1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include "amdgpu_sync.h"
27 #include "amdgpu_object.h"
28 #include "amdgpu_vm.h"
29 #include "amdgpu_mn.h"
30 #include "amdgpu.h"
31 #include "amdgpu_xgmi.h"
32 #include "kfd_priv.h"
33 #include "kfd_svm.h"
34 #include "kfd_migrate.h"
35 #include "kfd_smi_events.h"
36
37 #ifdef dev_fmt
38 #undef dev_fmt
39 #endif
40 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
41
42 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
43
44 /* Long enough to ensure no retry fault comes after svm range is restored and
45 * page table is updated.
46 */
47 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
48
49 /* Giant svm range split into smaller ranges based on this, it is decided using
50 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
51 * power of 2MB.
52 */
53 static uint64_t max_svm_range_pages;
54
55 struct criu_svm_metadata {
56 struct list_head list;
57 struct kfd_criu_svm_range_priv_data data;
58 };
59
60 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
61 static bool
62 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
63 const struct mmu_notifier_range *range,
64 unsigned long cur_seq);
65 static int
66 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
67 uint64_t *bo_s, uint64_t *bo_l);
68 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
69 .invalidate = svm_range_cpu_invalidate_pagetables,
70 };
71
72 /**
73 * svm_range_unlink - unlink svm_range from lists and interval tree
74 * @prange: svm range structure to be removed
75 *
76 * Remove the svm_range from the svms and svm_bo lists and the svms
77 * interval tree.
78 *
79 * Context: The caller must hold svms->lock
80 */
svm_range_unlink(struct svm_range * prange)81 static void svm_range_unlink(struct svm_range *prange)
82 {
83 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
84 prange, prange->start, prange->last);
85
86 if (prange->svm_bo) {
87 spin_lock(&prange->svm_bo->list_lock);
88 list_del(&prange->svm_bo_list);
89 spin_unlock(&prange->svm_bo->list_lock);
90 }
91
92 list_del(&prange->list);
93 if (prange->it_node.start != 0 && prange->it_node.last != 0)
94 interval_tree_remove(&prange->it_node, &prange->svms->objects);
95 }
96
97 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)98 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
99 {
100 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
101 prange, prange->start, prange->last);
102
103 mmu_interval_notifier_insert_locked(&prange->notifier, mm,
104 prange->start << PAGE_SHIFT,
105 prange->npages << PAGE_SHIFT,
106 &svm_range_mn_ops);
107 }
108
109 /**
110 * svm_range_add_to_svms - add svm range to svms
111 * @prange: svm range structure to be added
112 *
113 * Add the svm range to svms interval tree and link list
114 *
115 * Context: The caller must hold svms->lock
116 */
svm_range_add_to_svms(struct svm_range * prange)117 static void svm_range_add_to_svms(struct svm_range *prange)
118 {
119 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
120 prange, prange->start, prange->last);
121
122 list_move_tail(&prange->list, &prange->svms->list);
123 prange->it_node.start = prange->start;
124 prange->it_node.last = prange->last;
125 interval_tree_insert(&prange->it_node, &prange->svms->objects);
126 }
127
svm_range_remove_notifier(struct svm_range * prange)128 static void svm_range_remove_notifier(struct svm_range *prange)
129 {
130 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
131 prange->svms, prange,
132 prange->notifier.interval_tree.start >> PAGE_SHIFT,
133 prange->notifier.interval_tree.last >> PAGE_SHIFT);
134
135 if (prange->notifier.interval_tree.start != 0 &&
136 prange->notifier.interval_tree.last != 0)
137 mmu_interval_notifier_remove(&prange->notifier);
138 }
139
140 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)141 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
142 {
143 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
144 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
145 }
146
147 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)148 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
149 unsigned long offset, unsigned long npages,
150 unsigned long *hmm_pfns, uint32_t gpuidx)
151 {
152 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
153 dma_addr_t *addr = prange->dma_addr[gpuidx];
154 struct device *dev = adev->dev;
155 struct page *page;
156 int i, r;
157
158 if (!addr) {
159 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
160 if (!addr)
161 return -ENOMEM;
162 prange->dma_addr[gpuidx] = addr;
163 }
164
165 addr += offset;
166 for (i = 0; i < npages; i++) {
167 if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
168 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
169
170 page = hmm_pfn_to_page(hmm_pfns[i]);
171 if (is_zone_device_page(page)) {
172 struct amdgpu_device *bo_adev =
173 amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
174
175 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
176 bo_adev->vm_manager.vram_base_offset -
177 bo_adev->kfd.dev->pgmap.range.start;
178 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
179 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
180 continue;
181 }
182 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
183 r = dma_mapping_error(dev, addr[i]);
184 if (r) {
185 dev_err(dev, "failed %d dma_map_page\n", r);
186 return r;
187 }
188 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
189 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
190 }
191 return 0;
192 }
193
194 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)195 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
196 unsigned long offset, unsigned long npages,
197 unsigned long *hmm_pfns)
198 {
199 struct kfd_process *p;
200 uint32_t gpuidx;
201 int r;
202
203 p = container_of(prange->svms, struct kfd_process, svms);
204
205 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
206 struct kfd_process_device *pdd;
207
208 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
209 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
210 if (!pdd) {
211 pr_debug("failed to find device idx %d\n", gpuidx);
212 return -EINVAL;
213 }
214
215 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
216 hmm_pfns, gpuidx);
217 if (r)
218 break;
219 }
220
221 return r;
222 }
223
svm_range_dma_unmap(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)224 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr,
225 unsigned long offset, unsigned long npages)
226 {
227 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
228 int i;
229
230 if (!dma_addr)
231 return;
232
233 for (i = offset; i < offset + npages; i++) {
234 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
235 continue;
236 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
237 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
238 dma_addr[i] = 0;
239 }
240 }
241
svm_range_free_dma_mappings(struct svm_range * prange)242 void svm_range_free_dma_mappings(struct svm_range *prange)
243 {
244 struct kfd_process_device *pdd;
245 dma_addr_t *dma_addr;
246 struct device *dev;
247 struct kfd_process *p;
248 uint32_t gpuidx;
249
250 p = container_of(prange->svms, struct kfd_process, svms);
251
252 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
253 dma_addr = prange->dma_addr[gpuidx];
254 if (!dma_addr)
255 continue;
256
257 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
258 if (!pdd) {
259 pr_debug("failed to find device idx %d\n", gpuidx);
260 continue;
261 }
262 dev = &pdd->dev->pdev->dev;
263 svm_range_dma_unmap(dev, dma_addr, 0, prange->npages);
264 kvfree(dma_addr);
265 prange->dma_addr[gpuidx] = NULL;
266 }
267 }
268
svm_range_free(struct svm_range * prange,bool update_mem_usage)269 static void svm_range_free(struct svm_range *prange, bool update_mem_usage)
270 {
271 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
272 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
273
274 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
275 prange->start, prange->last);
276
277 svm_range_vram_node_free(prange);
278 svm_range_free_dma_mappings(prange);
279
280 if (update_mem_usage && !p->xnack_enabled) {
281 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
282 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
283 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR);
284 }
285 mutex_destroy(&prange->lock);
286 mutex_destroy(&prange->migrate_mutex);
287 kfree(prange);
288 }
289
290 static void
svm_range_set_default_attributes(int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)291 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
292 uint8_t *granularity, uint32_t *flags)
293 {
294 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
295 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
296 *granularity = 9;
297 *flags =
298 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
299 }
300
301 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)302 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
303 uint64_t last, bool update_mem_usage)
304 {
305 uint64_t size = last - start + 1;
306 struct svm_range *prange;
307 struct kfd_process *p;
308
309 prange = kzalloc(sizeof(*prange), GFP_KERNEL);
310 if (!prange)
311 return NULL;
312
313 p = container_of(svms, struct kfd_process, svms);
314 if (!p->xnack_enabled && update_mem_usage &&
315 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
316 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR)) {
317 pr_info("SVM mapping failed, exceeds resident system memory limit\n");
318 kfree(prange);
319 return NULL;
320 }
321 prange->npages = size;
322 prange->svms = svms;
323 prange->start = start;
324 prange->last = last;
325 INIT_LIST_HEAD(&prange->list);
326 INIT_LIST_HEAD(&prange->update_list);
327 INIT_LIST_HEAD(&prange->svm_bo_list);
328 INIT_LIST_HEAD(&prange->deferred_list);
329 INIT_LIST_HEAD(&prange->child_list);
330 atomic_set(&prange->invalid, 0);
331 prange->validate_timestamp = 0;
332 mutex_init(&prange->migrate_mutex);
333 mutex_init(&prange->lock);
334
335 if (p->xnack_enabled)
336 bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
337 MAX_GPU_INSTANCE);
338
339 svm_range_set_default_attributes(&prange->preferred_loc,
340 &prange->prefetch_loc,
341 &prange->granularity, &prange->flags);
342
343 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
344
345 return prange;
346 }
347
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)348 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
349 {
350 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
351 return false;
352
353 return true;
354 }
355
svm_range_bo_release(struct kref * kref)356 static void svm_range_bo_release(struct kref *kref)
357 {
358 struct svm_range_bo *svm_bo;
359
360 svm_bo = container_of(kref, struct svm_range_bo, kref);
361 pr_debug("svm_bo 0x%p\n", svm_bo);
362
363 spin_lock(&svm_bo->list_lock);
364 while (!list_empty(&svm_bo->range_list)) {
365 struct svm_range *prange =
366 list_first_entry(&svm_bo->range_list,
367 struct svm_range, svm_bo_list);
368 /* list_del_init tells a concurrent svm_range_vram_node_new when
369 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
370 */
371 list_del_init(&prange->svm_bo_list);
372 spin_unlock(&svm_bo->list_lock);
373
374 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
375 prange->start, prange->last);
376 mutex_lock(&prange->lock);
377 prange->svm_bo = NULL;
378 mutex_unlock(&prange->lock);
379
380 spin_lock(&svm_bo->list_lock);
381 }
382 spin_unlock(&svm_bo->list_lock);
383 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base)) {
384 /* We're not in the eviction worker.
