1 // SPDX-License-Identifier: GPL-2.0-only
2 /* 10G controller driver for Samsung SoCs
3 *
4 * Copyright (C) 2013 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com
6 *
7 * Author: Siva Reddy Kallam <siva.kallam@samsung.com>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/clk.h>
13 #include <linux/crc32.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/etherdevice.h>
16 #include <linux/ethtool.h>
17 #include <linux/if.h>
18 #include <linux/if_ether.h>
19 #include <linux/if_vlan.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ip.h>
23 #include <linux/kernel.h>
24 #include <linux/mii.h>
25 #include <linux/module.h>
26 #include <linux/net_tstamp.h>
27 #include <linux/netdevice.h>
28 #include <linux/phy.h>
29 #include <linux/platform_device.h>
30 #include <linux/prefetch.h>
31 #include <linux/skbuff.h>
32 #include <linux/slab.h>
33 #include <linux/tcp.h>
34 #include <linux/sxgbe_platform.h>
35
36 #include "sxgbe_common.h"
37 #include "sxgbe_desc.h"
38 #include "sxgbe_dma.h"
39 #include "sxgbe_mtl.h"
40 #include "sxgbe_reg.h"
41
42 #define SXGBE_ALIGN(x) L1_CACHE_ALIGN(x)
43 #define JUMBO_LEN 9000
44
45 /* Module parameters */
46 #define TX_TIMEO 5000
47 #define DMA_TX_SIZE 512
48 #define DMA_RX_SIZE 1024
49 #define TC_DEFAULT 64
50 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB
51 /* The default timer value as per the sxgbe specification 1 sec(1000 ms) */
52 #define SXGBE_DEFAULT_LPI_TIMER 1000
53
54 static int debug = -1;
55 static int eee_timer = SXGBE_DEFAULT_LPI_TIMER;
56
57 module_param(eee_timer, int, 0644);
58
59 module_param(debug, int, 0644);
60 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
61 NETIF_MSG_LINK | NETIF_MSG_IFUP |
62 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
63
64 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id);
65 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id);
66 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id);
67
68 #define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
69
70 #define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
71
72 /**
73 * sxgbe_verify_args - verify the driver parameters.
74 * Description: it verifies if some wrong parameter is passed to the driver.
75 * Note that wrong parameters are replaced with the default values.
76 */
sxgbe_verify_args(void)77 static void sxgbe_verify_args(void)
78 {
79 if (unlikely(eee_timer < 0))
80 eee_timer = SXGBE_DEFAULT_LPI_TIMER;
81 }
82
sxgbe_enable_eee_mode(const struct sxgbe_priv_data * priv)83 static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv)
84 {
85 /* Check and enter in LPI mode */
86 if (!priv->tx_path_in_lpi_mode)
87 priv->hw->mac->set_eee_mode(priv->ioaddr);
88 }
89
sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv)90 void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv)
91 {
92 /* Exit and disable EEE in case of we are are in LPI state. */
93 priv->hw->mac->reset_eee_mode(priv->ioaddr);
94 del_timer_sync(&priv->eee_ctrl_timer);
95 priv->tx_path_in_lpi_mode = false;
96 }
97
98 /**
99 * sxgbe_eee_ctrl_timer
100 * @arg : data hook
101 * Description:
102 * If there is no data transfer and if we are not in LPI state,
103 * then MAC Transmitter can be moved to LPI state.
104 */
sxgbe_eee_ctrl_timer(struct timer_list * t)105 static void sxgbe_eee_ctrl_timer(struct timer_list *t)
106 {
107 struct sxgbe_priv_data *priv = from_timer(priv, t, eee_ctrl_timer);
108
109 sxgbe_enable_eee_mode(priv);
110 mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
111 }
112
113 /**
114 * sxgbe_eee_init
115 * @priv: private device pointer
116 * Description:
117 * If the EEE support has been enabled while configuring the driver,
118 * if the GMAC actually supports the EEE (from the HW cap reg) and the
119 * phy can also manage EEE, so enable the LPI state and start the timer
120 * to verify if the tx path can enter in LPI state.
121 */
sxgbe_eee_init(struct sxgbe_priv_data * const priv)122 bool sxgbe_eee_init(struct sxgbe_priv_data * const priv)
123 {
124 struct net_device *ndev = priv->dev;
125 bool ret = false;
126
127 /* MAC core supports the EEE feature. */
128 if (priv->hw_cap.eee) {
129 /* Check if the PHY supports EEE */
130 if (phy_init_eee(ndev->phydev, 1))
131 return false;
132
133 priv->eee_active = 1;
134 timer_setup(&priv->eee_ctrl_timer, sxgbe_eee_ctrl_timer, 0);
135 priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer);
136 add_timer(&priv->eee_ctrl_timer);
137
138 priv->hw->mac->set_eee_timer(priv->ioaddr,
139 SXGBE_DEFAULT_LPI_TIMER,
140 priv->tx_lpi_timer);
141
142 pr_info("Energy-Efficient Ethernet initialized\n");
143
144 ret = true;
145 }
146
147 return ret;
148 }
149
sxgbe_eee_adjust(const struct sxgbe_priv_data * priv)150 static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv)
151 {
152 struct net_device *ndev = priv->dev;
153
154 /* When the EEE has been already initialised we have to
155 * modify the PLS bit in the LPI ctrl & status reg according
156 * to the PHY link status. For this reason.
157 */
158 if (priv->eee_enabled)
159 priv->hw->mac->set_eee_pls(priv->ioaddr, ndev->phydev->link);
160 }
161
162 /**
163 * sxgbe_clk_csr_set - dynamically set the MDC clock
164 * @priv: driver private structure
165 * Description: this is to dynamically set the MDC clock according to the csr
166 * clock input.
167 */
sxgbe_clk_csr_set(struct sxgbe_priv_data * priv)168 static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv)
169 {
170 u32 clk_rate = clk_get_rate(priv->sxgbe_clk);
171
172 /* assign the proper divider, this will be used during
173 * mdio communication
174 */
175 if (clk_rate < SXGBE_CSR_F_150M)
176 priv->clk_csr = SXGBE_CSR_100_150M;
177 else if (clk_rate <= SXGBE_CSR_F_250M)
178 priv->clk_csr = SXGBE_CSR_150_250M;
179 else if (clk_rate <= SXGBE_CSR_F_300M)
180 priv->clk_csr = SXGBE_CSR_250_300M;
181 else if (clk_rate <= SXGBE_CSR_F_350M)
182 priv->clk_csr = SXGBE_CSR_300_350M;
183 else if (clk_rate <= SXGBE_CSR_F_400M)
184 priv->clk_csr = SXGBE_CSR_350_400M;
185 else if (clk_rate <= SXGBE_CSR_F_500M)
186 priv->clk_csr = SXGBE_CSR_400_500M;
187 }
188
189 /* minimum number of free TX descriptors required to wake up TX process */
190 #define SXGBE_TX_THRESH(x) (x->dma_tx_size/4)
191
sxgbe_tx_avail(struct sxgbe_tx_queue * queue,int tx_qsize)192 static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize)
193 {
194 return queue->dirty_tx + tx_qsize - queue->cur_tx - 1;
195 }
196
197 /**
198 * sxgbe_adjust_link
199 * @dev: net device structure
200 * Description: it adjusts the link parameters.
201 */
sxgbe_adjust_link(struct net_device * dev)202 static void sxgbe_adjust_link(struct net_device *dev)
203 {
204 struct sxgbe_priv_data *priv = netdev_priv(dev);
205 struct phy_device *phydev = dev->phydev;
206 u8 new_state = 0;
207 u8 speed = 0xff;
208
209 if (!phydev)
210 return;
211
212 /* SXGBE is not supporting auto-negotiation and
213 * half duplex mode. so, not handling duplex change
214 * in this function. only handling speed and link status
215 */
216 if (phydev->link) {
217 if (phydev->speed != priv->speed) {
218 new_state = 1;
219 switch (phydev->speed) {
220 case SPEED_10000:
221 speed = SXGBE_SPEED_10G;
222 break;
223 case SPEED_2500:
224 speed = SXGBE_SPEED_2_5G;
225 break;
226 case SPEED_1000:
227 speed = SXGBE_SPEED_1G;
228 break;
229 default:
230 netif_err(priv, link, dev,
231 "Speed (%d) not supported\n",
232 phydev->speed);
233 }
234
235 priv->speed = phydev->speed;
236 priv->hw->mac->set_speed(priv->ioaddr, speed);
237 }
238
239 if (!priv->oldlink) {
240 new_state = 1;
241 priv->oldlink = 1;
242 }
243 } else if (priv->oldlink) {
244 new_state = 1;
245 priv->oldlink = 0;
246 priv->speed = SPEED_UNKNOWN;
247 }
248
249 if (new_state & netif_msg_link(priv))
250 phy_print_status(phydev);
251
252 /* Alter the MAC settings for EEE */
253 sxgbe_eee_adjust(priv);
254 }
255
256 /**
257 * sxgbe_init_phy - PHY initialization
258 * @dev: net device structure
259 * Description: it initializes the driver's PHY state, and attaches the PHY
260 * to the mac driver.
261 * Return value:
262 * 0 on success
263 */
sxgbe_init_phy(struct net_device * ndev)264 static int sxgbe_init_phy(struct net_device *ndev)
265 {
266 char phy_id_fmt[MII_BUS_ID_SIZE + 3];
267 char bus_id[MII_BUS_ID_SIZE];
268 struct phy_device *phydev;
269 struct sxgbe_priv_data *priv = netdev_priv(ndev);
270 int phy_iface = priv->plat->interface;
271
272 /* assign default link status */
273 priv->oldlink = 0;
274 priv->speed = SPEED_UNKNOWN;
275 priv->oldduplex = DUPLEX_UNKNOWN;
276
277 if (priv->plat->phy_bus_name)
278 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
279 priv->plat->phy_bus_name, priv->plat->bus_id);
280 else
281 snprintf(bus_id, MII_BUS_ID_SIZE, "sxgbe-%x",
282 priv->plat->bus_id);
283
284 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
285 priv->plat->phy_addr);
286 netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt);
287
288 phydev = phy_connect(ndev, phy_id_fmt, &sxgbe_adjust_link, phy_iface);
289
290 if (IS_ERR(phydev)) {
291 netdev_err(ndev, "Could not attach to PHY\n");
292 return PTR_ERR(phydev);
293 }
294
295 /* Stop Advertising 1000BASE Capability if interface is not GMII */
296 if ((phy_iface == PHY_INTERFACE_MODE_MII) ||
297 (phy_iface == PHY_INTERFACE_MODE_RMII))
298 phy_set_max_speed(phydev, SPEED_1000);
299
300 if (phydev->phy_id == 0) {
301 phy_disconnect(phydev);
302 return -ENODEV;
303 }
304
305 netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n",
306 __func__, phydev->phy_id, phydev->link);
307
308 return 0;
309 }
310
311 /**
312 * sxgbe_clear_descriptors: clear descriptors
313 * @priv: driver private structure
314 * Description: this function is called to clear the tx and rx descriptors
315 * in case of both basic and extended descriptors are used.
