, ++q) {
1991 q->rspq_size = e->rx_mini_pending;
1992 q->fl_size = e->rx_pending;
1993 q->jumbo_size = e->rx_jumbo_pending;
1994 q->txq_size[0] = e->tx_pending;
1995 q->txq_size[1] = e->tx_pending;
1996 q->txq_size[2] = e->tx_pending;
1997 }
1998 return 0;
1999 }
2000
set_coalesce(struct net_device * dev,struct ethtool_coalesce * c)2001 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2002 {
2003 struct port_info *pi = netdev_priv(dev);
2004 struct adapter *adapter = pi->adapter;
2005 struct qset_params *qsp;
2006 struct sge_qset *qs;
2007 int i;
2008
2009 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
2010 return -EINVAL;
2011
2012 for (i = 0; i < pi->nqsets; i++) {
2013 qsp = &adapter->params.sge.qset[i];
2014 qs = &adapter->sge.qs[i];
2015 qsp->coalesce_usecs = c->rx_coalesce_usecs;
2016 t3_update_qset_coalesce(qs, qsp);
2017 }
2018
2019 return 0;
2020 }
2021
get_coalesce(struct net_device * dev,struct ethtool_coalesce * c)2022 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2023 {
2024 struct port_info *pi = netdev_priv(dev);
2025 struct adapter *adapter = pi->adapter;
2026 struct qset_params *q = adapter->params.sge.qset;
2027
2028 c->rx_coalesce_usecs = q->coalesce_usecs;
2029 return 0;
2030 }
2031
get_eeprom(struct net_device * dev,struct ethtool_eeprom * e,u8 * data)2032 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2033 u8 * data)
2034 {
2035 struct port_info *pi = netdev_priv(dev);
2036 struct adapter *adapter = pi->adapter;
2037 int i, err = 0;
2038
2039 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2040 if (!buf)
2041 return -ENOMEM;
2042
2043 e->magic = EEPROM_MAGIC;
2044 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2045 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2046
2047 if (!err)
2048 memcpy(data, buf + e->offset, e->len);
2049 kfree(buf);
2050 return err;
2051 }
2052
set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)2053 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2054 u8 * data)
2055 {
2056 struct port_info *pi = netdev_priv(dev);
2057 struct adapter *adapter = pi->adapter;
2058 u32 aligned_offset, aligned_len;
2059 __le32 *p;
2060 u8 *buf;
2061 int err;
2062
2063 if (eeprom->magic != EEPROM_MAGIC)
2064 return -EINVAL;
2065
2066 aligned_offset = eeprom->offset & ~3;
2067 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2068
2069 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2070 buf = kmalloc(aligned_len, GFP_KERNEL);
2071 if (!buf)
2072 return -ENOMEM;
2073 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2074 if (!err && aligned_len > 4)
2075 err = t3_seeprom_read(adapter,
2076 aligned_offset + aligned_len - 4,
2077 (__le32 *) & buf[aligned_len - 4]);
2078 if (err)
2079 goto out;
2080 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2081 } else
2082 buf = data;
2083
2084 err = t3_seeprom_wp(adapter, 0);
2085 if (err)
2086 goto out;
2087
2088 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2089 err = t3_seeprom_write(adapter, aligned_offset, *p);
2090 aligned_offset += 4;
2091 }
2092
2093 if (!err)
2094 err = t3_seeprom_wp(adapter, 1);
2095 out:
2096 if (buf != data)
2097 kfree(buf);
2098 return err;
2099 }
2100
get_wol(struct net_device * dev,struct ethtool_wolinfo * wol)2101 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2102 {
2103 wol->supported = 0;
2104 wol->wolopts = 0;
2105 memset(&wol->sopass, 0, sizeof(wol->sopass));
2106 }
2107
2108 static const struct ethtool_ops cxgb_ethtool_ops = {
2109 .get_drvinfo = get_drvinfo,
2110 .get_msglevel = get_msglevel,
2111 .set_msglevel = set_msglevel,
2112 .get_ringparam = get_sge_param,
2113 .set_ringparam = set_sge_param,
2114 .get_coalesce = get_coalesce,
2115 .set_coalesce = set_coalesce,
2116 .get_eeprom_len = get_eeprom_len,
2117 .get_eeprom = get_eeprom,
2118 .set_eeprom = set_eeprom,
2119 .get_pauseparam = get_pauseparam,
2120 .set_pauseparam = set_pauseparam,
2121 .get_link = ethtool_op_get_link,
2122 .get_strings = get_strings,
2123 .set_phys_id = set_phys_id,
2124 .nway_reset = restart_autoneg,
2125 .get_sset_count = get_sset_count,
2126 .get_ethtool_stats = get_stats,
2127 .get_regs_len = get_regs_len,
2128 .get_regs = get_regs,
2129 .get_wol = get_wol,
2130 .get_link_ksettings = get_link_ksettings,
2131 .set_link_ksettings = set_link_ksettings,
2132 };
2133
in_range(int val,int lo,int hi)2134 static int in_range(int val, int lo, int hi)
2135 {
2136 return val < 0 || (val <= hi && val >= lo);
2137 }
2138
cxgb_extension_ioctl(struct net_device * dev,void __user * useraddr)2139 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2140 {
2141 struct port_info *pi = netdev_priv(dev);
2142 struct adapter *adapter = pi->adapter;
2143 u32 cmd;
2144 int ret;
2145
