1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */
2 /*
3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com>
4
5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c]
6 Written/copyright 1994-2001 by Donald Becker. [tulip.c]
7
8 This software may be used and distributed according to the terms of
9 the GNU General Public License (GPL), incorporated herein by reference.
10 Drivers based on or derived from this code fall under the GPL and must
11 retain the authorship, copyright and license notice. This file is not
12 a complete program and may only be used when the entire operating
13 system is licensed under the GPL.
14
15 See the file COPYING in this distribution for more information.
16
17 TODO, in rough priority order:
18 * Support forcing media type with a module parameter,
19 like dl2k.c/sundance.c
20 * Constants (module parms?) for Rx work limit
21 * Complete reset on PciErr
22 * Jumbo frames / dev->change_mtu
23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
25 * Implement Tx software interrupt mitigation via
26 Tx descriptor bit
27
28 */
29
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31
32 #define DRV_NAME "de2104x"
33 #define DRV_RELDATE "Mar 17, 2004"
34
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/interrupt.h>
41 #include <linux/pci.h>
42 #include <linux/delay.h>
43 #include <linux/ethtool.h>
44 #include <linux/compiler.h>
45 #include <linux/rtnetlink.h>
46 #include <linux/crc32.h>
47 #include <linux/slab.h>
48
49 #include <asm/io.h>
50 #include <asm/irq.h>
51 #include <linux/uaccess.h>
52 #include <asm/unaligned.h>
53
54 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
55 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver");
56 MODULE_LICENSE("GPL");
57
58 static int debug = -1;
59 module_param (debug, int, 0);
60 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number");
61
62 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
63 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
64 defined(CONFIG_SPARC) || defined(__ia64__) || \
65 defined(__sh__) || defined(__mips__)
66 static int rx_copybreak = 1518;
67 #else
68 static int rx_copybreak = 100;
69 #endif
70 module_param (rx_copybreak, int, 0);
71 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied");
72
73 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
74 NETIF_MSG_PROBE | \
75 NETIF_MSG_LINK | \
76 NETIF_MSG_IFDOWN | \
77 NETIF_MSG_IFUP | \
78 NETIF_MSG_RX_ERR | \
79 NETIF_MSG_TX_ERR)
80
81 /* Descriptor skip length in 32 bit longwords. */
82 #ifndef CONFIG_DE2104X_DSL
83 #define DSL 0
84 #else
85 #define DSL CONFIG_DE2104X_DSL
86 #endif
87
88 #define DE_RX_RING_SIZE 128
89 #define DE_TX_RING_SIZE 64
90 #define DE_RING_BYTES \
91 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \
92 (sizeof(struct de_desc) * DE_TX_RING_SIZE))
93 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1))
94 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1))
95 #define TX_BUFFS_AVAIL(CP) \
96 (((CP)->tx_tail <= (CP)->tx_head) ? \
97 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \
98 (CP)->tx_tail - (CP)->tx_head - 1)
99
100 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
101 #define RX_OFFSET 2
102
103 #define DE_SETUP_SKB ((struct sk_buff *) 1)
104 #define DE_DUMMY_SKB ((struct sk_buff *) 2)
105 #define DE_SETUP_FRAME_WORDS 96
106 #define DE_EEPROM_WORDS 256
107 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16))
108 #define DE_MAX_MEDIA 5
109
110 #define DE_MEDIA_TP_AUTO 0
111 #define DE_MEDIA_BNC 1
112 #define DE_MEDIA_AUI 2
113 #define DE_MEDIA_TP 3
114 #define DE_MEDIA_TP_FD 4
115 #define DE_MEDIA_INVALID DE_MAX_MEDIA
116 #define DE_MEDIA_FIRST 0
117 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1)
118 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC)
119
120 #define DE_TIMER_LINK (60 * HZ)
121 #define DE_TIMER_NO_LINK (5 * HZ)
122
123 #define DE_NUM_REGS 16
124 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32))
125 #define DE_REGS_VER 1
126
127 /* Time in jiffies before concluding the transmitter is hung. */
128 #define TX_TIMEOUT (6*HZ)
129
130 /* This is a mysterious value that can be written to CSR11 in the 21040 (only)
131 to support a pre-NWay full-duplex signaling mechanism using short frames.
132 No one knows what it should be, but if left at its default value some
133 10base2(!) packets trigger a full-duplex-request interrupt. */
134 #define FULL_DUPLEX_MAGIC 0x6969
135
136 enum {
137 /* NIC registers */
138 BusMode = 0x00,
139 TxPoll = 0x08,
140 RxPoll = 0x10,
141 RxRingAddr = 0x18,
142 TxRingAddr = 0x20,
143 MacStatus = 0x28,
144 MacMode = 0x30,
145 IntrMask = 0x38,
146 RxMissed = 0x40,
147 ROMCmd = 0x48,
148 CSR11 = 0x58,
149 SIAStatus = 0x60,
150 CSR13 = 0x68,
151 CSR14 = 0x70,
152 CSR15 = 0x78,
153 PCIPM = 0x40,
154
155 /* BusMode bits */
156 CmdReset = (1 << 0),
157 CacheAlign16 = 0x00008000,
158 BurstLen4 = 0x00000400,
159 DescSkipLen = (DSL << 2),
160
161 /* Rx/TxPoll bits */
162 NormalTxPoll = (1 << 0),
163 NormalRxPoll = (1 << 0),
164
165 /* Tx/Rx descriptor status bits */
166 DescOwn = (1 << 31),
167 RxError = (1 << 15),
168 RxErrLong = (1 << 7),
169 RxErrCRC = (1 << 1),
170 RxErrFIFO = (1 << 0),
171 RxErrRunt = (1 << 11),
172 RxErrFrame = (1 << 14),
173 RingEnd = (1 << 25),
174 FirstFrag = (1 << 29),
175 LastFrag = (1 << 30),
176 TxError = (1 << 15),
177 TxFIFOUnder = (1 << 1),
178 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11),
179 TxMaxCol = (1 << 8),
180 TxOWC = (1 << 9),
181 TxJabber = (1 << 14),
182 SetupFrame = (1 << 27),
183 TxSwInt = (1 << 31),
184
185 /* MacStatus bits */
186 IntrOK = (1 << 16),
187 IntrErr = (1 << 15),
188 RxIntr = (1 << 6),
189 RxEmpty = (1 << 7),
190 TxIntr = (1 << 0),
191 TxEmpty = (1 << 2),
192 PciErr = (1 << 13),
193 TxState = (1 << 22) | (1 << 21) | (1 << 20),
194 RxState = (1 << 19) | (1 << 18) | (1 << 17),
195 LinkFail = (1 << 12),
196 LinkPass = (1 << 4),
197 RxStopped = (1 << 8),
198 TxStopped = (1 << 1),
199
200 /* MacMode bits */
201 TxEnable = (1 << 13),
202 RxEnable = (1 << 1),
203 RxTx = TxEnable | RxEnable,
204 FullDuplex = (1 << 9),
205 AcceptAllMulticast = (1 << 7),
206 AcceptAllPhys = (1 << 6),
207 BOCnt = (1 << 5),
208 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) |
209 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast,
210
211 /* ROMCmd bits */
212 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */
213 EE_CS = 0x01, /* EEPROM chip select. */
214 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */
215 EE_WRITE_0 = 0x01,
216 EE_WRITE_1 = 0x05,
217 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */
218 EE_ENB = (0x4800 | EE_CS),
219
220 /* The EEPROM commands include the alway-set leading bit. */
221 EE_READ_CMD = 6,
222
223 /* RxMissed bits */
224 RxMissedOver = (1 << 16),
225 RxMissedMask = 0xffff,
226
227 /* SROM-related bits */
228 SROMC0InfoLeaf = 27,
229 MediaBlockMask = 0x3f,
230 MediaCustomCSRs = (1 << 6),
231
232 /* PCIPM bits */
233 PM_Sleep = (1 << 31),
234 PM_Snooze = (1 << 30),
235 PM_Mask = PM_Sleep | PM_Snooze,
236
237 /* SIAStatus bits */
238 NWayState = (1 << 14) | (1 << 13) | (1 << 12),
239 NWayRestart = (1 << 12),
240 NonselPortActive = (1 << 9),
241 SelPortActive = (1 << 8),
242 LinkFailStatus = (1 << 2),
243 NetCxnErr = (1 << 1),
244 };
245
246 static const u32 de_intr_mask =
247 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty |
248 LinkPass | LinkFail | PciErr;
249
250 /*
251 * Set the programmable burst length to 4 longwords for all:
252 * DMA errors result without these values. Cache align 16 long.
