1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MMU_CONTEXT_H
3 #define _ASM_X86_MMU_CONTEXT_H
4
5 #include <asm/desc.h>
6 #include <linux/atomic.h>
7 #include <linux/mm_types.h>
8 #include <linux/pkeys.h>
9
10 #include <trace/events/tlb.h>
11
12 #include <asm/pgalloc.h>
13 #include <asm/tlbflush.h>
14 #include <asm/paravirt.h>
15 #include <asm/mpx.h>
16
17 extern atomic64_t last_mm_ctx_id;
18
19 #ifndef CONFIG_PARAVIRT
paravirt_activate_mm(struct mm_struct * prev,struct mm_struct * next)20 static inline void paravirt_activate_mm(struct mm_struct *prev,
21 struct mm_struct *next)
22 {
23 }
24 #endif /* !CONFIG_PARAVIRT */
25
26 #ifdef CONFIG_PERF_EVENTS
27
28 DECLARE_STATIC_KEY_FALSE(rdpmc_always_available_key);
29
load_mm_cr4(struct mm_struct * mm)30 static inline void load_mm_cr4(struct mm_struct *mm)
31 {
32 if (static_branch_unlikely(&rdpmc_always_available_key) ||
33 atomic_read(&mm->context.perf_rdpmc_allowed))
34 cr4_set_bits(X86_CR4_PCE);
35 else
36 cr4_clear_bits(X86_CR4_PCE);
37 }
38 #else
load_mm_cr4(struct mm_struct * mm)39 static inline void load_mm_cr4(struct mm_struct *mm) {}
40 #endif
41
42 #ifdef CONFIG_MODIFY_LDT_SYSCALL
43 /*
44 * ldt_structs can be allocated, used, and freed, but they are never
45 * modified while live.
46 */
47 struct ldt_struct {
48 /*
49 * Xen requires page-aligned LDTs with special permissions. This is
50 * needed to prevent us from installing evil descriptors such as
51 * call gates. On native, we could merge the ldt_struct and LDT
52 * allocations, but it's not worth trying to optimize.
53 */
54 struct desc_struct *entries;
55 unsigned int nr_entries;
56
57 /*
58 * If PTI is in use, then the entries array is not mapped while we're
59 * in user mode. The whole array will be aliased at the addressed
60 * given by ldt_slot_va(slot). We use two slots so that we can allocate
61 * and map, and enable a new LDT without invalidating the mapping
62 * of an older, still-in-use LDT.
63 *
64 * slot will be -1 if this LDT doesn't have an alias mapping.
65 */
66 int slot;
67 };
68
69 /* This is a multiple of PAGE_SIZE. */
70 #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)
71
ldt_slot_va(int slot)72 static inline void *ldt_slot_va(int slot)
73 {
74 return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
75 }
76
77 /*
78 * Used for LDT copy/destruction.
79 */
init_new_context_ldt(struct mm_struct * mm)80 static inline void init_new_context_ldt(struct mm_struct *mm)
81 {
82 mm->context.ldt = NULL;
83 init_rwsem(&mm->context.ldt_usr_sem);
84 }
85 int ldt_dup_context(struct mm_struct *oldmm, struct mm_struct *mm);
86 void destroy_context_ldt(struct mm_struct *mm);
87 void ldt_arch_exit_mmap(struct mm_struct *mm);
88 #else /* CONFIG_MODIFY_LDT_SYSCALL */
init_new_context_ldt(struct mm_struct * mm)89 static inline void init_new_context_ldt(struct mm_struct *mm) { }
ldt_dup_context(struct mm_struct * oldmm,struct mm_struct * mm)90 static inline int ldt_dup_context(struct mm_struct *oldmm,
91 struct mm_struct *mm)
92 {
93 return 0;
94 }
destroy_context_ldt(struct mm_struct * mm)95 static inline void destroy_context_ldt(struct mm_struct *mm) { }
ldt_arch_exit_mmap(struct mm_struct * mm)96 static inline void ldt_arch_exit_mmap(struct mm_struct *mm) { }
97 #endif
98
load_mm_ldt(struct mm_struct * mm)99 static inline void load_mm_ldt(struct mm_struct *mm)
100 {
101 #ifdef CONFIG_MODIFY_LDT_SYSCALL
102 struct ldt_struct *ldt;
103
104 /* READ_ONCE synchronizes with smp_store_release */
105 ldt = READ_ONCE(mm->context.ldt);
106
107 /*
108 * Any change to mm->context.ldt is followed by an IPI to all
109 * CPUs with the mm active. The LDT will not be freed until
110 * after the IPI is handled by all such CPUs. This means that,
111 * if the ldt_struct changes before we return, the values we see
112 * will be safe, and the new values will be loaded before we run
113 * any user code.
