1 /*****************************************************************************
2 * *
3 * File: sge.c *
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, see <http://www.gnu.org/licenses/>. *
16 * *
17 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
18 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
20 * *
21 * http://www.chelsio.com *
22 * *
23 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
24 * All rights reserved. *
25 * *
26 * Maintainers: maintainers@chelsio.com *
27 * *
28 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
29 * Tina Yang <tainay@chelsio.com> *
30 * Felix Marti <felix@chelsio.com> *
31 * Scott Bardone <sbardone@chelsio.com> *
32 * Kurt Ottaway <kottaway@chelsio.com> *
33 * Frank DiMambro <frank@chelsio.com> *
34 * *
35 * History: *
36 * *
37 ****************************************************************************/
38
39 #include "common.h"
40
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/pci.h>
44 #include <linux/ktime.h>
45 #include <linux/netdevice.h>
46 #include <linux/etherdevice.h>
47 #include <linux/if_vlan.h>
48 #include <linux/skbuff.h>
49 #include <linux/mm.h>
50 #include <linux/tcp.h>
51 #include <linux/ip.h>
52 #include <linux/in.h>
53 #include <linux/if_arp.h>
54 #include <linux/slab.h>
55 #include <linux/prefetch.h>
56
57 #include "cpl5_cmd.h"
58 #include "sge.h"
59 #include "regs.h"
60 #include "espi.h"
61
62 /* This belongs in if_ether.h */
63 #define ETH_P_CPL5 0xf
64
65 #define SGE_CMDQ_N 2
66 #define SGE_FREELQ_N 2
67 #define SGE_CMDQ0_E_N 1024
68 #define SGE_CMDQ1_E_N 128
69 #define SGE_FREEL_SIZE 4096
70 #define SGE_JUMBO_FREEL_SIZE 512
71 #define SGE_FREEL_REFILL_THRESH 16
72 #define SGE_RESPQ_E_N 1024
73 #define SGE_INTRTIMER_NRES 1000
74 #define SGE_RX_SM_BUF_SIZE 1536
75 #define SGE_TX_DESC_MAX_PLEN 16384
76
77 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
78
79 /*
80 * Period of the TX buffer reclaim timer. This timer does not need to run
81 * frequently as TX buffers are usually reclaimed by new TX packets.
82 */
83 #define TX_RECLAIM_PERIOD (HZ / 4)
84
85 #define M_CMD_LEN 0x7fffffff
86 #define V_CMD_LEN(v) (v)
87 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
88 #define V_CMD_GEN1(v) ((v) << 31)
89 #define V_CMD_GEN2(v) (v)
90 #define F_CMD_DATAVALID (1 << 1)
91 #define F_CMD_SOP (1 << 2)
92 #define V_CMD_EOP(v) ((v) << 3)
93
94 /*
95 * Command queue, receive buffer list, and response queue descriptors.
96 */
97 #if defined(__BIG_ENDIAN_BITFIELD)
98 struct cmdQ_e {
99 u32 addr_lo;
100 u32 len_gen;
101 u32 flags;
102 u32 addr_hi;
103 };
104
105 struct freelQ_e {
106 u32 addr_lo;
107 u32 len_gen;
108 u32 gen2;
109 u32 addr_hi;
110 };
111
112 struct respQ_e {
113 u32 Qsleeping : 4;
114 u32 Cmdq1CreditReturn : 5;
115 u32 Cmdq1DmaComplete : 5;
116 u32 Cmdq0CreditReturn : 5;
117 u32 Cmdq0DmaComplete : 5;
118 u32 FreelistQid : 2;
119 u32 CreditValid : 1;
120 u32 DataValid : 1;
121 u32 Offload : 1;
122 u32 Eop : 1;
123 u32 Sop : 1;
124 u32 GenerationBit : 1;
125 u32 BufferLength;
126 };
127 #elif defined(__LITTLE_ENDIAN_BITFIELD)
128 struct cmdQ_e {
129 u32 len_gen;
130 u32 addr_lo;
131 u32 addr_hi;
132 u32 flags;
133 };
134
135 struct freelQ_e {
136 u32 len_gen;
137 u32 addr_lo;
138 u32 addr_hi;
139 u32 gen2;
140 };
141
142 struct respQ_e {
143 u32 BufferLength;
144 u32 GenerationBit : 1;
145 u32 Sop : 1;
146 u32 Eop : 1;
147 u32 Offload : 1;
148 u32 DataValid : 1;
149 u32 CreditValid : 1;
150 u32 FreelistQid : 2;
151 u32 Cmdq0DmaComplete : 5;
152 u32 Cmdq0CreditReturn : 5;
153 u32 Cmdq1DmaComplete : 5;
154 u32 Cmdq1CreditReturn : 5;
155 u32 Qsleeping : 4;
156 } ;
157 #endif
158
159 /*
160 * SW Context Command and Freelist Queue Descriptors
161 */
162 struct cmdQ_ce {
163 struct sk_buff *skb;
164 DEFINE_DMA_UNMAP_ADDR(dma_addr);
165 DEFINE_DMA_UNMAP_LEN(dma_len);
166 };
167
168 struct freelQ_ce {
169 struct sk_buff *skb;
170 DEFINE_DMA_UNMAP_ADDR(dma_addr);
171 DEFINE_DMA_UNMAP_LEN(dma_len);
172 };
173
174 /*
175 * SW command, freelist and response rings
176 */
177 struct cmdQ {
178 unsigned long status; /* HW DMA fetch status */
179 unsigned int in_use; /* # of in-use command descriptors */
180 unsigned int size; /* # of descriptors */
181 unsigned int processed; /* total # of descs HW has processed */
182 unsigned int cleaned; /* total # of descs SW has reclaimed */
183 unsigned int stop_thres; /* SW TX queue suspend threshold */
184 u16 pidx; /* producer index (SW) */
185 u16 cidx; /* consumer index (HW) */
186 u8 genbit; /* current generation (=valid) bit */
187 u8 sop; /* is next entry start of packet? */
188 struct cmdQ_e *entries; /* HW command descriptor Q */
189 struct cmdQ_ce *centries; /* SW command context descriptor Q */
190 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
191 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
192 };
193
194 struct freelQ {
195 unsigned int credits; /* # of available RX buffers */
196 unsigned int size; /* free list capacity */
197 u16 pidx; /* producer index (SW) */
198 u16 cidx; /* consumer index (HW) */
199 u16 rx_buffer_size; /* Buffer size on this free list */
200 u16 dma_offset; /* DMA offset to align IP headers */
201 u16 recycleq_idx; /* skb recycle q to use */
202 u8 genbit; /* current generation (=valid) bit */
203 struct freelQ_e *entries; /* HW freelist descriptor Q */
204 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
205 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
206 };
207
208 struct respQ {
209 unsigned int credits; /* credits to be returned to SGE */
210 unsigned int size; /* # of response Q descriptors */
211 u16 cidx; /* consumer index (SW) */
212 u8 genbit; /* current generation(=valid) bit */
213 struct respQ_e *entries; /* HW response descriptor Q */
214 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
215 };
216
217 /* Bit flags for cmdQ.status */
218 enum {
219 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
220 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
221 };
222
223 /* T204 TX SW scheduler */
224
225 /* Per T204 TX port */
226 struct sched_port {
227 unsigned int avail; /* available bits - quota */
228 unsigned int drain_bits_per_1024ns; /* drain rate */
229 unsigned int speed; /* drain rate, mbps */
230 unsigned int mtu; /* mtu size */
231 struct sk_buff_head skbq; /* pending skbs */
232 };
233
234 /* Per T204 device */
235 struct sched {
236 ktime_t last_updated; /* last time quotas were computed */
237 unsigned int max_avail; /* max bits to be sent to any port */
238 unsigned int port; /* port index (round robin ports) */
239 unsigned int num; /* num skbs in per port queues */
240 struct sched_port p[MAX_NPORTS];
241 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
242 };
243 static void restart_sched(unsigned long);
244
245
246 /*
247 * Main SGE data structure
248 *
249 * Interrupts are handled by a single CPU and it is likely that on a MP system
250 * the application is migrated to another CPU. In that scenario, we try to
251 * separate the RX(in irq context) and TX state in order to decrease memory
252 * contention.
