1 // SPDX-License-Identifier: GPL-2.0
2 /* This is included from relocs_32/64.c */
3
4 #define ElfW(type) _ElfW(ELF_BITS, type)
5 #define _ElfW(bits, type) __ElfW(bits, type)
6 #define __ElfW(bits, type) Elf##bits##_##type
7
8 #define Elf_Addr ElfW(Addr)
9 #define Elf_Ehdr ElfW(Ehdr)
10 #define Elf_Phdr ElfW(Phdr)
11 #define Elf_Shdr ElfW(Shdr)
12 #define Elf_Sym ElfW(Sym)
13
14 static Elf_Ehdr ehdr;
15
16 struct relocs {
17 uint32_t *offset;
18 unsigned long count;
19 unsigned long size;
20 };
21
22 static struct relocs relocs16;
23 static struct relocs relocs32;
24 #if ELF_BITS == 64
25 static struct relocs relocs32neg;
26 static struct relocs relocs64;
27 #endif
28
29 struct section {
30 Elf_Shdr shdr;
31 struct section *link;
32 Elf_Sym *symtab;
33 Elf_Rel *reltab;
34 char *strtab;
35 };
36 static struct section *secs;
37
38 static const char * const sym_regex_kernel[S_NSYMTYPES] = {
39 /*
40 * Following symbols have been audited. There values are constant and do
41 * not change if bzImage is loaded at a different physical address than
42 * the address for which it has been compiled. Don't warn user about
43 * absolute relocations present w.r.t these symbols.
44 */
45 [S_ABS] =
46 "^(xen_irq_disable_direct_reloc$|"
47 "xen_save_fl_direct_reloc$|"
48 "VDSO|"
49 "__crc_)",
50
51 /*
52 * These symbols are known to be relative, even if the linker marks them
53 * as absolute (typically defined outside any section in the linker script.)
54 */
55 [S_REL] =
56 "^(__init_(begin|end)|"
57 "__x86_cpu_dev_(start|end)|"
58 "(__parainstructions|__alt_instructions)(|_end)|"
59 "(__iommu_table|__apicdrivers|__smp_locks)(|_end)|"
60 "__(start|end)_pci_.*|"
61 "__(start|end)_builtin_fw|"
62 "__(start|stop)___ksymtab(|_gpl|_unused|_unused_gpl|_gpl_future)|"
63 "__(start|stop)___kcrctab(|_gpl|_unused|_unused_gpl|_gpl_future)|"
64 "__(start|stop)___param|"
65 "__(start|stop)___modver|"
66 "__(start|stop)___bug_table|"
67 "__tracedata_(start|end)|"
68 "__(start|stop)_notes|"
69 "__end_rodata|"
70 "__end_rodata_aligned|"
71 "__initramfs_start|"
72 "(jiffies|jiffies_64)|"
73 #if ELF_BITS == 64
74 "__per_cpu_load|"
75 "init_per_cpu__.*|"
76 "__end_rodata_hpage_align|"
77 #endif
78 "__vvar_page|"
79 "_end)$"
80 };
81
82
83 static const char * const sym_regex_realmode[S_NSYMTYPES] = {
84 /*
85 * These symbols are known to be relative, even if the linker marks them
86 * as absolute (typically defined outside any section in the linker script.)
87 */
88 [S_REL] =
89 "^pa_",
90
91 /*
92 * These are 16-bit segment symbols when compiling 16-bit code.
93 */
94 [S_SEG] =
95 "^real_mode_seg$",
96
97 /*
98 * These are offsets belonging to segments, as opposed to linear addresses,
99 * when compiling 16-bit code.
