1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33 
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_values.h"
37 #include "t4_msg.h"
38 #include "t4_tcb.h"
39 #include "t4fw_ri_api.h"
40 
41 #define T4_MAX_NUM_PD 65536
42 #define T4_MAX_MR_SIZE (~0ULL)
43 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
44 #define T4_STAG_UNSET 0xffffffff
45 #define T4_FW_MAJ 0
46 #define PCIE_MA_SYNC_A 0x30b4
47 
48 struct t4_status_page {
49 	__be32 rsvd1;	/* flit 0 - hw owns */
50 	__be16 rsvd2;
51 	__be16 qid;
52 	__be16 cidx;
53 	__be16 pidx;
54 	u8 qp_err;	/* flit 1 - sw owns */
55 	u8 db_off;
56 	u8 pad[2];
57 	u16 host_wq_pidx;
58 	u16 host_cidx;
59 	u16 host_pidx;
60 	u16 pad2;
61 	u32 srqidx;
62 };
63 
64 #define T4_RQT_ENTRY_SHIFT 6
65 #define T4_RQT_ENTRY_SIZE  BIT(T4_RQT_ENTRY_SHIFT)
66 #define T4_EQ_ENTRY_SIZE 64
67 
68 #define T4_SQ_NUM_SLOTS 5
69 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
70 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
71 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
72 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
73 			sizeof(struct fw_ri_immd)))
74 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
75 			sizeof(struct fw_ri_rdma_write_wr) - \
76 			sizeof(struct fw_ri_immd)))
77 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
78 			sizeof(struct fw_ri_rdma_write_wr) - \
79 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
80 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
81 			sizeof(struct fw_ri_immd)) & ~31UL)
82 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
83 #define T4_MAX_FR_DSGL 1024
84 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
85 
t4_max_fr_depth(int use_dsgl)86 static inline int t4_max_fr_depth(int use_dsgl)
87 {
88 	return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
89 }
90 
91 #define T4_RQ_NUM_SLOTS 2
92 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
93 #define T4_MAX_RECV_SGE 4
94 
95 #define T4_WRITE_CMPL_MAX_SGL 4
96 #define T4_WRITE_CMPL_MAX_CQE 16
97 
98 union t4_wr {
99 	struct fw_ri_res_wr res;
100 	struct fw_ri_wr ri;
101 	struct fw_ri_rdma_write_wr write;
102 	struct fw_ri_send_wr send;
103 	struct fw_ri_rdma_read_wr read;
104 	struct fw_ri_bind_mw_wr bind;
105 	struct fw_ri_fr_nsmr_wr fr;
106 	struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
107 	struct fw_ri_inv_lstag_wr inv;
108 	struct fw_ri_rdma_write_cmpl_wr write_cmpl;
109 	struct t4_status_page status;
110 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
111 };
112 
113 union t4_recv_wr {
114 	struct fw_ri_recv_wr recv;
115 	struct t4_status_page status;
116 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
117 };
118 
init_wr_hdr(union t4_wr * wqe,u16 wrid,enum fw_wr_opcodes opcode,u8 flags,u8 len16)119 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
120 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
121 {
122 	wqe->send.opcode = (u8)opcode;
123 	wqe->send.flags = flags;
124 	wqe->send.wrid = wrid;
125 	wqe->send.r1[0] = 0;
126 	wqe->send.r1[1] = 0;
127 	wqe->send.r1[2] = 0;
128 	wqe->send.len16 = len16;
129 }
130 
131 /* CQE/AE status codes */
132 #define T4_ERR_SUCCESS                     0x0
133 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
134 						/* STAG is offlimt, being 0, */
135 						/* or STAG_key mismatch */
136 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
137 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
138 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
139 #define T4_ERR_WRAP                        0x5	/* Wrap error */
140 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