253 */
254 static const u32 de_bus_mode = CacheAlign16 | BurstLen4 | DescSkipLen;
255
256 struct de_srom_media_block {
257 u8 opts;
258 u16 csr13;
259 u16 csr14;
260 u16 csr15;
261 } __packed;
262
263 struct de_srom_info_leaf {
264 u16 default_media;
265 u8 n_blocks;
266 u8 unused;
267 } __packed;
268
269 struct de_desc {
270 __le32 opts1;
271 __le32 opts2;
272 __le32 addr1;
273 __le32 addr2;
274 #if DSL
275 __le32 skip[DSL];
276 #endif
277 };
278
279 struct media_info {
280 u16 type; /* DE_MEDIA_xxx */
281 u16 csr13;
282 u16 csr14;
283 u16 csr15;
284 };
285
286 struct ring_info {
287 struct sk_buff *skb;
288 dma_addr_t mapping;
289 };
290
291 struct de_private {
292 unsigned tx_head;
293 unsigned tx_tail;
294 unsigned rx_tail;
295
296 void __iomem *regs;
297 struct net_device *dev;
298 spinlock_t lock;
299
300 struct de_desc *rx_ring;
301 struct de_desc *tx_ring;
302 struct ring_info tx_skb[DE_TX_RING_SIZE];
303 struct ring_info rx_skb[DE_RX_RING_SIZE];
304 unsigned rx_buf_sz;
305 dma_addr_t ring_dma;
306
307 u32 msg_enable;
308
309 struct pci_dev *pdev;
310
311 u16 setup_frame[DE_SETUP_FRAME_WORDS];
312
313 u32 media_type;
314 u32 media_supported;
315 u32 media_advertise;
316 struct media_info media[DE_MAX_MEDIA];
317 struct timer_list media_timer;
318
319 u8 *ee_data;
320 unsigned board_idx;
321 unsigned de21040 : 1;
322 unsigned media_lock : 1;
323 };
324
325
326 static void de_set_rx_mode (struct net_device *dev);
327 static void de_tx (struct de_private *de);
328 static void de_clean_rings (struct de_private *de);
329 static void de_media_interrupt (struct de_private *de, u32 status);
330 static void de21040_media_timer (struct timer_list *t);
331 static void de21041_media_timer (struct timer_list *t);
332 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media);
333
334
335 static const struct pci_device_id de_pci_tbl[] = {
336 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
337 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
338 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
339 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
340 { },
341 };
342 MODULE_DEVICE_TABLE(pci, de_pci_tbl);
343
344 static const char * const media_name[DE_MAX_MEDIA] = {
345 "10baseT auto",
346 "BNC",
347 "AUI",
348 "10baseT-HD",
349 "10baseT-FD"
350 };
351
352 /* 21040 transceiver register settings:
353 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/
354 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, };
355 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, };
356 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, };
357
358 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/
359 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
360 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, };
361 /* If on-chip autonegotiation is broken, use half-duplex (FF3F) instead */
362 static u16 t21041_csr14_brk[] = { 0xFF3F, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, };
363 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
364
365
366 #define dr32(reg) ioread32(de->regs + (reg))
367 #define dw32(reg, val) iowrite32((val), de->regs + (reg))
368
369
de_rx_err_acct(struct de_private * de,unsigned rx_tail,u32 status,u32 len)370 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail,
371 u32 status, u32 len)
372 {
373 netif_dbg(de, rx_err, de->dev,
374 "rx err, slot %d status 0x%x len %d\n",
375 rx_tail, status, len);
376
377 if ((status & 0x38000300) != 0x0300) {
378 /* Ingore earlier buffers. */
379 if ((status & 0xffff) != 0x7fff) {
380 netif_warn(de, rx_err, de->dev,
381 "Oversized Ethernet frame spanned multiple buffers, status %08x!\n",
382 status);
383 de->dev->stats.rx_length_errors++;
384 }
385 } else if (status & RxError) {
386 /* There was a fatal error. */
387 de->dev->stats.rx_errors++; /* end of a packet.*/
388 if (status & 0x0890) de->dev->stats.rx_length_errors++;
389 if (status & RxErrCRC) de->dev->stats.rx_crc_errors++;
390 if (status & RxErrFIFO) de->dev->stats.rx_fifo_errors++;
391 }
392 }
393
de_rx(struct de_private * de)394 static void de_rx (struct de_private *de)
395 {
396 unsigned rx_tail = de->rx_tail;
397 unsigned rx_work = DE_RX_RING_SIZE;
398 unsigned drop = 0;
399 int rc;
400
401 while (--rx_work) {
402 u32 status, len;
403 dma_addr_t mapping;
404 struct sk_buff *skb, *copy_skb;
405 unsigned copying_skb, buflen;
406
407 skb = de->rx_skb[rx_tail].skb;
408 BUG_ON(!skb);
409 rmb();
410 status = le32_to_cpu(de->rx_ring[rx_tail].opts1);
411 if (status & DescOwn)
412 break;
413
414 /* the length is actually a 15 bit value here according
415 * to Table 4-1 in the DE2104x spec so mask is 0x7fff
416 */
417 len = ((status >> 16) & 0x7fff) - 4;
418 mapping = de->rx_skb[rx_tail].mapping;
419
420 if (unlikely(drop)) {
421 de->dev->stats.rx_dropped++;
422 goto rx_next;
423 }
424
425 if (unlikely((status & 0x38008300) != 0x0300)) {
426 de_rx_err_acct(de, rx_tail, status, len);
427 goto rx_next;
428 }
429
430 copying_skb = (len <= rx_copybreak);
431
432 netif_dbg(de, rx_status, de->dev,
433 "rx slot %d status 0x%x len %d copying? %d\n",
434 rx_tail, status, len, copying_skb);
435
436 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz;
437 copy_skb = netdev_alloc_skb(de->dev, buflen);
438 if (unlikely(!copy_skb)) {
439 de->dev->stats.rx_dropped++;
440 drop = 1;
441 rx_work = 100;
442 goto rx_next;
443 }
444
445 if (!copying_skb) {
446 dma_unmap_single(&de->pdev->dev, mapping, buflen,
447 DMA_FROM_DEVICE);
448 skb_put(skb, len);
449
450 mapping =
451 de->rx_skb[rx_tail].mapping =
452 dma_map_single(&de->pdev->dev, copy_skb->data,
453 buflen, DMA_FROM_DEVICE);
454 de->rx_skb[rx_tail].skb = copy_skb;
455 } else {
456 dma_sync_single_for_cpu(&de->pdev->dev, mapping, len,
457 DMA_FROM_DEVICE);
458 skb_reserve(copy_skb, RX_OFFSET);
459 skb_copy_from_linear_data(skb, skb_put(copy_skb, len),
460 len);
461 dma_sync_single_for_device(&de->pdev->dev, mapping,
462 len, DMA_FROM_DEVICE);
463
464 /* We'll reuse the original ring buffer. */
465 skb = copy_skb;
466 }
467
468 skb->protocol = eth_type_trans (skb, de->dev);
469
470 de->dev->stats.rx_packets++;
471 de->dev->stats.rx_bytes += skb->len;
472 rc = netif_rx (skb);
473 if (rc == NET_RX_DROP)
474 drop = 1;
475
476 rx_next:
477 if (rx_tail == (DE_RX_RING_SIZE - 1))
478 de->rx_ring[rx_tail].opts2 =
479 cpu_to_le32(RingEnd | de->rx_buf_sz);
480 else
481 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz);
482 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping);
483 wmb();
484 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn);
485 rx_tail = NEXT_RX(rx_tail);
486 }
487
488 if (!rx_work)
489 netdev_warn(de->dev, "rx work limit reached\n");
490
491 de->rx_tail = rx_tail;
492 }
493
de_interrupt(int irq,void * dev_instance)494 static irqreturn_t de_interrupt (int irq, void *dev_instance)
495 {
496 struct net_device *dev = dev_instance;
497 struct de_private *de = netdev_priv(dev);
498 u32 status;
499
500 status = dr32(MacStatus);
501 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF))
502 return IRQ_NONE;
503
504 netif_dbg(de, intr, dev, "intr, status %08x mode %08x desc %u/%u/%u\n",
505 status, dr32(MacMode),
506 de->rx_tail, de->tx_head, de->tx_tail);
507
508 dw32(MacStatus, status);
509
510 if (status & (RxIntr | RxEmpty)) {
511 de_rx(de);
512 if (status & RxEmpty)
513 dw32(RxPoll, NormalRxPoll);
514 }
515
516 spin_lock(&de->lock);
517
518 if (status & (TxIntr | TxEmpty))
519 de_tx(de);
520
521 if (status & (LinkPass | LinkFail))
522 de_media_interrupt(de, status);
523
524 spin_unlock(&de->lock);
525
526 if (status & PciErr) {
527 u16 pci_status;
528
529 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status);
530 pci_write_config_word(de->pdev, PCI_STATUS, pci_status);
531 netdev_err(de->dev,
532 "PCI bus error, status=%08x, PCI status=%04x\n",
533 status, pci_status);
534 }
535
536 return IRQ_HANDLED;
537 }
538
de_tx(struct de_private * de)539 static void de_tx (struct de_private *de)
540 {
541 unsigned tx_head = de->tx_head;
542 unsigned tx_tail = de->tx_tail;
543
544 while (tx_tail != tx_head) {
545 struct sk_buff *skb;
546 u32 status;
547
548 rmb();
549 status = le32_to_cpu(de->tx_ring[tx_tail].opts1);
550 if (status & DescOwn)
551 break;
552
553 skb = de->tx_skb[tx_tail].skb;
554 BUG_ON(!skb);
555 if (unlikely(skb == DE_DUMMY_SKB))
556 goto next;
557
558 if (unlikely(skb == DE_SETUP_SKB)) {
559 dma_unmap_single(&de->pdev->dev,
560 de->tx_skb[tx_tail].mapping,
561 sizeof(de->setup_frame),
562 DMA_TO_DEVICE);
563 goto next;
564 }
565
566 dma_unmap_single(&de->pdev->dev, de->tx_skb[tx_tail].mapping,
567 skb->len, DMA_TO_DEVICE);