385 * Signal the fence and synchronize with any
386 * pending eviction work.
387 */
388 dma_fence_signal(&svm_bo->eviction_fence->base);
389 cancel_work_sync(&svm_bo->eviction_work);
390 }
391 dma_fence_put(&svm_bo->eviction_fence->base);
392 amdgpu_bo_unref(&svm_bo->bo);
393 kfree(svm_bo);
394 }
395
svm_range_bo_wq_release(struct work_struct * work)396 static void svm_range_bo_wq_release(struct work_struct *work)
397 {
398 struct svm_range_bo *svm_bo;
399
400 svm_bo = container_of(work, struct svm_range_bo, release_work);
401 svm_range_bo_release(&svm_bo->kref);
402 }
403
svm_range_bo_release_async(struct kref * kref)404 static void svm_range_bo_release_async(struct kref *kref)
405 {
406 struct svm_range_bo *svm_bo;
407
408 svm_bo = container_of(kref, struct svm_range_bo, kref);
409 pr_debug("svm_bo 0x%p\n", svm_bo);
410 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
411 schedule_work(&svm_bo->release_work);
412 }
413
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)414 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
415 {
416 kref_put(&svm_bo->kref, svm_range_bo_release_async);
417 }
418
svm_range_bo_unref(struct svm_range_bo * svm_bo)419 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
420 {
421 if (svm_bo)
422 kref_put(&svm_bo->kref, svm_range_bo_release);
423 }
424
425 static bool
svm_range_validate_svm_bo(struct amdgpu_device * adev,struct svm_range * prange)426 svm_range_validate_svm_bo(struct amdgpu_device *adev, struct svm_range *prange)
427 {
428 struct amdgpu_device *bo_adev;
429
430 mutex_lock(&prange->lock);
431 if (!prange->svm_bo) {
432 mutex_unlock(&prange->lock);
433 return false;
434 }
435 if (prange->ttm_res) {
436 /* We still have a reference, all is well */
437 mutex_unlock(&prange->lock);
438 return true;
439 }
440 if (svm_bo_ref_unless_zero(prange->svm_bo)) {
441 /*
442 * Migrate from GPU to GPU, remove range from source bo_adev
443 * svm_bo range list, and return false to allocate svm_bo from
444 * destination adev.
445 */
446 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
447 if (bo_adev != adev) {
448 mutex_unlock(&prange->lock);
449
450 spin_lock(&prange->svm_bo->list_lock);
451 list_del_init(&prange->svm_bo_list);
452 spin_unlock(&prange->svm_bo->list_lock);
453
454 svm_range_bo_unref(prange->svm_bo);
455 return false;
456 }
457 if (READ_ONCE(prange->svm_bo->evicting)) {
458 struct dma_fence *f;
459 struct svm_range_bo *svm_bo;
460 /* The BO is getting evicted,
461 * we need to get a new one
462 */
463 mutex_unlock(&prange->lock);
464 svm_bo = prange->svm_bo;
465 f = dma_fence_get(&svm_bo->eviction_fence->base);
466 svm_range_bo_unref(prange->svm_bo);
467 /* wait for the fence to avoid long spin-loop
468 * at list_empty_careful
469 */
470 dma_fence_wait(f, false);
471 dma_fence_put(f);
472 } else {
473 /* The BO was still around and we got
474 * a new reference to it
475 */
476 mutex_unlock(&prange->lock);
477 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
478 prange->svms, prange->start, prange->last);
479
480 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
481 return true;
482 }
483
484 } else {
485 mutex_unlock(&prange->lock);
486 }
487
488 /* We need a new svm_bo. Spin-loop to wait for concurrent
489 * svm_range_bo_release to finish removing this range from
490 * its range list. After this, it is safe to reuse the
491 * svm_bo pointer and svm_bo_list head.
492 */
493 while (!list_empty_careful(&prange->svm_bo_list))
494 ;
495
496 return false;
497 }
498
svm_range_bo_new(void)499 static struct svm_range_bo *svm_range_bo_new(void)
500 {
501 struct svm_range_bo *svm_bo;
502
503 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
504 if (!svm_bo)
505 return NULL;
506
507 kref_init(&svm_bo->kref);
508 INIT_LIST_HEAD(&svm_bo->range_list);
509 spin_lock_init(&svm_bo->list_lock);
510
511 return svm_bo;
512 }
513
514 int
svm_range_vram_node_new(struct amdgpu_device * adev,struct svm_range * prange,bool clear)515 svm_range_vram_node_new(struct amdgpu_device *adev, struct svm_range *prange,
516 bool clear)
517 {
518 struct amdgpu_bo_param bp;
519 struct svm_range_bo *svm_bo;
520 struct amdgpu_bo_user *ubo;
521 struct amdgpu_bo *bo;
522 struct kfd_process *p;
523 struct mm_struct *mm;
524 int r;
525
526 p = container_of(prange->svms, struct kfd_process, svms);
527 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
528 prange->start, prange->last);
529
530 if (svm_range_validate_svm_bo(adev, prange))
531 return 0;
532
533 svm_bo = svm_range_bo_new();
534 if (!svm_bo) {
535 pr_debug("failed to alloc svm bo\n");
536 return -ENOMEM;
537 }
538 mm = get_task_mm(p->lead_thread);
539 if (!mm) {
540 pr_debug("failed to get mm\n");
541 kfree(svm_bo);
542 return -ESRCH;
543 }
544 svm_bo->eviction_fence =
545 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
546 mm,
547 svm_bo);
548 mmput(mm);
549 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
550 svm_bo->evicting = 0;
551 memset(&bp, 0, sizeof(bp));
552 bp.size = prange->npages * PAGE_SIZE;
553 bp.byte_align = PAGE_SIZE;
554 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
555 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
556 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
557 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
558 bp.type = ttm_bo_type_device;
559 bp.resv = NULL;
560
561 r = amdgpu_bo_create_user(adev, &bp, &ubo);
562 if (r) {
563 pr_debug("failed %d to create bo\n", r);
564 goto create_bo_failed;
565 }
566 bo = &ubo->bo;
567 r = amdgpu_bo_reserve(bo, true);
568 if (r) {
569 pr_debug("failed %d to reserve bo\n", r);
570 goto reserve_bo_failed;
571 }
572
573 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
574 if (r) {
575 pr_debug("failed %d to reserve bo\n", r);
576 amdgpu_bo_unreserve(bo);
577 goto reserve_bo_failed;
578 }
579 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
580
581 amdgpu_bo_unreserve(bo);
582
583 svm_bo->bo = bo;
584 prange->svm_bo = svm_bo;
585 prange->ttm_res = bo->tbo.resource;
586 prange->offset = 0;
587
588 spin_lock(&svm_bo->list_lock);
589 list_add(&prange->svm_bo_list, &svm_bo->range_list);
590 spin_unlock(&svm_bo->list_lock);
591
592 return 0;
593
594 reserve_bo_failed:
595 amdgpu_bo_unref(&bo);
596 create_bo_failed:
597 dma_fence_put(&svm_bo->eviction_fence->base);
598 kfree(svm_bo);
599 prange->ttm_res = NULL;
600
601 return r;
602 }
603
svm_range_vram_node_free(struct svm_range * prange)604 void svm_range_vram_node_free(struct svm_range *prange)
605 {
606 svm_range_bo_unref(prange->svm_bo);
607 prange->ttm_res = NULL;
608 }
609
610 struct amdgpu_device *
svm_range_get_adev_by_id(struct svm_range * prange,uint32_t gpu_id)611 svm_range_get_adev_by_id(struct svm_range *prange, uint32_t gpu_id)
612 {
613 struct kfd_process_device *pdd;
614 struct kfd_process *p;
615 int32_t gpu_idx;
616
617 p = container_of(prange->svms, struct kfd_process, svms);
618
619 gpu_idx = kfd_process_gpuidx_from_gpuid(p, gpu_id);
620 if (gpu_idx < 0) {
621 pr_debug("failed to get device by id 0x%x\n", gpu_id);
622 return NULL;
623 }
624 pdd = kfd_process_device_from_gpuidx(p, gpu_idx);
625 if (!pdd) {
626 pr_debug("failed to get device by idx 0x%x\n", gpu_idx);
627 return NULL;
628 }
629
630 return pdd->dev->adev;
631 }
632
633 struct kfd_process_device *
svm_range_get_pdd_by_adev(struct svm_range * prange,struct amdgpu_device * adev)634 svm_range_get_pdd_by_adev(struct svm_range *prange, struct amdgpu_device *adev)
635 {
636 struct kfd_process *p;
637 int32_t gpu_idx, gpuid;
638 int r;
639
640 p = container_of(prange->svms, struct kfd_process, svms);
641
642 r = kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpu_idx);
643 if (r) {
644 pr_debug("failed to get device id by adev %p\n", adev);
645 return NULL;
646 }
647
648 return kfd_process_device_from_gpuidx(p, gpu_idx);
649 }
650
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)651 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
652 {
653 struct ttm_operation_ctx ctx = { false, false };
654
655 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
656
657 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
658 }
659
660 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)661 svm_range_check_attr(struct kfd_process *p,
662 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
663 {
664 uint32_t i;
665
666 for (i = 0; i < nattr; i++) {
667 uint32_t val = attrs[i].value;
668 int gpuidx = MAX_GPU_INSTANCE;
669
670 switch (attrs[i].type) {
671 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
672 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
673 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
674 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
675 break;
676 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
677 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
678 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
679 break;
680 case KFD_IOCTL_SVM_ATTR_ACCESS:
681 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
682 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
683 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
684 break;
685 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
686 break;
687 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
688 break;
689 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
690 break;
691 default:
692 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
693 return -EINVAL;
694 }
695
696 if (gpuidx < 0) {
697 pr_debug("no GPU 0x%x found\n", val);
698 return -EINVAL;
699 } else if (gpuidx < MAX_GPU_INSTANCE &&