141 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
142 						/* shared memory region */
143 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
144 						/* shared memory region */
145 #define T4_ERR_ECC                         0x9	/* ECC error detected */
146 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
147 						/* reading PSTAG for a MW  */
148 						/* Invalidate */
149 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
150 						/* software error */
151 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
152 #define T4_ERR_CRC                         0x10 /* CRC error */
153 #define T4_ERR_MARKER                      0x11 /* Marker error */
154 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
155 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
156 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
157 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
158 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
159 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
160 #define T4_ERR_MSN                         0x18 /* MSN error */
161 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
162 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
163 						/* or READ_REQ */
164 #define T4_ERR_MSN_GAP                     0x1B
165 #define T4_ERR_MSN_RANGE                   0x1C
166 #define T4_ERR_IRD_OVERFLOW                0x1D
167 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
168 						/* software error */
169 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
170 						/* mismatch) */
171 /*
172  * CQE defs
173  */
174 struct t4_cqe {
175 	__be32 header;
176 	__be32 len;
177 	union {
178 		struct {
179 			__be32 stag;
180 			__be32 msn;
181 		} rcqe;
182 		struct {
183 			__be32 stag;
184 			u16 nada2;
185 			u16 cidx;
186 		} scqe;
187 		struct {
188 			__be32 wrid_hi;
189 			__be32 wrid_low;
190 		} gen;
191 		struct {
192 			__be32 stag;
193 			__be32 msn;
194 			__be32 reserved;
195 			__be32 abs_rqe_idx;
196 		} srcqe;
197 		struct {
198 			__be32 mo;
199 			__be32 msn;
200 			/*
201 			 * Use union for immediate data to be consistent with
202 			 * stack's 32 bit data and iWARP spec's 64 bit data.
203 			 */
204 			union {
205 				struct {
206 					__be32 imm_data32;
207 					u32 reserved;
208 				} ib_imm_data;
209 				__be64 imm_data64;
210 			} iw_imm_data;
211 		} imm_data_rcqe;
212 
213 		u64 drain_cookie;
214 		__be64 flits[3];
215 	} u;
216 	__be64 reserved[3];
217 	__be64 bits_type_ts;
218 };
219 
220 /* macros for flit 0 of the cqe */
221 
222 #define CQE_QPID_S        12
223 #define CQE_QPID_M        0xFFFFF
224 #define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
225 #define CQE_QPID_V(x)	  ((x)<<CQE_QPID_S)
226 
227 #define CQE_SWCQE_S       11
228 #define CQE_SWCQE_M       0x1
229 #define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
230 #define CQE_SWCQE_V(x)	  ((x)<<CQE_SWCQE_S)
231 
232 #define CQE_DRAIN_S       10
233 #define CQE_DRAIN_M       0x1
234 #define CQE_DRAIN_G(x)    ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
235 #define CQE_DRAIN_V(x)	  ((x)<<CQE_DRAIN_S)
236 
237 #define CQE_STATUS_S      5
238 #define CQE_STATUS_M      0x1F
239 #define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
240 #define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
241 
242 #define CQE_TYPE_S        4
243 #define CQE_TYPE_M        0x1
244 #define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
245 #define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
246 
247 #define CQE_OPCODE_S      0
