1 // SPDX-License-Identifier: GPL-2.0-only
2 /* 10G controller driver for Samsung SoCs
3  *
4  * Copyright (C) 2013 Samsung Electronics Co., Ltd.
5  *		http://www.samsung.com
6  *
7  * Author: Siva Reddy Kallam <siva.kallam@samsung.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/clk.h>
13 #include <linux/crc32.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ethtool.h>
17 #include <linux/if.h>
18 #include <linux/if_ether.h>
19 #include <linux/if_vlan.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ip.h>
23 #include <linux/kernel.h>
24 #include <linux/mii.h>
25 #include <linux/module.h>
26 #include <linux/net_tstamp.h>
27 #include <linux/netdevice.h>
28 #include <linux/phy.h>
29 #include <linux/platform_device.h>
30 #include <linux/prefetch.h>
31 #include <linux/skbuff.h>
32 #include <linux/slab.h>
33 #include <linux/tcp.h>
34 #include <linux/sxgbe_platform.h>
35 
36 #include "sxgbe_common.h"
37 #include "sxgbe_desc.h"
38 #include "sxgbe_dma.h"
39 #include "sxgbe_mtl.h"
40 #include "sxgbe_reg.h"
41 
42 #define SXGBE_ALIGN(x)	L1_CACHE_ALIGN(x)
43 #define JUMBO_LEN	9000
44 
45 /* Module parameters */
46 #define TX_TIMEO	5000
47 #define DMA_TX_SIZE	512
48 #define DMA_RX_SIZE	1024
49 #define TC_DEFAULT	64
50 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
51 /* The default timer value as per the sxgbe specification 1 sec(1000 ms) */
52 #define SXGBE_DEFAULT_LPI_TIMER	1000
53 
54 static int debug = -1;
55 static int eee_timer = SXGBE_DEFAULT_LPI_TIMER;
56 
57 module_param(eee_timer, int, 0644);
58 
59 module_param(debug, int, 0644);
60 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
61 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
62 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
63 
64 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id);
65 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id);
66 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id);
67 
68 #define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
69 
70 #define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
71 
72 /**
73  * sxgbe_verify_args - verify the driver parameters.
74  * Description: it verifies if some wrong parameter is passed to the driver.
75  * Note that wrong parameters are replaced with the default values.
76  */
sxgbe_verify_args(void)77 static void sxgbe_verify_args(void)
78 {
79 	if (unlikely(eee_timer < 0))
80 		eee_timer = SXGBE_DEFAULT_LPI_TIMER;
81 }
82 
sxgbe_enable_eee_mode(const struct sxgbe_priv_data * priv)83 static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv)
84 {
85 	/* Check and enter in LPI mode */
86 	if (!priv->tx_path_in_lpi_mode)
87 		priv->hw->mac->set_eee_mode(priv->ioaddr);
88 }
89 
sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv)90 void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv)
91 {
92 	/* Exit and disable EEE in case of we are are in LPI state. */
93 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
94 	del_timer_sync(&priv->eee_ctrl_timer);
95 	priv->tx_path_in_lpi_mode = false;
96 }
97 
98 /**
99  * sxgbe_eee_ctrl_timer
100  * @arg : data hook
101  * Description:
102  *  If there is no data transfer and if we are not in LPI state,
103  *  then MAC Transmitter can be moved to LPI state.
104  */
sxgbe_eee_ctrl_timer(struct timer_list * t)105 static void sxgbe_eee_ctrl_timer(struct timer_list *t)
106 {
107 	struct sxgbe_priv_data *priv = from_timer(priv, t, eee_ctrl_timer);
108 
109 	sxgbe_enable_eee_mode(priv);
110 	mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
111 }
112 
113 /**
114  * sxgbe_eee_init
115  * @priv: private device pointer
116  * Description:
117  *  If the EEE support has been enabled while configuring the driver,
118  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
119  *  phy can also manage EEE, so enable the LPI state and start the timer
120  *  to verify if the tx path can enter in LPI state.
121  */
sxgbe_eee_init(struct sxgbe_priv_data * const priv)122 bool sxgbe_eee_init(struct sxgbe_priv_data * const priv)
123 {
124 	struct net_device *ndev = priv->dev;
125 	bool ret = false;
126 
127 	/* MAC core supports the EEE feature. */
128 	if (priv->hw_cap.eee) {
129 		/* Check if the PHY supports EEE */
130 		if (phy_init_eee(ndev->phydev, 1))
131 			return false;
132 
133 		priv->eee_active = 1;
134 		timer_setup(&priv->eee_ctrl_timer, sxgbe_eee_ctrl_timer, 0);
135 		priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer);
136 		add_timer(&priv->eee_ctrl_timer);
137 
138 		priv->hw->mac->set_eee_timer(priv->ioaddr,
139 					     SXGBE_DEFAULT_LPI_TIMER,
140 					     priv->tx_lpi_timer);
141 
142 		pr_info("Energy-Efficient Ethernet initialized\n");
143 
144 		ret = true;
145 	}
146 
147 	return ret;
148 }
149 
sxgbe_eee_adjust(const struct sxgbe_priv_data * priv)150 static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv)
151 {
152 	struct net_device *ndev = priv->dev;
153 
154 	/* When the EEE has been already initialised we have to
155 	 * modify the PLS bit in the LPI ctrl & status reg according
156 	 * to the PHY link status. For this reason.
157 	 */
158 	if (priv->eee_enabled)
159 		priv->hw->mac->set_eee_pls(priv->ioaddr, ndev->phydev->link);
160 }
161 
162 /**
163  * sxgbe_clk_csr_set - dynamically set the MDC clock
164  * @priv: driver private structure
165  * Description: this is to dynamically set the MDC clock according to the csr
166  * clock input.
167  */
sxgbe_clk_csr_set(struct sxgbe_priv_data * priv)168 static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv)
169 {
170 	u32 clk_rate = clk_get_rate(priv->sxgbe_clk);
171 
172 	/* assign the proper divider, this will be used during
173 	 * mdio communication
174 	 */
175 	if (clk_rate < SXGBE_CSR_F_150M)
176 		priv->clk_csr = SXGBE_CSR_100_150M;
177 	else if (clk_rate <= SXGBE_CSR_F_250M)
178 		priv->clk_csr = SXGBE_CSR_150_250M;
179 	else if (clk_rate <= SXGBE_CSR_F_300M)
180 		priv->clk_csr = SXGBE_CSR_250_300M;
181 	else if (clk_rate <= SXGBE_CSR_F_350M)
182 		priv->clk_csr = SXGBE_CSR_300_350M;
183 	else if (clk_rate <= SXGBE_CSR_F_400M)
184 		priv->clk_csr = SXGBE_CSR_350_400M;
185 	else if (clk_rate <= SXGBE_CSR_F_500M)
186 		priv->clk_csr = SXGBE_CSR_400_500M;
187 }
188 
189 /* minimum number of free TX descriptors required to wake up TX process */
190 #define SXGBE_TX_THRESH(x)	(x->dma_tx_size/4)
191 
sxgbe_tx_avail(struct sxgbe_tx_queue * queue,int tx_qsize)192 static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize)
193 {
194 	return queue->dirty_tx + tx_qsize - queue->cur_tx - 1;
195 }
196 
197 /**
198  * sxgbe_adjust_link
199  * @dev: net device structure
200  * Description: it adjusts the link parameters.
201  */
sxgbe_adjust_link(struct net_device * dev)202 static void sxgbe_adjust_link(struct net_device *dev)
203 {
204 	struct sxgbe_priv_data *priv = netdev_priv(dev);
205 	struct phy_device *phydev = dev->phydev;
206 	u8 new_state = 0;
207 	u8 speed = 0xff;
208 
209 	if (!phydev)
210 		return;
211 
212 	/* SXGBE is not supporting auto-negotiation and
213 	 * half duplex mode. so, not handling duplex change
214 	 * in this function. only handling speed and link status
215 	 */
216 	if (phydev->link) {
217 		if (phydev->speed != priv->speed) {
218 			new_state = 1;
219 			switch (phydev->speed) {
220 			case SPEED_10000:
221 				speed = SXGBE_SPEED_10G;
222 				break;
223 			case SPEED_2500:
224 				speed = SXGBE_SPEED_2_5G;
225 				break;
226 			case SPEED_1000:
227 				speed = SXGBE_SPEED_1G;
228 				break;
229 			default:
230 				netif_err(priv, link, dev,
231 					  "Speed (%d) not supported\n",
232 					  phydev->speed);
233 			}
234 
235 			priv->speed = phydev->speed;
236 			priv->hw->mac->set_speed(priv->ioaddr, speed);
237 		}
238 
239 		if (!priv->oldlink) {
240 			new_state = 1;
241 			priv->oldlink = 1;
242 		}
243 	} else if (priv->oldlink) {
244 		new_state = 1;
245 		priv->oldlink = 0;
246 		priv->speed = SPEED_UNKNOWN;
247 	}
248 
249 	if (new_state & netif_msg_link(priv))
250 		phy_print_status(phydev);
251 
252 	/* Alter the MAC settings for EEE */
253 	sxgbe_eee_adjust(priv);
254 }
255 
256 /**
257  * sxgbe_init_phy - PHY initialization
258  * @dev: net device structure
259  * Description: it initializes the driver's PHY state, and attaches the PHY
260  * to the mac driver.
261  *  Return value:
262  *  0 on success
263  */
sxgbe_init_phy(struct net_device * ndev)264 static int sxgbe_init_phy(struct net_device *ndev)
265 {
266 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
267 	char bus_id[MII_BUS_ID_SIZE];
268 	struct phy_device *phydev;
269 	struct sxgbe_priv_data *priv = netdev_priv(ndev);
270 	int phy_iface = priv->plat->interface;
271 
272 	/* assign default link status */
273 	priv->oldlink = 0;
274 	priv->speed = SPEED_UNKNOWN;
275 	priv->oldduplex = DUPLEX_UNKNOWN;
276 
277 	if (priv->plat->phy_bus_name)
278 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
279 			 priv->plat->phy_bus_name, priv->plat->bus_id);
280 	else
281 		snprintf(bus_id, MII_BUS_ID_SIZE, "sxgbe-%x",
282 			 priv->plat->bus_id);
283 
284 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
285 		 priv->plat->phy_addr);
286 	netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt);
287 
288 	phydev = phy_connect(ndev, phy_id_fmt, &sxgbe_adjust_link, phy_iface);
289 
290 	if (IS_ERR(phydev)) {
291 		netdev_err(ndev, "Could not attach to PHY\n");
292 		return PTR_ERR(phydev);
293 	}
294 
295 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
296 	if ((phy_iface == PHY_INTERFACE_MODE_MII) ||
297 	    (phy_iface == PHY_INTERFACE_MODE_RMII))
298 		phy_set_max_speed(phydev, SPEED_1000);
299 
300 	if (phydev->phy_id == 0) {
301 		phy_disconnect(phydev);
302 		return -ENODEV;
303 	}
304 
305 	netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n",
306 		   __func__, phydev->phy_id, phydev->link);
307 
308 	return 0;
309 }
310 
311 /**
312  * sxgbe_clear_descriptors: clear descriptors
313  * @priv: driver private structure
314  * Description: this function is called to clear the tx and rx descriptors
315  * in case of both basic and extended descriptors are used.