100 */
101 [S_LIN] =
102 "^pa_",
103 };
104
105 static const char * const *sym_regex;
106
107 static regex_t sym_regex_c[S_NSYMTYPES];
is_reloc(enum symtype type,const char * sym_name)108 static int is_reloc(enum symtype type, const char *sym_name)
109 {
110 return sym_regex[type] &&
111 !regexec(&sym_regex_c[type], sym_name, 0, NULL, 0);
112 }
113
regex_init(int use_real_mode)114 static void regex_init(int use_real_mode)
115 {
116 char errbuf[128];
117 int err;
118 int i;
119
120 if (use_real_mode)
121 sym_regex = sym_regex_realmode;
122 else
123 sym_regex = sym_regex_kernel;
124
125 for (i = 0; i < S_NSYMTYPES; i++) {
126 if (!sym_regex[i])
127 continue;
128
129 err = regcomp(&sym_regex_c[i], sym_regex[i],
130 REG_EXTENDED|REG_NOSUB);
131
132 if (err) {
133 regerror(err, &sym_regex_c[i], errbuf, sizeof errbuf);
134 die("%s", errbuf);
135 }
136 }
137 }
138
sym_type(unsigned type)139 static const char *sym_type(unsigned type)
140 {
141 static const char *type_name[] = {
142 #define SYM_TYPE(X) [X] = #X
143 SYM_TYPE(STT_NOTYPE),
144 SYM_TYPE(STT_OBJECT),
145 SYM_TYPE(STT_FUNC),
146 SYM_TYPE(STT_SECTION),
147 SYM_TYPE(STT_FILE),
148 SYM_TYPE(STT_COMMON),
149 SYM_TYPE(STT_TLS),
150 #undef SYM_TYPE
151 };
152 const char *name = "unknown sym type name";
153 if (type < ARRAY_SIZE(type_name)) {
154 name = type_name[type];
155 }
156 return name;
157 }
158
sym_bind(unsigned bind)159 static const char *sym_bind(unsigned bind)
160 {
161 static const char *bind_name[] = {
162 #define SYM_BIND(X) [X] = #X
163 SYM_BIND(STB_LOCAL),
164 SYM_BIND(STB_GLOBAL),
165 SYM_BIND(STB_WEAK),
166 #undef SYM_BIND
167 };
168 const char *name = "unknown sym bind name";
169 if (bind < ARRAY_SIZE(bind_name)) {
170 name = bind_name[bind];
171 }
172 return name;
173 }
174
sym_visibility(unsigned visibility)175 static const char *sym_visibility(unsigned visibility)
176 {
177 static const char *visibility_name[] = {
178 #define SYM_VISIBILITY(X) [X] = #X
179 SYM_VISIBILITY(STV_DEFAULT),
180 SYM_VISIBILITY(STV_INTERNAL),
181 SYM_VISIBILITY(STV_HIDDEN),
182 SYM_VISIBILITY(STV_PROTECTED),
183 #undef SYM_VISIBILITY
184 };
185 const char *name = "unknown sym visibility name";
186 if (visibility < ARRAY_SIZE(visibility_name)) {
187 name = visibility_name[visibility];
188 }
189 return name;
190 }
191
rel_type(unsigned type)192 static const char *rel_type(unsigned type)
193 {
194 static const char *type_name[] = {
195 #define REL_TYPE(X) [X] = #X
196 #if ELF_BITS == 64
197 REL_TYPE(R_X86_64_NONE),
198 REL_TYPE(R_X86_64_64),
199 REL_TYPE(R_X86_64_PC32),
200 REL_TYPE(R_X86_64_GOT32),
201 REL_TYPE(R_X86_64_PLT32),
202 REL_TYPE(R_X86_64_COPY),
203 REL_TYPE(R_X86_64_GLOB_DAT),
204 REL_TYPE(R_X86_64_JUMP_SLOT),
205 REL_TYPE(R_X86_64_RELATIVE),
206 REL_TYPE(R_X86_64_GOTPCREL),
207 REL_TYPE(R_X86_64_32),
208 REL_TYPE(R_X86_64_32S),
209 REL_TYPE(R_X86_64_16),
210 REL_TYPE(R_X86_64_PC16),
211 REL_TYPE(R_X86_64_8),
212 REL_TYPE(R_X86_64_PC8),
213 #else
214 REL_TYPE(R_386_NONE),
215 REL_TYPE(R_386_32),
216 REL_TYPE(R_386_PC32),
217 REL_TYPE(R_386_GOT32),
218 REL_TYPE(R_386_PLT32),
219 REL_TYPE(R_386_COPY),
220 REL_TYPE(R_386_GLOB_DAT),
221 REL_TYPE(R_386_JMP_SLOT),
222 REL_TYPE(R_386_RELATIVE),
223 REL_TYPE(R_386_GOTOFF),
224 REL_TYPE(R_386_GOTPC),
225 REL_TYPE(R_386_8),
226 REL_TYPE(R_386_PC8),
227 REL_TYPE(R_386_16),
228 REL_TYPE(R_386_PC16),
229 #endif
230 #undef REL_TYPE
231 };
232 const char *name = "unknown type rel type name";
233 if (type < ARRAY_SIZE(type_name) && type_name[type]) {
234 name = type_name[type];
235 }
236 return name;
237 }
238
sec_name(unsigned shndx)239 static const char *sec_name(unsigned shndx)
240 {
241 const char *sec_strtab;
242 const char *name;
243 sec_strtab = secs[ehdr.e_shstrndx].strtab;
244 name = "<noname>";
245 if (shndx < ehdr.e_shnum) {
246 name = sec_strtab + secs[shndx].shdr.sh_name;
247 }
248 else if (shndx == SHN_ABS) {
249 name = "ABSOLUTE";
250 }
251 else if (shndx == SHN_COMMON) {
252 name = "COMMON";
253 }
254 return name;
255 }
256
sym_name(const char * sym_strtab,Elf_Sym * sym)257 static const char *sym_name(const char *sym_strtab, Elf_Sym *sym)
258 {