2146 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2147 return -EFAULT;
2148
2149 switch (cmd) {
2150 case CHELSIO_SET_QSET_PARAMS:{
2151 int i;
2152 struct qset_params *q;
2153 struct ch_qset_params t;
2154 int q1 = pi->first_qset;
2155 int nqsets = pi->nqsets;
2156
2157 if (!capable(CAP_NET_ADMIN))
2158 return -EPERM;
2159 if (copy_from_user(&t, useraddr, sizeof(t)))
2160 return -EFAULT;
2161 if (t.cmd != CHELSIO_SET_QSET_PARAMS)
2162 return -EINVAL;
2163 if (t.qset_idx >= SGE_QSETS)
2164 return -EINVAL;
2165 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2166 !in_range(t.cong_thres, 0, 255) ||
2167 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2168 MAX_TXQ_ENTRIES) ||
2169 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2170 MAX_TXQ_ENTRIES) ||
2171 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2172 MAX_CTRL_TXQ_ENTRIES) ||
2173 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2174 MAX_RX_BUFFERS) ||
2175 !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2176 MAX_RX_JUMBO_BUFFERS) ||
2177 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2178 MAX_RSPQ_ENTRIES))
2179 return -EINVAL;
2180
2181 if ((adapter->flags & FULL_INIT_DONE) &&
2182 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2183 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2184 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2185 t.polling >= 0 || t.cong_thres >= 0))
2186 return -EBUSY;
2187
2188 /* Allow setting of any available qset when offload enabled */
2189 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2190 q1 = 0;
2191 for_each_port(adapter, i) {
2192 pi = adap2pinfo(adapter, i);
2193 nqsets += pi->first_qset + pi->nqsets;
2194 }
2195 }
2196
2197 if (t.qset_idx < q1)
2198 return -EINVAL;
2199 if (t.qset_idx > q1 + nqsets - 1)
2200 return -EINVAL;
2201
2202 q = &adapter->params.sge.qset[t.qset_idx];
2203
2204 if (t.rspq_size >= 0)
2205 q->rspq_size = t.rspq_size;
2206 if (t.fl_size[0] >= 0)
2207 q->fl_size = t.fl_size[0];
2208 if (t.fl_size[1] >= 0)
2209 q->jumbo_size = t.fl_size[1];
2210 if (t.txq_size[0] >= 0)
2211 q->txq_size[0] = t.txq_size[0];
2212 if (t.txq_size[1] >= 0)
2213 q->txq_size[1] = t.txq_size[1];
2214 if (t.txq_size[2] >= 0)
2215 q->txq_size[2] = t.txq_size[2];
2216 if (t.cong_thres >= 0)
2217 q->cong_thres = t.cong_thres;
2218 if (t.intr_lat >= 0) {
2219 struct sge_qset *qs =
2220 &adapter->sge.qs[t.qset_idx];
2221
2222 q->coalesce_usecs = t.intr_lat;
2223 t3_update_qset_coalesce(qs, q);
2224 }
2225 if (t.polling >= 0) {
2226 if (adapter->flags & USING_MSIX)
2227 q->polling = t.polling;
2228 else {
2229 /* No polling with INTx for T3A */
2230 if (adapter->params.rev == 0 &&
2231 !(adapter->flags & USING_MSI))
2232 t.polling = 0;
2233
2234 for (i = 0; i < SGE_QSETS; i++) {
2235 q = &adapter->params.sge.
2236 qset[i];
2237 q->polling = t.polling;
2238 }
2239 }
2240 }
2241
2242 if (t.lro >= 0) {
2243 if (t.lro)
2244 dev->wanted_features |= NETIF_F_GRO;
2245 else
2246 dev->wanted_features &= ~NETIF_F_GRO;
2247 netdev_update_features(dev);
2248 }
2249
2250 break;
2251 }
2252 case CHELSIO_GET_QSET_PARAMS:{
2253 struct qset_params *q;
2254 struct ch_qset_params t;
2255 int q1 = pi->first_qset;
2256 int nqsets = pi->nqsets;
2257 int i;
2258
2259 if (copy_from_user(&t, useraddr, sizeof(t)))
2260 return -EFAULT;
2261
2262 if (t.cmd != CHELSIO_GET_QSET_PARAMS)
2263 return -EINVAL;
2264
2265 /* Display qsets for all ports when offload enabled */
2266 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2267 q1 = 0;
2268 for_each_port(adapter, i) {
2269 pi = adap2pinfo(adapter, i);
2270 nqsets = pi->first_qset + pi->nqsets;
2271 }
2272 }
2273
2274 if (t.qset_idx >= nqsets)
2275 return -EINVAL;
2276 t.qset_idx = array_index_nospec(t.qset_idx, nqsets);
2277
2278 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2279 t.rspq_size = q->rspq_size;
2280 t.txq_size[0] = q->txq_size[0];
2281 t.txq_size[1] = q->txq_size[1];
2282 t.txq_size[2] = q->txq_size[2];
2283 t.fl_size[0] = q->fl_size;
2284 t.fl_size[1] = q->jumbo_size;
2285 t.polling = q->polling;
2286 t.lro = !!(dev->features & NETIF_F_GRO);
2287 t.intr_lat = q->coalesce_usecs;
2288 t.cong_thres = q->cong_thres;
2289 t.qnum = q1;
2290
2291 if (adapter->flags & USING_MSIX)
2292 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2293 else
2294 t.vector = adapter->pdev->irq;
2295
2296 if (copy_to_user(useraddr, &t, sizeof(t)))
2297 return -EFAULT;
2298 break;
2299 }
2300 case CHELSIO_SET_QSET_NUM:{
2301 struct ch_reg edata;
2302 unsigned int i, first_qset = 0, other_qsets = 0;
2303
2304 if (!capable(CAP_NET_ADMIN))
2305 return -EPERM;
2306 if (adapter->flags & FULL_INIT_DONE)
2307 return -EBUSY;
2308 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2309 return -EFAULT;