700 !test_bit(gpuidx, p->svms.bitmap_supported)) {
701 pr_debug("GPU 0x%x not supported\n", val);
702 return -EINVAL;
703 }
704 }
705
706 return 0;
707 }
708
709 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)710 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
711 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
712 bool *update_mapping)
713 {
714 uint32_t i;
715 int gpuidx;
716
717 for (i = 0; i < nattr; i++) {
718 switch (attrs[i].type) {
719 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
720 prange->preferred_loc = attrs[i].value;
721 break;
722 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
723 prange->prefetch_loc = attrs[i].value;
724 break;
725 case KFD_IOCTL_SVM_ATTR_ACCESS:
726 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
727 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
728 *update_mapping = true;
729 gpuidx = kfd_process_gpuidx_from_gpuid(p,
730 attrs[i].value);
731 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
732 bitmap_clear(prange->bitmap_access, gpuidx, 1);
733 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
734 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
735 bitmap_set(prange->bitmap_access, gpuidx, 1);
736 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
737 } else {
738 bitmap_clear(prange->bitmap_access, gpuidx, 1);
739 bitmap_set(prange->bitmap_aip, gpuidx, 1);
740 }
741 break;
742 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
743 *update_mapping = true;
744 prange->flags |= attrs[i].value;
745 break;
746 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
747 *update_mapping = true;
748 prange->flags &= ~attrs[i].value;
749 break;
750 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
751 prange->granularity = attrs[i].value;
752 break;
753 default:
754 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
755 }
756 }
757 }
758
759 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)760 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
761 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
762 {
763 uint32_t i;
764 int gpuidx;
765
766 for (i = 0; i < nattr; i++) {
767 switch (attrs[i].type) {
768 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
769 if (prange->preferred_loc != attrs[i].value)
770 return false;
771 break;
772 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
773 /* Prefetch should always trigger a migration even
774 * if the value of the attribute didn't change.
775 */
776 return false;
777 case KFD_IOCTL_SVM_ATTR_ACCESS:
778 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
779 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
780 gpuidx = kfd_process_gpuidx_from_gpuid(p,
781 attrs[i].value);
782 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
783 if (test_bit(gpuidx, prange->bitmap_access) ||
784 test_bit(gpuidx, prange->bitmap_aip))
785 return false;
786 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
787 if (!test_bit(gpuidx, prange->bitmap_access))
788 return false;
789 } else {
790 if (!test_bit(gpuidx, prange->bitmap_aip))
791 return false;
792 }
793 break;
794 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
795 if ((prange->flags & attrs[i].value) != attrs[i].value)
796 return false;
797 break;
798 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
799 if ((prange->flags & attrs[i].value) != 0)
800 return false;
801 break;
802 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
803 if (prange->granularity != attrs[i].value)
804 return false;
805 break;
806 default:
807 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
808 }
809 }
810
811 return true;
812 }
813
814 /**
815 * svm_range_debug_dump - print all range information from svms
816 * @svms: svm range list header
817 *
818 * debug output svm range start, end, prefetch location from svms
819 * interval tree and link list
820 *
821 * Context: The caller must hold svms->lock
822 */
svm_range_debug_dump(struct svm_range_list * svms)823 static void svm_range_debug_dump(struct svm_range_list *svms)
824 {
825 struct interval_tree_node *node;
826 struct svm_range *prange;
827
828 pr_debug("dump svms 0x%p list\n", svms);
829 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
830
831 list_for_each_entry(prange, &svms->list, list) {
832 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
833 prange, prange->start, prange->npages,
834 prange->start + prange->npages - 1,
835 prange->actual_loc);
836 }
837
838 pr_debug("dump svms 0x%p interval tree\n", svms);
839 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
840 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
841 while (node) {
842 prange = container_of(node, struct svm_range, it_node);
843 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
844 prange, prange->start, prange->npages,
845 prange->start + prange->npages - 1,
846 prange->actual_loc);
847 node = interval_tree_iter_next(node, 0, ~0ULL);
848 }
849 }
850
851 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n)852 svm_range_split_array(void *ppnew, void *ppold, size_t size,
853 uint64_t old_start, uint64_t old_n,
854 uint64_t new_start, uint64_t new_n)
855 {
856 unsigned char *new, *old, *pold;
857 uint64_t d;
858
859 if (!ppold)
860 return 0;
861 pold = *(unsigned char **)ppold;
862 if (!pold)
863 return 0;
864
865 new = kvmalloc_array(new_n, size, GFP_KERNEL);
866 if (!new)
867 return -ENOMEM;
868
869 d = (new_start - old_start) * size;
870 memcpy(new, pold + d, new_n * size);
871
872 old = kvmalloc_array(old_n, size, GFP_KERNEL);
873 if (!old) {
874 kvfree(new);
875 return -ENOMEM;
876 }
877
878 d = (new_start == old_start) ? new_n * size : 0;
879 memcpy(old, pold + d, old_n * size);
880
881 kvfree(pold);
882 *(void **)ppold = old;
883 *(void **)ppnew = new;
884
885 return 0;
886 }
887
888 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)889 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
890 uint64_t start, uint64_t last)
891 {
892 uint64_t npages = last - start + 1;
893 int i, r;
894
895 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
896 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
897 sizeof(*old->dma_addr[i]), old->start,
898 npages, new->start, new->npages);
899 if (r)
900 return r;
901 }
902
903 return 0;
904 }
905
906 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)907 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
908 uint64_t start, uint64_t last)
909 {
910 uint64_t npages = last - start + 1;
911
912 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
913 new->svms, new, new->start, start, last);
914
915 if (new->start == old->start) {
916 new->offset = old->offset;
917 old->offset += new->npages;
918 } else {
919 new->offset = old->offset + npages;
920 }
921
922 new->svm_bo = svm_range_bo_ref(old->svm_bo);
923 new->ttm_res = old->ttm_res;
924
925 spin_lock(&new->svm_bo->list_lock);
926 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
927 spin_unlock(&new->svm_bo->list_lock);
928
929 return 0;
930 }
931
932 /**
933 * svm_range_split_adjust - split range and adjust
934 *
935 * @new: new range
936 * @old: the old range
937 * @start: the old range adjust to start address in pages
938 * @last: the old range adjust to last address in pages
939 *
940 * Copy system memory dma_addr or vram ttm_res in old range to new
941 * range from new_start up to size new->npages, the remaining old range is from
942 * start to last
943 *
944 * Return:
945 * 0 - OK, -ENOMEM - out of memory
946 */
947 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)948 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
949 uint64_t start, uint64_t last)
950 {
951 int r;
952
953 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
954 new->svms, new->start, old->start, old->last, start, last);
955
956 if (new->start < old->start ||
957 new->last > old->last) {
958 WARN_ONCE(1, "invalid new range start or last\n");
959 return -EINVAL;
960 }
961
962 r = svm_range_split_pages(new, old, start, last);
963 if (r)
964 return r;
965
966 if (old->actual_loc && old->ttm_res) {
967 r = svm_range_split_nodes(new, old, start, last);
968 if (r)
969 return r;
970 }
971
972 old->npages = last - start + 1;
973 old->start = start;
974 old->last = last;
975 new->flags = old->flags;
976 new->preferred_loc = old->preferred_loc;
977 new->prefetch_loc = old->prefetch_loc;
978 new->actual_loc = old->actual_loc;
979 new->granularity = old->granularity;
980 new->mapped_to_gpu = old->mapped_to_gpu;
981 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
982 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
983
984 return 0;
985 }
986
987 /**
988 * svm_range_split - split a range in 2 ranges
989 *
990 * @prange: the svm range to split
991 * @start: the remaining range start address in pages
992 * @last: the remaining range last address in pages
993 * @new: the result new range generated
994 *
995 * Two cases only:
996 * case 1: if start == prange->start
997 * prange ==> prange[start, last]
998 * new range [last + 1, prange->last]
999 *
1000 * case 2: if last == prange->last
1001 * prange ==> prange[start, last]
1002 * new range [prange->start, start - 1]
1003 *
1004 * Return:
1005 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1006 */
1007 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1008 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1009 struct svm_range **new)
1010 {
1011 uint64_t old_start = prange->start;
1012 uint64_t old_last = prange->last;
1013 struct svm_range_list *svms;
1014 int r = 0;
1015
1016 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1017 old_start, old_last, start, last);