316  */
sxgbe_clear_descriptors(struct sxgbe_priv_data * priv)317 static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv)
318 {
319 	int i, j;
320 	unsigned int txsize = priv->dma_tx_size;
321 	unsigned int rxsize = priv->dma_rx_size;
322 
323 	/* Clear the Rx/Tx descriptors */
324 	for (j = 0; j < SXGBE_RX_QUEUES; j++) {
325 		for (i = 0; i < rxsize; i++)
326 			priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i],
327 						     priv->use_riwt, priv->mode,
328 						     (i == rxsize - 1));
329 	}
330 
331 	for (j = 0; j < SXGBE_TX_QUEUES; j++) {
332 		for (i = 0; i < txsize; i++)
333 			priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]);
334 	}
335 }
336 
sxgbe_init_rx_buffers(struct net_device * dev,struct sxgbe_rx_norm_desc * p,int i,unsigned int dma_buf_sz,struct sxgbe_rx_queue * rx_ring)337 static int sxgbe_init_rx_buffers(struct net_device *dev,
338 				 struct sxgbe_rx_norm_desc *p, int i,
339 				 unsigned int dma_buf_sz,
340 				 struct sxgbe_rx_queue *rx_ring)
341 {
342 	struct sxgbe_priv_data *priv = netdev_priv(dev);
343 	struct sk_buff *skb;
344 
345 	skb = __netdev_alloc_skb_ip_align(dev, dma_buf_sz, GFP_KERNEL);
346 	if (!skb)
347 		return -ENOMEM;
348 
349 	rx_ring->rx_skbuff[i] = skb;
350 	rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
351 						   dma_buf_sz, DMA_FROM_DEVICE);
352 
353 	if (dma_mapping_error(priv->device, rx_ring->rx_skbuff_dma[i])) {
354 		netdev_err(dev, "%s: DMA mapping error\n", __func__);
355 		dev_kfree_skb_any(skb);
356 		return -EINVAL;
357 	}
358 
359 	p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i];
360 
361 	return 0;
362 }
363 
364 /**
365  * sxgbe_free_rx_buffers - free what sxgbe_init_rx_buffers() allocated
366  * @dev: net device structure
367  * @rx_ring: ring to be freed
368  * @rx_rsize: ring size
369  * Description:  this function initializes the DMA RX descriptor
370  */
sxgbe_free_rx_buffers(struct net_device * dev,struct sxgbe_rx_norm_desc * p,int i,unsigned int dma_buf_sz,struct sxgbe_rx_queue * rx_ring)371 static void sxgbe_free_rx_buffers(struct net_device *dev,
372 				  struct sxgbe_rx_norm_desc *p, int i,
373 				  unsigned int dma_buf_sz,
374 				  struct sxgbe_rx_queue *rx_ring)
375 {
376 	struct sxgbe_priv_data *priv = netdev_priv(dev);
377 
378 	kfree_skb(rx_ring->rx_skbuff[i]);
379 	dma_unmap_single(priv->device, rx_ring->rx_skbuff_dma[i],
380 			 dma_buf_sz, DMA_FROM_DEVICE);
381 }
382 
383 /**
384  * init_tx_ring - init the TX descriptor ring
385  * @dev: net device structure
386  * @tx_ring: ring to be initialised
387  * @tx_rsize: ring size
388  * Description:  this function initializes the DMA TX descriptor
389  */
init_tx_ring(struct device * dev,u8 queue_no,struct sxgbe_tx_queue * tx_ring,int tx_rsize)390 static int init_tx_ring(struct device *dev, u8 queue_no,
391 			struct sxgbe_tx_queue *tx_ring,	int tx_rsize)
392 {
393 	/* TX ring is not allcoated */
394 	if (!tx_ring) {
395 		dev_err(dev, "No memory for TX queue of SXGBE\n");
396 		return -ENOMEM;
397 	}
398 
399 	/* allocate memory for TX descriptors */
400 	tx_ring->dma_tx = dma_alloc_coherent(dev,
401 					     tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
402 					     &tx_ring->dma_tx_phy, GFP_KERNEL);
403 	if (!tx_ring->dma_tx)
404 		return -ENOMEM;
405 
406 	/* allocate memory for TX skbuff array */
407 	tx_ring->tx_skbuff_dma = devm_kcalloc(dev, tx_rsize,
408 					      sizeof(dma_addr_t), GFP_KERNEL);
409 	if (!tx_ring->tx_skbuff_dma)
410 		goto dmamem_err;
411 
412 	tx_ring->tx_skbuff = devm_kcalloc(dev, tx_rsize,
413 					  sizeof(struct sk_buff *), GFP_KERNEL);
414 
415 	if (!tx_ring->tx_skbuff)
416 		goto dmamem_err;
417 
418 	/* assign queue number */
419 	tx_ring->queue_no = queue_no;
420 
421 	/* initialise counters */
422 	tx_ring->dirty_tx = 0;
423 	tx_ring->cur_tx = 0;
424 
425 	return 0;
426 
427 dmamem_err:
428 	dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
429 			  tx_ring->dma_tx, tx_ring->dma_tx_phy);
430 	return -ENOMEM;
431 }
432 
433 /**
434  * free_rx_ring - free the RX descriptor ring
435  * @dev: net device structure
436  * @rx_ring: ring to be initialised
437  * @rx_rsize: ring size
438  * Description:  this function initializes the DMA RX descriptor
439  */
free_rx_ring(struct device * dev,struct sxgbe_rx_queue * rx_ring,int rx_rsize)440 static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring,
441 			 int rx_rsize)
442 {
443 	dma_free_coherent(dev, rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
444 			  rx_ring->dma_rx, rx_ring->dma_rx_phy);
445 	kfree(rx_ring->rx_skbuff_dma);
446 	kfree(rx_ring->rx_skbuff);
447 }
448 
449 /**
450  * init_rx_ring - init the RX descriptor ring
451  * @dev: net device structure
452  * @rx_ring: ring to be initialised
453  * @rx_rsize: ring size
454  * Description:  this function initializes the DMA RX descriptor
455  */
init_rx_ring(struct net_device * dev,u8 queue_no,struct sxgbe_rx_queue * rx_ring,int rx_rsize)456 static int init_rx_ring(struct net_device *dev, u8 queue_no,
457 			struct sxgbe_rx_queue *rx_ring,	int rx_rsize)
458 {
459 	struct sxgbe_priv_data *priv = netdev_priv(dev);
460 	int desc_index;
461 	unsigned int bfsize = 0;
462 	unsigned int ret = 0;
463 
464 	/* Set the max buffer size according to the MTU. */
465 	bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8);
466 
467 	netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize);
468 
469 	/* RX ring is not allcoated */
470 	if (rx_ring == NULL) {
471 		netdev_err(dev, "No memory for RX queue\n");
472 		return -ENOMEM;
473 	}
474 
475 	/* assign queue number */
476 	rx_ring->queue_no = queue_no;
477 
478 	/* allocate memory for RX descriptors */
479 	rx_ring->dma_rx = dma_alloc_coherent(priv->device,
480 					     rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
481 					     &rx_ring->dma_rx_phy, GFP_KERNEL);
482 
483 	if (rx_ring->dma_rx == NULL)
484 		return -ENOMEM;
485 
486 	/* allocate memory for RX skbuff array */
487 	rx_ring->rx_skbuff_dma = kmalloc_array(rx_rsize,
488 					       sizeof(dma_addr_t), GFP_KERNEL);
489 	if (!rx_ring->rx_skbuff_dma) {
490 		ret = -ENOMEM;
491 		goto err_free_dma_rx;
492 	}
493 
494 	rx_ring->rx_skbuff = kmalloc_array(rx_rsize,
495 					   sizeof(struct sk_buff *), GFP_KERNEL);
496 	if (!rx_ring->rx_skbuff) {
497 		ret = -ENOMEM;
498 		goto err_free_skbuff_dma;
499 	}
500 
501 	/* initialise the buffers */
502 	for (desc_index = 0; desc_index < rx_rsize; desc_index++) {
503 		struct sxgbe_rx_norm_desc *p;
504 		p = rx_ring->dma_rx + desc_index;
505 		ret = sxgbe_init_rx_buffers(dev, p, desc_index,
506 					    bfsize, rx_ring);
507 		if (ret)
508 			goto err_free_rx_buffers;
509 	}
510 
511 	/* initialise counters */
512 	rx_ring->cur_rx = 0;
513 	rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize);
514 	priv->dma_buf_sz = bfsize;
515 
516 	return 0;
517 
518 err_free_rx_buffers:
519 	while (--desc_index >= 0) {
520 		struct sxgbe_rx_norm_desc *p;
521 
522 		p = rx_ring->dma_rx + desc_index;
523 		sxgbe_free_rx_buffers(dev, p, desc_index, bfsize, rx_ring);
524 	}
525 	kfree(rx_ring->rx_skbuff);
526 err_free_skbuff_dma:
527 	kfree(rx_ring->rx_skbuff_dma);
528 err_free_dma_rx:
529 	dma_free_coherent(priv->device,
530 			  rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
531 			  rx_ring->dma_rx, rx_ring->dma_rx_phy);
532 
533 	return ret;
534 }
535 /**
536  * free_tx_ring - free the TX descriptor ring
537  * @dev: net device structure
538  * @tx_ring: ring to be initialised
539  * @tx_rsize: ring size
540  * Description:  this function initializes the DMA TX descriptor
541  */
free_tx_ring(struct device * dev,struct sxgbe_tx_queue * tx_ring,int tx_rsize)542 static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring,
543 			 int tx_rsize)
544 {
545 	dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
546 			  tx_ring->dma_tx, tx_ring->dma_tx_phy);
547 }
548 
549 /**
550  * init_dma_desc_rings - init the RX/TX descriptor rings
551  * @dev: net device structure
552  * Description:  this function initializes the DMA RX/TX descriptors
553  * and allocates the socket buffers. It suppors the chained and ring
554  * modes.