248 #define CQE_OPCODE_M      0xF
249 #define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
250 #define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
251 
252 #define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
253 #define DRAIN_CQE(x)      (CQE_DRAIN_G(be32_to_cpu((x)->header)))
254 #define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
255 #define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
256 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
257 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
258 #define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
259 #define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
260 
261 #define CQE_SEND_OPCODE(x)( \
262 	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
263 	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
264 	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
265 	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
266 
267 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
268 
269 /* used for RQ completion processing */
270 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
271 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
272 #define CQE_ABS_RQE_IDX(x) (be32_to_cpu((x)->u.srcqe.abs_rqe_idx))
273 #define CQE_IMM_DATA(x)( \
274 	(x)->u.imm_data_rcqe.iw_imm_data.ib_imm_data.imm_data32)
275 
276 /* used for SQ completion processing */
277 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
278 #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
279 
280 /* generic accessor macros */
281 #define CQE_WRID_HI(x)		(be32_to_cpu((x)->u.gen.wrid_hi))
282 #define CQE_WRID_LOW(x)		(be32_to_cpu((x)->u.gen.wrid_low))
283 #define CQE_DRAIN_COOKIE(x)	((x)->u.drain_cookie)
284 
285 /* macros for flit 3 of the cqe */
286 #define CQE_GENBIT_S	63
287 #define CQE_GENBIT_M	0x1
288 #define CQE_GENBIT_G(x)	(((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
289 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
290 
291 #define CQE_OVFBIT_S	62
292 #define CQE_OVFBIT_M	0x1
293 #define CQE_OVFBIT_G(x)	((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
294 
295 #define CQE_IQTYPE_S	60
296 #define CQE_IQTYPE_M	0x3
297 #define CQE_IQTYPE_G(x)	((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
298 
299 #define CQE_TS_M	0x0fffffffffffffffULL
300 #define CQE_TS_G(x)	((x) & CQE_TS_M)
301 
302 #define CQE_OVFBIT(x)	((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
303 #define CQE_GENBIT(x)	((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
304 #define CQE_TS(x)	(CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
305 
306 struct t4_swsqe {
307 	u64			wr_id;
308 	struct t4_cqe		cqe;
309 	int			read_len;
310 	int			opcode;
311 	int			complete;
312 	int			signaled;
313 	u16			idx;
314 	int                     flushed;
315 	ktime_t			host_time;
316 	u64                     sge_ts;
317 };
318 
t4_pgprot_wc(pgprot_t prot)319 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
320 {
321 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
322 	return pgprot_writecombine(prot);
323 #else
324 	return pgprot_noncached(prot);
325 #endif
326 }
327 
328 enum {
329 	T4_SQ_ONCHIP = (1<<0),
330 };
331 
332 struct t4_sq {
333 	union t4_wr *queue;
334 	dma_addr_t dma_addr;
335 	DEFINE_DMA_UNMAP_ADDR(mapping);
336 	unsigned long phys_addr;
337 	struct t4_swsqe *sw_sq;
338 	struct t4_swsqe *oldest_read;
339 	void __iomem *bar2_va;
340 	u64 bar2_pa;
341 	size_t memsize;
342 	u32 bar2_qid;
343 	u32 qid;
344 	u16 in_use;
345 	u16 size;
346 	u16 cidx;
347 	u16 pidx;
348 	u16 wq_pidx;
349 	u16 wq_pidx_inc;
350 	u16 flags;