259 const char *name;
260 name = "<noname>";
261 if (sym->st_name) {
262 name = sym_strtab + sym->st_name;
263 }
264 else {
265 name = sec_name(sym->st_shndx);
266 }
267 return name;
268 }
269
sym_lookup(const char * symname)270 static Elf_Sym *sym_lookup(const char *symname)
271 {
272 int i;
273 for (i = 0; i < ehdr.e_shnum; i++) {
274 struct section *sec = &secs[i];
275 long nsyms;
276 char *strtab;
277 Elf_Sym *symtab;
278 Elf_Sym *sym;
279
280 if (sec->shdr.sh_type != SHT_SYMTAB)
281 continue;
282
283 nsyms = sec->shdr.sh_size/sizeof(Elf_Sym);
284 symtab = sec->symtab;
285 strtab = sec->link->strtab;
286
287 for (sym = symtab; --nsyms >= 0; sym++) {
288 if (!sym->st_name)
289 continue;
290 if (strcmp(symname, strtab + sym->st_name) == 0)
291 return sym;
292 }
293 }
294 return 0;
295 }
296
297 #if BYTE_ORDER == LITTLE_ENDIAN
298 #define le16_to_cpu(val) (val)
299 #define le32_to_cpu(val) (val)
300 #define le64_to_cpu(val) (val)
301 #endif
302 #if BYTE_ORDER == BIG_ENDIAN
303 #define le16_to_cpu(val) bswap_16(val)
304 #define le32_to_cpu(val) bswap_32(val)
305 #define le64_to_cpu(val) bswap_64(val)
306 #endif
307
elf16_to_cpu(uint16_t val)308 static uint16_t elf16_to_cpu(uint16_t val)
309 {
310 return le16_to_cpu(val);
311 }
312
elf32_to_cpu(uint32_t val)313 static uint32_t elf32_to_cpu(uint32_t val)
314 {
315 return le32_to_cpu(val);
316 }
317
318 #define elf_half_to_cpu(x) elf16_to_cpu(x)
319 #define elf_word_to_cpu(x) elf32_to_cpu(x)
320
321 #if ELF_BITS == 64
elf64_to_cpu(uint64_t val)322 static uint64_t elf64_to_cpu(uint64_t val)
323 {
324 return le64_to_cpu(val);
325 }
326 #define elf_addr_to_cpu(x) elf64_to_cpu(x)
327 #define elf_off_to_cpu(x) elf64_to_cpu(x)
328 #define elf_xword_to_cpu(x) elf64_to_cpu(x)
329 #else
330 #define elf_addr_to_cpu(x) elf32_to_cpu(x)
331 #define elf_off_to_cpu(x) elf32_to_cpu(x)
332 #define elf_xword_to_cpu(x) elf32_to_cpu(x)
333 #endif
334
read_ehdr(FILE * fp)335 static void read_ehdr(FILE *fp)
336 {
337 if (fread(&ehdr, sizeof(ehdr), 1, fp) != 1) {
338 die("Cannot read ELF header: %s\n",
339 strerror(errno));
340 }
341 if (memcmp(ehdr.e_ident, ELFMAG, SELFMAG) != 0) {
342 die("No ELF magic\n");
343 }
344 if (ehdr.e_ident[EI_CLASS] != ELF_CLASS) {
345 die("Not a %d bit executable\n", ELF_BITS);
346 }
347 if (ehdr.e_ident[EI_DATA] != ELFDATA2LSB) {
348 die("Not a LSB ELF executable\n");
349 }
350 if (ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
351 die("Unknown ELF version\n");
352 }
353 /* Convert the fields to native endian */
354 ehdr.e_type = elf_half_to_cpu(ehdr.e_type);
355 ehdr.e_machine = elf_half_to_cpu(ehdr.e_machine);
356 ehdr.e_version = elf_word_to_cpu(ehdr.e_version);
357 ehdr.e_entry = elf_addr_to_cpu(ehdr.e_entry);
358 ehdr.e_phoff = elf_off_to_cpu(ehdr.e_phoff);
359 ehdr.e_shoff = elf_off_to_cpu(ehdr.e_shoff);
360 ehdr.e_flags = elf_word_to_cpu(ehdr.e_flags);
361 ehdr.e_ehsize = elf_half_to_cpu(ehdr.e_ehsize);
362 ehdr.e_phentsize = elf_half_to_cpu(ehdr.e_phentsize);
363 ehdr.e_phnum = elf_half_to_cpu(ehdr.e_phnum);
364 ehdr.e_shentsize = elf_half_to_cpu(ehdr.e_shentsize);
365 ehdr.e_shnum = elf_half_to_cpu(ehdr.e_shnum);
366 ehdr.e_shstrndx = elf_half_to_cpu(ehdr.e_shstrndx);
367
368 if ((ehdr.e_type != ET_EXEC) && (ehdr.e_type != ET_DYN)) {
369 die("Unsupported ELF header type\n");
370 }
371 if (ehdr.e_machine != ELF_MACHINE) {
372 die("Not for %s\n", ELF_MACHINE_NAME);
373 }
374 if (ehdr.e_version != EV_CURRENT) {
375 die("Unknown ELF version\n");
376 }
377 if (ehdr.e_ehsize != sizeof(Elf_Ehdr)) {
378 die("Bad Elf header size\n");
379 }
380 if (ehdr.e_phentsize != sizeof(Elf_Phdr)) {
381 die("Bad program header entry\n");
382 }
383 if (ehdr.e_shentsize != sizeof(Elf_Shdr)) {
384 die("Bad section header entry\n");
385 }
386 if (ehdr.e_shstrndx >= ehdr.e_shnum) {
387 die("String table index out of bounds\n");
388 }
389 }
390
read_shdrs(FILE * fp)391 static void read_shdrs(FILE *fp)
392 {
393 int i;
394 Elf_Shdr shdr;
395
396 secs = calloc(ehdr.e_shnum, sizeof(struct section));
397 if (!secs) {
398 die("Unable to allocate %d section headers\n",
399 ehdr.e_shnum);
400 }