555  */
init_dma_desc_rings(struct net_device * netd)556 static int init_dma_desc_rings(struct net_device *netd)
557 {
558 	int queue_num, ret;
559 	struct sxgbe_priv_data *priv = netdev_priv(netd);
560 	int tx_rsize = priv->dma_tx_size;
561 	int rx_rsize = priv->dma_rx_size;
562 
563 	/* Allocate memory for queue structures and TX descs */
564 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
565 		ret = init_tx_ring(priv->device, queue_num,
566 				   priv->txq[queue_num], tx_rsize);
567 		if (ret) {
568 			dev_err(&netd->dev, "TX DMA ring allocation failed!\n");
569 			goto txalloc_err;
570 		}
571 
572 		/* save private pointer in each ring this
573 		 * pointer is needed during cleaing TX queue
574 		 */
575 		priv->txq[queue_num]->priv_ptr = priv;
576 	}
577 
578 	/* Allocate memory for queue structures and RX descs */
579 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
580 		ret = init_rx_ring(netd, queue_num,
581 				   priv->rxq[queue_num], rx_rsize);
582 		if (ret) {
583 			netdev_err(netd, "RX DMA ring allocation failed!!\n");
584 			goto rxalloc_err;
585 		}
586 
587 		/* save private pointer in each ring this
588 		 * pointer is needed during cleaing TX queue
589 		 */
590 		priv->rxq[queue_num]->priv_ptr = priv;
591 	}
592 
593 	sxgbe_clear_descriptors(priv);
594 
595 	return 0;
596 
597 txalloc_err:
598 	while (queue_num--)
599 		free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
600 	return ret;
601 
602 rxalloc_err:
603 	while (queue_num--)
604 		free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
605 	return ret;
606 }
607 
tx_free_ring_skbufs(struct sxgbe_tx_queue * txqueue)608 static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue)
609 {
610 	int dma_desc;
611 	struct sxgbe_priv_data *priv = txqueue->priv_ptr;
612 	int tx_rsize = priv->dma_tx_size;
613 
614 	for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) {
615 		struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc;
616 
617 		if (txqueue->tx_skbuff_dma[dma_desc])
618 			dma_unmap_single(priv->device,
619 					 txqueue->tx_skbuff_dma[dma_desc],
620 					 priv->hw->desc->get_tx_len(tdesc),
621 					 DMA_TO_DEVICE);
622 
623 		dev_kfree_skb_any(txqueue->tx_skbuff[dma_desc]);
624 		txqueue->tx_skbuff[dma_desc] = NULL;
625 		txqueue->tx_skbuff_dma[dma_desc] = 0;
626 	}
627 }
628 
629 
dma_free_tx_skbufs(struct sxgbe_priv_data * priv)630 static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv)
631 {
632 	int queue_num;
633 
634 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
635 		struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
636 		tx_free_ring_skbufs(tqueue);
637 	}
638 }
639 
free_dma_desc_resources(struct sxgbe_priv_data * priv)640 static void free_dma_desc_resources(struct sxgbe_priv_data *priv)
641 {
642 	int queue_num;
643 	int tx_rsize = priv->dma_tx_size;
644 	int rx_rsize = priv->dma_rx_size;
645 
646 	/* Release the DMA TX buffers */
647 	dma_free_tx_skbufs(priv);
648 
649 	/* Release the TX ring memory also */
650 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
651 		free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
652 	}
653 
654 	/* Release the RX ring memory also */
655 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
656 		free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
657 	}
658 }
659 
txring_mem_alloc(struct sxgbe_priv_data * priv)660 static int txring_mem_alloc(struct sxgbe_priv_data *priv)
661 {
662 	int queue_num;
663 
664 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
665 		priv->txq[queue_num] = devm_kmalloc(priv->device,
666 						    sizeof(struct sxgbe_tx_queue), GFP_KERNEL);
667 		if (!priv->txq[queue_num])
668 			return -ENOMEM;
669 	}
670 
671 	return 0;
672 }
673 
rxring_mem_alloc(struct sxgbe_priv_data * priv)674 static int rxring_mem_alloc(struct sxgbe_priv_data *priv)
675 {
676 	int queue_num;
677 
678 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
679 		priv->rxq[queue_num] = devm_kmalloc(priv->device,
680 						    sizeof(struct sxgbe_rx_queue), GFP_KERNEL);
681 		if (!priv->rxq[queue_num])
682 			return -ENOMEM;
683 	}
684 
685 	return 0;
686 }
687 
688 /**
689  *  sxgbe_mtl_operation_mode - HW MTL operation mode
690  *  @priv: driver private structure
691  *  Description: it sets the MTL operation mode: tx/rx MTL thresholds
692  *  or Store-And-Forward capability.
693  */
sxgbe_mtl_operation_mode(struct sxgbe_priv_data * priv)694 static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv)
695 {
696 	int queue_num;
697 
698 	/* TX/RX threshold control */
699 	if (likely(priv->plat->force_sf_dma_mode)) {
700 		/* set TC mode for TX QUEUES */
701 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
702 			priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
703 						       SXGBE_MTL_SFMODE);
704 		priv->tx_tc = SXGBE_MTL_SFMODE;
705 
706 		/* set TC mode for RX QUEUES */
707 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
708 			priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
709 						       SXGBE_MTL_SFMODE);
710 		priv->rx_tc = SXGBE_MTL_SFMODE;
711 	} else if (unlikely(priv->plat->force_thresh_dma_mode)) {
712 		/* set TC mode for TX QUEUES */
713 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
714 			priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
715 						       priv->tx_tc);
716 		/* set TC mode for RX QUEUES */
717 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
718 			priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
719 						       priv->rx_tc);
720 	} else {
721 		pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__);
722 	}
723 }
724 
725 /**
726  * sxgbe_tx_queue_clean:
727  * @priv: driver private structure
728  * Description: it reclaims resources after transmission completes.
729  */
sxgbe_tx_queue_clean(struct sxgbe_tx_queue * tqueue)730 static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue)
731 {
732 	struct sxgbe_priv_data *priv = tqueue->priv_ptr;
733 	unsigned int tx_rsize = priv->dma_tx_size;
734 	struct netdev_queue *dev_txq;
735 	u8 queue_no = tqueue->queue_no;
736 
737 	dev_txq = netdev_get_tx_queue(priv->dev, queue_no);
738 
739 	__netif_tx_lock(dev_txq, smp_processor_id());
740 
741 	priv->xstats.tx_clean++;
742 	while (tqueue->dirty_tx != tqueue->cur_tx) {
743 		unsigned int entry = tqueue->dirty_tx % tx_rsize;
744 		struct sk_buff *skb = tqueue->tx_skbuff[entry];
745 		struct sxgbe_tx_norm_desc *p;
746 
747 		p = tqueue->dma_tx + entry;
748 
749 		/* Check if the descriptor is owned by the DMA. */
750 		if (priv->hw->desc->get_tx_owner(p))
751 			break;
752 
753 		if (netif_msg_tx_done(priv))
754 			pr_debug("%s: curr %d, dirty %d\n",
755 				 __func__, tqueue->cur_tx, tqueue->dirty_tx);
756 
757 		if (likely(tqueue->tx_skbuff_dma[entry])) {
758 			dma_unmap_single(priv->device,
759 					 tqueue->tx_skbuff_dma[entry],
760 					 priv->hw->desc->get_tx_len(p),
761 					 DMA_TO_DEVICE);
762 			tqueue->tx_skbuff_dma[entry] = 0;
763 		}
764 
765 		if (likely(skb)) {
766 			dev_kfree_skb(skb);
767 			tqueue->tx_skbuff[entry] = NULL;
768 		}
769 
770 		priv->hw->desc->release_tx_desc(p);
771 
772 		tqueue->dirty_tx++;
773 	}
774 
775 	/* wake up queue */
776 	if (unlikely(netif_tx_queue_stopped(dev_txq) &&
777 	    sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) {
778 		if (netif_msg_tx_done(priv))
779 			pr_debug("%s: restart transmit\n", __func__);
780 		netif_tx_wake_queue(dev_txq);
781 	}
782 
783 	__netif_tx_unlock(dev_txq);
784 }
785 
786 /**
787  * sxgbe_tx_clean:
788  * @priv: driver private structure
789  * Description: it reclaims resources after transmission completes.
790  */
sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv)791 static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv)
792 {
793 	u8 queue_num;
794 
795 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
796 		struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
797 
798 		sxgbe_tx_queue_clean(tqueue);
799 	}
800 
801 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
802 		sxgbe_enable_eee_mode(priv);
803 		mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
804 	}
805 }
806 
807 /**
808  * sxgbe_restart_tx_queue: irq tx error mng function
809  * @priv: driver private structure
810  * Description: it cleans the descriptors and restarts the transmission
811  * in case of errors.
812  */
sxgbe_restart_tx_queue(struct sxgbe_priv_data * priv,int queue_num)813 static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num)
814 {
815 	struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num];
816 	struct netdev_queue *dev_txq = netdev_get_tx_queue(priv->dev,
817 							   queue_num);
818 
819 	/* stop the queue */
820 	netif_tx_stop_queue(dev_txq);
821 
822 	/* stop the tx dma */
823 	priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num);
824 
825 	/* free the skbuffs of the ring */
826 	tx_free_ring_skbufs(tx_ring);
827 
828 	/* initialise counters */
829 	tx_ring->cur_tx = 0;
830 	tx_ring->dirty_tx = 0;
831 
832 	/* start the tx dma */
833 	priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num);
834 
835 	priv->dev->stats.tx_errors++;
836 
837 	/* wakeup the queue */
838 	netif_tx_wake_queue(dev_txq);
839 }
840 
841 /**
842  * sxgbe_reset_all_tx_queues: irq tx error mng function
843  * @priv: driver private structure
844  * Description: it cleans all the descriptors and
845  * restarts the transmission on all queues in case of errors.
846  */
sxgbe_reset_all_tx_queues(struct sxgbe_priv_data * priv)847 static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv)
848 {
849 	int queue_num;
850 
851 	/* On TX timeout of net device, resetting of all queues
852 	 * may not be proper way, revisit this later if needed
853 	 */
854 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
855 		sxgbe_restart_tx_queue(priv, queue_num);
856 }
857 
858 /**
859  * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register.
860  * @priv: driver private structure
861  * Description:
862  *  new GMAC chip generations have a new register to indicate the
863  *  presence of the optional feature/functions.
864  *  This can be also used to override the value passed through the
865  *  platform and necessary for old MAC10/100 and GMAC chips.