351 	short flush_cidx;
352 };
353 
354 struct t4_swrqe {
355 	u64 wr_id;
356 	ktime_t	host_time;
357 	u64 sge_ts;
358 	int valid;
359 };
360 
361 struct t4_rq {
362 	union  t4_recv_wr *queue;
363 	dma_addr_t dma_addr;
364 	DEFINE_DMA_UNMAP_ADDR(mapping);
365 	struct t4_swrqe *sw_rq;
366 	void __iomem *bar2_va;
367 	u64 bar2_pa;
368 	size_t memsize;
369 	u32 bar2_qid;
370 	u32 qid;
371 	u32 msn;
372 	u32 rqt_hwaddr;
373 	u16 rqt_size;
374 	u16 in_use;
375 	u16 size;
376 	u16 cidx;
377 	u16 pidx;
378 	u16 wq_pidx;
379 	u16 wq_pidx_inc;
380 };
381 
382 struct t4_wq {
383 	struct t4_sq sq;
384 	struct t4_rq rq;
385 	void __iomem *db;
386 	struct c4iw_rdev *rdev;
387 	int flushed;
388 	u8 *qp_errp;
389 	u32 *srqidxp;
390 };
391 
392 struct t4_srq_pending_wr {
393 	u64 wr_id;
394 	union t4_recv_wr wqe;
395 	u8 len16;
396 };
397 
398 struct t4_srq {
399 	union t4_recv_wr *queue;
400 	dma_addr_t dma_addr;
401 	DEFINE_DMA_UNMAP_ADDR(mapping);
402 	struct t4_swrqe *sw_rq;
403 	void __iomem *bar2_va;
404 	u64 bar2_pa;
405 	size_t memsize;
406 	u32 bar2_qid;
407 	u32 qid;
408 	u32 msn;
409 	u32 rqt_hwaddr;
410 	u32 rqt_abs_idx;
411 	u16 rqt_size;
412 	u16 size;
413 	u16 cidx;
414 	u16 pidx;
415 	u16 wq_pidx;
416 	u16 wq_pidx_inc;
417 	u16 in_use;
418 	struct t4_srq_pending_wr *pending_wrs;
419 	u16 pending_cidx;
420 	u16 pending_pidx;
421 	u16 pending_in_use;
422 	u16 ooo_count;
423 };
424 
t4_srq_avail(struct t4_srq * srq)425 static inline u32 t4_srq_avail(struct t4_srq *srq)
426 {
427 	return srq->size - 1 - srq->in_use;
428 }
429 
t4_srq_produce(struct t4_srq * srq,u8 len16)430 static inline void t4_srq_produce(struct t4_srq *srq, u8 len16)
431 {
432 	srq->in_use++;
433 	if (++srq->pidx == srq->size)
434 		srq->pidx = 0;
435 	srq->wq_pidx += DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
436 	if (srq->wq_pidx >= srq->size * T4_RQ_NUM_SLOTS)
437 		srq->wq_pidx %= srq->size * T4_RQ_NUM_SLOTS;
438 	srq->queue[srq->size].status.host_pidx = srq->pidx;
439 }
440 
t4_srq_produce_pending_wr(struct t4_srq * srq)441 static inline void t4_srq_produce_pending_wr(struct t4_srq *srq)
442 {
443 	srq->pending_in_use++;
444 	srq->in_use++;
445 	if (++srq->pending_pidx == srq->size)
446 		srq->pending_pidx = 0;
447 }
448 
t4_srq_consume_pending_wr(struct t4_srq * srq)449 static inline void t4_srq_consume_pending_wr(struct t4_srq *srq)
450 {
451 	srq->pending_in_use--;
452 	srq->in_use--;
453 	if (++srq->pending_cidx == srq->size)
454 		srq->pending_cidx = 0;
455 }
456 
t4_srq_produce_ooo(struct t4_srq * srq)457 static inline void t4_srq_produce_ooo(struct t4_srq *srq)
458 {
459 	srq->in_use--;
460 	srq->ooo_count++;
461 }
462 
t4_srq_consume_ooo(struct t4_srq * srq)463 static inline void t4_srq_consume_ooo(struct t4_srq *srq)
464 {
465 	srq->cidx++;
466 	if (srq->cidx == srq->size)
467 		srq->cidx  = 0;
468 	srq->queue[srq->size].status.host_cidx = srq->cidx;
469 	srq->ooo_count--;
470 }
471 
t4_srq_consume(struct t4_srq * srq)472 static inline void t4_srq_consume(struct t4_srq *srq)
473 {
474 	srq->in_use--;
475 	if (++srq->cidx == srq->size)
476 		srq->cidx = 0;
477 	srq->queue[srq->size].status.host_cidx = srq->cidx;
478 }
479 
t4_rqes_posted(struct t4_wq * wq)480 static inline int t4_rqes_posted(struct t4_wq *wq)
481 {
482 	return wq->rq.in_use;
483 }
484 
t4_rq_empty(struct t4_wq * wq)485 static inline int t4_rq_empty(struct t4_wq *wq)
486 {
487 	return wq->rq.in_use == 0;
488 }
489 
t4_rq_full(struct t4_wq * wq)490 static inline int t4_rq_full(struct t4_wq *wq)
491 {
492 	return wq->rq.in_use == (wq->rq.size - 1);
493 }
494 