1018
1019 if (old_start != start && old_last != last)
1020 return -EINVAL;
1021 if (start < old_start || last > old_last)
1022 return -EINVAL;
1023
1024 svms = prange->svms;
1025 if (old_start == start)
1026 *new = svm_range_new(svms, last + 1, old_last, false);
1027 else
1028 *new = svm_range_new(svms, old_start, start - 1, false);
1029 if (!*new)
1030 return -ENOMEM;
1031
1032 r = svm_range_split_adjust(*new, prange, start, last);
1033 if (r) {
1034 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1035 r, old_start, old_last, start, last);
1036 svm_range_free(*new, false);
1037 *new = NULL;
1038 }
1039
1040 return r;
1041 }
1042
1043 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list)1044 svm_range_split_tail(struct svm_range *prange,
1045 uint64_t new_last, struct list_head *insert_list)
1046 {
1047 struct svm_range *tail;
1048 int r = svm_range_split(prange, prange->start, new_last, &tail);
1049
1050 if (!r)
1051 list_add(&tail->list, insert_list);
1052 return r;
1053 }
1054
1055 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list)1056 svm_range_split_head(struct svm_range *prange,
1057 uint64_t new_start, struct list_head *insert_list)
1058 {
1059 struct svm_range *head;
1060 int r = svm_range_split(prange, new_start, prange->last, &head);
1061
1062 if (!r)
1063 list_add(&head->list, insert_list);
1064 return r;
1065 }
1066
1067 static void
svm_range_add_child(struct svm_range * prange,struct mm_struct * mm,struct svm_range * pchild,enum svm_work_list_ops op)1068 svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1069 struct svm_range *pchild, enum svm_work_list_ops op)
1070 {
1071 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1072 pchild, pchild->start, pchild->last, prange, op);
1073
1074 pchild->work_item.mm = mm;
1075 pchild->work_item.op = op;
1076 list_add_tail(&pchild->child_list, &prange->child_list);
1077 }
1078
1079 /**
1080 * svm_range_split_by_granularity - collect ranges within granularity boundary
1081 *
1082 * @p: the process with svms list
1083 * @mm: mm structure
1084 * @addr: the vm fault address in pages, to split the prange
1085 * @parent: parent range if prange is from child list
1086 * @prange: prange to split
1087 *
1088 * Trims @prange to be a single aligned block of prange->granularity if
1089 * possible. The head and tail are added to the child_list in @parent.
1090 *
1091 * Context: caller must hold mmap_read_lock and prange->lock
1092 *
1093 * Return:
1094 * 0 - OK, otherwise error code
1095 */
1096 int
svm_range_split_by_granularity(struct kfd_process * p,struct mm_struct * mm,unsigned long addr,struct svm_range * parent,struct svm_range * prange)1097 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
1098 unsigned long addr, struct svm_range *parent,
1099 struct svm_range *prange)
1100 {
1101 struct svm_range *head, *tail;
1102 unsigned long start, last, size;
1103 int r;
1104
1105 /* Align splited range start and size to granularity size, then a single
1106 * PTE will be used for whole range, this reduces the number of PTE
1107 * updated and the L1 TLB space used for translation.
1108 */
1109 size = 1UL << prange->granularity;
1110 start = ALIGN_DOWN(addr, size);
1111 last = ALIGN(addr + 1, size) - 1;
1112
1113 pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
1114 prange->svms, prange->start, prange->last, start, last, size);
1115
1116 if (start > prange->start) {
1117 r = svm_range_split(prange, start, prange->last, &head);
1118 if (r)
1119 return r;
1120 svm_range_add_child(parent, mm, head, SVM_OP_ADD_RANGE);
1121 }
1122
1123 if (last < prange->last) {
1124 r = svm_range_split(prange, prange->start, last, &tail);
1125 if (r)
1126 return r;
1127 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
1128 }
1129
1130 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
1131 if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
1132 prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
1133 pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
1134 prange, prange->start, prange->last,
1135 SVM_OP_ADD_RANGE_AND_MAP);
1136 }
1137 return 0;
1138 }
1139
1140 static uint64_t
svm_range_get_pte_flags(struct amdgpu_device * adev,struct svm_range * prange,int domain)1141 svm_range_get_pte_flags(struct amdgpu_device *adev, struct svm_range *prange,
1142 int domain)
1143 {
1144 struct amdgpu_device *bo_adev;
1145 uint32_t flags = prange->flags;
1146 uint32_t mapping_flags = 0;
1147 uint64_t pte_flags;
1148 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1149 bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT;
1150
1151 if (domain == SVM_RANGE_VRAM_DOMAIN)
1152 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
1153
1154 switch (KFD_GC_VERSION(adev->kfd.dev)) {
1155 case IP_VERSION(9, 4, 1):
1156 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1157 if (bo_adev == adev) {
1158 mapping_flags |= coherent ?
1159 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1160 } else {
1161 mapping_flags |= coherent ?
1162 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1163 if (amdgpu_xgmi_same_hive(adev, bo_adev))
1164 snoop = true;
1165 }
1166 } else {
1167 mapping_flags |= coherent ?
1168 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1169 }
1170 break;
1171 case IP_VERSION(9, 4, 2):
1172 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1173 if (bo_adev == adev) {
1174 mapping_flags |= coherent ?
1175 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1176 if (adev->gmc.xgmi.connected_to_cpu)
1177 snoop = true;
1178 } else {
1179 mapping_flags |= coherent ?
1180 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1181 if (amdgpu_xgmi_same_hive(adev, bo_adev))
1182 snoop = true;
1183 }
1184 } else {
1185 mapping_flags |= coherent ?
1186 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1187 }
1188 break;
1189 default:
1190 mapping_flags |= coherent ?
1191 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1192 }
1193
1194 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1195
1196 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1197 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1198 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1199 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1200
1201 pte_flags = AMDGPU_PTE_VALID;
1202 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1203 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1204
1205 pte_flags |= amdgpu_gem_va_map_flags(adev, mapping_flags);
1206 return pte_flags;
1207 }
1208
1209 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1210 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1211 uint64_t start, uint64_t last,
1212 struct dma_fence **fence)
1213 {
1214 uint64_t init_pte_value = 0;
1215
1216 pr_debug("[0x%llx 0x%llx]\n", start, last);
1217
1218 return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start,
1219 last, init_pte_value, 0, 0, NULL, NULL,
1220 fence);
1221 }
1222
1223 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1224 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1225 unsigned long last, uint32_t trigger)
1226 {
1227 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1228 struct kfd_process_device *pdd;
1229 struct dma_fence *fence = NULL;
1230 struct kfd_process *p;
1231 uint32_t gpuidx;
1232 int r = 0;
1233
1234 if (!prange->mapped_to_gpu) {
1235 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1236 prange, prange->start, prange->last);
1237 return 0;
1238 }
1239
1240 if (prange->start == start && prange->last == last) {
1241 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1242 prange->mapped_to_gpu = false;
1243 }
1244
1245 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1246 MAX_GPU_INSTANCE);
1247 p = container_of(prange->svms, struct kfd_process, svms);
1248
1249 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1250 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1251 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1252 if (!pdd) {
1253 pr_debug("failed to find device idx %d\n", gpuidx);
1254 return -EINVAL;
1255 }
1256
1257 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1258 start, last, trigger);
1259
1260 r = svm_range_unmap_from_gpu(pdd->dev->adev,
1261 drm_priv_to_vm(pdd->drm_priv),
1262 start, last, &fence);
1263 if (r)
1264 break;
1265
1266 if (fence) {
1267 r = dma_fence_wait(fence, false);
1268 dma_fence_put(fence);
1269 fence = NULL;
1270 if (r)
1271 break;
1272 }
1273 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1274 }
1275
1276 return r;
1277 }
1278
1279 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1280 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1281 unsigned long offset, unsigned long npages, bool readonly,
1282 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1283 struct dma_fence **fence, bool flush_tlb)
1284 {
1285 struct amdgpu_device *adev = pdd->dev->adev;
1286 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1287 uint64_t pte_flags;
1288 unsigned long last_start;
1289 int last_domain;
1290 int r = 0;
1291 int64_t i, j;
1292
1293 last_start = prange->start + offset;
1294
1295 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1296 last_start, last_start + npages - 1, readonly);
1297
1298 for (i = offset; i < offset + npages; i++) {
1299 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1300 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1301
1302 /* Collect all pages in the same address range and memory domain
1303 * that can be mapped with a single call to update mapping.