401 if (fseek(fp, ehdr.e_shoff, SEEK_SET) < 0) {
402 die("Seek to %d failed: %s\n",
403 ehdr.e_shoff, strerror(errno));
404 }
405 for (i = 0; i < ehdr.e_shnum; i++) {
406 struct section *sec = &secs[i];
407 if (fread(&shdr, sizeof shdr, 1, fp) != 1)
408 die("Cannot read ELF section headers %d/%d: %s\n",
409 i, ehdr.e_shnum, strerror(errno));
410 sec->shdr.sh_name = elf_word_to_cpu(shdr.sh_name);
411 sec->shdr.sh_type = elf_word_to_cpu(shdr.sh_type);
412 sec->shdr.sh_flags = elf_xword_to_cpu(shdr.sh_flags);
413 sec->shdr.sh_addr = elf_addr_to_cpu(shdr.sh_addr);
414 sec->shdr.sh_offset = elf_off_to_cpu(shdr.sh_offset);
415 sec->shdr.sh_size = elf_xword_to_cpu(shdr.sh_size);
416 sec->shdr.sh_link = elf_word_to_cpu(shdr.sh_link);
417 sec->shdr.sh_info = elf_word_to_cpu(shdr.sh_info);
418 sec->shdr.sh_addralign = elf_xword_to_cpu(shdr.sh_addralign);
419 sec->shdr.sh_entsize = elf_xword_to_cpu(shdr.sh_entsize);
420 if (sec->shdr.sh_link < ehdr.e_shnum)
421 sec->link = &secs[sec->shdr.sh_link];
422 }
423
424 }
425
read_strtabs(FILE * fp)426 static void read_strtabs(FILE *fp)
427 {
428 int i;
429 for (i = 0; i < ehdr.e_shnum; i++) {
430 struct section *sec = &secs[i];
431 if (sec->shdr.sh_type != SHT_STRTAB) {
432 continue;
433 }
434 sec->strtab = malloc(sec->shdr.sh_size);
435 if (!sec->strtab) {
436 die("malloc of %d bytes for strtab failed\n",
437 sec->shdr.sh_size);
438 }
439 if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
440 die("Seek to %d failed: %s\n",
441 sec->shdr.sh_offset, strerror(errno));
442 }
443 if (fread(sec->strtab, 1, sec->shdr.sh_size, fp)
444 != sec->shdr.sh_size) {
445 die("Cannot read symbol table: %s\n",
446 strerror(errno));
447 }
448 }
449 }
450
read_symtabs(FILE * fp)451 static void read_symtabs(FILE *fp)
452 {
453 int i,j;
454 for (i = 0; i < ehdr.e_shnum; i++) {
455 struct section *sec = &secs[i];
456 if (sec->shdr.sh_type != SHT_SYMTAB) {
457 continue;
458 }
459 sec->symtab = malloc(sec->shdr.sh_size);
460 if (!sec->symtab) {
461 die("malloc of %d bytes for symtab failed\n",
462 sec->shdr.sh_size);
463 }
464 if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
465 die("Seek to %d failed: %s\n",
466 sec->shdr.sh_offset, strerror(errno));
467 }
468 if (fread(sec->symtab, 1, sec->shdr.sh_size, fp)
469 != sec->shdr.sh_size) {
470 die("Cannot read symbol table: %s\n",
471 strerror(errno));
472 }
473 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
474 Elf_Sym *sym = &sec->symtab[j];
475 sym->st_name = elf_word_to_cpu(sym->st_name);
476 sym->st_value = elf_addr_to_cpu(sym->st_value);
477 sym->st_size = elf_xword_to_cpu(sym->st_size);
478 sym->st_shndx = elf_half_to_cpu(sym->st_shndx);
479 }
480 }
481 }
482
483
read_relocs(FILE * fp)484 static void read_relocs(FILE *fp)
485 {
486 int i,j;
487 for (i = 0; i < ehdr.e_shnum; i++) {
488 struct section *sec = &secs[i];
489 if (sec->shdr.sh_type != SHT_REL_TYPE) {
490 continue;
491 }
492 sec->reltab = malloc(sec->shdr.sh_size);
493 if (!sec->reltab) {
494 die("malloc of %d bytes for relocs failed\n",
495 sec->shdr.sh_size);
496 }
497 if (fseek(fp, sec->shdr.sh_offset, SEEK_SET) < 0) {
498 die("Seek to %d failed: %s\n",
499 sec->shdr.sh_offset, strerror(errno));
500 }
501 if (fread(sec->reltab, 1, sec->shdr.sh_size, fp)
502 != sec->shdr.sh_size) {
503 die("Cannot read symbol table: %s\n",
504 strerror(errno));
505 }
506 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
507 Elf_Rel *rel = &sec->reltab[j];
508 rel->r_offset = elf_addr_to_cpu(rel->r_offset);
509 rel->r_info = elf_xword_to_cpu(rel->r_info);
510 #if (SHT_REL_TYPE == SHT_RELA)
511 rel->r_addend = elf_xword_to_cpu(rel->r_addend);
512 #endif
513 }
514 }
515 }
516
517
print_absolute_symbols(void)518 static void print_absolute_symbols(void)
519 {
520 int i;
521 const char *format;
522
523 if (ELF_BITS == 64)
524 format = "%5d %016"PRIx64" %5"PRId64" %10s %10s %12s %s\n";
525 else
526 format = "%5d %08"PRIx32" %5"PRId32" %10s %10s %12s %s\n";
527
528 printf("Absolute symbols\n");
529 printf(" Num: Value Size Type Bind Visibility Name\n");
530 for (i = 0; i < ehdr.e_shnum; i++) {
531 struct section *sec = &secs[i];
532 char *sym_strtab;