253 */
254 struct sge {
255 struct adapter *adapter; /* adapter backpointer */
256 struct net_device *netdev; /* netdevice backpointer */
257 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
258 struct respQ respQ; /* response Q */
259 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
260 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
261 unsigned int jumbo_fl; /* jumbo freelist Q index */
262 unsigned int intrtimer_nres; /* no-resource interrupt timer */
263 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
264 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
265 struct timer_list espibug_timer;
266 unsigned long espibug_timeout;
267 struct sk_buff *espibug_skb[MAX_NPORTS];
268 u32 sge_control; /* shadow value of sge control reg */
269 struct sge_intr_counts stats;
270 struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
271 struct sched *tx_sched;
272 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
273 };
274
275 static const u8 ch_mac_addr[ETH_ALEN] = {
276 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
277 };
278
279 /*
280 * stop tasklet and free all pending skb's
281 */
tx_sched_stop(struct sge * sge)282 static void tx_sched_stop(struct sge *sge)
283 {
284 struct sched *s = sge->tx_sched;
285 int i;
286
287 tasklet_kill(&s->sched_tsk);
288
289 for (i = 0; i < MAX_NPORTS; i++)
290 __skb_queue_purge(&s->p[s->port].skbq);
291 }
292
293 /*
294 * t1_sched_update_parms() is called when the MTU or link speed changes. It
295 * re-computes scheduler parameters to scope with the change.
296 */
t1_sched_update_parms(struct sge * sge,unsigned int port,unsigned int mtu,unsigned int speed)297 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
298 unsigned int mtu, unsigned int speed)
299 {
300 struct sched *s = sge->tx_sched;
301 struct sched_port *p = &s->p[port];
302 unsigned int max_avail_segs;
303
304 pr_debug("%s mtu=%d speed=%d\n", __func__, mtu, speed);
305 if (speed)
306 p->speed = speed;
307 if (mtu)
308 p->mtu = mtu;
309
310 if (speed || mtu) {
311 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
312 do_div(drain, (p->mtu + 50) * 1000);
313 p->drain_bits_per_1024ns = (unsigned int) drain;
314
315 if (p->speed < 1000)
316 p->drain_bits_per_1024ns =
317 90 * p->drain_bits_per_1024ns / 100;
318 }
319
320 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
321 p->drain_bits_per_1024ns -= 16;
322 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
323 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
324 } else {
325 s->max_avail = 16384;
326 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
327 }
328
329 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
330 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
331 p->speed, s->max_avail, max_avail_segs,
332 p->drain_bits_per_1024ns);
333
334 return max_avail_segs * (p->mtu - 40);
335 }
336
337 #if 0
338
339 /*
340 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
341 * data that can be pushed per port.
342 */
343 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
344 {
345 struct sched *s = sge->tx_sched;
346 unsigned int i;
347
348 s->max_avail = val;
349 for (i = 0; i < MAX_NPORTS; i++)
350 t1_sched_update_parms(sge, i, 0, 0);
351 }
352
353 /*
354 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
355 * is draining.
356 */
357 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
358 unsigned int val)
359 {
360 struct sched *s = sge->tx_sched;
361 struct sched_port *p = &s->p[port];
362 p->drain_bits_per_1024ns = val * 1024 / 1000;
363 t1_sched_update_parms(sge, port, 0, 0);
364 }
365
366 #endif /* 0 */
367
368 /*
369 * tx_sched_init() allocates resources and does basic initialization.
370 */
tx_sched_init(struct sge * sge)371 static int tx_sched_init(struct sge *sge)
372 {
373 struct sched *s;
374 int i;
375
376 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
377 if (!s)
378 return -ENOMEM;
379
380 pr_debug("tx_sched_init\n");
381 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
382 sge->tx_sched = s;
383
384 for (i = 0; i < MAX_NPORTS; i++) {
385 skb_queue_head_init(&s->p[i].skbq);
386 t1_sched_update_parms(sge, i, 1500, 1000);
387 }
388
389 return 0;
390 }
391
392 /*
393 * sched_update_avail() computes the delta since the last time it was called
394 * and updates the per port quota (number of bits that can be sent to the any
395 * port).
396 */
sched_update_avail(struct sge * sge)397 static inline int sched_update_avail(struct sge *sge)
398 {
399 struct sched *s = sge->tx_sched;
400 ktime_t now = ktime_get();
401 unsigned int i;
402 long long delta_time_ns;
403
404 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
405
406 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
407 if (delta_time_ns < 15000)
408 return 0;
409
410 for (i = 0; i < MAX_NPORTS; i++) {
411 struct sched_port *p = &s->p[i];
412 unsigned int delta_avail;
413
414 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
415 p->avail = min(p->avail + delta_avail, s->max_avail);
416 }
417
418 s->last_updated = now;
419
420 return 1;
421 }
422
423 /*
424 * sched_skb() is called from two different places. In the tx path, any
425 * packet generating load on an output port will call sched_skb()
426 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
427 * context (skb == NULL).
428 * The scheduler only returns a skb (which will then be sent) if the
429 * length of the skb is <= the current quota of the output port.
430 */
sched_skb(struct sge * sge,struct sk_buff * skb,unsigned int credits)431 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
432 unsigned int credits)
433 {
434 struct sched *s = sge->tx_sched;
435 struct sk_buff_head *skbq;
436 unsigned int i, len, update = 1;
437
438 pr_debug("sched_skb %p\n", skb);
439 if (!skb) {
440 if (!s->num)
441 return NULL;
442 } else {
443 skbq = &s->p[skb->dev->if_port].skbq;
444 __skb_queue_tail(skbq, skb);
445 s->num++;
446 skb = NULL;
447 }
448
449 if (credits < MAX_SKB_FRAGS + 1)
450 goto out;
451
452 again:
453 for (i = 0; i < MAX_NPORTS; i++) {
454 s->port = (s->port + 1) & (MAX_NPORTS - 1);
455 skbq = &s->p[s->port].skbq;
456
457 skb = skb_peek(skbq);
458
459 if (!skb)
460 continue;
461
462 len = skb->len;
463 if (len <= s->p[s->port].avail) {
464 s->p[s->port].avail -= len;
465 s->num--;
466 __skb_unlink(skb, skbq);
467 goto out;
468 }
469 skb = NULL;
470 }
471
472 if (update-- && sched_update_avail(sge))
473 goto again;
474
475 out:
476 /* If there are more pending skbs, we use the hardware to schedule us
477 * again.
478 */
479 if (s->num && !skb) {
480 struct cmdQ *q = &sge->cmdQ[0];
481 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
482 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
483 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
484 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
485 }
486 }
487 pr_debug("sched_skb ret %p\n", skb);
488
489 return skb;
490 }
491
492 /*
493 * PIO to indicate that memory mapped Q contains valid descriptor(s).
494 */
doorbell_pio(struct adapter * adapter,u32 val)495 static inline void doorbell_pio(struct adapter *adapter, u32 val)
496 {
497 wmb();
498 writel(val, adapter->regs + A_SG_DOORBELL);
499 }
500
501 /*
502 * Frees all RX buffers on the freelist Q. The caller must make sure that
503 * the SGE is turned off before calling this function.
504 */
free_freelQ_buffers(struct pci_dev * pdev,struct freelQ * q)505 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
506 {
507 unsigned int cidx = q->cidx;
508
509 while (q->credits--) {
510 struct freelQ_ce *ce = &q->centries[cidx];
511
512 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
513 dma_unmap_len(ce, dma_len),
514 PCI_DMA_FROMDEVICE);
515 dev_kfree_skb(ce->skb);
516 ce->skb = NULL;
517 if (++cidx == q->size)
518 cidx = 0;
519 }
520 }
521
522 /*
523 * Free RX free list and response queue resources.
524 */
free_rx_resources(struct sge * sge)525 static void free_rx_resources(struct sge *sge)
526 {
527 struct pci_dev *pdev = sge->adapter->pdev;
528 unsigned int size, i;
529
530 if (sge->respQ.entries) {
531 size = sizeof(struct respQ_e) * sge->respQ.size;
532 pci_free_consistent(pdev, size, sge->respQ.entries,
533 sge->respQ.dma_addr);
534 }
535
536 for (i = 0; i < SGE_FREELQ_N; i++) {
537 struct freelQ *q = &sge->freelQ[i];
538
539 if (q->centries) {
540 free_freelQ_buffers(pdev, q);
541 kfree(q->centries);
542 }
543 if (q->entries) {
544 size = sizeof(struct freelQ_e) * q->size;
545 pci_free_consistent(pdev, size, q->entries,
546 q->dma_addr);
547 }
548 }
549 }
550
551 /*
552 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
553 * response queue.