1304 */
1305 if (i < offset + npages - 1 &&
1306 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1307 continue;
1308
1309 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1310 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1311
1312 pte_flags = svm_range_get_pte_flags(adev, prange, last_domain);
1313 if (readonly)
1314 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1315
1316 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1317 prange->svms, last_start, prange->start + i,
1318 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1319 pte_flags);
1320
1321 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL,
1322 last_start, prange->start + i,
1323 pte_flags,
1324 (last_start - prange->start) << PAGE_SHIFT,
1325 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1326 NULL, dma_addr, &vm->last_update);
1327
1328 for (j = last_start - prange->start; j <= i; j++)
1329 dma_addr[j] |= last_domain;
1330
1331 if (r) {
1332 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1333 goto out;
1334 }
1335 last_start = prange->start + i + 1;
1336 }
1337
1338 r = amdgpu_vm_update_pdes(adev, vm, false);
1339 if (r) {
1340 pr_debug("failed %d to update directories 0x%lx\n", r,
1341 prange->start);
1342 goto out;
1343 }
1344
1345 if (fence)
1346 *fence = dma_fence_get(vm->last_update);
1347
1348 out:
1349 return r;
1350 }
1351
1352 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1353 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1354 unsigned long npages, bool readonly,
1355 unsigned long *bitmap, bool wait, bool flush_tlb)
1356 {
1357 struct kfd_process_device *pdd;
1358 struct amdgpu_device *bo_adev;
1359 struct kfd_process *p;
1360 struct dma_fence *fence = NULL;
1361 uint32_t gpuidx;
1362 int r = 0;
1363
1364 if (prange->svm_bo && prange->ttm_res)
1365 bo_adev = amdgpu_ttm_adev(prange->svm_bo->bo->tbo.bdev);
1366 else
1367 bo_adev = NULL;
1368
1369 p = container_of(prange->svms, struct kfd_process, svms);
1370 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1371 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1372 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1373 if (!pdd) {
1374 pr_debug("failed to find device idx %d\n", gpuidx);
1375 return -EINVAL;
1376 }
1377
1378 pdd = kfd_bind_process_to_device(pdd->dev, p);
1379 if (IS_ERR(pdd))
1380 return -EINVAL;
1381
1382 if (bo_adev && pdd->dev->adev != bo_adev &&
1383 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1384 pr_debug("cannot map to device idx %d\n", gpuidx);
1385 continue;
1386 }
1387
1388 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1389 prange->dma_addr[gpuidx],
1390 bo_adev, wait ? &fence : NULL,
1391 flush_tlb);
1392 if (r)
1393 break;
1394
1395 if (fence) {
1396 r = dma_fence_wait(fence, false);
1397 dma_fence_put(fence);
1398 fence = NULL;
1399 if (r) {
1400 pr_debug("failed %d to dma fence wait\n", r);
1401 break;
1402 }
1403 }
1404
1405 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1406 }
1407
1408 return r;
1409 }
1410
1411 struct svm_validate_context {
1412 struct kfd_process *process;
1413 struct svm_range *prange;
1414 bool intr;
1415 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1416 struct ttm_validate_buffer tv[MAX_GPU_INSTANCE];
1417 struct list_head validate_list;
1418 struct ww_acquire_ctx ticket;
1419 };
1420
svm_range_reserve_bos(struct svm_validate_context * ctx)1421 static int svm_range_reserve_bos(struct svm_validate_context *ctx)
1422 {
1423 struct kfd_process_device *pdd;
1424 struct amdgpu_vm *vm;
1425 uint32_t gpuidx;
1426 int r;
1427
1428 INIT_LIST_HEAD(&ctx->validate_list);
1429 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1430 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1431 if (!pdd) {
1432 pr_debug("failed to find device idx %d\n", gpuidx);
1433 return -EINVAL;
1434 }
1435 vm = drm_priv_to_vm(pdd->drm_priv);
1436
1437 ctx->tv[gpuidx].bo = &vm->root.bo->tbo;
1438 ctx->tv[gpuidx].num_shared = 4;
1439 list_add(&ctx->tv[gpuidx].head, &ctx->validate_list);
1440 }
1441
1442 r = ttm_eu_reserve_buffers(&ctx->ticket, &ctx->validate_list,
1443 ctx->intr, NULL);
1444 if (r) {
1445 pr_debug("failed %d to reserve bo\n", r);
1446 return r;
1447 }
1448
1449 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1450 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1451 if (!pdd) {
1452 pr_debug("failed to find device idx %d\n", gpuidx);
1453 r = -EINVAL;
1454 goto unreserve_out;
1455 }
1456
1457 r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
1458 drm_priv_to_vm(pdd->drm_priv),
1459 svm_range_bo_validate, NULL);
1460 if (r) {
1461 pr_debug("failed %d validate pt bos\n", r);
1462 goto unreserve_out;
1463 }
1464 }
1465
1466 return 0;
1467
1468 unreserve_out:
1469 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list);
1470 return r;
1471 }
1472
svm_range_unreserve_bos(struct svm_validate_context * ctx)1473 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1474 {
1475 ttm_eu_backoff_reservation(&ctx->ticket, &ctx->validate_list);
1476 }
1477
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1478 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1479 {
1480 struct kfd_process_device *pdd;
1481
1482 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1483
1484 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1485 }
1486
1487 /*
1488 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1489 *
1490 * To prevent concurrent destruction or change of range attributes, the
1491 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1492 * because that would block concurrent evictions and lead to deadlocks. To
1493 * serialize concurrent migrations or validations of the same range, the
1494 * prange->migrate_mutex must be held.
1495 *
1496 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1497 * eviction fence.
1498 *
1499 * The following sequence ensures race-free validation and GPU mapping:
1500 *
1501 * 1. Reserve page table (and SVM BO if range is in VRAM)
1502 * 2. hmm_range_fault to get page addresses (if system memory)
1503 * 3. DMA-map pages (if system memory)
1504 * 4-a. Take notifier lock
1505 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1506 * 4-c. Check that the range was not split or otherwise invalidated
1507 * 4-d. Update GPU page table
1508 * 4.e. Release notifier lock
1509 * 5. Release page table (and SVM BO) reservation
1510 */
svm_range_validate_and_map(struct mm_struct * mm,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1511 static int svm_range_validate_and_map(struct mm_struct *mm,
1512 struct svm_range *prange, int32_t gpuidx,
1513 bool intr, bool wait, bool flush_tlb)
1514 {
1515 struct svm_validate_context ctx;
1516 unsigned long start, end, addr;
1517 struct kfd_process *p;
1518 void *owner;
1519 int32_t idx;
1520 int r = 0;
1521
1522 ctx.process = container_of(prange->svms, struct kfd_process, svms);
1523 ctx.prange = prange;
1524 ctx.intr = intr;
1525
1526 if (gpuidx < MAX_GPU_INSTANCE) {
1527 bitmap_zero(ctx.bitmap, MAX_GPU_INSTANCE);
1528 bitmap_set(ctx.bitmap, gpuidx, 1);
1529 } else if (ctx.process->xnack_enabled) {
1530 bitmap_copy(ctx.bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1531
1532 /* If prefetch range to GPU, or GPU retry fault migrate range to
1533 * GPU, which has ACCESS attribute to the range, create mapping
1534 * on that GPU.
1535 */
1536 if (prange->actual_loc) {
1537 gpuidx = kfd_process_gpuidx_from_gpuid(ctx.process,
1538 prange->actual_loc);
1539 if (gpuidx < 0) {
1540 WARN_ONCE(1, "failed get device by id 0x%x\n",
1541 prange->actual_loc);
1542 return -EINVAL;
1543 }
1544 if (test_bit(gpuidx, prange->bitmap_access))
1545 bitmap_set(ctx.bitmap, gpuidx, 1);
1546 }
1547 } else {
1548 bitmap_or(ctx.bitmap, prange->bitmap_access,
1549 prange->bitmap_aip, MAX_GPU_INSTANCE);
1550 }
1551
1552 if (bitmap_empty(ctx.bitmap, MAX_GPU_INSTANCE)) {
1553 if (!prange->mapped_to_gpu)
1554 return 0;
1555
1556 bitmap_copy(ctx.bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1557 }
1558
1559 if (prange->actual_loc && !prange->ttm_res) {
1560 /* This should never happen. actual_loc gets set by
1561 * svm_migrate_ram_to_vram after allocating a BO.