533 int j;
534
535 if (sec->shdr.sh_type != SHT_SYMTAB) {
536 continue;
537 }
538 sym_strtab = sec->link->strtab;
539 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Sym); j++) {
540 Elf_Sym *sym;
541 const char *name;
542 sym = &sec->symtab[j];
543 name = sym_name(sym_strtab, sym);
544 if (sym->st_shndx != SHN_ABS) {
545 continue;
546 }
547 printf(format,
548 j, sym->st_value, sym->st_size,
549 sym_type(ELF_ST_TYPE(sym->st_info)),
550 sym_bind(ELF_ST_BIND(sym->st_info)),
551 sym_visibility(ELF_ST_VISIBILITY(sym->st_other)),
552 name);
553 }
554 }
555 printf("\n");
556 }
557
print_absolute_relocs(void)558 static void print_absolute_relocs(void)
559 {
560 int i, printed = 0;
561 const char *format;
562
563 if (ELF_BITS == 64)
564 format = "%016"PRIx64" %016"PRIx64" %10s %016"PRIx64" %s\n";
565 else
566 format = "%08"PRIx32" %08"PRIx32" %10s %08"PRIx32" %s\n";
567
568 for (i = 0; i < ehdr.e_shnum; i++) {
569 struct section *sec = &secs[i];
570 struct section *sec_applies, *sec_symtab;
571 char *sym_strtab;
572 Elf_Sym *sh_symtab;
573 int j;
574 if (sec->shdr.sh_type != SHT_REL_TYPE) {
575 continue;
576 }
577 sec_symtab = sec->link;
578 sec_applies = &secs[sec->shdr.sh_info];
579 if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
580 continue;
581 }
582 sh_symtab = sec_symtab->symtab;
583 sym_strtab = sec_symtab->link->strtab;
584 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
585 Elf_Rel *rel;
586 Elf_Sym *sym;
587 const char *name;
588 rel = &sec->reltab[j];
589 sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
590 name = sym_name(sym_strtab, sym);
591 if (sym->st_shndx != SHN_ABS) {
592 continue;
593 }
594
595 /* Absolute symbols are not relocated if bzImage is
596 * loaded at a non-compiled address. Display a warning
597 * to user at compile time about the absolute
598 * relocations present.
599 *
600 * User need to audit the code to make sure
601 * some symbols which should have been section
602 * relative have not become absolute because of some
603 * linker optimization or wrong programming usage.
604 *
605 * Before warning check if this absolute symbol
606 * relocation is harmless.
607 */
608 if (is_reloc(S_ABS, name) || is_reloc(S_REL, name))
609 continue;
610
611 if (!printed) {
612 printf("WARNING: Absolute relocations"
613 " present\n");
614 printf("Offset Info Type Sym.Value "
615 "Sym.Name\n");
616 printed = 1;
617 }
618
619 printf(format,
620 rel->r_offset,
621 rel->r_info,
622 rel_type(ELF_R_TYPE(rel->r_info)),
623 sym->st_value,
624 name);
625 }
626 }
627
628 if (printed)
629 printf("\n");
630 }
631
add_reloc(struct relocs * r,uint32_t offset)632 static void add_reloc(struct relocs *r, uint32_t offset)
633 {
634 if (r->count == r->size) {
635 unsigned long newsize = r->size + 50000;
636 void *mem = realloc(r->offset, newsize * sizeof(r->offset[0]));
637
638 if (!mem)
639 die("realloc of %ld entries for relocs failed\n",
640 newsize);
641 r->offset = mem;
642 r->size = newsize;
643 }
644 r->offset[r->count++] = offset;
645 }
646
walk_relocs(int (* process)(struct section * sec,Elf_Rel * rel,Elf_Sym * sym,const char * symname))647 static void walk_relocs(int (*process)(struct section *sec, Elf_Rel *rel,
648 Elf_Sym *sym, const char *symname))
649 {
650 int i;
651 /* Walk through the relocations */
652 for (i = 0; i < ehdr.e_shnum; i++) {
653 char *sym_strtab;
654 Elf_Sym *sh_symtab;
655 struct section *sec_applies, *sec_symtab;
656 int j;
657 struct section *sec = &secs[i];
658
659 if (sec->shdr.sh_type != SHT_REL_TYPE) {
660 continue;
661 }
662 sec_symtab = sec->link;
663 sec_applies = &secs[sec->shdr.sh_info];
664 if (!(sec_applies->shdr.sh_flags & SHF_ALLOC)) {
665 continue;
666 }
667 sh_symtab = sec_symtab->symtab;
668 sym_strtab = sec_symtab->link->strtab;
669 for (j = 0; j < sec->shdr.sh_size/sizeof(Elf_Rel); j++) {
670 Elf_Rel *rel = &sec->reltab[j];
671 Elf_Sym *sym = &sh_symtab[ELF_R_SYM(rel->r_info)];
672 const char *symname = sym_name(sym_strtab, sym);
673
674 process(sec, rel, sym, symname);
675 }
676 }
677 }
678
679 /*
680 * The .data..percpu section is a special case for x86_64 SMP kernels.