866  */
sxgbe_get_hw_features(struct sxgbe_priv_data * const priv)867 static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv)
868 {
869 	int rval = 0;
870 	struct sxgbe_hw_features *features = &priv->hw_cap;
871 
872 	/* Read First Capability Register CAP[0] */
873 	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0);
874 	if (rval) {
875 		features->pmt_remote_wake_up =
876 			SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval);
877 		features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval);
878 		features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval);
879 		features->tx_csum_offload =
880 			SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval);
881 		features->rx_csum_offload =
882 			SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval);
883 		features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval);
884 		features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval);
885 		features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval);
886 		features->eee = SXGBE_HW_FEAT_EEE(rval);
887 	}
888 
889 	/* Read First Capability Register CAP[1] */
890 	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1);
891 	if (rval) {
892 		features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval);
893 		features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
894 		features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
895 		features->dcb_enable = SXGBE_HW_FEAT_DCB(rval);
896 		features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval);
897 		features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval);
898 		features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval);
899 		features->rss_enable = SXGBE_HW_FEAT_RSS(rval);
900 		features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval);
901 		features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval);
902 	}
903 
904 	/* Read First Capability Register CAP[2] */
905 	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2);
906 	if (rval) {
907 		features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval);
908 		features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval);
909 		features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval);
910 		features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval);
911 		features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval);
912 		features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval);
913 	}
914 
915 	return rval;
916 }
917 
918 /**
919  * sxgbe_check_ether_addr: check if the MAC addr is valid
920  * @priv: driver private structure
921  * Description:
922  * it is to verify if the MAC address is valid, in case of failures it
923  * generates a random MAC address
924  */
sxgbe_check_ether_addr(struct sxgbe_priv_data * priv)925 static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv)
926 {
927 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
928 		priv->hw->mac->get_umac_addr((void __iomem *)
929 					     priv->ioaddr,
930 					     priv->dev->dev_addr, 0);
931 		if (!is_valid_ether_addr(priv->dev->dev_addr))
932 			eth_hw_addr_random(priv->dev);
933 	}
934 	dev_info(priv->device, "device MAC address %pM\n",
935 		 priv->dev->dev_addr);
936 }
937 
938 /**
939  * sxgbe_init_dma_engine: DMA init.
940  * @priv: driver private structure
941  * Description:
942  * It inits the DMA invoking the specific SXGBE callback.
943  * Some DMA parameters can be passed from the platform;
944  * in case of these are not passed a default is kept for the MAC or GMAC.
945  */
sxgbe_init_dma_engine(struct sxgbe_priv_data * priv)946 static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv)
947 {
948 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0;
949 	int queue_num;
950 
951 	if (priv->plat->dma_cfg) {
952 		pbl = priv->plat->dma_cfg->pbl;
953 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
954 		burst_map = priv->plat->dma_cfg->burst_map;
955 	}
956 
957 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
958 		priv->hw->dma->cha_init(priv->ioaddr, queue_num,
959 					fixed_burst, pbl,
960 					(priv->txq[queue_num])->dma_tx_phy,
961 					(priv->rxq[queue_num])->dma_rx_phy,
962 					priv->dma_tx_size, priv->dma_rx_size);
963 
964 	return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map);
965 }
966 
967 /**
968  * sxgbe_init_mtl_engine: MTL init.
969  * @priv: driver private structure
970  * Description:
971  * It inits the MTL invoking the specific SXGBE callback.
972  */
sxgbe_init_mtl_engine(struct sxgbe_priv_data * priv)973 static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv)
974 {
975 	int queue_num;
976 
977 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
978 		priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num,
979 						  priv->hw_cap.tx_mtl_qsize);
980 		priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num);
981 	}
982 }
983 
984 /**
985  * sxgbe_disable_mtl_engine: MTL disable.
986  * @priv: driver private structure
987  * Description:
988  * It disables the MTL queues by invoking the specific SXGBE callback.
989  */
sxgbe_disable_mtl_engine(struct sxgbe_priv_data * priv)990 static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv)
991 {
992 	int queue_num;
993 
994 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
995 		priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num);
996 }
997 
998 
999 /**
1000  * sxgbe_tx_timer: mitigation sw timer for tx.
1001  * @t: timer pointer
1002  * Description:
1003  * This is the timer handler to directly invoke the sxgbe_tx_clean.
1004  */
sxgbe_tx_timer(struct timer_list * t)1005 static void sxgbe_tx_timer(struct timer_list *t)
1006 {
1007 	struct sxgbe_tx_queue *p = from_timer(p, t, txtimer);
1008 	sxgbe_tx_queue_clean(p);
1009 }
1010 
1011 /**
1012  * sxgbe_init_tx_coalesce: init tx mitigation options.
1013  * @priv: driver private structure
1014  * Description:
1015  * This inits the transmit coalesce parameters: i.e. timer rate,
1016  * timer handler and default threshold used for enabling the
1017  * interrupt on completion bit.
1018  */
sxgbe_tx_init_coalesce(struct sxgbe_priv_data * priv)1019 static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv)
1020 {
1021 	u8 queue_num;
1022 
1023 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1024 		struct sxgbe_tx_queue *p = priv->txq[queue_num];
1025 		p->tx_coal_frames =  SXGBE_TX_FRAMES;
1026 		p->tx_coal_timer = SXGBE_COAL_TX_TIMER;
1027 		timer_setup(&p->txtimer, sxgbe_tx_timer, 0);
1028 		p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer);
1029 		add_timer(&p->txtimer);
1030 	}
1031 }
1032 
sxgbe_tx_del_timer(struct sxgbe_priv_data * priv)1033 static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv)
1034 {
1035 	u8 queue_num;
1036 
1037 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1038 		struct sxgbe_tx_queue *p = priv->txq[queue_num];
1039 		del_timer_sync(&p->txtimer);
1040 	}
1041 }
1042 
1043 /**
1044  *  sxgbe_open - open entry point of the driver
1045  *  @dev : pointer to the device structure.
1046  *  Description:
1047  *  This function is the open entry point of the driver.
1048  *  Return value:
1049  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1050  *  file on failure.
1051  */
sxgbe_open(struct net_device * dev)1052 static int sxgbe_open(struct net_device *dev)
1053 {
1054 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1055 	int ret, queue_num;
1056 
1057 	clk_prepare_enable(priv->sxgbe_clk);
1058 
1059 	sxgbe_check_ether_addr(priv);
1060 
1061 	/* Init the phy */
1062 	ret = sxgbe_init_phy(dev);
1063 	if (ret) {
1064 		netdev_err(dev, "%s: Cannot attach to PHY (error: %d)\n",
1065 			   __func__, ret);
1066 		goto phy_error;
1067 	}
1068 
1069 	/* Create and initialize the TX/RX descriptors chains. */
1070 	priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE);
1071 	priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE);
1072 	priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE);
1073 	priv->tx_tc = TC_DEFAULT;
1074 	priv->rx_tc = TC_DEFAULT;
1075 	init_dma_desc_rings(dev);
1076 
1077 	/* DMA initialization and SW reset */
1078 	ret = sxgbe_init_dma_engine(priv);
1079 	if (ret < 0) {
1080 		netdev_err(dev, "%s: DMA initialization failed\n", __func__);
1081 		goto init_error;
1082 	}
1083 
1084 	/*  MTL initialization */
1085 	sxgbe_init_mtl_engine(priv);
1086 
1087 	/* Copy the MAC addr into the HW  */
1088 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1089 
1090 	/* Initialize the MAC Core */
1091 	priv->hw->mac->core_init(priv->ioaddr);
1092 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1093 		priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num);
1094 	}
1095 
1096 	/* Request the IRQ lines */
1097 	ret = devm_request_irq(priv->device, priv->irq, sxgbe_common_interrupt,
1098 			       IRQF_SHARED, dev->name, dev);
1099 	if (unlikely(ret < 0)) {
1100 		netdev_err(dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n",
1101 			   __func__, priv->irq, ret);
1102 		goto init_error;
1103 	}
1104 
1105 	/* If the LPI irq is different from the mac irq
1106 	 * register a dedicated handler
1107 	 */
1108 	if (priv->lpi_irq != dev->irq) {
1109 		ret = devm_request_irq(priv->device, priv->lpi_irq,
1110 				       sxgbe_common_interrupt,
1111 				       IRQF_SHARED, dev->name, dev);
1112 		if (unlikely(ret < 0)) {
1113 			netdev_err(dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1114 				   __func__, priv->lpi_irq, ret);
1115 			goto init_error;
1116 		}
1117 	}
1118 
1119 	/* Request TX DMA irq lines */
1120 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1121 		ret = devm_request_irq(priv->device,
1122 				       (priv->txq[queue_num])->irq_no,
1123 				       sxgbe_tx_interrupt, 0,
1124 				       dev->name, priv->txq[queue_num]);
1125 		if (unlikely(ret < 0)) {
1126 			netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1127 				   __func__, priv->irq, ret);
1128 			goto init_error;
1129 		}
1130 	}
1131 
1132 	/* Request RX DMA irq lines */
1133 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1134 		ret = devm_request_irq(priv->device,
1135 				       (priv->rxq[queue_num])->irq_no,
1136 				       sxgbe_rx_interrupt, 0,
1137 				       dev->name, priv->rxq[queue_num]);
1138 		if (unlikely(ret < 0)) {
1139 			netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1140 				   __func__, priv->irq, ret);
1141 			goto init_error;
1142 		}
1143 	}
1144 
1145 	/* Enable the MAC Rx/Tx */
1146 	priv->hw->mac->enable_tx(priv->ioaddr, true);
1147 	priv->hw->mac->enable_rx(priv->ioaddr, true);
1148 
1149 	/* Set the HW DMA mode and the COE */
1150 	sxgbe_mtl_operation_mode(priv);
1151 
1152 	/* Extra statistics */
1153 	memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats));
1154 
1155 	priv->xstats.tx_threshold = priv->tx_tc;
1156 	priv->xstats.rx_threshold = priv->rx_tc;
1157 
1158 	/* Start the ball rolling... */
1159 	netdev_dbg(dev, "DMA RX/TX processes started...\n");
1160 	priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1161 	priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1162 
1163 	if (dev->phydev)
1164 		phy_start(dev->phydev);
1165 
1166 	/* initialise TX coalesce parameters */
1167 	sxgbe_tx_init_coalesce(priv);
1168 
1169 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1170 		priv->rx_riwt = SXGBE_MAX_DMA_RIWT;
1171 		priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT);
1172 	}
1173 
1174 	priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER;
1175 	priv->eee_enabled = sxgbe_eee_init(priv);
1176 
1177 	napi_enable(&priv->napi);
1178 	netif_start_queue(dev);
1179 
1180 	return 0;
1181 
1182 init_error:
1183 	free_dma_desc_resources(priv);
1184 	if (dev->phydev)
1185 		phy_disconnect(dev->phydev);
1186 phy_error:
1187 	clk_disable_unprepare(priv->sxgbe_clk);
1188 
1189 	return ret;
1190 }
1191 
1192 /**
1193  *  sxgbe_release - close entry point of the driver
1194  *  @dev : device pointer.
1195  *  Description:
1196  *  This is the stop entry point of the driver.