114 *
115 * NB: don't try to convert this to use RCU without extreme care.
116 * We would still need IRQs off, because we don't want to change
117 * the local LDT after an IPI loaded a newer value than the one
118 * that we can see.
119 */
120
121 if (unlikely(ldt)) {
122 if (static_cpu_has(X86_FEATURE_PTI)) {
123 if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
124 /*
125 * Whoops -- either the new LDT isn't mapped
126 * (if slot == -1) or is mapped into a bogus
127 * slot (if slot > 1).
128 */
129 clear_LDT();
130 return;
131 }
132
133 /*
134 * If page table isolation is enabled, ldt->entries
135 * will not be mapped in the userspace pagetables.
136 * Tell the CPU to access the LDT through the alias
137 * at ldt_slot_va(ldt->slot).
138 */
139 set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
140 } else {
141 set_ldt(ldt->entries, ldt->nr_entries);
142 }
143 } else {
144 clear_LDT();
145 }
146 #else
147 clear_LDT();
148 #endif
149 }
150
switch_ldt(struct mm_struct * prev,struct mm_struct * next)151 static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
152 {
153 #ifdef CONFIG_MODIFY_LDT_SYSCALL
154 /*
155 * Load the LDT if either the old or new mm had an LDT.
156 *
157 * An mm will never go from having an LDT to not having an LDT. Two
158 * mms never share an LDT, so we don't gain anything by checking to
159 * see whether the LDT changed. There's also no guarantee that
160 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
161 * then prev->context.ldt will also be non-NULL.
162 *
163 * If we really cared, we could optimize the case where prev == next
164 * and we're exiting lazy mode. Most of the time, if this happens,
165 * we don't actually need to reload LDTR, but modify_ldt() is mostly
166 * used by legacy code and emulators where we don't need this level of
167 * performance.
168 *
169 * This uses | instead of || because it generates better code.
170 */
171 if (unlikely((unsigned long)prev->context.ldt |
172 (unsigned long)next->context.ldt))
173 load_mm_ldt(next);
174 #endif
175
176 DEBUG_LOCKS_WARN_ON(preemptible());
177 }
178
179 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk);
180
init_new_context(struct task_struct * tsk,struct mm_struct * mm)181 static inline int init_new_context(struct task_struct *tsk,
182 struct mm_struct *mm)
183 {
184 mutex_init(&mm->context.lock);
185
186 mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id);
187 atomic64_set(&mm->context.tlb_gen, 0);
188
189 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
190 if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
191 /* pkey 0 is the default and allocated implicitly */
192 mm->context.pkey_allocation_map = 0x1;
193 /* -1 means unallocated or invalid */
194 mm->context.execute_only_pkey = -1;
195 }
196 #endif
197 init_new_context_ldt(mm);
198 return 0;
199 }
destroy_context(struct mm_struct * mm)200 static inline void destroy_context(struct mm_struct *mm)
201 {
202 destroy_context_ldt(mm);
203 }
204
205 extern void switch_mm(struct mm_struct *prev, struct mm_struct *next,
206 struct task_struct *tsk);
207
208 extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
209 struct task_struct *tsk);
210 #define switch_mm_irqs_off switch_mm_irqs_off
211
212 #define activate_mm(prev, next) \
213 do { \
214 paravirt_activate_mm((prev), (next)); \
215 switch_mm((prev), (next), NULL); \
216 } while (0);
217
218 #ifdef CONFIG_X86_32
219 #define deactivate_mm(tsk, mm) \
220 do { \
221 lazy_load_gs(0); \
222 } while (0)
223 #else
224 #define deactivate_mm(tsk, mm) \
225 do { \
226 load_gs_index(0); \
227 loadsegment(fs, 0); \
228 } while (0)
229 #endif
230
arch_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)231 static inline int arch_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
232 {
