1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
10
11 #include <linux/nospec.h>
12
13 #include <linux/kcov.h>
14
15 #include <asm/switch_to.h>
16 #include <asm/tlb.h>
17
18 #include "../workqueue_internal.h"
19 #include "../smpboot.h"
20
21 #include "pelt.h"
22
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/sched.h>
25
26 /*
27 * Export tracepoints that act as a bare tracehook (ie: have no trace event
28 * associated with them) to allow external modules to probe them.
29 */
30 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
31 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
32 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
36
37 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
38
39 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
40 /*
41 * Debugging: various feature bits
42 *
43 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
44 * sysctl_sched_features, defined in sched.h, to allow constants propagation
45 * at compile time and compiler optimization based on features default.
46 */
47 #define SCHED_FEAT(name, enabled) \
48 (1UL << __SCHED_FEAT_##name) * enabled |
49 const_debug unsigned int sysctl_sched_features =
50 #include "features.h"
51 0;
52 #undef SCHED_FEAT
53 #endif
54
55 /*
56 * Number of tasks to iterate in a single balance run.
57 * Limited because this is done with IRQs disabled.
58 */
59 const_debug unsigned int sysctl_sched_nr_migrate = 32;
60
61 /*
62 * period over which we measure -rt task CPU usage in us.
63 * default: 1s
64 */
65 unsigned int sysctl_sched_rt_period = 1000000;
66
67 __read_mostly int scheduler_running;
68
69 /*
70 * part of the period that we allow rt tasks to run in us.
71 * default: 0.95s
72 */
73 int sysctl_sched_rt_runtime = 950000;
74
75 /*
76 * __task_rq_lock - lock the rq @p resides on.
77 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)78 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
79 __acquires(rq->lock)
80 {
81 struct rq *rq;
82
83 lockdep_assert_held(&p->pi_lock);
84
85 for (;;) {
86 rq = task_rq(p);
87 raw_spin_lock(&rq->lock);
88 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
89 rq_pin_lock(rq, rf);
90 return rq;
91 }
92 raw_spin_unlock(&rq->lock);
93
94 while (unlikely(task_on_rq_migrating(p)))
95 cpu_relax();
96 }
97 }
98
99 /*
100 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
101 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)102 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
103 __acquires(p->pi_lock)
104 __acquires(rq->lock)
105 {
106 struct rq *rq;
107
108 for (;;) {
109 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
110 rq = task_rq(p);
111 raw_spin_lock(&rq->lock);
112 /*
113 * move_queued_task() task_rq_lock()
114 *
115 * ACQUIRE (rq->lock)
116 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
117 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
118 * [S] ->cpu = new_cpu [L] task_rq()
119 * [L] ->on_rq
120 * RELEASE (rq->lock)
121 *
122 * If we observe the old CPU in task_rq_lock(), the acquire of
123 * the old rq->lock will fully serialize against the stores.
124 *
125 * If we observe the new CPU in task_rq_lock(), the address
126 * dependency headed by '[L] rq = task_rq()' and the acquire
127 * will pair with the WMB to ensure we then also see migrating.
128 */
129 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
130 rq_pin_lock(rq, rf);
131 return rq;
132 }
133 raw_spin_unlock(&rq->lock);
134 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
135
136 while (unlikely(task_on_rq_migrating(p)))
137 cpu_relax();
138 }
139 }
140
141 /*
142 * RQ-clock updating methods:
143 */
144
update_rq_clock_task(struct rq * rq,s64 delta)145 static void update_rq_clock_task(struct rq *rq, s64 delta)
146 {
147 /*
148 * In theory, the compile should just see 0 here, and optimize out the call
149 * to sched_rt_avg_update. But I don't trust it...
150 */
151 s64 __maybe_unused steal = 0, irq_delta = 0;
152
153 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
154 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
155
156 /*
157 * Since irq_time is only updated on {soft,}irq_exit, we might run into
158 * this case when a previous update_rq_clock() happened inside a
159 * {soft,}irq region.
160 *
161 * When this happens, we stop ->clock_task and only update the
162 * prev_irq_time stamp to account for the part that fit, so that a next
163 * update will consume the rest. This ensures ->clock_task is
164 * monotonic.
165 *
166 * It does however cause some slight miss-attribution of {soft,}irq
167 * time, a more accurate solution would be to update the irq_time using
168 * the current rq->clock timestamp, except that would require using
169 * atomic ops.
170 */
171 if (irq_delta > delta)
172 irq_delta = delta;
173
174 rq->prev_irq_time += irq_delta;
175 delta -= irq_delta;
176 #endif
177 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
178 if (static_key_false((¶virt_steal_rq_enabled))) {
179 steal = paravirt_steal_clock(cpu_of(rq));
180 steal -= rq->prev_steal_time_rq;
181
182 if (unlikely(steal > delta))
183 steal = delta;
184
185 rq->prev_steal_time_rq += steal;
186 delta -= steal;
187 }
188 #endif
189
190 rq->clock_task += delta;
191
192 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
193 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
194 update_irq_load_avg(rq, irq_delta + steal);
195 #endif
196 update_rq_clock_pelt(rq, delta);
197 }
198
update_rq_clock(struct rq * rq)199 void update_rq_clock(struct rq *rq)
200 {
201 s64 delta;
202
203 lockdep_assert_held(&rq->lock);
204
205 if (rq->clock_update_flags & RQCF_ACT_SKIP)
206 return;
207
208 #ifdef CONFIG_SCHED_DEBUG
209 if (sched_feat(WARN_DOUBLE_CLOCK))
210 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
211 rq->clock_update_flags |= RQCF_UPDATED;
212 #endif
213
214 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
215 if (delta < 0)
216 return;
217 rq->clock += delta;
218 update_rq_clock_task(rq, delta);
219 }
220
221
222 #ifdef CONFIG_SCHED_HRTICK
223 /*
224 * Use HR-timers to deliver accurate preemption points.
225 */
226
hrtick_clear(struct rq * rq)227 static void hrtick_clear(struct rq *rq)
228 {
229 if (hrtimer_active(&rq->hrtick_timer))
230 hrtimer_cancel(&rq->hrtick_timer);
231 }
232
233 /*
234 * High-resolution timer tick.
235 * Runs from hardirq context with interrupts disabled.
236 */
hrtick(struct hrtimer * timer)237 static enum hrtimer_restart hrtick(struct hrtimer *timer)
238 {
239 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
240 struct rq_flags rf;
241
242 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
243
244 rq_lock(rq, &rf);
245 update_rq_clock(rq);
246 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
247 rq_unlock(rq, &rf);
248
249 return HRTIMER_NORESTART;
250 }
251
252 #ifdef CONFIG_SMP
253
__hrtick_restart(struct rq * rq)254 static void __hrtick_restart(struct rq *rq)
255 {
256 struct hrtimer *timer = &rq->hrtick_timer;
257
258 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
259 }
260
261 /*
262 * called from hardirq (IPI) context
263 */
__hrtick_start(void * arg)264 static void __hrtick_start(void *arg)
265 {
266 struct rq *rq = arg;
267 struct rq_flags rf;
268
269 rq_lock(rq, &rf);
270 __hrtick_restart(rq);
271 rq->hrtick_csd_pending = 0;
272 rq_unlock(rq, &rf);
273 }
274
275 /*
276 * Called to set the hrtick timer state.
277 *
278 * called with rq->lock held and irqs disabled
279 */
hrtick_start(struct rq * rq,u64 delay)280 void hrtick_start(struct rq *rq, u64 delay)
281 {
282 struct hrtimer *timer = &rq->hrtick_timer;
283 ktime_t time;
284 s64 delta;
285
286 /*
287 * Don't schedule slices shorter than 10000ns, that just
288 * doesn't make sense and can cause timer DoS.
289 */
290 delta = max_t(s64, delay, 10000LL);
291 time = ktime_add_ns(timer->base->get_time(), delta);
292
293 hrtimer_set_expires(timer, time);
294
295 if (rq == this_rq()) {
296 __hrtick_restart(rq);
297 } else if (!rq->hrtick_csd_pending) {
298 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
299 rq->hrtick_csd_pending = 1;
300 }
301 }
302
303 #else
304 /*
305 * Called to set the hrtick timer state.
306 *
307 * called with rq->lock held and irqs disabled
308 */
hrtick_start(struct rq * rq,u64 delay)309 void hrtick_start(struct rq *rq, u64 delay)
310 {
311 /*
312 * Don't schedule slices shorter than 10000ns, that just
313 * doesn't make sense. Rely on vruntime for fairness.
314 */
315 delay = max_t(u64, delay, 10000LL);
316 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
317 HRTIMER_MODE_REL_PINNED_HARD);
318 }
319 #endif /* CONFIG_SMP */
320
hrtick_rq_init(struct rq * rq)321 static void hrtick_rq_init(struct rq *rq)
322 {
323 #ifdef CONFIG_SMP
324 rq->hrtick_csd_pending = 0;
325
326 rq->hrtick_csd.flags = 0;
327 rq->hrtick_csd.func = __hrtick_start;
328 rq->hrtick_csd.info = rq;
329 #endif
330
331 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
332 rq->hrtick_timer.function = hrtick;
333 }
334 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)335 static inline void hrtick_clear(struct rq *rq)
336 {
337 }
338
hrtick_rq_init(struct rq * rq)339 static inline void hrtick_rq_init(struct rq *rq)
340 {
341 }
342 #endif /* CONFIG_SCHED_HRTICK */
343
344 /*
345 * cmpxchg based fetch_or, macro so it works for different integer types
346 */
347 #define fetch_or(ptr, mask) \
348 ({ \
349 typeof(ptr) _ptr = (ptr); \
350 typeof(mask) _mask = (mask); \
351 typeof(*_ptr) _old, _val = *_ptr; \
352 \
353 for (;;) { \
354 _old = cmpxchg(_ptr, _val, _val | _mask); \
355 if (_old == _val) \
356 break; \
357 _val = _old; \
358 } \
359 _old; \
360 })
361
362 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
363 /*
364 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
365 * this avoids any races wrt polling state changes and thereby avoids
366 * spurious IPIs.
367 */
set_nr_and_not_polling(struct task_struct * p)368 static bool set_nr_and_not_polling(struct task_struct *p)
369 {
370 struct thread_info *ti = task_thread_info(p);
371 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
372 }
373
374 /*
375 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
376 *
377 * If this returns true, then the idle task promises to call
378 * sched_ttwu_pending() and reschedule soon.
379 */
set_nr_if_polling(struct task_struct * p)380 static bool set_nr_if_polling(struct task_struct *p)
381 {
382 struct thread_info *ti = task_thread_info(p);
383 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
384
385 for (;;) {
386 if (!(val & _TIF_POLLING_NRFLAG))
387 return false;
388 if (val & _TIF_NEED_RESCHED)
389 return true;
390 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
391 if (old == val)
392 break;
393 val = old;
394 }
395 return true;
396 }
397
398 #else
set_nr_and_not_polling(struct task_struct * p)399 static bool set_nr_and_not_polling(struct task_struct *p)
400 {
401 set_tsk_need_resched(p);
402 return true;
403 }
404
405 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)406 static bool set_nr_if_polling(struct task_struct *p)
407 {
408 return false;
409 }
410 #endif
411 #endif
412
__wake_q_add(struct wake_q_head * head,struct task_struct * task)413 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
414 {
415 struct wake_q_node *node = &task->wake_q;
416
417 /*
418 * Atomically grab the task, if ->wake_q is !nil already it means
419 * its already queued (either by us or someone else) and will get the
420 * wakeup due to that.
421 *
422 * In order to ensure that a pending wakeup will observe our pending
423 * state, even in the failed case, an explicit smp_mb() must be used.
424 */
425 smp_mb__before_atomic();
426 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
427 return false;
428
429 /*
430 * The head is context local, there can be no concurrency.
431 */
432 *head->lastp = node;
433 head->lastp = &node->next;
434 return true;
435 }
436
437 /**
438 * wake_q_add() - queue a wakeup for 'later' waking.
439 * @head: the wake_q_head to add @task to
440 * @task: the task to queue for 'later' wakeup
441 *
442 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
443 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
444 * instantly.
445 *
446 * This function must be used as-if it were wake_up_process(); IOW the task
447 * must be ready to be woken at this location.
448 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)449 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
450 {
451 if (__wake_q_add(head, task))
452 get_task_struct(task);
453 }
454
455 /**
456 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
457 * @head: the wake_q_head to add @task to
458 * @task: the task to queue for 'later' wakeup
459 *
460 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
461 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
462 * instantly.
463 *
464 * This function must be used as-if it were wake_up_process(); IOW the task
465 * must be ready to be woken at this location.
466 *
467 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
468 * that already hold reference to @task can call the 'safe' version and trust
469 * wake_q to do the right thing depending whether or not the @task is already
470 * queued for wakeup.
471 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)472 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
473 {
474 if (!__wake_q_add(head, task))
475 put_task_struct(task);
476 }
477
wake_up_q(struct wake_q_head * head)478 void wake_up_q(struct wake_q_head *head)
479 {
480 struct wake_q_node *node = head->first;
481
482 while (node != WAKE_Q_TAIL) {
483 struct task_struct *task;
484
485 task = container_of(node, struct task_struct, wake_q);
486 BUG_ON(!task);
487 /* Task can safely be re-inserted now: */
488 node = node->next;
489 task->wake_q.next = NULL;
490
491 /*
492 * wake_up_process() executes a full barrier, which pairs with
493 * the queueing in wake_q_add() so as not to miss wakeups.
494 */
495 wake_up_process(task);
496 put_task_struct(task);
497 }
498 }
499
500 /*
501 * resched_curr - mark rq's current task 'to be rescheduled now'.
502 *
503 * On UP this means the setting of the need_resched flag, on SMP it
504 * might also involve a cross-CPU call to trigger the scheduler on
505 * the target CPU.
506 */
resched_curr(struct rq * rq)507 void resched_curr(struct rq *rq)
508 {
509 struct task_struct *curr = rq->curr;
510 int cpu;
511
512 lockdep_assert_held(&rq->lock);
513
514 if (test_tsk_need_resched(curr))
515 return;
516
517 cpu = cpu_of(rq);
518
519 if (cpu == smp_processor_id()) {
520 set_tsk_need_resched(curr);
521 set_preempt_need_resched();
522 return;
523 }
524
525 if (set_nr_and_not_polling(curr))
526 smp_send_reschedule(cpu);
527 else
528 trace_sched_wake_idle_without_ipi(cpu);
529 }
530
resched_cpu(int cpu)531 void resched_cpu(int cpu)
532 {
533 struct rq *rq = cpu_rq(cpu);
534 unsigned long flags;
535
536 raw_spin_lock_irqsave(&rq->lock, flags);
537 if (cpu_online(cpu) || cpu == smp_processor_id())
538 resched_curr(rq);
539 raw_spin_unlock_irqrestore(&rq->lock, flags);
540 }
541
542 #ifdef CONFIG_SMP
543 #ifdef CONFIG_NO_HZ_COMMON
544 /*
545 * In the semi idle case, use the nearest busy CPU for migrating timers
546 * from an idle CPU. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle CPU will add more delays to the timers than intended
550 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
551 */
get_nohz_timer_target(void)552 int get_nohz_timer_target(void)
553 {
554 int i, cpu = smp_processor_id();
555 struct sched_domain *sd;
556
557 if (!idle_cpu(cpu) && housekeeping_cpu(cpu, HK_FLAG_TIMER))
558 return cpu;
559
560 rcu_read_lock();
561 for_each_domain(cpu, sd) {
562 for_each_cpu(i, sched_domain_span(sd)) {
563 if (cpu == i)
564 continue;
565
566 if (!idle_cpu(i) && housekeeping_cpu(i, HK_FLAG_TIMER)) {
567 cpu = i;
568 goto unlock;
569 }
570 }
571 }
572
573 if (!housekeeping_cpu(cpu, HK_FLAG_TIMER))
574 cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
575 unlock:
576 rcu_read_unlock();
577 return cpu;
578 }
579
580 /*
581 * When add_timer_on() enqueues a timer into the timer wheel of an
582 * idle CPU then this timer might expire before the next timer event
583 * which is scheduled to wake up that CPU. In case of a completely
584 * idle system the next event might even be infinite time into the
585 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
586 * leaves the inner idle loop so the newly added timer is taken into
587 * account when the CPU goes back to idle and evaluates the timer
588 * wheel for the next timer event.
589 */
wake_up_idle_cpu(int cpu)590 static void wake_up_idle_cpu(int cpu)
591 {
592 struct rq *rq = cpu_rq(cpu);
593
594 if (cpu == smp_processor_id())
595 return;
596
597 if (set_nr_and_not_polling(rq->idle))
598 smp_send_reschedule(cpu);
599 else
600 trace_sched_wake_idle_without_ipi(cpu);
601 }
602
wake_up_full_nohz_cpu(int cpu)603 static bool wake_up_full_nohz_cpu(int cpu)
604 {
605 /*
606 * We just need the target to call irq_exit() and re-evaluate
607 * the next tick. The nohz full kick at least implies that.
608 * If needed we can still optimize that later with an
609 * empty IRQ.
610 */
611 if (cpu_is_offline(cpu))
612 return true; /* Don't try to wake offline CPUs. */
613 if (tick_nohz_full_cpu(cpu)) {
614 if (cpu != smp_processor_id() ||
615 tick_nohz_tick_stopped())
616 tick_nohz_full_kick_cpu(cpu);
617 return true;
618 }
619
620 return false;
621 }
622
623 /*
624 * Wake up the specified CPU. If the CPU is going offline, it is the
625 * caller's responsibility to deal with the lost wakeup, for example,
626 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
627 */
wake_up_nohz_cpu(int cpu)628 void wake_up_nohz_cpu(int cpu)
629 {
630 if (!wake_up_full_nohz_cpu(cpu))
631 wake_up_idle_cpu(cpu);
632 }
633
got_nohz_idle_kick(void)634 static inline bool got_nohz_idle_kick(void)
635 {
636 int cpu = smp_processor_id();
637
638 if (!(atomic_read(nohz_flags(cpu)) & NOHZ_KICK_MASK))
639 return false;
640
641 if (idle_cpu(cpu) && !need_resched())
642 return true;
643
644 /*
645 * We can't run Idle Load Balance on this CPU for this time so we
646 * cancel it and clear NOHZ_BALANCE_KICK
647 */
648 atomic_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
649 return false;
650 }
651
652 #else /* CONFIG_NO_HZ_COMMON */
653
got_nohz_idle_kick(void)654 static inline bool got_nohz_idle_kick(void)
655 {
656 return false;
657 }
658
659 #endif /* CONFIG_NO_HZ_COMMON */
660
661 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)662 bool sched_can_stop_tick(struct rq *rq)
663 {
664 int fifo_nr_running;
665
666 /* Deadline tasks, even if single, need the tick */
667 if (rq->dl.dl_nr_running)
668 return false;
669
670 /*
671 * If there are more than one RR tasks, we need the tick to effect the
672 * actual RR behaviour.
673 */
674 if (rq->rt.rr_nr_running) {
675 if (rq->rt.rr_nr_running == 1)
676 return true;
677 else
678 return false;
679 }
680
681 /*
682 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
683 * forced preemption between FIFO tasks.
684 */
685 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
686 if (fifo_nr_running)
687 return true;
688
689 /*
690 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
691 * if there's more than one we need the tick for involuntary
692 * preemption.
693 */
694 if (rq->nr_running > 1)
695 return false;
696
697 return true;
698 }
699 #endif /* CONFIG_NO_HZ_FULL */
700 #endif /* CONFIG_SMP */
701
702 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
704 /*
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
709 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)710 int walk_tg_tree_from(struct task_group *from,
711 tg_visitor down, tg_visitor up, void *data)
712 {
713 struct task_group *parent, *child;
714 int ret;
715
716 parent = from;
717
718 down:
719 ret = (*down)(parent, data);
720 if (ret)
721 goto out;
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726 up:
727 continue;
728 }
729 ret = (*up)(parent, data);
730 if (ret || parent == from)
731 goto out;
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
737 out:
738 return ret;
739 }
740
tg_nop(struct task_group * tg,void * data)741 int tg_nop(struct task_group *tg, void *data)
742 {
743 return 0;
744 }
745 #endif
746
set_load_weight(struct task_struct * p,bool update_load)747 static void set_load_weight(struct task_struct *p, bool update_load)
748 {
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (task_has_idle_policy(p)) {
756 load->weight = scale_load(WEIGHT_IDLEPRIO);
757 load->inv_weight = WMULT_IDLEPRIO;
758 p->se.runnable_weight = load->weight;
759 return;
760 }
761
762 /*
763 * SCHED_OTHER tasks have to update their load when changing their
764 * weight
765 */
766 if (update_load && p->sched_class == &fair_sched_class) {
767 reweight_task(p, prio);
768 } else {
769 load->weight = scale_load(sched_prio_to_weight[prio]);
770 load->inv_weight = sched_prio_to_wmult[prio];
771 p->se.runnable_weight = load->weight;
772 }
773 }
774
775 #ifdef CONFIG_UCLAMP_TASK
776 /*
777 * Serializes updates of utilization clamp values
778 *
779 * The (slow-path) user-space triggers utilization clamp value updates which
780 * can require updates on (fast-path) scheduler's data structures used to
781 * support enqueue/dequeue operations.
782 * While the per-CPU rq lock protects fast-path update operations, user-space
783 * requests are serialized using a mutex to reduce the risk of conflicting
784 * updates or API abuses.
785 */
786 static DEFINE_MUTEX(uclamp_mutex);
787
788 /* Max allowed minimum utilization */
789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790
791 /* Max allowed maximum utilization */
792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793
794 /* All clamps are required to be less or equal than these values */
795 static struct uclamp_se uclamp_default[UCLAMP_CNT];
796
797 /* Integer rounded range for each bucket */
798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799
800 #define for_each_clamp_id(clamp_id) \
801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802
uclamp_bucket_id(unsigned int clamp_value)803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804 {
805 return clamp_value / UCLAMP_BUCKET_DELTA;
806 }
807
uclamp_bucket_base_value(unsigned int clamp_value)808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809 {
810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811 }
812
uclamp_none(enum uclamp_id clamp_id)813 static inline enum uclamp_id uclamp_none(enum uclamp_id clamp_id)
814 {
815 if (clamp_id == UCLAMP_MIN)
816 return 0;
817 return SCHED_CAPACITY_SCALE;
818 }
819
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)820 static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 unsigned int value, bool user_defined)
822 {
823 uc_se->value = value;
824 uc_se->bucket_id = uclamp_bucket_id(value);
825 uc_se->user_defined = user_defined;
826 }
827
828 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 unsigned int clamp_value)
831 {
832 /*
833 * Avoid blocked utilization pushing up the frequency when we go
834 * idle (which drops the max-clamp) by retaining the last known
835 * max-clamp.
836 */
837 if (clamp_id == UCLAMP_MAX) {
838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 return clamp_value;
840 }
841
842 return uclamp_none(UCLAMP_MIN);
843 }
844
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 unsigned int clamp_value)
847 {
848 /* Reset max-clamp retention only on idle exit */
849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 return;
851
852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853 }
854
855 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)856 enum uclamp_id uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 unsigned int clamp_value)
858 {
859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 int bucket_id = UCLAMP_BUCKETS - 1;
861
862 /*
863 * Since both min and max clamps are max aggregated, find the
864 * top most bucket with tasks in.
865 */
866 for ( ; bucket_id >= 0; bucket_id--) {
867 if (!bucket[bucket_id].tasks)
868 continue;
869 return bucket[bucket_id].value;
870 }
871
872 /* No tasks -- default clamp values */
873 return uclamp_idle_value(rq, clamp_id, clamp_value);
874 }
875
876 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878 {
879 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880 #ifdef CONFIG_UCLAMP_TASK_GROUP
881 struct uclamp_se uc_max;
882
883 /*
884 * Tasks in autogroups or root task group will be
885 * restricted by system defaults.
886 */
887 if (task_group_is_autogroup(task_group(p)))
888 return uc_req;
889 if (task_group(p) == &root_task_group)
890 return uc_req;
891
892 uc_max = task_group(p)->uclamp[clamp_id];
893 if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 return uc_max;
895 #endif
896
897 return uc_req;
898 }
899
900 /*
901 * The effective clamp bucket index of a task depends on, by increasing
902 * priority:
903 * - the task specific clamp value, when explicitly requested from userspace
904 * - the task group effective clamp value, for tasks not either in the root
905 * group or in an autogroup
906 * - the system default clamp value, defined by the sysadmin
907 */
908 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910 {
911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 struct uclamp_se uc_max = uclamp_default[clamp_id];
913
914 /* System default restrictions always apply */
915 if (unlikely(uc_req.value > uc_max.value))
916 return uc_max;
917
918 return uc_req;
919 }
920
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)921 enum uclamp_id uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922 {
923 struct uclamp_se uc_eff;
924
925 /* Task currently refcounted: use back-annotated (effective) value */
926 if (p->uclamp[clamp_id].active)
927 return p->uclamp[clamp_id].value;
928
929 uc_eff = uclamp_eff_get(p, clamp_id);
930
931 return uc_eff.value;
932 }
933
934 /*
935 * When a task is enqueued on a rq, the clamp bucket currently defined by the
936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937 * updates the rq's clamp value if required.
938 *
939 * Tasks can have a task-specific value requested from user-space, track
940 * within each bucket the maximum value for tasks refcounted in it.
941 * This "local max aggregation" allows to track the exact "requested" value
942 * for each bucket when all its RUNNABLE tasks require the same clamp.
943 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 enum uclamp_id clamp_id)
946 {
947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 struct uclamp_bucket *bucket;
950
951 lockdep_assert_held(&rq->lock);
952
953 /* Update task effective clamp */
954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955
956 bucket = &uc_rq->bucket[uc_se->bucket_id];
957 bucket->tasks++;
958 uc_se->active = true;
959
960 uclamp_idle_reset(rq, clamp_id, uc_se->value);
961
962 /*
963 * Local max aggregation: rq buckets always track the max
964 * "requested" clamp value of its RUNNABLE tasks.
965 */
966 if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 bucket->value = uc_se->value;
968
969 if (uc_se->value > READ_ONCE(uc_rq->value))
970 WRITE_ONCE(uc_rq->value, uc_se->value);
971 }
972
973 /*
974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975 * is released. If this is the last task reference counting the rq's max
976 * active clamp value, then the rq's clamp value is updated.
977 *
978 * Both refcounted tasks and rq's cached clamp values are expected to be
979 * always valid. If it's detected they are not, as defensive programming,
980 * enforce the expected state and warn.
981 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 enum uclamp_id clamp_id)
984 {
985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 struct uclamp_bucket *bucket;
988 unsigned int bkt_clamp;
989 unsigned int rq_clamp;
990
991 lockdep_assert_held(&rq->lock);
992
993 bucket = &uc_rq->bucket[uc_se->bucket_id];
994 SCHED_WARN_ON(!bucket->tasks);
995 if (likely(bucket->tasks))
996 bucket->tasks--;
997 uc_se->active = false;
998
999 /*
1000 * Keep "local max aggregation" simple and accept to (possibly)
1001 * overboost some RUNNABLE tasks in the same bucket.
1002 * The rq clamp bucket value is reset to its base value whenever
1003 * there are no more RUNNABLE tasks refcounting it.
1004 */
1005 if (likely(bucket->tasks))
1006 return;
1007
1008 rq_clamp = READ_ONCE(uc_rq->value);
1009 /*
1010 * Defensive programming: this should never happen. If it happens,
1011 * e.g. due to future modification, warn and fixup the expected value.
1012 */
1013 SCHED_WARN_ON(bucket->value > rq_clamp);
1014 if (bucket->value >= rq_clamp) {
1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 }
1018 }
1019
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021 {
1022 enum uclamp_id clamp_id;
1023
1024 if (unlikely(!p->sched_class->uclamp_enabled))
1025 return;
1026
1027 for_each_clamp_id(clamp_id)
1028 uclamp_rq_inc_id(rq, p, clamp_id);
1029
1030 /* Reset clamp idle holding when there is one RUNNABLE task */
1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033 }
1034
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036 {
1037 enum uclamp_id clamp_id;
1038
1039 if (unlikely(!p->sched_class->uclamp_enabled))
1040 return;
1041
1042 for_each_clamp_id(clamp_id)
1043 uclamp_rq_dec_id(rq, p, clamp_id);
1044 }
1045
1046 static inline void
uclamp_update_active(struct task_struct * p,enum uclamp_id clamp_id)1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048 {
1049 struct rq_flags rf;
1050 struct rq *rq;
1051
1052 /*
1053 * Lock the task and the rq where the task is (or was) queued.
1054 *
1055 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 * price to pay to safely serialize util_{min,max} updates with
1057 * enqueues, dequeues and migration operations.
1058 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 */
1060 rq = task_rq_lock(p, &rf);
1061
1062 /*
1063 * Setting the clamp bucket is serialized by task_rq_lock().
1064 * If the task is not yet RUNNABLE and its task_struct is not
1065 * affecting a valid clamp bucket, the next time it's enqueued,
1066 * it will already see the updated clamp bucket value.