316 */
sxgbe_clear_descriptors(struct sxgbe_priv_data * priv)317 static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv)
318 {
319 int i, j;
320 unsigned int txsize = priv->dma_tx_size;
321 unsigned int rxsize = priv->dma_rx_size;
322
323 /* Clear the Rx/Tx descriptors */
324 for (j = 0; j < SXGBE_RX_QUEUES; j++) {
325 for (i = 0; i < rxsize; i++)
326 priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i],
327 priv->use_riwt, priv->mode,
328 (i == rxsize - 1));
329 }
330
331 for (j = 0; j < SXGBE_TX_QUEUES; j++) {
332 for (i = 0; i < txsize; i++)
333 priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]);
334 }
335 }
336
sxgbe_init_rx_buffers(struct net_device * dev,struct sxgbe_rx_norm_desc * p,int i,unsigned int dma_buf_sz,struct sxgbe_rx_queue * rx_ring)337 static int sxgbe_init_rx_buffers(struct net_device *dev,
338 struct sxgbe_rx_norm_desc *p, int i,
339 unsigned int dma_buf_sz,
340 struct sxgbe_rx_queue *rx_ring)
341 {
342 struct sxgbe_priv_data *priv = netdev_priv(dev);
343 struct sk_buff *skb;
344
345 skb = __netdev_alloc_skb_ip_align(dev, dma_buf_sz, GFP_KERNEL);
346 if (!skb)
347 return -ENOMEM;
348
349 rx_ring->rx_skbuff[i] = skb;
350 rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
351 dma_buf_sz, DMA_FROM_DEVICE);
352
353 if (dma_mapping_error(priv->device, rx_ring->rx_skbuff_dma[i])) {
354 netdev_err(dev, "%s: DMA mapping error\n", __func__);
355 dev_kfree_skb_any(skb);
356 return -EINVAL;
357 }
358
359 p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i];
360
361 return 0;
362 }
363
364 /**
365 * sxgbe_free_rx_buffers - free what sxgbe_init_rx_buffers() allocated
366 * @dev: net device structure
367 * @rx_ring: ring to be freed
368 * @rx_rsize: ring size
369 * Description: this function initializes the DMA RX descriptor
370 */
sxgbe_free_rx_buffers(struct net_device * dev,struct sxgbe_rx_norm_desc * p,int i,unsigned int dma_buf_sz,struct sxgbe_rx_queue * rx_ring)371 static void sxgbe_free_rx_buffers(struct net_device *dev,
372 struct sxgbe_rx_norm_desc *p, int i,
373 unsigned int dma_buf_sz,
374 struct sxgbe_rx_queue *rx_ring)
375 {
376 struct sxgbe_priv_data *priv = netdev_priv(dev);
377
378 kfree_skb(rx_ring->rx_skbuff[i]);
379 dma_unmap_single(priv->device, rx_ring->rx_skbuff_dma[i],
380 dma_buf_sz, DMA_FROM_DEVICE);
381 }
382
383 /**
384 * init_tx_ring - init the TX descriptor ring
385 * @dev: net device structure
386 * @tx_ring: ring to be initialised
387 * @tx_rsize: ring size
388 * Description: this function initializes the DMA TX descriptor
389 */
init_tx_ring(struct device * dev,u8 queue_no,struct sxgbe_tx_queue * tx_ring,int tx_rsize)390 static int init_tx_ring(struct device *dev, u8 queue_no,
391 struct sxgbe_tx_queue *tx_ring, int tx_rsize)
392 {
393 /* TX ring is not allcoated */
394 if (!tx_ring) {
395 dev_err(dev, "No memory for TX queue of SXGBE\n");
396 return -ENOMEM;
397 }
398
399 /* allocate memory for TX descriptors */
400 tx_ring->dma_tx = dma_alloc_coherent(dev,
401 tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
402 &tx_ring->dma_tx_phy, GFP_KERNEL);
403 if (!tx_ring->dma_tx)
404 return -ENOMEM;
405
406 /* allocate memory for TX skbuff array */
407 tx_ring->tx_skbuff_dma = devm_kcalloc(dev, tx_rsize,
408 sizeof(dma_addr_t), GFP_KERNEL);
409 if (!tx_ring->tx_skbuff_dma)
410 goto dmamem_err;
411
412 tx_ring->tx_skbuff = devm_kcalloc(dev, tx_rsize,
413 sizeof(struct sk_buff *), GFP_KERNEL);
414
415 if (!tx_ring->tx_skbuff)
416 goto dmamem_err;
417
418 /* assign queue number */
419 tx_ring->queue_no = queue_no;
420
421 /* initialise counters */
422 tx_ring->dirty_tx = 0;
423 tx_ring->cur_tx = 0;
424
425 return 0;
426
427 dmamem_err:
428 dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
429 tx_ring->dma_tx, tx_ring->dma_tx_phy);
430 return -ENOMEM;
431 }
432
433 /**
434 * free_rx_ring - free the RX descriptor ring
435 * @dev: net device structure
436 * @rx_ring: ring to be initialised
437 * @rx_rsize: ring size
438 * Description: this function initializes the DMA RX descriptor
439 */
free_rx_ring(struct device * dev,struct sxgbe_rx_queue * rx_ring,int rx_rsize)440 static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring,
441 int rx_rsize)
442 {
443 dma_free_coherent(dev, rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
444 rx_ring->dma_rx, rx_ring->dma_rx_phy);
445 kfree(rx_ring->rx_skbuff_dma);
446 kfree(rx_ring->rx_skbuff);
447 }
448
449 /**
450 * init_rx_ring - init the RX descriptor ring
451 * @dev: net device structure
452 * @rx_ring: ring to be initialised
453 * @rx_rsize: ring size
454 * Description: this function initializes the DMA RX descriptor
455 */
init_rx_ring(struct net_device * dev,u8 queue_no,struct sxgbe_rx_queue * rx_ring,int rx_rsize)456 static int init_rx_ring(struct net_device *dev, u8 queue_no,
457 struct sxgbe_rx_queue *rx_ring, int rx_rsize)
458 {
459 struct sxgbe_priv_data *priv = netdev_priv(dev);
460 int desc_index;
461 unsigned int bfsize = 0;
462 unsigned int ret = 0;
463
464 /* Set the max buffer size according to the MTU. */
465 bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8);
466
467 netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize);
468
469 /* RX ring is not allcoated */
470 if (rx_ring == NULL) {
471 netdev_err(dev, "No memory for RX queue\n");
472 return -ENOMEM;
473 }
474
475 /* assign queue number */
476 rx_ring->queue_no = queue_no;
477
478 /* allocate memory for RX descriptors */
479 rx_ring->dma_rx = dma_alloc_coherent(priv->device,
480 rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
481 &rx_ring->dma_rx_phy, GFP_KERNEL);
482
483 if (rx_ring->dma_rx == NULL)
484 return -ENOMEM;
485
486 /* allocate memory for RX skbuff array */
487 rx_ring->rx_skbuff_dma = kmalloc_array(rx_rsize,
488 sizeof(dma_addr_t), GFP_KERNEL);
489 if (!rx_ring->rx_skbuff_dma) {
490 ret = -ENOMEM;
491 goto err_free_dma_rx;
492 }
493
494 rx_ring->rx_skbuff = kmalloc_array(rx_rsize,
495 sizeof(struct sk_buff *), GFP_KERNEL);
496 if (!rx_ring->rx_skbuff) {
497 ret = -ENOMEM;
498 goto err_free_skbuff_dma;
499 }
500
501 /* initialise the buffers */
502 for (desc_index = 0; desc_index < rx_rsize; desc_index++) {
503 struct sxgbe_rx_norm_desc *p;
504 p = rx_ring->dma_rx + desc_index;
505 ret = sxgbe_init_rx_buffers(dev, p, desc_index,
506 bfsize, rx_ring);
507 if (ret)
508 goto err_free_rx_buffers;
509 }
510
511 /* initialise counters */
512 rx_ring->cur_rx = 0;
513 rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize);
514 priv->dma_buf_sz = bfsize;
515
516 return 0;
517
518 err_free_rx_buffers:
519 while (--desc_index >= 0) {
520 struct sxgbe_rx_norm_desc *p;
521
522 p = rx_ring->dma_rx + desc_index;
523 sxgbe_free_rx_buffers(dev, p, desc_index, bfsize, rx_ring);
524 }
525 kfree(rx_ring->rx_skbuff);
526 err_free_skbuff_dma:
527 kfree(rx_ring->rx_skbuff_dma);
528 err_free_dma_rx:
529 dma_free_coherent(priv->device,
530 rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
531 rx_ring->dma_rx, rx_ring->dma_rx_phy);
532
533 return ret;
534 }
535 /**
536 * free_tx_ring - free the TX descriptor ring
537 * @dev: net device structure
538 * @tx_ring: ring to be initialised
539 * @tx_rsize: ring size
540 * Description: this function initializes the DMA TX descriptor
541 */
free_tx_ring(struct device * dev,struct sxgbe_tx_queue * tx_ring,int tx_rsize)542 static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring,
543 int tx_rsize)
544 {
545 dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
546 tx_ring->dma_tx, tx_ring->dma_tx_phy);
547 }
548
549 /**
550 * init_dma_desc_rings - init the RX/TX descriptor rings
551 * @dev: net device structure
552 * Description: this function initializes the DMA RX/TX descriptors
553 * and allocates the socket buffers. It suppors the chained and ring
554 * modes.