554 */
alloc_rx_resources(struct sge * sge,struct sge_params * p)555 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
556 {
557 struct pci_dev *pdev = sge->adapter->pdev;
558 unsigned int size, i;
559
560 for (i = 0; i < SGE_FREELQ_N; i++) {
561 struct freelQ *q = &sge->freelQ[i];
562
563 q->genbit = 1;
564 q->size = p->freelQ_size[i];
565 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
566 size = sizeof(struct freelQ_e) * q->size;
567 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
568 if (!q->entries)
569 goto err_no_mem;
570
571 size = sizeof(struct freelQ_ce) * q->size;
572 q->centries = kzalloc(size, GFP_KERNEL);
573 if (!q->centries)
574 goto err_no_mem;
575 }
576
577 /*
578 * Calculate the buffer sizes for the two free lists. FL0 accommodates
579 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
580 * including all the sk_buff overhead.
581 *
582 * Note: For T2 FL0 and FL1 are reversed.
583 */
584 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
585 sizeof(struct cpl_rx_data) +
586 sge->freelQ[!sge->jumbo_fl].dma_offset;
587
588 size = (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
589
590 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
591
592 /*
593 * Setup which skb recycle Q should be used when recycling buffers from
594 * each free list.
595 */
596 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
597 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
598
599 sge->respQ.genbit = 1;
600 sge->respQ.size = SGE_RESPQ_E_N;
601 sge->respQ.credits = 0;
602 size = sizeof(struct respQ_e) * sge->respQ.size;
603 sge->respQ.entries =
604 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
605 if (!sge->respQ.entries)
606 goto err_no_mem;
607 return 0;
608
609 err_no_mem:
610 free_rx_resources(sge);
611 return -ENOMEM;
612 }
613
614 /*
615 * Reclaims n TX descriptors and frees the buffers associated with them.
616 */
free_cmdQ_buffers(struct sge * sge,struct cmdQ * q,unsigned int n)617 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
618 {
619 struct cmdQ_ce *ce;
620 struct pci_dev *pdev = sge->adapter->pdev;
621 unsigned int cidx = q->cidx;
622
623 q->in_use -= n;
624 ce = &q->centries[cidx];
625 while (n--) {
626 if (likely(dma_unmap_len(ce, dma_len))) {
627 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
628 dma_unmap_len(ce, dma_len),
629 PCI_DMA_TODEVICE);
630 if (q->sop)
631 q->sop = 0;
632 }
633 if (ce->skb) {
634 dev_kfree_skb_any(ce->skb);
635 q->sop = 1;
636 }
637 ce++;
638 if (++cidx == q->size) {
639 cidx = 0;
640 ce = q->centries;
641 }
642 }
643 q->cidx = cidx;
644 }
645
646 /*
647 * Free TX resources.
648 *
649 * Assumes that SGE is stopped and all interrupts are disabled.
650 */
free_tx_resources(struct sge * sge)651 static void free_tx_resources(struct sge *sge)
652 {
653 struct pci_dev *pdev = sge->adapter->pdev;
654 unsigned int size, i;
655
656 for (i = 0; i < SGE_CMDQ_N; i++) {
657 struct cmdQ *q = &sge->cmdQ[i];
658
659 if (q->centries) {
660 if (q->in_use)
661 free_cmdQ_buffers(sge, q, q->in_use);
662 kfree(q->centries);
663 }
664 if (q->entries) {
665 size = sizeof(struct cmdQ_e) * q->size;
666 pci_free_consistent(pdev, size, q->entries,
667 q->dma_addr);
668 }
669 }
670 }
671
672 /*
673 * Allocates basic TX resources, consisting of memory mapped command Qs.
674 */
alloc_tx_resources(struct sge * sge,struct sge_params * p)675 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
676 {
677 struct pci_dev *pdev = sge->adapter->pdev;
678 unsigned int size, i;
679
680 for (i = 0; i < SGE_CMDQ_N; i++) {
681 struct cmdQ *q = &sge->cmdQ[i];
682
683 q->genbit = 1;
684 q->sop = 1;
685 q->size = p->cmdQ_size[i];
686 q->in_use = 0;
687 q->status = 0;
688 q->processed = q->cleaned = 0;
689 q->stop_thres = 0;
690 spin_lock_init(&q->lock);
691 size = sizeof(struct cmdQ_e) * q->size;
692 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
693 if (!q->entries)
694 goto err_no_mem;
695
696 size = sizeof(struct cmdQ_ce) * q->size;
697 q->centries = kzalloc(size, GFP_KERNEL);
698 if (!q->centries)
699 goto err_no_mem;
700 }
701
702 /*
703 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
704 * only. For queue 0 set the stop threshold so we can handle one more
705 * packet from each port, plus reserve an additional 24 entries for
706 * Ethernet packets only. Queue 1 never suspends nor do we reserve
707 * space for Ethernet packets.
708 */
709 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
710 (MAX_SKB_FRAGS + 1);
711 return 0;
712
713 err_no_mem:
714 free_tx_resources(sge);
715 return -ENOMEM;
716 }
717
setup_ring_params(struct adapter * adapter,u64 addr,u32 size,int base_reg_lo,int base_reg_hi,int size_reg)718 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
719 u32 size, int base_reg_lo,
720 int base_reg_hi, int size_reg)
721 {
722 writel((u32)addr, adapter->regs + base_reg_lo);
723 writel(addr >> 32, adapter->regs + base_reg_hi);
724 writel(size, adapter->regs + size_reg);
725 }
726
727 /*
728 * Enable/disable VLAN acceleration.
729 */
t1_vlan_mode(struct adapter * adapter,netdev_features_t features)730 void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
731 {
732 struct sge *sge = adapter->sge;
733
734 if (features & NETIF_F_HW_VLAN_CTAG_RX)
735 sge->sge_control |= F_VLAN_XTRACT;
736 else
737 sge->sge_control &= ~F_VLAN_XTRACT;
738 if (adapter->open_device_map) {
739 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
740 readl(adapter->regs + A_SG_CONTROL); /* flush */
741 }
742 }
743
744 /*
745 * Programs the various SGE registers. However, the engine is not yet enabled,
746 * but sge->sge_control is setup and ready to go.
747 */
configure_sge(struct sge * sge,struct sge_params * p)748 static void configure_sge(struct sge *sge, struct sge_params *p)
749 {
750 struct adapter *ap = sge->adapter;
751
752 writel(0, ap->regs + A_SG_CONTROL);
753 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
754 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
755 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
756 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
757 setup_ring_params(ap, sge->freelQ[0].dma_addr,
758 sge->freelQ[0].size, A_SG_FL0BASELWR,
759 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
760 setup_ring_params(ap, sge->freelQ[1].dma_addr,
761 sge->freelQ[1].size, A_SG_FL1BASELWR,
762 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
763
764 /* The threshold comparison uses <. */
765 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
766
767 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
768 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
769 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
770
771 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
772 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
773 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
774 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
775
776 #if defined(__BIG_ENDIAN_BITFIELD)
777 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
778 #endif
779
780 /* Initialize no-resource timer */
781 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
782
783 t1_sge_set_coalesce_params(sge, p);
784 }
785
786 /*
787 * Return the payload capacity of the jumbo free-list buffers.
788 */
jumbo_payload_capacity(const struct sge * sge)789 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
790 {
791 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
792 sge->freelQ[sge->jumbo_fl].dma_offset -
793 sizeof(struct cpl_rx_data);
794 }
795
796 /*
797 * Frees all SGE related resources and the sge structure itself
798 */
t1_sge_destroy(struct sge * sge)799 void t1_sge_destroy(struct sge *sge)
800 {
801 int i;
802
803 for_each_port(sge->adapter, i)
804 free_percpu(sge->port_stats[i]);
805
806 kfree(sge->tx_sched);
807 free_tx_resources(sge);
808 free_rx_resources(sge);
809 kfree(sge);
810 }
811
812 /*
813 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
814 * context Q) until the Q is full or alloc_skb fails.
815 *
816 * It is possible that the generation bits already match, indicating that the
817 * buffer is already valid and nothing needs to be done. This happens when we
818 * copied a received buffer into a new sk_buff during the interrupt processing.
819 *
820 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
821 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
822 * aligned.