1197  */
sxgbe_release(struct net_device * dev)1198 static int sxgbe_release(struct net_device *dev)
1199 {
1200 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1201 
1202 	if (priv->eee_enabled)
1203 		del_timer_sync(&priv->eee_ctrl_timer);
1204 
1205 	/* Stop and disconnect the PHY */
1206 	if (dev->phydev) {
1207 		phy_stop(dev->phydev);
1208 		phy_disconnect(dev->phydev);
1209 	}
1210 
1211 	netif_tx_stop_all_queues(dev);
1212 
1213 	napi_disable(&priv->napi);
1214 
1215 	/* delete TX timers */
1216 	sxgbe_tx_del_timer(priv);
1217 
1218 	/* Stop TX/RX DMA and clear the descriptors */
1219 	priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1220 	priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1221 
1222 	/* disable MTL queue */
1223 	sxgbe_disable_mtl_engine(priv);
1224 
1225 	/* Release and free the Rx/Tx resources */
1226 	free_dma_desc_resources(priv);
1227 
1228 	/* Disable the MAC Rx/Tx */
1229 	priv->hw->mac->enable_tx(priv->ioaddr, false);
1230 	priv->hw->mac->enable_rx(priv->ioaddr, false);
1231 
1232 	clk_disable_unprepare(priv->sxgbe_clk);
1233 
1234 	return 0;
1235 }
1236 /* Prepare first Tx descriptor for doing TSO operation */
sxgbe_tso_prepare(struct sxgbe_priv_data * priv,struct sxgbe_tx_norm_desc * first_desc,struct sk_buff * skb)1237 static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv,
1238 			      struct sxgbe_tx_norm_desc *first_desc,
1239 			      struct sk_buff *skb)
1240 {
1241 	unsigned int total_hdr_len, tcp_hdr_len;
1242 
1243 	/* Write first Tx descriptor with appropriate value */
1244 	tcp_hdr_len = tcp_hdrlen(skb);
1245 	total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len;
1246 
1247 	first_desc->tdes01 = dma_map_single(priv->device, skb->data,
1248 					    total_hdr_len, DMA_TO_DEVICE);
1249 	if (dma_mapping_error(priv->device, first_desc->tdes01))
1250 		pr_err("%s: TX dma mapping failed!!\n", __func__);
1251 
1252 	first_desc->tdes23.tx_rd_des23.first_desc = 1;
1253 	priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len,
1254 					   tcp_hdr_len,
1255 					   skb->len - total_hdr_len);
1256 }
1257 
1258 /**
1259  *  sxgbe_xmit: Tx entry point of the driver
1260  *  @skb : the socket buffer
1261  *  @dev : device pointer
1262  *  Description : this is the tx entry point of the driver.
1263  *  It programs the chain or the ring and supports oversized frames
1264  *  and SG feature.
1265  */
sxgbe_xmit(struct sk_buff * skb,struct net_device * dev)1266 static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev)
1267 {
1268 	unsigned int entry, frag_num;
1269 	int cksum_flag = 0;
1270 	struct netdev_queue *dev_txq;
1271 	unsigned txq_index = skb_get_queue_mapping(skb);
1272 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1273 	unsigned int tx_rsize = priv->dma_tx_size;
1274 	struct sxgbe_tx_queue *tqueue = priv->txq[txq_index];
1275 	struct sxgbe_tx_norm_desc *tx_desc, *first_desc;
1276 	struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL;
1277 	int nr_frags = skb_shinfo(skb)->nr_frags;
1278 	int no_pagedlen = skb_headlen(skb);
1279 	int is_jumbo = 0;
1280 	u16 cur_mss = skb_shinfo(skb)->gso_size;
1281 	u32 ctxt_desc_req = 0;
1282 
1283 	/* get the TX queue handle */
1284 	dev_txq = netdev_get_tx_queue(dev, txq_index);
1285 
1286 	if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss))
1287 		ctxt_desc_req = 1;
1288 
1289 	if (unlikely(skb_vlan_tag_present(skb) ||
1290 		     ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1291 		      tqueue->hwts_tx_en)))
1292 		ctxt_desc_req = 1;
1293 
1294 	if (priv->tx_path_in_lpi_mode)
1295 		sxgbe_disable_eee_mode(priv);
1296 
1297 	if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) {
1298 		if (!netif_tx_queue_stopped(dev_txq)) {
1299 			netif_tx_stop_queue(dev_txq);
1300 			netdev_err(dev, "%s: Tx Ring is full when %d queue is awake\n",
1301 				   __func__, txq_index);
1302 		}
1303 		return NETDEV_TX_BUSY;
1304 	}
1305 
1306 	entry = tqueue->cur_tx % tx_rsize;
1307 	tx_desc = tqueue->dma_tx + entry;
1308 
1309 	first_desc = tx_desc;
1310 	if (ctxt_desc_req)
1311 		ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc;
1312 
1313 	/* save the skb address */
1314 	tqueue->tx_skbuff[entry] = skb;
1315 
1316 	if (!is_jumbo) {
1317 		if (likely(skb_is_gso(skb))) {
1318 			/* TSO support */
1319 			if (unlikely(tqueue->prev_mss != cur_mss)) {
1320 				priv->hw->desc->tx_ctxt_desc_set_mss(
1321 						ctxt_desc, cur_mss);
1322 				priv->hw->desc->tx_ctxt_desc_set_tcmssv(
1323 						ctxt_desc);
1324 				priv->hw->desc->tx_ctxt_desc_reset_ostc(
1325 						ctxt_desc);
1326 				priv->hw->desc->tx_ctxt_desc_set_ctxt(
1327 						ctxt_desc);
1328 				priv->hw->desc->tx_ctxt_desc_set_owner(
1329 						ctxt_desc);
1330 
1331 				entry = (++tqueue->cur_tx) % tx_rsize;
1332 				first_desc = tqueue->dma_tx + entry;
1333 
1334 				tqueue->prev_mss = cur_mss;
1335 			}
1336 			sxgbe_tso_prepare(priv, first_desc, skb);
1337 		} else {
1338 			tx_desc->tdes01 = dma_map_single(priv->device,
1339 							 skb->data, no_pagedlen, DMA_TO_DEVICE);
1340 			if (dma_mapping_error(priv->device, tx_desc->tdes01))
1341 				netdev_err(dev, "%s: TX dma mapping failed!!\n",
1342 					   __func__);
1343 
1344 			priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen,
1345 							no_pagedlen, cksum_flag);
1346 		}
1347 	}
1348 
1349 	for (frag_num = 0; frag_num < nr_frags; frag_num++) {
1350 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num];
1351 		int len = skb_frag_size(frag);
1352 
1353 		entry = (++tqueue->cur_tx) % tx_rsize;
1354 		tx_desc = tqueue->dma_tx + entry;
1355 		tx_desc->tdes01 = skb_frag_dma_map(priv->device, frag, 0, len,
1356 						   DMA_TO_DEVICE);
1357 
1358 		tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01;
1359 		tqueue->tx_skbuff[entry] = NULL;
1360 
1361 		/* prepare the descriptor */
1362 		priv->hw->desc->prepare_tx_desc(tx_desc, 0, len,
1363 						len, cksum_flag);
1364 		/* memory barrier to flush descriptor */
1365 		wmb();
1366 
1367 		/* set the owner */
1368 		priv->hw->desc->set_tx_owner(tx_desc);
1369 	}
1370 
1371 	/* close the descriptors */
1372 	priv->hw->desc->close_tx_desc(tx_desc);
1373 
1374 	/* memory barrier to flush descriptor */
1375 	wmb();
1376 
1377 	tqueue->tx_count_frames += nr_frags + 1;
1378 	if (tqueue->tx_count_frames > tqueue->tx_coal_frames) {
1379 		priv->hw->desc->clear_tx_ic(tx_desc);
1380 		priv->xstats.tx_reset_ic_bit++;
1381 		mod_timer(&tqueue->txtimer,
1382 			  SXGBE_COAL_TIMER(tqueue->tx_coal_timer));
1383 	} else {
1384 		tqueue->tx_count_frames = 0;
1385 	}
1386 
1387 	/* set owner for first desc */
1388 	priv->hw->desc->set_tx_owner(first_desc);
1389 
1390 	/* memory barrier to flush descriptor */
1391 	wmb();
1392 
1393 	tqueue->cur_tx++;
1394 
1395 	/* display current ring */
1396 	netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n",
1397 		  __func__, tqueue->cur_tx % tx_rsize,
1398 		  tqueue->dirty_tx % tx_rsize, entry,
1399 		  first_desc, nr_frags);
1400 
1401 	if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) {
1402 		netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n",
1403 			  __func__);
1404 		netif_tx_stop_queue(dev_txq);
1405 	}
1406 
1407 	dev->stats.tx_bytes += skb->len;
1408 
1409 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1410 		     tqueue->hwts_tx_en)) {
1411 		/* declare that device is doing timestamping */
1412 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1413 		priv->hw->desc->tx_enable_tstamp(first_desc);
1414 	}
1415 
1416 	skb_tx_timestamp(skb);
1417 
1418 	priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index);
1419 
1420 	return NETDEV_TX_OK;
1421 }
1422 
1423 /**
1424  * sxgbe_rx_refill: refill used skb preallocated buffers
1425  * @priv: driver private structure
1426  * Description : this is to reallocate the skb for the reception process
1427  * that is based on zero-copy.
1428  */
sxgbe_rx_refill(struct sxgbe_priv_data * priv)1429 static void sxgbe_rx_refill(struct sxgbe_priv_data *priv)
1430 {
1431 	unsigned int rxsize = priv->dma_rx_size;
1432 	int bfsize = priv->dma_buf_sz;
1433 	u8 qnum = priv->cur_rx_qnum;
1434 
1435 	for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0;
1436 	     priv->rxq[qnum]->dirty_rx++) {
1437 		unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize;
1438 		struct sxgbe_rx_norm_desc *p;
1439 
1440 		p = priv->rxq[qnum]->dma_rx + entry;
1441 
1442 		if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) {
1443 			struct sk_buff *skb;
1444 
1445 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1446 
1447 			if (unlikely(skb == NULL))
1448 				break;
1449 
1450 			priv->rxq[qnum]->rx_skbuff[entry] = skb;
1451 			priv->rxq[qnum]->rx_skbuff_dma[entry] =
1452 				dma_map_single(priv->device, skb->data, bfsize,
1453 					       DMA_FROM_DEVICE);
1454 
1455 			p->rdes23.rx_rd_des23.buf2_addr =
1456 				priv->rxq[qnum]->rx_skbuff_dma[entry];
1457 		}
1458 
1459 		/* Added memory barrier for RX descriptor modification */
1460 		wmb();
1461 		priv->hw->desc->set_rx_owner(p);
1462 		priv->hw->desc->set_rx_int_on_com(p);
1463 		/* Added memory barrier for RX descriptor modification */
1464 		wmb();
1465 	}
1466 }
1467 
1468 /**
1469  * sxgbe_rx: receive the frames from the remote host
1470  * @priv: driver private structure
1471  * @limit: napi bugget.
1472  * Description :  this the function called by the napi poll method.
1473  * It gets all the frames inside the ring.