1562 */
1563 WARN_ONCE(1, "VRAM BO missing during validation\n");
1564 return -EINVAL;
1565 }
1566
1567 svm_range_reserve_bos(&ctx);
1568
1569 p = container_of(prange->svms, struct kfd_process, svms);
1570 owner = kfd_svm_page_owner(p, find_first_bit(ctx.bitmap,
1571 MAX_GPU_INSTANCE));
1572 for_each_set_bit(idx, ctx.bitmap, MAX_GPU_INSTANCE) {
1573 if (kfd_svm_page_owner(p, idx) != owner) {
1574 owner = NULL;
1575 break;
1576 }
1577 }
1578
1579 start = prange->start << PAGE_SHIFT;
1580 end = (prange->last + 1) << PAGE_SHIFT;
1581 for (addr = start; addr < end && !r; ) {
1582 struct hmm_range *hmm_range;
1583 struct vm_area_struct *vma;
1584 unsigned long next;
1585 unsigned long offset;
1586 unsigned long npages;
1587 bool readonly;
1588
1589 vma = find_vma(mm, addr);
1590 if (!vma || addr < vma->vm_start) {
1591 r = -EFAULT;
1592 goto unreserve_out;
1593 }
1594 readonly = !(vma->vm_flags & VM_WRITE);
1595
1596 next = min(vma->vm_end, end);
1597 npages = (next - addr) >> PAGE_SHIFT;
1598 WRITE_ONCE(p->svms.faulting_task, current);
1599 r = amdgpu_hmm_range_get_pages(&prange->notifier, mm, NULL,
1600 addr, npages, &hmm_range,
1601 readonly, true, owner);
1602 WRITE_ONCE(p->svms.faulting_task, NULL);
1603 if (r) {
1604 pr_debug("failed %d to get svm range pages\n", r);
1605 goto unreserve_out;
1606 }
1607
1608 offset = (addr - start) >> PAGE_SHIFT;
1609 r = svm_range_dma_map(prange, ctx.bitmap, offset, npages,
1610 hmm_range->hmm_pfns);
1611 if (r) {
1612 pr_debug("failed %d to dma map range\n", r);
1613 goto unreserve_out;
1614 }
1615
1616 svm_range_lock(prange);
1617 if (amdgpu_hmm_range_get_pages_done(hmm_range)) {
1618 pr_debug("hmm update the range, need validate again\n");
1619 r = -EAGAIN;
1620 goto unlock_out;
1621 }
1622 if (!list_empty(&prange->child_list)) {
1623 pr_debug("range split by unmap in parallel, validate again\n");
1624 r = -EAGAIN;
1625 goto unlock_out;
1626 }
1627
1628 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1629 ctx.bitmap, wait, flush_tlb);
1630
1631 unlock_out:
1632 svm_range_unlock(prange);
1633
1634 addr = next;
1635 }
1636
1637 if (addr == end) {
1638 prange->validated_once = true;
1639 prange->mapped_to_gpu = true;
1640 }
1641
1642 unreserve_out:
1643 svm_range_unreserve_bos(&ctx);
1644
1645 if (!r)
1646 prange->validate_timestamp = ktime_get_boottime();
1647
1648 return r;
1649 }
1650
1651 /**
1652 * svm_range_list_lock_and_flush_work - flush pending deferred work
1653 *
1654 * @svms: the svm range list
1655 * @mm: the mm structure
1656 *
1657 * Context: Returns with mmap write lock held, pending deferred work flushed
1658 *
1659 */
1660 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1661 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1662 struct mm_struct *mm)
1663 {
1664 retry_flush_work:
1665 flush_work(&svms->deferred_list_work);
1666 mmap_write_lock(mm);
1667
1668 if (list_empty(&svms->deferred_range_list))
1669 return;
1670 mmap_write_unlock(mm);
1671 pr_debug("retry flush\n");
1672 goto retry_flush_work;
1673 }
1674
svm_range_restore_work(struct work_struct * work)1675 static void svm_range_restore_work(struct work_struct *work)
1676 {
1677 struct delayed_work *dwork = to_delayed_work(work);
1678 struct amdkfd_process_info *process_info;
1679 struct svm_range_list *svms;
1680 struct svm_range *prange;
1681 struct kfd_process *p;
1682 struct mm_struct *mm;
1683 int evicted_ranges;
1684 int invalid;
1685 int r;
1686
1687 svms = container_of(dwork, struct svm_range_list, restore_work);
1688 evicted_ranges = atomic_read(&svms->evicted_ranges);
1689 if (!evicted_ranges)
1690 return;
1691
1692 pr_debug("restore svm ranges\n");
1693
1694 p = container_of(svms, struct kfd_process, svms);
1695 process_info = p->kgd_process_info;
1696
1697 /* Keep mm reference when svm_range_validate_and_map ranges */
1698 mm = get_task_mm(p->lead_thread);
1699 if (!mm) {
1700 pr_debug("svms 0x%p process mm gone\n", svms);
1701 return;
1702 }
1703
1704 mutex_lock(&process_info->lock);
1705 svm_range_list_lock_and_flush_work(svms, mm);
1706 mutex_lock(&svms->lock);
1707
1708 evicted_ranges = atomic_read(&svms->evicted_ranges);
1709
1710 list_for_each_entry(prange, &svms->list, list) {
1711 invalid = atomic_read(&prange->invalid);
1712 if (!invalid)
1713 continue;
1714
1715 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1716 prange->svms, prange, prange->start, prange->last,
1717 invalid);
1718
1719 /*
1720 * If range is migrating, wait for migration is done.
1721 */
1722 mutex_lock(&prange->migrate_mutex);
1723
1724 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
1725 false, true, false);
1726 if (r)
1727 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1728 prange->start);
1729
1730 mutex_unlock(&prange->migrate_mutex);
1731 if (r)
1732 goto out_reschedule;
1733
1734 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1735 goto out_reschedule;
1736 }
1737
1738 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1739 evicted_ranges)
1740 goto out_reschedule;
1741
1742 evicted_ranges = 0;
1743
1744 r = kgd2kfd_resume_mm(mm);
1745 if (r) {
1746 /* No recovery from this failure. Probably the CP is
1747 * hanging. No point trying again.
1748 */
1749 pr_debug("failed %d to resume KFD\n", r);
1750 }
1751
1752 pr_debug("restore svm ranges successfully\n");
1753
1754 out_reschedule:
1755 mutex_unlock(&svms->lock);
1756 mmap_write_unlock(mm);
1757 mutex_unlock(&process_info->lock);
1758
1759 /* If validation failed, reschedule another attempt */
1760 if (evicted_ranges) {
1761 pr_debug("reschedule to restore svm range\n");
1762 schedule_delayed_work(&svms->restore_work,
1763 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1764
1765 kfd_smi_event_queue_restore_rescheduled(mm);
1766 }
1767 mmput(mm);
1768 }
1769
1770 /**
1771 * svm_range_evict - evict svm range
1772 * @prange: svm range structure
1773 * @mm: current process mm_struct
1774 * @start: starting process queue number
1775 * @last: last process queue number
1776 *
1777 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1778 * return to let CPU evict the buffer and proceed CPU pagetable update.
1779 *
1780 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1781 * If invalidation happens while restore work is running, restore work will
1782 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1783 * the queues.
1784 */
1785 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1786 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1787 unsigned long start, unsigned long last,
1788 enum mmu_notifier_event event)
1789 {
1790 struct svm_range_list *svms = prange->svms;
1791 struct svm_range *pchild;
1792 struct kfd_process *p;
1793 int r = 0;
1794
1795 p = container_of(svms, struct kfd_process, svms);
1796
1797 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1798 svms, prange->start, prange->last, start, last);
1799
1800 if (!p->xnack_enabled ||
1801 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1802 int evicted_ranges;
1803 bool mapped = prange->mapped_to_gpu;
1804
1805 list_for_each_entry(pchild, &prange->child_list, child_list) {
1806 if (!pchild->mapped_to_gpu)
1807 continue;
1808 mapped = true;
1809 mutex_lock_nested(&pchild->lock, 1);
1810 if (pchild->start <= last && pchild->last >= start) {
1811 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1812 pchild->start, pchild->last);
1813 atomic_inc(&pchild->invalid);
1814 }
1815 mutex_unlock(&pchild->lock);
1816 }
1817
1818 if (!mapped)
1819 return r;
1820
1821 if (prange->start <= last && prange->last >= start)
1822 atomic_inc(&prange->invalid);
1823
1824 evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1825 if (evicted_ranges != 1)
1826 return r;
1827
1828 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1829 prange->svms, prange->start, prange->last);
1830
1831 /* First eviction, stop the queues */
1832 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1833 if (r)
1834 pr_debug("failed to quiesce KFD\n");
1835
1836 pr_debug("schedule to restore svm %p ranges\n", svms);
1837 schedule_delayed_work(&svms->restore_work,
1838 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1839 } else {
1840 unsigned long s, l;
1841 uint32_t trigger;
1842
1843 if (event == MMU_NOTIFY_MIGRATE)
1844 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1845 else
1846 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1847
1848 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1849 prange->svms, start, last);
1850 list_for_each_entry(pchild, &prange->child_list, child_list) {
1851 mutex_lock_nested(&pchild->lock, 1);
1852 s = max(start, pchild->start);
1853 l = min(last, pchild->last);
1854 if (l >= s)
1855 svm_range_unmap_from_gpus(pchild, s, l, trigger);
1856 mutex_unlock(&pchild->lock);
1857 }
1858 s = max(start, prange->start);
1859 l = min(last, prange->last);
1860 if (l >= s)
1861 svm_range_unmap_from_gpus(prange, s, l, trigger);
1862 }
1863
1864 return r;
1865 }
1866
svm_range_clone(struct svm_range * old)1867 static struct svm_range *svm_range_clone(struct svm_range *old)
1868 {
1869 struct svm_range *new;
1870
1871 new = svm_range_new(old->svms, old->start, old->last, false);
1872 if (!new)
1873 return NULL;
1874
1875 if (old->svm_bo) {
1876 new->ttm_res = old->ttm_res;
1877 new->offset = old->offset;
1878 new->svm_bo = svm_range_bo_ref(old->svm_bo);
1879 spin_lock(&new->svm_bo->list_lock);
1880 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1881 spin_unlock(&new->svm_bo->list_lock);
1882 }
1883 new->flags = old->flags;
1884 new->preferred_loc = old->preferred_loc;
1885 new->prefetch_loc = old->prefetch_loc;
1886 new->actual_loc = old->actual_loc;
1887 new->granularity = old->granularity;
1888 new->mapped_to_gpu = old->mapped_to_gpu;
1889 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1890 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1891
1892 return new;
1893 }
1894
svm_range_set_max_pages(struct amdgpu_device * adev)1895 void svm_range_set_max_pages(struct amdgpu_device *adev)
1896 {
1897 uint64_t max_pages;
1898 uint64_t pages, _pages;
1899
1900 /* 1/32 VRAM size in pages */
1901 pages = adev->gmc.real_vram_size >> 17;
1902 pages = clamp(pages, 1ULL << 9, 1ULL << 18);
1903 pages = rounddown_pow_of_two(pages);
1904 do {
1905 max_pages = READ_ONCE(max_svm_range_pages);
1906 _pages = min_not_zero(max_pages, pages);
1907 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
1908 }
1909
1910 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)1911 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
1912 uint64_t max_pages, struct list_head *insert_list,
1913 struct list_head *update_list)
1914 {
1915 struct svm_range *prange;
1916 uint64_t l;
1917
1918 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
1919 max_pages, start, last);
1920
1921 while (last >= start) {
1922 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
1923
1924 prange = svm_range_new(svms, start, l, true);
1925 if (!prange)
1926 return -ENOMEM;
1927 list_add(&prange->list, insert_list);
1928 list_add(&prange->update_list, update_list);
1929
1930 start = l + 1;
1931 }
1932 return 0;
1933 }
1934
1935 /**
1936 * svm_range_add - add svm range and handle overlap
1937 * @p: the range add to this process svms
1938 * @start: page size aligned
1939 * @size: page size aligned
1940 * @nattr: number of attributes
1941 * @attrs: array of attributes
1942 * @update_list: output, the ranges need validate and update GPU mapping
1943 * @insert_list: output, the ranges need insert to svms
1944 * @remove_list: output, the ranges are replaced and need remove from svms
1945 *
1946 * Check if the virtual address range has overlap with any existing ranges,
1947 * split partly overlapping ranges and add new ranges in the gaps. All changes
1948 * should be applied to the range_list and interval tree transactionally. If
1949 * any range split or allocation fails, the entire update fails. Therefore any
1950 * existing overlapping svm_ranges are cloned and the original svm_ranges left
1951 * unchanged.