681 * It is used to initialize the actual per_cpu areas and to provide
682 * definitions for the per_cpu variables that correspond to their offsets
683 * within the percpu area. Since the values of all of the symbols need
684 * to be offsets from the start of the per_cpu area the virtual address
685 * (sh_addr) of .data..percpu is 0 in SMP kernels.
686 *
687 * This means that:
688 *
689 * Relocations that reference symbols in the per_cpu area do not
690 * need further relocation (since the value is an offset relative
691 * to the start of the per_cpu area that does not change).
692 *
693 * Relocations that apply to the per_cpu area need to have their
694 * offset adjusted by by the value of __per_cpu_load to make them
695 * point to the correct place in the loaded image (because the
696 * virtual address of .data..percpu is 0).
697 *
698 * For non SMP kernels .data..percpu is linked as part of the normal
699 * kernel data and does not require special treatment.
700 *
701 */
702 static int per_cpu_shndx = -1;
703 static Elf_Addr per_cpu_load_addr;
704
percpu_init(void)705 static void percpu_init(void)
706 {
707 int i;
708 for (i = 0; i < ehdr.e_shnum; i++) {
709 ElfW(Sym) *sym;
710 if (strcmp(sec_name(i), ".data..percpu"))
711 continue;
712
713 if (secs[i].shdr.sh_addr != 0) /* non SMP kernel */
714 return;
715
716 sym = sym_lookup("__per_cpu_load");
717 if (!sym)
718 die("can't find __per_cpu_load\n");
719
720 per_cpu_shndx = i;
721 per_cpu_load_addr = sym->st_value;
722 return;
723 }
724 }
725
726 #if ELF_BITS == 64
727
728 /*
729 * Check to see if a symbol lies in the .data..percpu section.
730 *
731 * The linker incorrectly associates some symbols with the
732 * .data..percpu section so we also need to check the symbol
733 * name to make sure that we classify the symbol correctly.
734 *
735 * The GNU linker incorrectly associates:
736 * __init_begin
737 * __per_cpu_load
738 *
739 * The "gold" linker incorrectly associates:
740 * init_per_cpu__irq_stack_union
741 * init_per_cpu__gdt_page
742 */
is_percpu_sym(ElfW (Sym)* sym,const char * symname)743 static int is_percpu_sym(ElfW(Sym) *sym, const char *symname)
744 {
745 return (sym->st_shndx == per_cpu_shndx) &&
746 strcmp(symname, "__init_begin") &&
747 strcmp(symname, "__per_cpu_load") &&
748 strncmp(symname, "init_per_cpu_", 13);
749 }
750
751
do_reloc64(struct section * sec,Elf_Rel * rel,ElfW (Sym)* sym,const char * symname)752 static int do_reloc64(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
753 const char *symname)
754 {
755 unsigned r_type = ELF64_R_TYPE(rel->r_info);
756 ElfW(Addr) offset = rel->r_offset;
757 int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
758
759 if (sym->st_shndx == SHN_UNDEF)
760 return 0;
761
762 /*
763 * Adjust the offset if this reloc applies to the percpu section.
764 */
765 if (sec->shdr.sh_info == per_cpu_shndx)
766 offset += per_cpu_load_addr;
767
768 switch (r_type) {
769 case R_X86_64_NONE:
770 /* NONE can be ignored. */
771 break;
772
773 case R_X86_64_PC32:
774 case R_X86_64_PLT32:
775 /*
776 * PC relative relocations don't need to be adjusted unless
777 * referencing a percpu symbol.
778 *
779 * NB: R_X86_64_PLT32 can be treated as R_X86_64_PC32.
780 */
781 if (is_percpu_sym(sym, symname))
782 add_reloc(&relocs32neg, offset);
783 break;
784
785 case R_X86_64_32:
786 case R_X86_64_32S:
787 case R_X86_64_64:
788 /*
789 * References to the percpu area don't need to be adjusted.