555 */
init_dma_desc_rings(struct net_device * netd)556 static int init_dma_desc_rings(struct net_device *netd)
557 {
558 int queue_num, ret;
559 struct sxgbe_priv_data *priv = netdev_priv(netd);
560 int tx_rsize = priv->dma_tx_size;
561 int rx_rsize = priv->dma_rx_size;
562
563 /* Allocate memory for queue structures and TX descs */
564 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
565 ret = init_tx_ring(priv->device, queue_num,
566 priv->txq[queue_num], tx_rsize);
567 if (ret) {
568 dev_err(&netd->dev, "TX DMA ring allocation failed!\n");
569 goto txalloc_err;
570 }
571
572 /* save private pointer in each ring this
573 * pointer is needed during cleaing TX queue
574 */
575 priv->txq[queue_num]->priv_ptr = priv;
576 }
577
578 /* Allocate memory for queue structures and RX descs */
579 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
580 ret = init_rx_ring(netd, queue_num,
581 priv->rxq[queue_num], rx_rsize);
582 if (ret) {
583 netdev_err(netd, "RX DMA ring allocation failed!!\n");
584 goto rxalloc_err;
585 }
586
587 /* save private pointer in each ring this
588 * pointer is needed during cleaing TX queue
589 */
590 priv->rxq[queue_num]->priv_ptr = priv;
591 }
592
593 sxgbe_clear_descriptors(priv);
594
595 return 0;
596
597 txalloc_err:
598 while (queue_num--)
599 free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
600 return ret;
601
602 rxalloc_err:
603 while (queue_num--)
604 free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
605 return ret;
606 }
607
tx_free_ring_skbufs(struct sxgbe_tx_queue * txqueue)608 static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue)
609 {
610 int dma_desc;
611 struct sxgbe_priv_data *priv = txqueue->priv_ptr;
612 int tx_rsize = priv->dma_tx_size;
613
614 for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) {
615 struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc;
616
617 if (txqueue->tx_skbuff_dma[dma_desc])
618 dma_unmap_single(priv->device,
619 txqueue->tx_skbuff_dma[dma_desc],
620 priv->hw->desc->get_tx_len(tdesc),
621 DMA_TO_DEVICE);
622
623 dev_kfree_skb_any(txqueue->tx_skbuff[dma_desc]);
624 txqueue->tx_skbuff[dma_desc] = NULL;
625 txqueue->tx_skbuff_dma[dma_desc] = 0;
626 }
627 }
628
629
dma_free_tx_skbufs(struct sxgbe_priv_data * priv)630 static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv)
631 {
632 int queue_num;
633
634 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
635 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
636 tx_free_ring_skbufs(tqueue);
637 }
638 }
639
free_dma_desc_resources(struct sxgbe_priv_data * priv)640 static void free_dma_desc_resources(struct sxgbe_priv_data *priv)
641 {
642 int queue_num;
643 int tx_rsize = priv->dma_tx_size;
644 int rx_rsize = priv->dma_rx_size;
645
646 /* Release the DMA TX buffers */
647 dma_free_tx_skbufs(priv);
648
649 /* Release the TX ring memory also */
650 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
651 free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
652 }
653
654 /* Release the RX ring memory also */
655 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
656 free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
657 }
658 }
659
txring_mem_alloc(struct sxgbe_priv_data * priv)660 static int txring_mem_alloc(struct sxgbe_priv_data *priv)
661 {
662 int queue_num;
663
664 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
665 priv->txq[queue_num] = devm_kmalloc(priv->device,
666 sizeof(struct sxgbe_tx_queue), GFP_KERNEL);
667 if (!priv->txq[queue_num])
668 return -ENOMEM;
669 }
670
671 return 0;
672 }
673
rxring_mem_alloc(struct sxgbe_priv_data * priv)674 static int rxring_mem_alloc(struct sxgbe_priv_data *priv)
675 {
676 int queue_num;
677
678 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
679 priv->rxq[queue_num] = devm_kmalloc(priv->device,
680 sizeof(struct sxgbe_rx_queue), GFP_KERNEL);
681 if (!priv->rxq[queue_num])
682 return -ENOMEM;
683 }
684
685 return 0;
686 }
687
688 /**
689 * sxgbe_mtl_operation_mode - HW MTL operation mode
690 * @priv: driver private structure
691 * Description: it sets the MTL operation mode: tx/rx MTL thresholds
692 * or Store-And-Forward capability.
693 */
sxgbe_mtl_operation_mode(struct sxgbe_priv_data * priv)694 static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv)
695 {
696 int queue_num;
697
698 /* TX/RX threshold control */
699 if (likely(priv->plat->force_sf_dma_mode)) {
700 /* set TC mode for TX QUEUES */
701 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
702 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
703 SXGBE_MTL_SFMODE);
704 priv->tx_tc = SXGBE_MTL_SFMODE;
705
706 /* set TC mode for RX QUEUES */
707 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
708 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
709 SXGBE_MTL_SFMODE);
710 priv->rx_tc = SXGBE_MTL_SFMODE;
711 } else if (unlikely(priv->plat->force_thresh_dma_mode)) {
712 /* set TC mode for TX QUEUES */
713 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
714 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
715 priv->tx_tc);
716 /* set TC mode for RX QUEUES */
717 SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
718 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
719 priv->rx_tc);
720 } else {
721 pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__);
722 }
723 }
724
725 /**
726 * sxgbe_tx_queue_clean:
727 * @priv: driver private structure
728 * Description: it reclaims resources after transmission completes.
729 */
sxgbe_tx_queue_clean(struct sxgbe_tx_queue * tqueue)730 static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue)
731 {
732 struct sxgbe_priv_data *priv = tqueue->priv_ptr;
733 unsigned int tx_rsize = priv->dma_tx_size;
734 struct netdev_queue *dev_txq;
735 u8 queue_no = tqueue->queue_no;
736
737 dev_txq = netdev_get_tx_queue(priv->dev, queue_no);
738
739 __netif_tx_lock(dev_txq, smp_processor_id());
740
741 priv->xstats.tx_clean++;
742 while (tqueue->dirty_tx != tqueue->cur_tx) {
743 unsigned int entry = tqueue->dirty_tx % tx_rsize;
744 struct sk_buff *skb = tqueue->tx_skbuff[entry];
745 struct sxgbe_tx_norm_desc *p;
746
747 p = tqueue->dma_tx + entry;
748
749 /* Check if the descriptor is owned by the DMA. */
750 if (priv->hw->desc->get_tx_owner(p))
751 break;
752
753 if (netif_msg_tx_done(priv))
754 pr_debug("%s: curr %d, dirty %d\n",
755 __func__, tqueue->cur_tx, tqueue->dirty_tx);
756
757 if (likely(tqueue->tx_skbuff_dma[entry])) {
758 dma_unmap_single(priv->device,
759 tqueue->tx_skbuff_dma[entry],
760 priv->hw->desc->get_tx_len(p),
761 DMA_TO_DEVICE);
762 tqueue->tx_skbuff_dma[entry] = 0;
763 }
764
765 if (likely(skb)) {
766 dev_kfree_skb(skb);
767 tqueue->tx_skbuff[entry] = NULL;
768 }
769
770 priv->hw->desc->release_tx_desc(p);
771
772 tqueue->dirty_tx++;
773 }
774
775 /* wake up queue */
776 if (unlikely(netif_tx_queue_stopped(dev_txq) &&
777 sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) {
778 if (netif_msg_tx_done(priv))
779 pr_debug("%s: restart transmit\n", __func__);
780 netif_tx_wake_queue(dev_txq);
781 }
782
783 __netif_tx_unlock(dev_txq);
784 }
785
786 /**
787 * sxgbe_tx_clean:
788 * @priv: driver private structure
789 * Description: it reclaims resources after transmission completes.
790 */
sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv)791 static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv)
792 {
793 u8 queue_num;
794
795 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
796 struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
797
798 sxgbe_tx_queue_clean(tqueue);
799 }
800
801 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
802 sxgbe_enable_eee_mode(priv);
803 mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
804 }
805 }
806
807 /**
808 * sxgbe_restart_tx_queue: irq tx error mng function
809 * @priv: driver private structure
810 * Description: it cleans the descriptors and restarts the transmission
811 * in case of errors.
812 */
sxgbe_restart_tx_queue(struct sxgbe_priv_data * priv,int queue_num)813 static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num)
814 {
815 struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num];
816 struct netdev_queue *dev_txq = netdev_get_tx_queue(priv->dev,
817 queue_num);
818
819 /* stop the queue */
820 netif_tx_stop_queue(dev_txq);
821
822 /* stop the tx dma */
823 priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num);
824
825 /* free the skbuffs of the ring */
826 tx_free_ring_skbufs(tx_ring);
827
828 /* initialise counters */
829 tx_ring->cur_tx = 0;
830 tx_ring->dirty_tx = 0;
831
832 /* start the tx dma */
833 priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num);
834
835 priv->dev->stats.tx_errors++;
836
837 /* wakeup the queue */
838 netif_tx_wake_queue(dev_txq);
839 }
840
841 /**
842 * sxgbe_reset_all_tx_queues: irq tx error mng function
843 * @priv: driver private structure
844 * Description: it cleans all the descriptors and
845 * restarts the transmission on all queues in case of errors.
846 */
sxgbe_reset_all_tx_queues(struct sxgbe_priv_data * priv)847 static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv)
848 {
849 int queue_num;
850
851 /* On TX timeout of net device, resetting of all queues
852 * may not be proper way, revisit this later if needed
853 */
854 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
855 sxgbe_restart_tx_queue(priv, queue_num);
856 }
857
858 /**
859 * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register.
860 * @priv: driver private structure
861 * Description:
862 * new GMAC chip generations have a new register to indicate the
863 * presence of the optional feature/functions.
864 * This can be also used to override the value passed through the
865 * platform and necessary for old MAC10/100 and GMAC chips.