568
569 if (status & LastFrag) {
570 if (status & TxError) {
571 netif_dbg(de, tx_err, de->dev,
572 "tx err, status 0x%x\n",
573 status);
574 de->dev->stats.tx_errors++;
575 if (status & TxOWC)
576 de->dev->stats.tx_window_errors++;
577 if (status & TxMaxCol)
578 de->dev->stats.tx_aborted_errors++;
579 if (status & TxLinkFail)
580 de->dev->stats.tx_carrier_errors++;
581 if (status & TxFIFOUnder)
582 de->dev->stats.tx_fifo_errors++;
583 } else {
584 de->dev->stats.tx_packets++;
585 de->dev->stats.tx_bytes += skb->len;
586 netif_dbg(de, tx_done, de->dev,
587 "tx done, slot %d\n", tx_tail);
588 }
589 dev_consume_skb_irq(skb);
590 }
591
592 next:
593 de->tx_skb[tx_tail].skb = NULL;
594
595 tx_tail = NEXT_TX(tx_tail);
596 }
597
598 de->tx_tail = tx_tail;
599
600 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4)))
601 netif_wake_queue(de->dev);
602 }
603
de_start_xmit(struct sk_buff * skb,struct net_device * dev)604 static netdev_tx_t de_start_xmit (struct sk_buff *skb,
605 struct net_device *dev)
606 {
607 struct de_private *de = netdev_priv(dev);
608 unsigned int entry, tx_free;
609 u32 mapping, len, flags = FirstFrag | LastFrag;
610 struct de_desc *txd;
611
612 spin_lock_irq(&de->lock);
613
614 tx_free = TX_BUFFS_AVAIL(de);
615 if (tx_free == 0) {
616 netif_stop_queue(dev);
617 spin_unlock_irq(&de->lock);
618 return NETDEV_TX_BUSY;
619 }
620 tx_free--;
621
622 entry = de->tx_head;
623
624 txd = &de->tx_ring[entry];
625
626 len = skb->len;
627 mapping = dma_map_single(&de->pdev->dev, skb->data, len,
628 DMA_TO_DEVICE);
629 if (entry == (DE_TX_RING_SIZE - 1))
630 flags |= RingEnd;
631 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2)))
632 flags |= TxSwInt;
633 flags |= len;
634 txd->opts2 = cpu_to_le32(flags);
635 txd->addr1 = cpu_to_le32(mapping);
636
637 de->tx_skb[entry].skb = skb;
638 de->tx_skb[entry].mapping = mapping;
639 wmb();
640
641 txd->opts1 = cpu_to_le32(DescOwn);
642 wmb();
643
644 de->tx_head = NEXT_TX(entry);
645 netif_dbg(de, tx_queued, dev, "tx queued, slot %d, skblen %d\n",
646 entry, skb->len);
647
648 if (tx_free == 0)
649 netif_stop_queue(dev);
650
651 spin_unlock_irq(&de->lock);
652
653 /* Trigger an immediate transmit demand. */
654 dw32(TxPoll, NormalTxPoll);
655
656 return NETDEV_TX_OK;
657 }
658
659 /* Set or clear the multicast filter for this adaptor.
660 Note that we only use exclusion around actually queueing the
661 new frame, not around filling de->setup_frame. This is non-deterministic
662 when re-entered but still correct. */
663
build_setup_frame_hash(u16 * setup_frm,struct net_device * dev)664 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
665 {
666 struct de_private *de = netdev_priv(dev);
667 u16 hash_table[32];
668 struct netdev_hw_addr *ha;
669 int i;
670 u16 *eaddrs;
671
672 memset(hash_table, 0, sizeof(hash_table));
673 __set_bit_le(255, hash_table); /* Broadcast entry */
674 /* This should work on big-endian machines as well. */
675 netdev_for_each_mc_addr(ha, dev) {
676 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;
677
678 __set_bit_le(index, hash_table);
679 }
680
681 for (i = 0; i < 32; i++) {
682 *setup_frm++ = hash_table[i];
683 *setup_frm++ = hash_table[i];
684 }
685 setup_frm = &de->setup_frame[13*6];
686
687 /* Fill the final entry with our physical address. */
688 eaddrs = (u16 *)dev->dev_addr;
689 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
690 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
691 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
692 }
693
build_setup_frame_perfect(u16 * setup_frm,struct net_device * dev)694 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
695 {
696 struct de_private *de = netdev_priv(dev);
697 struct netdev_hw_addr *ha;
698 u16 *eaddrs;
699
700 /* We have <= 14 addresses so we can use the wonderful
701 16 address perfect filtering of the Tulip. */
702 netdev_for_each_mc_addr(ha, dev) {
703 eaddrs = (u16 *) ha->addr;
704 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
705 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
706 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
707 }
708 /* Fill the unused entries with the broadcast address. */
709 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
710 setup_frm = &de->setup_frame[15*6];
711
712 /* Fill the final entry with our physical address. */
713 eaddrs = (u16 *)dev->dev_addr;
714 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
715 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
716 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
717 }
718
719
__de_set_rx_mode(struct net_device * dev)720 static void __de_set_rx_mode (struct net_device *dev)
721 {
722 struct de_private *de = netdev_priv(dev);
723 u32 macmode;
724 unsigned int entry;
725 u32 mapping;
726 struct de_desc *txd;
727 struct de_desc *dummy_txd = NULL;
728
729 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys);
730
731 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
732 macmode |= AcceptAllMulticast | AcceptAllPhys;
733 goto out;
734 }
735
736 if ((netdev_mc_count(dev) > 1000) || (dev->flags & IFF_ALLMULTI)) {
737 /* Too many to filter well -- accept all multicasts. */
738 macmode |= AcceptAllMulticast;
739 goto out;
740 }
741
742 /* Note that only the low-address shortword of setup_frame is valid!
743 The values are doubled for big-endian architectures. */
744 if (netdev_mc_count(dev) > 14) /* Must use a multicast hash table. */
745 build_setup_frame_hash (de->setup_frame, dev);
746 else
747 build_setup_frame_perfect (de->setup_frame, dev);
748
749 /*
750 * Now add this frame to the Tx list.
751 */
752
753 entry = de->tx_head;
754
755 /* Avoid a chip errata by prefixing a dummy entry. */
756 if (entry != 0) {
757 de->tx_skb[entry].skb = DE_DUMMY_SKB;
758
759 dummy_txd = &de->tx_ring[entry];
760 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ?
761 cpu_to_le32(RingEnd) : 0;
762 dummy_txd->addr1 = 0;
763
764 /* Must set DescOwned later to avoid race with chip */
765
766 entry = NEXT_TX(entry);
767 }
768
769 de->tx_skb[entry].skb = DE_SETUP_SKB;
770 de->tx_skb[entry].mapping = mapping =
771 dma_map_single(&de->pdev->dev, de->setup_frame,
772 sizeof(de->setup_frame), DMA_TO_DEVICE);
773
774 /* Put the setup frame on the Tx list. */
775 txd = &de->tx_ring[entry];
776 if (entry == (DE_TX_RING_SIZE - 1))
777 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame));
778 else
779 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame));
780 txd->addr1 = cpu_to_le32(mapping);
781 wmb();
782
783 txd->opts1 = cpu_to_le32(DescOwn);
784 wmb();
785
786 if (dummy_txd) {
787 dummy_txd->opts1 = cpu_to_le32(DescOwn);
788 wmb();
789 }
790
791 de->tx_head = NEXT_TX(entry);
792
793 if (TX_BUFFS_AVAIL(de) == 0)
794 netif_stop_queue(dev);
795
796 /* Trigger an immediate transmit demand. */
797 dw32(TxPoll, NormalTxPoll);
798
799 out:
800 if (macmode != dr32(MacMode))
801 dw32(MacMode, macmode);
802 }
803
de_set_rx_mode(struct net_device * dev)804 static void de_set_rx_mode (struct net_device *dev)
805 {
806 unsigned long flags;
807 struct de_private *de = netdev_priv(dev);
808
809 spin_lock_irqsave (&de->lock, flags);
810 __de_set_rx_mode(dev);
811 spin_unlock_irqrestore (&de->lock, flags);
812 }
813
de_rx_missed(struct de_private * de,u32 rx_missed)814 static inline void de_rx_missed(struct de_private *de, u32 rx_missed)
815 {
816 if (unlikely(rx_missed & RxMissedOver))
817 de->dev->stats.rx_missed_errors += RxMissedMask;
818 else
819 de->dev->stats.rx_missed_errors += (rx_missed & RxMissedMask);
820 }
821
__de_get_stats(struct de_private * de)822 static void __de_get_stats(struct de_private *de)
823 {
824 u32 tmp = dr32(RxMissed); /* self-clearing */
825
826 de_rx_missed(de, tmp);
827 }
828
de_get_stats(struct net_device * dev)829 static struct net_device_stats *de_get_stats(struct net_device *dev)
830 {
831 struct de_private *de = netdev_priv(dev);
832
833 /* The chip only need report frame silently dropped. */
834 spin_lock_irq(&de->lock);
835 if (netif_running(dev) && netif_device_present(dev))
836 __de_get_stats(de);
837 spin_unlock_irq(&de->lock);
838
839 return &dev->stats;
840 }
841
de_is_running(struct de_private * de)842 static inline int de_is_running (struct de_private *de)
843 {
844 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0;
845 }
846
de_stop_rxtx(struct de_private * de)847 static void de_stop_rxtx (struct de_private *de)
848 {
849 u32 macmode;
850 unsigned int i = 1300/100;
851
852 macmode = dr32(MacMode);
853 if (macmode & RxTx) {
854 dw32(MacMode, macmode & ~RxTx);
855 dr32(MacMode);
856 }
857
858 /* wait until in-flight frame completes.