790 */
791 if (is_percpu_sym(sym, symname))
792 break;
793
794 if (shn_abs) {
795 /*
796 * Whitelisted absolute symbols do not require
797 * relocation.
798 */
799 if (is_reloc(S_ABS, symname))
800 break;
801
802 die("Invalid absolute %s relocation: %s\n",
803 rel_type(r_type), symname);
804 break;
805 }
806
807 /*
808 * Relocation offsets for 64 bit kernels are output
809 * as 32 bits and sign extended back to 64 bits when
810 * the relocations are processed.
811 * Make sure that the offset will fit.
812 */
813 if ((int32_t)offset != (int64_t)offset)
814 die("Relocation offset doesn't fit in 32 bits\n");
815
816 if (r_type == R_X86_64_64)
817 add_reloc(&relocs64, offset);
818 else
819 add_reloc(&relocs32, offset);
820 break;
821
822 default:
823 die("Unsupported relocation type: %s (%d)\n",
824 rel_type(r_type), r_type);
825 break;
826 }
827
828 return 0;
829 }
830
831 #else
832
do_reloc32(struct section * sec,Elf_Rel * rel,Elf_Sym * sym,const char * symname)833 static int do_reloc32(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
834 const char *symname)
835 {
836 unsigned r_type = ELF32_R_TYPE(rel->r_info);
837 int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
838
839 switch (r_type) {
840 case R_386_NONE:
841 case R_386_PC32:
842 case R_386_PC16:
843 case R_386_PC8:
844 /*
845 * NONE can be ignored and PC relative relocations don't
846 * need to be adjusted.
847 */
848 break;
849
850 case R_386_32:
851 if (shn_abs) {
852 /*
853 * Whitelisted absolute symbols do not require
854 * relocation.
855 */
856 if (is_reloc(S_ABS, symname))
857 break;
858
859 die("Invalid absolute %s relocation: %s\n",
860 rel_type(r_type), symname);
861 break;
862 }
863
864 add_reloc(&relocs32, rel->r_offset);
865 break;
866
867 default:
868 die("Unsupported relocation type: %s (%d)\n",
869 rel_type(r_type), r_type);
870 break;
871 }
872
873 return 0;
874 }
875
do_reloc_real(struct section * sec,Elf_Rel * rel,Elf_Sym * sym,const char * symname)876 static int do_reloc_real(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
877 const char *symname)
878 {
879 unsigned r_type = ELF32_R_TYPE(rel->r_info);
880 int shn_abs = (sym->st_shndx == SHN_ABS) && !is_reloc(S_REL, symname);
881
882 switch (r_type) {
883 case R_386_NONE:
884 case R_386_PC32:
885 case R_386_PC16:
886 case R_386_PC8:
887 /*
888 * NONE can be ignored and PC relative relocations don't
889 * need to be adjusted.
890 */
891 break;
892
893 case R_386_16:
894 if (shn_abs) {
895 /*
896 * Whitelisted absolute symbols do not require
897 * relocation.
898 */
899 if (is_reloc(S_ABS, symname))
900 break;
901
902 if (is_reloc(S_SEG, symname)) {
903 add_reloc(&relocs16, rel->r_offset);
904 break;
905 }
906 } else {
907 if (!is_reloc(S_LIN, symname))
908 break;
909 }
910 die("Invalid %s %s relocation: %s\n",
911 shn_abs ? "absolute" : "relative",
912 rel_type(r_type), symname);
913 break;
914
915 case R_386_32:
916 if (shn_abs) {
917 /*
918 * Whitelisted absolute symbols do not require
919 * relocation.