866 */
sxgbe_get_hw_features(struct sxgbe_priv_data * const priv)867 static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv)
868 {
869 int rval = 0;
870 struct sxgbe_hw_features *features = &priv->hw_cap;
871
872 /* Read First Capability Register CAP[0] */
873 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0);
874 if (rval) {
875 features->pmt_remote_wake_up =
876 SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval);
877 features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval);
878 features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval);
879 features->tx_csum_offload =
880 SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval);
881 features->rx_csum_offload =
882 SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval);
883 features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval);
884 features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval);
885 features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval);
886 features->eee = SXGBE_HW_FEAT_EEE(rval);
887 }
888
889 /* Read First Capability Register CAP[1] */
890 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1);
891 if (rval) {
892 features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval);
893 features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
894 features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
895 features->dcb_enable = SXGBE_HW_FEAT_DCB(rval);
896 features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval);
897 features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval);
898 features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval);
899 features->rss_enable = SXGBE_HW_FEAT_RSS(rval);
900 features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval);
901 features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval);
902 }
903
904 /* Read First Capability Register CAP[2] */
905 rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2);
906 if (rval) {
907 features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval);
908 features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval);
909 features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval);
910 features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval);
911 features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval);
912 features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval);
913 }
914
915 return rval;
916 }
917
918 /**
919 * sxgbe_check_ether_addr: check if the MAC addr is valid
920 * @priv: driver private structure
921 * Description:
922 * it is to verify if the MAC address is valid, in case of failures it
923 * generates a random MAC address
924 */
sxgbe_check_ether_addr(struct sxgbe_priv_data * priv)925 static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv)
926 {
927 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
928 priv->hw->mac->get_umac_addr((void __iomem *)
929 priv->ioaddr,
930 priv->dev->dev_addr, 0);
931 if (!is_valid_ether_addr(priv->dev->dev_addr))
932 eth_hw_addr_random(priv->dev);
933 }
934 dev_info(priv->device, "device MAC address %pM\n",
935 priv->dev->dev_addr);
936 }
937
938 /**
939 * sxgbe_init_dma_engine: DMA init.
940 * @priv: driver private structure
941 * Description:
942 * It inits the DMA invoking the specific SXGBE callback.
943 * Some DMA parameters can be passed from the platform;
944 * in case of these are not passed a default is kept for the MAC or GMAC.
945 */
sxgbe_init_dma_engine(struct sxgbe_priv_data * priv)946 static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv)
947 {
948 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0;
949 int queue_num;
950
951 if (priv->plat->dma_cfg) {
952 pbl = priv->plat->dma_cfg->pbl;
953 fixed_burst = priv->plat->dma_cfg->fixed_burst;
954 burst_map = priv->plat->dma_cfg->burst_map;
955 }
956
957 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
958 priv->hw->dma->cha_init(priv->ioaddr, queue_num,
959 fixed_burst, pbl,
960 (priv->txq[queue_num])->dma_tx_phy,
961 (priv->rxq[queue_num])->dma_rx_phy,
962 priv->dma_tx_size, priv->dma_rx_size);
963
964 return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map);
965 }
966
967 /**
968 * sxgbe_init_mtl_engine: MTL init.
969 * @priv: driver private structure
970 * Description:
971 * It inits the MTL invoking the specific SXGBE callback.
972 */
sxgbe_init_mtl_engine(struct sxgbe_priv_data * priv)973 static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv)
974 {
975 int queue_num;
976
977 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
978 priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num,
979 priv->hw_cap.tx_mtl_qsize);
980 priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num);
981 }
982 }
983
984 /**
985 * sxgbe_disable_mtl_engine: MTL disable.
986 * @priv: driver private structure
987 * Description:
988 * It disables the MTL queues by invoking the specific SXGBE callback.
989 */
sxgbe_disable_mtl_engine(struct sxgbe_priv_data * priv)990 static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv)
991 {
992 int queue_num;
993
994 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
995 priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num);
996 }
997
998
999 /**
1000 * sxgbe_tx_timer: mitigation sw timer for tx.
1001 * @t: timer pointer
1002 * Description:
1003 * This is the timer handler to directly invoke the sxgbe_tx_clean.
1004 */
sxgbe_tx_timer(struct timer_list * t)1005 static void sxgbe_tx_timer(struct timer_list *t)
1006 {
1007 struct sxgbe_tx_queue *p = from_timer(p, t, txtimer);
1008 sxgbe_tx_queue_clean(p);
1009 }
1010
1011 /**
1012 * sxgbe_init_tx_coalesce: init tx mitigation options.
1013 * @priv: driver private structure
1014 * Description:
1015 * This inits the transmit coalesce parameters: i.e. timer rate,
1016 * timer handler and default threshold used for enabling the
1017 * interrupt on completion bit.
1018 */
sxgbe_tx_init_coalesce(struct sxgbe_priv_data * priv)1019 static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv)
1020 {
1021 u8 queue_num;
1022
1023 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1024 struct sxgbe_tx_queue *p = priv->txq[queue_num];
1025 p->tx_coal_frames = SXGBE_TX_FRAMES;
1026 p->tx_coal_timer = SXGBE_COAL_TX_TIMER;
1027 timer_setup(&p->txtimer, sxgbe_tx_timer, 0);
1028 p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer);
1029 add_timer(&p->txtimer);
1030 }
1031 }
1032
sxgbe_tx_del_timer(struct sxgbe_priv_data * priv)1033 static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv)
1034 {
1035 u8 queue_num;
1036
1037 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1038 struct sxgbe_tx_queue *p = priv->txq[queue_num];
1039 del_timer_sync(&p->txtimer);
1040 }
1041 }
1042
1043 /**
1044 * sxgbe_open - open entry point of the driver
1045 * @dev : pointer to the device structure.
1046 * Description:
1047 * This function is the open entry point of the driver.
1048 * Return value:
1049 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1050 * file on failure.
1051 */
sxgbe_open(struct net_device * dev)1052 static int sxgbe_open(struct net_device *dev)
1053 {
1054 struct sxgbe_priv_data *priv = netdev_priv(dev);
1055 int ret, queue_num;
1056
1057 clk_prepare_enable(priv->sxgbe_clk);
1058
1059 sxgbe_check_ether_addr(priv);
1060
1061 /* Init the phy */
1062 ret = sxgbe_init_phy(dev);
1063 if (ret) {
1064 netdev_err(dev, "%s: Cannot attach to PHY (error: %d)\n",
1065 __func__, ret);
1066 goto phy_error;
1067 }
1068
1069 /* Create and initialize the TX/RX descriptors chains. */
1070 priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE);
1071 priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE);
1072 priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE);
1073 priv->tx_tc = TC_DEFAULT;
1074 priv->rx_tc = TC_DEFAULT;
1075 init_dma_desc_rings(dev);
1076
1077 /* DMA initialization and SW reset */
1078 ret = sxgbe_init_dma_engine(priv);
1079 if (ret < 0) {
1080 netdev_err(dev, "%s: DMA initialization failed\n", __func__);
1081 goto init_error;
1082 }
1083
1084 /* MTL initialization */
1085 sxgbe_init_mtl_engine(priv);
1086
1087 /* Copy the MAC addr into the HW */
1088 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1089
1090 /* Initialize the MAC Core */
1091 priv->hw->mac->core_init(priv->ioaddr);
1092 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1093 priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num);
1094 }
1095
1096 /* Request the IRQ lines */
1097 ret = devm_request_irq(priv->device, priv->irq, sxgbe_common_interrupt,
1098 IRQF_SHARED, dev->name, dev);
1099 if (unlikely(ret < 0)) {
1100 netdev_err(dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n",
1101 __func__, priv->irq, ret);
1102 goto init_error;
1103 }
1104
1105 /* If the LPI irq is different from the mac irq
1106 * register a dedicated handler
1107 */
1108 if (priv->lpi_irq != dev->irq) {
1109 ret = devm_request_irq(priv->device, priv->lpi_irq,
1110 sxgbe_common_interrupt,
1111 IRQF_SHARED, dev->name, dev);
1112 if (unlikely(ret < 0)) {
1113 netdev_err(dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1114 __func__, priv->lpi_irq, ret);
1115 goto init_error;
1116 }
1117 }
1118
1119 /* Request TX DMA irq lines */
1120 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1121 ret = devm_request_irq(priv->device,
1122 (priv->txq[queue_num])->irq_no,
1123 sxgbe_tx_interrupt, 0,
1124 dev->name, priv->txq[queue_num]);
1125 if (unlikely(ret < 0)) {
1126 netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1127 __func__, priv->irq, ret);
1128 goto init_error;
1129 }
1130 }
1131
1132 /* Request RX DMA irq lines */
1133 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1134 ret = devm_request_irq(priv->device,
1135 (priv->rxq[queue_num])->irq_no,
1136 sxgbe_rx_interrupt, 0,
1137 dev->name, priv->rxq[queue_num]);
1138 if (unlikely(ret < 0)) {
1139 netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1140 __func__, priv->irq, ret);
1141 goto init_error;
1142 }
1143 }
1144
1145 /* Enable the MAC Rx/Tx */
1146 priv->hw->mac->enable_tx(priv->ioaddr, true);
1147 priv->hw->mac->enable_rx(priv->ioaddr, true);
1148
1149 /* Set the HW DMA mode and the COE */
1150 sxgbe_mtl_operation_mode(priv);
1151
1152 /* Extra statistics */
1153 memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats));
1154
1155 priv->xstats.tx_threshold = priv->tx_tc;
1156 priv->xstats.rx_threshold = priv->rx_tc;
1157
1158 /* Start the ball rolling... */
1159 netdev_dbg(dev, "DMA RX/TX processes started...\n");
1160 priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1161 priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1162
1163 if (dev->phydev)
1164 phy_start(dev->phydev);
1165
1166 /* initialise TX coalesce parameters */
1167 sxgbe_tx_init_coalesce(priv);
1168
1169 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1170 priv->rx_riwt = SXGBE_MAX_DMA_RIWT;
1171 priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT);
1172 }
1173
1174 priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER;
1175 priv->eee_enabled = sxgbe_eee_init(priv);
1176
1177 napi_enable(&priv->napi);
1178 netif_start_queue(dev);
1179
1180 return 0;
1181
1182 init_error:
1183 free_dma_desc_resources(priv);
1184 if (dev->phydev)
1185 phy_disconnect(dev->phydev);
1186 phy_error:
1187 clk_disable_unprepare(priv->sxgbe_clk);
1188
1189 return ret;
1190 }
1191
1192 /**
1193 * sxgbe_release - close entry point of the driver
1194 * @dev : device pointer.
1195 * Description:
1196 * This is the stop entry point of the driver.