2310 if (edata.cmd != CHELSIO_SET_QSET_NUM)
2311 return -EINVAL;
2312 if (edata.val < 1 ||
2313 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2314 return -EINVAL;
2315
2316 for_each_port(adapter, i)
2317 if (adapter->port[i] && adapter->port[i] != dev)
2318 other_qsets += adap2pinfo(adapter, i)->nqsets;
2319
2320 if (edata.val + other_qsets > SGE_QSETS)
2321 return -EINVAL;
2322
2323 pi->nqsets = edata.val;
2324
2325 for_each_port(adapter, i)
2326 if (adapter->port[i]) {
2327 pi = adap2pinfo(adapter, i);
2328 pi->first_qset = first_qset;
2329 first_qset += pi->nqsets;
2330 }
2331 break;
2332 }
2333 case CHELSIO_GET_QSET_NUM:{
2334 struct ch_reg edata;
2335
2336 memset(&edata, 0, sizeof(struct ch_reg));
2337
2338 edata.cmd = CHELSIO_GET_QSET_NUM;
2339 edata.val = pi->nqsets;
2340 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2341 return -EFAULT;
2342 break;
2343 }
2344 case CHELSIO_LOAD_FW:{
2345 u8 *fw_data;
2346 struct ch_mem_range t;
2347
2348 if (!capable(CAP_SYS_RAWIO))
2349 return -EPERM;
2350 if (copy_from_user(&t, useraddr, sizeof(t)))
2351 return -EFAULT;
2352 if (t.cmd != CHELSIO_LOAD_FW)
2353 return -EINVAL;
2354 /* Check t.len sanity ? */
2355 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2356 if (IS_ERR(fw_data))
2357 return PTR_ERR(fw_data);
2358
2359 ret = t3_load_fw(adapter, fw_data, t.len);
2360 kfree(fw_data);
2361 if (ret)
2362 return ret;
2363 break;
2364 }
2365 case CHELSIO_SETMTUTAB:{
2366 struct ch_mtus m;
2367 int i;
2368
2369 if (!is_offload(adapter))
2370 return -EOPNOTSUPP;
2371 if (!capable(CAP_NET_ADMIN))
2372 return -EPERM;
2373 if (offload_running(adapter))
2374 return -EBUSY;
2375 if (copy_from_user(&m, useraddr, sizeof(m)))
2376 return -EFAULT;
2377 if (m.cmd != CHELSIO_SETMTUTAB)
2378 return -EINVAL;
2379 if (m.nmtus != NMTUS)
2380 return -EINVAL;
2381 if (m.mtus[0] < 81) /* accommodate SACK */
2382 return -EINVAL;
2383
2384 /* MTUs must be in ascending order */
2385 for (i = 1; i < NMTUS; ++i)
2386 if (m.mtus[i] < m.mtus[i - 1])
2387 return -EINVAL;
2388
2389 memcpy(adapter->params.mtus, m.mtus,
2390 sizeof(adapter->params.mtus));
2391 break;
2392 }
2393 case CHELSIO_GET_PM:{
2394 struct tp_params *p = &adapter->params.tp;
2395 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2396
2397 if (!is_offload(adapter))
2398 return -EOPNOTSUPP;
2399 m.tx_pg_sz = p->tx_pg_size;
2400 m.tx_num_pg = p->tx_num_pgs;
2401 m.rx_pg_sz = p->rx_pg_size;
2402 m.rx_num_pg = p->rx_num_pgs;
2403 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2404 if (copy_to_user(useraddr, &m, sizeof(m)))
2405 return -EFAULT;
2406 break;
2407 }
2408 case CHELSIO_SET_PM:{
2409 struct ch_pm m;
2410 struct tp_params *p = &adapter->params.tp;
2411
2412 if (!is_offload(adapter))
2413 return -EOPNOTSUPP;
2414 if (!capable(CAP_NET_ADMIN))
2415 return -EPERM;
2416 if (adapter->flags & FULL_INIT_DONE)
2417 return -EBUSY;
2418 if (copy_from_user(&m, useraddr, sizeof(m)))
2419 return -EFAULT;
2420 if (m.cmd != CHELSIO_SET_PM)
2421 return -EINVAL;
2422 if (!is_power_of_2(m.rx_pg_sz) ||
2423 !is_power_of_2(m.tx_pg_sz))
2424 return -EINVAL; /* not power of 2 */
2425 if (!(m.rx_pg_sz & 0x14000))
2426 return -EINVAL; /* not 16KB or 64KB */
2427 if (!(m.tx_pg_sz & 0x1554000))
2428 return -EINVAL;
2429 if (m.tx_num_pg == -1)
2430 m.tx_num_pg = p->tx_num_pgs;
2431 if (m.rx_num_pg == -1)
2432 m.rx_num_pg = p->rx_num_pgs;
2433 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2434 return -EINVAL;
2435 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2436 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2437 return -EINVAL;
2438 p->rx_pg_size = m.rx_pg_sz;
2439 p->tx_pg_size = m.tx_pg_sz;
2440 p->rx_num_pgs = m.rx_num_pg;
2441 p->tx_num_pgs = m.tx_num_pg;
2442 break;
2443 }
2444 case CHELSIO_GET_MEM:{
2445 struct ch_mem_range t;
2446 struct mc7 *mem;
2447 u64 buf[32];
2448
2449 if (!is_offload(adapter))
2450 return -EOPNOTSUPP;
2451 if (!(adapter->flags & FULL_INIT_DONE))
2452 return -EIO; /* need the memory controllers */
2453 if (copy_from_user(&t, useraddr, sizeof(t)))
2454 return -EFAULT;
2455 if (t.cmd != CHELSIO_GET_MEM)
2456 return -EINVAL;
2457 if ((t.addr & 7) || (t.len & 7))
2458 return -EINVAL;
2459 if (t.mem_id == MEM_CM)
2460 mem = &adapter->cm;
2461 else if (t.mem_id == MEM_PMRX)
2462 mem = &adapter->pmrx;
2463 else if (t.mem_id == MEM_PMTX)
2464 mem = &adapter->pmtx;
2465 else
2466 return -EINVAL;
2467
2468 /*
2469 * Version scheme:
2470 * bits 0..9: chip version
2471 * bits 10..15: chip revision
2472 */
2473 t.version = 3 | (adapter->params.rev << 10);
2474 if (copy_to_user(useraddr, &t, sizeof(t)))
2475 return -EFAULT;
2476
2477 /*
2478 * Read 256 bytes at a time as len can be large and we don't
2479 * want to use huge intermediate buffers.