823 */
refill_free_list(struct sge * sge,struct freelQ * q)824 static void refill_free_list(struct sge *sge, struct freelQ *q)
825 {
826 struct pci_dev *pdev = sge->adapter->pdev;
827 struct freelQ_ce *ce = &q->centries[q->pidx];
828 struct freelQ_e *e = &q->entries[q->pidx];
829 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
830
831 while (q->credits < q->size) {
832 struct sk_buff *skb;
833 dma_addr_t mapping;
834
835 skb = dev_alloc_skb(q->rx_buffer_size);
836 if (!skb)
837 break;
838
839 skb_reserve(skb, q->dma_offset);
840 mapping = pci_map_single(pdev, skb->data, dma_len,
841 PCI_DMA_FROMDEVICE);
842 skb_reserve(skb, sge->rx_pkt_pad);
843
844 ce->skb = skb;
845 dma_unmap_addr_set(ce, dma_addr, mapping);
846 dma_unmap_len_set(ce, dma_len, dma_len);
847 e->addr_lo = (u32)mapping;
848 e->addr_hi = (u64)mapping >> 32;
849 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
850 wmb();
851 e->gen2 = V_CMD_GEN2(q->genbit);
852
853 e++;
854 ce++;
855 if (++q->pidx == q->size) {
856 q->pidx = 0;
857 q->genbit ^= 1;
858 ce = q->centries;
859 e = q->entries;
860 }
861 q->credits++;
862 }
863 }
864
865 /*
866 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
867 * of both rings, we go into 'few interrupt mode' in order to give the system
868 * time to free up resources.
869 */
freelQs_empty(struct sge * sge)870 static void freelQs_empty(struct sge *sge)
871 {
872 struct adapter *adapter = sge->adapter;
873 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
874 u32 irqholdoff_reg;
875
876 refill_free_list(sge, &sge->freelQ[0]);
877 refill_free_list(sge, &sge->freelQ[1]);
878
879 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
880 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
881 irq_reg |= F_FL_EXHAUSTED;
882 irqholdoff_reg = sge->fixed_intrtimer;
883 } else {
884 /* Clear the F_FL_EXHAUSTED interrupts for now */
885 irq_reg &= ~F_FL_EXHAUSTED;
886 irqholdoff_reg = sge->intrtimer_nres;
887 }
888 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
889 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
890
891 /* We reenable the Qs to force a freelist GTS interrupt later */
892 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
893 }
894
895 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
896 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
897 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
898 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
899
900 /*
901 * Disable SGE Interrupts
902 */
t1_sge_intr_disable(struct sge * sge)903 void t1_sge_intr_disable(struct sge *sge)
904 {
905 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
906
907 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
908 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
909 }
910
911 /*
912 * Enable SGE interrupts.
913 */
t1_sge_intr_enable(struct sge * sge)914 void t1_sge_intr_enable(struct sge *sge)
915 {
916 u32 en = SGE_INT_ENABLE;
917 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
918
919 if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
920 en &= ~F_PACKET_TOO_BIG;
921 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
922 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
923 }
924
925 /*
926 * Clear SGE interrupts.
927 */
t1_sge_intr_clear(struct sge * sge)928 void t1_sge_intr_clear(struct sge *sge)
929 {
930 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
931 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
932 }
933
934 /*
935 * SGE 'Error' interrupt handler
936 */
t1_sge_intr_error_handler(struct sge * sge)937 int t1_sge_intr_error_handler(struct sge *sge)
938 {
939 struct adapter *adapter = sge->adapter;
940 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
941
942 if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
943 cause &= ~F_PACKET_TOO_BIG;
944 if (cause & F_RESPQ_EXHAUSTED)
945 sge->stats.respQ_empty++;
946 if (cause & F_RESPQ_OVERFLOW) {
947 sge->stats.respQ_overflow++;
948 pr_alert("%s: SGE response queue overflow\n",
949 adapter->name);
950 }
951 if (cause & F_FL_EXHAUSTED) {
952 sge->stats.freelistQ_empty++;
953 freelQs_empty(sge);
954 }
955 if (cause & F_PACKET_TOO_BIG) {
956 sge->stats.pkt_too_big++;
957 pr_alert("%s: SGE max packet size exceeded\n",
958 adapter->name);
959 }
960 if (cause & F_PACKET_MISMATCH) {
961 sge->stats.pkt_mismatch++;
962 pr_alert("%s: SGE packet mismatch\n", adapter->name);
963 }
964 if (cause & SGE_INT_FATAL)
965 t1_fatal_err(adapter);
966
967 writel(cause, adapter->regs + A_SG_INT_CAUSE);
968 return 0;
969 }
970
t1_sge_get_intr_counts(const struct sge * sge)971 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
972 {
973 return &sge->stats;
974 }
975
t1_sge_get_port_stats(const struct sge * sge,int port,struct sge_port_stats * ss)976 void t1_sge_get_port_stats(const struct sge *sge, int port,
977 struct sge_port_stats *ss)
978 {
979 int cpu;
980
981 memset(ss, 0, sizeof(*ss));
982 for_each_possible_cpu(cpu) {
983 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
984
985 ss->rx_cso_good += st->rx_cso_good;
986 ss->tx_cso += st->tx_cso;
987 ss->tx_tso += st->tx_tso;
988 ss->tx_need_hdrroom += st->tx_need_hdrroom;
989 ss->vlan_xtract += st->vlan_xtract;
990 ss->vlan_insert += st->vlan_insert;
991 }
992 }
993
994 /**
995 * recycle_fl_buf - recycle a free list buffer
996 * @fl: the free list
997 * @idx: index of buffer to recycle
998 *
999 * Recycles the specified buffer on the given free list by adding it at
1000 * the next available slot on the list.
1001 */
recycle_fl_buf(struct freelQ * fl,int idx)1002 static void recycle_fl_buf(struct freelQ *fl, int idx)
1003 {
1004 struct freelQ_e *from = &fl->entries[idx];
1005 struct freelQ_e *to = &fl->entries[fl->pidx];
1006
1007 fl->centries[fl->pidx] = fl->centries[idx];
1008 to->addr_lo = from->addr_lo;
1009 to->addr_hi = from->addr_hi;
1010 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1011 wmb();
1012 to->gen2 = V_CMD_GEN2(fl->genbit);
1013 fl->credits++;
1014
1015 if (++fl->pidx == fl->size) {
1016 fl->pidx = 0;
1017 fl->genbit ^= 1;
1018 }
1019 }
1020
1021 static int copybreak __read_mostly = 256;
1022 module_param(copybreak, int, 0);
1023 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1024
1025 /**
1026 * get_packet - return the next ingress packet buffer
1027 * @adapter: the adapter that received the packet
1028 * @fl: the SGE free list holding the packet
1029 * @len: the actual packet length, excluding any SGE padding
1030 *
1031 * Get the next packet from a free list and complete setup of the
1032 * sk_buff. If the packet is small we make a copy and recycle the
1033 * original buffer, otherwise we use the original buffer itself. If a
1034 * positive drop threshold is supplied packets are dropped and their
1035 * buffers recycled if (a) the number of remaining buffers is under the
1036 * threshold and the packet is too big to copy, or (b) the packet should
1037 * be copied but there is no memory for the copy.
1038 */
get_packet(struct adapter * adapter,struct freelQ * fl,unsigned int len)1039 static inline struct sk_buff *get_packet(struct adapter *adapter,
1040 struct freelQ *fl, unsigned int len)
1041 {
1042 const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1043 struct pci_dev *pdev = adapter->pdev;
1044 struct sk_buff *skb;
1045
1046 if (len < copybreak) {
1047 skb = napi_alloc_skb(&adapter->napi, len);
1048 if (!skb)
1049 goto use_orig_buf;
1050
1051 skb_put(skb, len);
1052 pci_dma_sync_single_for_cpu(pdev,
1053 dma_unmap_addr(ce, dma_addr),
1054 dma_unmap_len(ce, dma_len),
1055 PCI_DMA_FROMDEVICE);
1056 skb_copy_from_linear_data(ce->skb, skb->data, len);
1057 pci_dma_sync_single_for_device(pdev,
1058 dma_unmap_addr(ce, dma_addr),
1059 dma_unmap_len(ce, dma_len),
1060 PCI_DMA_FROMDEVICE);
1061 recycle_fl_buf(fl, fl->cidx);
1062 return skb;
1063 }
1064
1065 use_orig_buf:
1066 if (fl->credits < 2) {
1067 recycle_fl_buf(fl, fl->cidx);
1068 return NULL;
1069 }
1070
1071 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1072 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1073 skb = ce->skb;
1074 prefetch(skb->data);
1075
1076 skb_put(skb, len);
1077 return skb;
1078 }
1079
1080 /**
1081 * unexpected_offload - handle an unexpected offload packet
1082 * @adapter: the adapter
1083 * @fl: the free list that received the packet
1084 *
1085 * Called when we receive an unexpected offload packet (e.g., the TOE
1086 * function is disabled or the card is a NIC). Prints a message and
1087 * recycles the buffer.