859 * Max time @ 10BT: 1500*8b/10Mbps == 1200us (+ 100us margin)
860 * Typically expect this loop to end in < 50 us on 100BT.
861 */
862 while (--i) {
863 if (!de_is_running(de))
864 return;
865 udelay(100);
866 }
867
868 netdev_warn(de->dev, "timeout expired, stopping DMA\n");
869 }
870
de_start_rxtx(struct de_private * de)871 static inline void de_start_rxtx (struct de_private *de)
872 {
873 u32 macmode;
874
875 macmode = dr32(MacMode);
876 if ((macmode & RxTx) != RxTx) {
877 dw32(MacMode, macmode | RxTx);
878 dr32(MacMode);
879 }
880 }
881
de_stop_hw(struct de_private * de)882 static void de_stop_hw (struct de_private *de)
883 {
884
885 udelay(5);
886 dw32(IntrMask, 0);
887
888 de_stop_rxtx(de);
889
890 dw32(MacStatus, dr32(MacStatus));
891
892 udelay(10);
893
894 de->rx_tail = 0;
895 de->tx_head = de->tx_tail = 0;
896 }
897
de_link_up(struct de_private * de)898 static void de_link_up(struct de_private *de)
899 {
900 if (!netif_carrier_ok(de->dev)) {
901 netif_carrier_on(de->dev);
902 netif_info(de, link, de->dev, "link up, media %s\n",
903 media_name[de->media_type]);
904 }
905 }
906
de_link_down(struct de_private * de)907 static void de_link_down(struct de_private *de)
908 {
909 if (netif_carrier_ok(de->dev)) {
910 netif_carrier_off(de->dev);
911 netif_info(de, link, de->dev, "link down\n");
912 }
913 }
914
de_set_media(struct de_private * de)915 static void de_set_media (struct de_private *de)
916 {
917 unsigned media = de->media_type;
918 u32 macmode = dr32(MacMode);
919
920 if (de_is_running(de))
921 netdev_warn(de->dev, "chip is running while changing media!\n");
922
923 if (de->de21040)
924 dw32(CSR11, FULL_DUPLEX_MAGIC);
925 dw32(CSR13, 0); /* Reset phy */
926 dw32(CSR14, de->media[media].csr14);
927 dw32(CSR15, de->media[media].csr15);
928 dw32(CSR13, de->media[media].csr13);
929
930 /* must delay 10ms before writing to other registers,
931 * especially CSR6
932 */
933 mdelay(10);
934
935 if (media == DE_MEDIA_TP_FD)
936 macmode |= FullDuplex;
937 else
938 macmode &= ~FullDuplex;
939
940 netif_info(de, link, de->dev, "set link %s\n", media_name[media]);
941 netif_info(de, hw, de->dev, "mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n",
942 dr32(MacMode), dr32(SIAStatus),
943 dr32(CSR13), dr32(CSR14), dr32(CSR15));
944 netif_info(de, hw, de->dev, "set mode 0x%x, set sia 0x%x,0x%x,0x%x\n",
945 macmode, de->media[media].csr13,
946 de->media[media].csr14, de->media[media].csr15);
947 if (macmode != dr32(MacMode))
948 dw32(MacMode, macmode);
949 }
950
de_next_media(struct de_private * de,const u32 * media,unsigned int n_media)951 static void de_next_media (struct de_private *de, const u32 *media,
952 unsigned int n_media)
953 {
954 unsigned int i;
955
956 for (i = 0; i < n_media; i++) {
957 if (de_ok_to_advertise(de, media[i])) {
958 de->media_type = media[i];
959 return;
960 }
961 }
962 }
963
de21040_media_timer(struct timer_list * t)964 static void de21040_media_timer (struct timer_list *t)
965 {
966 struct de_private *de = from_timer(de, t, media_timer);
967 struct net_device *dev = de->dev;
968 u32 status = dr32(SIAStatus);
969 unsigned int carrier;
970 unsigned long flags;
971
972 carrier = (status & NetCxnErr) ? 0 : 1;
973
974 if (carrier) {
975 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
976 goto no_link_yet;
977
978 de->media_timer.expires = jiffies + DE_TIMER_LINK;
979 add_timer(&de->media_timer);
980 if (!netif_carrier_ok(dev))
981 de_link_up(de);
982 else
983 netif_info(de, timer, dev, "%s link ok, status %x\n",
984 media_name[de->media_type], status);
985 return;
986 }
987
988 de_link_down(de);
989
990 if (de->media_lock)
991 return;
992
993 if (de->media_type == DE_MEDIA_AUI) {
994 static const u32 next_state = DE_MEDIA_TP;
995 de_next_media(de, &next_state, 1);
996 } else {
997 static const u32 next_state = DE_MEDIA_AUI;
998 de_next_media(de, &next_state, 1);
999 }
1000
1001 spin_lock_irqsave(&de->lock, flags);
1002 de_stop_rxtx(de);
1003 spin_unlock_irqrestore(&de->lock, flags);
1004 de_set_media(de);
1005 de_start_rxtx(de);
1006
1007 no_link_yet:
1008 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1009 add_timer(&de->media_timer);
1010
1011 netif_info(de, timer, dev, "no link, trying media %s, status %x\n",
1012 media_name[de->media_type], status);
1013 }
1014
de_ok_to_advertise(struct de_private * de,u32 new_media)1015 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
1016 {
1017 switch (new_media) {
1018 case DE_MEDIA_TP_AUTO:
1019 if (!(de->media_advertise & ADVERTISED_Autoneg))
1020 return 0;
1021 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full)))
1022 return 0;
1023 break;
1024 case DE_MEDIA_BNC:
1025 if (!(de->media_advertise & ADVERTISED_BNC))
1026 return 0;
1027 break;
1028 case DE_MEDIA_AUI:
1029 if (!(de->media_advertise & ADVERTISED_AUI))
1030 return 0;
1031 break;
1032 case DE_MEDIA_TP:
1033 if (!(de->media_advertise & ADVERTISED_10baseT_Half))
1034 return 0;
1035 break;
1036 case DE_MEDIA_TP_FD:
1037 if (!(de->media_advertise & ADVERTISED_10baseT_Full))
1038 return 0;
1039 break;
1040 }
1041
1042 return 1;
1043 }
1044
de21041_media_timer(struct timer_list * t)1045 static void de21041_media_timer (struct timer_list *t)
1046 {
1047 struct de_private *de = from_timer(de, t, media_timer);
1048 struct net_device *dev = de->dev;
1049 u32 status = dr32(SIAStatus);
1050 unsigned int carrier;
1051 unsigned long flags;
1052
1053 /* clear port active bits */
1054 dw32(SIAStatus, NonselPortActive | SelPortActive);
1055
1056 carrier = (status & NetCxnErr) ? 0 : 1;
1057
1058 if (carrier) {
1059 if ((de->media_type == DE_MEDIA_TP_AUTO ||
1060 de->media_type == DE_MEDIA_TP ||
1061 de->media_type == DE_MEDIA_TP_FD) &&
1062 (status & LinkFailStatus))
1063 goto no_link_yet;
1064
1065 de->media_timer.expires = jiffies + DE_TIMER_LINK;
1066 add_timer(&de->media_timer);
1067 if (!netif_carrier_ok(dev))
1068 de_link_up(de);
1069 else
1070 netif_info(de, timer, dev,
1071 "%s link ok, mode %x status %x\n",
1072 media_name[de->media_type],
1073 dr32(MacMode), status);
1074 return;
1075 }
1076
1077 de_link_down(de);
1078
1079 /* if media type locked, don't switch media */
1080 if (de->media_lock)
1081 goto set_media;
1082
1083 /* if activity detected, use that as hint for new media type */
1084 if (status & NonselPortActive) {
1085 unsigned int have_media = 1;
1086
1087 /* if AUI/BNC selected, then activity is on TP port */
1088 if (de->media_type == DE_MEDIA_AUI ||
1089 de->media_type == DE_MEDIA_BNC) {
1090 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))
1091 de->media_type = DE_MEDIA_TP_AUTO;
1092 else
1093 have_media = 0;
1094 }
1095
1096 /* TP selected. If there is only TP and BNC, then it's BNC */
1097 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) &&
1098 de_ok_to_advertise(de, DE_MEDIA_BNC))
1099 de->media_type = DE_MEDIA_BNC;
1100
1101 /* TP selected. If there is only TP and AUI, then it's AUI */
1102 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) &&
1103 de_ok_to_advertise(de, DE_MEDIA_AUI))
1104 de->media_type = DE_MEDIA_AUI;
1105
1106 /* otherwise, ignore the hint */
1107 else
1108 have_media = 0;
1109
1110 if (have_media)
1111 goto set_media;
1112 }
1113
1114 /*
1115 * Absent or ambiguous activity hint, move to next advertised
1116 * media state. If de->media_type is left unchanged, this
1117 * simply resets the PHY and reloads the current media settings.