2480 */
2481 useraddr += sizeof(t); /* advance to start of buffer */
2482 while (t.len) {
2483 unsigned int chunk =
2484 min_t(unsigned int, t.len, sizeof(buf));
2485
2486 ret =
2487 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2488 buf);
2489 if (ret)
2490 return ret;
2491 if (copy_to_user(useraddr, buf, chunk))
2492 return -EFAULT;
2493 useraddr += chunk;
2494 t.addr += chunk;
2495 t.len -= chunk;
2496 }
2497 break;
2498 }
2499 case CHELSIO_SET_TRACE_FILTER:{
2500 struct ch_trace t;
2501 const struct trace_params *tp;
2502
2503 if (!capable(CAP_NET_ADMIN))
2504 return -EPERM;
2505 if (!offload_running(adapter))
2506 return -EAGAIN;
2507 if (copy_from_user(&t, useraddr, sizeof(t)))
2508 return -EFAULT;
2509 if (t.cmd != CHELSIO_SET_TRACE_FILTER)
2510 return -EINVAL;
2511
2512 tp = (const struct trace_params *)&t.sip;
2513 if (t.config_tx)
2514 t3_config_trace_filter(adapter, tp, 0,
2515 t.invert_match,
2516 t.trace_tx);
2517 if (t.config_rx)
2518 t3_config_trace_filter(adapter, tp, 1,
2519 t.invert_match,
2520 t.trace_rx);
2521 break;
2522 }
2523 default:
2524 return -EOPNOTSUPP;
2525 }
2526 return 0;
2527 }
2528
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2529 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2530 {
2531 struct mii_ioctl_data *data = if_mii(req);
2532 struct port_info *pi = netdev_priv(dev);
2533 struct adapter *adapter = pi->adapter;
2534
2535 switch (cmd) {
2536 case SIOCGMIIREG:
2537 case SIOCSMIIREG:
2538 /* Convert phy_id from older PRTAD/DEVAD format */
2539 if (is_10G(adapter) &&
2540 !mdio_phy_id_is_c45(data->phy_id) &&
2541 (data->phy_id & 0x1f00) &&
2542 !(data->phy_id & 0xe0e0))
2543 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2544 data->phy_id & 0x1f);
2545 /* FALLTHRU */
2546 case SIOCGMIIPHY:
2547 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2548 case SIOCCHIOCTL:
2549 return cxgb_extension_ioctl(dev, req->ifr_data);
2550 default:
2551 return -EOPNOTSUPP;
2552 }
2553 }
2554
cxgb_change_mtu(struct net_device * dev,int new_mtu)2555 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2556 {
2557 struct port_info *pi = netdev_priv(dev);
2558 struct adapter *adapter = pi->adapter;
2559 int ret;
2560
2561 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2562 return ret;
2563 dev->mtu = new_mtu;
2564 init_port_mtus(adapter);
2565 if (adapter->params.rev == 0 && offload_running(adapter))
2566 t3_load_mtus(adapter, adapter->params.mtus,
2567 adapter->params.a_wnd, adapter->params.b_wnd,
2568 adapter->port[0]->mtu);
2569 return 0;
2570 }
2571
cxgb_set_mac_addr(struct net_device * dev,void * p)2572 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2573 {
2574 struct port_info *pi = netdev_priv(dev);
2575 struct adapter *adapter = pi->adapter;
2576 struct sockaddr *addr = p;
2577
2578 if (!is_valid_ether_addr(addr->sa_data))
2579 return -EADDRNOTAVAIL;
2580
2581 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2582 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2583 if (offload_running(adapter))
2584 write_smt_entry(adapter, pi->port_id);
2585 return 0;
2586 }
2587
cxgb_fix_features(struct net_device * dev,netdev_features_t features)2588 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2589 netdev_features_t features)
2590 {
2591 /*
2592 * Since there is no support for separate rx/tx vlan accel
2593 * enable/disable make sure tx flag is always in same state as rx.
2594 */
2595 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2596 features |= NETIF_F_HW_VLAN_CTAG_TX;
2597 else
2598 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2599
2600 return features;
2601 }
2602
cxgb_set_features(struct net_device * dev,netdev_features_t features)2603 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2604 {
2605 netdev_features_t changed = dev->features ^ features;
2606
2607 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2608 cxgb_vlan_mode(dev, features);
2609
2610 return 0;
2611 }
2612
2613 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)2614 static void cxgb_netpoll(struct net_device *dev)
2615 {
2616 struct port_info *pi = netdev_priv(dev);
2617 struct adapter *adapter = pi->adapter;
2618 int qidx;
2619
2620 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2621 struct sge_qset *qs = &adapter->sge.qs[qidx];
2622 void *source;
2623
2624 if (adapter->flags & USING_MSIX)
2625 source = qs;
2626 else
2627 source = adapter;
2628
2629 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2630 }
2631 }
2632 #endif
2633
2634 /*
2635 * Periodic accumulation of MAC statistics.
2636 */
mac_stats_update(struct adapter * adapter)2637 static void mac_stats_update(struct adapter *adapter)
2638 {
2639 int i;
2640
2641 for_each_port(adapter, i) {
2642 struct net_device *dev = adapter->port[i];
2643 struct port_info *p = netdev_priv(dev);
2644
2645 if (netif_running(dev)) {
2646 spin_lock(&adapter->stats_lock);
2647 t3_mac_update_stats(&p->mac);
2648 spin_unlock(&adapter->stats_lock);
2649 }
2650 }
2651 }
2652
check_link_status(struct adapter * adapter)2653 static void check_link_status(struct adapter *adapter)
2654 {
2655 int i;
2656
2657 for_each_port(adapter, i) {
2658 struct net_device *dev = adapter->port[i];
2659 struct port_info *p = netdev_priv(dev);
2660 int link_fault;
2661
2662 spin_lock_irq(&adapter->work_lock);
2663 link_fault = p->link_fault;
2664 spin_unlock_irq(&adapter->work_lock);
2665
2666 if (link_fault) {
2667 t3_link_fault(adapter, i);
2668 continue;
2669 }
2670
2671 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2672 t3_xgm_intr_disable(adapter, i);
2673 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2674
2675 t3_link_changed(adapter, i);
2676 t3_xgm_intr_enable(adapter, i);
2677 }
2678 }
2679 }
2680
check_t3b2_mac(struct adapter * adapter)2681 static void check_t3b2_mac(struct adapter *adapter)
2682 {
2683 int i;
2684
2685 if (!rtnl_trylock()) /* synchronize with ifdown */
2686 return;
2687
2688 for_each_port(adapter, i) {
2689 struct net_device *dev = adapter->port[i];
2690 struct port_info *p = netdev_priv(dev);
2691 int status;
2692
2693 if (!netif_running(dev))
2694 continue;
2695
2696 status = 0;
2697 if (netif_running(dev) && netif_carrier_ok(dev))
2698 status = t3b2_mac_watchdog_task(&p->mac);
2699 if (status == 1)
2700 p->mac.stats.num_toggled++;
2701 else if (status == 2) {
2702 struct cmac *mac = &p->mac;
2703
2704 t3_mac_set_mtu(mac, dev->mtu);
2705 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2706 cxgb_set_rxmode(dev);
2707 t3_link_start(&p->phy, mac, &p->link_config);
2708 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2709 t3_port_intr_enable(adapter, p->port_id);
2710 p->mac.stats.num_resets++;
2711 }
2712 }
2713 rtnl_unlock();
2714 }
2715
2716
t3_adap_check_task(struct work_struct * work)2717 static void t3_adap_check_task(struct work_struct *work)
2718 {
2719 struct adapter *adapter = container_of(work, struct adapter,
2720 adap_check_task.work);
2721 const struct adapter_params *p = &adapter->params;
2722 int port;
2723 unsigned int v, status, reset;
2724
2725 adapter->check_task_cnt++;
2726
2727 check_link_status(adapter);
2728
2729 /* Accumulate MAC stats if needed */
2730 if (!p->linkpoll_period ||
2731 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2732 p->stats_update_period) {
2733 mac_stats_update(adapter);
2734 adapter->check_task_cnt = 0;
2735 }
2736
2737 if (p->rev == T3_REV_B2)
2738 check_t3b2_mac(adapter);
2739
2740 /*
2741 * Scan the XGMAC's to check for various conditions which we want to
2742 * monitor in a periodic polling manner rather than via an interrupt
2743 * condition. This is used for conditions which would otherwise flood
2744 * the system with interrupts and we only really need to know that the
2745 * conditions are "happening" ... For each condition we count the
2746 * detection of the condition and reset it for the next polling loop.