t4_rq_avail(struct t4_wq * wq)495 static inline u32 t4_rq_avail(struct t4_wq *wq)
496 {
497 	return wq->rq.size - 1 - wq->rq.in_use;
498 }
499 
t4_rq_produce(struct t4_wq * wq,u8 len16)500 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
501 {
502 	wq->rq.in_use++;
503 	if (++wq->rq.pidx == wq->rq.size)
504 		wq->rq.pidx = 0;
505 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
506 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
507 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
508 }
509 
t4_rq_consume(struct t4_wq * wq)510 static inline void t4_rq_consume(struct t4_wq *wq)
511 {
512 	wq->rq.in_use--;
513 	if (++wq->rq.cidx == wq->rq.size)
514 		wq->rq.cidx = 0;
515 }
516 
t4_rq_host_wq_pidx(struct t4_wq * wq)517 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
518 {
519 	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
520 }
521 
t4_rq_wq_size(struct t4_wq * wq)522 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
523 {
524 		return wq->rq.size * T4_RQ_NUM_SLOTS;
525 }
526 
t4_sq_onchip(struct t4_sq * sq)527 static inline int t4_sq_onchip(struct t4_sq *sq)
528 {
529 	return sq->flags & T4_SQ_ONCHIP;
530 }
531 
t4_sq_empty(struct t4_wq * wq)532 static inline int t4_sq_empty(struct t4_wq *wq)
533 {
534 	return wq->sq.in_use == 0;
535 }
536 
t4_sq_full(struct t4_wq * wq)537 static inline int t4_sq_full(struct t4_wq *wq)
538 {
539 	return wq->sq.in_use == (wq->sq.size - 1);
540 }
541 
t4_sq_avail(struct t4_wq * wq)542 static inline u32 t4_sq_avail(struct t4_wq *wq)
543 {
544 	return wq->sq.size - 1 - wq->sq.in_use;
545 }
546 
t4_sq_produce(struct t4_wq * wq,u8 len16)547 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
548 {
549 	wq->sq.in_use++;
550 	if (++wq->sq.pidx == wq->sq.size)
551 		wq->sq.pidx = 0;
552 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
553 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
554 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
555 }
556 
t4_sq_consume(struct t4_wq * wq)557 static inline void t4_sq_consume(struct t4_wq *wq)
558 {
559 	if (wq->sq.cidx == wq->sq.flush_cidx)
560 		wq->sq.flush_cidx = -1;
561 	wq->sq.in_use--;
562 	if (++wq->sq.cidx == wq->sq.size)
563 		wq->sq.cidx = 0;
564 }
565 
t4_sq_host_wq_pidx(struct t4_wq * wq)566 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
567 {
568 	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
569 }
570 
t4_sq_wq_size(struct t4_wq * wq)571 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
572 {
573 		return wq->sq.size * T4_SQ_NUM_SLOTS;
574 }
575 
576 /* This function copies 64 byte coalesced work request to memory
577  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
578  * from the FIFO instead of from Host.
579  */
pio_copy(u64 __iomem * dst,u64 * src)580 static inline void pio_copy(u64 __iomem *dst, u64 *src)
581 {
582 	int count = 8;
583 
584 	while (count) {
585 		writeq(*src, dst);
586 		src++;
587 		dst++;
588 		count--;
589 	}
590 }
591 
t4_ring_srq_db(struct t4_srq * srq,u16 inc,u8 len16,union t4_recv_wr * wqe)592 static inline void t4_ring_srq_db(struct t4_srq *srq, u16 inc, u8 len16,
593 				  union t4_recv_wr *wqe)
594 {
595 	/* Flush host queue memory writes. */
596 	wmb();
597 	if (inc == 1 && srq->bar2_qid == 0 && wqe) {
598 		pr_debug("%s : WC srq->pidx = %d; len16=%d\n",
599 			 __func__, srq->pidx, len16);
600 		pio_copy(srq->bar2_va + SGE_UDB_WCDOORBELL, (u64 *)wqe);
601 	} else {
602 		pr_debug("%s: DB srq->pidx = %d; len16=%d\n",
603 			 __func__, srq->pidx, len16);
604 		writel(PIDX_T5_V(inc) | QID_V(srq->bar2_qid),
605 		       srq->bar2_va + SGE_UDB_KDOORBELL);
606 	}