1474  */
sxgbe_rx(struct sxgbe_priv_data * priv,int limit)1475 static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit)
1476 {
1477 	u8 qnum = priv->cur_rx_qnum;
1478 	unsigned int rxsize = priv->dma_rx_size;
1479 	unsigned int entry = priv->rxq[qnum]->cur_rx;
1480 	unsigned int next_entry = 0;
1481 	unsigned int count = 0;
1482 	int checksum;
1483 	int status;
1484 
1485 	while (count < limit) {
1486 		struct sxgbe_rx_norm_desc *p;
1487 		struct sk_buff *skb;
1488 		int frame_len;
1489 
1490 		p = priv->rxq[qnum]->dma_rx + entry;
1491 
1492 		if (priv->hw->desc->get_rx_owner(p))
1493 			break;
1494 
1495 		count++;
1496 
1497 		next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize;
1498 		prefetch(priv->rxq[qnum]->dma_rx + next_entry);
1499 
1500 		/* Read the status of the incoming frame and also get checksum
1501 		 * value based on whether it is enabled in SXGBE hardware or
1502 		 * not.
1503 		 */
1504 		status = priv->hw->desc->rx_wbstatus(p, &priv->xstats,
1505 						     &checksum);
1506 		if (unlikely(status < 0)) {
1507 			entry = next_entry;
1508 			continue;
1509 		}
1510 		if (unlikely(!priv->rxcsum_insertion))
1511 			checksum = CHECKSUM_NONE;
1512 
1513 		skb = priv->rxq[qnum]->rx_skbuff[entry];
1514 
1515 		if (unlikely(!skb))
1516 			netdev_err(priv->dev, "rx descriptor is not consistent\n");
1517 
1518 		prefetch(skb->data - NET_IP_ALIGN);
1519 		priv->rxq[qnum]->rx_skbuff[entry] = NULL;
1520 
1521 		frame_len = priv->hw->desc->get_rx_frame_len(p);
1522 
1523 		skb_put(skb, frame_len);
1524 
1525 		skb->ip_summed = checksum;
1526 		if (checksum == CHECKSUM_NONE)
1527 			netif_receive_skb(skb);
1528 		else
1529 			napi_gro_receive(&priv->napi, skb);
1530 
1531 		entry = next_entry;
1532 	}
1533 
1534 	sxgbe_rx_refill(priv);
1535 
1536 	return count;
1537 }
1538 
1539 /**
1540  *  sxgbe_poll - sxgbe poll method (NAPI)
1541  *  @napi : pointer to the napi structure.
1542  *  @budget : maximum number of packets that the current CPU can receive from
1543  *	      all interfaces.
1544  *  Description :
1545  *  To look at the incoming frames and clear the tx resources.
1546  */
sxgbe_poll(struct napi_struct * napi,int budget)1547 static int sxgbe_poll(struct napi_struct *napi, int budget)
1548 {
1549 	struct sxgbe_priv_data *priv = container_of(napi,
1550 						    struct sxgbe_priv_data, napi);
1551 	int work_done = 0;
1552 	u8 qnum = priv->cur_rx_qnum;
1553 
1554 	priv->xstats.napi_poll++;
1555 	/* first, clean the tx queues */
1556 	sxgbe_tx_all_clean(priv);
1557 
1558 	work_done = sxgbe_rx(priv, budget);
1559 	if (work_done < budget) {
1560 		napi_complete_done(napi, work_done);
1561 		priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum);
1562 	}
1563 
1564 	return work_done;
1565 }
1566 
1567 /**
1568  *  sxgbe_tx_timeout
1569  *  @dev : Pointer to net device structure
1570  *  Description: this function is called when a packet transmission fails to
1571  *   complete within a reasonable time. The driver will mark the error in the
1572  *   netdev structure and arrange for the device to be reset to a sane state
1573  *   in order to transmit a new packet.
1574  */
sxgbe_tx_timeout(struct net_device * dev)1575 static void sxgbe_tx_timeout(struct net_device *dev)
1576 {
1577 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1578 
1579 	sxgbe_reset_all_tx_queues(priv);
1580 }
1581 
1582 /**
1583  *  sxgbe_common_interrupt - main ISR
1584  *  @irq: interrupt number.
1585  *  @dev_id: to pass the net device pointer.
1586  *  Description: this is the main driver interrupt service routine.
1587  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
1588  *  interrupts.
1589  */
sxgbe_common_interrupt(int irq,void * dev_id)1590 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id)
1591 {
1592 	struct net_device *netdev = (struct net_device *)dev_id;
1593 	struct sxgbe_priv_data *priv = netdev_priv(netdev);
1594 	int status;
1595 
1596 	status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats);
1597 	/* For LPI we need to save the tx status */
1598 	if (status & TX_ENTRY_LPI_MODE) {
1599 		priv->xstats.tx_lpi_entry_n++;
1600 		priv->tx_path_in_lpi_mode = true;
1601 	}
1602 	if (status & TX_EXIT_LPI_MODE) {
1603 		priv->xstats.tx_lpi_exit_n++;
1604 		priv->tx_path_in_lpi_mode = false;
1605 	}
1606 	if (status & RX_ENTRY_LPI_MODE)
1607 		priv->xstats.rx_lpi_entry_n++;
1608 	if (status & RX_EXIT_LPI_MODE)
1609 		priv->xstats.rx_lpi_exit_n++;
1610 
1611 	return IRQ_HANDLED;
1612 }
1613 
1614 /**
1615  *  sxgbe_tx_interrupt - TX DMA ISR
1616  *  @irq: interrupt number.
1617  *  @dev_id: to pass the net device pointer.
1618  *  Description: this is the tx dma interrupt service routine.
1619  */
sxgbe_tx_interrupt(int irq,void * dev_id)1620 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id)
1621 {
1622 	int status;
1623 	struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id;
1624 	struct sxgbe_priv_data *priv = txq->priv_ptr;
1625 
1626 	/* get the channel status */
1627 	status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no,
1628 						  &priv->xstats);
1629 	/* check for normal path */
1630 	if (likely((status & handle_tx)))
1631 		napi_schedule(&priv->napi);
1632 
1633 	/* check for unrecoverable error */
1634 	if (unlikely((status & tx_hard_error)))
1635 		sxgbe_restart_tx_queue(priv, txq->queue_no);
1636 
1637 	/* check for TC configuration change */
1638 	if (unlikely((status & tx_bump_tc) &&
1639 		     (priv->tx_tc != SXGBE_MTL_SFMODE) &&
1640 		     (priv->tx_tc < 512))) {
1641 		/* step of TX TC is 32 till 128, otherwise 64 */
1642 		priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64;
1643 		priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr,
1644 					       txq->queue_no, priv->tx_tc);
1645 		priv->xstats.tx_threshold = priv->tx_tc;
1646 	}
1647 
1648 	return IRQ_HANDLED;
1649 }
1650 
1651 /**
1652  *  sxgbe_rx_interrupt - RX DMA ISR
1653  *  @irq: interrupt number.
1654  *  @dev_id: to pass the net device pointer.
1655  *  Description: this is the rx dma interrupt service routine.
1656  */
sxgbe_rx_interrupt(int irq,void * dev_id)1657 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id)
1658 {
1659 	int status;
1660 	struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id;
1661 	struct sxgbe_priv_data *priv = rxq->priv_ptr;
1662 
1663 	/* get the channel status */
1664 	status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no,
1665 						  &priv->xstats);
1666 
1667 	if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) {
1668 		priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no);
1669 		__napi_schedule(&priv->napi);
1670 	}
1671 
1672 	/* check for TC configuration change */
1673 	if (unlikely((status & rx_bump_tc) &&
1674 		     (priv->rx_tc != SXGBE_MTL_SFMODE) &&
1675 		     (priv->rx_tc < 128))) {
1676 		/* step of TC is 32 */
1677 		priv->rx_tc += 32;
1678 		priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr,
1679 					       rxq->queue_no, priv->rx_tc);
1680 		priv->xstats.rx_threshold = priv->rx_tc;
1681 	}
1682 
1683 	return IRQ_HANDLED;
1684 }
1685 
sxgbe_get_stat64(void __iomem * ioaddr,int reg_lo,int reg_hi)1686 static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi)
1687 {
1688 	u64 val = readl(ioaddr + reg_lo);
1689 
1690 	val |= ((u64)readl(ioaddr + reg_hi)) << 32;
1691 
1692 	return val;
1693 }
1694 
1695 
1696 /*  sxgbe_get_stats64 - entry point to see statistical information of device
1697  *  @dev : device pointer.
1698  *  @stats : pointer to hold all the statistical information of device.
1699  *  Description:
1700  *  This function is a driver entry point whenever ifconfig command gets
1701  *  executed to see device statistics. Statistics are number of
1702  *  bytes sent or received, errors occurred etc.
1703  */
sxgbe_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)1704 static void sxgbe_get_stats64(struct net_device *dev,
1705 			      struct rtnl_link_stats64 *stats)
1706 {
1707 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1708 	void __iomem *ioaddr = priv->ioaddr;
1709 	u64 count;
1710 
1711 	spin_lock(&priv->stats_lock);
1712 	/* Freeze the counter registers before reading value otherwise it may
1713 	 * get updated by hardware while we are reading them
1714 	 */
1715 	writel(SXGBE_MMC_CTRL_CNT_FRZ, ioaddr + SXGBE_MMC_CTL_REG);
1716 
1717 	stats->rx_bytes = sxgbe_get_stat64(ioaddr,
1718 					   SXGBE_MMC_RXOCTETLO_GCNT_REG,
1719 					   SXGBE_MMC_RXOCTETHI_GCNT_REG);
1720 
1721 	stats->rx_packets = sxgbe_get_stat64(ioaddr,
1722 					     SXGBE_MMC_RXFRAMELO_GBCNT_REG,
1723 					     SXGBE_MMC_RXFRAMEHI_GBCNT_REG);
1724 
1725 	stats->multicast = sxgbe_get_stat64(ioaddr,
1726 					    SXGBE_MMC_RXMULTILO_GCNT_REG,
1727 					    SXGBE_MMC_RXMULTIHI_GCNT_REG);
1728 
1729 	stats->rx_crc_errors = sxgbe_get_stat64(ioaddr,
1730 						SXGBE_MMC_RXCRCERRLO_REG,
1731 						SXGBE_MMC_RXCRCERRHI_REG);
1732 
1733 	stats->rx_length_errors = sxgbe_get_stat64(ioaddr,
1734 						  SXGBE_MMC_RXLENERRLO_REG,
1735 						  SXGBE_MMC_RXLENERRHI_REG);
1736 
1737 	stats->rx_missed_errors = sxgbe_get_stat64(ioaddr,
1738 						   SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG,
1739 						   SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG);
1740 
1741 	stats->tx_bytes = sxgbe_get_stat64(ioaddr,
1742 					   SXGBE_MMC_TXOCTETLO_GCNT_REG,
1743 					   SXGBE_MMC_TXOCTETHI_GCNT_REG);
1744 
1745 	count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG,
1746 				 SXGBE_MMC_TXFRAMEHI_GBCNT_REG);
1747 
1748 	stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG,
1749 					    SXGBE_MMC_TXFRAMEHI_GCNT_REG);
1750 	stats->tx_errors = count - stats->tx_errors;
1751 	stats->tx_packets = count;
1752 	stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG,
1753 						 SXGBE_MMC_TXUFLWHI_GBCNT_REG);
1754 	writel(0, ioaddr + SXGBE_MMC_CTL_REG);
1755 	spin_unlock(&priv->stats_lock);
1756 }
1757 
1758 /*  sxgbe_set_features - entry point to set offload features of the device.