2747 */
2748 for_each_port(adapter, port) {
2749 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2750 u32 cause;
2751
2752 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2753 reset = 0;
2754 if (cause & F_RXFIFO_OVERFLOW) {
2755 mac->stats.rx_fifo_ovfl++;
2756 reset |= F_RXFIFO_OVERFLOW;
2757 }
2758
2759 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2760 }
2761
2762 /*
2763 * We do the same as above for FL_EMPTY interrupts.
2764 */
2765 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2766 reset = 0;
2767
2768 if (status & F_FLEMPTY) {
2769 struct sge_qset *qs = &adapter->sge.qs[0];
2770 int i = 0;
2771
2772 reset |= F_FLEMPTY;
2773
2774 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2775 0xffff;
2776
2777 while (v) {
2778 qs->fl[i].empty += (v & 1);
2779 if (i)
2780 qs++;
2781 i ^= 1;
2782 v >>= 1;
2783 }
2784 }
2785
2786 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2787
2788 /* Schedule the next check update if any port is active. */
2789 spin_lock_irq(&adapter->work_lock);
2790 if (adapter->open_device_map & PORT_MASK)
2791 schedule_chk_task(adapter);
2792 spin_unlock_irq(&adapter->work_lock);
2793 }
2794
db_full_task(struct work_struct * work)2795 static void db_full_task(struct work_struct *work)
2796 {
2797 struct adapter *adapter = container_of(work, struct adapter,
2798 db_full_task);
2799
2800 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2801 }
2802
db_empty_task(struct work_struct * work)2803 static void db_empty_task(struct work_struct *work)
2804 {
2805 struct adapter *adapter = container_of(work, struct adapter,
2806 db_empty_task);
2807
2808 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2809 }
2810
db_drop_task(struct work_struct * work)2811 static void db_drop_task(struct work_struct *work)
2812 {
2813 struct adapter *adapter = container_of(work, struct adapter,
2814 db_drop_task);
2815 unsigned long delay = 1000;
2816 unsigned short r;
2817
2818 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2819
2820 /*
2821 * Sleep a while before ringing the driver qset dbs.
2822 * The delay is between 1000-2023 usecs.
2823 */
2824 get_random_bytes(&r, 2);
2825 delay += r & 1023;
2826 set_current_state(TASK_UNINTERRUPTIBLE);
2827 schedule_timeout(usecs_to_jiffies(delay));
2828 ring_dbs(adapter);
2829 }
2830
2831 /*
2832 * Processes external (PHY) interrupts in process context.
2833 */
ext_intr_task(struct work_struct * work)2834 static void ext_intr_task(struct work_struct *work)
2835 {
2836 struct adapter *adapter = container_of(work, struct adapter,
2837 ext_intr_handler_task);
2838 int i;
2839
2840 /* Disable link fault interrupts */
2841 for_each_port(adapter, i) {
2842 struct net_device *dev = adapter->port[i];
2843 struct port_info *p = netdev_priv(dev);
2844
2845 t3_xgm_intr_disable(adapter, i);
2846 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2847 }
2848
2849 /* Re-enable link fault interrupts */
2850 t3_phy_intr_handler(adapter);
2851
2852 for_each_port(adapter, i)
2853 t3_xgm_intr_enable(adapter, i);
2854
2855 /* Now reenable external interrupts */
2856 spin_lock_irq(&adapter->work_lock);
2857 if (adapter->slow_intr_mask) {
2858 adapter->slow_intr_mask |= F_T3DBG;
2859 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2860 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2861 adapter->slow_intr_mask);
2862 }
2863 spin_unlock_irq(&adapter->work_lock);
2864 }
2865
2866 /*
2867 * Interrupt-context handler for external (PHY) interrupts.
2868 */
t3_os_ext_intr_handler(struct adapter * adapter)2869 void t3_os_ext_intr_handler(struct adapter *adapter)
2870 {
2871 /*
2872 * Schedule a task to handle external interrupts as they may be slow
2873 * and we use a mutex to protect MDIO registers. We disable PHY
2874 * interrupts in the meantime and let the task reenable them when
2875 * it's done.