1118 */
1119 if (de->media_type == DE_MEDIA_AUI) {
1120 static const u32 next_states[] = {
1121 DE_MEDIA_BNC, DE_MEDIA_TP_AUTO
1122 };
1123 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1124 } else if (de->media_type == DE_MEDIA_BNC) {
1125 static const u32 next_states[] = {
1126 DE_MEDIA_TP_AUTO, DE_MEDIA_AUI
1127 };
1128 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1129 } else {
1130 static const u32 next_states[] = {
1131 DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO
1132 };
1133 de_next_media(de, next_states, ARRAY_SIZE(next_states));
1134 }
1135
1136 set_media:
1137 spin_lock_irqsave(&de->lock, flags);
1138 de_stop_rxtx(de);
1139 spin_unlock_irqrestore(&de->lock, flags);
1140 de_set_media(de);
1141 de_start_rxtx(de);
1142
1143 no_link_yet:
1144 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1145 add_timer(&de->media_timer);
1146
1147 netif_info(de, timer, dev, "no link, trying media %s, status %x\n",
1148 media_name[de->media_type], status);
1149 }
1150
de_media_interrupt(struct de_private * de,u32 status)1151 static void de_media_interrupt (struct de_private *de, u32 status)
1152 {
1153 if (status & LinkPass) {
1154 /* Ignore if current media is AUI or BNC and we can't use TP */
1155 if ((de->media_type == DE_MEDIA_AUI ||
1156 de->media_type == DE_MEDIA_BNC) &&
1157 (de->media_lock ||
1158 !de_ok_to_advertise(de, DE_MEDIA_TP_AUTO)))
1159 return;
1160 /* If current media is not TP, change it to TP */
1161 if ((de->media_type == DE_MEDIA_AUI ||
1162 de->media_type == DE_MEDIA_BNC)) {
1163 de->media_type = DE_MEDIA_TP_AUTO;
1164 de_stop_rxtx(de);
1165 de_set_media(de);
1166 de_start_rxtx(de);
1167 }
1168 de_link_up(de);
1169 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
1170 return;
1171 }
1172
1173 BUG_ON(!(status & LinkFail));
1174 /* Mark the link as down only if current media is TP */
1175 if (netif_carrier_ok(de->dev) && de->media_type != DE_MEDIA_AUI &&
1176 de->media_type != DE_MEDIA_BNC) {
1177 de_link_down(de);
1178 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1179 }
1180 }
1181
de_reset_mac(struct de_private * de)1182 static int de_reset_mac (struct de_private *de)
1183 {
1184 u32 status, tmp;
1185
1186 /*
1187 * Reset MAC. de4x5.c and tulip.c examined for "advice"
1188 * in this area.
1189 */
1190
1191 if (dr32(BusMode) == 0xffffffff)
1192 return -EBUSY;
1193
1194 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
1195 dw32 (BusMode, CmdReset);
1196 mdelay (1);
1197
1198 dw32 (BusMode, de_bus_mode);
1199 mdelay (1);
1200
1201 for (tmp = 0; tmp < 5; tmp++) {
1202 dr32 (BusMode);
1203 mdelay (1);
1204 }
1205
1206 mdelay (1);
1207
1208 status = dr32(MacStatus);
1209 if (status & (RxState | TxState))
1210 return -EBUSY;
1211 if (status == 0xffffffff)
1212 return -ENODEV;
1213 return 0;
1214 }
1215
de_adapter_wake(struct de_private * de)1216 static void de_adapter_wake (struct de_private *de)
1217 {
1218 u32 pmctl;
1219
1220 if (de->de21040)
1221 return;
1222
1223 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1224 if (pmctl & PM_Mask) {
1225 pmctl &= ~PM_Mask;
1226 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1227
1228 /* de4x5.c delays, so we do too */
1229 msleep(10);
1230 }
1231 }
1232
de_adapter_sleep(struct de_private * de)1233 static void de_adapter_sleep (struct de_private *de)
1234 {
1235 u32 pmctl;
1236
1237 if (de->de21040)
1238 return;
1239
1240 dw32(CSR13, 0); /* Reset phy */
1241 pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1242 pmctl |= PM_Sleep;
1243 pci_write_config_dword(de->pdev, PCIPM, pmctl);
1244 }
1245
de_init_hw(struct de_private * de)1246 static int de_init_hw (struct de_private *de)
1247 {
1248 struct net_device *dev = de->dev;
1249 u32 macmode;
1250 int rc;
1251
1252 de_adapter_wake(de);
1253
1254 macmode = dr32(MacMode) & ~MacModeClear;
1255
1256 rc = de_reset_mac(de);
1257 if (rc)
1258 return rc;
1259
1260 de_set_media(de); /* reset phy */
1261
1262 dw32(RxRingAddr, de->ring_dma);
1263 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE));
1264
1265 dw32(MacMode, RxTx | macmode);
1266
1267 dr32(RxMissed); /* self-clearing */
1268
1269 dw32(IntrMask, de_intr_mask);
1270
1271 de_set_rx_mode(dev);
1272
1273 return 0;
1274 }
1275
de_refill_rx(struct de_private * de)1276 static int de_refill_rx (struct de_private *de)
1277 {
1278 unsigned i;
1279
1280 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1281 struct sk_buff *skb;
1282
1283 skb = netdev_alloc_skb(de->dev, de->rx_buf_sz);
1284 if (!skb)
1285 goto err_out;
1286
1287 de->rx_skb[i].mapping = dma_map_single(&de->pdev->dev,
1288 skb->data,
1289 de->rx_buf_sz,
1290 DMA_FROM_DEVICE);
1291 de->rx_skb[i].skb = skb;
1292
1293 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn);
1294 if (i == (DE_RX_RING_SIZE - 1))
1295 de->rx_ring[i].opts2 =
1296 cpu_to_le32(RingEnd | de->rx_buf_sz);
1297 else
1298 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz);
1299 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping);
1300 de->rx_ring[i].addr2 = 0;
1301 }
1302
1303 return 0;
1304
1305 err_out:
1306 de_clean_rings(de);
1307 return -ENOMEM;
1308 }
1309
de_init_rings(struct de_private * de)1310 static int de_init_rings (struct de_private *de)
1311 {
1312 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1313 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1314
1315 de->rx_tail = 0;
1316 de->tx_head = de->tx_tail = 0;
1317
1318 return de_refill_rx (de);
1319 }
1320
de_alloc_rings(struct de_private * de)1321 static int de_alloc_rings (struct de_private *de)
1322 {
1323 de->rx_ring = dma_alloc_coherent(&de->pdev->dev, DE_RING_BYTES,
1324 &de->ring_dma, GFP_KERNEL);
1325 if (!de->rx_ring)
1326 return -ENOMEM;
1327 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE];
1328 return de_init_rings(de);
1329 }
1330
de_clean_rings(struct de_private * de)1331 static void de_clean_rings (struct de_private *de)
1332 {
1333 unsigned i;
1334
1335 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE);
1336 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1337 wmb();
1338 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1339 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1340 wmb();
1341
1342 for (i = 0; i < DE_RX_RING_SIZE; i++) {
1343 if (de->rx_skb[i].skb) {
1344 dma_unmap_single(&de->pdev->dev,
1345 de->rx_skb[i].mapping, de->rx_buf_sz,
1346 DMA_FROM_DEVICE);
1347 dev_kfree_skb(de->rx_skb[i].skb);
1348 }
1349 }
1350
1351 for (i = 0; i < DE_TX_RING_SIZE; i++) {
1352 struct sk_buff *skb = de->tx_skb[i].skb;
1353 if ((skb) && (skb != DE_DUMMY_SKB)) {
1354 if (skb != DE_SETUP_SKB) {
1355 de->dev->stats.tx_dropped++;
1356 dma_unmap_single(&de->pdev->dev,
1357 de->tx_skb[i].mapping,
1358 skb->len, DMA_TO_DEVICE);
1359 dev_kfree_skb(skb);
1360 } else {
1361 dma_unmap_single(&de->pdev->dev,
1362 de->tx_skb[i].mapping,
1363 sizeof(de->setup_frame),
1364 DMA_TO_DEVICE);
1365 }
1366 }
1367 }
1368
1369 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE);
1370 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE);
1371 }
1372
de_free_rings(struct de_private * de)1373 static void de_free_rings (struct de_private *de)
1374 {
1375 de_clean_rings(de);
1376 dma_free_coherent(&de->pdev->dev, DE_RING_BYTES, de->rx_ring,
1377 de->ring_dma);
1378 de->rx_ring = NULL;
1379 de->tx_ring = NULL;
1380 }
1381
de_open(struct net_device * dev)1382 static int de_open (struct net_device *dev)
1383 {
1384 struct de_private *de = netdev_priv(dev);
1385 const int irq = de->pdev->irq;
1386 int rc;
1387
1388 netif_dbg(de, ifup, dev, "enabling interface\n");
1389
1390 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1391
1392 rc = de_alloc_rings(de);