1197 */
sxgbe_release(struct net_device * dev)1198 static int sxgbe_release(struct net_device *dev)
1199 {
1200 struct sxgbe_priv_data *priv = netdev_priv(dev);
1201
1202 if (priv->eee_enabled)
1203 del_timer_sync(&priv->eee_ctrl_timer);
1204
1205 /* Stop and disconnect the PHY */
1206 if (dev->phydev) {
1207 phy_stop(dev->phydev);
1208 phy_disconnect(dev->phydev);
1209 }
1210
1211 netif_tx_stop_all_queues(dev);
1212
1213 napi_disable(&priv->napi);
1214
1215 /* delete TX timers */
1216 sxgbe_tx_del_timer(priv);
1217
1218 /* Stop TX/RX DMA and clear the descriptors */
1219 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1220 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1221
1222 /* disable MTL queue */
1223 sxgbe_disable_mtl_engine(priv);
1224
1225 /* Release and free the Rx/Tx resources */
1226 free_dma_desc_resources(priv);
1227
1228 /* Disable the MAC Rx/Tx */
1229 priv->hw->mac->enable_tx(priv->ioaddr, false);
1230 priv->hw->mac->enable_rx(priv->ioaddr, false);
1231
1232 clk_disable_unprepare(priv->sxgbe_clk);
1233
1234 return 0;
1235 }
1236 /* Prepare first Tx descriptor for doing TSO operation */
sxgbe_tso_prepare(struct sxgbe_priv_data * priv,struct sxgbe_tx_norm_desc * first_desc,struct sk_buff * skb)1237 static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv,
1238 struct sxgbe_tx_norm_desc *first_desc,
1239 struct sk_buff *skb)
1240 {
1241 unsigned int total_hdr_len, tcp_hdr_len;
1242
1243 /* Write first Tx descriptor with appropriate value */
1244 tcp_hdr_len = tcp_hdrlen(skb);
1245 total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len;
1246
1247 first_desc->tdes01 = dma_map_single(priv->device, skb->data,
1248 total_hdr_len, DMA_TO_DEVICE);
1249 if (dma_mapping_error(priv->device, first_desc->tdes01))
1250 pr_err("%s: TX dma mapping failed!!\n", __func__);
1251
1252 first_desc->tdes23.tx_rd_des23.first_desc = 1;
1253 priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len,
1254 tcp_hdr_len,
1255 skb->len - total_hdr_len);
1256 }
1257
1258 /**
1259 * sxgbe_xmit: Tx entry point of the driver
1260 * @skb : the socket buffer
1261 * @dev : device pointer
1262 * Description : this is the tx entry point of the driver.
1263 * It programs the chain or the ring and supports oversized frames
1264 * and SG feature.
1265 */
sxgbe_xmit(struct sk_buff * skb,struct net_device * dev)1266 static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev)
1267 {
1268 unsigned int entry, frag_num;
1269 int cksum_flag = 0;
1270 struct netdev_queue *dev_txq;
1271 unsigned txq_index = skb_get_queue_mapping(skb);
1272 struct sxgbe_priv_data *priv = netdev_priv(dev);
1273 unsigned int tx_rsize = priv->dma_tx_size;
1274 struct sxgbe_tx_queue *tqueue = priv->txq[txq_index];
1275 struct sxgbe_tx_norm_desc *tx_desc, *first_desc;
1276 struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL;
1277 int nr_frags = skb_shinfo(skb)->nr_frags;
1278 int no_pagedlen = skb_headlen(skb);
1279 int is_jumbo = 0;
1280 u16 cur_mss = skb_shinfo(skb)->gso_size;
1281 u32 ctxt_desc_req = 0;
1282
1283 /* get the TX queue handle */
1284 dev_txq = netdev_get_tx_queue(dev, txq_index);
1285
1286 if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss))
1287 ctxt_desc_req = 1;
1288
1289 if (unlikely(skb_vlan_tag_present(skb) ||
1290 ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1291 tqueue->hwts_tx_en)))
1292 ctxt_desc_req = 1;
1293
1294 if (priv->tx_path_in_lpi_mode)
1295 sxgbe_disable_eee_mode(priv);
1296
1297 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) {
1298 if (!netif_tx_queue_stopped(dev_txq)) {
1299 netif_tx_stop_queue(dev_txq);
1300 netdev_err(dev, "%s: Tx Ring is full when %d queue is awake\n",
1301 __func__, txq_index);
1302 }
1303 return NETDEV_TX_BUSY;
1304 }
1305
1306 entry = tqueue->cur_tx % tx_rsize;
1307 tx_desc = tqueue->dma_tx + entry;
1308
1309 first_desc = tx_desc;
1310 if (ctxt_desc_req)
1311 ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc;
1312
1313 /* save the skb address */
1314 tqueue->tx_skbuff[entry] = skb;
1315
1316 if (!is_jumbo) {
1317 if (likely(skb_is_gso(skb))) {
1318 /* TSO support */
1319 if (unlikely(tqueue->prev_mss != cur_mss)) {
1320 priv->hw->desc->tx_ctxt_desc_set_mss(
1321 ctxt_desc, cur_mss);
1322 priv->hw->desc->tx_ctxt_desc_set_tcmssv(
1323 ctxt_desc);
1324 priv->hw->desc->tx_ctxt_desc_reset_ostc(
1325 ctxt_desc);
1326 priv->hw->desc->tx_ctxt_desc_set_ctxt(
1327 ctxt_desc);
1328 priv->hw->desc->tx_ctxt_desc_set_owner(
1329 ctxt_desc);
1330
1331 entry = (++tqueue->cur_tx) % tx_rsize;
1332 first_desc = tqueue->dma_tx + entry;
1333
1334 tqueue->prev_mss = cur_mss;
1335 }
1336 sxgbe_tso_prepare(priv, first_desc, skb);
1337 } else {
1338 tx_desc->tdes01 = dma_map_single(priv->device,
1339 skb->data, no_pagedlen, DMA_TO_DEVICE);
1340 if (dma_mapping_error(priv->device, tx_desc->tdes01))
1341 netdev_err(dev, "%s: TX dma mapping failed!!\n",
1342 __func__);
1343
1344 priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen,
1345 no_pagedlen, cksum_flag);
1346 }
1347 }
1348
1349 for (frag_num = 0; frag_num < nr_frags; frag_num++) {
1350 const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num];
1351 int len = skb_frag_size(frag);
1352
1353 entry = (++tqueue->cur_tx) % tx_rsize;
1354 tx_desc = tqueue->dma_tx + entry;
1355 tx_desc->tdes01 = skb_frag_dma_map(priv->device, frag, 0, len,
1356 DMA_TO_DEVICE);
1357
1358 tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01;
1359 tqueue->tx_skbuff[entry] = NULL;
1360
1361 /* prepare the descriptor */
1362 priv->hw->desc->prepare_tx_desc(tx_desc, 0, len,
1363 len, cksum_flag);
1364 /* memory barrier to flush descriptor */
1365 wmb();
1366
1367 /* set the owner */
1368 priv->hw->desc->set_tx_owner(tx_desc);
1369 }
1370
1371 /* close the descriptors */
1372 priv->hw->desc->close_tx_desc(tx_desc);
1373
1374 /* memory barrier to flush descriptor */
1375 wmb();
1376
1377 tqueue->tx_count_frames += nr_frags + 1;
1378 if (tqueue->tx_count_frames > tqueue->tx_coal_frames) {
1379 priv->hw->desc->clear_tx_ic(tx_desc);
1380 priv->xstats.tx_reset_ic_bit++;
1381 mod_timer(&tqueue->txtimer,
1382 SXGBE_COAL_TIMER(tqueue->tx_coal_timer));
1383 } else {
1384 tqueue->tx_count_frames = 0;
1385 }
1386
1387 /* set owner for first desc */
1388 priv->hw->desc->set_tx_owner(first_desc);
1389
1390 /* memory barrier to flush descriptor */
1391 wmb();
1392
1393 tqueue->cur_tx++;
1394
1395 /* display current ring */
1396 netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n",
1397 __func__, tqueue->cur_tx % tx_rsize,
1398 tqueue->dirty_tx % tx_rsize, entry,
1399 first_desc, nr_frags);
1400
1401 if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) {
1402 netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n",
1403 __func__);
1404 netif_tx_stop_queue(dev_txq);
1405 }
1406
1407 dev->stats.tx_bytes += skb->len;
1408
1409 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1410 tqueue->hwts_tx_en)) {
1411 /* declare that device is doing timestamping */
1412 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1413 priv->hw->desc->tx_enable_tstamp(first_desc);
1414 }
1415
1416 skb_tx_timestamp(skb);
1417
1418 priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index);
1419
1420 return NETDEV_TX_OK;
1421 }
1422
1423 /**
1424 * sxgbe_rx_refill: refill used skb preallocated buffers
1425 * @priv: driver private structure
1426 * Description : this is to reallocate the skb for the reception process
1427 * that is based on zero-copy.
1428 */
sxgbe_rx_refill(struct sxgbe_priv_data * priv)1429 static void sxgbe_rx_refill(struct sxgbe_priv_data *priv)
1430 {
1431 unsigned int rxsize = priv->dma_rx_size;
1432 int bfsize = priv->dma_buf_sz;
1433 u8 qnum = priv->cur_rx_qnum;
1434
1435 for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0;
1436 priv->rxq[qnum]->dirty_rx++) {
1437 unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize;
1438 struct sxgbe_rx_norm_desc *p;
1439
1440 p = priv->rxq[qnum]->dma_rx + entry;
1441
1442 if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) {
1443 struct sk_buff *skb;
1444
1445 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1446
1447 if (unlikely(skb == NULL))
1448 break;
1449
1450 priv->rxq[qnum]->rx_skbuff[entry] = skb;
1451 priv->rxq[qnum]->rx_skbuff_dma[entry] =
1452 dma_map_single(priv->device, skb->data, bfsize,
1453 DMA_FROM_DEVICE);
1454
1455 p->rdes23.rx_rd_des23.buf2_addr =
1456 priv->rxq[qnum]->rx_skbuff_dma[entry];
1457 }
1458
1459 /* Added memory barrier for RX descriptor modification */
1460 wmb();
1461 priv->hw->desc->set_rx_owner(p);
1462 priv->hw->desc->set_rx_int_on_com(p);
1463 /* Added memory barrier for RX descriptor modification */
1464 wmb();
1465 }
1466 }
1467
1468 /**
1469 * sxgbe_rx: receive the frames from the remote host
1470 * @priv: driver private structure
1471 * @limit: napi bugget.
1472 * Description : this the function called by the napi poll method.
1473 * It gets all the frames inside the ring.