2876 */
2877 spin_lock(&adapter->work_lock);
2878 if (adapter->slow_intr_mask) {
2879 adapter->slow_intr_mask &= ~F_T3DBG;
2880 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2881 adapter->slow_intr_mask);
2882 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2883 }
2884 spin_unlock(&adapter->work_lock);
2885 }
2886
t3_os_link_fault_handler(struct adapter * adapter,int port_id)2887 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2888 {
2889 struct net_device *netdev = adapter->port[port_id];
2890 struct port_info *pi = netdev_priv(netdev);
2891
2892 spin_lock(&adapter->work_lock);
2893 pi->link_fault = 1;
2894 spin_unlock(&adapter->work_lock);
2895 }
2896
t3_adapter_error(struct adapter * adapter,int reset,int on_wq)2897 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2898 {
2899 int i, ret = 0;
2900
2901 if (is_offload(adapter) &&
2902 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2903 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2904 offload_close(&adapter->tdev);
2905 }
2906
2907 /* Stop all ports */
2908 for_each_port(adapter, i) {
2909 struct net_device *netdev = adapter->port[i];
2910
2911 if (netif_running(netdev))
2912 __cxgb_close(netdev, on_wq);
2913 }
2914
2915 /* Stop SGE timers */
2916 t3_stop_sge_timers(adapter);
2917
2918 adapter->flags &= ~FULL_INIT_DONE;
2919
2920 if (reset)
2921 ret = t3_reset_adapter(adapter);
2922
2923 pci_disable_device(adapter->pdev);
2924
2925 return ret;
2926 }
2927
t3_reenable_adapter(struct adapter * adapter)2928 static int t3_reenable_adapter(struct adapter *adapter)
2929 {
2930 if (pci_enable_device(adapter->pdev)) {
2931 dev_err(&adapter->pdev->dev,
2932 "Cannot re-enable PCI device after reset.\n");
2933 goto err;
2934 }
2935 pci_set_master(adapter->pdev);
2936 pci_restore_state(adapter->pdev);
2937 pci_save_state(adapter->pdev);
2938
2939 /* Free sge resources */
2940 t3_free_sge_resources(adapter);
2941
2942 if (t3_replay_prep_adapter(adapter))
2943 goto err;
2944
2945 return 0;
2946 err:
2947 return -1;
2948 }
2949
t3_resume_ports(struct adapter * adapter)2950 static void t3_resume_ports(struct adapter *adapter)
2951 {
2952 int i;
2953
2954 /* Restart the ports */
2955 for_each_port(adapter, i) {
2956 struct net_device *netdev = adapter->port[i];
2957
2958 if (netif_running(netdev)) {
2959 if (cxgb_open(netdev)) {
2960 dev_err(&adapter->pdev->dev,
2961 "can't bring device back up"
2962 " after reset\n");
2963 continue;
2964 }
2965 }
2966 }
2967
2968 if (is_offload(adapter) && !ofld_disable)
2969 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2970 }
2971
2972 /*
2973 * processes a fatal error.
2974 * Bring the ports down, reset the chip, bring the ports back up.
2975 */
fatal_error_task(struct work_struct * work)2976 static void fatal_error_task(struct work_struct *work)
2977 {
2978 struct adapter *adapter = container_of(work, struct adapter,
2979 fatal_error_handler_task);
2980 int err = 0;
2981
2982 rtnl_lock();
2983 err = t3_adapter_error(adapter, 1, 1);
2984 if (!err)
2985 err = t3_reenable_adapter(adapter);
2986 if (!err)
2987 t3_resume_ports(adapter);
2988
2989 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2990 rtnl_unlock();
2991 }
2992
t3_fatal_err(struct adapter * adapter)2993 void t3_fatal_err(struct adapter *adapter)
2994 {
2995 unsigned int fw_status[4];
2996
2997 if (adapter->flags & FULL_INIT_DONE) {
2998 t3_sge_stop(adapter);
2999 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
3000 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
3001 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
3002 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
3003
3004 spin_lock(&adapter->work_lock);
3005 t3_intr_disable(adapter);
3006 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
3007 spin_unlock(&adapter->work_lock);
3008 }
3009 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
3010 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
3011 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
3012 fw_status[0], fw_status[1],
3013 fw_status[2], fw_status[3]);
3014 }
3015
3016 /**
3017 * t3_io_error_detected - called when PCI error is detected
3018 * @pdev: Pointer to PCI device
3019 * @state: The current pci connection state
3020 *
3021 * This function is called after a PCI bus error affecting
3022 * this device has been detected.
3023 */
t3_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3024 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
3025 pci_channel_state_t state)
3026 {
3027 struct adapter *adapter = pci_get_drvdata(pdev);
3028
3029 if (state == pci_channel_io_perm_failure)
3030 return PCI_ERS_RESULT_DISCONNECT;
3031
3032 t3_adapter_error(adapter, 0, 0);
3033
3034 /* Request a slot reset. */
3035 return PCI_ERS_RESULT_NEED_RESET;
3036 }
3037
3038 /**
3039 * t3_io_slot_reset - called after the pci bus has been reset.
3040 * @pdev: Pointer to PCI device
3041 *
3042 * Restart the card from scratch, as if from a cold-boot.
3043 */
t3_io_slot_reset(struct pci_dev * pdev)3044 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3045 {
3046 struct adapter *adapter = pci_get_drvdata(pdev);
3047
3048 if (!t3_reenable_adapter(adapter))
3049 return PCI_ERS_RESULT_RECOVERED;
3050
3051 return PCI_ERS_RESULT_DISCONNECT;
3052 }
3053
3054 /**
3055 * t3_io_resume - called when traffic can start flowing again.
3056 * @pdev: Pointer to PCI device
3057 *
3058 * This callback is called when the error recovery driver tells us that
3059 * its OK to resume normal operation.
3060 */
t3_io_resume(struct pci_dev * pdev)3061 static void t3_io_resume(struct pci_dev *pdev)
3062 {
3063 struct adapter *adapter = pci_get_drvdata(pdev);
3064
3065 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3066 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3067
3068 rtnl_lock();
3069 t3_resume_ports(adapter);
3070 rtnl_unlock();
3071 }
3072
3073 static const struct pci_error_handlers t3_err_handler = {
3074 .error_detected = t3_io_error_detected,
3075 .slot_reset = t3_io_slot_reset,
3076 .resume = t3_io_resume,
3077 };
3078
3079 /*
3080 * Set the number of qsets based on the number of CPUs and the number of ports,
3081 * not to exceed the number of available qsets, assuming there are enough qsets
3082 * per port in HW.