1067 */
1068 if (p->uclamp[clamp_id].active) {
1069 uclamp_rq_dec_id(rq, p, clamp_id);
1070 uclamp_rq_inc_id(rq, p, clamp_id);
1071 }
1072
1073 task_rq_unlock(rq, p, &rf);
1074 }
1075
1076 #ifdef CONFIG_UCLAMP_TASK_GROUP
1077 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css,unsigned int clamps)1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 unsigned int clamps)
1080 {
1081 enum uclamp_id clamp_id;
1082 struct css_task_iter it;
1083 struct task_struct *p;
1084
1085 css_task_iter_start(css, 0, &it);
1086 while ((p = css_task_iter_next(&it))) {
1087 for_each_clamp_id(clamp_id) {
1088 if ((0x1 << clamp_id) & clamps)
1089 uclamp_update_active(p, clamp_id);
1090 }
1091 }
1092 css_task_iter_end(&it);
1093 }
1094
1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1096 static void uclamp_update_root_tg(void)
1097 {
1098 struct task_group *tg = &root_task_group;
1099
1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 sysctl_sched_uclamp_util_min, false);
1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 sysctl_sched_uclamp_util_max, false);
1104
1105 rcu_read_lock();
1106 cpu_util_update_eff(&root_task_group.css);
1107 rcu_read_unlock();
1108 }
1109 #else
uclamp_update_root_tg(void)1110 static void uclamp_update_root_tg(void) { }
1111 #endif
1112
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 void __user *buffer, size_t *lenp,
1115 loff_t *ppos)
1116 {
1117 bool update_root_tg = false;
1118 int old_min, old_max;
1119 int result;
1120
1121 mutex_lock(&uclamp_mutex);
1122 old_min = sysctl_sched_uclamp_util_min;
1123 old_max = sysctl_sched_uclamp_util_max;
1124
1125 result = proc_dointvec(table, write, buffer, lenp, ppos);
1126 if (result)
1127 goto undo;
1128 if (!write)
1129 goto done;
1130
1131 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1132 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1133 result = -EINVAL;
1134 goto undo;
1135 }
1136
1137 if (old_min != sysctl_sched_uclamp_util_min) {
1138 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1139 sysctl_sched_uclamp_util_min, false);
1140 update_root_tg = true;
1141 }
1142 if (old_max != sysctl_sched_uclamp_util_max) {
1143 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1144 sysctl_sched_uclamp_util_max, false);
1145 update_root_tg = true;
1146 }
1147
1148 if (update_root_tg)
1149 uclamp_update_root_tg();
1150
1151 /*
1152 * We update all RUNNABLE tasks only when task groups are in use.
1153 * Otherwise, keep it simple and do just a lazy update at each next
1154 * task enqueue time.
1155 */
1156
1157 goto done;
1158
1159 undo:
1160 sysctl_sched_uclamp_util_min = old_min;
1161 sysctl_sched_uclamp_util_max = old_max;
1162 done:
1163 mutex_unlock(&uclamp_mutex);
1164
1165 return result;
1166 }
1167
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1168 static int uclamp_validate(struct task_struct *p,
1169 const struct sched_attr *attr)
1170 {
1171 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1172 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173
1174 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1175 lower_bound = attr->sched_util_min;
1176 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1177 upper_bound = attr->sched_util_max;
1178
1179 if (lower_bound > upper_bound)
1180 return -EINVAL;
1181 if (upper_bound > SCHED_CAPACITY_SCALE)
1182 return -EINVAL;
1183
1184 return 0;
1185 }
1186
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1187 static void __setscheduler_uclamp(struct task_struct *p,
1188 const struct sched_attr *attr)
1189 {
1190 enum uclamp_id clamp_id;
1191
1192 /*
1193 * On scheduling class change, reset to default clamps for tasks
1194 * without a task-specific value.
1195 */
1196 for_each_clamp_id(clamp_id) {
1197 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1198 unsigned int clamp_value = uclamp_none(clamp_id);
1199
1200 /* Keep using defined clamps across class changes */
1201 if (uc_se->user_defined)
1202 continue;
1203
1204 /* By default, RT tasks always get 100% boost */
1205 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1206 clamp_value = uclamp_none(UCLAMP_MAX);
1207
1208 uclamp_se_set(uc_se, clamp_value, false);
1209 }
1210
1211 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1212 return;
1213
1214 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1215 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1216 attr->sched_util_min, true);
1217 }
1218
1219 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1220 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1221 attr->sched_util_max, true);
1222 }
1223 }
1224
uclamp_fork(struct task_struct * p)1225 static void uclamp_fork(struct task_struct *p)
1226 {
1227 enum uclamp_id clamp_id;
1228
1229 for_each_clamp_id(clamp_id)
1230 p->uclamp[clamp_id].active = false;
1231
1232 if (likely(!p->sched_reset_on_fork))
1233 return;
1234
1235 for_each_clamp_id(clamp_id) {
1236 unsigned int clamp_value = uclamp_none(clamp_id);
1237
1238 /* By default, RT tasks always get 100% boost */
1239 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1240 clamp_value = uclamp_none(UCLAMP_MAX);
1241
1242 uclamp_se_set(&p->uclamp_req[clamp_id], clamp_value, false);
1243 }
1244 }
1245
init_uclamp(void)1246 static void __init init_uclamp(void)
1247 {
1248 struct uclamp_se uc_max = {};
1249 enum uclamp_id clamp_id;
1250 int cpu;
1251
1252 mutex_init(&uclamp_mutex);
1253
1254 for_each_possible_cpu(cpu) {
1255 memset(&cpu_rq(cpu)->uclamp, 0, sizeof(struct uclamp_rq));
1256 cpu_rq(cpu)->uclamp_flags = 0;
1257 }
1258
1259 for_each_clamp_id(clamp_id) {
1260 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1261 uclamp_none(clamp_id), false);
1262 }
1263
1264 /* System defaults allow max clamp values for both indexes */
1265 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1266 for_each_clamp_id(clamp_id) {
1267 uclamp_default[clamp_id] = uc_max;
1268 #ifdef CONFIG_UCLAMP_TASK_GROUP
1269 root_task_group.uclamp_req[clamp_id] = uc_max;
1270 root_task_group.uclamp[clamp_id] = uc_max;
1271 #endif
1272 }
1273 }
1274
1275 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1276 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1277 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1278 static inline int uclamp_validate(struct task_struct *p,
1279 const struct sched_attr *attr)
1280 {
1281 return -EOPNOTSUPP;
1282 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1283 static void __setscheduler_uclamp(struct task_struct *p,
1284 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)1285 static inline void uclamp_fork(struct task_struct *p) { }
init_uclamp(void)1286 static inline void init_uclamp(void) { }
1287 #endif /* CONFIG_UCLAMP_TASK */
1288
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1289 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1290 {
1291 if (!(flags & ENQUEUE_NOCLOCK))
1292 update_rq_clock(rq);
1293
1294 if (!(flags & ENQUEUE_RESTORE)) {
1295 sched_info_queued(rq, p);
1296 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1297 }
1298
1299 uclamp_rq_inc(rq, p);
1300 p->sched_class->enqueue_task(rq, p, flags);
1301 }
1302
dequeue_task(struct rq * rq,struct task_struct * p,int flags)1303 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1304 {
1305 if (!(flags & DEQUEUE_NOCLOCK))
1306 update_rq_clock(rq);
1307
1308 if (!(flags & DEQUEUE_SAVE)) {
1309 sched_info_dequeued(rq, p);
1310 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1311 }
1312
1313 uclamp_rq_dec(rq, p);
1314 p->sched_class->dequeue_task(rq, p, flags);
1315 }
1316
activate_task(struct rq * rq,struct task_struct * p,int flags)1317 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1318 {
1319 if (task_contributes_to_load(p))
1320 rq->nr_uninterruptible--;
1321
1322 enqueue_task(rq, p, flags);
1323
1324 p->on_rq = TASK_ON_RQ_QUEUED;
1325 }
1326
deactivate_task(struct rq * rq,struct task_struct * p,int flags)1327 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1328 {
1329 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1330
1331 if (task_contributes_to_load(p))
1332 rq->nr_uninterruptible++;
1333
1334 dequeue_task(rq, p, flags);
1335 }
1336
1337 /*
1338 * __normal_prio - return the priority that is based on the static prio
1339 */
__normal_prio(struct task_struct * p)1340 static inline int __normal_prio(struct task_struct *p)
1341 {
1342 return p->static_prio;
1343 }
1344
1345 /*
1346 * Calculate the expected normal priority: i.e. priority
1347 * without taking RT-inheritance into account. Might be
1348 * boosted by interactivity modifiers. Changes upon fork,
1349 * setprio syscalls, and whenever the interactivity
1350 * estimator recalculates.
1351 */
normal_prio(struct task_struct * p)1352 static inline int normal_prio(struct task_struct *p)
1353 {
1354 int prio;
1355
1356 if (task_has_dl_policy(p))
1357 prio = MAX_DL_PRIO-1;
1358 else if (task_has_rt_policy(p))
1359 prio = MAX_RT_PRIO-1 - p->rt_priority;
1360 else
1361 prio = __normal_prio(p);
1362 return prio;
1363 }
1364
1365 /*
1366 * Calculate the current priority, i.e. the priority
1367 * taken into account by the scheduler. This value might
1368 * be boosted by RT tasks, or might be boosted by
1369 * interactivity modifiers. Will be RT if the task got
1370 * RT-boosted. If not then it returns p->normal_prio.
1371 */
effective_prio(struct task_struct * p)1372 static int effective_prio(struct task_struct *p)
1373 {
1374 p->normal_prio = normal_prio(p);
1375 /*
1376 * If we are RT tasks or we were boosted to RT priority,
1377 * keep the priority unchanged. Otherwise, update priority
1378 * to the normal priority:
1379 */
1380 if (!rt_prio(p->prio))
1381 return p->normal_prio;
1382 return p->prio;
1383 }
1384
1385 /**
1386 * task_curr - is this task currently executing on a CPU?
1387 * @p: the task in question.
1388 *
1389 * Return: 1 if the task is currently executing. 0 otherwise.
1390 */
task_curr(const struct task_struct * p)1391 inline int task_curr(const struct task_struct *p)
1392 {
1393 return cpu_curr(task_cpu(p)) == p;
1394 }
1395
1396 /*
1397 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1398 * use the balance_callback list if you want balancing.
1399 *
1400 * this means any call to check_class_changed() must be followed by a call to
1401 * balance_callback().
1402 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1403 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1404 const struct sched_class *prev_class,
1405 int oldprio)
1406 {
1407 if (prev_class != p->sched_class) {
1408 if (prev_class->switched_from)
1409 prev_class->switched_from(rq, p);
1410
1411 p->sched_class->switched_to(rq, p);
1412 } else if (oldprio != p->prio || dl_task(p))
1413 p->sched_class->prio_changed(rq, p, oldprio);
1414 }
1415
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1416 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1417 {
1418 const struct sched_class *class;
1419
1420 if (p->sched_class == rq->curr->sched_class) {
1421 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1422 } else {
1423 for_each_class(class) {
1424 if (class == rq->curr->sched_class)
1425 break;
1426 if (class == p->sched_class) {
1427 resched_curr(rq);
1428 break;
1429 }
1430 }
1431 }
1432
1433 /*
1434 * A queue event has occurred, and we're going to schedule. In
1435 * this case, we can save a useless back to back clock update.
1436 */
1437 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1438 rq_clock_skip_update(rq);
1439 }
1440
1441 #ifdef CONFIG_SMP
1442
is_per_cpu_kthread(struct task_struct * p)1443 static inline bool is_per_cpu_kthread(struct task_struct *p)
1444 {
1445 if (!(p->flags & PF_KTHREAD))
1446 return false;
1447
1448 if (p->nr_cpus_allowed != 1)
1449 return false;
1450
1451 return true;
1452 }
1453
1454 /*
1455 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1456 * __set_cpus_allowed_ptr() and select_fallback_rq().
1457 */
is_cpu_allowed(struct task_struct * p,int cpu)1458 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1459 {
1460 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1461 return false;
1462
1463 if (is_per_cpu_kthread(p))
1464 return cpu_online(cpu);
1465
1466 return cpu_active(cpu);
1467 }
1468
1469 /*
1470 * This is how migration works:
1471 *
1472 * 1) we invoke migration_cpu_stop() on the target CPU using
1473 * stop_one_cpu().
1474 * 2) stopper starts to run (implicitly forcing the migrated thread
1475 * off the CPU)
1476 * 3) it checks whether the migrated task is still in the wrong runqueue.
1477 * 4) if it's in the wrong runqueue then the migration thread removes
1478 * it and puts it into the right queue.
1479 * 5) stopper completes and stop_one_cpu() returns and the migration
1480 * is done.
1481 */
1482
1483 /*
1484 * move_queued_task - move a queued task to new rq.
1485 *
1486 * Returns (locked) new rq. Old rq's lock is released.
1487 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)1488 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1489 struct task_struct *p, int new_cpu)
1490 {
1491 lockdep_assert_held(&rq->lock);
1492
1493 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1494 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1495 set_task_cpu(p, new_cpu);
1496 rq_unlock(rq, rf);
1497
1498 rq = cpu_rq(new_cpu);
1499
1500 rq_lock(rq, rf);
1501 BUG_ON(task_cpu(p) != new_cpu);
1502 enqueue_task(rq, p, 0);
1503 p->on_rq = TASK_ON_RQ_QUEUED;
1504 check_preempt_curr(rq, p, 0);
1505
1506 return rq;
1507 }
1508
1509 struct migration_arg {
1510 struct task_struct *task;
1511 int dest_cpu;
1512 };
1513
1514 /*
1515 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1516 * this because either it can't run here any more (set_cpus_allowed()
1517 * away from this CPU, or CPU going down), or because we're
1518 * attempting to rebalance this task on exec (sched_exec).
1519 *
1520 * So we race with normal scheduler movements, but that's OK, as long
1521 * as the task is no longer on this CPU.
1522 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)1523 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1524 struct task_struct *p, int dest_cpu)
1525 {
1526 /* Affinity changed (again). */
1527 if (!is_cpu_allowed(p, dest_cpu))
1528 return rq;
1529
1530 update_rq_clock(rq);
1531 rq = move_queued_task(rq, rf, p, dest_cpu);
1532
1533 return rq;
1534 }
1535
1536 /*
1537 * migration_cpu_stop - this will be executed by a highprio stopper thread
1538 * and performs thread migration by bumping thread off CPU then
1539 * 'pushing' onto another runqueue.
1540 */
migration_cpu_stop(void * data)1541 static int migration_cpu_stop(void *data)
1542 {
1543 struct migration_arg *arg = data;
1544 struct task_struct *p = arg->task;
1545 struct rq *rq = this_rq();
1546 struct rq_flags rf;
1547
1548 /*
1549 * The original target CPU might have gone down and we might
1550 * be on another CPU but it doesn't matter.
1551 */
1552 local_irq_disable();
1553 /*
1554 * We need to explicitly wake pending tasks before running
1555 * __migrate_task() such that we will not miss enforcing cpus_ptr
1556 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1557 */
1558 sched_ttwu_pending();
1559
1560 raw_spin_lock(&p->pi_lock);
1561 rq_lock(rq, &rf);
1562 /*
1563 * If task_rq(p) != rq, it cannot be migrated here, because we're
1564 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1565 * we're holding p->pi_lock.
1566 */
1567 if (task_rq(p) == rq) {
1568 if (task_on_rq_queued(p))
1569 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1570 else
1571 p->wake_cpu = arg->dest_cpu;
1572 }
1573 rq_unlock(rq, &rf);
1574 raw_spin_unlock(&p->pi_lock);
1575
1576 local_irq_enable();
1577 return 0;
1578 }
1579
1580 /*
1581 * sched_class::set_cpus_allowed must do the below, but is not required to
1582 * actually call this function.
1583 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1584 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1585 {
1586 cpumask_copy(&p->cpus_mask, new_mask);
1587 p->nr_cpus_allowed = cpumask_weight(new_mask);
1588 }
1589
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1590 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1591 {
1592 struct rq *rq = task_rq(p);
1593 bool queued, running;
1594
1595 lockdep_assert_held(&p->pi_lock);
1596
1597 queued = task_on_rq_queued(p);
1598 running = task_current(rq, p);
1599
1600 if (queued) {
1601 /*
1602 * Because __kthread_bind() calls this on blocked tasks without
1603 * holding rq->lock.
1604 */
1605 lockdep_assert_held(&rq->lock);
1606 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1607 }
1608 if (running)
1609 put_prev_task(rq, p);
1610
1611 p->sched_class->set_cpus_allowed(p, new_mask);
1612
1613 if (queued)
1614 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1615 if (running)
1616 set_next_task(rq, p);
1617 }
1618
1619 /*
1620 * Change a given task's CPU affinity. Migrate the thread to a
1621 * proper CPU and schedule it away if the CPU it's executing on
1622 * is removed from the allowed bitmask.
1623 *
1624 * NOTE: the caller must have a valid reference to the task, the
1625 * task must not exit() & deallocate itself prematurely. The
1626 * call is not atomic; no spinlocks may be held.
1627 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1628 static int __set_cpus_allowed_ptr(struct task_struct *p,
1629 const struct cpumask *new_mask, bool check)
1630 {
1631 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1632 unsigned int dest_cpu;
1633 struct rq_flags rf;
1634 struct rq *rq;
1635 int ret = 0;
1636
1637 rq = task_rq_lock(p, &rf);
1638 update_rq_clock(rq);
1639
1640 if (p->flags & PF_KTHREAD) {
1641 /*
1642 * Kernel threads are allowed on online && !active CPUs
1643 */
1644 cpu_valid_mask = cpu_online_mask;
1645 }
1646
1647 /*
1648 * Must re-check here, to close a race against __kthread_bind(),
1649 * sched_setaffinity() is not guaranteed to observe the flag.
1650 */
1651 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1652 ret = -EINVAL;
1653 goto out;
1654 }
1655
1656 if (cpumask_equal(p->cpus_ptr, new_mask))
1657 goto out;
1658
1659 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1660 if (dest_cpu >= nr_cpu_ids) {
1661 ret = -EINVAL;
1662 goto out;
1663 }
1664
1665 do_set_cpus_allowed(p, new_mask);
1666
1667 if (p->flags & PF_KTHREAD) {
1668 /*
1669 * For kernel threads that do indeed end up on online &&
1670 * !active we want to ensure they are strict per-CPU threads.
1671 */
1672 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1673 !cpumask_intersects(new_mask, cpu_active_mask) &&
1674 p->nr_cpus_allowed != 1);
1675 }
1676
1677 /* Can the task run on the task's current CPU? If so, we're done */
1678 if (cpumask_test_cpu(task_cpu(p), new_mask))
1679 goto out;
1680
1681 if (task_running(rq, p) || p->state == TASK_WAKING) {
1682 struct migration_arg arg = { p, dest_cpu };
1683 /* Need help from migration thread: drop lock and wait. */
1684 task_rq_unlock(rq, p, &rf);
1685 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1686 return 0;
1687 } else if (task_on_rq_queued(p)) {
1688 /*
1689 * OK, since we're going to drop the lock immediately
1690 * afterwards anyway.
1691 */
1692 rq = move_queued_task(rq, &rf, p, dest_cpu);
1693 }
1694 out:
1695 task_rq_unlock(rq, p, &rf);
1696
1697 return ret;
1698 }
1699
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1700 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1701 {
1702 return __set_cpus_allowed_ptr(p, new_mask, false);
1703 }
1704 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1705
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1706 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1707 {
1708 #ifdef CONFIG_SCHED_DEBUG
1709 /*
1710 * We should never call set_task_cpu() on a blocked task,
1711 * ttwu() will sort out the placement.
1712 */
1713 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1714 !p->on_rq);
1715
1716 /*
1717 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1718 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1719 * time relying on p->on_rq.
1720 */
1721 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1722 p->sched_class == &fair_sched_class &&
1723 (p->on_rq && !task_on_rq_migrating(p)));
1724
1725 #ifdef CONFIG_LOCKDEP
1726 /*
1727 * The caller should hold either p->pi_lock or rq->lock, when changing
1728 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1729 *
1730 * sched_move_task() holds both and thus holding either pins the cgroup,
1731 * see task_group().
1732 *
1733 * Furthermore, all task_rq users should acquire both locks, see
1734 * task_rq_lock().
1735 */
1736 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1737 lockdep_is_held(&task_rq(p)->lock)));
1738 #endif
1739 /*
1740 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1741 */
1742 WARN_ON_ONCE(!cpu_online(new_cpu));
1743 #endif
1744
1745 trace_sched_migrate_task(p, new_cpu);
1746
1747 if (task_cpu(p) != new_cpu) {
1748 if (p->sched_class->migrate_task_rq)
1749 p->sched_class->migrate_task_rq(p, new_cpu);
1750 p->se.nr_migrations++;
1751 rseq_migrate(p);
1752 perf_event_task_migrate(p);
1753 }
1754
1755 __set_task_cpu(p, new_cpu);
1756 }
1757
1758 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)1759 static void __migrate_swap_task(struct task_struct *p, int cpu)
1760 {
1761 if (task_on_rq_queued(p)) {
1762 struct rq *src_rq, *dst_rq;
1763 struct rq_flags srf, drf;
1764
1765 src_rq = task_rq(p);
1766 dst_rq = cpu_rq(cpu);
1767
1768 rq_pin_lock(src_rq, &srf);
1769 rq_pin_lock(dst_rq, &drf);
1770
1771 deactivate_task(src_rq, p, 0);
1772 set_task_cpu(p, cpu);
1773 activate_task(dst_rq, p, 0);
1774 check_preempt_curr(dst_rq, p, 0);
1775
1776 rq_unpin_lock(dst_rq, &drf);
1777 rq_unpin_lock(src_rq, &srf);
1778
1779 } else {
1780 /*
1781 * Task isn't running anymore; make it appear like we migrated
1782 * it before it went to sleep. This means on wakeup we make the
1783 * previous CPU our target instead of where it really is.
1784 */
1785 p->wake_cpu = cpu;
1786 }
1787 }
1788
1789 struct migration_swap_arg {
1790 struct task_struct *src_task, *dst_task;
1791 int src_cpu, dst_cpu;
1792 };
1793
migrate_swap_stop(void * data)1794 static int migrate_swap_stop(void *data)
1795 {
1796 struct migration_swap_arg *arg = data;
1797 struct rq *src_rq, *dst_rq;
1798 int ret = -EAGAIN;
1799
1800 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1801 return -EAGAIN;
1802
1803 src_rq = cpu_rq(arg->src_cpu);
1804 dst_rq = cpu_rq(arg->dst_cpu);
1805
1806 double_raw_lock(&arg->src_task->pi_lock,
1807 &arg->dst_task->pi_lock);
1808 double_rq_lock(src_rq, dst_rq);
1809
1810 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1811 goto unlock;
1812
1813 if (task_cpu(arg->src_task) != arg->src_cpu)
1814 goto unlock;
1815
1816 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1817 goto unlock;
1818
1819 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1820 goto unlock;
1821
1822 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1823 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1824
1825 ret = 0;
1826
1827 unlock:
1828 double_rq_unlock(src_rq, dst_rq);
1829 raw_spin_unlock(&arg->dst_task->pi_lock);
1830 raw_spin_unlock(&arg->src_task->pi_lock);
1831
1832 return ret;
1833 }
1834
1835 /*
1836 * Cross migrate two tasks
1837 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)1838 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1839 int target_cpu, int curr_cpu)
1840 {
1841 struct migration_swap_arg arg;
1842 int ret = -EINVAL;
1843
1844 arg = (struct migration_swap_arg){
1845 .src_task = cur,
1846 .src_cpu = curr_cpu,
1847 .dst_task = p,
1848 .dst_cpu = target_cpu,
1849 };
1850
1851 if (arg.src_cpu == arg.dst_cpu)
1852 goto out;
1853
1854 /*
1855 * These three tests are all lockless; this is OK since all of them
1856 * will be re-checked with proper locks held further down the line.
1857 */
1858 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1859 goto out;
1860
1861 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1862 goto out;
1863
1864 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1865 goto out;
1866
1867 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1868 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1869
1870 out:
1871 return ret;
1872 }
1873 #endif /* CONFIG_NUMA_BALANCING */
1874
1875 /*
1876 * wait_task_inactive - wait for a thread to unschedule.
1877 *
1878 * If @match_state is nonzero, it's the @p->state value just checked and
1879 * not expected to change. If it changes, i.e. @p might have woken up,
1880 * then return zero. When we succeed in waiting for @p to be off its CPU,
1881 * we return a positive number (its total switch count). If a second call
1882 * a short while later returns the same number, the caller can be sure that
1883 * @p has remained unscheduled the whole time.
1884 *
1885 * The caller must ensure that the task *will* unschedule sometime soon,
1886 * else this function might spin for a *long* time. This function can't
1887 * be called with interrupts off, or it may introduce deadlock with
1888 * smp_call_function() if an IPI is sent by the same process we are
1889 * waiting to become inactive.
1890 */
wait_task_inactive(struct task_struct * p,long match_state)1891 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1892 {
1893 int running, queued;
1894 struct rq_flags rf;
1895 unsigned long ncsw;
1896 struct rq *rq;
1897
1898 for (;;) {
1899 /*
1900 * We do the initial early heuristics without holding
1901 * any task-queue locks at all. We'll only try to get
1902 * the runqueue lock when things look like they will
1903 * work out!
1904 */
1905 rq = task_rq(p);
1906
1907 /*
1908 * If the task is actively running on another CPU
1909 * still, just relax and busy-wait without holding
1910 * any locks.
1911 *
1912 * NOTE! Since we don't hold any locks, it's not
1913 * even sure that "rq" stays as the right runqueue!
1914 * But we don't care, since "task_running()" will
1915 * return false if the runqueue has changed and p
1916 * is actually now running somewhere else!
1917 */
1918 while (task_running(rq, p)) {
1919 if (match_state && unlikely(p->state != match_state))
1920 return 0;
1921 cpu_relax();
1922 }
1923
1924 /*
1925 * Ok, time to look more closely! We need the rq
1926 * lock now, to be *sure*. If we're wrong, we'll
1927 * just go back and repeat.
1928 */
1929 rq = task_rq_lock(p, &rf);
1930 trace_sched_wait_task(p);
1931 running = task_running(rq, p);
1932 queued = task_on_rq_queued(p);
1933 ncsw = 0;
1934 if (!match_state || p->state == match_state)
1935 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1936 task_rq_unlock(rq, p, &rf);
1937
1938 /*
1939 * If it changed from the expected state, bail out now.
1940 */
1941 if (unlikely(!ncsw))
1942 break;
1943
1944 /*
1945 * Was it really running after all now that we
1946 * checked with the proper locks actually held?
1947 *
1948 * Oops. Go back and try again..
1949 */
1950 if (unlikely(running)) {
1951 cpu_relax();
1952 continue;
1953 }
1954
1955 /*
1956 * It's not enough that it's not actively running,
1957 * it must be off the runqueue _entirely_, and not
1958 * preempted!
1959 *
1960 * So if it was still runnable (but just not actively
1961 * running right now), it's preempted, and we should
1962 * yield - it could be a while.
1963 */
1964 if (unlikely(queued)) {
1965 ktime_t to = NSEC_PER_SEC / HZ;
1966
1967 set_current_state(TASK_UNINTERRUPTIBLE);
1968 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1969 continue;
1970 }
1971
1972 /*
1973 * Ahh, all good. It wasn't running, and it wasn't
1974 * runnable, which means that it will never become
1975 * running in the future either. We're all done!
1976 */
1977 break;
1978 }
1979
1980 return ncsw;
1981 }
1982
1983 /***
1984 * kick_process - kick a running thread to enter/exit the kernel
1985 * @p: the to-be-kicked thread
1986 *
1987 * Cause a process which is running on another CPU to enter
1988 * kernel-mode, without any delay. (to get signals handled.)
1989 *
1990 * NOTE: this function doesn't have to take the runqueue lock,
1991 * because all it wants to ensure is that the remote task enters
1992 * the kernel. If the IPI races and the task has been migrated
1993 * to another CPU then no harm is done and the purpose has been
1994 * achieved as well.
1995 */
kick_process(struct task_struct * p)1996 void kick_process(struct task_struct *p)
1997 {
1998 int cpu;
1999
2000 preempt_disable();
2001 cpu = task_cpu(p);
2002 if ((cpu != smp_processor_id()) && task_curr(p))
2003 smp_send_reschedule(cpu);
2004 preempt_enable();
2005 }
2006 EXPORT_SYMBOL_GPL(kick_process);
2007
2008 /*
2009 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2010 *
2011 * A few notes on cpu_active vs cpu_online:
2012 *
2013 * - cpu_active must be a subset of cpu_online
2014 *
2015 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2016 * see __set_cpus_allowed_ptr(). At this point the newly online
2017 * CPU isn't yet part of the sched domains, and balancing will not
2018 * see it.
2019 *
2020 * - on CPU-down we clear cpu_active() to mask the sched domains and
2021 * avoid the load balancer to place new tasks on the to be removed
2022 * CPU. Existing tasks will remain running there and will be taken
2023 * off.
2024 *
2025 * This means that fallback selection must not select !active CPUs.
2026 * And can assume that any active CPU must be online. Conversely
2027 * select_task_rq() below may allow selection of !active CPUs in order
2028 * to satisfy the above rules.
2029 */
select_fallback_rq(int cpu,struct task_struct * p)2030 static int select_fallback_rq(int cpu, struct task_struct *p)
2031 {
2032 int nid = cpu_to_node(cpu);
2033 const struct cpumask *nodemask = NULL;
2034 enum { cpuset, possible, fail } state = cpuset;
2035 int dest_cpu;
2036
2037 /*
2038 * If the node that the CPU is on has been offlined, cpu_to_node()
2039 * will return -1. There is no CPU on the node, and we should
2040 * select the CPU on the other node.
2041 */
2042 if (nid != -1) {
2043 nodemask = cpumask_of_node(nid);
2044
2045 /* Look for allowed, online CPU in same node. */
2046 for_each_cpu(dest_cpu, nodemask) {
2047 if (!cpu_active(dest_cpu))
2048 continue;
2049 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2050 return dest_cpu;
2051 }
2052 }
2053
2054 for (;;) {
2055 /* Any allowed, online CPU? */
2056 for_each_cpu(dest_cpu, p->cpus_ptr) {
2057 if (!is_cpu_allowed(p, dest_cpu))
2058 continue;
2059
2060 goto out;
2061 }
2062
2063 /* No more Mr. Nice Guy. */
2064 switch (state) {
2065 case cpuset:
2066 if (IS_ENABLED(CONFIG_CPUSETS)) {
2067 cpuset_cpus_allowed_fallback(p);
2068 state = possible;
2069 break;
2070 }
2071 /* Fall-through */
2072 case possible:
2073 do_set_cpus_allowed(p, cpu_possible_mask);
2074 state = fail;
2075 break;
2076
2077 case fail:
2078 BUG();
2079 break;
2080 }
2081 }
2082
2083 out:
2084 if (state != cpuset) {
2085 /*
2086 * Don't tell them about moving exiting tasks or
2087 * kernel threads (both mm NULL), since they never
2088 * leave kernel.