1759  *  @dev : device pointer.
1760  *  @features : features which are required to be set.
1761  *  Description:
1762  *  This function is a driver entry point and called by Linux kernel whenever
1763  *  any device features are set or reset by user.
1764  *  Return value:
1765  *  This function returns 0 after setting or resetting device features.
1766  */
sxgbe_set_features(struct net_device * dev,netdev_features_t features)1767 static int sxgbe_set_features(struct net_device *dev,
1768 			      netdev_features_t features)
1769 {
1770 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1771 	netdev_features_t changed = dev->features ^ features;
1772 
1773 	if (changed & NETIF_F_RXCSUM) {
1774 		if (features & NETIF_F_RXCSUM) {
1775 			priv->hw->mac->enable_rx_csum(priv->ioaddr);
1776 			priv->rxcsum_insertion = true;
1777 		} else {
1778 			priv->hw->mac->disable_rx_csum(priv->ioaddr);
1779 			priv->rxcsum_insertion = false;
1780 		}
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 /*  sxgbe_change_mtu - entry point to change MTU size for the device.
1787  *  @dev : device pointer.
1788  *  @new_mtu : the new MTU size for the device.
1789  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1790  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1791  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1792  *  Return value:
1793  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1794  *  file on failure.
1795  */
sxgbe_change_mtu(struct net_device * dev,int new_mtu)1796 static int sxgbe_change_mtu(struct net_device *dev, int new_mtu)
1797 {
1798 	dev->mtu = new_mtu;
1799 
1800 	if (!netif_running(dev))
1801 		return 0;
1802 
1803 	/* Recevice ring buffer size is needed to be set based on MTU. If MTU is
1804 	 * changed then reinitilisation of the receive ring buffers need to be
1805 	 * done. Hence bring interface down and bring interface back up
1806 	 */
1807 	sxgbe_release(dev);
1808 	return sxgbe_open(dev);
1809 }
1810 
sxgbe_set_umac_addr(void __iomem * ioaddr,unsigned char * addr,unsigned int reg_n)1811 static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr,
1812 				unsigned int reg_n)
1813 {
1814 	unsigned long data;
1815 
1816 	data = (addr[5] << 8) | addr[4];
1817 	/* For MAC Addr registers se have to set the Address Enable (AE)
1818 	 * bit that has no effect on the High Reg 0 where the bit 31 (MO)
1819 	 * is RO.
1820 	 */
1821 	writel(data | SXGBE_HI_REG_AE, ioaddr + SXGBE_ADDR_HIGH(reg_n));
1822 	data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
1823 	writel(data, ioaddr + SXGBE_ADDR_LOW(reg_n));
1824 }
1825 
1826 /**
1827  * sxgbe_set_rx_mode - entry point for setting different receive mode of
1828  * a device. unicast, multicast addressing
1829  * @dev : pointer to the device structure
1830  * Description:
1831  * This function is a driver entry point which gets called by the kernel
1832  * whenever different receive mode like unicast, multicast and promiscuous
1833  * must be enabled/disabled.
1834  * Return value:
1835  * void.
1836  */
sxgbe_set_rx_mode(struct net_device * dev)1837 static void sxgbe_set_rx_mode(struct net_device *dev)
1838 {
1839 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1840 	void __iomem *ioaddr = (void __iomem *)priv->ioaddr;
1841 	unsigned int value = 0;
1842 	u32 mc_filter[2];
1843 	struct netdev_hw_addr *ha;
1844 	int reg = 1;
1845 
1846 	netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n",
1847 		   __func__, netdev_mc_count(dev), netdev_uc_count(dev));
1848 
1849 	if (dev->flags & IFF_PROMISC) {
1850 		value = SXGBE_FRAME_FILTER_PR;
1851 
1852 	} else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) ||
1853 		   (dev->flags & IFF_ALLMULTI)) {
1854 		value = SXGBE_FRAME_FILTER_PM;	/* pass all multi */
1855 		writel(0xffffffff, ioaddr + SXGBE_HASH_HIGH);
1856 		writel(0xffffffff, ioaddr + SXGBE_HASH_LOW);
1857 
1858 	} else if (!netdev_mc_empty(dev)) {
1859 		/* Hash filter for multicast */
1860 		value = SXGBE_FRAME_FILTER_HMC;
1861 
1862 		memset(mc_filter, 0, sizeof(mc_filter));
1863 		netdev_for_each_mc_addr(ha, dev) {
1864 			/* The upper 6 bits of the calculated CRC are used to
1865 			 * index the contens of the hash table
1866 			 */
1867 			int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26;
1868 
1869 			/* The most significant bit determines the register to
1870 			 * use (H/L) while the other 5 bits determine the bit
1871 			 * within the register.
1872 			 */
1873 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1874 		}
1875 		writel(mc_filter[0], ioaddr + SXGBE_HASH_LOW);
1876 		writel(mc_filter[1], ioaddr + SXGBE_HASH_HIGH);
1877 	}
1878 
1879 	/* Handle multiple unicast addresses (perfect filtering) */
1880 	if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES)
1881 		/* Switch to promiscuous mode if more than 16 addrs
1882 		 * are required
1883 		 */
1884 		value |= SXGBE_FRAME_FILTER_PR;
1885 	else {
1886 		netdev_for_each_uc_addr(ha, dev) {
1887 			sxgbe_set_umac_addr(ioaddr, ha->addr, reg);
1888 			reg++;
1889 		}
1890 	}
1891 #ifdef FRAME_FILTER_DEBUG
1892 	/* Enable Receive all mode (to debug filtering_fail errors) */
1893 	value |= SXGBE_FRAME_FILTER_RA;
1894 #endif
1895 	writel(value, ioaddr + SXGBE_FRAME_FILTER);
1896 
1897 	netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n",
1898 		   readl(ioaddr + SXGBE_FRAME_FILTER),
1899 		   readl(ioaddr + SXGBE_HASH_HIGH),
1900 		   readl(ioaddr + SXGBE_HASH_LOW));
1901 }
1902 
1903 #ifdef CONFIG_NET_POLL_CONTROLLER
1904 /**
1905  * sxgbe_poll_controller - entry point for polling receive by device
1906  * @dev : pointer to the device structure
1907  * Description:
1908  * This function is used by NETCONSOLE and other diagnostic tools
1909  * to allow network I/O with interrupts disabled.
1910  * Return value:
1911  * Void.
1912  */
sxgbe_poll_controller(struct net_device * dev)1913 static void sxgbe_poll_controller(struct net_device *dev)
1914 {
1915 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1916 
1917 	disable_irq(priv->irq);
1918 	sxgbe_rx_interrupt(priv->irq, dev);
1919 	enable_irq(priv->irq);
1920 }
1921 #endif
1922 
1923 /*  sxgbe_ioctl - Entry point for the Ioctl
1924  *  @dev: Device pointer.
1925  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1926  *  a proprietary structure used to pass information to the driver.
1927  *  @cmd: IOCTL command
1928  *  Description:
1929  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
1930  */
sxgbe_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1931 static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1932 {
1933 	int ret = -EOPNOTSUPP;
1934 
1935 	if (!netif_running(dev))
1936 		return -EINVAL;
1937 
1938 	switch (cmd) {
1939 	case SIOCGMIIPHY:
1940 	case SIOCGMIIREG:
1941 	case SIOCSMIIREG:
1942 		if (!dev->phydev)
1943 			return -EINVAL;
1944 		ret = phy_mii_ioctl(dev->phydev, rq, cmd);
1945 		break;
1946 	default:
1947 		break;
1948 	}
1949 
1950 	return ret;
1951 }
1952 
1953 static const struct net_device_ops sxgbe_netdev_ops = {
1954 	.ndo_open		= sxgbe_open,
1955 	.ndo_start_xmit		= sxgbe_xmit,
1956 	.ndo_stop		= sxgbe_release,
1957 	.ndo_get_stats64	= sxgbe_get_stats64,
1958 	.ndo_change_mtu		= sxgbe_change_mtu,
1959 	.ndo_set_features	= sxgbe_set_features,
1960 	.ndo_set_rx_mode	= sxgbe_set_rx_mode,
1961 	.ndo_tx_timeout		= sxgbe_tx_timeout,
1962 	.ndo_do_ioctl		= sxgbe_ioctl,
1963 #ifdef CONFIG_NET_POLL_CONTROLLER
1964 	.ndo_poll_controller	= sxgbe_poll_controller,
1965 #endif
1966 	.ndo_set_mac_address	= eth_mac_addr,
1967 };
1968 
1969 /* Get the hardware ops */
sxgbe_get_ops(struct sxgbe_ops * const ops_ptr)1970 static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr)
1971 {
1972 	ops_ptr->mac		= sxgbe_get_core_ops();
1973 	ops_ptr->desc		= sxgbe_get_desc_ops();
1974 	ops_ptr->dma		= sxgbe_get_dma_ops();
1975 	ops_ptr->mtl		= sxgbe_get_mtl_ops();
1976 
1977 	/* set the MDIO communication Address/Data regisers */
1978 	ops_ptr->mii.addr	= SXGBE_MDIO_SCMD_ADD_REG;
1979 	ops_ptr->mii.data	= SXGBE_MDIO_SCMD_DATA_REG;
1980 
1981 	/* Assigning the default link settings
1982 	 * no SXGBE defined default values to be set in registers,
1983 	 * so assigning as 0 for port and duplex
1984 	 */
1985 	ops_ptr->link.port	= 0;
1986 	ops_ptr->link.duplex	= 0;
1987 	ops_ptr->link.speed	= SXGBE_SPEED_10G;
1988 }
1989 
1990 /**
1991  *  sxgbe_hw_init - Init the GMAC device
1992  *  @priv: driver private structure
1993  *  Description: this function checks the HW capability
1994  *  (if supported) and sets the driver's features.