1952 *
1953 * If the transaction succeeds, the caller can update and insert clones and
1954 * new ranges, then free the originals.
1955 *
1956 * Otherwise the caller can free the clones and new ranges, while the old
1957 * svm_ranges remain unchanged.
1958 *
1959 * Context: Process context, caller must hold svms->lock
1960 *
1961 * Return:
1962 * 0 - OK, otherwise error code
1963 */
1964 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list)1965 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
1966 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
1967 struct list_head *update_list, struct list_head *insert_list,
1968 struct list_head *remove_list)
1969 {
1970 unsigned long last = start + size - 1UL;
1971 struct svm_range_list *svms = &p->svms;
1972 struct interval_tree_node *node;
1973 struct svm_range *prange;
1974 struct svm_range *tmp;
1975 struct list_head new_list;
1976 int r = 0;
1977
1978 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
1979
1980 INIT_LIST_HEAD(update_list);
1981 INIT_LIST_HEAD(insert_list);
1982 INIT_LIST_HEAD(remove_list);
1983 INIT_LIST_HEAD(&new_list);
1984
1985 node = interval_tree_iter_first(&svms->objects, start, last);
1986 while (node) {
1987 struct interval_tree_node *next;
1988 unsigned long next_start;
1989
1990 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
1991 node->last);
1992
1993 prange = container_of(node, struct svm_range, it_node);
1994 next = interval_tree_iter_next(node, start, last);
1995 next_start = min(node->last, last) + 1;
1996
1997 if (svm_range_is_same_attrs(p, prange, nattr, attrs)) {
1998 /* nothing to do */
1999 } else if (node->start < start || node->last > last) {
2000 /* node intersects the update range and its attributes
2001 * will change. Clone and split it, apply updates only
2002 * to the overlapping part
2003 */
2004 struct svm_range *old = prange;
2005
2006 prange = svm_range_clone(old);
2007 if (!prange) {
2008 r = -ENOMEM;
2009 goto out;
2010 }
2011
2012 list_add(&old->update_list, remove_list);
2013 list_add(&prange->list, insert_list);
2014 list_add(&prange->update_list, update_list);
2015
2016 if (node->start < start) {
2017 pr_debug("change old range start\n");
2018 r = svm_range_split_head(prange, start,
2019 insert_list);
2020 if (r)
2021 goto out;
2022 }
2023 if (node->last > last) {
2024 pr_debug("change old range last\n");
2025 r = svm_range_split_tail(prange, last,
2026 insert_list);
2027 if (r)
2028 goto out;
2029 }
2030 } else {
2031 /* The node is contained within start..last,
2032 * just update it
2033 */
2034 list_add(&prange->update_list, update_list);
2035 }
2036
2037 /* insert a new node if needed */
2038 if (node->start > start) {
2039 r = svm_range_split_new(svms, start, node->start - 1,
2040 READ_ONCE(max_svm_range_pages),
2041 &new_list, update_list);
2042 if (r)
2043 goto out;
2044 }
2045
2046 node = next;
2047 start = next_start;
2048 }
2049
2050 /* add a final range at the end if needed */
2051 if (start <= last)
2052 r = svm_range_split_new(svms, start, last,
2053 READ_ONCE(max_svm_range_pages),
2054 &new_list, update_list);
2055
2056 out:
2057 if (r) {
2058 list_for_each_entry_safe(prange, tmp, insert_list, list)
2059 svm_range_free(prange, false);
2060 list_for_each_entry_safe(prange, tmp, &new_list, list)
2061 svm_range_free(prange, true);
2062 } else {
2063 list_splice(&new_list, insert_list);
2064 }
2065
2066 return r;
2067 }
2068
2069 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2070 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2071 struct svm_range *prange)
2072 {
2073 unsigned long start;
2074 unsigned long last;
2075
2076 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2077 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2078
2079 if (prange->start == start && prange->last == last)
2080 return;
2081
2082 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2083 prange->svms, prange, start, last, prange->start,
2084 prange->last);
2085
2086 if (start != 0 && last != 0) {
2087 interval_tree_remove(&prange->it_node, &prange->svms->objects);
2088 svm_range_remove_notifier(prange);
2089 }
2090 prange->it_node.start = prange->start;
2091 prange->it_node.last = prange->last;
2092
2093 interval_tree_insert(&prange->it_node, &prange->svms->objects);
2094 svm_range_add_notifier_locked(mm, prange);
2095 }
2096
2097 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2098 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2099 struct mm_struct *mm)
2100 {
2101 switch (prange->work_item.op) {
2102 case SVM_OP_NULL:
2103 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2104 svms, prange, prange->start, prange->last);
2105 break;
2106 case SVM_OP_UNMAP_RANGE:
2107 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2108 svms, prange, prange->start, prange->last);
2109 svm_range_unlink(prange);
2110 svm_range_remove_notifier(prange);
2111 svm_range_free(prange, true);
2112 break;
2113 case SVM_OP_UPDATE_RANGE_NOTIFIER:
2114 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2115 svms, prange, prange->start, prange->last);
2116 svm_range_update_notifier_and_interval_tree(mm, prange);
2117 break;
2118 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2119 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2120 svms, prange, prange->start, prange->last);
2121 svm_range_update_notifier_and_interval_tree(mm, prange);
2122 /* TODO: implement deferred validation and mapping */
2123 break;
2124 case SVM_OP_ADD_RANGE:
2125 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2126 prange->start, prange->last);
2127 svm_range_add_to_svms(prange);
2128 svm_range_add_notifier_locked(mm, prange);
2129 break;
2130 case SVM_OP_ADD_RANGE_AND_MAP:
2131 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2132 prange, prange->start, prange->last);
2133 svm_range_add_to_svms(prange);
2134 svm_range_add_notifier_locked(mm, prange);
2135 /* TODO: implement deferred validation and mapping */
2136 break;
2137 default:
2138 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2139 prange->work_item.op);
2140 }
2141 }
2142
svm_range_drain_retry_fault(struct svm_range_list * svms)2143 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2144 {
2145 struct kfd_process_device *pdd;
2146 struct kfd_process *p;
2147 int drain;
2148 uint32_t i;
2149
2150 p = container_of(svms, struct kfd_process, svms);
2151
2152 restart:
2153 drain = atomic_read(&svms->drain_pagefaults);
2154 if (!drain)
2155 return;
2156
2157 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2158 pdd = p->pdds[i];
2159 if (!pdd)
2160 continue;
2161
2162 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2163
2164 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2165 &pdd->dev->adev->irq.ih1);
2166 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2167 }
2168 if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2169 goto restart;
2170 }
2171
svm_range_deferred_list_work(struct work_struct * work)2172 static void svm_range_deferred_list_work(struct work_struct *work)
2173 {
2174 struct svm_range_list *svms;
2175 struct svm_range *prange;
2176 struct mm_struct *mm;
2177
2178 svms = container_of(work, struct svm_range_list, deferred_list_work);
2179 pr_debug("enter svms 0x%p\n", svms);
2180
2181 spin_lock(&svms->deferred_list_lock);
2182 while (!list_empty(&svms->deferred_range_list)) {
2183 prange = list_first_entry(&svms->deferred_range_list,
2184 struct svm_range, deferred_list);
2185 spin_unlock(&svms->deferred_list_lock);
2186
2187 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2188 prange->start, prange->last, prange->work_item.op);
2189
2190 mm = prange->work_item.mm;
2191 retry:
2192 mmap_write_lock(mm);
2193
2194 /* Checking for the need to drain retry faults must be inside
2195 * mmap write lock to serialize with munmap notifiers.