1393 if (rc) {
1394 netdev_err(dev, "ring allocation failure, err=%d\n", rc);
1395 return rc;
1396 }
1397
1398 dw32(IntrMask, 0);
1399
1400 rc = request_irq(irq, de_interrupt, IRQF_SHARED, dev->name, dev);
1401 if (rc) {
1402 netdev_err(dev, "IRQ %d request failure, err=%d\n", irq, rc);
1403 goto err_out_free;
1404 }
1405
1406 rc = de_init_hw(de);
1407 if (rc) {
1408 netdev_err(dev, "h/w init failure, err=%d\n", rc);
1409 goto err_out_free_irq;
1410 }
1411
1412 netif_start_queue(dev);
1413 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1414
1415 return 0;
1416
1417 err_out_free_irq:
1418 free_irq(irq, dev);
1419 err_out_free:
1420 de_free_rings(de);
1421 return rc;
1422 }
1423
de_close(struct net_device * dev)1424 static int de_close (struct net_device *dev)
1425 {
1426 struct de_private *de = netdev_priv(dev);
1427 unsigned long flags;
1428
1429 netif_dbg(de, ifdown, dev, "disabling interface\n");
1430
1431 del_timer_sync(&de->media_timer);
1432
1433 spin_lock_irqsave(&de->lock, flags);
1434 de_stop_hw(de);
1435 netif_stop_queue(dev);
1436 netif_carrier_off(dev);
1437 spin_unlock_irqrestore(&de->lock, flags);
1438
1439 free_irq(de->pdev->irq, dev);
1440
1441 de_free_rings(de);
1442 de_adapter_sleep(de);
1443 return 0;
1444 }
1445
de_tx_timeout(struct net_device * dev,unsigned int txqueue)1446 static void de_tx_timeout (struct net_device *dev, unsigned int txqueue)
1447 {
1448 struct de_private *de = netdev_priv(dev);
1449 const int irq = de->pdev->irq;
1450
1451 netdev_dbg(dev, "NIC status %08x mode %08x sia %08x desc %u/%u/%u\n",
1452 dr32(MacStatus), dr32(MacMode), dr32(SIAStatus),
1453 de->rx_tail, de->tx_head, de->tx_tail);
1454
1455 del_timer_sync(&de->media_timer);
1456
1457 disable_irq(irq);
1458 spin_lock_irq(&de->lock);
1459
1460 de_stop_hw(de);
1461 netif_stop_queue(dev);
1462 netif_carrier_off(dev);
1463
1464 spin_unlock_irq(&de->lock);
1465 enable_irq(irq);
1466
1467 /* Update the error counts. */
1468 __de_get_stats(de);
1469
1470 synchronize_irq(irq);
1471 de_clean_rings(de);
1472
1473 de_init_rings(de);
1474
1475 de_init_hw(de);
1476
1477 netif_wake_queue(dev);
1478 }
1479
__de_get_regs(struct de_private * de,u8 * buf)1480 static void __de_get_regs(struct de_private *de, u8 *buf)
1481 {
1482 int i;
1483 u32 *rbuf = (u32 *)buf;
1484
1485 /* read all CSRs */
1486 for (i = 0; i < DE_NUM_REGS; i++)
1487 rbuf[i] = dr32(i * 8);
1488
1489 /* handle self-clearing RxMissed counter, CSR8 */
1490 de_rx_missed(de, rbuf[8]);
1491 }
1492
__de_get_link_ksettings(struct de_private * de,struct ethtool_link_ksettings * cmd)1493 static void __de_get_link_ksettings(struct de_private *de,
1494 struct ethtool_link_ksettings *cmd)
1495 {
1496 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1497 de->media_supported);
1498 cmd->base.phy_address = 0;
1499 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1500 de->media_advertise);
1501
1502 switch (de->media_type) {
1503 case DE_MEDIA_AUI:
1504 cmd->base.port = PORT_AUI;
1505 break;
1506 case DE_MEDIA_BNC:
1507 cmd->base.port = PORT_BNC;
1508 break;
1509 default:
1510 cmd->base.port = PORT_TP;
1511 break;
1512 }
1513
1514 cmd->base.speed = 10;
1515
1516 if (dr32(MacMode) & FullDuplex)
1517 cmd->base.duplex = DUPLEX_FULL;
1518 else
1519 cmd->base.duplex = DUPLEX_HALF;
1520
1521 if (de->media_lock)
1522 cmd->base.autoneg = AUTONEG_DISABLE;
1523 else
1524 cmd->base.autoneg = AUTONEG_ENABLE;
1525
1526 /* ignore maxtxpkt, maxrxpkt for now */
1527 }
1528
__de_set_link_ksettings(struct de_private * de,const struct ethtool_link_ksettings * cmd)1529 static int __de_set_link_ksettings(struct de_private *de,
1530 const struct ethtool_link_ksettings *cmd)
1531 {
1532 u32 new_media;
1533 unsigned int media_lock;
1534 u8 duplex = cmd->base.duplex;
1535 u8 port = cmd->base.port;
1536 u8 autoneg = cmd->base.autoneg;
1537 u32 advertising;
1538
1539 ethtool_convert_link_mode_to_legacy_u32(&advertising,
1540 cmd->link_modes.advertising);
1541
1542 if (cmd->base.speed != 10)
1543 return -EINVAL;
1544 if (duplex != DUPLEX_HALF && duplex != DUPLEX_FULL)
1545 return -EINVAL;
1546 if (port != PORT_TP && port != PORT_AUI && port != PORT_BNC)
1547 return -EINVAL;
1548 if (de->de21040 && port == PORT_BNC)
1549 return -EINVAL;
1550 if (autoneg != AUTONEG_DISABLE && autoneg != AUTONEG_ENABLE)
1551 return -EINVAL;
1552 if (advertising & ~de->media_supported)
1553 return -EINVAL;
1554 if (autoneg == AUTONEG_ENABLE &&
1555 (!(advertising & ADVERTISED_Autoneg)))
1556 return -EINVAL;
1557
1558 switch (port) {
1559 case PORT_AUI:
1560 new_media = DE_MEDIA_AUI;
1561 if (!(advertising & ADVERTISED_AUI))
1562 return -EINVAL;
1563 break;
1564 case PORT_BNC:
1565 new_media = DE_MEDIA_BNC;
1566 if (!(advertising & ADVERTISED_BNC))
1567 return -EINVAL;
1568 break;
1569 default:
1570 if (autoneg == AUTONEG_ENABLE)
1571 new_media = DE_MEDIA_TP_AUTO;
1572 else if (duplex == DUPLEX_FULL)
1573 new_media = DE_MEDIA_TP_FD;
1574 else
1575 new_media = DE_MEDIA_TP;
1576 if (!(advertising & ADVERTISED_TP))
1577 return -EINVAL;
1578 if (!(advertising & (ADVERTISED_10baseT_Full |
1579 ADVERTISED_10baseT_Half)))
1580 return -EINVAL;
1581 break;
1582 }
1583
1584 media_lock = (autoneg == AUTONEG_ENABLE) ? 0 : 1;
1585
1586 if ((new_media == de->media_type) &&
1587 (media_lock == de->media_lock) &&
1588 (advertising == de->media_advertise))
1589 return 0; /* nothing to change */
1590
1591 de_link_down(de);
1592 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1593 de_stop_rxtx(de);
1594
1595 de->media_type = new_media;
1596 de->media_lock = media_lock;
1597 de->media_advertise = advertising;
1598 de_set_media(de);
1599 if (netif_running(de->dev))
1600 de_start_rxtx(de);
1601
1602 return 0;
1603 }
1604
de_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1605 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info)
1606 {
1607 struct de_private *de = netdev_priv(dev);
1608
1609 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1610 strlcpy(info->bus_info, pci_name(de->pdev), sizeof(info->bus_info));
1611 }
1612
de_get_regs_len(struct net_device * dev)1613 static int de_get_regs_len(struct net_device *dev)
1614 {
1615 return DE_REGS_SIZE;
1616 }
1617
de_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1618 static int de_get_link_ksettings(struct net_device *dev,
1619 struct ethtool_link_ksettings *cmd)
1620 {
1621 struct de_private *de = netdev_priv(dev);
1622
1623 spin_lock_irq(&de->lock);
1624 __de_get_link_ksettings(de, cmd);
1625 spin_unlock_irq(&de->lock);
1626
1627 return 0;
1628 }
1629
de_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1630 static int de_set_link_ksettings(struct net_device *dev,
1631 const struct ethtool_link_ksettings *cmd)
1632 {
1633 struct de_private *de = netdev_priv(dev);
1634 int rc;
1635
1636 spin_lock_irq(&de->lock);
1637 rc = __de_set_link_ksettings(de, cmd);
1638 spin_unlock_irq(&de->lock);
1639
1640 return rc;
1641 }
1642
de_get_msglevel(struct net_device * dev)1643 static u32 de_get_msglevel(struct net_device *dev)
1644 {
1645 struct de_private *de = netdev_priv(dev);
1646
1647 return de->msg_enable;
1648 }
1649
de_set_msglevel(struct net_device * dev,u32 msglvl)1650 static void de_set_msglevel(struct net_device *dev, u32 msglvl)
1651 {
1652 struct de_private *de = netdev_priv(dev);
1653
1654 de->msg_enable = msglvl;
1655 }
1656
de_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * data)1657 static int de_get_eeprom(struct net_device *dev,
1658 struct ethtool_eeprom *eeprom, u8 *data)
1659 {
1660 struct de_private *de = netdev_priv(dev);
1661
1662 if (!de->ee_data)
1663 return -EOPNOTSUPP;
1664 if ((eeprom->offset != 0) || (eeprom->magic != 0) ||