1995  */
sxgbe_hw_init(struct sxgbe_priv_data * const priv)1996 static int sxgbe_hw_init(struct sxgbe_priv_data * const priv)
1997 {
1998 	u32 ctrl_ids;
1999 
2000 	priv->hw = kmalloc(sizeof(*priv->hw), GFP_KERNEL);
2001 	if(!priv->hw)
2002 		return -ENOMEM;
2003 
2004 	/* get the hardware ops */
2005 	sxgbe_get_ops(priv->hw);
2006 
2007 	/* get the controller id */
2008 	ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr);
2009 	priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16;
2010 	priv->hw->ctrl_id = (ctrl_ids & 0x000000ff);
2011 	pr_info("user ID: 0x%x, Controller ID: 0x%x\n",
2012 		priv->hw->ctrl_uid, priv->hw->ctrl_id);
2013 
2014 	/* get the H/W features */
2015 	if (!sxgbe_get_hw_features(priv))
2016 		pr_info("Hardware features not found\n");
2017 
2018 	if (priv->hw_cap.tx_csum_offload)
2019 		pr_info("TX Checksum offload supported\n");
2020 
2021 	if (priv->hw_cap.rx_csum_offload)
2022 		pr_info("RX Checksum offload supported\n");
2023 
2024 	return 0;
2025 }
2026 
sxgbe_sw_reset(void __iomem * addr)2027 static int sxgbe_sw_reset(void __iomem *addr)
2028 {
2029 	int retry_count = 10;
2030 
2031 	writel(SXGBE_DMA_SOFT_RESET, addr + SXGBE_DMA_MODE_REG);
2032 	while (retry_count--) {
2033 		if (!(readl(addr + SXGBE_DMA_MODE_REG) &
2034 		      SXGBE_DMA_SOFT_RESET))
2035 			break;
2036 		mdelay(10);
2037 	}
2038 
2039 	if (retry_count < 0)
2040 		return -EBUSY;
2041 
2042 	return 0;
2043 }
2044 
2045 /**
2046  * sxgbe_drv_probe
2047  * @device: device pointer
2048  * @plat_dat: platform data pointer
2049  * @addr: iobase memory address
2050  * Description: this is the main probe function used to
2051  * call the alloc_etherdev, allocate the priv structure.
2052  */
sxgbe_drv_probe(struct device * device,struct sxgbe_plat_data * plat_dat,void __iomem * addr)2053 struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device,
2054 					struct sxgbe_plat_data *plat_dat,
2055 					void __iomem *addr)
2056 {
2057 	struct sxgbe_priv_data *priv;
2058 	struct net_device *ndev;
2059 	int ret;
2060 	u8 queue_num;
2061 
2062 	ndev = alloc_etherdev_mqs(sizeof(struct sxgbe_priv_data),
2063 				  SXGBE_TX_QUEUES, SXGBE_RX_QUEUES);
2064 	if (!ndev)
2065 		return NULL;
2066 
2067 	SET_NETDEV_DEV(ndev, device);
2068 
2069 	priv = netdev_priv(ndev);
2070 	priv->device = device;
2071 	priv->dev = ndev;
2072 
2073 	sxgbe_set_ethtool_ops(ndev);
2074 	priv->plat = plat_dat;
2075 	priv->ioaddr = addr;
2076 
2077 	ret = sxgbe_sw_reset(priv->ioaddr);
2078 	if (ret)
2079 		goto error_free_netdev;
2080 
2081 	/* Verify driver arguments */
2082 	sxgbe_verify_args();
2083 
2084 	/* Init MAC and get the capabilities */
2085 	ret = sxgbe_hw_init(priv);
2086 	if (ret)
2087 		goto error_free_netdev;
2088 
2089 	/* allocate memory resources for Descriptor rings */
2090 	ret = txring_mem_alloc(priv);
2091 	if (ret)
2092 		goto error_free_hw;
2093 
2094 	ret = rxring_mem_alloc(priv);
2095 	if (ret)
2096 		goto error_free_hw;
2097 
2098 	ndev->netdev_ops = &sxgbe_netdev_ops;
2099 
2100 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2101 		NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 |
2102 		NETIF_F_GRO;
2103 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2104 	ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO);
2105 
2106 	/* assign filtering support */
2107 	ndev->priv_flags |= IFF_UNICAST_FLT;
2108 
2109 	/* MTU range: 68 - 9000 */
2110 	ndev->min_mtu = MIN_MTU;
2111 	ndev->max_mtu = MAX_MTU;
2112 
2113 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2114 
2115 	/* Enable TCP segmentation offload for all DMA channels */
2116 	if (priv->hw_cap.tcpseg_offload) {
2117 		SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
2118 			priv->hw->dma->enable_tso(priv->ioaddr, queue_num);
2119 		}
2120 	}
2121 
2122 	/* Enable Rx checksum offload */
2123 	if (priv->hw_cap.rx_csum_offload) {
2124 		priv->hw->mac->enable_rx_csum(priv->ioaddr);
2125 		priv->rxcsum_insertion = true;
2126 	}
2127 
2128 	/* Initialise pause frame settings */
2129 	priv->rx_pause = 1;
2130 	priv->tx_pause = 1;
2131 
2132 	/* Rx Watchdog is available, enable depend on platform data */
2133 	if (!priv->plat->riwt_off) {
2134 		priv->use_riwt = 1;
2135 		pr_info("Enable RX Mitigation via HW Watchdog Timer\n");
2136 	}
2137 
2138 	netif_napi_add(ndev, &priv->napi, sxgbe_poll, 64);
2139 
2140 	spin_lock_init(&priv->stats_lock);
2141 
2142 	priv->sxgbe_clk = clk_get(priv->device, SXGBE_RESOURCE_NAME);
2143 	if (IS_ERR(priv->sxgbe_clk)) {
2144 		netdev_warn(ndev, "%s: warning: cannot get CSR clock\n",
2145 			    __func__);
2146 		goto error_napi_del;
2147 	}
2148 
2149 	/* If a specific clk_csr value is passed from the platform
2150 	 * this means that the CSR Clock Range selection cannot be
2151 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2152 	 * set the MDC clock dynamically according to the csr actual
2153 	 * clock input.
2154 	 */
2155 	if (!priv->plat->clk_csr)
2156 		sxgbe_clk_csr_set(priv);
2157 	else
2158 		priv->clk_csr = priv->plat->clk_csr;
2159 
2160 	/* MDIO bus Registration */
2161 	ret = sxgbe_mdio_register(ndev);
2162 	if (ret < 0) {
2163 		netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n",
2164 			   __func__, priv->plat->bus_id);
2165 		goto error_clk_put;
2166 	}
2167 
2168 	ret = register_netdev(ndev);
2169 	if (ret) {
2170 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2171 		goto error_mdio_unregister;
2172 	}
2173 
2174 	sxgbe_check_ether_addr(priv);
2175 
2176 	return priv;
2177 
2178 error_mdio_unregister:
2179 	sxgbe_mdio_unregister(ndev);
2180 error_clk_put:
2181 	clk_put(priv->sxgbe_clk);
2182 error_napi_del:
2183 	netif_napi_del(&priv->napi);
2184 error_free_hw:
2185 	kfree(priv->hw);
2186 error_free_netdev:
2187 	free_netdev(ndev);
2188 
2189 	return NULL;
2190 }
2191 
2192 /**
2193  * sxgbe_drv_remove
2194  * @ndev: net device pointer
2195  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2196  * changes the link status, releases the DMA descriptor rings.
2197  */
sxgbe_drv_remove(struct net_device * ndev)2198 int sxgbe_drv_remove(struct net_device *ndev)
2199 {
2200 	struct sxgbe_priv_data *priv = netdev_priv(ndev);
2201 	u8 queue_num;
2202 
2203 	netdev_info(ndev, "%s: removing driver\n", __func__);
2204 
2205 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
2206 		priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num);
2207 	}
2208 
2209 	priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
2210 	priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
2211 
2212 	priv->hw->mac->enable_tx(priv->ioaddr, false);
2213 	priv->hw->mac->enable_rx(priv->ioaddr, false);
2214 
2215 	unregister_netdev(ndev);
2216 
2217 	sxgbe_mdio_unregister(ndev);
2218 
2219 	clk_put(priv->sxgbe_clk);
2220 
2221 	netif_napi_del(&priv->napi);
2222 
2223 	kfree(priv->hw);
2224 
2225 	free_netdev(ndev);
2226 
2227 	return 0;
2228 }
2229 
2230 #ifdef CONFIG_PM
sxgbe_suspend(struct net_device * ndev)2231 int sxgbe_suspend(struct net_device *ndev)
2232 {
2233 	return 0;
2234 }
2235 
sxgbe_resume(struct net_device * ndev)2236 int sxgbe_resume(struct net_device *ndev)
2237 {
2238 	return 0;
2239 }
2240 
sxgbe_freeze(struct net_device * ndev)2241 int sxgbe_freeze(struct net_device *ndev)
2242 {
2243 	return -ENOSYS;
2244 }
2245 
sxgbe_restore(struct net_device * ndev)2246 int sxgbe_restore(struct net_device *ndev)
2247 {
2248 	return -ENOSYS;
2249 }
2250 #endif /* CONFIG_PM */
2251 
2252 /* Driver is configured as Platform driver */
sxgbe_init(void)2253 static int __init sxgbe_init(void)
2254 {
2255 	int ret;
2256 
2257 	ret = sxgbe_register_platform();
2258 	if (ret)
2259 		goto err;
2260 	return 0;
2261 err:
2262 	pr_err("driver registration failed\n");
2263 	return ret;
2264 }
2265 
sxgbe_exit(void)2266 static void __exit sxgbe_exit(void)
2267 {
2268 	sxgbe_unregister_platform();
2269 }
2270 
2271 module_init(sxgbe_init);
2272 module_exit(sxgbe_exit);
2273 
2274 #ifndef MODULE
sxgbe_cmdline_opt(char * str)2275 static int __init sxgbe_cmdline_opt(char *str)
2276 {
2277 	char *opt;
2278 
2279 	if (!str || !*str)
2280 		return -EINVAL;
2281 	while ((opt = strsep(&str, ",")) != NULL) {
2282 		if (!strncmp(opt, "eee_timer:", 6)) {
2283 			if (kstrtoint(opt + 10, 0, &eee_timer))
2284 				goto err;
2285 		}
2286 	}
2287 	return 0;
2288 
2289 err:
2290 	pr_err("%s: ERROR broken module parameter conversion\n", __func__);
2291 	return -EINVAL;
2292 }
2293 
2294 __setup("sxgbeeth=", sxgbe_cmdline_opt);
2295 #endif /* MODULE */
2296 
2297 
2298 
2299 MODULE_DESCRIPTION("SAMSUNG 10G/2.5G/1G Ethernet PLATFORM driver");
2300 
2301 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
2302 MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value");
2303 
2304 MODULE_AUTHOR("Siva Reddy Kallam <siva.kallam@samsung.com>");
2305 MODULE_AUTHOR("ByungHo An <bh74.an@samsung.com>");
2306 MODULE_AUTHOR("Girish K S <ks.giri@samsung.com>");
2307 MODULE_AUTHOR("Vipul Pandya <vipul.pandya@samsung.com>");
2308 
2309 MODULE_LICENSE("GPL");
2310