1474 */
sxgbe_rx(struct sxgbe_priv_data * priv,int limit)1475 static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit)
1476 {
1477 u8 qnum = priv->cur_rx_qnum;
1478 unsigned int rxsize = priv->dma_rx_size;
1479 unsigned int entry = priv->rxq[qnum]->cur_rx;
1480 unsigned int next_entry = 0;
1481 unsigned int count = 0;
1482 int checksum;
1483 int status;
1484
1485 while (count < limit) {
1486 struct sxgbe_rx_norm_desc *p;
1487 struct sk_buff *skb;
1488 int frame_len;
1489
1490 p = priv->rxq[qnum]->dma_rx + entry;
1491
1492 if (priv->hw->desc->get_rx_owner(p))
1493 break;
1494
1495 count++;
1496
1497 next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize;
1498 prefetch(priv->rxq[qnum]->dma_rx + next_entry);
1499
1500 /* Read the status of the incoming frame and also get checksum
1501 * value based on whether it is enabled in SXGBE hardware or
1502 * not.
1503 */
1504 status = priv->hw->desc->rx_wbstatus(p, &priv->xstats,
1505 &checksum);
1506 if (unlikely(status < 0)) {
1507 entry = next_entry;
1508 continue;
1509 }
1510 if (unlikely(!priv->rxcsum_insertion))
1511 checksum = CHECKSUM_NONE;
1512
1513 skb = priv->rxq[qnum]->rx_skbuff[entry];
1514
1515 if (unlikely(!skb))
1516 netdev_err(priv->dev, "rx descriptor is not consistent\n");
1517
1518 prefetch(skb->data - NET_IP_ALIGN);
1519 priv->rxq[qnum]->rx_skbuff[entry] = NULL;
1520
1521 frame_len = priv->hw->desc->get_rx_frame_len(p);
1522
1523 skb_put(skb, frame_len);
1524
1525 skb->ip_summed = checksum;
1526 if (checksum == CHECKSUM_NONE)
1527 netif_receive_skb(skb);
1528 else
1529 napi_gro_receive(&priv->napi, skb);
1530
1531 entry = next_entry;
1532 }
1533
1534 sxgbe_rx_refill(priv);
1535
1536 return count;
1537 }
1538
1539 /**
1540 * sxgbe_poll - sxgbe poll method (NAPI)
1541 * @napi : pointer to the napi structure.
1542 * @budget : maximum number of packets that the current CPU can receive from
1543 * all interfaces.
1544 * Description :
1545 * To look at the incoming frames and clear the tx resources.
1546 */
sxgbe_poll(struct napi_struct * napi,int budget)1547 static int sxgbe_poll(struct napi_struct *napi, int budget)
1548 {
1549 struct sxgbe_priv_data *priv = container_of(napi,
1550 struct sxgbe_priv_data, napi);
1551 int work_done = 0;
1552 u8 qnum = priv->cur_rx_qnum;
1553
1554 priv->xstats.napi_poll++;
1555 /* first, clean the tx queues */
1556 sxgbe_tx_all_clean(priv);
1557
1558 work_done = sxgbe_rx(priv, budget);
1559 if (work_done < budget) {
1560 napi_complete_done(napi, work_done);
1561 priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum);
1562 }
1563
1564 return work_done;
1565 }
1566
1567 /**
1568 * sxgbe_tx_timeout
1569 * @dev : Pointer to net device structure
1570 * Description: this function is called when a packet transmission fails to
1571 * complete within a reasonable time. The driver will mark the error in the
1572 * netdev structure and arrange for the device to be reset to a sane state
1573 * in order to transmit a new packet.
1574 */
sxgbe_tx_timeout(struct net_device * dev)1575 static void sxgbe_tx_timeout(struct net_device *dev)
1576 {
1577 struct sxgbe_priv_data *priv = netdev_priv(dev);
1578
1579 sxgbe_reset_all_tx_queues(priv);
1580 }
1581
1582 /**
1583 * sxgbe_common_interrupt - main ISR
1584 * @irq: interrupt number.
1585 * @dev_id: to pass the net device pointer.
1586 * Description: this is the main driver interrupt service routine.
1587 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
1588 * interrupts.
1589 */
sxgbe_common_interrupt(int irq,void * dev_id)1590 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id)
1591 {
1592 struct net_device *netdev = (struct net_device *)dev_id;
1593 struct sxgbe_priv_data *priv = netdev_priv(netdev);
1594 int status;
1595
1596 status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats);
1597 /* For LPI we need to save the tx status */
1598 if (status & TX_ENTRY_LPI_MODE) {
1599 priv->xstats.tx_lpi_entry_n++;
1600 priv->tx_path_in_lpi_mode = true;
1601 }
1602 if (status & TX_EXIT_LPI_MODE) {
1603 priv->xstats.tx_lpi_exit_n++;
1604 priv->tx_path_in_lpi_mode = false;
1605 }
1606 if (status & RX_ENTRY_LPI_MODE)
1607 priv->xstats.rx_lpi_entry_n++;
1608 if (status & RX_EXIT_LPI_MODE)
1609 priv->xstats.rx_lpi_exit_n++;
1610
1611 return IRQ_HANDLED;
1612 }
1613
1614 /**
1615 * sxgbe_tx_interrupt - TX DMA ISR
1616 * @irq: interrupt number.
1617 * @dev_id: to pass the net device pointer.
1618 * Description: this is the tx dma interrupt service routine.
1619 */
sxgbe_tx_interrupt(int irq,void * dev_id)1620 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id)
1621 {
1622 int status;
1623 struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id;
1624 struct sxgbe_priv_data *priv = txq->priv_ptr;
1625
1626 /* get the channel status */
1627 status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no,
1628 &priv->xstats);
1629 /* check for normal path */
1630 if (likely((status & handle_tx)))
1631 napi_schedule(&priv->napi);
1632
1633 /* check for unrecoverable error */
1634 if (unlikely((status & tx_hard_error)))
1635 sxgbe_restart_tx_queue(priv, txq->queue_no);
1636
1637 /* check for TC configuration change */
1638 if (unlikely((status & tx_bump_tc) &&
1639 (priv->tx_tc != SXGBE_MTL_SFMODE) &&
1640 (priv->tx_tc < 512))) {
1641 /* step of TX TC is 32 till 128, otherwise 64 */
1642 priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64;
1643 priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr,
1644 txq->queue_no, priv->tx_tc);
1645 priv->xstats.tx_threshold = priv->tx_tc;
1646 }
1647
1648 return IRQ_HANDLED;
1649 }
1650
1651 /**
1652 * sxgbe_rx_interrupt - RX DMA ISR
1653 * @irq: interrupt number.
1654 * @dev_id: to pass the net device pointer.
1655 * Description: this is the rx dma interrupt service routine.
1656 */
sxgbe_rx_interrupt(int irq,void * dev_id)1657 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id)
1658 {
1659 int status;
1660 struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id;
1661 struct sxgbe_priv_data *priv = rxq->priv_ptr;
1662
1663 /* get the channel status */
1664 status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no,
1665 &priv->xstats);
1666
1667 if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) {
1668 priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no);
1669 __napi_schedule(&priv->napi);
1670 }
1671
1672 /* check for TC configuration change */
1673 if (unlikely((status & rx_bump_tc) &&
1674 (priv->rx_tc != SXGBE_MTL_SFMODE) &&
1675 (priv->rx_tc < 128))) {
1676 /* step of TC is 32 */
1677 priv->rx_tc += 32;
1678 priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr,
1679 rxq->queue_no, priv->rx_tc);
1680 priv->xstats.rx_threshold = priv->rx_tc;
1681 }
1682
1683 return IRQ_HANDLED;
1684 }
1685
sxgbe_get_stat64(void __iomem * ioaddr,int reg_lo,int reg_hi)1686 static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi)
1687 {
1688 u64 val = readl(ioaddr + reg_lo);
1689
1690 val |= ((u64)readl(ioaddr + reg_hi)) << 32;
1691
1692 return val;
1693 }
1694
1695
1696 /* sxgbe_get_stats64 - entry point to see statistical information of device
1697 * @dev : device pointer.
1698 * @stats : pointer to hold all the statistical information of device.
1699 * Description:
1700 * This function is a driver entry point whenever ifconfig command gets
1701 * executed to see device statistics. Statistics are number of
1702 * bytes sent or received, errors occurred etc.
1703 */
sxgbe_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)1704 static void sxgbe_get_stats64(struct net_device *dev,
1705 struct rtnl_link_stats64 *stats)
1706 {
1707 struct sxgbe_priv_data *priv = netdev_priv(dev);
1708 void __iomem *ioaddr = priv->ioaddr;
1709 u64 count;
1710
1711 spin_lock(&priv->stats_lock);
1712 /* Freeze the counter registers before reading value otherwise it may
1713 * get updated by hardware while we are reading them
1714 */
1715 writel(SXGBE_MMC_CTRL_CNT_FRZ, ioaddr + SXGBE_MMC_CTL_REG);
1716
1717 stats->rx_bytes = sxgbe_get_stat64(ioaddr,
1718 SXGBE_MMC_RXOCTETLO_GCNT_REG,
1719 SXGBE_MMC_RXOCTETHI_GCNT_REG);
1720
1721 stats->rx_packets = sxgbe_get_stat64(ioaddr,
1722 SXGBE_MMC_RXFRAMELO_GBCNT_REG,
1723 SXGBE_MMC_RXFRAMEHI_GBCNT_REG);
1724
1725 stats->multicast = sxgbe_get_stat64(ioaddr,
1726 SXGBE_MMC_RXMULTILO_GCNT_REG,
1727 SXGBE_MMC_RXMULTIHI_GCNT_REG);
1728
1729 stats->rx_crc_errors = sxgbe_get_stat64(ioaddr,
1730 SXGBE_MMC_RXCRCERRLO_REG,
1731 SXGBE_MMC_RXCRCERRHI_REG);
1732
1733 stats->rx_length_errors = sxgbe_get_stat64(ioaddr,
1734 SXGBE_MMC_RXLENERRLO_REG,
1735 SXGBE_MMC_RXLENERRHI_REG);
1736
1737 stats->rx_missed_errors = sxgbe_get_stat64(ioaddr,
1738 SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG,
1739 SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG);
1740
1741 stats->tx_bytes = sxgbe_get_stat64(ioaddr,
1742 SXGBE_MMC_TXOCTETLO_GCNT_REG,
1743 SXGBE_MMC_TXOCTETHI_GCNT_REG);
1744
1745 count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG,
1746 SXGBE_MMC_TXFRAMEHI_GBCNT_REG);
1747
1748 stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG,
1749 SXGBE_MMC_TXFRAMEHI_GCNT_REG);
1750 stats->tx_errors = count - stats->tx_errors;
1751 stats->tx_packets = count;
1752 stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG,
1753 SXGBE_MMC_TXUFLWHI_GBCNT_REG);
1754 writel(0, ioaddr + SXGBE_MMC_CTL_REG);
1755 spin_unlock(&priv->stats_lock);
1756 }
1757
1758 /* sxgbe_set_features - entry point to set offload features of the device.