2089 */
2090 if (p->mm && printk_ratelimit()) {
2091 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2092 task_pid_nr(p), p->comm, cpu);
2093 }
2094 }
2095
2096 return dest_cpu;
2097 }
2098
2099 /*
2100 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2101 */
2102 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)2103 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2104 {
2105 lockdep_assert_held(&p->pi_lock);
2106
2107 if (p->nr_cpus_allowed > 1)
2108 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2109 else
2110 cpu = cpumask_any(p->cpus_ptr);
2111
2112 /*
2113 * In order not to call set_task_cpu() on a blocking task we need
2114 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2115 * CPU.
2116 *
2117 * Since this is common to all placement strategies, this lives here.
2118 *
2119 * [ this allows ->select_task() to simply return task_cpu(p) and
2120 * not worry about this generic constraint ]
2121 */
2122 if (unlikely(!is_cpu_allowed(p, cpu)))
2123 cpu = select_fallback_rq(task_cpu(p), p);
2124
2125 return cpu;
2126 }
2127
update_avg(u64 * avg,u64 sample)2128 static void update_avg(u64 *avg, u64 sample)
2129 {
2130 s64 diff = sample - *avg;
2131 *avg += diff >> 3;
2132 }
2133
sched_set_stop_task(int cpu,struct task_struct * stop)2134 void sched_set_stop_task(int cpu, struct task_struct *stop)
2135 {
2136 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2137 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2138
2139 if (stop) {
2140 /*
2141 * Make it appear like a SCHED_FIFO task, its something
2142 * userspace knows about and won't get confused about.
2143 *
2144 * Also, it will make PI more or less work without too
2145 * much confusion -- but then, stop work should not
2146 * rely on PI working anyway.
2147 */
2148 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2149
2150 stop->sched_class = &stop_sched_class;
2151 }
2152
2153 cpu_rq(cpu)->stop = stop;
2154
2155 if (old_stop) {
2156 /*
2157 * Reset it back to a normal scheduling class so that
2158 * it can die in pieces.
2159 */
2160 old_stop->sched_class = &rt_sched_class;
2161 }
2162 }
2163
2164 #else
2165
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)2166 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2167 const struct cpumask *new_mask, bool check)
2168 {
2169 return set_cpus_allowed_ptr(p, new_mask);
2170 }
2171
2172 #endif /* CONFIG_SMP */
2173
2174 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)2175 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2176 {
2177 struct rq *rq;
2178
2179 if (!schedstat_enabled())
2180 return;
2181
2182 rq = this_rq();
2183
2184 #ifdef CONFIG_SMP
2185 if (cpu == rq->cpu) {
2186 __schedstat_inc(rq->ttwu_local);
2187 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2188 } else {
2189 struct sched_domain *sd;
2190
2191 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2192 rcu_read_lock();
2193 for_each_domain(rq->cpu, sd) {
2194 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2195 __schedstat_inc(sd->ttwu_wake_remote);
2196 break;
2197 }
2198 }
2199 rcu_read_unlock();
2200 }
2201
2202 if (wake_flags & WF_MIGRATED)
2203 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2204 #endif /* CONFIG_SMP */
2205
2206 __schedstat_inc(rq->ttwu_count);
2207 __schedstat_inc(p->se.statistics.nr_wakeups);
2208
2209 if (wake_flags & WF_SYNC)
2210 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2211 }
2212
2213 /*
2214 * Mark the task runnable and perform wakeup-preemption.
2215 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2216 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2217 struct rq_flags *rf)
2218 {
2219 check_preempt_curr(rq, p, wake_flags);
2220 p->state = TASK_RUNNING;
2221 trace_sched_wakeup(p);
2222
2223 #ifdef CONFIG_SMP
2224 if (p->sched_class->task_woken) {
2225 /*
2226 * Our task @p is fully woken up and running; so its safe to
2227 * drop the rq->lock, hereafter rq is only used for statistics.
2228 */
2229 rq_unpin_lock(rq, rf);
2230 p->sched_class->task_woken(rq, p);
2231 rq_repin_lock(rq, rf);
2232 }
2233
2234 if (rq->idle_stamp) {
2235 u64 delta = rq_clock(rq) - rq->idle_stamp;
2236 u64 max = 2*rq->max_idle_balance_cost;
2237
2238 update_avg(&rq->avg_idle, delta);
2239
2240 if (rq->avg_idle > max)
2241 rq->avg_idle = max;
2242
2243 rq->idle_stamp = 0;
2244 }
2245 #endif
2246 }
2247
2248 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2249 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2250 struct rq_flags *rf)
2251 {
2252 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2253
2254 lockdep_assert_held(&rq->lock);
2255
2256 #ifdef CONFIG_SMP
2257 if (p->sched_contributes_to_load)
2258 rq->nr_uninterruptible--;
2259
2260 if (wake_flags & WF_MIGRATED)
2261 en_flags |= ENQUEUE_MIGRATED;
2262 #endif
2263
2264 activate_task(rq, p, en_flags);
2265 ttwu_do_wakeup(rq, p, wake_flags, rf);
2266 }
2267
2268 /*
2269 * Called in case the task @p isn't fully descheduled from its runqueue,
2270 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2271 * since all we need to do is flip p->state to TASK_RUNNING, since
2272 * the task is still ->on_rq.
2273 */
ttwu_remote(struct task_struct * p,int wake_flags)2274 static int ttwu_remote(struct task_struct *p, int wake_flags)
2275 {
2276 struct rq_flags rf;
2277 struct rq *rq;
2278 int ret = 0;
2279
2280 rq = __task_rq_lock(p, &rf);
2281 if (task_on_rq_queued(p)) {
2282 /* check_preempt_curr() may use rq clock */
2283 update_rq_clock(rq);
2284 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2285 ret = 1;
2286 }
2287 __task_rq_unlock(rq, &rf);
2288
2289 return ret;
2290 }
2291
2292 #ifdef CONFIG_SMP
sched_ttwu_pending(void)2293 void sched_ttwu_pending(void)
2294 {
2295 struct rq *rq = this_rq();
2296 struct llist_node *llist = llist_del_all(&rq->wake_list);
2297 struct task_struct *p, *t;
2298 struct rq_flags rf;
2299
2300 if (!llist)
2301 return;
2302
2303 rq_lock_irqsave(rq, &rf);
2304 update_rq_clock(rq);
2305
2306 llist_for_each_entry_safe(p, t, llist, wake_entry)
2307 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2308
2309 rq_unlock_irqrestore(rq, &rf);
2310 }
2311
scheduler_ipi(void)2312 void scheduler_ipi(void)
2313 {
2314 /*
2315 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2316 * TIF_NEED_RESCHED remotely (for the first time) will also send
2317 * this IPI.
2318 */
2319 preempt_fold_need_resched();
2320
2321 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2322 return;
2323
2324 /*
2325 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2326 * traditionally all their work was done from the interrupt return
2327 * path. Now that we actually do some work, we need to make sure
2328 * we do call them.
2329 *
2330 * Some archs already do call them, luckily irq_enter/exit nest
2331 * properly.
2332 *
2333 * Arguably we should visit all archs and update all handlers,
2334 * however a fair share of IPIs are still resched only so this would
2335 * somewhat pessimize the simple resched case.
2336 */
2337 irq_enter();
2338 sched_ttwu_pending();
2339
2340 /*
2341 * Check if someone kicked us for doing the nohz idle load balance.
2342 */
2343 if (unlikely(got_nohz_idle_kick())) {
2344 this_rq()->idle_balance = 1;
2345 raise_softirq_irqoff(SCHED_SOFTIRQ);
2346 }
2347 irq_exit();
2348 }
2349
ttwu_queue_remote(struct task_struct * p,int cpu,int wake_flags)2350 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
2351 {
2352 struct rq *rq = cpu_rq(cpu);
2353
2354 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2355
2356 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
2357 if (!set_nr_if_polling(rq->idle))
2358 smp_send_reschedule(cpu);
2359 else
2360 trace_sched_wake_idle_without_ipi(cpu);
2361 }
2362 }
2363
wake_up_if_idle(int cpu)2364 void wake_up_if_idle(int cpu)
2365 {
2366 struct rq *rq = cpu_rq(cpu);
2367 struct rq_flags rf;
2368
2369 rcu_read_lock();
2370
2371 if (!is_idle_task(rcu_dereference(rq->curr)))
2372 goto out;
2373
2374 if (set_nr_if_polling(rq->idle)) {
2375 trace_sched_wake_idle_without_ipi(cpu);
2376 } else {
2377 rq_lock_irqsave(rq, &rf);
2378 if (is_idle_task(rq->curr))
2379 smp_send_reschedule(cpu);
2380 /* Else CPU is not idle, do nothing here: */
2381 rq_unlock_irqrestore(rq, &rf);
2382 }
2383
2384 out:
2385 rcu_read_unlock();
2386 }
2387
cpus_share_cache(int this_cpu,int that_cpu)2388 bool cpus_share_cache(int this_cpu, int that_cpu)
2389 {
2390 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2391 }
2392 #endif /* CONFIG_SMP */
2393
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)2394 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2395 {
2396 struct rq *rq = cpu_rq(cpu);
2397 struct rq_flags rf;
2398
2399 #if defined(CONFIG_SMP)
2400 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
2401 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2402 ttwu_queue_remote(p, cpu, wake_flags);
2403 return;
2404 }
2405 #endif
2406
2407 rq_lock(rq, &rf);
2408 update_rq_clock(rq);
2409 ttwu_do_activate(rq, p, wake_flags, &rf);
2410 rq_unlock(rq, &rf);
2411 }
2412
2413 /*
2414 * Notes on Program-Order guarantees on SMP systems.
2415 *
2416 * MIGRATION
2417 *
2418 * The basic program-order guarantee on SMP systems is that when a task [t]
2419 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2420 * execution on its new CPU [c1].
2421 *
2422 * For migration (of runnable tasks) this is provided by the following means:
2423 *
2424 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2425 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2426 * rq(c1)->lock (if not at the same time, then in that order).
2427 * C) LOCK of the rq(c1)->lock scheduling in task
2428 *
2429 * Release/acquire chaining guarantees that B happens after A and C after B.
2430 * Note: the CPU doing B need not be c0 or c1
2431 *
2432 * Example:
2433 *
2434 * CPU0 CPU1 CPU2
2435 *
2436 * LOCK rq(0)->lock
2437 * sched-out X
2438 * sched-in Y
2439 * UNLOCK rq(0)->lock
2440 *
2441 * LOCK rq(0)->lock // orders against CPU0
2442 * dequeue X
2443 * UNLOCK rq(0)->lock
2444 *
2445 * LOCK rq(1)->lock
2446 * enqueue X
2447 * UNLOCK rq(1)->lock
2448 *
2449 * LOCK rq(1)->lock // orders against CPU2
2450 * sched-out Z
2451 * sched-in X
2452 * UNLOCK rq(1)->lock
2453 *
2454 *
2455 * BLOCKING -- aka. SLEEP + WAKEUP
2456 *
2457 * For blocking we (obviously) need to provide the same guarantee as for
2458 * migration. However the means are completely different as there is no lock
2459 * chain to provide order. Instead we do:
2460 *
2461 * 1) smp_store_release(X->on_cpu, 0)
2462 * 2) smp_cond_load_acquire(!X->on_cpu)
2463 *
2464 * Example:
2465 *
2466 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2467 *
2468 * LOCK rq(0)->lock LOCK X->pi_lock
2469 * dequeue X
2470 * sched-out X
2471 * smp_store_release(X->on_cpu, 0);
2472 *
2473 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2474 * X->state = WAKING
2475 * set_task_cpu(X,2)
2476 *
2477 * LOCK rq(2)->lock
2478 * enqueue X
2479 * X->state = RUNNING
2480 * UNLOCK rq(2)->lock
2481 *
2482 * LOCK rq(2)->lock // orders against CPU1
2483 * sched-out Z
2484 * sched-in X
2485 * UNLOCK rq(2)->lock
2486 *
2487 * UNLOCK X->pi_lock
2488 * UNLOCK rq(0)->lock
2489 *
2490 *
2491 * However, for wakeups there is a second guarantee we must provide, namely we
2492 * must ensure that CONDITION=1 done by the caller can not be reordered with
2493 * accesses to the task state; see try_to_wake_up() and set_current_state().
2494 */
2495
2496 /**
2497 * try_to_wake_up - wake up a thread
2498 * @p: the thread to be awakened
2499 * @state: the mask of task states that can be woken
2500 * @wake_flags: wake modifier flags (WF_*)
2501 *
2502 * If (@state & @p->state) @p->state = TASK_RUNNING.
2503 *
2504 * If the task was not queued/runnable, also place it back on a runqueue.
2505 *
2506 * Atomic against schedule() which would dequeue a task, also see
2507 * set_current_state().
2508 *
2509 * This function executes a full memory barrier before accessing the task
2510 * state; see set_current_state().
2511 *
2512 * Return: %true if @p->state changes (an actual wakeup was done),
2513 * %false otherwise.
2514 */
2515 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)2516 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2517 {
2518 unsigned long flags;
2519 int cpu, success = 0;
2520
2521 preempt_disable();
2522 if (p == current) {
2523 /*
2524 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2525 * == smp_processor_id()'. Together this means we can special
2526 * case the whole 'p->on_rq && ttwu_remote()' case below
2527 * without taking any locks.
2528 *
2529 * In particular:
2530 * - we rely on Program-Order guarantees for all the ordering,
2531 * - we're serialized against set_special_state() by virtue of
2532 * it disabling IRQs (this allows not taking ->pi_lock).
2533 */
2534 if (!(p->state & state))
2535 goto out;
2536
2537 success = 1;
2538 cpu = task_cpu(p);
2539 trace_sched_waking(p);
2540 p->state = TASK_RUNNING;
2541 trace_sched_wakeup(p);
2542 goto out;
2543 }
2544
2545 /*
2546 * If we are going to wake up a thread waiting for CONDITION we
2547 * need to ensure that CONDITION=1 done by the caller can not be
2548 * reordered with p->state check below. This pairs with mb() in
2549 * set_current_state() the waiting thread does.
2550 */
2551 raw_spin_lock_irqsave(&p->pi_lock, flags);
2552 smp_mb__after_spinlock();
2553 if (!(p->state & state))
2554 goto unlock;
2555
2556 trace_sched_waking(p);
2557
2558 /* We're going to change ->state: */
2559 success = 1;
2560 cpu = task_cpu(p);
2561
2562 /*
2563 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2564 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2565 * in smp_cond_load_acquire() below.
2566 *
2567 * sched_ttwu_pending() try_to_wake_up()
2568 * STORE p->on_rq = 1 LOAD p->state
2569 * UNLOCK rq->lock
2570 *
2571 * __schedule() (switch to task 'p')
2572 * LOCK rq->lock smp_rmb();
2573 * smp_mb__after_spinlock();
2574 * UNLOCK rq->lock
2575 *
2576 * [task p]
2577 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2578 *
2579 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2580 * __schedule(). See the comment for smp_mb__after_spinlock().
2581 */
2582 smp_rmb();
2583 if (p->on_rq && ttwu_remote(p, wake_flags))
2584 goto unlock;
2585
2586 #ifdef CONFIG_SMP
2587 /*
2588 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2589 * possible to, falsely, observe p->on_cpu == 0.
2590 *
2591 * One must be running (->on_cpu == 1) in order to remove oneself
2592 * from the runqueue.
2593 *
2594 * __schedule() (switch to task 'p') try_to_wake_up()
2595 * STORE p->on_cpu = 1 LOAD p->on_rq
2596 * UNLOCK rq->lock
2597 *
2598 * __schedule() (put 'p' to sleep)
2599 * LOCK rq->lock smp_rmb();
2600 * smp_mb__after_spinlock();
2601 * STORE p->on_rq = 0 LOAD p->on_cpu
2602 *
2603 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2604 * __schedule(). See the comment for smp_mb__after_spinlock().
2605 */
2606 smp_rmb();
2607
2608 /*
2609 * If the owning (remote) CPU is still in the middle of schedule() with
2610 * this task as prev, wait until its done referencing the task.
2611 *
2612 * Pairs with the smp_store_release() in finish_task().
2613 *
2614 * This ensures that tasks getting woken will be fully ordered against
2615 * their previous state and preserve Program Order.
2616 */
2617 smp_cond_load_acquire(&p->on_cpu, !VAL);
2618
2619 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2620 p->state = TASK_WAKING;
2621
2622 if (p->in_iowait) {
2623 delayacct_blkio_end(p);
2624 atomic_dec(&task_rq(p)->nr_iowait);
2625 }
2626
2627 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2628 if (task_cpu(p) != cpu) {
2629 wake_flags |= WF_MIGRATED;
2630 psi_ttwu_dequeue(p);
2631 set_task_cpu(p, cpu);
2632 }
2633
2634 #else /* CONFIG_SMP */
2635
2636 if (p->in_iowait) {
2637 delayacct_blkio_end(p);
2638 atomic_dec(&task_rq(p)->nr_iowait);
2639 }
2640
2641 #endif /* CONFIG_SMP */
2642
2643 ttwu_queue(p, cpu, wake_flags);
2644 unlock:
2645 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2646 out:
2647 if (success)
2648 ttwu_stat(p, cpu, wake_flags);
2649 preempt_enable();
2650
2651 return success;
2652 }
2653
2654 /**
2655 * wake_up_process - Wake up a specific process
2656 * @p: The process to be woken up.
2657 *
2658 * Attempt to wake up the nominated process and move it to the set of runnable
2659 * processes.
2660 *
2661 * Return: 1 if the process was woken up, 0 if it was already running.
2662 *
2663 * This function executes a full memory barrier before accessing the task state.
2664 */
wake_up_process(struct task_struct * p)2665 int wake_up_process(struct task_struct *p)
2666 {
2667 return try_to_wake_up(p, TASK_NORMAL, 0);
2668 }
2669 EXPORT_SYMBOL(wake_up_process);
2670
wake_up_state(struct task_struct * p,unsigned int state)2671 int wake_up_state(struct task_struct *p, unsigned int state)
2672 {
2673 return try_to_wake_up(p, state, 0);
2674 }
2675
2676 /*
2677 * Perform scheduler related setup for a newly forked process p.
2678 * p is forked by current.
2679 *
2680 * __sched_fork() is basic setup used by init_idle() too:
2681 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)2682 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2683 {
2684 p->on_rq = 0;
2685
2686 p->se.on_rq = 0;
2687 p->se.exec_start = 0;
2688 p->se.sum_exec_runtime = 0;
2689 p->se.prev_sum_exec_runtime = 0;
2690 p->se.nr_migrations = 0;
2691 p->se.vruntime = 0;
2692 INIT_LIST_HEAD(&p->se.group_node);
2693
2694 #ifdef CONFIG_FAIR_GROUP_SCHED
2695 p->se.cfs_rq = NULL;
2696 #endif
2697
2698 #ifdef CONFIG_SCHEDSTATS
2699 /* Even if schedstat is disabled, there should not be garbage */
2700 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2701 #endif
2702
2703 RB_CLEAR_NODE(&p->dl.rb_node);
2704 init_dl_task_timer(&p->dl);
2705 init_dl_inactive_task_timer(&p->dl);
2706 __dl_clear_params(p);
2707
2708 INIT_LIST_HEAD(&p->rt.run_list);
2709 p->rt.timeout = 0;
2710 p->rt.time_slice = sched_rr_timeslice;
2711 p->rt.on_rq = 0;
2712 p->rt.on_list = 0;
2713
2714 #ifdef CONFIG_PREEMPT_NOTIFIERS
2715 INIT_HLIST_HEAD(&p->preempt_notifiers);
2716 #endif
2717
2718 #ifdef CONFIG_COMPACTION
2719 p->capture_control = NULL;
2720 #endif
2721 init_numa_balancing(clone_flags, p);
2722 }
2723
2724 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2725
2726 #ifdef CONFIG_NUMA_BALANCING
2727
set_numabalancing_state(bool enabled)2728 void set_numabalancing_state(bool enabled)
2729 {
2730 if (enabled)
2731 static_branch_enable(&sched_numa_balancing);
2732 else
2733 static_branch_disable(&sched_numa_balancing);
2734 }
2735
2736 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2737 int sysctl_numa_balancing(struct ctl_table *table, int write,
2738 void __user *buffer, size_t *lenp, loff_t *ppos)
2739 {
2740 struct ctl_table t;
2741 int err;
2742 int state = static_branch_likely(&sched_numa_balancing);
2743
2744 if (write && !capable(CAP_SYS_ADMIN))
2745 return -EPERM;
2746
2747 t = *table;
2748 t.data = &state;
2749 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2750 if (err < 0)
2751 return err;
2752 if (write)
2753 set_numabalancing_state(state);
2754 return err;
2755 }
2756 #endif
2757 #endif
2758
2759 #ifdef CONFIG_SCHEDSTATS
2760
2761 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2762 static bool __initdata __sched_schedstats = false;
2763
set_schedstats(bool enabled)2764 static void set_schedstats(bool enabled)
2765 {
2766 if (enabled)
2767 static_branch_enable(&sched_schedstats);
2768 else
2769 static_branch_disable(&sched_schedstats);
2770 }
2771
force_schedstat_enabled(void)2772 void force_schedstat_enabled(void)
2773 {
2774 if (!schedstat_enabled()) {
2775 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2776 static_branch_enable(&sched_schedstats);
2777 }
2778 }
2779
setup_schedstats(char * str)2780 static int __init setup_schedstats(char *str)
2781 {
2782 int ret = 0;
2783 if (!str)
2784 goto out;
2785
2786 /*
2787 * This code is called before jump labels have been set up, so we can't
2788 * change the static branch directly just yet. Instead set a temporary
2789 * variable so init_schedstats() can do it later.
2790 */
2791 if (!strcmp(str, "enable")) {
2792 __sched_schedstats = true;
2793 ret = 1;
2794 } else if (!strcmp(str, "disable")) {
2795 __sched_schedstats = false;
2796 ret = 1;
2797 }
2798 out:
2799 if (!ret)
2800 pr_warn("Unable to parse schedstats=\n");
2801
2802 return ret;
2803 }
2804 __setup("schedstats=", setup_schedstats);
2805
init_schedstats(void)2806 static void __init init_schedstats(void)
2807 {
2808 set_schedstats(__sched_schedstats);
2809 }
2810
2811 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2812 int sysctl_schedstats(struct ctl_table *table, int write,
2813 void __user *buffer, size_t *lenp, loff_t *ppos)
2814 {
2815 struct ctl_table t;
2816 int err;
2817 int state = static_branch_likely(&sched_schedstats);
2818
2819 if (write && !capable(CAP_SYS_ADMIN))
2820 return -EPERM;
2821
2822 t = *table;
2823 t.data = &state;
2824 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2825 if (err < 0)
2826 return err;
2827 if (write)
2828 set_schedstats(state);
2829 return err;
2830 }
2831 #endif /* CONFIG_PROC_SYSCTL */
2832 #else /* !CONFIG_SCHEDSTATS */
init_schedstats(void)2833 static inline void init_schedstats(void) {}
2834 #endif /* CONFIG_SCHEDSTATS */
2835
2836 /*
2837 * fork()/clone()-time setup:
2838 */
sched_fork(unsigned long clone_flags,struct task_struct * p)2839 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2840 {
2841 unsigned long flags;
2842
2843 __sched_fork(clone_flags, p);
2844 /*
2845 * We mark the process as NEW here. This guarantees that
2846 * nobody will actually run it, and a signal or other external
2847 * event cannot wake it up and insert it on the runqueue either.
2848 */
2849 p->state = TASK_NEW;
2850
2851 /*
2852 * Make sure we do not leak PI boosting priority to the child.
2853 */
2854 p->prio = current->normal_prio;
2855
2856 uclamp_fork(p);
2857
2858 /*
2859 * Revert to default priority/policy on fork if requested.
2860 */
2861 if (unlikely(p->sched_reset_on_fork)) {
2862 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2863 p->policy = SCHED_NORMAL;
2864 p->static_prio = NICE_TO_PRIO(0);
2865 p->rt_priority = 0;
2866 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2867 p->static_prio = NICE_TO_PRIO(0);
2868
2869 p->prio = p->normal_prio = __normal_prio(p);
2870 set_load_weight(p, false);
2871
2872 /*
2873 * We don't need the reset flag anymore after the fork. It has
2874 * fulfilled its duty:
2875 */
2876 p->sched_reset_on_fork = 0;
2877 }
2878
2879 if (dl_prio(p->prio))
2880 return -EAGAIN;
2881 else if (rt_prio(p->prio))
2882 p->sched_class = &rt_sched_class;
2883 else
2884 p->sched_class = &fair_sched_class;
2885
2886 init_entity_runnable_average(&p->se);
2887
2888 /*
2889 * The child is not yet in the pid-hash so no cgroup attach races,
2890 * and the cgroup is pinned to this child due to cgroup_fork()
2891 * is ran before sched_fork().
2892 *
2893 * Silence PROVE_RCU.
2894 */
2895 raw_spin_lock_irqsave(&p->pi_lock, flags);
2896 /*
2897 * We're setting the CPU for the first time, we don't migrate,
2898 * so use __set_task_cpu().
2899 */
2900 __set_task_cpu(p, smp_processor_id());
2901 if (p->sched_class->task_fork)
2902 p->sched_class->task_fork(p);
2903 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2904
2905 #ifdef CONFIG_SCHED_INFO
2906 if (likely(sched_info_on()))
2907 memset(&p->sched_info, 0, sizeof(p->sched_info));
2908 #endif
2909 #if defined(CONFIG_SMP)
2910 p->on_cpu = 0;
2911 #endif
2912 init_task_preempt_count(p);
2913 #ifdef CONFIG_SMP
2914 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2915 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2916 #endif
2917 return 0;
2918 }
2919
to_ratio(u64 period,u64 runtime)2920 unsigned long to_ratio(u64 period, u64 runtime)
2921 {
2922 if (runtime == RUNTIME_INF)
2923 return BW_UNIT;
2924
2925 /*
2926 * Doing this here saves a lot of checks in all
2927 * the calling paths, and returning zero seems
2928 * safe for them anyway.
2929 */
2930 if (period == 0)
2931 return 0;
2932
2933 return div64_u64(runtime << BW_SHIFT, period);
2934 }
2935
2936 /*
2937 * wake_up_new_task - wake up a newly created task for the first time.
2938 *
2939 * This function will do some initial scheduler statistics housekeeping
2940 * that must be done for every newly created context, then puts the task
2941 * on the runqueue and wakes it.
2942 */
wake_up_new_task(struct task_struct * p)2943 void wake_up_new_task(struct task_struct *p)
2944 {
2945 struct rq_flags rf;
2946 struct rq *rq;
2947
2948 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2949 p->state = TASK_RUNNING;
2950 #ifdef CONFIG_SMP
2951 /*
2952 * Fork balancing, do it here and not earlier because:
2953 * - cpus_ptr can change in the fork path
2954 * - any previously selected CPU might disappear through hotplug
2955 *
2956 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2957 * as we're not fully set-up yet.
2958 */
2959 p->recent_used_cpu = task_cpu(p);
2960 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2961 #endif
2962 rq = __task_rq_lock(p, &rf);
2963 update_rq_clock(rq);
2964 post_init_entity_util_avg(p);
2965
2966 activate_task(rq, p, ENQUEUE_NOCLOCK);
2967 trace_sched_wakeup_new(p);
2968 check_preempt_curr(rq, p, WF_FORK);
2969 #ifdef CONFIG_SMP
2970 if (p->sched_class->task_woken) {
2971 /*
2972 * Nothing relies on rq->lock after this, so its fine to
2973 * drop it.
2974 */
2975 rq_unpin_lock(rq, &rf);
2976 p->sched_class->task_woken(rq, p);
2977 rq_repin_lock(rq, &rf);
2978 }
2979 #endif
2980 task_rq_unlock(rq, p, &rf);
2981 }
2982
2983 #ifdef CONFIG_PREEMPT_NOTIFIERS
2984
2985 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
2986
preempt_notifier_inc(void)2987 void preempt_notifier_inc(void)
2988 {
2989 static_branch_inc(&preempt_notifier_key);
2990 }
2991 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2992
preempt_notifier_dec(void)2993 void preempt_notifier_dec(void)
2994 {
2995 static_branch_dec(&preempt_notifier_key);
2996 }
2997 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2998
2999 /**
3000 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3001 * @notifier: notifier struct to register
3002 */
preempt_notifier_register(struct preempt_notifier * notifier)3003 void preempt_notifier_register(struct preempt_notifier *notifier)
3004 {
3005 if (!static_branch_unlikely(&preempt_notifier_key))
3006 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3007
3008 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
3009 }
3010 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3011
3012 /**
3013 * preempt_notifier_unregister - no longer interested in preemption notifications
3014 * @notifier: notifier struct to unregister
3015 *
3016 * This is *not* safe to call from within a preemption notifier.
3017 */
preempt_notifier_unregister(struct preempt_notifier * notifier)3018 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3019 {
3020 hlist_del(¬ifier->link);
3021 }
3022 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3023
__fire_sched_in_preempt_notifiers(struct task_struct * curr)3024 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3025 {
3026 struct preempt_notifier *notifier;
3027
3028 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3029 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3030 }
3031
fire_sched_in_preempt_notifiers(struct task_struct * curr)3032 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3033 {
3034 if (static_branch_unlikely(&preempt_notifier_key))
3035 __fire_sched_in_preempt_notifiers(curr);
3036 }
3037
3038 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3039 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3040 struct task_struct *next)
3041 {
3042 struct preempt_notifier *notifier;
3043
3044 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3045 notifier->ops->sched_out(notifier, next);
3046 }
3047
3048 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3049 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3050 struct task_struct *next)
3051 {
3052 if (static_branch_unlikely(&preempt_notifier_key))
3053 __fire_sched_out_preempt_notifiers(curr, next);
3054 }
3055
3056 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3057
fire_sched_in_preempt_notifiers(struct task_struct * curr)3058 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3059 {
3060 }
3061
3062 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3063 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3064 struct task_struct *next)
3065 {
3066 }
3067
3068 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3069
prepare_task(struct task_struct * next)3070 static inline void prepare_task(struct task_struct *next)
3071 {
3072 #ifdef CONFIG_SMP
3073 /*
3074 * Claim the task as running, we do this before switching to it
3075 * such that any running task will have this set.