1088 */
unexpected_offload(struct adapter * adapter,struct freelQ * fl)1089 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1090 {
1091 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1092 struct sk_buff *skb = ce->skb;
1093
1094 pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1095 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1096 pr_err("%s: unexpected offload packet, cmd %u\n",
1097 adapter->name, *skb->data);
1098 recycle_fl_buf(fl, fl->cidx);
1099 }
1100
1101 /*
1102 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1103 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1104 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1105 * Note that the *_large_page_tx_descs stuff will be optimized out when
1106 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1107 *
1108 * compute_large_page_descs() computes how many additional descriptors are
1109 * required to break down the stack's request.
1110 */
compute_large_page_tx_descs(struct sk_buff * skb)1111 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1112 {
1113 unsigned int count = 0;
1114
1115 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1116 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1117 unsigned int i, len = skb_headlen(skb);
1118 while (len > SGE_TX_DESC_MAX_PLEN) {
1119 count++;
1120 len -= SGE_TX_DESC_MAX_PLEN;
1121 }
1122 for (i = 0; nfrags--; i++) {
1123 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1124 len = skb_frag_size(frag);
1125 while (len > SGE_TX_DESC_MAX_PLEN) {
1126 count++;
1127 len -= SGE_TX_DESC_MAX_PLEN;
1128 }
1129 }
1130 }
1131 return count;
1132 }
1133
1134 /*
1135 * Write a cmdQ entry.
1136 *
1137 * Since this function writes the 'flags' field, it must not be used to
1138 * write the first cmdQ entry.
1139 */
write_tx_desc(struct cmdQ_e * e,dma_addr_t mapping,unsigned int len,unsigned int gen,unsigned int eop)1140 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1141 unsigned int len, unsigned int gen,
1142 unsigned int eop)
1143 {
1144 BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1145
1146 e->addr_lo = (u32)mapping;
1147 e->addr_hi = (u64)mapping >> 32;
1148 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1149 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1150 }
1151
1152 /*
1153 * See comment for previous function.
1154 *
1155 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1156 * *desc_len exceeds HW's capability.
1157 */
write_large_page_tx_descs(unsigned int pidx,struct cmdQ_e ** e,struct cmdQ_ce ** ce,unsigned int * gen,dma_addr_t * desc_mapping,unsigned int * desc_len,unsigned int nfrags,struct cmdQ * q)1158 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1159 struct cmdQ_e **e,
1160 struct cmdQ_ce **ce,
1161 unsigned int *gen,
1162 dma_addr_t *desc_mapping,
1163 unsigned int *desc_len,
1164 unsigned int nfrags,
1165 struct cmdQ *q)
1166 {
1167 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1168 struct cmdQ_e *e1 = *e;
1169 struct cmdQ_ce *ce1 = *ce;
1170
1171 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1172 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1173 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1174 *gen, nfrags == 0 && *desc_len == 0);
1175 ce1->skb = NULL;
1176 dma_unmap_len_set(ce1, dma_len, 0);
1177 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1178 if (*desc_len) {
1179 ce1++;
1180 e1++;
1181 if (++pidx == q->size) {
1182 pidx = 0;
1183 *gen ^= 1;
1184 ce1 = q->centries;
1185 e1 = q->entries;
1186 }
1187 }
1188 }
1189 *e = e1;
1190 *ce = ce1;
1191 }
1192 return pidx;
1193 }
1194
1195 /*
1196 * Write the command descriptors to transmit the given skb starting at
1197 * descriptor pidx with the given generation.
1198 */
write_tx_descs(struct adapter * adapter,struct sk_buff * skb,unsigned int pidx,unsigned int gen,struct cmdQ * q)1199 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1200 unsigned int pidx, unsigned int gen,
1201 struct cmdQ *q)
1202 {
1203 dma_addr_t mapping, desc_mapping;
1204 struct cmdQ_e *e, *e1;
1205 struct cmdQ_ce *ce;
1206 unsigned int i, flags, first_desc_len, desc_len,
1207 nfrags = skb_shinfo(skb)->nr_frags;
1208
1209 e = e1 = &q->entries[pidx];
1210 ce = &q->centries[pidx];
1211
1212 mapping = pci_map_single(adapter->pdev, skb->data,
1213 skb_headlen(skb), PCI_DMA_TODEVICE);
1214
1215 desc_mapping = mapping;
1216 desc_len = skb_headlen(skb);
1217
1218 flags = F_CMD_DATAVALID | F_CMD_SOP |
1219 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1220 V_CMD_GEN2(gen);
1221 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1222 desc_len : SGE_TX_DESC_MAX_PLEN;
1223 e->addr_lo = (u32)desc_mapping;
1224 e->addr_hi = (u64)desc_mapping >> 32;
1225 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1226 ce->skb = NULL;
1227 dma_unmap_len_set(ce, dma_len, 0);
1228
1229 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1230 desc_len > SGE_TX_DESC_MAX_PLEN) {
1231 desc_mapping += first_desc_len;
1232 desc_len -= first_desc_len;
1233 e1++;
1234 ce++;
1235 if (++pidx == q->size) {
1236 pidx = 0;
1237 gen ^= 1;
1238 e1 = q->entries;
1239 ce = q->centries;
1240 }
1241 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1242 &desc_mapping, &desc_len,
1243 nfrags, q);
1244
1245 if (likely(desc_len))
1246 write_tx_desc(e1, desc_mapping, desc_len, gen,
1247 nfrags == 0);
1248 }
1249
1250 ce->skb = NULL;
1251 dma_unmap_addr_set(ce, dma_addr, mapping);
1252 dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1253
1254 for (i = 0; nfrags--; i++) {
1255 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1256 e1++;
1257 ce++;
1258 if (++pidx == q->size) {
1259 pidx = 0;
1260 gen ^= 1;
1261 e1 = q->entries;
1262 ce = q->centries;
1263 }
1264
1265 mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1266 skb_frag_size(frag), DMA_TO_DEVICE);
1267 desc_mapping = mapping;
1268 desc_len = skb_frag_size(frag);
1269
1270 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1271 &desc_mapping, &desc_len,
1272 nfrags, q);
1273 if (likely(desc_len))
1274 write_tx_desc(e1, desc_mapping, desc_len, gen,
1275 nfrags == 0);
1276 ce->skb = NULL;
1277 dma_unmap_addr_set(ce, dma_addr, mapping);
1278 dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1279 }
1280 ce->skb = skb;
1281 wmb();
1282 e->flags = flags;
1283 }
1284
1285 /*
1286 * Clean up completed Tx buffers.
1287 */
reclaim_completed_tx(struct sge * sge,struct cmdQ * q)1288 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1289 {
1290 unsigned int reclaim = q->processed - q->cleaned;
1291
1292 if (reclaim) {
1293 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1294 q->processed, q->cleaned);
1295 free_cmdQ_buffers(sge, q, reclaim);
1296 q->cleaned += reclaim;
1297 }
1298 }
1299
1300 /*
1301 * Called from tasklet. Checks the scheduler for any
1302 * pending skbs that can be sent.
1303 */
restart_sched(unsigned long arg)1304 static void restart_sched(unsigned long arg)
1305 {
1306 struct sge *sge = (struct sge *) arg;
1307 struct adapter *adapter = sge->adapter;
1308 struct cmdQ *q = &sge->cmdQ[0];
1309 struct sk_buff *skb;
1310 unsigned int credits, queued_skb = 0;
1311
1312 spin_lock(&q->lock);
1313 reclaim_completed_tx(sge, q);
1314
1315 credits = q->size - q->in_use;
1316 pr_debug("restart_sched credits=%d\n", credits);
1317 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1318 unsigned int genbit, pidx, count;
1319 count = 1 + skb_shinfo(skb)->nr_frags;
1320 count += compute_large_page_tx_descs(skb);
1321 q->in_use += count;
1322 genbit = q->genbit;
1323 pidx = q->pidx;
1324 q->pidx += count;
1325 if (q->pidx >= q->size) {
1326 q->pidx -= q->size;
1327 q->genbit ^= 1;
1328 }
1329 write_tx_descs(adapter, skb, pidx, genbit, q);
1330 credits = q->size - q->in_use;
1331 queued_skb = 1;
1332 }
1333
1334 if (queued_skb) {
1335 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1336 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1337 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1338 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1339 }
1340 }
1341 spin_unlock(&q->lock);
1342 }
1343
1344 /**
1345 * sge_rx - process an ingress ethernet packet
1346 * @sge: the sge structure
1347 * @fl: the free list that contains the packet buffer
1348 * @len: the packet length
1349 *
1350 * Process an ingress ethernet pakcet and deliver it to the stack.