1665 (eeprom->len != DE_EEPROM_SIZE))
1666 return -EINVAL;
1667 memcpy(data, de->ee_data, eeprom->len);
1668
1669 return 0;
1670 }
1671
de_nway_reset(struct net_device * dev)1672 static int de_nway_reset(struct net_device *dev)
1673 {
1674 struct de_private *de = netdev_priv(dev);
1675 u32 status;
1676
1677 if (de->media_type != DE_MEDIA_TP_AUTO)
1678 return -EINVAL;
1679 if (netif_carrier_ok(de->dev))
1680 de_link_down(de);
1681
1682 status = dr32(SIAStatus);
1683 dw32(SIAStatus, (status & ~NWayState) | NWayRestart);
1684 netif_info(de, link, dev, "link nway restart, status %x,%x\n",
1685 status, dr32(SIAStatus));
1686 return 0;
1687 }
1688
de_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * data)1689 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1690 void *data)
1691 {
1692 struct de_private *de = netdev_priv(dev);
1693
1694 regs->version = (DE_REGS_VER << 2) | de->de21040;
1695
1696 spin_lock_irq(&de->lock);
1697 __de_get_regs(de, data);
1698 spin_unlock_irq(&de->lock);
1699 }
1700
1701 static const struct ethtool_ops de_ethtool_ops = {
1702 .get_link = ethtool_op_get_link,
1703 .get_drvinfo = de_get_drvinfo,
1704 .get_regs_len = de_get_regs_len,
1705 .get_msglevel = de_get_msglevel,
1706 .set_msglevel = de_set_msglevel,
1707 .get_eeprom = de_get_eeprom,
1708 .nway_reset = de_nway_reset,
1709 .get_regs = de_get_regs,
1710 .get_link_ksettings = de_get_link_ksettings,
1711 .set_link_ksettings = de_set_link_ksettings,
1712 };
1713
de21040_get_mac_address(struct de_private * de)1714 static void de21040_get_mac_address(struct de_private *de)
1715 {
1716 unsigned i;
1717
1718 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */
1719 udelay(5);
1720
1721 for (i = 0; i < 6; i++) {
1722 int value, boguscnt = 100000;
1723 do {
1724 value = dr32(ROMCmd);
1725 rmb();
1726 } while (value < 0 && --boguscnt > 0);
1727 de->dev->dev_addr[i] = value;
1728 udelay(1);
1729 if (boguscnt <= 0)
1730 pr_warn("timeout reading 21040 MAC address byte %u\n",
1731 i);
1732 }
1733 }
1734
de21040_get_media_info(struct de_private * de)1735 static void de21040_get_media_info(struct de_private *de)
1736 {
1737 unsigned int i;
1738
1739 de->media_type = DE_MEDIA_TP;
1740 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full |
1741 SUPPORTED_10baseT_Half | SUPPORTED_AUI;
1742 de->media_advertise = de->media_supported;
1743
1744 for (i = 0; i < DE_MAX_MEDIA; i++) {
1745 switch (i) {
1746 case DE_MEDIA_AUI:
1747 case DE_MEDIA_TP:
1748 case DE_MEDIA_TP_FD:
1749 de->media[i].type = i;
1750 de->media[i].csr13 = t21040_csr13[i];
1751 de->media[i].csr14 = t21040_csr14[i];
1752 de->media[i].csr15 = t21040_csr15[i];
1753 break;
1754 default:
1755 de->media[i].type = DE_MEDIA_INVALID;
1756 break;
1757 }
1758 }
1759 }
1760
1761 /* Note: this routine returns extra data bits for size detection. */
tulip_read_eeprom(void __iomem * regs,int location,int addr_len)1762 static unsigned tulip_read_eeprom(void __iomem *regs, int location,
1763 int addr_len)
1764 {
1765 int i;
1766 unsigned retval = 0;
1767 void __iomem *ee_addr = regs + ROMCmd;
1768 int read_cmd = location | (EE_READ_CMD << addr_len);
1769
1770 writel(EE_ENB & ~EE_CS, ee_addr);
1771 writel(EE_ENB, ee_addr);
1772
1773 /* Shift the read command bits out. */
1774 for (i = 4 + addr_len; i >= 0; i--) {
1775 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1776 writel(EE_ENB | dataval, ee_addr);
1777 readl(ee_addr);
1778 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1779 readl(ee_addr);
1780 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1781 }
1782 writel(EE_ENB, ee_addr);
1783 readl(ee_addr);
1784
1785 for (i = 16; i > 0; i--) {
1786 writel(EE_ENB | EE_SHIFT_CLK, ee_addr);
1787 readl(ee_addr);
1788 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1789 writel(EE_ENB, ee_addr);
1790 readl(ee_addr);
1791 }
1792
1793 /* Terminate the EEPROM access. */
1794 writel(EE_ENB & ~EE_CS, ee_addr);
1795 return retval;
1796 }
1797
de21041_get_srom_info(struct de_private * de)1798 static void de21041_get_srom_info(struct de_private *de)
1799 {
1800 unsigned i, sa_offset = 0, ofs;
1801 u8 ee_data[DE_EEPROM_SIZE + 6] = {};
1802 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6;
1803 struct de_srom_info_leaf *il;
1804 void *bufp;
1805
1806 /* download entire eeprom */
1807 for (i = 0; i < DE_EEPROM_WORDS; i++)
1808 ((__le16 *)ee_data)[i] =
1809 cpu_to_le16(tulip_read_eeprom(de->regs, i, ee_addr_size));
1810
1811 /* DEC now has a specification but early board makers
1812 just put the address in the first EEPROM locations. */
1813 /* This does memcmp(eedata, eedata+16, 8) */
1814
1815 #ifndef CONFIG_MIPS_COBALT
1816
1817 for (i = 0; i < 8; i ++)
1818 if (ee_data[i] != ee_data[16+i])
1819 sa_offset = 20;
1820
1821 #endif
1822
1823 /* store MAC address */
1824 for (i = 0; i < 6; i ++)
1825 de->dev->dev_addr[i] = ee_data[i + sa_offset];
1826
1827 /* get offset of controller 0 info leaf. ignore 2nd byte. */
1828 ofs = ee_data[SROMC0InfoLeaf];
1829 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block)))
1830 goto bad_srom;
1831
1832 /* get pointer to info leaf */
1833 il = (struct de_srom_info_leaf *) &ee_data[ofs];
1834
1835 /* paranoia checks */
1836 if (il->n_blocks == 0)
1837 goto bad_srom;
1838 if ((sizeof(ee_data) - ofs) <
1839 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks)))
1840 goto bad_srom;
1841
1842 /* get default media type */
1843 switch (get_unaligned(&il->default_media)) {
1844 case 0x0001: de->media_type = DE_MEDIA_BNC; break;
1845 case 0x0002: de->media_type = DE_MEDIA_AUI; break;
1846 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break;
1847 default: de->media_type = DE_MEDIA_TP_AUTO; break;
1848 }
1849
1850 if (netif_msg_probe(de))
1851 pr_info("de%d: SROM leaf offset %u, default media %s\n",
1852 de->board_idx, ofs, media_name[de->media_type]);
1853
1854 /* init SIA register values to defaults */
1855 for (i = 0; i < DE_MAX_MEDIA; i++) {
1856 de->media[i].type = DE_MEDIA_INVALID;
1857 de->media[i].csr13 = 0xffff;
1858 de->media[i].csr14 = 0xffff;
1859 de->media[i].csr15 = 0xffff;
1860 }
1861
1862 /* parse media blocks to see what medias are supported,
1863 * and if any custom CSR values are provided
1864 */
1865 bufp = ((void *)il) + sizeof(*il);
1866 for (i = 0; i < il->n_blocks; i++) {
1867 struct de_srom_media_block *ib = bufp;
1868 unsigned idx;
1869
1870 /* index based on media type in media block */
1871 switch(ib->opts & MediaBlockMask) {
1872 case 0: /* 10baseT */
1873 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half
1874 | SUPPORTED_Autoneg;
1875 idx = DE_MEDIA_TP;
1876 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1877 break;
1878 case 1: /* BNC */
1879 de->media_supported |= SUPPORTED_BNC;
1880 idx = DE_MEDIA_BNC;
1881 break;
1882 case 2: /* AUI */
1883 de->media_supported |= SUPPORTED_AUI;
1884 idx = DE_MEDIA_AUI;
1885 break;
1886 case 4: /* 10baseT-FD */
1887 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full
1888 | SUPPORTED_Autoneg;
1889 idx = DE_MEDIA_TP_FD;
1890 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1891 break;
1892 default:
1893 goto bad_srom;
1894 }
1895
1896 de->media[idx].type = idx;
1897
1898 if (netif_msg_probe(de))
1899 pr_info("de%d: media block #%u: %s",
1900 de->board_idx, i,
1901 media_name[de->media[idx].type]);
1902
1903 bufp += sizeof (ib->opts);
1904
1905 if (ib->opts & MediaCustomCSRs) {
1906 de->media[idx].csr13 = get_unaligned(&ib->csr13);
1907 de->media[idx].csr14 = get_unaligned(&ib->csr14);
1908 de->media[idx].csr15 = get_unaligned(&ib->csr15);
1909 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) +
1910 sizeof(ib->csr15);
1911
1912 if (netif_msg_probe(de))