3076 */
3077 next->on_cpu = 1;
3078 #endif
3079 }
3080
finish_task(struct task_struct * prev)3081 static inline void finish_task(struct task_struct *prev)
3082 {
3083 #ifdef CONFIG_SMP
3084 /*
3085 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3086 * We must ensure this doesn't happen until the switch is completely
3087 * finished.
3088 *
3089 * In particular, the load of prev->state in finish_task_switch() must
3090 * happen before this.
3091 *
3092 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3093 */
3094 smp_store_release(&prev->on_cpu, 0);
3095 #endif
3096 }
3097
3098 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)3099 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3100 {
3101 /*
3102 * Since the runqueue lock will be released by the next
3103 * task (which is an invalid locking op but in the case
3104 * of the scheduler it's an obvious special-case), so we
3105 * do an early lockdep release here:
3106 */
3107 rq_unpin_lock(rq, rf);
3108 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3109 #ifdef CONFIG_DEBUG_SPINLOCK
3110 /* this is a valid case when another task releases the spinlock */
3111 rq->lock.owner = next;
3112 #endif
3113 }
3114
finish_lock_switch(struct rq * rq)3115 static inline void finish_lock_switch(struct rq *rq)
3116 {
3117 /*
3118 * If we are tracking spinlock dependencies then we have to
3119 * fix up the runqueue lock - which gets 'carried over' from
3120 * prev into current:
3121 */
3122 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3123 raw_spin_unlock_irq(&rq->lock);
3124 }
3125
3126 /*
3127 * NOP if the arch has not defined these:
3128 */
3129
3130 #ifndef prepare_arch_switch
3131 # define prepare_arch_switch(next) do { } while (0)
3132 #endif
3133
3134 #ifndef finish_arch_post_lock_switch
3135 # define finish_arch_post_lock_switch() do { } while (0)
3136 #endif
3137
3138 /**
3139 * prepare_task_switch - prepare to switch tasks
3140 * @rq: the runqueue preparing to switch
3141 * @prev: the current task that is being switched out
3142 * @next: the task we are going to switch to.
3143 *
3144 * This is called with the rq lock held and interrupts off. It must
3145 * be paired with a subsequent finish_task_switch after the context
3146 * switch.
3147 *
3148 * prepare_task_switch sets up locking and calls architecture specific
3149 * hooks.
3150 */
3151 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)3152 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3153 struct task_struct *next)
3154 {
3155 kcov_prepare_switch(prev);
3156 sched_info_switch(rq, prev, next);
3157 perf_event_task_sched_out(prev, next);
3158 rseq_preempt(prev);
3159 fire_sched_out_preempt_notifiers(prev, next);
3160 prepare_task(next);
3161 prepare_arch_switch(next);
3162 }
3163
3164 /**
3165 * finish_task_switch - clean up after a task-switch
3166 * @prev: the thread we just switched away from.
3167 *
3168 * finish_task_switch must be called after the context switch, paired
3169 * with a prepare_task_switch call before the context switch.
3170 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3171 * and do any other architecture-specific cleanup actions.
3172 *
3173 * Note that we may have delayed dropping an mm in context_switch(). If
3174 * so, we finish that here outside of the runqueue lock. (Doing it
3175 * with the lock held can cause deadlocks; see schedule() for
3176 * details.)
3177 *
3178 * The context switch have flipped the stack from under us and restored the
3179 * local variables which were saved when this task called schedule() in the
3180 * past. prev == current is still correct but we need to recalculate this_rq
3181 * because prev may have moved to another CPU.
3182 */
finish_task_switch(struct task_struct * prev)3183 static struct rq *finish_task_switch(struct task_struct *prev)
3184 __releases(rq->lock)
3185 {
3186 struct rq *rq = this_rq();
3187 struct mm_struct *mm = rq->prev_mm;
3188 long prev_state;
3189
3190 /*
3191 * The previous task will have left us with a preempt_count of 2
3192 * because it left us after:
3193 *
3194 * schedule()
3195 * preempt_disable(); // 1
3196 * __schedule()
3197 * raw_spin_lock_irq(&rq->lock) // 2
3198 *
3199 * Also, see FORK_PREEMPT_COUNT.
3200 */
3201 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3202 "corrupted preempt_count: %s/%d/0x%x\n",
3203 current->comm, current->pid, preempt_count()))
3204 preempt_count_set(FORK_PREEMPT_COUNT);
3205
3206 rq->prev_mm = NULL;
3207
3208 /*
3209 * A task struct has one reference for the use as "current".
3210 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3211 * schedule one last time. The schedule call will never return, and
3212 * the scheduled task must drop that reference.
3213 *
3214 * We must observe prev->state before clearing prev->on_cpu (in
3215 * finish_task), otherwise a concurrent wakeup can get prev
3216 * running on another CPU and we could rave with its RUNNING -> DEAD
3217 * transition, resulting in a double drop.
3218 */
3219 prev_state = prev->state;
3220 vtime_task_switch(prev);
3221 perf_event_task_sched_in(prev, current);
3222 finish_task(prev);
3223 finish_lock_switch(rq);
3224 finish_arch_post_lock_switch();
3225 kcov_finish_switch(current);
3226
3227 fire_sched_in_preempt_notifiers(current);
3228 /*
3229 * When switching through a kernel thread, the loop in
3230 * membarrier_{private,global}_expedited() may have observed that
3231 * kernel thread and not issued an IPI. It is therefore possible to
3232 * schedule between user->kernel->user threads without passing though
3233 * switch_mm(). Membarrier requires a barrier after storing to
3234 * rq->curr, before returning to userspace, so provide them here:
3235 *
3236 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3237 * provided by mmdrop(),
3238 * - a sync_core for SYNC_CORE.
3239 */
3240 if (mm) {
3241 membarrier_mm_sync_core_before_usermode(mm);
3242 mmdrop(mm);
3243 }
3244 if (unlikely(prev_state == TASK_DEAD)) {
3245 if (prev->sched_class->task_dead)
3246 prev->sched_class->task_dead(prev);
3247
3248 /*
3249 * Remove function-return probe instances associated with this
3250 * task and put them back on the free list.
3251 */
3252 kprobe_flush_task(prev);
3253
3254 /* Task is done with its stack. */
3255 put_task_stack(prev);
3256
3257 put_task_struct_rcu_user(prev);
3258 }
3259
3260 tick_nohz_task_switch();
3261 return rq;
3262 }
3263
3264 #ifdef CONFIG_SMP
3265
3266 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)3267 static void __balance_callback(struct rq *rq)
3268 {
3269 struct callback_head *head, *next;
3270 void (*func)(struct rq *rq);
3271 unsigned long flags;
3272
3273 raw_spin_lock_irqsave(&rq->lock, flags);
3274 head = rq->balance_callback;
3275 rq->balance_callback = NULL;
3276 while (head) {
3277 func = (void (*)(struct rq *))head->func;
3278 next = head->next;
3279 head->next = NULL;
3280 head = next;
3281
3282 func(rq);
3283 }
3284 raw_spin_unlock_irqrestore(&rq->lock, flags);
3285 }
3286
balance_callback(struct rq * rq)3287 static inline void balance_callback(struct rq *rq)
3288 {
3289 if (unlikely(rq->balance_callback))
3290 __balance_callback(rq);
3291 }
3292
3293 #else
3294
balance_callback(struct rq * rq)3295 static inline void balance_callback(struct rq *rq)
3296 {
3297 }
3298
3299 #endif
3300
3301 /**
3302 * schedule_tail - first thing a freshly forked thread must call.
3303 * @prev: the thread we just switched away from.
3304 */
schedule_tail(struct task_struct * prev)3305 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3306 __releases(rq->lock)
3307 {
3308 struct rq *rq;
3309
3310 /*
3311 * New tasks start with FORK_PREEMPT_COUNT, see there and
3312 * finish_task_switch() for details.
3313 *
3314 * finish_task_switch() will drop rq->lock() and lower preempt_count
3315 * and the preempt_enable() will end up enabling preemption (on
3316 * PREEMPT_COUNT kernels).
3317 */
3318
3319 rq = finish_task_switch(prev);
3320 balance_callback(rq);
3321 preempt_enable();
3322
3323 if (current->set_child_tid)
3324 put_user(task_pid_vnr(current), current->set_child_tid);
3325
3326 calculate_sigpending();
3327 }
3328
3329 /*
3330 * context_switch - switch to the new MM and the new thread's register state.
3331 */
3332 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)3333 context_switch(struct rq *rq, struct task_struct *prev,
3334 struct task_struct *next, struct rq_flags *rf)
3335 {
3336 prepare_task_switch(rq, prev, next);
3337
3338 /*
3339 * For paravirt, this is coupled with an exit in switch_to to
3340 * combine the page table reload and the switch backend into
3341 * one hypercall.
3342 */
3343 arch_start_context_switch(prev);
3344
3345 /*
3346 * kernel -> kernel lazy + transfer active
3347 * user -> kernel lazy + mmgrab() active
3348 *
3349 * kernel -> user switch + mmdrop() active
3350 * user -> user switch
3351 */
3352 if (!next->mm) { // to kernel
3353 enter_lazy_tlb(prev->active_mm, next);
3354
3355 next->active_mm = prev->active_mm;
3356 if (prev->mm) // from user
3357 mmgrab(prev->active_mm);
3358 else
3359 prev->active_mm = NULL;
3360 } else { // to user
3361 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3362 /*
3363 * sys_membarrier() requires an smp_mb() between setting
3364 * rq->curr / membarrier_switch_mm() and returning to userspace.
3365 *
3366 * The below provides this either through switch_mm(), or in
3367 * case 'prev->active_mm == next->mm' through
3368 * finish_task_switch()'s mmdrop().
3369 */
3370 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3371
3372 if (!prev->mm) { // from kernel
3373 /* will mmdrop() in finish_task_switch(). */
3374 rq->prev_mm = prev->active_mm;
3375 prev->active_mm = NULL;
3376 }
3377 }
3378
3379 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3380
3381 prepare_lock_switch(rq, next, rf);
3382
3383 /* Here we just switch the register state and the stack. */
3384 switch_to(prev, next, prev);
3385 barrier();
3386
3387 return finish_task_switch(prev);
3388 }
3389
3390 /*
3391 * nr_running and nr_context_switches:
3392 *
3393 * externally visible scheduler statistics: current number of runnable
3394 * threads, total number of context switches performed since bootup.
3395 */
nr_running(void)3396 unsigned long nr_running(void)
3397 {
3398 unsigned long i, sum = 0;
3399
3400 for_each_online_cpu(i)
3401 sum += cpu_rq(i)->nr_running;
3402
3403 return sum;
3404 }
3405
3406 /*
3407 * Check if only the current task is running on the CPU.
3408 *
3409 * Caution: this function does not check that the caller has disabled
3410 * preemption, thus the result might have a time-of-check-to-time-of-use
3411 * race. The caller is responsible to use it correctly, for example:
3412 *
3413 * - from a non-preemptible section (of course)
3414 *
3415 * - from a thread that is bound to a single CPU
3416 *
3417 * - in a loop with very short iterations (e.g. a polling loop)
3418 */
single_task_running(void)3419 bool single_task_running(void)
3420 {
3421 return raw_rq()->nr_running == 1;
3422 }
3423 EXPORT_SYMBOL(single_task_running);
3424
nr_context_switches(void)3425 unsigned long long nr_context_switches(void)
3426 {
3427 int i;
3428 unsigned long long sum = 0;
3429
3430 for_each_possible_cpu(i)
3431 sum += cpu_rq(i)->nr_switches;
3432
3433 return sum;
3434 }
3435
3436 /*
3437 * Consumers of these two interfaces, like for example the cpuidle menu
3438 * governor, are using nonsensical data. Preferring shallow idle state selection
3439 * for a CPU that has IO-wait which might not even end up running the task when
3440 * it does become runnable.
3441 */
3442
nr_iowait_cpu(int cpu)3443 unsigned long nr_iowait_cpu(int cpu)
3444 {
3445 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3446 }
3447
3448 /*
3449 * IO-wait accounting, and how its mostly bollocks (on SMP).
3450 *
3451 * The idea behind IO-wait account is to account the idle time that we could
3452 * have spend running if it were not for IO. That is, if we were to improve the
3453 * storage performance, we'd have a proportional reduction in IO-wait time.
3454 *
3455 * This all works nicely on UP, where, when a task blocks on IO, we account
3456 * idle time as IO-wait, because if the storage were faster, it could've been
3457 * running and we'd not be idle.
3458 *
3459 * This has been extended to SMP, by doing the same for each CPU. This however
3460 * is broken.
3461 *
3462 * Imagine for instance the case where two tasks block on one CPU, only the one
3463 * CPU will have IO-wait accounted, while the other has regular idle. Even
3464 * though, if the storage were faster, both could've ran at the same time,
3465 * utilising both CPUs.
3466 *
3467 * This means, that when looking globally, the current IO-wait accounting on
3468 * SMP is a lower bound, by reason of under accounting.
3469 *
3470 * Worse, since the numbers are provided per CPU, they are sometimes
3471 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3472 * associated with any one particular CPU, it can wake to another CPU than it
3473 * blocked on. This means the per CPU IO-wait number is meaningless.
3474 *
3475 * Task CPU affinities can make all that even more 'interesting'.
3476 */
3477
nr_iowait(void)3478 unsigned long nr_iowait(void)
3479 {
3480 unsigned long i, sum = 0;
3481
3482 for_each_possible_cpu(i)
3483 sum += nr_iowait_cpu(i);
3484
3485 return sum;
3486 }
3487
3488 #ifdef CONFIG_SMP
3489
3490 /*
3491 * sched_exec - execve() is a valuable balancing opportunity, because at
3492 * this point the task has the smallest effective memory and cache footprint.
3493 */
sched_exec(void)3494 void sched_exec(void)
3495 {
3496 struct task_struct *p = current;
3497 unsigned long flags;
3498 int dest_cpu;
3499
3500 raw_spin_lock_irqsave(&p->pi_lock, flags);
3501 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3502 if (dest_cpu == smp_processor_id())
3503 goto unlock;
3504
3505 if (likely(cpu_active(dest_cpu))) {
3506 struct migration_arg arg = { p, dest_cpu };
3507
3508 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3509 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3510 return;
3511 }
3512 unlock:
3513 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3514 }
3515
3516 #endif
3517
3518 DEFINE_PER_CPU(struct kernel_stat, kstat);
3519 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3520
3521 EXPORT_PER_CPU_SYMBOL(kstat);
3522 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3523
3524 /*
3525 * The function fair_sched_class.update_curr accesses the struct curr
3526 * and its field curr->exec_start; when called from task_sched_runtime(),
3527 * we observe a high rate of cache misses in practice.
3528 * Prefetching this data results in improved performance.
3529 */
prefetch_curr_exec_start(struct task_struct * p)3530 static inline void prefetch_curr_exec_start(struct task_struct *p)
3531 {
3532 #ifdef CONFIG_FAIR_GROUP_SCHED
3533 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3534 #else
3535 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3536 #endif
3537 prefetch(curr);
3538 prefetch(&curr->exec_start);
3539 }
3540
3541 /*
3542 * Return accounted runtime for the task.
3543 * In case the task is currently running, return the runtime plus current's
3544 * pending runtime that have not been accounted yet.
3545 */
task_sched_runtime(struct task_struct * p)3546 unsigned long long task_sched_runtime(struct task_struct *p)
3547 {
3548 struct rq_flags rf;
3549 struct rq *rq;
3550 u64 ns;
3551
3552 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3553 /*
3554 * 64-bit doesn't need locks to atomically read a 64-bit value.
3555 * So we have a optimization chance when the task's delta_exec is 0.
3556 * Reading ->on_cpu is racy, but this is ok.
3557 *
3558 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3559 * If we race with it entering CPU, unaccounted time is 0. This is
3560 * indistinguishable from the read occurring a few cycles earlier.
3561 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3562 * been accounted, so we're correct here as well.
3563 */
3564 if (!p->on_cpu || !task_on_rq_queued(p))
3565 return p->se.sum_exec_runtime;
3566 #endif
3567
3568 rq = task_rq_lock(p, &rf);
3569 /*
3570 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3571 * project cycles that may never be accounted to this
3572 * thread, breaking clock_gettime().
3573 */
3574 if (task_current(rq, p) && task_on_rq_queued(p)) {
3575 prefetch_curr_exec_start(p);
3576 update_rq_clock(rq);
3577 p->sched_class->update_curr(rq);
3578 }
3579 ns = p->se.sum_exec_runtime;
3580 task_rq_unlock(rq, p, &rf);
3581
3582 return ns;
3583 }
3584
3585 /*
3586 * This function gets called by the timer code, with HZ frequency.
3587 * We call it with interrupts disabled.
3588 */
scheduler_tick(void)3589 void scheduler_tick(void)
3590 {
3591 int cpu = smp_processor_id();
3592 struct rq *rq = cpu_rq(cpu);
3593 struct task_struct *curr = rq->curr;
3594 struct rq_flags rf;
3595
3596 sched_clock_tick();
3597
3598 rq_lock(rq, &rf);
3599
3600 update_rq_clock(rq);
3601 curr->sched_class->task_tick(rq, curr, 0);
3602 calc_global_load_tick(rq);
3603 psi_task_tick(rq);
3604
3605 rq_unlock(rq, &rf);
3606
3607 perf_event_task_tick();
3608
3609 #ifdef CONFIG_SMP
3610 rq->idle_balance = idle_cpu(cpu);
3611 trigger_load_balance(rq);
3612 #endif
3613 }
3614
3615 #ifdef CONFIG_NO_HZ_FULL
3616
3617 struct tick_work {
3618 int cpu;
3619 atomic_t state;
3620 struct delayed_work work;
3621 };
3622 /* Values for ->state, see diagram below. */
3623 #define TICK_SCHED_REMOTE_OFFLINE 0
3624 #define TICK_SCHED_REMOTE_OFFLINING 1
3625 #define TICK_SCHED_REMOTE_RUNNING 2
3626
3627 /*
3628 * State diagram for ->state:
3629 *
3630 *
3631 * TICK_SCHED_REMOTE_OFFLINE
3632 * | ^
3633 * | |
3634 * | | sched_tick_remote()
3635 * | |
3636 * | |
3637 * +--TICK_SCHED_REMOTE_OFFLINING
3638 * | ^
3639 * | |
3640 * sched_tick_start() | | sched_tick_stop()
3641 * | |
3642 * V |
3643 * TICK_SCHED_REMOTE_RUNNING
3644 *
3645 *
3646 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3647 * and sched_tick_start() are happy to leave the state in RUNNING.
3648 */
3649
3650 static struct tick_work __percpu *tick_work_cpu;
3651
sched_tick_remote(struct work_struct * work)3652 static void sched_tick_remote(struct work_struct *work)
3653 {
3654 struct delayed_work *dwork = to_delayed_work(work);
3655 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3656 int cpu = twork->cpu;
3657 struct rq *rq = cpu_rq(cpu);
3658 struct task_struct *curr;
3659 struct rq_flags rf;
3660 u64 delta;
3661 int os;
3662
3663 /*
3664 * Handle the tick only if it appears the remote CPU is running in full
3665 * dynticks mode. The check is racy by nature, but missing a tick or
3666 * having one too much is no big deal because the scheduler tick updates
3667 * statistics and checks timeslices in a time-independent way, regardless
3668 * of when exactly it is running.
3669 */
3670 if (idle_cpu(cpu) || !tick_nohz_tick_stopped_cpu(cpu))
3671 goto out_requeue;
3672
3673 rq_lock_irq(rq, &rf);
3674 curr = rq->curr;
3675 if (is_idle_task(curr) || cpu_is_offline(cpu))
3676 goto out_unlock;
3677
3678 update_rq_clock(rq);
3679 delta = rq_clock_task(rq) - curr->se.exec_start;
3680
3681 /*
3682 * Make sure the next tick runs within a reasonable
3683 * amount of time.
3684 */
3685 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3686 curr->sched_class->task_tick(rq, curr, 0);
3687
3688 out_unlock:
3689 rq_unlock_irq(rq, &rf);
3690
3691 out_requeue:
3692 /*
3693 * Run the remote tick once per second (1Hz). This arbitrary
3694 * frequency is large enough to avoid overload but short enough
3695 * to keep scheduler internal stats reasonably up to date. But
3696 * first update state to reflect hotplug activity if required.
3697 */
3698 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3699 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3700 if (os == TICK_SCHED_REMOTE_RUNNING)
3701 queue_delayed_work(system_unbound_wq, dwork, HZ);
3702 }
3703
sched_tick_start(int cpu)3704 static void sched_tick_start(int cpu)
3705 {
3706 int os;
3707 struct tick_work *twork;
3708
3709 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3710 return;
3711
3712 WARN_ON_ONCE(!tick_work_cpu);
3713
3714 twork = per_cpu_ptr(tick_work_cpu, cpu);
3715 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3716 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3717 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3718 twork->cpu = cpu;
3719 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3720 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3721 }
3722 }
3723
3724 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)3725 static void sched_tick_stop(int cpu)
3726 {
3727 struct tick_work *twork;
3728 int os;
3729
3730 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3731 return;
3732
3733 WARN_ON_ONCE(!tick_work_cpu);
3734
3735 twork = per_cpu_ptr(tick_work_cpu, cpu);
3736 /* There cannot be competing actions, but don't rely on stop-machine. */
3737 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3738 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3739 /* Don't cancel, as this would mess up the state machine. */
3740 }
3741 #endif /* CONFIG_HOTPLUG_CPU */
3742
sched_tick_offload_init(void)3743 int __init sched_tick_offload_init(void)
3744 {
3745 tick_work_cpu = alloc_percpu(struct tick_work);
3746 BUG_ON(!tick_work_cpu);
3747 return 0;
3748 }
3749
3750 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)3751 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)3752 static inline void sched_tick_stop(int cpu) { }
3753 #endif
3754
3755 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3756 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3757 /*
3758 * If the value passed in is equal to the current preempt count
3759 * then we just disabled preemption. Start timing the latency.
3760 */
preempt_latency_start(int val)3761 static inline void preempt_latency_start(int val)
3762 {
3763 if (preempt_count() == val) {
3764 unsigned long ip = get_lock_parent_ip();
3765 #ifdef CONFIG_DEBUG_PREEMPT
3766 current->preempt_disable_ip = ip;
3767 #endif
3768 trace_preempt_off(CALLER_ADDR0, ip);
3769 }
3770 }
3771
preempt_count_add(int val)3772 void preempt_count_add(int val)
3773 {
3774 #ifdef CONFIG_DEBUG_PREEMPT
3775 /*
3776 * Underflow?
3777 */
3778 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3779 return;
3780 #endif
3781 __preempt_count_add(val);
3782 #ifdef CONFIG_DEBUG_PREEMPT
3783 /*
3784 * Spinlock count overflowing soon?
3785 */
3786 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3787 PREEMPT_MASK - 10);
3788 #endif
3789 preempt_latency_start(val);
3790 }
3791 EXPORT_SYMBOL(preempt_count_add);
3792 NOKPROBE_SYMBOL(preempt_count_add);
3793
3794 /*
3795 * If the value passed in equals to the current preempt count
3796 * then we just enabled preemption. Stop timing the latency.
3797 */
preempt_latency_stop(int val)3798 static inline void preempt_latency_stop(int val)
3799 {
3800 if (preempt_count() == val)
3801 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3802 }
3803
preempt_count_sub(int val)3804 void preempt_count_sub(int val)
3805 {
3806 #ifdef CONFIG_DEBUG_PREEMPT
3807 /*
3808 * Underflow?
3809 */
3810 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3811 return;
3812 /*
3813 * Is the spinlock portion underflowing?
3814 */
3815 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3816 !(preempt_count() & PREEMPT_MASK)))
3817 return;
3818 #endif
3819
3820 preempt_latency_stop(val);
3821 __preempt_count_sub(val);
3822 }
3823 EXPORT_SYMBOL(preempt_count_sub);
3824 NOKPROBE_SYMBOL(preempt_count_sub);
3825
3826 #else
preempt_latency_start(int val)3827 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)3828 static inline void preempt_latency_stop(int val) { }
3829 #endif
3830
get_preempt_disable_ip(struct task_struct * p)3831 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3832 {
3833 #ifdef CONFIG_DEBUG_PREEMPT
3834 return p->preempt_disable_ip;
3835 #else
3836 return 0;
3837 #endif
3838 }
3839
3840 /*
3841 * Print scheduling while atomic bug:
3842 */
__schedule_bug(struct task_struct * prev)3843 static noinline void __schedule_bug(struct task_struct *prev)
3844 {
3845 /* Save this before calling printk(), since that will clobber it */
3846 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3847
3848 if (oops_in_progress)
3849 return;
3850
3851 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3852 prev->comm, prev->pid, preempt_count());
3853
3854 debug_show_held_locks(prev);
3855 print_modules();
3856 if (irqs_disabled())
3857 print_irqtrace_events(prev);
3858 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3859 && in_atomic_preempt_off()) {
3860 pr_err("Preemption disabled at:");
3861 print_ip_sym(preempt_disable_ip);
3862 pr_cont("\n");
3863 }
3864 if (panic_on_warn)
3865 panic("scheduling while atomic\n");
3866
3867 dump_stack();
3868 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3869 }
3870
3871 /*
3872 * Various schedule()-time debugging checks and statistics:
3873 */
schedule_debug(struct task_struct * prev,bool preempt)3874 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3875 {
3876 #ifdef CONFIG_SCHED_STACK_END_CHECK
3877 if (task_stack_end_corrupted(prev))
3878 panic("corrupted stack end detected inside scheduler\n");
3879 #endif
3880
3881 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3882 if (!preempt && prev->state && prev->non_block_count) {
3883 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3884 prev->comm, prev->pid, prev->non_block_count);
3885 dump_stack();
3886 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3887 }
3888 #endif
3889
3890 if (unlikely(in_atomic_preempt_off())) {
3891 __schedule_bug(prev);
3892 preempt_count_set(PREEMPT_DISABLED);
3893 }
3894 rcu_sleep_check();
3895
3896 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3897
3898 schedstat_inc(this_rq()->sched_count);
3899 }
3900
3901 /*
3902 * Pick up the highest-prio task:
3903 */
3904 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)3905 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3906 {
3907 const struct sched_class *class;
3908 struct task_struct *p;
3909
3910 /*
3911 * Optimization: we know that if all tasks are in the fair class we can
3912 * call that function directly, but only if the @prev task wasn't of a
3913 * higher scheduling class, because otherwise those loose the
3914 * opportunity to pull in more work from other CPUs.
3915 */
3916 if (likely((prev->sched_class == &idle_sched_class ||
3917 prev->sched_class == &fair_sched_class) &&
3918 rq->nr_running == rq->cfs.h_nr_running)) {
3919
3920 p = fair_sched_class.pick_next_task(rq, prev, rf);
3921 if (unlikely(p == RETRY_TASK))
3922 goto restart;
3923
3924 /* Assumes fair_sched_class->next == idle_sched_class */
3925 if (unlikely(!p))
3926 p = idle_sched_class.pick_next_task(rq, prev, rf);
3927
3928 return p;
3929 }
3930
3931 restart:
3932 #ifdef CONFIG_SMP
3933 /*
3934 * We must do the balancing pass before put_next_task(), such
3935 * that when we release the rq->lock the task is in the same
3936 * state as before we took rq->lock.
3937 *
3938 * We can terminate the balance pass as soon as we know there is
3939 * a runnable task of @class priority or higher.
3940 */
3941 for_class_range(class, prev->sched_class, &idle_sched_class) {
3942 if (class->balance(rq, prev, rf))
3943 break;
3944 }
3945 #endif
3946
3947 put_prev_task(rq, prev);
3948
3949 for_each_class(class) {
3950 p = class->pick_next_task(rq, NULL, NULL);
3951 if (p)
3952 return p;
3953 }
3954
3955 /* The idle class should always have a runnable task: */
3956 BUG();
3957 }
3958
3959 /*
3960 * __schedule() is the main scheduler function.
3961 *
3962 * The main means of driving the scheduler and thus entering this function are:
3963 *
3964 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3965 *
3966 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3967 * paths. For example, see arch/x86/entry_64.S.
3968 *
3969 * To drive preemption between tasks, the scheduler sets the flag in timer
3970 * interrupt handler scheduler_tick().
3971 *
3972 * 3. Wakeups don't really cause entry into schedule(). They add a
3973 * task to the run-queue and that's it.
3974 *
3975 * Now, if the new task added to the run-queue preempts the current
3976 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3977 * called on the nearest possible occasion:
3978 *
3979 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
3980 *
3981 * - in syscall or exception context, at the next outmost
3982 * preempt_enable(). (this might be as soon as the wake_up()'s
3983 * spin_unlock()!)
3984 *
3985 * - in IRQ context, return from interrupt-handler to
3986 * preemptible context
3987 *
3988 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
3989 * then at the next:
3990 *
3991 * - cond_resched() call
3992 * - explicit schedule() call
3993 * - return from syscall or exception to user-space
3994 * - return from interrupt-handler to user-space
3995 *
3996 * WARNING: must be called with preemption disabled!