1759 * @dev : device pointer.
1760 * @features : features which are required to be set.
1761 * Description:
1762 * This function is a driver entry point and called by Linux kernel whenever
1763 * any device features are set or reset by user.
1764 * Return value:
1765 * This function returns 0 after setting or resetting device features.
1766 */
sxgbe_set_features(struct net_device * dev,netdev_features_t features)1767 static int sxgbe_set_features(struct net_device *dev,
1768 netdev_features_t features)
1769 {
1770 struct sxgbe_priv_data *priv = netdev_priv(dev);
1771 netdev_features_t changed = dev->features ^ features;
1772
1773 if (changed & NETIF_F_RXCSUM) {
1774 if (features & NETIF_F_RXCSUM) {
1775 priv->hw->mac->enable_rx_csum(priv->ioaddr);
1776 priv->rxcsum_insertion = true;
1777 } else {
1778 priv->hw->mac->disable_rx_csum(priv->ioaddr);
1779 priv->rxcsum_insertion = false;
1780 }
1781 }
1782
1783 return 0;
1784 }
1785
1786 /* sxgbe_change_mtu - entry point to change MTU size for the device.
1787 * @dev : device pointer.
1788 * @new_mtu : the new MTU size for the device.
1789 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1790 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1791 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1792 * Return value:
1793 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1794 * file on failure.
1795 */
sxgbe_change_mtu(struct net_device * dev,int new_mtu)1796 static int sxgbe_change_mtu(struct net_device *dev, int new_mtu)
1797 {
1798 dev->mtu = new_mtu;
1799
1800 if (!netif_running(dev))
1801 return 0;
1802
1803 /* Recevice ring buffer size is needed to be set based on MTU. If MTU is
1804 * changed then reinitilisation of the receive ring buffers need to be
1805 * done. Hence bring interface down and bring interface back up
1806 */
1807 sxgbe_release(dev);
1808 return sxgbe_open(dev);
1809 }
1810
sxgbe_set_umac_addr(void __iomem * ioaddr,unsigned char * addr,unsigned int reg_n)1811 static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr,
1812 unsigned int reg_n)
1813 {
1814 unsigned long data;
1815
1816 data = (addr[5] << 8) | addr[4];
1817 /* For MAC Addr registers se have to set the Address Enable (AE)
1818 * bit that has no effect on the High Reg 0 where the bit 31 (MO)
1819 * is RO.
1820 */
1821 writel(data | SXGBE_HI_REG_AE, ioaddr + SXGBE_ADDR_HIGH(reg_n));
1822 data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
1823 writel(data, ioaddr + SXGBE_ADDR_LOW(reg_n));
1824 }
1825
1826 /**
1827 * sxgbe_set_rx_mode - entry point for setting different receive mode of
1828 * a device. unicast, multicast addressing
1829 * @dev : pointer to the device structure
1830 * Description:
1831 * This function is a driver entry point which gets called by the kernel
1832 * whenever different receive mode like unicast, multicast and promiscuous
1833 * must be enabled/disabled.
1834 * Return value:
1835 * void.
1836 */
sxgbe_set_rx_mode(struct net_device * dev)1837 static void sxgbe_set_rx_mode(struct net_device *dev)
1838 {
1839 struct sxgbe_priv_data *priv = netdev_priv(dev);
1840 void __iomem *ioaddr = (void __iomem *)priv->ioaddr;
1841 unsigned int value = 0;
1842 u32 mc_filter[2];
1843 struct netdev_hw_addr *ha;
1844 int reg = 1;
1845
1846 netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n",
1847 __func__, netdev_mc_count(dev), netdev_uc_count(dev));
1848
1849 if (dev->flags & IFF_PROMISC) {
1850 value = SXGBE_FRAME_FILTER_PR;
1851
1852 } else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) ||
1853 (dev->flags & IFF_ALLMULTI)) {
1854 value = SXGBE_FRAME_FILTER_PM; /* pass all multi */
1855 writel(0xffffffff, ioaddr + SXGBE_HASH_HIGH);
1856 writel(0xffffffff, ioaddr + SXGBE_HASH_LOW);
1857
1858 } else if (!netdev_mc_empty(dev)) {
1859 /* Hash filter for multicast */
1860 value = SXGBE_FRAME_FILTER_HMC;
1861
1862 memset(mc_filter, 0, sizeof(mc_filter));
1863 netdev_for_each_mc_addr(ha, dev) {
1864 /* The upper 6 bits of the calculated CRC are used to
1865 * index the contens of the hash table
1866 */
1867 int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26;
1868
1869 /* The most significant bit determines the register to
1870 * use (H/L) while the other 5 bits determine the bit
1871 * within the register.
1872 */
1873 mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1874 }
1875 writel(mc_filter[0], ioaddr + SXGBE_HASH_LOW);
1876 writel(mc_filter[1], ioaddr + SXGBE_HASH_HIGH);
1877 }
1878
1879 /* Handle multiple unicast addresses (perfect filtering) */
1880 if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES)
1881 /* Switch to promiscuous mode if more than 16 addrs
1882 * are required
1883 */
1884 value |= SXGBE_FRAME_FILTER_PR;
1885 else {
1886 netdev_for_each_uc_addr(ha, dev) {
1887 sxgbe_set_umac_addr(ioaddr, ha->addr, reg);
1888 reg++;
1889 }
1890 }
1891 #ifdef FRAME_FILTER_DEBUG
1892 /* Enable Receive all mode (to debug filtering_fail errors) */
1893 value |= SXGBE_FRAME_FILTER_RA;
1894 #endif
1895 writel(value, ioaddr + SXGBE_FRAME_FILTER);
1896
1897 netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n",
1898 readl(ioaddr + SXGBE_FRAME_FILTER),
1899 readl(ioaddr + SXGBE_HASH_HIGH),
1900 readl(ioaddr + SXGBE_HASH_LOW));
1901 }
1902
1903 #ifdef CONFIG_NET_POLL_CONTROLLER
1904 /**
1905 * sxgbe_poll_controller - entry point for polling receive by device
1906 * @dev : pointer to the device structure
1907 * Description:
1908 * This function is used by NETCONSOLE and other diagnostic tools
1909 * to allow network I/O with interrupts disabled.
1910 * Return value:
1911 * Void.
1912 */
sxgbe_poll_controller(struct net_device * dev)1913 static void sxgbe_poll_controller(struct net_device *dev)
1914 {
1915 struct sxgbe_priv_data *priv = netdev_priv(dev);
1916
1917 disable_irq(priv->irq);
1918 sxgbe_rx_interrupt(priv->irq, dev);
1919 enable_irq(priv->irq);
1920 }
1921 #endif
1922
1923 /* sxgbe_ioctl - Entry point for the Ioctl
1924 * @dev: Device pointer.
1925 * @rq: An IOCTL specefic structure, that can contain a pointer to
1926 * a proprietary structure used to pass information to the driver.
1927 * @cmd: IOCTL command
1928 * Description:
1929 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
1930 */
sxgbe_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1931 static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1932 {
1933 int ret = -EOPNOTSUPP;
1934
1935 if (!netif_running(dev))
1936 return -EINVAL;
1937
1938 switch (cmd) {
1939 case SIOCGMIIPHY:
1940 case SIOCGMIIREG:
1941 case SIOCSMIIREG:
1942 if (!dev->phydev)
1943 return -EINVAL;
1944 ret = phy_mii_ioctl(dev->phydev, rq, cmd);
1945 break;
1946 default:
1947 break;
1948 }
1949
1950 return ret;
1951 }
1952
1953 static const struct net_device_ops sxgbe_netdev_ops = {
1954 .ndo_open = sxgbe_open,
1955 .ndo_start_xmit = sxgbe_xmit,
1956 .ndo_stop = sxgbe_release,
1957 .ndo_get_stats64 = sxgbe_get_stats64,
1958 .ndo_change_mtu = sxgbe_change_mtu,
1959 .ndo_set_features = sxgbe_set_features,
1960 .ndo_set_rx_mode = sxgbe_set_rx_mode,
1961 .ndo_tx_timeout = sxgbe_tx_timeout,
1962 .ndo_do_ioctl = sxgbe_ioctl,
1963 #ifdef CONFIG_NET_POLL_CONTROLLER
1964 .ndo_poll_controller = sxgbe_poll_controller,
1965 #endif
1966 .ndo_set_mac_address = eth_mac_addr,
1967 };
1968
1969 /* Get the hardware ops */
sxgbe_get_ops(struct sxgbe_ops * const ops_ptr)1970 static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr)
1971 {
1972 ops_ptr->mac = sxgbe_get_core_ops();
1973 ops_ptr->desc = sxgbe_get_desc_ops();
1974 ops_ptr->dma = sxgbe_get_dma_ops();
1975 ops_ptr->mtl = sxgbe_get_mtl_ops();
1976
1977 /* set the MDIO communication Address/Data regisers */
1978 ops_ptr->mii.addr = SXGBE_MDIO_SCMD_ADD_REG;
1979 ops_ptr->mii.data = SXGBE_MDIO_SCMD_DATA_REG;
1980
1981 /* Assigning the default link settings
1982 * no SXGBE defined default values to be set in registers,
1983 * so assigning as 0 for port and duplex
1984 */
1985 ops_ptr->link.port = 0;
1986 ops_ptr->link.duplex = 0;
1987 ops_ptr->link.speed = SXGBE_SPEED_10G;
1988 }
1989
1990 /**
1991 * sxgbe_hw_init - Init the GMAC device
1992 * @priv: driver private structure
1993 * Description: this function checks the HW capability
1994 * (if supported) and sets the driver's features.