233 paravirt_arch_dup_mmap(oldmm, mm);
234 return ldt_dup_context(oldmm, mm);
235 }
236
arch_exit_mmap(struct mm_struct * mm)237 static inline void arch_exit_mmap(struct mm_struct *mm)
238 {
239 paravirt_arch_exit_mmap(mm);
240 ldt_arch_exit_mmap(mm);
241 }
242
243 #ifdef CONFIG_X86_64
is_64bit_mm(struct mm_struct * mm)244 static inline bool is_64bit_mm(struct mm_struct *mm)
245 {
246 return !IS_ENABLED(CONFIG_IA32_EMULATION) ||
247 !(mm->context.ia32_compat == TIF_IA32);
248 }
249 #else
is_64bit_mm(struct mm_struct * mm)250 static inline bool is_64bit_mm(struct mm_struct *mm)
251 {
252 return false;
253 }
254 #endif
255
arch_bprm_mm_init(struct mm_struct * mm,struct vm_area_struct * vma)256 static inline void arch_bprm_mm_init(struct mm_struct *mm,
257 struct vm_area_struct *vma)
258 {
259 mpx_mm_init(mm);
260 }
261
arch_unmap(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long start,unsigned long end)262 static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma,
263 unsigned long start, unsigned long end)
264 {
265 /*
266 * mpx_notify_unmap() goes and reads a rarely-hot
267 * cacheline in the mm_struct. That can be expensive
268 * enough to be seen in profiles.
269 *
270 * The mpx_notify_unmap() call and its contents have been
271 * observed to affect munmap() performance on hardware
272 * where MPX is not present.
273 *
274 * The unlikely() optimizes for the fast case: no MPX
275 * in the CPU, or no MPX use in the process. Even if
276 * we get this wrong (in the unlikely event that MPX
277 * is widely enabled on some system) the overhead of
278 * MPX itself (reading bounds tables) is expected to
279 * overwhelm the overhead of getting this unlikely()
280 * consistently wrong.
281 */
282 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX)))
283 mpx_notify_unmap(mm, vma, start, end);
284 }
285
286 /*
287 * We only want to enforce protection keys on the current process
288 * because we effectively have no access to PKRU for other
289 * processes or any way to tell *which * PKRU in a threaded
290 * process we could use.
291 *
292 * So do not enforce things if the VMA is not from the current
293 * mm, or if we are in a kernel thread.
294 */
vma_is_foreign(struct vm_area_struct * vma)295 static inline bool vma_is_foreign(struct vm_area_struct *vma)
296 {
297 if (!current->mm)
298 return true;
299 /*
300 * Should PKRU be enforced on the access to this VMA? If
301 * the VMA is from another process, then PKRU has no
302 * relevance and should not be enforced.
303 */
304 if (current->mm != vma->vm_mm)
305 return true;
306
307 return false;
308 }
309
arch_vma_access_permitted(struct vm_area_struct * vma,bool write,bool execute,bool foreign)310 static inline bool arch_vma_access_permitted(struct vm_area_struct *vma,
311 bool write, bool execute, bool foreign)
312 {
313 /* pkeys never affect instruction fetches */
314 if (execute)
315 return true;
316 /* allow access if the VMA is not one from this process */
317 if (foreign || vma_is_foreign(vma))
318 return true;
319 return __pkru_allows_pkey(vma_pkey(vma), write);
320 }
321
322 /*
323 * This can be used from process context to figure out what the value of
324 * CR3 is without needing to do a (slow) __read_cr3().
325 *
326 * It's intended to be used for code like KVM that sneakily changes CR3
327 * and needs to restore it. It needs to be used very carefully.
328 */
__get_current_cr3_fast(void)329 static inline unsigned long __get_current_cr3_fast(void)
330 {
331 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
332 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
333
334 /* For now, be very restrictive about when this can be called. */
335 VM_WARN_ON(in_nmi() || preemptible());
336
337 VM_BUG_ON(cr3 != __read_cr3());
338 return cr3;
339 }
340
341 #endif /* _ASM_X86_MMU_CONTEXT_H */
342