1351 */
sge_rx(struct sge * sge,struct freelQ * fl,unsigned int len)1352 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1353 {
1354 struct sk_buff *skb;
1355 const struct cpl_rx_pkt *p;
1356 struct adapter *adapter = sge->adapter;
1357 struct sge_port_stats *st;
1358 struct net_device *dev;
1359
1360 skb = get_packet(adapter, fl, len - sge->rx_pkt_pad);
1361 if (unlikely(!skb)) {
1362 sge->stats.rx_drops++;
1363 return;
1364 }
1365
1366 p = (const struct cpl_rx_pkt *) skb->data;
1367 if (p->iff >= adapter->params.nports) {
1368 kfree_skb(skb);
1369 return;
1370 }
1371 __skb_pull(skb, sizeof(*p));
1372
1373 st = this_cpu_ptr(sge->port_stats[p->iff]);
1374 dev = adapter->port[p->iff].dev;
1375
1376 skb->protocol = eth_type_trans(skb, dev);
1377 if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1378 skb->protocol == htons(ETH_P_IP) &&
1379 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1380 ++st->rx_cso_good;
1381 skb->ip_summed = CHECKSUM_UNNECESSARY;
1382 } else
1383 skb_checksum_none_assert(skb);
1384
1385 if (p->vlan_valid) {
1386 st->vlan_xtract++;
1387 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
1388 }
1389 netif_receive_skb(skb);
1390 }
1391
1392 /*
1393 * Returns true if a command queue has enough available descriptors that
1394 * we can resume Tx operation after temporarily disabling its packet queue.
1395 */
enough_free_Tx_descs(const struct cmdQ * q)1396 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1397 {
1398 unsigned int r = q->processed - q->cleaned;
1399
1400 return q->in_use - r < (q->size >> 1);
1401 }
1402
1403 /*
1404 * Called when sufficient space has become available in the SGE command queues
1405 * after the Tx packet schedulers have been suspended to restart the Tx path.
1406 */
restart_tx_queues(struct sge * sge)1407 static void restart_tx_queues(struct sge *sge)
1408 {
1409 struct adapter *adap = sge->adapter;
1410 int i;
1411
1412 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1413 return;
1414
1415 for_each_port(adap, i) {
1416 struct net_device *nd = adap->port[i].dev;
1417
1418 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1419 netif_running(nd)) {
1420 sge->stats.cmdQ_restarted[2]++;
1421 netif_wake_queue(nd);
1422 }
1423 }
1424 }
1425
1426 /*
1427 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1428 * information.
1429 */
update_tx_info(struct adapter * adapter,unsigned int flags,unsigned int pr0)1430 static unsigned int update_tx_info(struct adapter *adapter,
1431 unsigned int flags,
1432 unsigned int pr0)
1433 {
1434 struct sge *sge = adapter->sge;
1435 struct cmdQ *cmdq = &sge->cmdQ[0];
1436
1437 cmdq->processed += pr0;
1438 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1439 freelQs_empty(sge);
1440 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1441 }
1442 if (flags & F_CMDQ0_ENABLE) {
1443 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1444
1445 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1446 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1447 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1448 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1449 }
1450 if (sge->tx_sched)
1451 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1452
1453 flags &= ~F_CMDQ0_ENABLE;
1454 }
1455
1456 if (unlikely(sge->stopped_tx_queues != 0))
1457 restart_tx_queues(sge);
1458
1459 return flags;
1460 }
1461
1462 /*
1463 * Process SGE responses, up to the supplied budget. Returns the number of
1464 * responses processed. A negative budget is effectively unlimited.
1465 */
process_responses(struct adapter * adapter,int budget)1466 static int process_responses(struct adapter *adapter, int budget)
1467 {
1468 struct sge *sge = adapter->sge;
1469 struct respQ *q = &sge->respQ;
1470 struct respQ_e *e = &q->entries[q->cidx];
1471 int done = 0;
1472 unsigned int flags = 0;
1473 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1474
1475 while (done < budget && e->GenerationBit == q->genbit) {
1476 flags |= e->Qsleeping;
1477
1478 cmdq_processed[0] += e->Cmdq0CreditReturn;
1479 cmdq_processed[1] += e->Cmdq1CreditReturn;
1480
1481 /* We batch updates to the TX side to avoid cacheline
1482 * ping-pong of TX state information on MP where the sender
1483 * might run on a different CPU than this function...
1484 */
1485 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1486 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1487 cmdq_processed[0] = 0;
1488 }
1489
1490 if (unlikely(cmdq_processed[1] > 16)) {
1491 sge->cmdQ[1].processed += cmdq_processed[1];
1492 cmdq_processed[1] = 0;
1493 }
1494
1495 if (likely(e->DataValid)) {
1496 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1497
1498 BUG_ON(!e->Sop || !e->Eop);
1499 if (unlikely(e->Offload))
1500 unexpected_offload(adapter, fl);
1501 else
1502 sge_rx(sge, fl, e->BufferLength);
1503
1504 ++done;
1505
1506 /*
1507 * Note: this depends on each packet consuming a
1508 * single free-list buffer; cf. the BUG above.
1509 */
1510 if (++fl->cidx == fl->size)
1511 fl->cidx = 0;
1512 prefetch(fl->centries[fl->cidx].skb);
1513
1514 if (unlikely(--fl->credits <
1515 fl->size - SGE_FREEL_REFILL_THRESH))
1516 refill_free_list(sge, fl);
1517 } else
1518 sge->stats.pure_rsps++;
1519
1520 e++;
1521 if (unlikely(++q->cidx == q->size)) {
1522 q->cidx = 0;
1523 q->genbit ^= 1;
1524 e = q->entries;
1525 }
1526 prefetch(e);
1527
1528 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1529 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1530 q->credits = 0;
1531 }
1532 }
1533
1534 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1535 sge->cmdQ[1].processed += cmdq_processed[1];
1536
1537 return done;
1538 }
1539
responses_pending(const struct adapter * adapter)1540 static inline int responses_pending(const struct adapter *adapter)
1541 {
1542 const struct respQ *Q = &adapter->sge->respQ;
1543 const struct respQ_e *e = &Q->entries[Q->cidx];
1544
1545 return e->GenerationBit == Q->genbit;
1546 }
1547
1548 /*
1549 * A simpler version of process_responses() that handles only pure (i.e.,
1550 * non data-carrying) responses. Such respones are too light-weight to justify
1551 * calling a softirq when using NAPI, so we handle them specially in hard
1552 * interrupt context. The function is called with a pointer to a response,
1553 * which the caller must ensure is a valid pure response. Returns 1 if it
1554 * encounters a valid data-carrying response, 0 otherwise.
1555 */
process_pure_responses(struct adapter * adapter)1556 static int process_pure_responses(struct adapter *adapter)
1557 {
1558 struct sge *sge = adapter->sge;
1559 struct respQ *q = &sge->respQ;
1560 struct respQ_e *e = &q->entries[q->cidx];
1561 const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1562 unsigned int flags = 0;
1563 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1564
1565 prefetch(fl->centries[fl->cidx].skb);
1566 if (e->DataValid)
1567 return 1;
1568
1569 do {
1570 flags |= e->Qsleeping;
1571
1572 cmdq_processed[0] += e->Cmdq0CreditReturn;
1573 cmdq_processed[1] += e->Cmdq1CreditReturn;
1574
1575 e++;
1576 if (unlikely(++q->cidx == q->size)) {
1577 q->cidx = 0;
1578 q->genbit ^= 1;
1579 e = q->entries;
1580 }
1581 prefetch(e);
1582
1583 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1584 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1585 q->credits = 0;
1586 }
1587 sge->stats.pure_rsps++;
1588 } while (e->GenerationBit == q->genbit && !e->DataValid);
1589
1590 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1591 sge->cmdQ[1].processed += cmdq_processed[1];
1592
1593 return e->GenerationBit == q->genbit;
1594 }
1595
1596 /*
1597 * Handler for new data events when using NAPI. This does not need any locking
1598 * or protection from interrupts as data interrupts are off at this point and
1599 * other adapter interrupts do not interfere.