1995 */
sxgbe_hw_init(struct sxgbe_priv_data * const priv)1996 static int sxgbe_hw_init(struct sxgbe_priv_data * const priv)
1997 {
1998 u32 ctrl_ids;
1999
2000 priv->hw = kmalloc(sizeof(*priv->hw), GFP_KERNEL);
2001 if(!priv->hw)
2002 return -ENOMEM;
2003
2004 /* get the hardware ops */
2005 sxgbe_get_ops(priv->hw);
2006
2007 /* get the controller id */
2008 ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr);
2009 priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16;
2010 priv->hw->ctrl_id = (ctrl_ids & 0x000000ff);
2011 pr_info("user ID: 0x%x, Controller ID: 0x%x\n",
2012 priv->hw->ctrl_uid, priv->hw->ctrl_id);
2013
2014 /* get the H/W features */
2015 if (!sxgbe_get_hw_features(priv))
2016 pr_info("Hardware features not found\n");
2017
2018 if (priv->hw_cap.tx_csum_offload)
2019 pr_info("TX Checksum offload supported\n");
2020
2021 if (priv->hw_cap.rx_csum_offload)
2022 pr_info("RX Checksum offload supported\n");
2023
2024 return 0;
2025 }
2026
sxgbe_sw_reset(void __iomem * addr)2027 static int sxgbe_sw_reset(void __iomem *addr)
2028 {
2029 int retry_count = 10;
2030
2031 writel(SXGBE_DMA_SOFT_RESET, addr + SXGBE_DMA_MODE_REG);
2032 while (retry_count--) {
2033 if (!(readl(addr + SXGBE_DMA_MODE_REG) &
2034 SXGBE_DMA_SOFT_RESET))
2035 break;
2036 mdelay(10);
2037 }
2038
2039 if (retry_count < 0)
2040 return -EBUSY;
2041
2042 return 0;
2043 }
2044
2045 /**
2046 * sxgbe_drv_probe
2047 * @device: device pointer
2048 * @plat_dat: platform data pointer
2049 * @addr: iobase memory address
2050 * Description: this is the main probe function used to
2051 * call the alloc_etherdev, allocate the priv structure.
2052 */
sxgbe_drv_probe(struct device * device,struct sxgbe_plat_data * plat_dat,void __iomem * addr)2053 struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device,
2054 struct sxgbe_plat_data *plat_dat,
2055 void __iomem *addr)
2056 {
2057 struct sxgbe_priv_data *priv;
2058 struct net_device *ndev;
2059 int ret;
2060 u8 queue_num;
2061
2062 ndev = alloc_etherdev_mqs(sizeof(struct sxgbe_priv_data),
2063 SXGBE_TX_QUEUES, SXGBE_RX_QUEUES);
2064 if (!ndev)
2065 return NULL;
2066
2067 SET_NETDEV_DEV(ndev, device);
2068
2069 priv = netdev_priv(ndev);
2070 priv->device = device;
2071 priv->dev = ndev;
2072
2073 sxgbe_set_ethtool_ops(ndev);
2074 priv->plat = plat_dat;
2075 priv->ioaddr = addr;
2076
2077 ret = sxgbe_sw_reset(priv->ioaddr);
2078 if (ret)
2079 goto error_free_netdev;
2080
2081 /* Verify driver arguments */
2082 sxgbe_verify_args();
2083
2084 /* Init MAC and get the capabilities */
2085 ret = sxgbe_hw_init(priv);
2086 if (ret)
2087 goto error_free_netdev;
2088
2089 /* allocate memory resources for Descriptor rings */
2090 ret = txring_mem_alloc(priv);
2091 if (ret)
2092 goto error_free_hw;
2093
2094 ret = rxring_mem_alloc(priv);
2095 if (ret)
2096 goto error_free_hw;
2097
2098 ndev->netdev_ops = &sxgbe_netdev_ops;
2099
2100 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2101 NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 |
2102 NETIF_F_GRO;
2103 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2104 ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO);
2105
2106 /* assign filtering support */
2107 ndev->priv_flags |= IFF_UNICAST_FLT;
2108
2109 /* MTU range: 68 - 9000 */
2110 ndev->min_mtu = MIN_MTU;
2111 ndev->max_mtu = MAX_MTU;
2112
2113 priv->msg_enable = netif_msg_init(debug, default_msg_level);
2114
2115 /* Enable TCP segmentation offload for all DMA channels */
2116 if (priv->hw_cap.tcpseg_offload) {
2117 SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
2118 priv->hw->dma->enable_tso(priv->ioaddr, queue_num);
2119 }
2120 }
2121
2122 /* Enable Rx checksum offload */
2123 if (priv->hw_cap.rx_csum_offload) {
2124 priv->hw->mac->enable_rx_csum(priv->ioaddr);
2125 priv->rxcsum_insertion = true;
2126 }
2127
2128 /* Initialise pause frame settings */
2129 priv->rx_pause = 1;
2130 priv->tx_pause = 1;
2131
2132 /* Rx Watchdog is available, enable depend on platform data */
2133 if (!priv->plat->riwt_off) {
2134 priv->use_riwt = 1;
2135 pr_info("Enable RX Mitigation via HW Watchdog Timer\n");
2136 }
2137
2138 netif_napi_add(ndev, &priv->napi, sxgbe_poll, 64);
2139
2140 spin_lock_init(&priv->stats_lock);
2141
2142 priv->sxgbe_clk = clk_get(priv->device, SXGBE_RESOURCE_NAME);
2143 if (IS_ERR(priv->sxgbe_clk)) {
2144 netdev_warn(ndev, "%s: warning: cannot get CSR clock\n",
2145 __func__);
2146 goto error_napi_del;
2147 }
2148
2149 /* If a specific clk_csr value is passed from the platform
2150 * this means that the CSR Clock Range selection cannot be
2151 * changed at run-time and it is fixed. Viceversa the driver'll try to
2152 * set the MDC clock dynamically according to the csr actual
2153 * clock input.
2154 */
2155 if (!priv->plat->clk_csr)
2156 sxgbe_clk_csr_set(priv);
2157 else
2158 priv->clk_csr = priv->plat->clk_csr;
2159
2160 /* MDIO bus Registration */
2161 ret = sxgbe_mdio_register(ndev);
2162 if (ret < 0) {
2163 netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n",
2164 __func__, priv->plat->bus_id);
2165 goto error_clk_put;
2166 }
2167
2168 ret = register_netdev(ndev);
2169 if (ret) {
2170 pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2171 goto error_mdio_unregister;
2172 }
2173
2174 sxgbe_check_ether_addr(priv);
2175
2176 return priv;
2177
2178 error_mdio_unregister:
2179 sxgbe_mdio_unregister(ndev);
2180 error_clk_put:
2181 clk_put(priv->sxgbe_clk);
2182 error_napi_del:
2183 netif_napi_del(&priv->napi);
2184 error_free_hw:
2185 kfree(priv->hw);
2186 error_free_netdev:
2187 free_netdev(ndev);
2188
2189 return NULL;
2190 }
2191
2192 /**
2193 * sxgbe_drv_remove
2194 * @ndev: net device pointer
2195 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2196 * changes the link status, releases the DMA descriptor rings.
2197 */
sxgbe_drv_remove(struct net_device * ndev)2198 int sxgbe_drv_remove(struct net_device *ndev)
2199 {
2200 struct sxgbe_priv_data *priv = netdev_priv(ndev);
2201 u8 queue_num;
2202
2203 netdev_info(ndev, "%s: removing driver\n", __func__);
2204
2205 SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
2206 priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num);
2207 }
2208
2209 priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
2210 priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
2211
2212 priv->hw->mac->enable_tx(priv->ioaddr, false);
2213 priv->hw->mac->enable_rx(priv->ioaddr, false);
2214
2215 unregister_netdev(ndev);
2216
2217 sxgbe_mdio_unregister(ndev);
2218
2219 clk_put(priv->sxgbe_clk);
2220
2221 netif_napi_del(&priv->napi);
2222
2223 kfree(priv->hw);
2224
2225 free_netdev(ndev);
2226
2227 return 0;
2228 }
2229
2230 #ifdef CONFIG_PM
sxgbe_suspend(struct net_device * ndev)2231 int sxgbe_suspend(struct net_device *ndev)
2232 {
2233 return 0;
2234 }
2235
sxgbe_resume(struct net_device * ndev)2236 int sxgbe_resume(struct net_device *ndev)
2237 {
2238 return 0;
2239 }
2240
sxgbe_freeze(struct net_device * ndev)2241 int sxgbe_freeze(struct net_device *ndev)
2242 {
2243 return -ENOSYS;
2244 }
2245
sxgbe_restore(struct net_device * ndev)2246 int sxgbe_restore(struct net_device *ndev)
2247 {
2248 return -ENOSYS;
2249 }
2250 #endif /* CONFIG_PM */
2251
2252 /* Driver is configured as Platform driver */
sxgbe_init(void)2253 static int __init sxgbe_init(void)
2254 {
2255 int ret;
2256
2257 ret = sxgbe_register_platform();
2258 if (ret)
2259 goto err;
2260 return 0;
2261 err:
2262 pr_err("driver registration failed\n");
2263 return ret;
2264 }
2265
sxgbe_exit(void)2266 static void __exit sxgbe_exit(void)
2267 {
2268 sxgbe_unregister_platform();
2269 }
2270
2271 module_init(sxgbe_init);
2272 module_exit(sxgbe_exit);
2273
2274 #ifndef MODULE
sxgbe_cmdline_opt(char * str)2275 static int __init sxgbe_cmdline_opt(char *str)
2276 {
2277 char *opt;
2278
2279 if (!str || !*str)
2280 return -EINVAL;
2281 while ((opt = strsep(&str, ",")) != NULL) {
2282 if (!strncmp(opt, "eee_timer:", 6)) {
2283 if (kstrtoint(opt + 10, 0, &eee_timer))
2284 goto err;
2285 }
2286 }
2287 return 0;
2288
2289 err:
2290 pr_err("%s: ERROR broken module parameter conversion\n", __func__);
2291 return -EINVAL;
2292 }
2293
2294 __setup("sxgbeeth=", sxgbe_cmdline_opt);
2295 #endif /* MODULE */
2296
2297
2298
2299 MODULE_DESCRIPTION("SAMSUNG 10G/2.5G/1G Ethernet PLATFORM driver");
2300
2301 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
2302 MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value");
2303
2304 MODULE_AUTHOR("Siva Reddy Kallam <siva.kallam@samsung.com>");
2305 MODULE_AUTHOR("ByungHo An <bh74.an@samsung.com>");
2306 MODULE_AUTHOR("Girish K S <ks.giri@samsung.com>");
2307 MODULE_AUTHOR("Vipul Pandya <vipul.pandya@samsung.com>");
2308
2309 MODULE_LICENSE("GPL");
2310