3997 */
__schedule(bool preempt)3998 static void __sched notrace __schedule(bool preempt)
3999 {
4000 struct task_struct *prev, *next;
4001 unsigned long *switch_count;
4002 struct rq_flags rf;
4003 struct rq *rq;
4004 int cpu;
4005
4006 cpu = smp_processor_id();
4007 rq = cpu_rq(cpu);
4008 prev = rq->curr;
4009
4010 schedule_debug(prev, preempt);
4011
4012 if (sched_feat(HRTICK))
4013 hrtick_clear(rq);
4014
4015 local_irq_disable();
4016 rcu_note_context_switch(preempt);
4017
4018 /*
4019 * Make sure that signal_pending_state()->signal_pending() below
4020 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4021 * done by the caller to avoid the race with signal_wake_up().
4022 *
4023 * The membarrier system call requires a full memory barrier
4024 * after coming from user-space, before storing to rq->curr.
4025 */
4026 rq_lock(rq, &rf);
4027 smp_mb__after_spinlock();
4028
4029 /* Promote REQ to ACT */
4030 rq->clock_update_flags <<= 1;
4031 update_rq_clock(rq);
4032
4033 switch_count = &prev->nivcsw;
4034 if (!preempt && prev->state) {
4035 if (signal_pending_state(prev->state, prev)) {
4036 prev->state = TASK_RUNNING;
4037 } else {
4038 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4039
4040 if (prev->in_iowait) {
4041 atomic_inc(&rq->nr_iowait);
4042 delayacct_blkio_start();
4043 }
4044 }
4045 switch_count = &prev->nvcsw;
4046 }
4047
4048 next = pick_next_task(rq, prev, &rf);
4049 clear_tsk_need_resched(prev);
4050 clear_preempt_need_resched();
4051
4052 if (likely(prev != next)) {
4053 rq->nr_switches++;
4054 /*
4055 * RCU users of rcu_dereference(rq->curr) may not see
4056 * changes to task_struct made by pick_next_task().
4057 */
4058 RCU_INIT_POINTER(rq->curr, next);
4059 /*
4060 * The membarrier system call requires each architecture
4061 * to have a full memory barrier after updating
4062 * rq->curr, before returning to user-space.
4063 *
4064 * Here are the schemes providing that barrier on the
4065 * various architectures:
4066 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4067 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4068 * - finish_lock_switch() for weakly-ordered
4069 * architectures where spin_unlock is a full barrier,
4070 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4071 * is a RELEASE barrier),
4072 */
4073 ++*switch_count;
4074
4075 trace_sched_switch(preempt, prev, next);
4076
4077 /* Also unlocks the rq: */
4078 rq = context_switch(rq, prev, next, &rf);
4079 } else {
4080 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4081 rq_unlock_irq(rq, &rf);
4082 }
4083
4084 balance_callback(rq);
4085 }
4086
do_task_dead(void)4087 void __noreturn do_task_dead(void)
4088 {
4089 /* Causes final put_task_struct in finish_task_switch(): */
4090 set_special_state(TASK_DEAD);
4091
4092 /* Tell freezer to ignore us: */
4093 current->flags |= PF_NOFREEZE;
4094
4095 __schedule(false);
4096 BUG();
4097
4098 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4099 for (;;)
4100 cpu_relax();
4101 }
4102
sched_submit_work(struct task_struct * tsk)4103 static inline void sched_submit_work(struct task_struct *tsk)
4104 {
4105 if (!tsk->state)
4106 return;
4107
4108 /*
4109 * If a worker went to sleep, notify and ask workqueue whether
4110 * it wants to wake up a task to maintain concurrency.
4111 * As this function is called inside the schedule() context,
4112 * we disable preemption to avoid it calling schedule() again
4113 * in the possible wakeup of a kworker.
4114 */
4115 if (tsk->flags & PF_WQ_WORKER) {
4116 preempt_disable();
4117 wq_worker_sleeping(tsk);
4118 preempt_enable_no_resched();
4119 }
4120
4121 if (tsk_is_pi_blocked(tsk))
4122 return;
4123
4124 /*
4125 * If we are going to sleep and we have plugged IO queued,
4126 * make sure to submit it to avoid deadlocks.
4127 */
4128 if (blk_needs_flush_plug(tsk))
4129 blk_schedule_flush_plug(tsk);
4130 }
4131
sched_update_worker(struct task_struct * tsk)4132 static void sched_update_worker(struct task_struct *tsk)
4133 {
4134 if (tsk->flags & PF_WQ_WORKER)
4135 wq_worker_running(tsk);
4136 }
4137
schedule(void)4138 asmlinkage __visible void __sched schedule(void)
4139 {
4140 struct task_struct *tsk = current;
4141
4142 sched_submit_work(tsk);
4143 do {
4144 preempt_disable();
4145 __schedule(false);
4146 sched_preempt_enable_no_resched();
4147 } while (need_resched());
4148 sched_update_worker(tsk);
4149 }
4150 EXPORT_SYMBOL(schedule);
4151
4152 /*
4153 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4154 * state (have scheduled out non-voluntarily) by making sure that all
4155 * tasks have either left the run queue or have gone into user space.
4156 * As idle tasks do not do either, they must not ever be preempted
4157 * (schedule out non-voluntarily).
4158 *
4159 * schedule_idle() is similar to schedule_preempt_disable() except that it
4160 * never enables preemption because it does not call sched_submit_work().
4161 */
schedule_idle(void)4162 void __sched schedule_idle(void)
4163 {
4164 /*
4165 * As this skips calling sched_submit_work(), which the idle task does
4166 * regardless because that function is a nop when the task is in a
4167 * TASK_RUNNING state, make sure this isn't used someplace that the
4168 * current task can be in any other state. Note, idle is always in the
4169 * TASK_RUNNING state.
4170 */
4171 WARN_ON_ONCE(current->state);
4172 do {
4173 __schedule(false);
4174 } while (need_resched());
4175 }
4176
4177 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)4178 asmlinkage __visible void __sched schedule_user(void)
4179 {
4180 /*
4181 * If we come here after a random call to set_need_resched(),
4182 * or we have been woken up remotely but the IPI has not yet arrived,
4183 * we haven't yet exited the RCU idle mode. Do it here manually until
4184 * we find a better solution.
4185 *
4186 * NB: There are buggy callers of this function. Ideally we
4187 * should warn if prev_state != CONTEXT_USER, but that will trigger
4188 * too frequently to make sense yet.
4189 */
4190 enum ctx_state prev_state = exception_enter();
4191 schedule();
4192 exception_exit(prev_state);
4193 }
4194 #endif
4195
4196 /**
4197 * schedule_preempt_disabled - called with preemption disabled
4198 *
4199 * Returns with preemption disabled. Note: preempt_count must be 1
4200 */
schedule_preempt_disabled(void)4201 void __sched schedule_preempt_disabled(void)
4202 {
4203 sched_preempt_enable_no_resched();
4204 schedule();
4205 preempt_disable();
4206 }
4207
preempt_schedule_common(void)4208 static void __sched notrace preempt_schedule_common(void)
4209 {
4210 do {
4211 /*
4212 * Because the function tracer can trace preempt_count_sub()
4213 * and it also uses preempt_enable/disable_notrace(), if
4214 * NEED_RESCHED is set, the preempt_enable_notrace() called
4215 * by the function tracer will call this function again and
4216 * cause infinite recursion.
4217 *
4218 * Preemption must be disabled here before the function
4219 * tracer can trace. Break up preempt_disable() into two
4220 * calls. One to disable preemption without fear of being
4221 * traced. The other to still record the preemption latency,
4222 * which can also be traced by the function tracer.
4223 */
4224 preempt_disable_notrace();
4225 preempt_latency_start(1);
4226 __schedule(true);
4227 preempt_latency_stop(1);
4228 preempt_enable_no_resched_notrace();
4229
4230 /*
4231 * Check again in case we missed a preemption opportunity
4232 * between schedule and now.
4233 */
4234 } while (need_resched());
4235 }
4236
4237 #ifdef CONFIG_PREEMPTION
4238 /*
4239 * This is the entry point to schedule() from in-kernel preemption
4240 * off of preempt_enable.
4241 */
preempt_schedule(void)4242 asmlinkage __visible void __sched notrace preempt_schedule(void)
4243 {
4244 /*
4245 * If there is a non-zero preempt_count or interrupts are disabled,
4246 * we do not want to preempt the current task. Just return..
4247 */
4248 if (likely(!preemptible()))
4249 return;
4250
4251 preempt_schedule_common();
4252 }
4253 NOKPROBE_SYMBOL(preempt_schedule);
4254 EXPORT_SYMBOL(preempt_schedule);
4255
4256 /**
4257 * preempt_schedule_notrace - preempt_schedule called by tracing
4258 *
4259 * The tracing infrastructure uses preempt_enable_notrace to prevent
4260 * recursion and tracing preempt enabling caused by the tracing
4261 * infrastructure itself. But as tracing can happen in areas coming
4262 * from userspace or just about to enter userspace, a preempt enable
4263 * can occur before user_exit() is called. This will cause the scheduler
4264 * to be called when the system is still in usermode.
4265 *
4266 * To prevent this, the preempt_enable_notrace will use this function
4267 * instead of preempt_schedule() to exit user context if needed before
4268 * calling the scheduler.
4269 */
preempt_schedule_notrace(void)4270 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4271 {
4272 enum ctx_state prev_ctx;
4273
4274 if (likely(!preemptible()))
4275 return;
4276
4277 do {
4278 /*
4279 * Because the function tracer can trace preempt_count_sub()
4280 * and it also uses preempt_enable/disable_notrace(), if
4281 * NEED_RESCHED is set, the preempt_enable_notrace() called
4282 * by the function tracer will call this function again and
4283 * cause infinite recursion.
4284 *
4285 * Preemption must be disabled here before the function
4286 * tracer can trace. Break up preempt_disable() into two
4287 * calls. One to disable preemption without fear of being
4288 * traced. The other to still record the preemption latency,
4289 * which can also be traced by the function tracer.
4290 */
4291 preempt_disable_notrace();
4292 preempt_latency_start(1);
4293 /*
4294 * Needs preempt disabled in case user_exit() is traced
4295 * and the tracer calls preempt_enable_notrace() causing
4296 * an infinite recursion.
4297 */
4298 prev_ctx = exception_enter();
4299 __schedule(true);
4300 exception_exit(prev_ctx);
4301
4302 preempt_latency_stop(1);
4303 preempt_enable_no_resched_notrace();
4304 } while (need_resched());
4305 }
4306 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4307
4308 #endif /* CONFIG_PREEMPTION */
4309
4310 /*
4311 * This is the entry point to schedule() from kernel preemption
4312 * off of irq context.
4313 * Note, that this is called and return with irqs disabled. This will
4314 * protect us against recursive calling from irq.
4315 */
preempt_schedule_irq(void)4316 asmlinkage __visible void __sched preempt_schedule_irq(void)
4317 {
4318 enum ctx_state prev_state;
4319
4320 /* Catch callers which need to be fixed */
4321 BUG_ON(preempt_count() || !irqs_disabled());
4322
4323 prev_state = exception_enter();
4324
4325 do {
4326 preempt_disable();
4327 local_irq_enable();
4328 __schedule(true);
4329 local_irq_disable();
4330 sched_preempt_enable_no_resched();
4331 } while (need_resched());
4332
4333 exception_exit(prev_state);
4334 }
4335
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)4336 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4337 void *key)
4338 {
4339 return try_to_wake_up(curr->private, mode, wake_flags);
4340 }
4341 EXPORT_SYMBOL(default_wake_function);
4342
4343 #ifdef CONFIG_RT_MUTEXES
4344
__rt_effective_prio(struct task_struct * pi_task,int prio)4345 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4346 {
4347 if (pi_task)
4348 prio = min(prio, pi_task->prio);
4349
4350 return prio;
4351 }
4352
rt_effective_prio(struct task_struct * p,int prio)4353 static inline int rt_effective_prio(struct task_struct *p, int prio)
4354 {
4355 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4356
4357 return __rt_effective_prio(pi_task, prio);
4358 }
4359
4360 /*
4361 * rt_mutex_setprio - set the current priority of a task
4362 * @p: task to boost
4363 * @pi_task: donor task
4364 *
4365 * This function changes the 'effective' priority of a task. It does
4366 * not touch ->normal_prio like __setscheduler().
4367 *
4368 * Used by the rt_mutex code to implement priority inheritance
4369 * logic. Call site only calls if the priority of the task changed.
4370 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)4371 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4372 {
4373 int prio, oldprio, queued, running, queue_flag =
4374 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4375 const struct sched_class *prev_class;
4376 struct rq_flags rf;
4377 struct rq *rq;
4378
4379 /* XXX used to be waiter->prio, not waiter->task->prio */
4380 prio = __rt_effective_prio(pi_task, p->normal_prio);
4381
4382 /*
4383 * If nothing changed; bail early.
4384 */
4385 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4386 return;
4387
4388 rq = __task_rq_lock(p, &rf);
4389 update_rq_clock(rq);
4390 /*
4391 * Set under pi_lock && rq->lock, such that the value can be used under
4392 * either lock.
4393 *
4394 * Note that there is loads of tricky to make this pointer cache work
4395 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4396 * ensure a task is de-boosted (pi_task is set to NULL) before the
4397 * task is allowed to run again (and can exit). This ensures the pointer
4398 * points to a blocked task -- which guaratees the task is present.
4399 */
4400 p->pi_top_task = pi_task;
4401
4402 /*
4403 * For FIFO/RR we only need to set prio, if that matches we're done.
4404 */
4405 if (prio == p->prio && !dl_prio(prio))
4406 goto out_unlock;
4407
4408 /*
4409 * Idle task boosting is a nono in general. There is one
4410 * exception, when PREEMPT_RT and NOHZ is active:
4411 *
4412 * The idle task calls get_next_timer_interrupt() and holds
4413 * the timer wheel base->lock on the CPU and another CPU wants
4414 * to access the timer (probably to cancel it). We can safely
4415 * ignore the boosting request, as the idle CPU runs this code
4416 * with interrupts disabled and will complete the lock
4417 * protected section without being interrupted. So there is no
4418 * real need to boost.
4419 */
4420 if (unlikely(p == rq->idle)) {
4421 WARN_ON(p != rq->curr);
4422 WARN_ON(p->pi_blocked_on);
4423 goto out_unlock;
4424 }
4425
4426 trace_sched_pi_setprio(p, pi_task);
4427 oldprio = p->prio;
4428
4429 if (oldprio == prio)
4430 queue_flag &= ~DEQUEUE_MOVE;
4431
4432 prev_class = p->sched_class;
4433 queued = task_on_rq_queued(p);
4434 running = task_current(rq, p);
4435 if (queued)
4436 dequeue_task(rq, p, queue_flag);
4437 if (running)
4438 put_prev_task(rq, p);
4439
4440 /*
4441 * Boosting condition are:
4442 * 1. -rt task is running and holds mutex A
4443 * --> -dl task blocks on mutex A
4444 *
4445 * 2. -dl task is running and holds mutex A
4446 * --> -dl task blocks on mutex A and could preempt the
4447 * running task
4448 */
4449 if (dl_prio(prio)) {
4450 if (!dl_prio(p->normal_prio) ||
4451 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4452 p->dl.dl_boosted = 1;
4453 queue_flag |= ENQUEUE_REPLENISH;
4454 } else
4455 p->dl.dl_boosted = 0;
4456 p->sched_class = &dl_sched_class;
4457 } else if (rt_prio(prio)) {
4458 if (dl_prio(oldprio))
4459 p->dl.dl_boosted = 0;
4460 if (oldprio < prio)
4461 queue_flag |= ENQUEUE_HEAD;
4462 p->sched_class = &rt_sched_class;
4463 } else {
4464 if (dl_prio(oldprio))
4465 p->dl.dl_boosted = 0;
4466 if (rt_prio(oldprio))
4467 p->rt.timeout = 0;
4468 p->sched_class = &fair_sched_class;
4469 }
4470
4471 p->prio = prio;
4472
4473 if (queued)
4474 enqueue_task(rq, p, queue_flag);
4475 if (running)
4476 set_next_task(rq, p);
4477
4478 check_class_changed(rq, p, prev_class, oldprio);
4479 out_unlock:
4480 /* Avoid rq from going away on us: */
4481 preempt_disable();
4482 __task_rq_unlock(rq, &rf);
4483
4484 balance_callback(rq);
4485 preempt_enable();
4486 }
4487 #else
rt_effective_prio(struct task_struct * p,int prio)4488 static inline int rt_effective_prio(struct task_struct *p, int prio)
4489 {
4490 return prio;
4491 }
4492 #endif
4493
set_user_nice(struct task_struct * p,long nice)4494 void set_user_nice(struct task_struct *p, long nice)
4495 {
4496 bool queued, running;
4497 int old_prio, delta;
4498 struct rq_flags rf;
4499 struct rq *rq;
4500
4501 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4502 return;
4503 /*
4504 * We have to be careful, if called from sys_setpriority(),
4505 * the task might be in the middle of scheduling on another CPU.
4506 */
4507 rq = task_rq_lock(p, &rf);
4508 update_rq_clock(rq);
4509
4510 /*
4511 * The RT priorities are set via sched_setscheduler(), but we still
4512 * allow the 'normal' nice value to be set - but as expected
4513 * it wont have any effect on scheduling until the task is
4514 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4515 */
4516 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4517 p->static_prio = NICE_TO_PRIO(nice);
4518 goto out_unlock;
4519 }
4520 queued = task_on_rq_queued(p);
4521 running = task_current(rq, p);
4522 if (queued)
4523 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4524 if (running)
4525 put_prev_task(rq, p);
4526
4527 p->static_prio = NICE_TO_PRIO(nice);
4528 set_load_weight(p, true);
4529 old_prio = p->prio;
4530 p->prio = effective_prio(p);
4531 delta = p->prio - old_prio;
4532
4533 if (queued) {
4534 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4535 /*
4536 * If the task increased its priority or is running and
4537 * lowered its priority, then reschedule its CPU:
4538 */
4539 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4540 resched_curr(rq);
4541 }
4542 if (running)
4543 set_next_task(rq, p);
4544 out_unlock:
4545 task_rq_unlock(rq, p, &rf);
4546 }
4547 EXPORT_SYMBOL(set_user_nice);
4548
4549 /*
4550 * can_nice - check if a task can reduce its nice value
4551 * @p: task
4552 * @nice: nice value
4553 */
can_nice(const struct task_struct * p,const int nice)4554 int can_nice(const struct task_struct *p, const int nice)
4555 {
4556 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4557 int nice_rlim = nice_to_rlimit(nice);
4558
4559 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4560 capable(CAP_SYS_NICE));
4561 }
4562
4563 #ifdef __ARCH_WANT_SYS_NICE
4564
4565 /*
4566 * sys_nice - change the priority of the current process.
4567 * @increment: priority increment
4568 *
4569 * sys_setpriority is a more generic, but much slower function that
4570 * does similar things.
4571 */
SYSCALL_DEFINE1(nice,int,increment)4572 SYSCALL_DEFINE1(nice, int, increment)
4573 {
4574 long nice, retval;
4575
4576 /*
4577 * Setpriority might change our priority at the same moment.
4578 * We don't have to worry. Conceptually one call occurs first
4579 * and we have a single winner.
4580 */
4581 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4582 nice = task_nice(current) + increment;
4583
4584 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4585 if (increment < 0 && !can_nice(current, nice))
4586 return -EPERM;
4587
4588 retval = security_task_setnice(current, nice);
4589 if (retval)
4590 return retval;
4591
4592 set_user_nice(current, nice);
4593 return 0;
4594 }
4595
4596 #endif
4597
4598 /**
4599 * task_prio - return the priority value of a given task.
4600 * @p: the task in question.
4601 *
4602 * Return: The priority value as seen by users in /proc.
4603 * RT tasks are offset by -200. Normal tasks are centered
4604 * around 0, value goes from -16 to +15.
4605 */
task_prio(const struct task_struct * p)4606 int task_prio(const struct task_struct *p)
4607 {
4608 return p->prio - MAX_RT_PRIO;
4609 }
4610
4611 /**
4612 * idle_cpu - is a given CPU idle currently?
4613 * @cpu: the processor in question.
4614 *
4615 * Return: 1 if the CPU is currently idle. 0 otherwise.
4616 */
idle_cpu(int cpu)4617 int idle_cpu(int cpu)
4618 {
4619 struct rq *rq = cpu_rq(cpu);
4620
4621 if (rq->curr != rq->idle)
4622 return 0;
4623
4624 if (rq->nr_running)
4625 return 0;
4626
4627 #ifdef CONFIG_SMP
4628 if (!llist_empty(&rq->wake_list))
4629 return 0;
4630 #endif
4631
4632 return 1;
4633 }
4634
4635 /**
4636 * available_idle_cpu - is a given CPU idle for enqueuing work.
4637 * @cpu: the CPU in question.
4638 *
4639 * Return: 1 if the CPU is currently idle. 0 otherwise.
4640 */
available_idle_cpu(int cpu)4641 int available_idle_cpu(int cpu)
4642 {
4643 if (!idle_cpu(cpu))
4644 return 0;
4645
4646 if (vcpu_is_preempted(cpu))
4647 return 0;
4648
4649 return 1;
4650 }
4651
4652 /**
4653 * idle_task - return the idle task for a given CPU.
4654 * @cpu: the processor in question.
4655 *
4656 * Return: The idle task for the CPU @cpu.
4657 */
idle_task(int cpu)4658 struct task_struct *idle_task(int cpu)
4659 {
4660 return cpu_rq(cpu)->idle;
4661 }
4662
4663 /**
4664 * find_process_by_pid - find a process with a matching PID value.
4665 * @pid: the pid in question.
4666 *
4667 * The task of @pid, if found. %NULL otherwise.
4668 */
find_process_by_pid(pid_t pid)4669 static struct task_struct *find_process_by_pid(pid_t pid)
4670 {
4671 return pid ? find_task_by_vpid(pid) : current;
4672 }
4673
4674 /*
4675 * sched_setparam() passes in -1 for its policy, to let the functions
4676 * it calls know not to change it.
4677 */
4678 #define SETPARAM_POLICY -1
4679
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)4680 static void __setscheduler_params(struct task_struct *p,
4681 const struct sched_attr *attr)
4682 {
4683 int policy = attr->sched_policy;
4684
4685 if (policy == SETPARAM_POLICY)
4686 policy = p->policy;
4687
4688 p->policy = policy;
4689
4690 if (dl_policy(policy))
4691 __setparam_dl(p, attr);
4692 else if (fair_policy(policy))
4693 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4694
4695 /*
4696 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4697 * !rt_policy. Always setting this ensures that things like
4698 * getparam()/getattr() don't report silly values for !rt tasks.
4699 */
4700 p->rt_priority = attr->sched_priority;
4701 p->normal_prio = normal_prio(p);
4702 set_load_weight(p, true);
4703 }
4704
4705 /* Actually do priority change: must hold pi & rq lock. */
__setscheduler(struct rq * rq,struct task_struct * p,const struct sched_attr * attr,bool keep_boost)4706 static void __setscheduler(struct rq *rq, struct task_struct *p,
4707 const struct sched_attr *attr, bool keep_boost)
4708 {
4709 /*
4710 * If params can't change scheduling class changes aren't allowed
4711 * either.
4712 */
4713 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4714 return;
4715
4716 __setscheduler_params(p, attr);
4717
4718 /*
4719 * Keep a potential priority boosting if called from
4720 * sched_setscheduler().
4721 */
4722 p->prio = normal_prio(p);
4723 if (keep_boost)
4724 p->prio = rt_effective_prio(p, p->prio);
4725
4726 if (dl_prio(p->prio))
4727 p->sched_class = &dl_sched_class;
4728 else if (rt_prio(p->prio))
4729 p->sched_class = &rt_sched_class;
4730 else
4731 p->sched_class = &fair_sched_class;
4732 }
4733
4734 /*
4735 * Check the target process has a UID that matches the current process's:
4736 */
check_same_owner(struct task_struct * p)4737 static bool check_same_owner(struct task_struct *p)
4738 {
4739 const struct cred *cred = current_cred(), *pcred;
4740 bool match;
4741
4742 rcu_read_lock();
4743 pcred = __task_cred(p);
4744 match = (uid_eq(cred->euid, pcred->euid) ||
4745 uid_eq(cred->euid, pcred->uid));
4746 rcu_read_unlock();
4747 return match;
4748 }
4749
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)4750 static int __sched_setscheduler(struct task_struct *p,
4751 const struct sched_attr *attr,
4752 bool user, bool pi)
4753 {
4754 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4755 MAX_RT_PRIO - 1 - attr->sched_priority;
4756 int retval, oldprio, oldpolicy = -1, queued, running;
4757 int new_effective_prio, policy = attr->sched_policy;
4758 const struct sched_class *prev_class;
4759 struct rq_flags rf;
4760 int reset_on_fork;
4761 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4762 struct rq *rq;
4763
4764 /* The pi code expects interrupts enabled */
4765 BUG_ON(pi && in_interrupt());
4766 recheck:
4767 /* Double check policy once rq lock held: */
4768 if (policy < 0) {
4769 reset_on_fork = p->sched_reset_on_fork;
4770 policy = oldpolicy = p->policy;
4771 } else {
4772 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4773
4774 if (!valid_policy(policy))
4775 return -EINVAL;
4776 }
4777
4778 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4779 return -EINVAL;
4780
4781 /*
4782 * Valid priorities for SCHED_FIFO and SCHED_RR are
4783 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4784 * SCHED_BATCH and SCHED_IDLE is 0.
4785 */
4786 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4787 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4788 return -EINVAL;
4789 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4790 (rt_policy(policy) != (attr->sched_priority != 0)))
4791 return -EINVAL;
4792
4793 /*
4794 * Allow unprivileged RT tasks to decrease priority:
4795 */
4796 if (user && !capable(CAP_SYS_NICE)) {
4797 if (fair_policy(policy)) {
4798 if (attr->sched_nice < task_nice(p) &&
4799 !can_nice(p, attr->sched_nice))
4800 return -EPERM;
4801 }
4802
4803 if (rt_policy(policy)) {
4804 unsigned long rlim_rtprio =
4805 task_rlimit(p, RLIMIT_RTPRIO);
4806
4807 /* Can't set/change the rt policy: */
4808 if (policy != p->policy && !rlim_rtprio)
4809 return -EPERM;
4810
4811 /* Can't increase priority: */
4812 if (attr->sched_priority > p->rt_priority &&
4813 attr->sched_priority > rlim_rtprio)
4814 return -EPERM;
4815 }
4816
4817 /*
4818 * Can't set/change SCHED_DEADLINE policy at all for now
4819 * (safest behavior); in the future we would like to allow
4820 * unprivileged DL tasks to increase their relative deadline
4821 * or reduce their runtime (both ways reducing utilization)
4822 */
4823 if (dl_policy(policy))
4824 return -EPERM;
4825
4826 /*
4827 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4828 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4829 */
4830 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4831 if (!can_nice(p, task_nice(p)))
4832 return -EPERM;
4833 }
4834
4835 /* Can't change other user's priorities: */
4836 if (!check_same_owner(p))
4837 return -EPERM;
4838
4839 /* Normal users shall not reset the sched_reset_on_fork flag: */
4840 if (p->sched_reset_on_fork && !reset_on_fork)
4841 return -EPERM;
4842 }
4843
4844 if (user) {
4845 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4846 return -EINVAL;
4847
4848 retval = security_task_setscheduler(p);
4849 if (retval)
4850 return retval;
4851 }
4852
4853 /* Update task specific "requested" clamps */
4854 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4855 retval = uclamp_validate(p, attr);
4856 if (retval)
4857 return retval;
4858 }
4859
4860 if (pi)
4861 cpuset_read_lock();
4862
4863 /*
4864 * Make sure no PI-waiters arrive (or leave) while we are
4865 * changing the priority of the task:
4866 *
4867 * To be able to change p->policy safely, the appropriate
4868 * runqueue lock must be held.
4869 */
4870 rq = task_rq_lock(p, &rf);
4871 update_rq_clock(rq);
4872
4873 /*
4874 * Changing the policy of the stop threads its a very bad idea:
4875 */
4876 if (p == rq->stop) {
4877 retval = -EINVAL;
4878 goto unlock;
4879 }
4880
4881 /*
4882 * If not changing anything there's no need to proceed further,
4883 * but store a possible modification of reset_on_fork.
4884 */
4885 if (unlikely(policy == p->policy)) {
4886 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4887 goto change;
4888 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4889 goto change;
4890 if (dl_policy(policy) && dl_param_changed(p, attr))
4891 goto change;
4892 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4893 goto change;
4894
4895 p->sched_reset_on_fork = reset_on_fork;
4896 retval = 0;
4897 goto unlock;
4898 }
4899 change:
4900
4901 if (user) {
4902 #ifdef CONFIG_RT_GROUP_SCHED
4903 /*
4904 * Do not allow realtime tasks into groups that have no runtime
4905 * assigned.
4906 */
4907 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4908 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4909 !task_group_is_autogroup(task_group(p))) {
4910 retval = -EPERM;
4911 goto unlock;
4912 }
4913 #endif
4914 #ifdef CONFIG_SMP
4915 if (dl_bandwidth_enabled() && dl_policy(policy) &&
4916 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
4917 cpumask_t *span = rq->rd->span;
4918
4919 /*
4920 * Don't allow tasks with an affinity mask smaller than
4921 * the entire root_domain to become SCHED_DEADLINE. We
4922 * will also fail if there's no bandwidth available.
4923 */
4924 if (!cpumask_subset(span, p->cpus_ptr) ||
4925 rq->rd->dl_bw.bw == 0) {
4926 retval = -EPERM;
4927 goto unlock;
4928 }
4929 }
4930 #endif
4931 }
4932
4933 /* Re-check policy now with rq lock held: */
4934 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4935 policy = oldpolicy = -1;
4936 task_rq_unlock(rq, p, &rf);
4937 if (pi)
4938 cpuset_read_unlock();
4939 goto recheck;
4940 }
4941
4942 /*
4943 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4944 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4945 * is available.