3083 */
set_nqsets(struct adapter * adap)3084 static void set_nqsets(struct adapter *adap)
3085 {
3086 int i, j = 0;
3087 int num_cpus = netif_get_num_default_rss_queues();
3088 int hwports = adap->params.nports;
3089 int nqsets = adap->msix_nvectors - 1;
3090
3091 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3092 if (hwports == 2 &&
3093 (hwports * nqsets > SGE_QSETS ||
3094 num_cpus >= nqsets / hwports))
3095 nqsets /= hwports;
3096 if (nqsets > num_cpus)
3097 nqsets = num_cpus;
3098 if (nqsets < 1 || hwports == 4)
3099 nqsets = 1;
3100 } else
3101 nqsets = 1;
3102
3103 for_each_port(adap, i) {
3104 struct port_info *pi = adap2pinfo(adap, i);
3105
3106 pi->first_qset = j;
3107 pi->nqsets = nqsets;
3108 j = pi->first_qset + nqsets;
3109
3110 dev_info(&adap->pdev->dev,
3111 "Port %d using %d queue sets.\n", i, nqsets);
3112 }
3113 }
3114
cxgb_enable_msix(struct adapter * adap)3115 static int cxgb_enable_msix(struct adapter *adap)
3116 {
3117 struct msix_entry entries[SGE_QSETS + 1];
3118 int vectors;
3119 int i;
3120
3121 vectors = ARRAY_SIZE(entries);
3122 for (i = 0; i < vectors; ++i)
3123 entries[i].entry = i;
3124
3125 vectors = pci_enable_msix_range(adap->pdev, entries,
3126 adap->params.nports + 1, vectors);
3127 if (vectors < 0)
3128 return vectors;
3129
3130 for (i = 0; i < vectors; ++i)
3131 adap->msix_info[i].vec = entries[i].vector;
3132 adap->msix_nvectors = vectors;
3133
3134 return 0;
3135 }
3136
print_port_info(struct adapter * adap,const struct adapter_info * ai)3137 static void print_port_info(struct adapter *adap, const struct adapter_info *ai)
3138 {
3139 static const char *pci_variant[] = {
3140 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3141 };
3142
3143 int i;
3144 char buf[80];
3145
3146 if (is_pcie(adap))
3147 snprintf(buf, sizeof(buf), "%s x%d",
3148 pci_variant[adap->params.pci.variant],
3149 adap->params.pci.width);
3150 else
3151 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3152 pci_variant[adap->params.pci.variant],
3153 adap->params.pci.speed, adap->params.pci.width);
3154
3155 for_each_port(adap, i) {
3156 struct net_device *dev = adap->port[i];
3157 const struct port_info *pi = netdev_priv(dev);
3158
3159 if (!test_bit(i, &adap->registered_device_map))
3160 continue;
3161 netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n",
3162 ai->desc, pi->phy.desc,
3163 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3164 (adap->flags & USING_MSIX) ? " MSI-X" :
3165 (adap->flags & USING_MSI) ? " MSI" : "");
3166 if (adap->name == dev->name && adap->params.vpd.mclk)
3167 pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3168 adap->name, t3_mc7_size(&adap->cm) >> 20,
3169 t3_mc7_size(&adap->pmtx) >> 20,
3170 t3_mc7_size(&adap->pmrx) >> 20,
3171 adap->params.vpd.sn);
3172 }
3173 }
3174
3175 static const struct net_device_ops cxgb_netdev_ops = {
3176 .ndo_open = cxgb_open,
3177 .ndo_stop = cxgb_close,
3178 .ndo_start_xmit = t3_eth_xmit,
3179 .ndo_get_stats = cxgb_get_stats,
3180 .ndo_validate_addr = eth_validate_addr,
3181 .ndo_set_rx_mode = cxgb_set_rxmode,
3182 .ndo_do_ioctl = cxgb_ioctl,
3183 .ndo_change_mtu = cxgb_change_mtu,
3184 .ndo_set_mac_address = cxgb_set_mac_addr,
3185 .ndo_fix_features = cxgb_fix_features,
3186 .ndo_set_features = cxgb_set_features,
3187 #ifdef CONFIG_NET_POLL_CONTROLLER
3188 .ndo_poll_controller = cxgb_netpoll,
3189 #endif
3190 };
3191
cxgb3_init_iscsi_mac(struct net_device * dev)3192 static void cxgb3_init_iscsi_mac(struct net_device *dev)
3193 {
3194 struct port_info *pi = netdev_priv(dev);
3195
3196 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3197 pi->iscsic.mac_addr[3] |= 0x80;
3198 }
3199
3200 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
3201 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3202 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)3203 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
3204 {
3205 int i, err, pci_using_dac = 0;
3206 resource_size_t mmio_start, mmio_len;
3207 const struct adapter_info *ai;
3208 struct adapter *adapter = NULL;
3209 struct port_info *pi;
3210
3211 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
3212
3213 if (!cxgb3_wq) {
3214 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3215 if (!cxgb3_wq) {
3216 pr_err("cannot initialize work queue\n");
3217 return -ENOMEM;
3218 }
3219 }
3220
3221 err = pci_enable_device(pdev);
3222 if (err) {
3223 dev_err(&pdev->dev, "cannot enable PCI device\n");
3224 goto out;
3225 }
3226
3227 err = pci_request_regions(pdev, DRV_NAME);
3228 if (err) {
3229 /* Just info, some other driver may have claimed the device. */
3230 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3231 goto out_disable_device;
3232 }
3233
3234 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3235 pci_using_dac = 1;
3236 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3237 if (err) {
3238 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3239 "coherent allocations\n");
3240 goto out_release_regions;
3241 }
3242 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3243 dev_err(&pdev->dev, "no usable DMA configuration\n");
3244 goto out_release_regions;
3245 }
3246
3247 pci_set_master(pdev);
3248 pci_save_state(pdev);
3249
3250 mmio_start = pci_resource_start(pdev, 0);
3251 mmio_len = pci_resource_len(pdev, 0);
3252 ai = t3_get_adapter_info(ent->driver_data);
3253
3254 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3255 if (!adapter) {
3256 err = -ENOMEM;
3257 goto out_release_regions;
3258 }
3259
3260 adapter->nofail_skb =
3261 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3262 if (!adapter->nofail_skb) {
3263 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3264 err = -ENOMEM;
3265 goto out_free_adapter;
3266 }
3267
3268 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3269 if (!adapter->regs) {
3270 dev_err(&pdev->dev, "cannot map device registers\n");