1600 */
t1_poll(struct napi_struct * napi,int budget)1601 int t1_poll(struct napi_struct *napi, int budget)
1602 {
1603 struct adapter *adapter = container_of(napi, struct adapter, napi);
1604 int work_done = process_responses(adapter, budget);
1605
1606 if (likely(work_done < budget)) {
1607 napi_complete_done(napi, work_done);
1608 writel(adapter->sge->respQ.cidx,
1609 adapter->regs + A_SG_SLEEPING);
1610 }
1611 return work_done;
1612 }
1613
t1_interrupt(int irq,void * data)1614 irqreturn_t t1_interrupt(int irq, void *data)
1615 {
1616 struct adapter *adapter = data;
1617 struct sge *sge = adapter->sge;
1618 int handled;
1619
1620 if (likely(responses_pending(adapter))) {
1621 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1622
1623 if (napi_schedule_prep(&adapter->napi)) {
1624 if (process_pure_responses(adapter))
1625 __napi_schedule(&adapter->napi);
1626 else {
1627 /* no data, no NAPI needed */
1628 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1629 /* undo schedule_prep */
1630 napi_enable(&adapter->napi);
1631 }
1632 }
1633 return IRQ_HANDLED;
1634 }
1635
1636 spin_lock(&adapter->async_lock);
1637 handled = t1_slow_intr_handler(adapter);
1638 spin_unlock(&adapter->async_lock);
1639
1640 if (!handled)
1641 sge->stats.unhandled_irqs++;
1642
1643 return IRQ_RETVAL(handled != 0);
1644 }
1645
1646 /*
1647 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1648 *
1649 * The code figures out how many entries the sk_buff will require in the
1650 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1651 * has complete. Then, it doesn't access the global structure anymore, but
1652 * uses the corresponding fields on the stack. In conjunction with a spinlock
1653 * around that code, we can make the function reentrant without holding the
1654 * lock when we actually enqueue (which might be expensive, especially on
1655 * architectures with IO MMUs).
1656 *
1657 * This runs with softirqs disabled.
1658 */
t1_sge_tx(struct sk_buff * skb,struct adapter * adapter,unsigned int qid,struct net_device * dev)1659 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1660 unsigned int qid, struct net_device *dev)
1661 {
1662 struct sge *sge = adapter->sge;
1663 struct cmdQ *q = &sge->cmdQ[qid];
1664 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1665
1666 spin_lock(&q->lock);
1667
1668 reclaim_completed_tx(sge, q);
1669
1670 pidx = q->pidx;
1671 credits = q->size - q->in_use;
1672 count = 1 + skb_shinfo(skb)->nr_frags;
1673 count += compute_large_page_tx_descs(skb);
1674
1675 /* Ethernet packet */
1676 if (unlikely(credits < count)) {
1677 if (!netif_queue_stopped(dev)) {
1678 netif_stop_queue(dev);
1679 set_bit(dev->if_port, &sge->stopped_tx_queues);
1680 sge->stats.cmdQ_full[2]++;
1681 pr_err("%s: Tx ring full while queue awake!\n",
1682 adapter->name);
1683 }
1684 spin_unlock(&q->lock);
1685 return NETDEV_TX_BUSY;
1686 }
1687
1688 if (unlikely(credits - count < q->stop_thres)) {
1689 netif_stop_queue(dev);
1690 set_bit(dev->if_port, &sge->stopped_tx_queues);
1691 sge->stats.cmdQ_full[2]++;
1692 }
1693
1694 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1695 * through the scheduler.
1696 */
1697 if (sge->tx_sched && !qid && skb->dev) {
1698 use_sched:
1699 use_sched_skb = 1;
1700 /* Note that the scheduler might return a different skb than
1701 * the one passed in.
1702 */
1703 skb = sched_skb(sge, skb, credits);
1704 if (!skb) {
1705 spin_unlock(&q->lock);
1706 return NETDEV_TX_OK;
1707 }
1708 pidx = q->pidx;
1709 count = 1 + skb_shinfo(skb)->nr_frags;
1710 count += compute_large_page_tx_descs(skb);
1711 }
1712
1713 q->in_use += count;
1714 genbit = q->genbit;
1715 pidx = q->pidx;
1716 q->pidx += count;
1717 if (q->pidx >= q->size) {
1718 q->pidx -= q->size;
1719 q->genbit ^= 1;
1720 }
1721 spin_unlock(&q->lock);
1722
1723 write_tx_descs(adapter, skb, pidx, genbit, q);
1724
1725 /*
1726 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1727 * the doorbell if the Q is asleep. There is a natural race, where
1728 * the hardware is going to sleep just after we checked, however,
1729 * then the interrupt handler will detect the outstanding TX packet
1730 * and ring the doorbell for us.
1731 */
1732 if (qid)
1733 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1734 else {
1735 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1736 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1737 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1738 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1739 }
1740 }
1741
1742 if (use_sched_skb) {
1743 if (spin_trylock(&q->lock)) {
1744 credits = q->size - q->in_use;
1745 skb = NULL;
1746 goto use_sched;
1747 }
1748 }
1749 return NETDEV_TX_OK;
1750 }
1751
1752 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1753
1754 /*
1755 * eth_hdr_len - return the length of an Ethernet header
1756 * @data: pointer to the start of the Ethernet header
1757 *
1758 * Returns the length of an Ethernet header, including optional VLAN tag.
1759 */
eth_hdr_len(const void * data)1760 static inline int eth_hdr_len(const void *data)
1761 {
1762 const struct ethhdr *e = data;
1763
1764 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1765 }
1766
1767 /*
1768 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1769 */
t1_start_xmit(struct sk_buff * skb,struct net_device * dev)1770 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1771 {
1772 struct adapter *adapter = dev->ml_priv;
1773 struct sge *sge = adapter->sge;
1774 struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1775 struct cpl_tx_pkt *cpl;
1776 struct sk_buff *orig_skb = skb;
1777 int ret;
1778
1779 if (skb->protocol == htons(ETH_P_CPL5))
1780 goto send;
1781
1782 /*
1783 * We are using a non-standard hard_header_len.
1784 * Allocate more header room in the rare cases it is not big enough.
1785 */
1786 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1787 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1788 ++st->tx_need_hdrroom;
1789 dev_kfree_skb_any(orig_skb);
1790 if (!skb)
1791 return NETDEV_TX_OK;
1792 }
1793
1794 if (skb_shinfo(skb)->gso_size) {
1795 int eth_type;
1796 struct cpl_tx_pkt_lso *hdr;
1797
1798 ++st->tx_tso;
1799
1800 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1801 CPL_ETH_II : CPL_ETH_II_VLAN;
1802
1803 hdr = skb_push(skb, sizeof(*hdr));
1804 hdr->opcode = CPL_TX_PKT_LSO;
1805 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1806 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1807 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1808 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1809 skb_shinfo(skb)->gso_size));
1810 hdr->len = htonl(skb->len - sizeof(*hdr));
1811 cpl = (struct cpl_tx_pkt *)hdr;
1812 } else {
1813 /*
1814 * Packets shorter than ETH_HLEN can break the MAC, drop them
1815 * early. Also, we may get oversized packets because some
1816 * parts of the kernel don't handle our unusual hard_header_len
1817 * right, drop those too.
1818 */
1819 if (unlikely(skb->len < ETH_HLEN ||
1820 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1821 netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1822 skb->len, eth_hdr_len(skb->data), dev->mtu);
1823 dev_kfree_skb_any(skb);
1824 return NETDEV_TX_OK;
1825 }
1826
1827 if (skb->ip_summed == CHECKSUM_PARTIAL &&
1828 ip_hdr(skb)->protocol == IPPROTO_UDP) {
1829 if (unlikely(skb_checksum_help(skb))) {
1830 netdev_dbg(dev, "unable to do udp checksum\n");
1831 dev_kfree_skb_any(skb);
1832 return NETDEV_TX_OK;
1833 }
1834 }
1835
1836 /* Hmmm, assuming to catch the gratious arp... and we'll use
1837 * it to flush out stuck espi packets...
1838 */
1839 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1840 if (skb->protocol == htons(ETH_P_ARP) &&
1841 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1842 adapter->sge->espibug_skb[dev->if_port] = skb;
1843 /* We want to re-use this skb later. We
1844 * simply bump the reference count and it
1845 * will not be freed...