4946 */
4947 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
4948 retval = -EBUSY;
4949 goto unlock;
4950 }
4951
4952 p->sched_reset_on_fork = reset_on_fork;
4953 oldprio = p->prio;
4954
4955 if (pi) {
4956 /*
4957 * Take priority boosted tasks into account. If the new
4958 * effective priority is unchanged, we just store the new
4959 * normal parameters and do not touch the scheduler class and
4960 * the runqueue. This will be done when the task deboost
4961 * itself.
4962 */
4963 new_effective_prio = rt_effective_prio(p, newprio);
4964 if (new_effective_prio == oldprio)
4965 queue_flags &= ~DEQUEUE_MOVE;
4966 }
4967
4968 queued = task_on_rq_queued(p);
4969 running = task_current(rq, p);
4970 if (queued)
4971 dequeue_task(rq, p, queue_flags);
4972 if (running)
4973 put_prev_task(rq, p);
4974
4975 prev_class = p->sched_class;
4976
4977 __setscheduler(rq, p, attr, pi);
4978 __setscheduler_uclamp(p, attr);
4979
4980 if (queued) {
4981 /*
4982 * We enqueue to tail when the priority of a task is
4983 * increased (user space view).
4984 */
4985 if (oldprio < p->prio)
4986 queue_flags |= ENQUEUE_HEAD;
4987
4988 enqueue_task(rq, p, queue_flags);
4989 }
4990 if (running)
4991 set_next_task(rq, p);
4992
4993 check_class_changed(rq, p, prev_class, oldprio);
4994
4995 /* Avoid rq from going away on us: */
4996 preempt_disable();
4997 task_rq_unlock(rq, p, &rf);
4998
4999 if (pi) {
5000 cpuset_read_unlock();
5001 rt_mutex_adjust_pi(p);
5002 }
5003
5004 /* Run balance callbacks after we've adjusted the PI chain: */
5005 balance_callback(rq);
5006 preempt_enable();
5007
5008 return 0;
5009
5010 unlock:
5011 task_rq_unlock(rq, p, &rf);
5012 if (pi)
5013 cpuset_read_unlock();
5014 return retval;
5015 }
5016
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)5017 static int _sched_setscheduler(struct task_struct *p, int policy,
5018 const struct sched_param *param, bool check)
5019 {
5020 struct sched_attr attr = {
5021 .sched_policy = policy,
5022 .sched_priority = param->sched_priority,
5023 .sched_nice = PRIO_TO_NICE(p->static_prio),
5024 };
5025
5026 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5027 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5028 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5029 policy &= ~SCHED_RESET_ON_FORK;
5030 attr.sched_policy = policy;
5031 }
5032
5033 return __sched_setscheduler(p, &attr, check, true);
5034 }
5035 /**
5036 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5037 * @p: the task in question.
5038 * @policy: new policy.
5039 * @param: structure containing the new RT priority.
5040 *
5041 * Return: 0 on success. An error code otherwise.
5042 *
5043 * NOTE that the task may be already dead.
5044 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)5045 int sched_setscheduler(struct task_struct *p, int policy,
5046 const struct sched_param *param)
5047 {
5048 return _sched_setscheduler(p, policy, param, true);
5049 }
5050 EXPORT_SYMBOL_GPL(sched_setscheduler);
5051
sched_setattr(struct task_struct * p,const struct sched_attr * attr)5052 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5053 {
5054 return __sched_setscheduler(p, attr, true, true);
5055 }
5056 EXPORT_SYMBOL_GPL(sched_setattr);
5057
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)5058 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5059 {
5060 return __sched_setscheduler(p, attr, false, true);
5061 }
5062
5063 /**
5064 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5065 * @p: the task in question.
5066 * @policy: new policy.
5067 * @param: structure containing the new RT priority.
5068 *
5069 * Just like sched_setscheduler, only don't bother checking if the
5070 * current context has permission. For example, this is needed in
5071 * stop_machine(): we create temporary high priority worker threads,
5072 * but our caller might not have that capability.
5073 *
5074 * Return: 0 on success. An error code otherwise.
5075 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)5076 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5077 const struct sched_param *param)
5078 {
5079 return _sched_setscheduler(p, policy, param, false);
5080 }
5081 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5082
5083 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)5084 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5085 {
5086 struct sched_param lparam;
5087 struct task_struct *p;
5088 int retval;
5089
5090 if (!param || pid < 0)
5091 return -EINVAL;
5092 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5093 return -EFAULT;
5094
5095 rcu_read_lock();
5096 retval = -ESRCH;
5097 p = find_process_by_pid(pid);
5098 if (likely(p))
5099 get_task_struct(p);
5100 rcu_read_unlock();
5101
5102 if (likely(p)) {
5103 retval = sched_setscheduler(p, policy, &lparam);
5104 put_task_struct(p);
5105 }
5106
5107 return retval;
5108 }
5109
5110 /*
5111 * Mimics kernel/events/core.c perf_copy_attr().
5112 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)5113 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5114 {
5115 u32 size;
5116 int ret;
5117
5118 /* Zero the full structure, so that a short copy will be nice: */
5119 memset(attr, 0, sizeof(*attr));
5120
5121 ret = get_user(size, &uattr->size);
5122 if (ret)
5123 return ret;
5124
5125 /* ABI compatibility quirk: */
5126 if (!size)
5127 size = SCHED_ATTR_SIZE_VER0;
5128 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5129 goto err_size;
5130
5131 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5132 if (ret) {
5133 if (ret == -E2BIG)
5134 goto err_size;
5135 return ret;
5136 }
5137
5138 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5139 size < SCHED_ATTR_SIZE_VER1)
5140 return -EINVAL;
5141
5142 /*
5143 * XXX: Do we want to be lenient like existing syscalls; or do we want
5144 * to be strict and return an error on out-of-bounds values?
5145 */
5146 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5147
5148 return 0;
5149
5150 err_size:
5151 put_user(sizeof(*attr), &uattr->size);
5152 return -E2BIG;
5153 }
5154
5155 /**
5156 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5157 * @pid: the pid in question.
5158 * @policy: new policy.
5159 * @param: structure containing the new RT priority.
5160 *
5161 * Return: 0 on success. An error code otherwise.
5162 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)5163 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5164 {
5165 if (policy < 0)
5166 return -EINVAL;
5167
5168 return do_sched_setscheduler(pid, policy, param);
5169 }
5170
5171 /**
5172 * sys_sched_setparam - set/change the RT priority of a thread
5173 * @pid: the pid in question.
5174 * @param: structure containing the new RT priority.
5175 *
5176 * Return: 0 on success. An error code otherwise.
5177 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)5178 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5179 {
5180 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5181 }
5182
5183 /**
5184 * sys_sched_setattr - same as above, but with extended sched_attr
5185 * @pid: the pid in question.
5186 * @uattr: structure containing the extended parameters.
5187 * @flags: for future extension.
5188 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)5189 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5190 unsigned int, flags)
5191 {
5192 struct sched_attr attr;
5193 struct task_struct *p;
5194 int retval;
5195
5196 if (!uattr || pid < 0 || flags)
5197 return -EINVAL;
5198
5199 retval = sched_copy_attr(uattr, &attr);
5200 if (retval)
5201 return retval;
5202
5203 if ((int)attr.sched_policy < 0)
5204 return -EINVAL;
5205 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5206 attr.sched_policy = SETPARAM_POLICY;
5207
5208 rcu_read_lock();
5209 retval = -ESRCH;
5210 p = find_process_by_pid(pid);
5211 if (likely(p))
5212 get_task_struct(p);
5213 rcu_read_unlock();
5214
5215 if (likely(p)) {
5216 retval = sched_setattr(p, &attr);
5217 put_task_struct(p);
5218 }
5219
5220 return retval;
5221 }
5222
5223 /**
5224 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5225 * @pid: the pid in question.
5226 *
5227 * Return: On success, the policy of the thread. Otherwise, a negative error
5228 * code.
5229 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)5230 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5231 {
5232 struct task_struct *p;
5233 int retval;
5234
5235 if (pid < 0)
5236 return -EINVAL;
5237
5238 retval = -ESRCH;
5239 rcu_read_lock();
5240 p = find_process_by_pid(pid);
5241 if (p) {
5242 retval = security_task_getscheduler(p);
5243 if (!retval)
5244 retval = p->policy
5245 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5246 }
5247 rcu_read_unlock();
5248 return retval;
5249 }
5250
5251 /**
5252 * sys_sched_getparam - get the RT priority of a thread
5253 * @pid: the pid in question.
5254 * @param: structure containing the RT priority.
5255 *
5256 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5257 * code.
5258 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)5259 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5260 {
5261 struct sched_param lp = { .sched_priority = 0 };
5262 struct task_struct *p;
5263 int retval;
5264
5265 if (!param || pid < 0)
5266 return -EINVAL;
5267
5268 rcu_read_lock();
5269 p = find_process_by_pid(pid);
5270 retval = -ESRCH;
5271 if (!p)
5272 goto out_unlock;
5273
5274 retval = security_task_getscheduler(p);
5275 if (retval)
5276 goto out_unlock;
5277
5278 if (task_has_rt_policy(p))
5279 lp.sched_priority = p->rt_priority;
5280 rcu_read_unlock();
5281
5282 /*
5283 * This one might sleep, we cannot do it with a spinlock held ...
5284 */
5285 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5286
5287 return retval;
5288
5289 out_unlock:
5290 rcu_read_unlock();
5291 return retval;
5292 }
5293
5294 /*
5295 * Copy the kernel size attribute structure (which might be larger
5296 * than what user-space knows about) to user-space.
5297 *
5298 * Note that all cases are valid: user-space buffer can be larger or
5299 * smaller than the kernel-space buffer. The usual case is that both
5300 * have the same size.
5301 */
5302 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)5303 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5304 struct sched_attr *kattr,
5305 unsigned int usize)
5306 {
5307 unsigned int ksize = sizeof(*kattr);
5308
5309 if (!access_ok(uattr, usize))
5310 return -EFAULT;
5311
5312 /*
5313 * sched_getattr() ABI forwards and backwards compatibility:
5314 *
5315 * If usize == ksize then we just copy everything to user-space and all is good.
5316 *
5317 * If usize < ksize then we only copy as much as user-space has space for,
5318 * this keeps ABI compatibility as well. We skip the rest.
5319 *
5320 * If usize > ksize then user-space is using a newer version of the ABI,
5321 * which part the kernel doesn't know about. Just ignore it - tooling can
5322 * detect the kernel's knowledge of attributes from the attr->size value
5323 * which is set to ksize in this case.
5324 */
5325 kattr->size = min(usize, ksize);
5326
5327 if (copy_to_user(uattr, kattr, kattr->size))
5328 return -EFAULT;
5329
5330 return 0;
5331 }
5332
5333 /**
5334 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5335 * @pid: the pid in question.
5336 * @uattr: structure containing the extended parameters.
5337 * @usize: sizeof(attr) for fwd/bwd comp.
5338 * @flags: for future extension.
5339 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)5340 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5341 unsigned int, usize, unsigned int, flags)
5342 {
5343 struct sched_attr kattr = { };
5344 struct task_struct *p;
5345 int retval;
5346
5347 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5348 usize < SCHED_ATTR_SIZE_VER0 || flags)
5349 return -EINVAL;
5350
5351 rcu_read_lock();
5352 p = find_process_by_pid(pid);
5353 retval = -ESRCH;
5354 if (!p)
5355 goto out_unlock;
5356
5357 retval = security_task_getscheduler(p);
5358 if (retval)
5359 goto out_unlock;
5360
5361 kattr.sched_policy = p->policy;
5362 if (p->sched_reset_on_fork)
5363 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5364 if (task_has_dl_policy(p))
5365 __getparam_dl(p, &kattr);
5366 else if (task_has_rt_policy(p))
5367 kattr.sched_priority = p->rt_priority;
5368 else
5369 kattr.sched_nice = task_nice(p);
5370
5371 #ifdef CONFIG_UCLAMP_TASK
5372 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5373 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5374 #endif
5375
5376 rcu_read_unlock();
5377
5378 return sched_attr_copy_to_user(uattr, &kattr, usize);
5379
5380 out_unlock:
5381 rcu_read_unlock();
5382 return retval;
5383 }
5384
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)5385 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5386 {
5387 cpumask_var_t cpus_allowed, new_mask;
5388 struct task_struct *p;
5389 int retval;
5390
5391 rcu_read_lock();
5392
5393 p = find_process_by_pid(pid);
5394 if (!p) {
5395 rcu_read_unlock();
5396 return -ESRCH;
5397 }
5398
5399 /* Prevent p going away */
5400 get_task_struct(p);
5401 rcu_read_unlock();
5402
5403 if (p->flags & PF_NO_SETAFFINITY) {
5404 retval = -EINVAL;
5405 goto out_put_task;
5406 }
5407 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5408 retval = -ENOMEM;
5409 goto out_put_task;
5410 }
5411 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5412 retval = -ENOMEM;
5413 goto out_free_cpus_allowed;
5414 }
5415 retval = -EPERM;
5416 if (!check_same_owner(p)) {
5417 rcu_read_lock();
5418 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5419 rcu_read_unlock();
5420 goto out_free_new_mask;
5421 }
5422 rcu_read_unlock();
5423 }
5424
5425 retval = security_task_setscheduler(p);
5426 if (retval)
5427 goto out_free_new_mask;
5428
5429
5430 cpuset_cpus_allowed(p, cpus_allowed);
5431 cpumask_and(new_mask, in_mask, cpus_allowed);
5432
5433 /*
5434 * Since bandwidth control happens on root_domain basis,
5435 * if admission test is enabled, we only admit -deadline
5436 * tasks allowed to run on all the CPUs in the task's
5437 * root_domain.
5438 */
5439 #ifdef CONFIG_SMP
5440 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5441 rcu_read_lock();
5442 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5443 retval = -EBUSY;
5444 rcu_read_unlock();
5445 goto out_free_new_mask;
5446 }
5447 rcu_read_unlock();
5448 }
5449 #endif
5450 again:
5451 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5452
5453 if (!retval) {
5454 cpuset_cpus_allowed(p, cpus_allowed);
5455 if (!cpumask_subset(new_mask, cpus_allowed)) {
5456 /*
5457 * We must have raced with a concurrent cpuset
5458 * update. Just reset the cpus_allowed to the
5459 * cpuset's cpus_allowed
5460 */
5461 cpumask_copy(new_mask, cpus_allowed);
5462 goto again;
5463 }
5464 }
5465 out_free_new_mask:
5466 free_cpumask_var(new_mask);
5467 out_free_cpus_allowed:
5468 free_cpumask_var(cpus_allowed);
5469 out_put_task:
5470 put_task_struct(p);
5471 return retval;
5472 }
5473
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)5474 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5475 struct cpumask *new_mask)
5476 {
5477 if (len < cpumask_size())
5478 cpumask_clear(new_mask);
5479 else if (len > cpumask_size())
5480 len = cpumask_size();
5481
5482 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5483 }
5484
5485 /**
5486 * sys_sched_setaffinity - set the CPU affinity of a process
5487 * @pid: pid of the process
5488 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5489 * @user_mask_ptr: user-space pointer to the new CPU mask
5490 *
5491 * Return: 0 on success. An error code otherwise.
5492 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)5493 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5494 unsigned long __user *, user_mask_ptr)
5495 {
5496 cpumask_var_t new_mask;
5497 int retval;
5498
5499 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5500 return -ENOMEM;
5501
5502 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5503 if (retval == 0)
5504 retval = sched_setaffinity(pid, new_mask);
5505 free_cpumask_var(new_mask);
5506 return retval;
5507 }
5508
sched_getaffinity(pid_t pid,struct cpumask * mask)5509 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5510 {
5511 struct task_struct *p;
5512 unsigned long flags;
5513 int retval;
5514
5515 rcu_read_lock();
5516
5517 retval = -ESRCH;
5518 p = find_process_by_pid(pid);
5519 if (!p)
5520 goto out_unlock;
5521
5522 retval = security_task_getscheduler(p);
5523 if (retval)
5524 goto out_unlock;
5525
5526 raw_spin_lock_irqsave(&p->pi_lock, flags);
5527 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5528 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5529
5530 out_unlock:
5531 rcu_read_unlock();
5532
5533 return retval;
5534 }
5535
5536 /**
5537 * sys_sched_getaffinity - get the CPU affinity of a process
5538 * @pid: pid of the process
5539 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5540 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5541 *
5542 * Return: size of CPU mask copied to user_mask_ptr on success. An
5543 * error code otherwise.
5544 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)5545 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5546 unsigned long __user *, user_mask_ptr)
5547 {
5548 int ret;
5549 cpumask_var_t mask;
5550
5551 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5552 return -EINVAL;
5553 if (len & (sizeof(unsigned long)-1))
5554 return -EINVAL;
5555
5556 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5557 return -ENOMEM;
5558
5559 ret = sched_getaffinity(pid, mask);
5560 if (ret == 0) {
5561 unsigned int retlen = min(len, cpumask_size());
5562
5563 if (copy_to_user(user_mask_ptr, mask, retlen))
5564 ret = -EFAULT;
5565 else
5566 ret = retlen;
5567 }
5568 free_cpumask_var(mask);
5569
5570 return ret;
5571 }
5572
5573 /**
5574 * sys_sched_yield - yield the current processor to other threads.
5575 *
5576 * This function yields the current CPU to other tasks. If there are no
5577 * other threads running on this CPU then this function will return.
5578 *
5579 * Return: 0.
5580 */
do_sched_yield(void)5581 static void do_sched_yield(void)
5582 {
5583 struct rq_flags rf;
5584 struct rq *rq;
5585
5586 rq = this_rq_lock_irq(&rf);
5587
5588 schedstat_inc(rq->yld_count);
5589 current->sched_class->yield_task(rq);
5590
5591 /*
5592 * Since we are going to call schedule() anyway, there's
5593 * no need to preempt or enable interrupts:
5594 */
5595 preempt_disable();
5596 rq_unlock(rq, &rf);
5597 sched_preempt_enable_no_resched();
5598
5599 schedule();
5600 }
5601
SYSCALL_DEFINE0(sched_yield)5602 SYSCALL_DEFINE0(sched_yield)
5603 {
5604 do_sched_yield();
5605 return 0;
5606 }
5607
5608 #ifndef CONFIG_PREEMPTION
_cond_resched(void)5609 int __sched _cond_resched(void)
5610 {
5611 if (should_resched(0)) {
5612 preempt_schedule_common();
5613 return 1;
5614 }
5615 rcu_all_qs();
5616 return 0;
5617 }
5618 EXPORT_SYMBOL(_cond_resched);
5619 #endif
5620
5621 /*
5622 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5623 * call schedule, and on return reacquire the lock.
5624 *
5625 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5626 * operations here to prevent schedule() from being called twice (once via
5627 * spin_unlock(), once by hand).
5628 */
__cond_resched_lock(spinlock_t * lock)5629 int __cond_resched_lock(spinlock_t *lock)
5630 {
5631 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5632 int ret = 0;
5633
5634 lockdep_assert_held(lock);
5635
5636 if (spin_needbreak(lock) || resched) {
5637 spin_unlock(lock);
5638 if (resched)
5639 preempt_schedule_common();
5640 else
5641 cpu_relax();
5642 ret = 1;
5643 spin_lock(lock);
5644 }
5645 return ret;
5646 }
5647 EXPORT_SYMBOL(__cond_resched_lock);
5648
5649 /**
5650 * yield - yield the current processor to other threads.
5651 *
5652 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5653 *
5654 * The scheduler is at all times free to pick the calling task as the most
5655 * eligible task to run, if removing the yield() call from your code breaks
5656 * it, its already broken.
5657 *
5658 * Typical broken usage is:
5659 *
5660 * while (!event)
5661 * yield();
5662 *
5663 * where one assumes that yield() will let 'the other' process run that will
5664 * make event true. If the current task is a SCHED_FIFO task that will never
5665 * happen. Never use yield() as a progress guarantee!!
5666 *
5667 * If you want to use yield() to wait for something, use wait_event().
5668 * If you want to use yield() to be 'nice' for others, use cond_resched().
5669 * If you still want to use yield(), do not!
5670 */
yield(void)5671 void __sched yield(void)
5672 {
5673 set_current_state(TASK_RUNNING);
5674 do_sched_yield();
5675 }
5676 EXPORT_SYMBOL(yield);
5677
5678 /**
5679 * yield_to - yield the current processor to another thread in
5680 * your thread group, or accelerate that thread toward the
5681 * processor it's on.
5682 * @p: target task
5683 * @preempt: whether task preemption is allowed or not
5684 *
5685 * It's the caller's job to ensure that the target task struct
5686 * can't go away on us before we can do any checks.
5687 *
5688 * Return:
5689 * true (>0) if we indeed boosted the target task.
5690 * false (0) if we failed to boost the target.
5691 * -ESRCH if there's no task to yield to.
5692 */
yield_to(struct task_struct * p,bool preempt)5693 int __sched yield_to(struct task_struct *p, bool preempt)
5694 {
5695 struct task_struct *curr = current;
5696 struct rq *rq, *p_rq;
5697 unsigned long flags;
5698 int yielded = 0;
5699
5700 local_irq_save(flags);
5701 rq = this_rq();
5702
5703 again:
5704 p_rq = task_rq(p);
5705 /*
5706 * If we're the only runnable task on the rq and target rq also
5707 * has only one task, there's absolutely no point in yielding.
5708 */
5709 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5710 yielded = -ESRCH;
5711 goto out_irq;
5712 }
5713
5714 double_rq_lock(rq, p_rq);
5715 if (task_rq(p) != p_rq) {
5716 double_rq_unlock(rq, p_rq);
5717 goto again;
5718 }
5719
5720 if (!curr->sched_class->yield_to_task)
5721 goto out_unlock;
5722
5723 if (curr->sched_class != p->sched_class)
5724 goto out_unlock;
5725
5726 if (task_running(p_rq, p) || p->state)
5727 goto out_unlock;
5728
5729 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5730 if (yielded) {
5731 schedstat_inc(rq->yld_count);
5732 /*
5733 * Make p's CPU reschedule; pick_next_entity takes care of
5734 * fairness.
5735 */
5736 if (preempt && rq != p_rq)
5737 resched_curr(p_rq);
5738 }
5739
5740 out_unlock:
5741 double_rq_unlock(rq, p_rq);
5742 out_irq:
5743 local_irq_restore(flags);
5744
5745 if (yielded > 0)
5746 schedule();
5747
5748 return yielded;
5749 }
5750 EXPORT_SYMBOL_GPL(yield_to);
5751
io_schedule_prepare(void)5752 int io_schedule_prepare(void)
5753 {
5754 int old_iowait = current->in_iowait;
5755
5756 current->in_iowait = 1;
5757 blk_schedule_flush_plug(current);
5758
5759 return old_iowait;
5760 }
5761
io_schedule_finish(int token)5762 void io_schedule_finish(int token)
5763 {
5764 current->in_iowait = token;
5765 }
5766
5767 /*
5768 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5769 * that process accounting knows that this is a task in IO wait state.
5770 */
io_schedule_timeout(long timeout)5771 long __sched io_schedule_timeout(long timeout)
5772 {
5773 int token;
5774 long ret;
5775
5776 token = io_schedule_prepare();
5777 ret = schedule_timeout(timeout);
5778 io_schedule_finish(token);
5779
5780 return ret;
5781 }
5782 EXPORT_SYMBOL(io_schedule_timeout);
5783
io_schedule(void)5784 void __sched io_schedule(void)
5785 {
5786 int token;
5787
5788 token = io_schedule_prepare();
5789 schedule();
5790 io_schedule_finish(token);
5791 }
5792 EXPORT_SYMBOL(io_schedule);
5793
5794 /**
5795 * sys_sched_get_priority_max - return maximum RT priority.
5796 * @policy: scheduling class.
5797 *
5798 * Return: On success, this syscall returns the maximum
5799 * rt_priority that can be used by a given scheduling class.
5800 * On failure, a negative error code is returned.
5801 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)5802 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5803 {
5804 int ret = -EINVAL;
5805
5806 switch (policy) {
5807 case SCHED_FIFO:
5808 case SCHED_RR:
5809 ret = MAX_USER_RT_PRIO-1;
5810 break;
5811 case SCHED_DEADLINE:
5812 case SCHED_NORMAL:
5813 case SCHED_BATCH:
5814 case SCHED_IDLE:
5815 ret = 0;
5816 break;
5817 }
5818 return ret;
5819 }
5820
5821 /**
5822 * sys_sched_get_priority_min - return minimum RT priority.
5823 * @policy: scheduling class.
5824 *
5825 * Return: On success, this syscall returns the minimum
5826 * rt_priority that can be used by a given scheduling class.
5827 * On failure, a negative error code is returned.
5828 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)5829 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5830 {
5831 int ret = -EINVAL;
5832
5833 switch (policy) {
5834 case SCHED_FIFO:
5835 case SCHED_RR:
5836 ret = 1;
5837 break;
5838 case SCHED_DEADLINE:
5839 case SCHED_NORMAL:
5840 case SCHED_BATCH:
5841 case SCHED_IDLE:
5842 ret = 0;
5843 }
5844 return ret;
5845 }
5846
sched_rr_get_interval(pid_t pid,struct timespec64 * t)5847 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5848 {
5849 struct task_struct *p;
5850 unsigned int time_slice;
5851 struct rq_flags rf;
5852 struct rq *rq;
5853 int retval;
5854
5855 if (pid < 0)
5856 return -EINVAL;
5857
5858 retval = -ESRCH;
5859 rcu_read_lock();
5860 p = find_process_by_pid(pid);
5861 if (!p)
5862 goto out_unlock;
5863
5864 retval = security_task_getscheduler(p);
5865 if (retval)
5866 goto out_unlock;
5867
5868 rq = task_rq_lock(p, &rf);
5869 time_slice = 0;
5870 if (p->sched_class->get_rr_interval)
5871 time_slice = p->sched_class->get_rr_interval(rq, p);
5872 task_rq_unlock(rq, p, &rf);
5873
5874 rcu_read_unlock();
5875 jiffies_to_timespec64(time_slice, t);
5876 return 0;
5877
5878 out_unlock:
5879 rcu_read_unlock();
5880 return retval;
5881 }
5882
5883 /**
5884 * sys_sched_rr_get_interval - return the default timeslice of a process.
5885 * @pid: pid of the process.
5886 * @interval: userspace pointer to the timeslice value.
5887 *
5888 * this syscall writes the default timeslice value of a given process
5889 * into the user-space timespec buffer. A value of '0' means infinity.
5890 *
5891 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5892 * an error code.
5893 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)5894 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5895 struct __kernel_timespec __user *, interval)
5896 {
5897 struct timespec64 t;
5898 int retval = sched_rr_get_interval(pid, &t);
5899
5900 if (retval == 0)
5901 retval = put_timespec64(&t, interval);
5902
5903 return retval;
5904 }
5905
5906 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)5907 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5908 struct old_timespec32 __user *, interval)
5909 {
5910 struct timespec64 t;
5911 int retval = sched_rr_get_interval(pid, &t);
5912
5913 if (retval == 0)
5914 retval = put_old_timespec32(&t, interval);
5915 return retval;
5916 }
5917 #endif
5918
sched_show_task(struct task_struct * p)5919 void sched_show_task(struct task_struct *p)
5920 {
5921 unsigned long free = 0;
5922 int ppid;
5923
5924 if (!try_get_task_stack(p))
5925 return;
5926
5927 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
5928
5929 if (p->state == TASK_RUNNING)
5930 printk(KERN_CONT " running task ");
5931 #ifdef CONFIG_DEBUG_STACK_USAGE
5932 free = stack_not_used(p);
5933 #endif
5934 ppid = 0;
5935 rcu_read_lock();
5936 if (pid_alive(p))
5937 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5938 rcu_read_unlock();
5939 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5940 task_pid_nr(p), ppid,
5941 (unsigned long)task_thread_info(p)->flags);
5942
5943 print_worker_info(KERN_INFO, p);
5944 show_stack(p, NULL);
5945 put_task_stack(p);
5946 }
5947 EXPORT_SYMBOL_GPL(sched_show_task);
5948
5949 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)5950 state_filter_match(unsigned long state_filter, struct task_struct *p)
5951 {
5952 /* no filter, everything matches */
5953 if (!state_filter)
5954 return true;
5955
5956 /* filter, but doesn't match */
5957 if (!(p->state & state_filter))
5958 return false;
5959
5960 /*
5961 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5962 * TASK_KILLABLE).
5963 */
5964 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
5965 return false;
5966
5967 return true;
5968 }
5969
5970
show_state_filter(unsigned long state_filter)5971 void show_state_filter(unsigned long state_filter)
5972 {
5973 struct task_struct *g, *p;
5974
5975 #if BITS_PER_LONG == 32
5976 printk(KERN_INFO
5977 " task PC stack pid father\n");
5978 #else
5979 printk(KERN_INFO
5980 " task PC stack pid father\n");
5981 #endif
5982 rcu_read_lock();
5983 for_each_process_thread(g, p) {
5984 /*
5985 * reset the NMI-timeout, listing all files on a slow
5986 * console might take a lot of time:
5987 * Also, reset softlockup watchdogs on all CPUs, because
5988 * another CPU might be blocked waiting for us to process
5989 * an IPI.
5990 */
5991 touch_nmi_watchdog();
5992 touch_all_softlockup_watchdogs();
5993 if (state_filter_match(state_filter, p))
5994 sched_show_task(p);
5995 }
5996
5997 #ifdef CONFIG_SCHED_DEBUG
5998 if (!state_filter)
5999 sysrq_sched_debug_show();
6000 #endif
6001 rcu_read_unlock();
6002 /*
6003 * Only show locks if all tasks are dumped:
6004 */
6005 if (!state_filter)
6006 debug_show_all_locks();
6007 }
6008
6009 /**
6010 * init_idle - set up an idle thread for a given CPU
6011 * @idle: task in question
6012 * @cpu: CPU the idle task belongs to
6013 *
6014 * NOTE: this function does not set the idle thread's NEED_RESCHED
6015 * flag, to make booting more robust.