1913 pr_cont(" (%x,%x,%x)\n",
1914 de->media[idx].csr13,
1915 de->media[idx].csr14,
1916 de->media[idx].csr15);
1917
1918 } else {
1919 if (netif_msg_probe(de))
1920 pr_cont("\n");
1921 }
1922
1923 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3]))
1924 break;
1925 }
1926
1927 de->media_advertise = de->media_supported;
1928
1929 fill_defaults:
1930 /* fill in defaults, for cases where custom CSRs not used */
1931 for (i = 0; i < DE_MAX_MEDIA; i++) {
1932 if (de->media[i].csr13 == 0xffff)
1933 de->media[i].csr13 = t21041_csr13[i];
1934 if (de->media[i].csr14 == 0xffff) {
1935 /* autonegotiation is broken at least on some chip
1936 revisions - rev. 0x21 works, 0x11 does not */
1937 if (de->pdev->revision < 0x20)
1938 de->media[i].csr14 = t21041_csr14_brk[i];
1939 else
1940 de->media[i].csr14 = t21041_csr14[i];
1941 }
1942 if (de->media[i].csr15 == 0xffff)
1943 de->media[i].csr15 = t21041_csr15[i];
1944 }
1945
1946 de->ee_data = kmemdup(&ee_data[0], DE_EEPROM_SIZE, GFP_KERNEL);
1947
1948 return;
1949
1950 bad_srom:
1951 /* for error cases, it's ok to assume we support all these */
1952 for (i = 0; i < DE_MAX_MEDIA; i++)
1953 de->media[i].type = i;
1954 de->media_supported =
1955 SUPPORTED_10baseT_Half |
1956 SUPPORTED_10baseT_Full |
1957 SUPPORTED_Autoneg |
1958 SUPPORTED_TP |
1959 SUPPORTED_AUI |
1960 SUPPORTED_BNC;
1961 goto fill_defaults;
1962 }
1963
1964 static const struct net_device_ops de_netdev_ops = {
1965 .ndo_open = de_open,
1966 .ndo_stop = de_close,
1967 .ndo_set_rx_mode = de_set_rx_mode,
1968 .ndo_start_xmit = de_start_xmit,
1969 .ndo_get_stats = de_get_stats,
1970 .ndo_tx_timeout = de_tx_timeout,
1971 .ndo_set_mac_address = eth_mac_addr,
1972 .ndo_validate_addr = eth_validate_addr,
1973 };
1974
de_init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1975 static int de_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1976 {
1977 struct net_device *dev;
1978 struct de_private *de;
1979 int rc;
1980 void __iomem *regs;
1981 unsigned long pciaddr;
1982 static int board_idx = -1;
1983
1984 board_idx++;
1985
1986 /* allocate a new ethernet device structure, and fill in defaults */
1987 dev = alloc_etherdev(sizeof(struct de_private));
1988 if (!dev)
1989 return -ENOMEM;
1990
1991 dev->netdev_ops = &de_netdev_ops;
1992 SET_NETDEV_DEV(dev, &pdev->dev);
1993 dev->ethtool_ops = &de_ethtool_ops;
1994 dev->watchdog_timeo = TX_TIMEOUT;
1995
1996 de = netdev_priv(dev);
1997 de->de21040 = ent->driver_data == 0 ? 1 : 0;
1998 de->pdev = pdev;
1999 de->dev = dev;
2000 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug);
2001 de->board_idx = board_idx;
2002 spin_lock_init (&de->lock);
2003 timer_setup(&de->media_timer,
2004 de->de21040 ? de21040_media_timer : de21041_media_timer,
2005 0);
2006
2007 netif_carrier_off(dev);
2008
2009 /* wake up device, assign resources */
2010 rc = pci_enable_device(pdev);
2011 if (rc)
2012 goto err_out_free;
2013
2014 /* reserve PCI resources to ensure driver atomicity */
2015 rc = pci_request_regions(pdev, DRV_NAME);
2016 if (rc)
2017 goto err_out_disable;
2018
2019 /* check for invalid IRQ value */
2020 if (pdev->irq < 2) {
2021 rc = -EIO;
2022 pr_err("invalid irq (%d) for pci dev %s\n",
2023 pdev->irq, pci_name(pdev));
2024 goto err_out_res;
2025 }
2026
2027 /* obtain and check validity of PCI I/O address */
2028 pciaddr = pci_resource_start(pdev, 1);
2029 if (!pciaddr) {
2030 rc = -EIO;
2031 pr_err("no MMIO resource for pci dev %s\n", pci_name(pdev));
2032 goto err_out_res;
2033 }
2034 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) {
2035 rc = -EIO;
2036 pr_err("MMIO resource (%llx) too small on pci dev %s\n",
2037 (unsigned long long)pci_resource_len(pdev, 1),
2038 pci_name(pdev));
2039 goto err_out_res;
2040 }
2041
2042 /* remap CSR registers */
2043 regs = ioremap(pciaddr, DE_REGS_SIZE);
2044 if (!regs) {
2045 rc = -EIO;
2046 pr_err("Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n",
2047 (unsigned long long)pci_resource_len(pdev, 1),
2048 pciaddr, pci_name(pdev));
2049 goto err_out_res;
2050 }
2051 de->regs = regs;
2052
2053 de_adapter_wake(de);
2054
2055 /* make sure hardware is not running */
2056 rc = de_reset_mac(de);
2057 if (rc) {
2058 pr_err("Cannot reset MAC, pci dev %s\n", pci_name(pdev));
2059 goto err_out_iomap;
2060 }
2061
2062 /* get MAC address, initialize default media type and
2063 * get list of supported media
2064 */
2065 if (de->de21040) {
2066 de21040_get_mac_address(de);
2067 de21040_get_media_info(de);
2068 } else {
2069 de21041_get_srom_info(de);
2070 }
2071
2072 /* register new network interface with kernel */
2073 rc = register_netdev(dev);
2074 if (rc)
2075 goto err_out_iomap;
2076
2077 /* print info about board and interface just registered */
2078 netdev_info(dev, "%s at %p, %pM, IRQ %d\n",
2079 de->de21040 ? "21040" : "21041",
2080 regs, dev->dev_addr, pdev->irq);
2081
2082 pci_set_drvdata(pdev, dev);
2083
2084 /* enable busmastering */
2085 pci_set_master(pdev);
2086
2087 /* put adapter to sleep */
2088 de_adapter_sleep(de);
2089
2090 return 0;
2091
2092 err_out_iomap:
2093 kfree(de->ee_data);
2094 iounmap(regs);
2095 err_out_res:
2096 pci_release_regions(pdev);
2097 err_out_disable:
2098 pci_disable_device(pdev);
2099 err_out_free:
2100 free_netdev(dev);
2101 return rc;
2102 }
2103
de_remove_one(struct pci_dev * pdev)2104 static void de_remove_one(struct pci_dev *pdev)
2105 {
2106 struct net_device *dev = pci_get_drvdata(pdev);
2107 struct de_private *de = netdev_priv(dev);
2108
2109 BUG_ON(!dev);
2110 unregister_netdev(dev);
2111 kfree(de->ee_data);
2112 iounmap(de->regs);
2113 pci_release_regions(pdev);
2114 pci_disable_device(pdev);
2115 free_netdev(dev);
2116 }
2117
de_suspend(struct device * dev_d)2118 static int __maybe_unused de_suspend(struct device *dev_d)
2119 {
2120 struct pci_dev *pdev = to_pci_dev(dev_d);
2121 struct net_device *dev = pci_get_drvdata(pdev);
2122 struct de_private *de = netdev_priv(dev);
2123
2124 rtnl_lock();
2125 if (netif_running (dev)) {
2126 const int irq = pdev->irq;
2127
2128 del_timer_sync(&de->media_timer);
2129
2130 disable_irq(irq);
2131 spin_lock_irq(&de->lock);
2132
2133 de_stop_hw(de);
2134 netif_stop_queue(dev);
2135 netif_device_detach(dev);
2136 netif_carrier_off(dev);
2137
2138 spin_unlock_irq(&de->lock);
2139 enable_irq(irq);
2140
2141 /* Update the error counts. */
2142 __de_get_stats(de);
2143
2144 synchronize_irq(irq);
2145 de_clean_rings(de);
2146
2147 de_adapter_sleep(de);
2148 } else {
2149 netif_device_detach(dev);
2150 }
2151 rtnl_unlock();
2152 return 0;
2153 }
2154
de_resume(struct device * dev_d)2155 static int __maybe_unused de_resume(struct device *dev_d)
2156 {
2157 struct pci_dev *pdev = to_pci_dev(dev_d);
2158 struct net_device *dev = pci_get_drvdata(pdev);
2159 struct de_private *de = netdev_priv(dev);
2160
2161 rtnl_lock();
2162 if (netif_device_present(dev))
2163 goto out;
2164 if (!netif_running(dev))
2165 goto out_attach;
2166 pci_set_master(pdev);
2167 de_init_rings(de);
2168 de_init_hw(de);
2169 out_attach:
2170 netif_device_attach(dev);
2171 out:
2172 rtnl_unlock();
2173 return 0;
2174 }
2175
2176 static SIMPLE_DEV_PM_OPS(de_pm_ops, de_suspend, de_resume);
2177
2178 static struct pci_driver de_driver = {
2179 .name = DRV_NAME,
2180 .id_table = de_pci_tbl,
2181 .probe = de_init_one,
2182 .remove = de_remove_one,
2183 .driver.pm = &de_pm_ops,
2184 };
2185
de_init(void)2186 static int __init de_init (void)
2187 {
2188 return pci_register_driver(&de_driver);
2189 }
2190
de_exit(void)2191 static void __exit de_exit (void)
2192 {
2193 pci_unregister_driver (&de_driver);
2194 }
2195
2196 module_init(de_init);
2197 module_exit(de_exit);
2198