1846 */
1847 skb = skb_get(skb);
1848 }
1849 }
1850
1851 cpl = __skb_push(skb, sizeof(*cpl));
1852 cpl->opcode = CPL_TX_PKT;
1853 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
1854 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1855 /* the length field isn't used so don't bother setting it */
1856
1857 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1858 }
1859 cpl->iff = dev->if_port;
1860
1861 if (skb_vlan_tag_present(skb)) {
1862 cpl->vlan_valid = 1;
1863 cpl->vlan = htons(skb_vlan_tag_get(skb));
1864 st->vlan_insert++;
1865 } else
1866 cpl->vlan_valid = 0;
1867
1868 send:
1869 ret = t1_sge_tx(skb, adapter, 0, dev);
1870
1871 /* If transmit busy, and we reallocated skb's due to headroom limit,
1872 * then silently discard to avoid leak.
1873 */
1874 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1875 dev_kfree_skb_any(skb);
1876 ret = NETDEV_TX_OK;
1877 }
1878 return ret;
1879 }
1880
1881 /*
1882 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1883 */
sge_tx_reclaim_cb(struct timer_list * t)1884 static void sge_tx_reclaim_cb(struct timer_list *t)
1885 {
1886 int i;
1887 struct sge *sge = from_timer(sge, t, tx_reclaim_timer);
1888
1889 for (i = 0; i < SGE_CMDQ_N; ++i) {
1890 struct cmdQ *q = &sge->cmdQ[i];
1891
1892 if (!spin_trylock(&q->lock))
1893 continue;
1894
1895 reclaim_completed_tx(sge, q);
1896 if (i == 0 && q->in_use) { /* flush pending credits */
1897 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1898 }
1899 spin_unlock(&q->lock);
1900 }
1901 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1902 }
1903
1904 /*
1905 * Propagate changes of the SGE coalescing parameters to the HW.
1906 */
t1_sge_set_coalesce_params(struct sge * sge,struct sge_params * p)1907 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1908 {
1909 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1910 core_ticks_per_usec(sge->adapter);
1911 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1912 return 0;
1913 }
1914
1915 /*
1916 * Allocates both RX and TX resources and configures the SGE. However,
1917 * the hardware is not enabled yet.
1918 */
t1_sge_configure(struct sge * sge,struct sge_params * p)1919 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1920 {
1921 if (alloc_rx_resources(sge, p))
1922 return -ENOMEM;
1923 if (alloc_tx_resources(sge, p)) {
1924 free_rx_resources(sge);
1925 return -ENOMEM;
1926 }
1927 configure_sge(sge, p);
1928
1929 /*
1930 * Now that we have sized the free lists calculate the payload
1931 * capacity of the large buffers. Other parts of the driver use
1932 * this to set the max offload coalescing size so that RX packets
1933 * do not overflow our large buffers.
1934 */
1935 p->large_buf_capacity = jumbo_payload_capacity(sge);
1936 return 0;
1937 }
1938
1939 /*
1940 * Disables the DMA engine.
1941 */
t1_sge_stop(struct sge * sge)1942 void t1_sge_stop(struct sge *sge)
1943 {
1944 int i;
1945 writel(0, sge->adapter->regs + A_SG_CONTROL);
1946 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1947
1948 if (is_T2(sge->adapter))
1949 del_timer_sync(&sge->espibug_timer);
1950
1951 del_timer_sync(&sge->tx_reclaim_timer);
1952 if (sge->tx_sched)
1953 tx_sched_stop(sge);
1954
1955 for (i = 0; i < MAX_NPORTS; i++)
1956 kfree_skb(sge->espibug_skb[i]);
1957 }
1958
1959 /*
1960 * Enables the DMA engine.
1961 */
t1_sge_start(struct sge * sge)1962 void t1_sge_start(struct sge *sge)
1963 {
1964 refill_free_list(sge, &sge->freelQ[0]);
1965 refill_free_list(sge, &sge->freelQ[1]);
1966
1967 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1968 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1969 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1970
1971 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1972
1973 if (is_T2(sge->adapter))
1974 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1975 }
1976
1977 /*
1978 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1979 */
espibug_workaround_t204(struct timer_list * t)1980 static void espibug_workaround_t204(struct timer_list *t)
1981 {
1982 struct sge *sge = from_timer(sge, t, espibug_timer);
1983 struct adapter *adapter = sge->adapter;
1984 unsigned int nports = adapter->params.nports;
1985 u32 seop[MAX_NPORTS];
1986
1987 if (adapter->open_device_map & PORT_MASK) {
1988 int i;
1989
1990 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
1991 return;
1992
1993 for (i = 0; i < nports; i++) {
1994 struct sk_buff *skb = sge->espibug_skb[i];
1995
1996 if (!netif_running(adapter->port[i].dev) ||
1997 netif_queue_stopped(adapter->port[i].dev) ||
1998 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
1999 continue;
2000
2001 if (!skb->cb[0]) {
2002 skb_copy_to_linear_data_offset(skb,
2003 sizeof(struct cpl_tx_pkt),
2004 ch_mac_addr,
2005 ETH_ALEN);
2006 skb_copy_to_linear_data_offset(skb,
2007 skb->len - 10,
2008 ch_mac_addr,
2009 ETH_ALEN);
2010 skb->cb[0] = 0xff;
2011 }
2012
2013 /* bump the reference count to avoid freeing of
2014 * the skb once the DMA has completed.
2015 */
2016 skb = skb_get(skb);
2017 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2018 }
2019 }
2020 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2021 }
2022
espibug_workaround(struct timer_list * t)2023 static void espibug_workaround(struct timer_list *t)
2024 {
2025 struct sge *sge = from_timer(sge, t, espibug_timer);
2026 struct adapter *adapter = sge->adapter;
2027
2028 if (netif_running(adapter->port[0].dev)) {
2029 struct sk_buff *skb = sge->espibug_skb[0];
2030 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2031
2032 if ((seop & 0xfff0fff) == 0xfff && skb) {
2033 if (!skb->cb[0]) {
2034 skb_copy_to_linear_data_offset(skb,
2035 sizeof(struct cpl_tx_pkt),
2036 ch_mac_addr,
2037 ETH_ALEN);
2038 skb_copy_to_linear_data_offset(skb,
2039 skb->len - 10,
2040 ch_mac_addr,
2041 ETH_ALEN);
2042 skb->cb[0] = 0xff;
2043 }
2044
2045 /* bump the reference count to avoid freeing of the
2046 * skb once the DMA has completed.
2047 */
2048 skb = skb_get(skb);
2049 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2050 }
2051 }
2052 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2053 }
2054
2055 /*
2056 * Creates a t1_sge structure and returns suggested resource parameters.
2057 */
t1_sge_create(struct adapter * adapter,struct sge_params * p)2058 struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
2059 {
2060 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2061 int i;
2062
2063 if (!sge)
2064 return NULL;
2065
2066 sge->adapter = adapter;
2067 sge->netdev = adapter->port[0].dev;
2068 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2069 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2070
2071 for_each_port(adapter, i) {
2072 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2073 if (!sge->port_stats[i])
2074 goto nomem_port;
2075 }
2076
2077 timer_setup(&sge->tx_reclaim_timer, sge_tx_reclaim_cb, 0);
2078
2079 if (is_T2(sge->adapter)) {
2080 timer_setup(&sge->espibug_timer,
2081 adapter->params.nports > 1 ? espibug_workaround_t204 : espibug_workaround,
2082 0);
2083
2084 if (adapter->params.nports > 1)
2085 tx_sched_init(sge);
2086
2087 sge->espibug_timeout = 1;
2088 /* for T204, every 10ms */
2089 if (adapter->params.nports > 1)
2090 sge->espibug_timeout = HZ/100;
2091 }
2092
2093
2094 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2095 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2096 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2097 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2098 if (sge->tx_sched) {
2099 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2100 p->rx_coalesce_usecs = 15;
2101 else
2102 p->rx_coalesce_usecs = 50;
2103 } else
2104 p->rx_coalesce_usecs = 50;
2105
2106 p->coalesce_enable = 0;
2107 p->sample_interval_usecs = 0;
2108
2109 return sge;
2110 nomem_port:
2111 while (i >= 0) {
2112 free_percpu(sge->port_stats[i]);
2113 --i;
2114 }
2115 kfree(sge);
2116 return NULL;
2117
2118 }
2119