6016 */
init_idle(struct task_struct * idle,int cpu)6017 void init_idle(struct task_struct *idle, int cpu)
6018 {
6019 struct rq *rq = cpu_rq(cpu);
6020 unsigned long flags;
6021
6022 __sched_fork(0, idle);
6023
6024 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6025 raw_spin_lock(&rq->lock);
6026
6027 idle->state = TASK_RUNNING;
6028 idle->se.exec_start = sched_clock();
6029 idle->flags |= PF_IDLE;
6030
6031 kasan_unpoison_task_stack(idle);
6032
6033 #ifdef CONFIG_SMP
6034 /*
6035 * Its possible that init_idle() gets called multiple times on a task,
6036 * in that case do_set_cpus_allowed() will not do the right thing.
6037 *
6038 * And since this is boot we can forgo the serialization.
6039 */
6040 set_cpus_allowed_common(idle, cpumask_of(cpu));
6041 #endif
6042 /*
6043 * We're having a chicken and egg problem, even though we are
6044 * holding rq->lock, the CPU isn't yet set to this CPU so the
6045 * lockdep check in task_group() will fail.
6046 *
6047 * Similar case to sched_fork(). / Alternatively we could
6048 * use task_rq_lock() here and obtain the other rq->lock.
6049 *
6050 * Silence PROVE_RCU
6051 */
6052 rcu_read_lock();
6053 __set_task_cpu(idle, cpu);
6054 rcu_read_unlock();
6055
6056 rq->idle = idle;
6057 rcu_assign_pointer(rq->curr, idle);
6058 idle->on_rq = TASK_ON_RQ_QUEUED;
6059 #ifdef CONFIG_SMP
6060 idle->on_cpu = 1;
6061 #endif
6062 raw_spin_unlock(&rq->lock);
6063 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6064
6065 /* Set the preempt count _outside_ the spinlocks! */
6066 init_idle_preempt_count(idle, cpu);
6067
6068 /*
6069 * The idle tasks have their own, simple scheduling class:
6070 */
6071 idle->sched_class = &idle_sched_class;
6072 ftrace_graph_init_idle_task(idle, cpu);
6073 vtime_init_idle(idle, cpu);
6074 #ifdef CONFIG_SMP
6075 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6076 #endif
6077 }
6078
6079 #ifdef CONFIG_SMP
6080
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)6081 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6082 const struct cpumask *trial)
6083 {
6084 int ret = 1;
6085
6086 if (!cpumask_weight(cur))
6087 return ret;
6088
6089 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6090
6091 return ret;
6092 }
6093
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)6094 int task_can_attach(struct task_struct *p,
6095 const struct cpumask *cs_cpus_allowed)
6096 {
6097 int ret = 0;
6098
6099 /*
6100 * Kthreads which disallow setaffinity shouldn't be moved
6101 * to a new cpuset; we don't want to change their CPU
6102 * affinity and isolating such threads by their set of
6103 * allowed nodes is unnecessary. Thus, cpusets are not
6104 * applicable for such threads. This prevents checking for
6105 * success of set_cpus_allowed_ptr() on all attached tasks
6106 * before cpus_mask may be changed.
6107 */
6108 if (p->flags & PF_NO_SETAFFINITY) {
6109 ret = -EINVAL;
6110 goto out;
6111 }
6112
6113 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6114 cs_cpus_allowed))
6115 ret = dl_task_can_attach(p, cs_cpus_allowed);
6116
6117 out:
6118 return ret;
6119 }
6120
6121 bool sched_smp_initialized __read_mostly;
6122
6123 #ifdef CONFIG_NUMA_BALANCING
6124 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)6125 int migrate_task_to(struct task_struct *p, int target_cpu)
6126 {
6127 struct migration_arg arg = { p, target_cpu };
6128 int curr_cpu = task_cpu(p);
6129
6130 if (curr_cpu == target_cpu)
6131 return 0;
6132
6133 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6134 return -EINVAL;
6135
6136 /* TODO: This is not properly updating schedstats */
6137
6138 trace_sched_move_numa(p, curr_cpu, target_cpu);
6139 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6140 }
6141
6142 /*
6143 * Requeue a task on a given node and accurately track the number of NUMA
6144 * tasks on the runqueues
6145 */
sched_setnuma(struct task_struct * p,int nid)6146 void sched_setnuma(struct task_struct *p, int nid)
6147 {
6148 bool queued, running;
6149 struct rq_flags rf;
6150 struct rq *rq;
6151
6152 rq = task_rq_lock(p, &rf);
6153 queued = task_on_rq_queued(p);
6154 running = task_current(rq, p);
6155
6156 if (queued)
6157 dequeue_task(rq, p, DEQUEUE_SAVE);
6158 if (running)
6159 put_prev_task(rq, p);
6160
6161 p->numa_preferred_nid = nid;
6162
6163 if (queued)
6164 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6165 if (running)
6166 set_next_task(rq, p);
6167 task_rq_unlock(rq, p, &rf);
6168 }
6169 #endif /* CONFIG_NUMA_BALANCING */
6170
6171 #ifdef CONFIG_HOTPLUG_CPU
6172 /*
6173 * Ensure that the idle task is using init_mm right before its CPU goes
6174 * offline.
6175 */
idle_task_exit(void)6176 void idle_task_exit(void)
6177 {
6178 struct mm_struct *mm = current->active_mm;
6179
6180 BUG_ON(cpu_online(smp_processor_id()));
6181
6182 if (mm != &init_mm) {
6183 switch_mm(mm, &init_mm, current);
6184 current->active_mm = &init_mm;
6185 finish_arch_post_lock_switch();
6186 }
6187 mmdrop(mm);
6188 }
6189
6190 /*
6191 * Since this CPU is going 'away' for a while, fold any nr_active delta
6192 * we might have. Assumes we're called after migrate_tasks() so that the
6193 * nr_active count is stable. We need to take the teardown thread which
6194 * is calling this into account, so we hand in adjust = 1 to the load
6195 * calculation.
6196 *
6197 * Also see the comment "Global load-average calculations".
6198 */
calc_load_migrate(struct rq * rq)6199 static void calc_load_migrate(struct rq *rq)
6200 {
6201 long delta = calc_load_fold_active(rq, 1);
6202 if (delta)
6203 atomic_long_add(delta, &calc_load_tasks);
6204 }
6205
__pick_migrate_task(struct rq * rq)6206 static struct task_struct *__pick_migrate_task(struct rq *rq)
6207 {
6208 const struct sched_class *class;
6209 struct task_struct *next;
6210
6211 for_each_class(class) {
6212 next = class->pick_next_task(rq, NULL, NULL);
6213 if (next) {
6214 next->sched_class->put_prev_task(rq, next);
6215 return next;
6216 }
6217 }
6218
6219 /* The idle class should always have a runnable task */
6220 BUG();
6221 }
6222
6223 /*
6224 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6225 * try_to_wake_up()->select_task_rq().
6226 *
6227 * Called with rq->lock held even though we'er in stop_machine() and
6228 * there's no concurrency possible, we hold the required locks anyway
6229 * because of lock validation efforts.
6230 */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf)6231 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6232 {
6233 struct rq *rq = dead_rq;
6234 struct task_struct *next, *stop = rq->stop;
6235 struct rq_flags orf = *rf;
6236 int dest_cpu;
6237
6238 /*
6239 * Fudge the rq selection such that the below task selection loop
6240 * doesn't get stuck on the currently eligible stop task.
6241 *
6242 * We're currently inside stop_machine() and the rq is either stuck
6243 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6244 * either way we should never end up calling schedule() until we're
6245 * done here.
6246 */
6247 rq->stop = NULL;
6248
6249 /*
6250 * put_prev_task() and pick_next_task() sched
6251 * class method both need to have an up-to-date
6252 * value of rq->clock[_task]
6253 */
6254 update_rq_clock(rq);
6255
6256 for (;;) {
6257 /*
6258 * There's this thread running, bail when that's the only
6259 * remaining thread:
6260 */
6261 if (rq->nr_running == 1)
6262 break;
6263
6264 next = __pick_migrate_task(rq);
6265
6266 /*
6267 * Rules for changing task_struct::cpus_mask are holding
6268 * both pi_lock and rq->lock, such that holding either
6269 * stabilizes the mask.
6270 *
6271 * Drop rq->lock is not quite as disastrous as it usually is
6272 * because !cpu_active at this point, which means load-balance
6273 * will not interfere. Also, stop-machine.
6274 */
6275 rq_unlock(rq, rf);
6276 raw_spin_lock(&next->pi_lock);
6277 rq_relock(rq, rf);
6278
6279 /*
6280 * Since we're inside stop-machine, _nothing_ should have
6281 * changed the task, WARN if weird stuff happened, because in
6282 * that case the above rq->lock drop is a fail too.
6283 */
6284 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6285 raw_spin_unlock(&next->pi_lock);
6286 continue;
6287 }
6288
6289 /* Find suitable destination for @next, with force if needed. */
6290 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6291 rq = __migrate_task(rq, rf, next, dest_cpu);
6292 if (rq != dead_rq) {
6293 rq_unlock(rq, rf);
6294 rq = dead_rq;
6295 *rf = orf;
6296 rq_relock(rq, rf);
6297 }
6298 raw_spin_unlock(&next->pi_lock);
6299 }
6300
6301 rq->stop = stop;
6302 }
6303 #endif /* CONFIG_HOTPLUG_CPU */
6304
set_rq_online(struct rq * rq)6305 void set_rq_online(struct rq *rq)
6306 {
6307 if (!rq->online) {
6308 const struct sched_class *class;
6309
6310 cpumask_set_cpu(rq->cpu, rq->rd->online);
6311 rq->online = 1;
6312
6313 for_each_class(class) {
6314 if (class->rq_online)
6315 class->rq_online(rq);
6316 }
6317 }
6318 }
6319
set_rq_offline(struct rq * rq)6320 void set_rq_offline(struct rq *rq)
6321 {
6322 if (rq->online) {
6323 const struct sched_class *class;
6324
6325 for_each_class(class) {
6326 if (class->rq_offline)
6327 class->rq_offline(rq);
6328 }
6329
6330 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6331 rq->online = 0;
6332 }
6333 }
6334
6335 /*
6336 * used to mark begin/end of suspend/resume:
6337 */
6338 static int num_cpus_frozen;
6339
6340 /*
6341 * Update cpusets according to cpu_active mask. If cpusets are
6342 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6343 * around partition_sched_domains().
6344 *
6345 * If we come here as part of a suspend/resume, don't touch cpusets because we
6346 * want to restore it back to its original state upon resume anyway.
6347 */
cpuset_cpu_active(void)6348 static void cpuset_cpu_active(void)
6349 {
6350 if (cpuhp_tasks_frozen) {
6351 /*
6352 * num_cpus_frozen tracks how many CPUs are involved in suspend
6353 * resume sequence. As long as this is not the last online
6354 * operation in the resume sequence, just build a single sched
6355 * domain, ignoring cpusets.
6356 */
6357 partition_sched_domains(1, NULL, NULL);
6358 if (--num_cpus_frozen)
6359 return;
6360 /*
6361 * This is the last CPU online operation. So fall through and
6362 * restore the original sched domains by considering the
6363 * cpuset configurations.
6364 */
6365 cpuset_force_rebuild();
6366 }
6367 cpuset_update_active_cpus();
6368 }
6369
cpuset_cpu_inactive(unsigned int cpu)6370 static int cpuset_cpu_inactive(unsigned int cpu)
6371 {
6372 if (!cpuhp_tasks_frozen) {
6373 if (dl_cpu_busy(cpu))
6374 return -EBUSY;
6375 cpuset_update_active_cpus();
6376 } else {
6377 num_cpus_frozen++;
6378 partition_sched_domains(1, NULL, NULL);
6379 }
6380 return 0;
6381 }
6382
sched_cpu_activate(unsigned int cpu)6383 int sched_cpu_activate(unsigned int cpu)
6384 {
6385 struct rq *rq = cpu_rq(cpu);
6386 struct rq_flags rf;
6387
6388 #ifdef CONFIG_SCHED_SMT
6389 /*
6390 * When going up, increment the number of cores with SMT present.
6391 */
6392 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6393 static_branch_inc_cpuslocked(&sched_smt_present);
6394 #endif
6395 set_cpu_active(cpu, true);
6396
6397 if (sched_smp_initialized) {
6398 sched_domains_numa_masks_set(cpu);
6399 cpuset_cpu_active();
6400 }
6401
6402 /*
6403 * Put the rq online, if not already. This happens:
6404 *
6405 * 1) In the early boot process, because we build the real domains
6406 * after all CPUs have been brought up.
6407 *
6408 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6409 * domains.
6410 */
6411 rq_lock_irqsave(rq, &rf);
6412 if (rq->rd) {
6413 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6414 set_rq_online(rq);
6415 }
6416 rq_unlock_irqrestore(rq, &rf);
6417
6418 return 0;
6419 }
6420
sched_cpu_deactivate(unsigned int cpu)6421 int sched_cpu_deactivate(unsigned int cpu)
6422 {
6423 int ret;
6424
6425 set_cpu_active(cpu, false);
6426 /*
6427 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6428 * users of this state to go away such that all new such users will
6429 * observe it.
6430 *
6431 * Do sync before park smpboot threads to take care the rcu boost case.
6432 */
6433 synchronize_rcu();
6434
6435 #ifdef CONFIG_SCHED_SMT
6436 /*
6437 * When going down, decrement the number of cores with SMT present.
6438 */
6439 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6440 static_branch_dec_cpuslocked(&sched_smt_present);
6441 #endif
6442
6443 if (!sched_smp_initialized)
6444 return 0;
6445
6446 ret = cpuset_cpu_inactive(cpu);
6447 if (ret) {
6448 set_cpu_active(cpu, true);
6449 return ret;
6450 }
6451 sched_domains_numa_masks_clear(cpu);
6452 return 0;
6453 }
6454
sched_rq_cpu_starting(unsigned int cpu)6455 static void sched_rq_cpu_starting(unsigned int cpu)
6456 {
6457 struct rq *rq = cpu_rq(cpu);
6458
6459 rq->calc_load_update = calc_load_update;
6460 update_max_interval();
6461 }
6462
sched_cpu_starting(unsigned int cpu)6463 int sched_cpu_starting(unsigned int cpu)
6464 {
6465 sched_rq_cpu_starting(cpu);
6466 sched_tick_start(cpu);
6467 return 0;
6468 }
6469
6470 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)6471 int sched_cpu_dying(unsigned int cpu)
6472 {
6473 struct rq *rq = cpu_rq(cpu);
6474 struct rq_flags rf;
6475
6476 /* Handle pending wakeups and then migrate everything off */
6477 sched_ttwu_pending();
6478 sched_tick_stop(cpu);
6479
6480 rq_lock_irqsave(rq, &rf);
6481 if (rq->rd) {
6482 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6483 set_rq_offline(rq);
6484 }
6485 migrate_tasks(rq, &rf);
6486 BUG_ON(rq->nr_running != 1);
6487 rq_unlock_irqrestore(rq, &rf);
6488
6489 calc_load_migrate(rq);
6490 update_max_interval();
6491 nohz_balance_exit_idle(rq);
6492 hrtick_clear(rq);
6493 return 0;
6494 }
6495 #endif
6496
sched_init_smp(void)6497 void __init sched_init_smp(void)
6498 {
6499 sched_init_numa();
6500
6501 /*
6502 * There's no userspace yet to cause hotplug operations; hence all the
6503 * CPU masks are stable and all blatant races in the below code cannot
6504 * happen.
6505 */
6506 mutex_lock(&sched_domains_mutex);
6507 sched_init_domains(cpu_active_mask);
6508 mutex_unlock(&sched_domains_mutex);
6509
6510 /* Move init over to a non-isolated CPU */
6511 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6512 BUG();
6513 sched_init_granularity();
6514
6515 init_sched_rt_class();
6516 init_sched_dl_class();
6517
6518 sched_smp_initialized = true;
6519 }
6520
migration_init(void)6521 static int __init migration_init(void)
6522 {
6523 sched_cpu_starting(smp_processor_id());
6524 return 0;
6525 }
6526 early_initcall(migration_init);
6527
6528 #else
sched_init_smp(void)6529 void __init sched_init_smp(void)
6530 {
6531 sched_init_granularity();
6532 }
6533 #endif /* CONFIG_SMP */
6534
in_sched_functions(unsigned long addr)6535 int in_sched_functions(unsigned long addr)
6536 {
6537 return in_lock_functions(addr) ||
6538 (addr >= (unsigned long)__sched_text_start
6539 && addr < (unsigned long)__sched_text_end);
6540 }
6541
6542 #ifdef CONFIG_CGROUP_SCHED
6543 /*
6544 * Default task group.
6545 * Every task in system belongs to this group at bootup.
6546 */
6547 struct task_group root_task_group;
6548 LIST_HEAD(task_groups);
6549
6550 /* Cacheline aligned slab cache for task_group */
6551 static struct kmem_cache *task_group_cache __read_mostly;
6552 #endif
6553
6554 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6555 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6556
sched_init(void)6557 void __init sched_init(void)
6558 {
6559 unsigned long ptr = 0;
6560 int i;
6561
6562 wait_bit_init();
6563
6564 #ifdef CONFIG_FAIR_GROUP_SCHED
6565 ptr += 2 * nr_cpu_ids * sizeof(void **);
6566 #endif
6567 #ifdef CONFIG_RT_GROUP_SCHED
6568 ptr += 2 * nr_cpu_ids * sizeof(void **);
6569 #endif
6570 if (ptr) {
6571 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6572
6573 #ifdef CONFIG_FAIR_GROUP_SCHED
6574 root_task_group.se = (struct sched_entity **)ptr;
6575 ptr += nr_cpu_ids * sizeof(void **);
6576
6577 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6578 ptr += nr_cpu_ids * sizeof(void **);
6579
6580 #endif /* CONFIG_FAIR_GROUP_SCHED */
6581 #ifdef CONFIG_RT_GROUP_SCHED
6582 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6583 ptr += nr_cpu_ids * sizeof(void **);
6584
6585 root_task_group.rt_rq = (struct rt_rq **)ptr;
6586 ptr += nr_cpu_ids * sizeof(void **);
6587
6588 #endif /* CONFIG_RT_GROUP_SCHED */
6589 }
6590 #ifdef CONFIG_CPUMASK_OFFSTACK
6591 for_each_possible_cpu(i) {
6592 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6593 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6594 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6595 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6596 }
6597 #endif /* CONFIG_CPUMASK_OFFSTACK */
6598
6599 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6600 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6601
6602 #ifdef CONFIG_SMP
6603 init_defrootdomain();
6604 #endif
6605
6606 #ifdef CONFIG_RT_GROUP_SCHED
6607 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6608 global_rt_period(), global_rt_runtime());
6609 #endif /* CONFIG_RT_GROUP_SCHED */
6610
6611 #ifdef CONFIG_CGROUP_SCHED
6612 task_group_cache = KMEM_CACHE(task_group, 0);
6613
6614 list_add(&root_task_group.list, &task_groups);
6615 INIT_LIST_HEAD(&root_task_group.children);
6616 INIT_LIST_HEAD(&root_task_group.siblings);
6617 autogroup_init(&init_task);
6618 #endif /* CONFIG_CGROUP_SCHED */
6619
6620 for_each_possible_cpu(i) {
6621 struct rq *rq;
6622
6623 rq = cpu_rq(i);
6624 raw_spin_lock_init(&rq->lock);
6625 rq->nr_running = 0;
6626 rq->calc_load_active = 0;
6627 rq->calc_load_update = jiffies + LOAD_FREQ;
6628 init_cfs_rq(&rq->cfs);
6629 init_rt_rq(&rq->rt);
6630 init_dl_rq(&rq->dl);
6631 #ifdef CONFIG_FAIR_GROUP_SCHED
6632 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6633 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6634 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6635 /*
6636 * How much CPU bandwidth does root_task_group get?
6637 *
6638 * In case of task-groups formed thr' the cgroup filesystem, it
6639 * gets 100% of the CPU resources in the system. This overall
6640 * system CPU resource is divided among the tasks of
6641 * root_task_group and its child task-groups in a fair manner,
6642 * based on each entity's (task or task-group's) weight
6643 * (se->load.weight).
6644 *
6645 * In other words, if root_task_group has 10 tasks of weight
6646 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6647 * then A0's share of the CPU resource is:
6648 *
6649 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6650 *
6651 * We achieve this by letting root_task_group's tasks sit
6652 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6653 */
6654 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6655 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6656 #endif /* CONFIG_FAIR_GROUP_SCHED */
6657
6658 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6659 #ifdef CONFIG_RT_GROUP_SCHED
6660 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6661 #endif
6662 #ifdef CONFIG_SMP
6663 rq->sd = NULL;
6664 rq->rd = NULL;
6665 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6666 rq->balance_callback = NULL;
6667 rq->active_balance = 0;
6668 rq->next_balance = jiffies;
6669 rq->push_cpu = 0;
6670 rq->cpu = i;
6671 rq->online = 0;
6672 rq->idle_stamp = 0;
6673 rq->avg_idle = 2*sysctl_sched_migration_cost;
6674 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6675
6676 INIT_LIST_HEAD(&rq->cfs_tasks);
6677
6678 rq_attach_root(rq, &def_root_domain);
6679 #ifdef CONFIG_NO_HZ_COMMON
6680 rq->last_load_update_tick = jiffies;
6681 rq->last_blocked_load_update_tick = jiffies;
6682 atomic_set(&rq->nohz_flags, 0);
6683 #endif
6684 #endif /* CONFIG_SMP */
6685 hrtick_rq_init(rq);
6686 atomic_set(&rq->nr_iowait, 0);
6687 }
6688
6689 set_load_weight(&init_task, false);
6690
6691 /*
6692 * The boot idle thread does lazy MMU switching as well:
6693 */
6694 mmgrab(&init_mm);
6695 enter_lazy_tlb(&init_mm, current);
6696
6697 /*
6698 * Make us the idle thread. Technically, schedule() should not be
6699 * called from this thread, however somewhere below it might be,
6700 * but because we are the idle thread, we just pick up running again
6701 * when this runqueue becomes "idle".
6702 */
6703 init_idle(current, smp_processor_id());
6704
6705 calc_load_update = jiffies + LOAD_FREQ;
6706
6707 #ifdef CONFIG_SMP
6708 idle_thread_set_boot_cpu();
6709 #endif
6710 init_sched_fair_class();
6711
6712 init_schedstats();
6713
6714 psi_init();
6715
6716 init_uclamp();
6717
6718 scheduler_running = 1;
6719 }
6720
6721 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)6722 static inline int preempt_count_equals(int preempt_offset)
6723 {
6724 int nested = preempt_count() + rcu_preempt_depth();
6725
6726 return (nested == preempt_offset);
6727 }
6728
__might_sleep(const char * file,int line,int preempt_offset)6729 void __might_sleep(const char *file, int line, int preempt_offset)
6730 {
6731 /*
6732 * Blocking primitives will set (and therefore destroy) current->state,
6733 * since we will exit with TASK_RUNNING make sure we enter with it,
6734 * otherwise we will destroy state.
6735 */
6736 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6737 "do not call blocking ops when !TASK_RUNNING; "
6738 "state=%lx set at [<%p>] %pS\n",
6739 current->state,
6740 (void *)current->task_state_change,
6741 (void *)current->task_state_change);
6742
6743 ___might_sleep(file, line, preempt_offset);
6744 }
6745 EXPORT_SYMBOL(__might_sleep);
6746
___might_sleep(const char * file,int line,int preempt_offset)6747 void ___might_sleep(const char *file, int line, int preempt_offset)
6748 {
6749 /* Ratelimiting timestamp: */
6750 static unsigned long prev_jiffy;
6751
6752 unsigned long preempt_disable_ip;
6753
6754 /* WARN_ON_ONCE() by default, no rate limit required: */
6755 rcu_sleep_check();
6756
6757 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6758 !is_idle_task(current) && !current->non_block_count) ||
6759 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6760 oops_in_progress)
6761 return;
6762
6763 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6764 return;
6765 prev_jiffy = jiffies;
6766
6767 /* Save this before calling printk(), since that will clobber it: */
6768 preempt_disable_ip = get_preempt_disable_ip(current);
6769
6770 printk(KERN_ERR
6771 "BUG: sleeping function called from invalid context at %s:%d\n",
6772 file, line);
6773 printk(KERN_ERR
6774 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6775 in_atomic(), irqs_disabled(), current->non_block_count,
6776 current->pid, current->comm);
6777
6778 if (task_stack_end_corrupted(current))
6779 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6780
6781 debug_show_held_locks(current);
6782 if (irqs_disabled())
6783 print_irqtrace_events(current);
6784 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6785 && !preempt_count_equals(preempt_offset)) {
6786 pr_err("Preemption disabled at:");
6787 print_ip_sym(preempt_disable_ip);
6788 pr_cont("\n");
6789 }
6790 dump_stack();
6791 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6792 }
6793 EXPORT_SYMBOL(___might_sleep);
6794
__cant_sleep(const char * file,int line,int preempt_offset)6795 void __cant_sleep(const char *file, int line, int preempt_offset)
6796 {
6797 static unsigned long prev_jiffy;
6798
6799 if (irqs_disabled())
6800 return;
6801
6802 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6803 return;
6804
6805 if (preempt_count() > preempt_offset)
6806 return;
6807
6808 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6809 return;
6810 prev_jiffy = jiffies;
6811
6812 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6813 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6814 in_atomic(), irqs_disabled(),
6815 current->pid, current->comm);
6816
6817 debug_show_held_locks(current);
6818 dump_stack();
6819 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6820 }
6821 EXPORT_SYMBOL_GPL(__cant_sleep);
6822 #endif
6823
6824 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)6825 void normalize_rt_tasks(void)
6826 {
6827 struct task_struct *g, *p;
6828 struct sched_attr attr = {
6829 .sched_policy = SCHED_NORMAL,
6830 };
6831
6832 read_lock(&tasklist_lock);
6833 for_each_process_thread(g, p) {
6834 /*
6835 * Only normalize user tasks:
6836 */
6837 if (p->flags & PF_KTHREAD)
6838 continue;
6839
6840 p->se.exec_start = 0;
6841 schedstat_set(p->se.statistics.wait_start, 0);
6842 schedstat_set(p->se.statistics.sleep_start, 0);
6843 schedstat_set(p->se.statistics.block_start, 0);
6844
6845 if (!dl_task(p) && !rt_task(p)) {
6846 /*
6847 * Renice negative nice level userspace
6848 * tasks back to 0:
6849 */
6850 if (task_nice(p) < 0)
6851 set_user_nice(p, 0);
6852 continue;
6853 }
6854
6855 __sched_setscheduler(p, &attr, false, false);
6856 }
6857 read_unlock(&tasklist_lock);
6858 }
6859
6860 #endif /* CONFIG_MAGIC_SYSRQ */
6861
6862 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6863 /*
6864 * These functions are only useful for the IA64 MCA handling, or kdb.
6865 *
6866 * They can only be called when the whole system has been
6867 * stopped - every CPU needs to be quiescent, and no scheduling
6868 * activity can take place. Using them for anything else would
6869 * be a serious bug, and as a result, they aren't even visible
6870 * under any other configuration.
6871 */
6872
6873 /**
6874 * curr_task - return the current task for a given CPU.
6875 * @cpu: the processor in question.
6876 *
6877 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6878 *
6879 * Return: The current task for @cpu.
6880 */
curr_task(int cpu)6881 struct task_struct *curr_task(int cpu)
6882 {
6883 return cpu_curr(cpu);
6884 }
6885
6886 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6887
6888 #ifdef CONFIG_IA64
6889 /**
6890 * ia64_set_curr_task - set the current task for a given CPU.
6891 * @cpu: the processor in question.
6892 * @p: the task pointer to set.
6893 *
6894 * Description: This function must only be used when non-maskable interrupts
6895 * are serviced on a separate stack. It allows the architecture to switch the
6896 * notion of the current task on a CPU in a non-blocking manner. This function
6897 * must be called with all CPU's synchronized, and interrupts disabled, the
6898 * and caller must save the original value of the current task (see
6899 * curr_task() above) and restore that value before reenabling interrupts and
6900 * re-starting the system.