3271 err = -ENOMEM;
3272 goto out_free_adapter_nofail;
3273 }
3274
3275 adapter->pdev = pdev;
3276 adapter->name = pci_name(pdev);
3277 adapter->msg_enable = dflt_msg_enable;
3278 adapter->mmio_len = mmio_len;
3279
3280 mutex_init(&adapter->mdio_lock);
3281 spin_lock_init(&adapter->work_lock);
3282 spin_lock_init(&adapter->stats_lock);
3283
3284 INIT_LIST_HEAD(&adapter->adapter_list);
3285 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3286 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3287
3288 INIT_WORK(&adapter->db_full_task, db_full_task);
3289 INIT_WORK(&adapter->db_empty_task, db_empty_task);
3290 INIT_WORK(&adapter->db_drop_task, db_drop_task);
3291
3292 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3293
3294 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3295 struct net_device *netdev;
3296
3297 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3298 if (!netdev) {
3299 err = -ENOMEM;
3300 goto out_free_dev;
3301 }
3302
3303 SET_NETDEV_DEV(netdev, &pdev->dev);
3304
3305 adapter->port[i] = netdev;
3306 pi = netdev_priv(netdev);
3307 pi->adapter = adapter;
3308 pi->port_id = i;
3309 netif_carrier_off(netdev);
3310 netdev->irq = pdev->irq;
3311 netdev->mem_start = mmio_start;
3312 netdev->mem_end = mmio_start + mmio_len - 1;
3313 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3314 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX;
3315 netdev->features |= netdev->hw_features |
3316 NETIF_F_HW_VLAN_CTAG_TX;
3317 netdev->vlan_features |= netdev->features & VLAN_FEAT;
3318 if (pci_using_dac)
3319 netdev->features |= NETIF_F_HIGHDMA;
3320
3321 netdev->netdev_ops = &cxgb_netdev_ops;
3322 netdev->ethtool_ops = &cxgb_ethtool_ops;
3323 netdev->min_mtu = 81;
3324 netdev->max_mtu = ETH_MAX_MTU;
3325 netdev->dev_port = pi->port_id;
3326 }
3327
3328 pci_set_drvdata(pdev, adapter);
3329 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3330 err = -ENODEV;
3331 goto out_free_dev;
3332 }
3333
3334 /*
3335 * The card is now ready to go. If any errors occur during device
3336 * registration we do not fail the whole card but rather proceed only
3337 * with the ports we manage to register successfully. However we must
3338 * register at least one net device.
3339 */
3340 for_each_port(adapter, i) {
3341 err = register_netdev(adapter->port[i]);
3342 if (err)
3343 dev_warn(&pdev->dev,
3344 "cannot register net device %s, skipping\n",
3345 adapter->port[i]->name);
3346 else {
3347 /*
3348 * Change the name we use for messages to the name of
3349 * the first successfully registered interface.
3350 */
3351 if (!adapter->registered_device_map)
3352 adapter->name = adapter->port[i]->name;
3353
3354 __set_bit(i, &adapter->registered_device_map);
3355 }
3356 }
3357 if (!adapter->registered_device_map) {
3358 dev_err(&pdev->dev, "could not register any net devices\n");
3359 goto out_free_dev;
3360 }
3361
3362 for_each_port(adapter, i)
3363 cxgb3_init_iscsi_mac(adapter->port[i]);
3364
3365 /* Driver's ready. Reflect it on LEDs */
3366 t3_led_ready(adapter);
3367
3368 if (is_offload(adapter)) {
3369 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3370 cxgb3_adapter_ofld(adapter);
3371 }
3372
3373 /* See what interrupts we'll be using */
3374 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3375 adapter->flags |= USING_MSIX;
3376 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3377 adapter->flags |= USING_MSI;
3378
3379 set_nqsets(adapter);
3380
3381 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3382 &cxgb3_attr_group);
3383 if (err) {
3384 dev_err(&pdev->dev, "cannot create sysfs group\n");
3385 goto out_close_led;
3386 }
3387
3388 print_port_info(adapter, ai);
3389 return 0;
3390
3391 out_close_led:
3392 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
3393
3394 out_free_dev:
3395 iounmap(adapter->regs);
3396 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3397 if (adapter->port[i])
3398 free_netdev(adapter->port[i]);
3399
3400 out_free_adapter_nofail:
3401 kfree_skb(adapter->nofail_skb);
3402
3403 out_free_adapter:
3404 kfree(adapter);
3405
3406 out_release_regions:
3407 pci_release_regions(pdev);
3408 out_disable_device:
3409 pci_disable_device(pdev);
3410 out:
3411 return err;
3412 }
3413
remove_one(struct pci_dev * pdev)3414 static void remove_one(struct pci_dev *pdev)
3415 {
3416 struct adapter *adapter = pci_get_drvdata(pdev);
3417
3418 if (adapter) {
3419 int i;
3420
3421 t3_sge_stop(adapter);
3422 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3423 &cxgb3_attr_group);
3424
3425 if (is_offload(adapter)) {
3426 cxgb3_adapter_unofld(adapter);
3427 if (test_bit(OFFLOAD_DEVMAP_BIT,
3428 &adapter->open_device_map))
3429 offload_close(&adapter->tdev);
3430 }
3431
3432 for_each_port(adapter, i)
3433 if (test_bit(i, &adapter->registered_device_map))
3434 unregister_netdev(adapter->port[i]);
3435
3436 t3_stop_sge_timers(adapter);
3437 t3_free_sge_resources(adapter);
3438 cxgb_disable_msi(adapter);
3439
3440 for_each_port(adapter, i)
3441 if (adapter->port[i])
3442 free_netdev(adapter->port[i]);
3443
3444 iounmap(adapter->regs);
3445 kfree_skb(adapter->nofail_skb);
3446 kfree(adapter);
3447 pci_release_regions(pdev);
3448 pci_disable_device(pdev);
3449 }
3450 }
3451
3452 static struct pci_driver driver = {
3453 .name = DRV_NAME,
3454 .id_table = cxgb3_pci_tbl,
3455 .probe = init_one,
3456 .remove = remove_one,
3457 .err_handler = &t3_err_handler,
3458 };
3459
cxgb3_init_module(void)3460 static int __init cxgb3_init_module(void)
3461 {
3462 int ret;
3463
3464 cxgb3_offload_init();
3465
3466 ret = pci_register_driver(&driver);
3467 return ret;
3468 }
3469
cxgb3_cleanup_module(void)3470 static void __exit cxgb3_cleanup_module(void)
3471 {
3472 pci_unregister_driver(&driver);
3473 if (cxgb3_wq)
3474 destroy_workqueue(cxgb3_wq);
3475 }
3476
3477 module_init(cxgb3_init_module);
3478 module_exit(cxgb3_cleanup_module);
3479