607 	/* Flush user doorbell area writes. */
608 	wmb();
609 }
610 
t4_ring_sq_db(struct t4_wq * wq,u16 inc,union t4_wr * wqe)611 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
612 {
613 
614 	/* Flush host queue memory writes. */
615 	wmb();
616 	if (wq->sq.bar2_va) {
617 		if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
618 			pr_debug("WC wq->sq.pidx = %d\n", wq->sq.pidx);
619 			pio_copy((u64 __iomem *)
620 				 (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
621 				 (u64 *)wqe);
622 		} else {
623 			pr_debug("DB wq->sq.pidx = %d\n", wq->sq.pidx);
624 			writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
625 			       wq->sq.bar2_va + SGE_UDB_KDOORBELL);
626 		}
627 
628 		/* Flush user doorbell area writes. */
629 		wmb();
630 		return;
631 	}
632 	writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
633 }
634 
t4_ring_rq_db(struct t4_wq * wq,u16 inc,union t4_recv_wr * wqe)635 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
636 				 union t4_recv_wr *wqe)
637 {
638 
639 	/* Flush host queue memory writes. */
640 	wmb();
641 	if (wq->rq.bar2_va) {
642 		if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
643 			pr_debug("WC wq->rq.pidx = %d\n", wq->rq.pidx);
644 			pio_copy((u64 __iomem *)
645 				 (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
646 				 (void *)wqe);
647 		} else {
648 			pr_debug("DB wq->rq.pidx = %d\n", wq->rq.pidx);
649 			writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
650 			       wq->rq.bar2_va + SGE_UDB_KDOORBELL);
651 		}
652 
653 		/* Flush user doorbell area writes. */
654 		wmb();
655 		return;
656 	}
657 	writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
658 }
659 
t4_wq_in_error(struct t4_wq * wq)660 static inline int t4_wq_in_error(struct t4_wq *wq)
661 {
662 	return *wq->qp_errp;
663 }
664 
t4_set_wq_in_error(struct t4_wq * wq,u32 srqidx)665 static inline void t4_set_wq_in_error(struct t4_wq *wq, u32 srqidx)
666 {
667 	if (srqidx)
668 		*wq->srqidxp = srqidx;
669 	*wq->qp_errp = 1;
670 }
671 
t4_disable_wq_db(struct t4_wq * wq)672 static inline void t4_disable_wq_db(struct t4_wq *wq)
673 {
674 	wq->rq.queue[wq->rq.size].status.db_off = 1;
675 }
676 
t4_enable_wq_db(struct t4_wq * wq)677 static inline void t4_enable_wq_db(struct t4_wq *wq)
678 {
679 	wq->rq.queue[wq->rq.size].status.db_off = 0;
680 }
681 
t4_wq_db_enabled(struct t4_wq * wq)682 static inline int t4_wq_db_enabled(struct t4_wq *wq)
683 {
684 	return !wq->rq.queue[wq->rq.size].status.db_off;
685 }
686 
687 enum t4_cq_flags {
688 	CQ_ARMED	= 1,
689 };
690 
691 struct t4_cq {
692 	struct t4_cqe *queue;
693 	dma_addr_t dma_addr;
694 	DEFINE_DMA_UNMAP_ADDR(mapping);
695 	struct t4_cqe *sw_queue;
696 	void __iomem *gts;
697 	void __iomem *bar2_va;
698 	u64 bar2_pa;
699 	u32 bar2_qid;
700 	struct c4iw_rdev *rdev;
701 	size_t memsize;
702 	__be64 bits_type_ts;
703 	u32 cqid;
704 	u32 qid_mask;
705 	int vector;
706 	u16 size; /* including status page */
707 	u16 cidx;
708 	u16 sw_pidx;
709 	u16 sw_cidx;
710 	u16 sw_in_use;
711 	u16 cidx_inc;
712 	u8 gen;
713 	u8 error;
714 	u8 *qp_errp;
715 	unsigned long flags;
716 };
717 
write_gts(struct t4_cq * cq,u32 val)718 static inline void write_gts(struct t4_cq *cq, u32 val)
719 {
720 	if (cq->bar2_va)
721 		writel(val | INGRESSQID_V(cq->bar2_qid),
722 		       cq->bar2_va + SGE_UDB_GTS);
723 	else
724 		writel(val | INGRESSQID_V(cq->cqid), cq->gts);
725 }
726 
t4_clear_cq_armed(struct t4_cq * cq)727 static inline int t4_clear_cq_armed(struct t4_cq *cq)
728 {
729 	return test_and_clear_bit(CQ_ARMED, &cq->flags);
730 }
731 