6901 *
6902 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6903 */
ia64_set_curr_task(int cpu,struct task_struct * p)6904 void ia64_set_curr_task(int cpu, struct task_struct *p)
6905 {
6906 cpu_curr(cpu) = p;
6907 }
6908
6909 #endif
6910
6911 #ifdef CONFIG_CGROUP_SCHED
6912 /* task_group_lock serializes the addition/removal of task groups */
6913 static DEFINE_SPINLOCK(task_group_lock);
6914
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)6915 static inline void alloc_uclamp_sched_group(struct task_group *tg,
6916 struct task_group *parent)
6917 {
6918 #ifdef CONFIG_UCLAMP_TASK_GROUP
6919 enum uclamp_id clamp_id;
6920
6921 for_each_clamp_id(clamp_id) {
6922 uclamp_se_set(&tg->uclamp_req[clamp_id],
6923 uclamp_none(clamp_id), false);
6924 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
6925 }
6926 #endif
6927 }
6928
sched_free_group(struct task_group * tg)6929 static void sched_free_group(struct task_group *tg)
6930 {
6931 free_fair_sched_group(tg);
6932 free_rt_sched_group(tg);
6933 autogroup_free(tg);
6934 kmem_cache_free(task_group_cache, tg);
6935 }
6936
6937 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)6938 struct task_group *sched_create_group(struct task_group *parent)
6939 {
6940 struct task_group *tg;
6941
6942 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
6943 if (!tg)
6944 return ERR_PTR(-ENOMEM);
6945
6946 if (!alloc_fair_sched_group(tg, parent))
6947 goto err;
6948
6949 if (!alloc_rt_sched_group(tg, parent))
6950 goto err;
6951
6952 alloc_uclamp_sched_group(tg, parent);
6953
6954 return tg;
6955
6956 err:
6957 sched_free_group(tg);
6958 return ERR_PTR(-ENOMEM);
6959 }
6960
sched_online_group(struct task_group * tg,struct task_group * parent)6961 void sched_online_group(struct task_group *tg, struct task_group *parent)
6962 {
6963 unsigned long flags;
6964
6965 spin_lock_irqsave(&task_group_lock, flags);
6966 list_add_rcu(&tg->list, &task_groups);
6967
6968 /* Root should already exist: */
6969 WARN_ON(!parent);
6970
6971 tg->parent = parent;
6972 INIT_LIST_HEAD(&tg->children);
6973 list_add_rcu(&tg->siblings, &parent->children);
6974 spin_unlock_irqrestore(&task_group_lock, flags);
6975
6976 online_fair_sched_group(tg);
6977 }
6978
6979 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)6980 static void sched_free_group_rcu(struct rcu_head *rhp)
6981 {
6982 /* Now it should be safe to free those cfs_rqs: */
6983 sched_free_group(container_of(rhp, struct task_group, rcu));
6984 }
6985
sched_destroy_group(struct task_group * tg)6986 void sched_destroy_group(struct task_group *tg)
6987 {
6988 /* Wait for possible concurrent references to cfs_rqs complete: */
6989 call_rcu(&tg->rcu, sched_free_group_rcu);
6990 }
6991
sched_offline_group(struct task_group * tg)6992 void sched_offline_group(struct task_group *tg)
6993 {
6994 unsigned long flags;
6995
6996 /* End participation in shares distribution: */
6997 unregister_fair_sched_group(tg);
6998
6999 spin_lock_irqsave(&task_group_lock, flags);
7000 list_del_rcu(&tg->list);
7001 list_del_rcu(&tg->siblings);
7002 spin_unlock_irqrestore(&task_group_lock, flags);
7003 }
7004
sched_change_group(struct task_struct * tsk,int type)7005 static void sched_change_group(struct task_struct *tsk, int type)
7006 {
7007 struct task_group *tg;
7008
7009 /*
7010 * All callers are synchronized by task_rq_lock(); we do not use RCU
7011 * which is pointless here. Thus, we pass "true" to task_css_check()
7012 * to prevent lockdep warnings.
7013 */
7014 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7015 struct task_group, css);
7016 tg = autogroup_task_group(tsk, tg);
7017 tsk->sched_task_group = tg;
7018
7019 #ifdef CONFIG_FAIR_GROUP_SCHED
7020 if (tsk->sched_class->task_change_group)
7021 tsk->sched_class->task_change_group(tsk, type);
7022 else
7023 #endif
7024 set_task_rq(tsk, task_cpu(tsk));
7025 }
7026
7027 /*
7028 * Change task's runqueue when it moves between groups.
7029 *
7030 * The caller of this function should have put the task in its new group by
7031 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7032 * its new group.
7033 */
sched_move_task(struct task_struct * tsk)7034 void sched_move_task(struct task_struct *tsk)
7035 {
7036 int queued, running, queue_flags =
7037 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7038 struct rq_flags rf;
7039 struct rq *rq;
7040
7041 rq = task_rq_lock(tsk, &rf);
7042 update_rq_clock(rq);
7043
7044 running = task_current(rq, tsk);
7045 queued = task_on_rq_queued(tsk);
7046
7047 if (queued)
7048 dequeue_task(rq, tsk, queue_flags);
7049 if (running)
7050 put_prev_task(rq, tsk);
7051
7052 sched_change_group(tsk, TASK_MOVE_GROUP);
7053
7054 if (queued)
7055 enqueue_task(rq, tsk, queue_flags);
7056 if (running)
7057 set_next_task(rq, tsk);
7058
7059 task_rq_unlock(rq, tsk, &rf);
7060 }
7061
css_tg(struct cgroup_subsys_state * css)7062 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7063 {
7064 return css ? container_of(css, struct task_group, css) : NULL;
7065 }
7066
7067 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)7068 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7069 {
7070 struct task_group *parent = css_tg(parent_css);
7071 struct task_group *tg;
7072
7073 if (!parent) {
7074 /* This is early initialization for the top cgroup */
7075 return &root_task_group.css;
7076 }
7077
7078 tg = sched_create_group(parent);
7079 if (IS_ERR(tg))
7080 return ERR_PTR(-ENOMEM);
7081
7082 return &tg->css;
7083 }
7084
7085 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)7086 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7087 {
7088 struct task_group *tg = css_tg(css);
7089 struct task_group *parent = css_tg(css->parent);
7090
7091 if (parent)
7092 sched_online_group(tg, parent);
7093 return 0;
7094 }
7095
cpu_cgroup_css_released(struct cgroup_subsys_state * css)7096 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7097 {
7098 struct task_group *tg = css_tg(css);
7099
7100 sched_offline_group(tg);
7101 }
7102
cpu_cgroup_css_free(struct cgroup_subsys_state * css)7103 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7104 {
7105 struct task_group *tg = css_tg(css);
7106
7107 /*
7108 * Relies on the RCU grace period between css_released() and this.
7109 */
7110 sched_free_group(tg);
7111 }
7112
7113 /*
7114 * This is called before wake_up_new_task(), therefore we really only
7115 * have to set its group bits, all the other stuff does not apply.
7116 */
cpu_cgroup_fork(struct task_struct * task)7117 static void cpu_cgroup_fork(struct task_struct *task)
7118 {
7119 struct rq_flags rf;
7120 struct rq *rq;
7121
7122 rq = task_rq_lock(task, &rf);
7123
7124 update_rq_clock(rq);
7125 sched_change_group(task, TASK_SET_GROUP);
7126
7127 task_rq_unlock(rq, task, &rf);
7128 }
7129
cpu_cgroup_can_attach(struct cgroup_taskset * tset)7130 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7131 {
7132 struct task_struct *task;
7133 struct cgroup_subsys_state *css;
7134 int ret = 0;
7135
7136 cgroup_taskset_for_each(task, css, tset) {
7137 #ifdef CONFIG_RT_GROUP_SCHED
7138 if (!sched_rt_can_attach(css_tg(css), task))
7139 return -EINVAL;
7140 #endif
7141 /*
7142 * Serialize against wake_up_new_task() such that if its
7143 * running, we're sure to observe its full state.
7144 */
7145 raw_spin_lock_irq(&task->pi_lock);
7146 /*
7147 * Avoid calling sched_move_task() before wake_up_new_task()
7148 * has happened. This would lead to problems with PELT, due to
7149 * move wanting to detach+attach while we're not attached yet.
7150 */
7151 if (task->state == TASK_NEW)
7152 ret = -EINVAL;
7153 raw_spin_unlock_irq(&task->pi_lock);
7154
7155 if (ret)
7156 break;
7157 }
7158 return ret;
7159 }
7160
cpu_cgroup_attach(struct cgroup_taskset * tset)7161 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7162 {
7163 struct task_struct *task;
7164 struct cgroup_subsys_state *css;
7165
7166 cgroup_taskset_for_each(task, css, tset)
7167 sched_move_task(task);
7168 }
7169
7170 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)7171 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7172 {
7173 struct cgroup_subsys_state *top_css = css;
7174 struct uclamp_se *uc_parent = NULL;
7175 struct uclamp_se *uc_se = NULL;
7176 unsigned int eff[UCLAMP_CNT];
7177 enum uclamp_id clamp_id;
7178 unsigned int clamps;
7179
7180 css_for_each_descendant_pre(css, top_css) {
7181 uc_parent = css_tg(css)->parent
7182 ? css_tg(css)->parent->uclamp : NULL;
7183
7184 for_each_clamp_id(clamp_id) {
7185 /* Assume effective clamps matches requested clamps */
7186 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7187 /* Cap effective clamps with parent's effective clamps */
7188 if (uc_parent &&
7189 eff[clamp_id] > uc_parent[clamp_id].value) {
7190 eff[clamp_id] = uc_parent[clamp_id].value;
7191 }
7192 }
7193 /* Ensure protection is always capped by limit */
7194 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7195
7196 /* Propagate most restrictive effective clamps */
7197 clamps = 0x0;
7198 uc_se = css_tg(css)->uclamp;
7199 for_each_clamp_id(clamp_id) {
7200 if (eff[clamp_id] == uc_se[clamp_id].value)
7201 continue;
7202 uc_se[clamp_id].value = eff[clamp_id];
7203 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7204 clamps |= (0x1 << clamp_id);
7205 }
7206 if (!clamps) {
7207 css = css_rightmost_descendant(css);
7208 continue;
7209 }
7210
7211 /* Immediately update descendants RUNNABLE tasks */
7212 uclamp_update_active_tasks(css, clamps);
7213 }
7214 }
7215
7216 /*
7217 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7218 * C expression. Since there is no way to convert a macro argument (N) into a
7219 * character constant, use two levels of macros.
7220 */
7221 #define _POW10(exp) ((unsigned int)1e##exp)
7222 #define POW10(exp) _POW10(exp)
7223
7224 struct uclamp_request {
7225 #define UCLAMP_PERCENT_SHIFT 2
7226 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7227 s64 percent;
7228 u64 util;
7229 int ret;
7230 };
7231
7232 static inline struct uclamp_request
capacity_from_percent(char * buf)7233 capacity_from_percent(char *buf)
7234 {
7235 struct uclamp_request req = {
7236 .percent = UCLAMP_PERCENT_SCALE,
7237 .util = SCHED_CAPACITY_SCALE,
7238 .ret = 0,
7239 };
7240
7241 buf = strim(buf);
7242 if (strcmp(buf, "max")) {
7243 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7244 &req.percent);
7245 if (req.ret)
7246 return req;
7247 if (req.percent > UCLAMP_PERCENT_SCALE) {
7248 req.ret = -ERANGE;
7249 return req;
7250 }
7251
7252 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7253 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7254 }
7255
7256 return req;
7257 }
7258
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)7259 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7260 size_t nbytes, loff_t off,
7261 enum uclamp_id clamp_id)
7262 {
7263 struct uclamp_request req;
7264 struct task_group *tg;
7265
7266 req = capacity_from_percent(buf);
7267 if (req.ret)
7268 return req.ret;
7269
7270 mutex_lock(&uclamp_mutex);
7271 rcu_read_lock();
7272
7273 tg = css_tg(of_css(of));
7274 if (tg->uclamp_req[clamp_id].value != req.util)
7275 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7276
7277 /*
7278 * Because of not recoverable conversion rounding we keep track of the
7279 * exact requested value
7280 */
7281 tg->uclamp_pct[clamp_id] = req.percent;
7282
7283 /* Update effective clamps to track the most restrictive value */
7284 cpu_util_update_eff(of_css(of));
7285
7286 rcu_read_unlock();
7287 mutex_unlock(&uclamp_mutex);
7288
7289 return nbytes;
7290 }
7291
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7292 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7293 char *buf, size_t nbytes,
7294 loff_t off)
7295 {
7296 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7297 }
7298
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7299 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7300 char *buf, size_t nbytes,
7301 loff_t off)
7302 {
7303 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7304 }
7305
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)7306 static inline void cpu_uclamp_print(struct seq_file *sf,
7307 enum uclamp_id clamp_id)
7308 {
7309 struct task_group *tg;
7310 u64 util_clamp;
7311 u64 percent;
7312 u32 rem;
7313
7314 rcu_read_lock();
7315 tg = css_tg(seq_css(sf));
7316 util_clamp = tg->uclamp_req[clamp_id].value;
7317 rcu_read_unlock();
7318
7319 if (util_clamp == SCHED_CAPACITY_SCALE) {
7320 seq_puts(sf, "max\n");
7321 return;
7322 }
7323
7324 percent = tg->uclamp_pct[clamp_id];
7325 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7326 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7327 }
7328
cpu_uclamp_min_show(struct seq_file * sf,void * v)7329 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7330 {
7331 cpu_uclamp_print(sf, UCLAMP_MIN);
7332 return 0;
7333 }
7334
cpu_uclamp_max_show(struct seq_file * sf,void * v)7335 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7336 {
7337 cpu_uclamp_print(sf, UCLAMP_MAX);
7338 return 0;
7339 }
7340 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7341
7342 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)7343 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7344 struct cftype *cftype, u64 shareval)
7345 {
7346 if (shareval > scale_load_down(ULONG_MAX))
7347 shareval = MAX_SHARES;
7348 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7349 }
7350
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)7351 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7352 struct cftype *cft)
7353 {
7354 struct task_group *tg = css_tg(css);
7355
7356 return (u64) scale_load_down(tg->shares);
7357 }
7358
7359 #ifdef CONFIG_CFS_BANDWIDTH
7360 static DEFINE_MUTEX(cfs_constraints_mutex);
7361
7362 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7363 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7364
7365 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7366
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)7367 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7368 {
7369 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7370 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7371
7372 if (tg == &root_task_group)
7373 return -EINVAL;
7374
7375 /*
7376 * Ensure we have at some amount of bandwidth every period. This is
7377 * to prevent reaching a state of large arrears when throttled via
7378 * entity_tick() resulting in prolonged exit starvation.
7379 */
7380 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7381 return -EINVAL;
7382
7383 /*
7384 * Likewise, bound things on the otherside by preventing insane quota
7385 * periods. This also allows us to normalize in computing quota
7386 * feasibility.
7387 */
7388 if (period > max_cfs_quota_period)
7389 return -EINVAL;
7390
7391 /*
7392 * Prevent race between setting of cfs_rq->runtime_enabled and
7393 * unthrottle_offline_cfs_rqs().
7394 */
7395 get_online_cpus();
7396 mutex_lock(&cfs_constraints_mutex);
7397 ret = __cfs_schedulable(tg, period, quota);
7398 if (ret)
7399 goto out_unlock;
7400
7401 runtime_enabled = quota != RUNTIME_INF;
7402 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7403 /*
7404 * If we need to toggle cfs_bandwidth_used, off->on must occur
7405 * before making related changes, and on->off must occur afterwards
7406 */
7407 if (runtime_enabled && !runtime_was_enabled)
7408 cfs_bandwidth_usage_inc();
7409 raw_spin_lock_irq(&cfs_b->lock);
7410 cfs_b->period = ns_to_ktime(period);
7411 cfs_b->quota = quota;
7412
7413 __refill_cfs_bandwidth_runtime(cfs_b);
7414
7415 /* Restart the period timer (if active) to handle new period expiry: */
7416 if (runtime_enabled)
7417 start_cfs_bandwidth(cfs_b);
7418
7419 raw_spin_unlock_irq(&cfs_b->lock);
7420
7421 for_each_online_cpu(i) {
7422 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7423 struct rq *rq = cfs_rq->rq;
7424 struct rq_flags rf;
7425
7426 rq_lock_irq(rq, &rf);
7427 cfs_rq->runtime_enabled = runtime_enabled;
7428 cfs_rq->runtime_remaining = 0;
7429
7430 if (cfs_rq->throttled)
7431 unthrottle_cfs_rq(cfs_rq);
7432 rq_unlock_irq(rq, &rf);
7433 }
7434 if (runtime_was_enabled && !runtime_enabled)
7435 cfs_bandwidth_usage_dec();
7436 out_unlock:
7437 mutex_unlock(&cfs_constraints_mutex);
7438 put_online_cpus();
7439
7440 return ret;
7441 }
7442
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)7443 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7444 {
7445 u64 quota, period;
7446
7447 period = ktime_to_ns(tg->cfs_bandwidth.period);
7448 if (cfs_quota_us < 0)
7449 quota = RUNTIME_INF;
7450 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7451 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7452 else
7453 return -EINVAL;
7454
7455 return tg_set_cfs_bandwidth(tg, period, quota);
7456 }
7457
tg_get_cfs_quota(struct task_group * tg)7458 static long tg_get_cfs_quota(struct task_group *tg)
7459 {
7460 u64 quota_us;
7461
7462 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7463 return -1;
7464
7465 quota_us = tg->cfs_bandwidth.quota;
7466 do_div(quota_us, NSEC_PER_USEC);
7467
7468 return quota_us;
7469 }
7470
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)7471 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7472 {
7473 u64 quota, period;
7474
7475 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7476 return -EINVAL;
7477
7478 period = (u64)cfs_period_us * NSEC_PER_USEC;
7479 quota = tg->cfs_bandwidth.quota;
7480
7481 return tg_set_cfs_bandwidth(tg, period, quota);
7482 }
7483
tg_get_cfs_period(struct task_group * tg)7484 static long tg_get_cfs_period(struct task_group *tg)
7485 {
7486 u64 cfs_period_us;
7487
7488 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7489 do_div(cfs_period_us, NSEC_PER_USEC);
7490
7491 return cfs_period_us;
7492 }
7493
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)7494 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7495 struct cftype *cft)
7496 {
7497 return tg_get_cfs_quota(css_tg(css));
7498 }
7499
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)7500 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7501 struct cftype *cftype, s64 cfs_quota_us)
7502 {
7503 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7504 }
7505
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)7506 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7507 struct cftype *cft)
7508 {
7509 return tg_get_cfs_period(css_tg(css));
7510 }
7511
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)7512 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7513 struct cftype *cftype, u64 cfs_period_us)
7514 {
7515 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7516 }
7517
7518 struct cfs_schedulable_data {
7519 struct task_group *tg;
7520 u64 period, quota;
7521 };
7522
7523 /*
7524 * normalize group quota/period to be quota/max_period
7525 * note: units are usecs
7526 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)7527 static u64 normalize_cfs_quota(struct task_group *tg,
7528 struct cfs_schedulable_data *d)
7529 {
7530 u64 quota, period;
7531
7532 if (tg == d->tg) {
7533 period = d->period;
7534 quota = d->quota;
7535 } else {
7536 period = tg_get_cfs_period(tg);
7537 quota = tg_get_cfs_quota(tg);
7538 }
7539
7540 /* note: these should typically be equivalent */
7541 if (quota == RUNTIME_INF || quota == -1)
7542 return RUNTIME_INF;
7543
7544 return to_ratio(period, quota);
7545 }
7546
tg_cfs_schedulable_down(struct task_group * tg,void * data)7547 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7548 {
7549 struct cfs_schedulable_data *d = data;
7550 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7551 s64 quota = 0, parent_quota = -1;
7552
7553 if (!tg->parent) {
7554 quota = RUNTIME_INF;
7555 } else {
7556 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7557
7558 quota = normalize_cfs_quota(tg, d);
7559 parent_quota = parent_b->hierarchical_quota;
7560
7561 /*
7562 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7563 * always take the min. On cgroup1, only inherit when no
7564 * limit is set:
7565 */
7566 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7567 quota = min(quota, parent_quota);
7568 } else {
7569 if (quota == RUNTIME_INF)
7570 quota = parent_quota;
7571 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7572 return -EINVAL;
7573 }
7574 }
7575 cfs_b->hierarchical_quota = quota;
7576
7577 return 0;
7578 }
7579
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)7580 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7581 {
7582 int ret;
7583 struct cfs_schedulable_data data = {
7584 .tg = tg,
7585 .period = period,
7586 .quota = quota,
7587 };
7588
7589 if (quota != RUNTIME_INF) {
7590 do_div(data.period, NSEC_PER_USEC);
7591 do_div(data.quota, NSEC_PER_USEC);
7592 }
7593
7594 rcu_read_lock();
7595 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7596 rcu_read_unlock();
7597
7598 return ret;
7599 }
7600
cpu_cfs_stat_show(struct seq_file * sf,void * v)7601 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7602 {
7603 struct task_group *tg = css_tg(seq_css(sf));
7604 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7605
7606 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7607 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7608 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7609
7610 if (schedstat_enabled() && tg != &root_task_group) {
7611 u64 ws = 0;
7612 int i;
7613
7614 for_each_possible_cpu(i)
7615 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7616
7617 seq_printf(sf, "wait_sum %llu\n", ws);
7618 }
7619
7620 return 0;
7621 }
7622 #endif /* CONFIG_CFS_BANDWIDTH */
7623 #endif /* CONFIG_FAIR_GROUP_SCHED */
7624
7625 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)7626 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7627 struct cftype *cft, s64 val)
7628 {
7629 return sched_group_set_rt_runtime(css_tg(css), val);
7630 }
7631
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)7632 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7633 struct cftype *cft)
7634 {
7635 return sched_group_rt_runtime(css_tg(css));
7636 }
7637
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)7638 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7639 struct cftype *cftype, u64 rt_period_us)
7640 {
7641 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7642 }
7643
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)7644 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7645 struct cftype *cft)
7646 {
7647 return sched_group_rt_period(css_tg(css));
7648 }
7649 #endif /* CONFIG_RT_GROUP_SCHED */
7650
7651 static struct cftype cpu_legacy_files[] = {
7652 #ifdef CONFIG_FAIR_GROUP_SCHED
7653 {
7654 .name = "shares",
7655 .read_u64 = cpu_shares_read_u64,
7656 .write_u64 = cpu_shares_write_u64,
7657 },
7658 #endif
7659 #ifdef CONFIG_CFS_BANDWIDTH
7660 {
7661 .name = "cfs_quota_us",
7662 .read_s64 = cpu_cfs_quota_read_s64,
7663 .write_s64 = cpu_cfs_quota_write_s64,
7664 },
7665 {
7666 .name = "cfs_period_us",
7667 .read_u64 = cpu_cfs_period_read_u64,
7668 .write_u64 = cpu_cfs_period_write_u64,
7669 },
7670 {
7671 .name = "stat",
7672 .seq_show = cpu_cfs_stat_show,
7673 },
7674 #endif
7675 #ifdef CONFIG_RT_GROUP_SCHED
7676 {
7677 .name = "rt_runtime_us",
7678 .read_s64 = cpu_rt_runtime_read,
7679 .write_s64 = cpu_rt_runtime_write,
7680 },
7681 {
7682 .name = "rt_period_us",
7683 .read_u64 = cpu_rt_period_read_uint,
7684 .write_u64 = cpu_rt_period_write_uint,
7685 },
7686 #endif
7687 #ifdef CONFIG_UCLAMP_TASK_GROUP
7688 {
7689 .name = "uclamp.min",
7690 .flags = CFTYPE_NOT_ON_ROOT,
7691 .seq_show = cpu_uclamp_min_show,
7692 .write = cpu_uclamp_min_write,
7693 },
7694 {
7695 .name = "uclamp.max",
7696 .flags = CFTYPE_NOT_ON_ROOT,
7697 .seq_show = cpu_uclamp_max_show,
7698 .write = cpu_uclamp_max_write,
7699 },
7700 #endif
7701 { } /* Terminate */
7702 };
7703
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)7704 static int cpu_extra_stat_show(struct seq_file *sf,
7705 struct cgroup_subsys_state *css)
7706 {
7707 #ifdef CONFIG_CFS_BANDWIDTH
7708 {
7709 struct task_group *tg = css_tg(css);
7710 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7711 u64 throttled_usec;
7712
7713 throttled_usec = cfs_b->throttled_time;
7714 do_div(throttled_usec, NSEC_PER_USEC);
7715
7716 seq_printf(sf, "nr_periods %d\n"
7717 "nr_throttled %d\n"
7718 "throttled_usec %llu\n",
7719 cfs_b->nr_periods, cfs_b->nr_throttled,
7720 throttled_usec);
7721 }
7722 #endif
7723 return 0;
7724 }
7725
7726 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)7727 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7728 struct cftype *cft)
7729 {
7730 struct task_group *tg = css_tg(css);
7731 u64 weight = scale_load_down(tg->shares);
7732
7733 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7734 }
7735
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)7736 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7737 struct cftype *cft, u64 weight)
7738 {
7739 /*
7740 * cgroup weight knobs should use the common MIN, DFL and MAX
7741 * values which are 1, 100 and 10000 respectively. While it loses
7742 * a bit of range on both ends, it maps pretty well onto the shares
7743 * value used by scheduler and the round-trip conversions preserve
7744 * the original value over the entire range.
7745 */
7746 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7747 return -ERANGE;
7748
7749 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7750
7751 return sched_group_set_shares(css_tg(css), scale_load(weight));
7752 }
7753
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)7754 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7755 struct cftype *cft)
7756 {
7757 unsigned long weight = scale_load_down(css_tg(css)->shares);
7758 int last_delta = INT_MAX;
7759 int prio, delta;
7760
7761 /* find the closest nice value to the current weight */
7762 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7763 delta = abs(sched_prio_to_weight[prio] - weight);
7764 if (delta >= last_delta)
7765 break;
7766 last_delta = delta;
7767 }
7768
7769 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7770 }
7771
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)7772 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7773 struct cftype *cft, s64 nice)
7774 {
7775 unsigned long weight;
7776 int idx;
7777
7778 if (nice < MIN_NICE || nice > MAX_NICE)
7779 return -ERANGE;
7780
7781 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7782 idx = array_index_nospec(idx, 40);
7783 weight = sched_prio_to_weight[idx];
7784
7785 return sched_group_set_shares(css_tg(css), scale_load(weight));
7786 }
7787 #endif
7788
cpu_period_quota_print(struct seq_file * sf,long period,long quota)7789 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7790 long period, long quota)
7791 {
7792 if (quota < 0)
7793 seq_puts(sf, "max");
7794 else
7795 seq_printf(sf, "%ld", quota);
7796
7797 seq_printf(sf, " %ld\n", period);
7798 }
7799
7800 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)7801 static int __maybe_unused cpu_period_quota_parse(char *buf,
7802 u64 *periodp, u64 *quotap)
7803 {
7804 char tok[21]; /* U64_MAX */
7805
7806 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7807 return -EINVAL;
7808
7809 *periodp *= NSEC_PER_USEC;
7810
7811 if (sscanf(tok, "%llu", quotap))
7812 *quotap *= NSEC_PER_USEC;
7813 else if (!strcmp(tok, "max"))
7814 *quotap = RUNTIME_INF;
7815 else
7816 return -EINVAL;
7817
7818 return 0;
7819 }
7820
7821 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)7822 static int cpu_max_show(struct seq_file *sf, void *v)
7823 {
7824 struct task_group *tg = css_tg(seq_css(sf));
7825
7826 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7827 return 0;
7828 }
7829
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)7830 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7831 char *buf, size_t nbytes, loff_t off)
7832 {
7833 struct task_group *tg = css_tg(of_css(of));
7834 u64 period = tg_get_cfs_period(tg);
7835 u64 quota;
7836 int ret;
7837
7838 ret = cpu_period_quota_parse(buf, &period, "a);
7839 if (!ret)
7840 ret = tg_set_cfs_bandwidth(tg, period, quota);
7841 return ret ?: nbytes;
7842 }
7843 #endif
7844
7845 static struct cftype cpu_files[] = {
7846 #ifdef CONFIG_FAIR_GROUP_SCHED
7847 {
7848 .name = "weight",
7849 .flags = CFTYPE_NOT_ON_ROOT,
7850 .read_u64 = cpu_weight_read_u64,
7851 .write_u64 = cpu_weight_write_u64,
7852 },
7853 {
7854 .name = "weight.nice",
7855 .flags = CFTYPE_NOT_ON_ROOT,
7856 .read_s64 = cpu_weight_nice_read_s64,
7857 .write_s64 = cpu_weight_nice_write_s64,
7858 },
7859 #endif
7860 #ifdef CONFIG_CFS_BANDWIDTH
7861 {
7862 .name = "max",
7863 .flags = CFTYPE_NOT_ON_ROOT,
7864 .seq_show = cpu_max_show,
7865 .write = cpu_max_write,
7866 },
7867 #endif
7868 #ifdef CONFIG_UCLAMP_TASK_GROUP
7869 {
7870 .name = "uclamp.min",
7871 .flags = CFTYPE_NOT_ON_ROOT,
7872 .seq_show = cpu_uclamp_min_show,
7873 .write = cpu_uclamp_min_write,
7874 },
7875 {
7876 .name = "uclamp.max",
7877 .flags = CFTYPE_NOT_ON_ROOT,
7878 .seq_show = cpu_uclamp_max_show,
7879 .write = cpu_uclamp_max_write,
7880 },
7881 #endif
7882 { } /* terminate */
7883 };
7884
7885 struct cgroup_subsys cpu_cgrp_subsys = {
7886 .css_alloc = cpu_cgroup_css_alloc,
7887 .css_online = cpu_cgroup_css_online,
7888 .css_released = cpu_cgroup_css_released,
7889 .css_free = cpu_cgroup_css_free,
7890 .css_extra_stat_show = cpu_extra_stat_show,
7891 .fork = cpu_cgroup_fork,
7892 .can_attach = cpu_cgroup_can_attach,
7893 .attach = cpu_cgroup_attach,
7894 .legacy_cftypes = cpu_legacy_files,
7895 .dfl_cftypes = cpu_files,
7896 .early_init = true,
7897 .threaded = true,
7898 };
7899
7900 #endif /* CONFIG_CGROUP_SCHED */
7901
dump_cpu_task(int cpu)7902 void dump_cpu_task(int cpu)
7903 {
7904 pr_info("Task dump for CPU %d:\n", cpu);
7905 sched_show_task(cpu_curr(cpu));
7906 }
7907
7908 /*
7909 * Nice levels are multiplicative, with a gentle 10% change for every
7910 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7911 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7912 * that remained on nice 0.
7913 *
7914 * The "10% effect" is relative and cumulative: from _any_ nice level,
7915 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7916 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7917 * If a task goes up by ~10% and another task goes down by ~10% then
7918 * the relative distance between them is ~25%.)
7919 */
7920 const int sched_prio_to_weight[40] = {
7921 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7922 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7923 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7924 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7925 /* 0 */ 1024, 820, 655, 526, 423,
7926 /* 5 */ 335, 272, 215, 172, 137,
7927 /* 10 */ 110, 87, 70, 56, 45,
7928 /* 15 */ 36, 29, 23, 18, 15,
7929 };
7930
7931 /*
7932 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7933 *
7934 * In cases where the weight does not change often, we can use the
7935 * precalculated inverse to speed up arithmetics by turning divisions
7936 * into multiplications:
7937 */
7938 const u32 sched_prio_to_wmult[40] = {
7939 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7940 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7941 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7942 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7943 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7944 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7945 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7946 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7947 };
7948
7949 #undef CREATE_TRACE_POINTS
7950