920 */
921 if (is_reloc(S_ABS, symname))
922 break;
923
924 if (is_reloc(S_REL, symname)) {
925 add_reloc(&relocs32, rel->r_offset);
926 break;
927 }
928 } else {
929 if (is_reloc(S_LIN, symname))
930 add_reloc(&relocs32, rel->r_offset);
931 break;
932 }
933 die("Invalid %s %s relocation: %s\n",
934 shn_abs ? "absolute" : "relative",
935 rel_type(r_type), symname);
936 break;
937
938 default:
939 die("Unsupported relocation type: %s (%d)\n",
940 rel_type(r_type), r_type);
941 break;
942 }
943
944 return 0;
945 }
946
947 #endif
948
cmp_relocs(const void * va,const void * vb)949 static int cmp_relocs(const void *va, const void *vb)
950 {
951 const uint32_t *a, *b;
952 a = va; b = vb;
953 return (*a == *b)? 0 : (*a > *b)? 1 : -1;
954 }
955
sort_relocs(struct relocs * r)956 static void sort_relocs(struct relocs *r)
957 {
958 qsort(r->offset, r->count, sizeof(r->offset[0]), cmp_relocs);
959 }
960
write32(uint32_t v,FILE * f)961 static int write32(uint32_t v, FILE *f)
962 {
963 unsigned char buf[4];
964
965 put_unaligned_le32(v, buf);
966 return fwrite(buf, 1, 4, f) == 4 ? 0 : -1;
967 }
968
write32_as_text(uint32_t v,FILE * f)969 static int write32_as_text(uint32_t v, FILE *f)
970 {
971 return fprintf(f, "\t.long 0x%08"PRIx32"\n", v) > 0 ? 0 : -1;
972 }
973
emit_relocs(int as_text,int use_real_mode)974 static void emit_relocs(int as_text, int use_real_mode)
975 {
976 int i;
977 int (*write_reloc)(uint32_t, FILE *) = write32;
978 int (*do_reloc)(struct section *sec, Elf_Rel *rel, Elf_Sym *sym,
979 const char *symname);
980
981 #if ELF_BITS == 64
982 if (!use_real_mode)
983 do_reloc = do_reloc64;
984 else
985 die("--realmode not valid for a 64-bit ELF file");
986 #else
987 if (!use_real_mode)
988 do_reloc = do_reloc32;
989 else
990 do_reloc = do_reloc_real;
991 #endif
992
993 /* Collect up the relocations */
994 walk_relocs(do_reloc);
995
996 if (relocs16.count && !use_real_mode)
997 die("Segment relocations found but --realmode not specified\n");
998
999 /* Order the relocations for more efficient processing */
1000 sort_relocs(&relocs32);
1001 #if ELF_BITS == 64
1002 sort_relocs(&relocs32neg);
1003 sort_relocs(&relocs64);
1004 #else
1005 sort_relocs(&relocs16);
1006 #endif
1007
1008 /* Print the relocations */
1009 if (as_text) {
1010 /* Print the relocations in a form suitable that
1011 * gas will like.
1012 */
1013 printf(".section \".data.reloc\",\"a\"\n");
1014 printf(".balign 4\n");
1015 write_reloc = write32_as_text;
1016 }
1017
1018 if (use_real_mode) {
1019 write_reloc(relocs16.count, stdout);
1020 for (i = 0; i < relocs16.count; i++)
1021 write_reloc(relocs16.offset[i], stdout);
1022
1023 write_reloc(relocs32.count, stdout);
1024 for (i = 0; i < relocs32.count; i++)
1025 write_reloc(relocs32.offset[i], stdout);
1026 } else {
1027 #if ELF_BITS == 64
1028 /* Print a stop */
1029 write_reloc(0, stdout);
1030
1031 /* Now print each relocation */
1032 for (i = 0; i < relocs64.count; i++)
1033 write_reloc(relocs64.offset[i], stdout);
1034
1035 /* Print a stop */
1036 write_reloc(0, stdout);
1037
1038 /* Now print each inverse 32-bit relocation */
1039 for (i = 0; i < relocs32neg.count; i++)
1040 write_reloc(relocs32neg.offset[i], stdout);
1041 #endif
1042
1043 /* Print a stop */
1044 write_reloc(0, stdout);
1045
1046 /* Now print each relocation */
1047 for (i = 0; i < relocs32.count; i++)
1048 write_reloc(relocs32.offset[i], stdout);
1049 }
1050 }
1051
1052 /*
1053 * As an aid to debugging problems with different linkers
1054 * print summary information about the relocs.
1055 * Since different linkers tend to emit the sections in
1056 * different orders we use the section names in the output.
1057 */
do_reloc_info(struct section * sec,Elf_Rel * rel,ElfW (Sym)* sym,const char * symname)1058 static int do_reloc_info(struct section *sec, Elf_Rel *rel, ElfW(Sym) *sym,
1059 const char *symname)
1060 {
1061 printf("%s\t%s\t%s\t%s\n",
1062 sec_name(sec->shdr.sh_info),
1063 rel_type(ELF_R_TYPE(rel->r_info)),
1064 symname,
1065 sec_name(sym->st_shndx));
1066 return 0;
1067 }
1068
print_reloc_info(void)1069 static void print_reloc_info(void)
1070 {
1071 printf("reloc section\treloc type\tsymbol\tsymbol section\n");
1072 walk_relocs(do_reloc_info);
1073 }
1074
1075 #if ELF_BITS == 64
1076 # define process process_64
1077 #else
1078 # define process process_32
1079 #endif
1080
process(FILE * fp,int use_real_mode,int as_text,int show_absolute_syms,int show_absolute_relocs,int show_reloc_info)1081 void process(FILE *fp, int use_real_mode, int as_text,
1082 int show_absolute_syms, int show_absolute_relocs,
1083 int show_reloc_info)
1084 {
1085 regex_init(use_real_mode);
1086 read_ehdr(fp);
1087 read_shdrs(fp);
1088 read_strtabs(fp);
1089 read_symtabs(fp);
1090 read_relocs(fp);
1091 if (ELF_BITS == 64)
1092 percpu_init();
1093 if (show_absolute_syms) {
1094 print_absolute_symbols();
1095 return;
1096 }
1097 if (show_absolute_relocs) {
1098 print_absolute_relocs();
1099 return;
1100 }
1101 if (show_reloc_info) {
1102 print_reloc_info();
1103 return;
1104 }
1105 emit_relocs(as_text, use_real_mode);
1106 }
1107