t4_arm_cq(struct t4_cq * cq,int se)732 static inline int t4_arm_cq(struct t4_cq *cq, int se)
733 {
734 	u32 val;
735 
736 	set_bit(CQ_ARMED, &cq->flags);
737 	while (cq->cidx_inc > CIDXINC_M) {
738 		val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
739 		write_gts(cq, val);
740 		cq->cidx_inc -= CIDXINC_M;
741 	}
742 	val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
743 	write_gts(cq, val);
744 	cq->cidx_inc = 0;
745 	return 0;
746 }
747 
t4_swcq_produce(struct t4_cq * cq)748 static inline void t4_swcq_produce(struct t4_cq *cq)
749 {
750 	cq->sw_in_use++;
751 	if (cq->sw_in_use == cq->size) {
752 		pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
753 			__func__, cq->cqid);
754 		cq->error = 1;
755 		cq->sw_in_use--;
756 		return;
757 	}
758 	if (++cq->sw_pidx == cq->size)
759 		cq->sw_pidx = 0;
760 }
761 
t4_swcq_consume(struct t4_cq * cq)762 static inline void t4_swcq_consume(struct t4_cq *cq)
763 {
764 	cq->sw_in_use--;
765 	if (++cq->sw_cidx == cq->size)
766 		cq->sw_cidx = 0;
767 }
768 
t4_hwcq_consume(struct t4_cq * cq)769 static inline void t4_hwcq_consume(struct t4_cq *cq)
770 {
771 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
772 	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
773 		u32 val;
774 
775 		val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
776 		write_gts(cq, val);
777 		cq->cidx_inc = 0;
778 	}
779 	if (++cq->cidx == cq->size) {
780 		cq->cidx = 0;
781 		cq->gen ^= 1;
782 	}
783 }
784 
t4_valid_cqe(struct t4_cq * cq,struct t4_cqe * cqe)785 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
786 {
787 	return (CQE_GENBIT(cqe) == cq->gen);
788 }
789 
t4_cq_notempty(struct t4_cq * cq)790 static inline int t4_cq_notempty(struct t4_cq *cq)
791 {
792 	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
793 }
794 
t4_next_hw_cqe(struct t4_cq * cq,struct t4_cqe ** cqe)795 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
796 {
797 	int ret;
798 	u16 prev_cidx;
799 
800 	if (cq->cidx == 0)
801 		prev_cidx = cq->size - 1;
802 	else
803 		prev_cidx = cq->cidx - 1;
804 
805 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
806 		ret = -EOVERFLOW;
807 		cq->error = 1;
808 		pr_err("cq overflow cqid %u\n", cq->cqid);
809 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
810 
811 		/* Ensure CQE is flushed to memory */
812 		rmb();
813 		*cqe = &cq->queue[cq->cidx];
814 		ret = 0;
815 	} else
816 		ret = -ENODATA;
817 	return ret;
818 }
819 
t4_next_sw_cqe(struct t4_cq * cq)820 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
821 {
822 	if (cq->sw_in_use == cq->size) {
823 		pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
824 			__func__, cq->cqid);
825 		cq->error = 1;
826 		return NULL;
827 	}
828 	if (cq->sw_in_use)
829 		return &cq->sw_queue[cq->sw_cidx];
830 	return NULL;
831 }
832 
t4_next_cqe(struct t4_cq * cq,struct t4_cqe ** cqe)833 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
834 {
835 	int ret = 0;
836 
837 	if (cq->error)
838 		ret = -ENODATA;
839 	else if (cq->sw_in_use)
840 		*cqe = &cq->sw_queue[cq->sw_cidx];
841 	else
842 		ret = t4_next_hw_cqe(cq, cqe);
843 	return ret;
844 }
845 
t4_cq_in_error(struct t4_cq * cq)846 static inline int t4_cq_in_error(struct t4_cq *cq)
847 {
848 	return *cq->qp_errp;
849 }
850 
t4_set_cq_in_error(struct t4_cq * cq)851 static inline void t4_set_cq_in_error(struct t4_cq *cq)
852 {
853 	*cq->qp_errp = 1;
854 }
855 #endif
856 
857 struct t4_dev_status_page {
858 	u8 db_off;
859 	u8 write_cmpl_supported;
860 	u16 pad2;
861 	u32 pad3;
862 	u64 qp_start;
863 	u64 qp_size;
864 	u64 cq_start;
865 	u64 cq_size;
866 };
867