2196 */
2197 if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2198 mmap_write_unlock(mm);
2199 svm_range_drain_retry_fault(svms);
2200 goto retry;
2201 }
2202
2203 /* Remove from deferred_list must be inside mmap write lock, for
2204 * two race cases:
2205 * 1. unmap_from_cpu may change work_item.op and add the range
2206 * to deferred_list again, cause use after free bug.
2207 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2208 * lock and continue because deferred_list is empty, but
2209 * deferred_list work is actually waiting for mmap lock.
2210 */
2211 spin_lock(&svms->deferred_list_lock);
2212 list_del_init(&prange->deferred_list);
2213 spin_unlock(&svms->deferred_list_lock);
2214
2215 mutex_lock(&svms->lock);
2216 mutex_lock(&prange->migrate_mutex);
2217 while (!list_empty(&prange->child_list)) {
2218 struct svm_range *pchild;
2219
2220 pchild = list_first_entry(&prange->child_list,
2221 struct svm_range, child_list);
2222 pr_debug("child prange 0x%p op %d\n", pchild,
2223 pchild->work_item.op);
2224 list_del_init(&pchild->child_list);
2225 svm_range_handle_list_op(svms, pchild, mm);
2226 }
2227 mutex_unlock(&prange->migrate_mutex);
2228
2229 svm_range_handle_list_op(svms, prange, mm);
2230 mutex_unlock(&svms->lock);
2231 mmap_write_unlock(mm);
2232
2233 /* Pairs with mmget in svm_range_add_list_work */
2234 mmput(mm);
2235
2236 spin_lock(&svms->deferred_list_lock);
2237 }
2238 spin_unlock(&svms->deferred_list_lock);
2239 pr_debug("exit svms 0x%p\n", svms);
2240 }
2241
2242 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2243 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2244 struct mm_struct *mm, enum svm_work_list_ops op)
2245 {
2246 spin_lock(&svms->deferred_list_lock);
2247 /* if prange is on the deferred list */
2248 if (!list_empty(&prange->deferred_list)) {
2249 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2250 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2251 if (op != SVM_OP_NULL &&
2252 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2253 prange->work_item.op = op;
2254 } else {
2255 prange->work_item.op = op;
2256
2257 /* Pairs with mmput in deferred_list_work */
2258 mmget(mm);
2259 prange->work_item.mm = mm;
2260 list_add_tail(&prange->deferred_list,
2261 &prange->svms->deferred_range_list);
2262 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2263 prange, prange->start, prange->last, op);
2264 }
2265 spin_unlock(&svms->deferred_list_lock);
2266 }
2267
schedule_deferred_list_work(struct svm_range_list * svms)2268 void schedule_deferred_list_work(struct svm_range_list *svms)
2269 {
2270 spin_lock(&svms->deferred_list_lock);
2271 if (!list_empty(&svms->deferred_range_list))
2272 schedule_work(&svms->deferred_list_work);
2273 spin_unlock(&svms->deferred_list_lock);
2274 }
2275
2276 static void
svm_range_unmap_split(struct mm_struct * mm,struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2277 svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2278 struct svm_range *prange, unsigned long start,
2279 unsigned long last)
2280 {
2281 struct svm_range *head;
2282 struct svm_range *tail;
2283
2284 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2285 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2286 prange->start, prange->last);
2287 return;
2288 }
2289 if (start > prange->last || last < prange->start)
2290 return;
2291
2292 head = tail = prange;
2293 if (start > prange->start)
2294 svm_range_split(prange, prange->start, start - 1, &tail);
2295 if (last < tail->last)
2296 svm_range_split(tail, last + 1, tail->last, &head);
2297
2298 if (head != prange && tail != prange) {
2299 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2300 svm_range_add_child(parent, mm, tail, SVM_OP_ADD_RANGE);
2301 } else if (tail != prange) {
2302 svm_range_add_child(parent, mm, tail, SVM_OP_UNMAP_RANGE);
2303 } else if (head != prange) {
2304 svm_range_add_child(parent, mm, head, SVM_OP_UNMAP_RANGE);
2305 } else if (parent != prange) {
2306 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2307 }
2308 }
2309
2310 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2311 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2312 unsigned long start, unsigned long last)
2313 {
2314 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2315 struct svm_range_list *svms;
2316 struct svm_range *pchild;
2317 struct kfd_process *p;
2318 unsigned long s, l;
2319 bool unmap_parent;
2320
2321 p = kfd_lookup_process_by_mm(mm);
2322 if (!p)
2323 return;
2324 svms = &p->svms;
2325
2326 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2327 prange, prange->start, prange->last, start, last);
2328
2329 /* Make sure pending page faults are drained in the deferred worker
2330 * before the range is freed to avoid straggler interrupts on
2331 * unmapped memory causing "phantom faults".
2332 */
2333 atomic_inc(&svms->drain_pagefaults);
2334
2335 unmap_parent = start <= prange->start && last >= prange->last;
2336
2337 list_for_each_entry(pchild, &prange->child_list, child_list) {
2338 mutex_lock_nested(&pchild->lock, 1);
2339 s = max(start, pchild->start);
2340 l = min(last, pchild->last);
2341 if (l >= s)
2342 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2343 svm_range_unmap_split(mm, prange, pchild, start, last);
2344 mutex_unlock(&pchild->lock);
2345 }
2346 s = max(start, prange->start);
2347 l = min(last, prange->last);
2348 if (l >= s)
2349 svm_range_unmap_from_gpus(prange, s, l, trigger);
2350 svm_range_unmap_split(mm, prange, prange, start, last);
2351
2352 if (unmap_parent)
2353 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2354 else
2355 svm_range_add_list_work(svms, prange, mm,
2356 SVM_OP_UPDATE_RANGE_NOTIFIER);
2357 schedule_deferred_list_work(svms);
2358
2359 kfd_unref_process(p);
2360 }
2361
2362 /**
2363 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2364 * @mni: mmu_interval_notifier struct
2365 * @range: mmu_notifier_range struct
2366 * @cur_seq: value to pass to mmu_interval_set_seq()
2367 *
2368 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2369 * is from migration, or CPU page invalidation callback.
2370 *
2371 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2372 * work thread, and split prange if only part of prange is unmapped.
2373 *
2374 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2375 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2376 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2377 * update GPU mapping to recover.
2378 *
2379 * Context: mmap lock, notifier_invalidate_start lock are held
2380 * for invalidate event, prange lock is held if this is from migration
2381 */
2382 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2383 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2384 const struct mmu_notifier_range *range,
2385 unsigned long cur_seq)
2386 {
2387 struct svm_range *prange;
2388 unsigned long start;
2389 unsigned long last;
2390
2391 if (range->event == MMU_NOTIFY_RELEASE)
2392 return true;
2393 if (!mmget_not_zero(mni->mm))
2394 return true;
2395
2396 start = mni->interval_tree.start;
2397 last = mni->interval_tree.last;
2398 start = max(start, range->start) >> PAGE_SHIFT;
2399 last = min(last, range->end - 1) >> PAGE_SHIFT;
2400 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2401 start, last, range->start >> PAGE_SHIFT,
2402 (range->end - 1) >> PAGE_SHIFT,
2403 mni->interval_tree.start >> PAGE_SHIFT,
2404 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2405
2406 prange = container_of(mni, struct svm_range, notifier);
2407
2408 svm_range_lock(prange);
2409 mmu_interval_set_seq(mni, cur_seq);
2410
2411 switch (range->event) {
2412 case MMU_NOTIFY_UNMAP:
2413 svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2414 break;
2415 default:
2416 svm_range_evict(prange, mni->mm, start, last, range->event);
2417 break;
2418 }
2419
2420 svm_range_unlock(prange);
2421 mmput(mni->mm);
2422
2423 return true;
2424 }
2425
2426 /**
2427 * svm_range_from_addr - find svm range from fault address
2428 * @svms: svm range list header
2429 * @addr: address to search range interval tree, in pages
2430 * @parent: parent range if range is on child list
2431 *
2432 * Context: The caller must hold svms->lock
2433 *
2434 * Return: the svm_range found or NULL
2435 */
2436 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2437 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2438 struct svm_range **parent)
2439 {
2440 struct interval_tree_node *node;
2441 struct svm_range *prange;
2442 struct svm_range *pchild;
2443
2444 node = interval_tree_iter_first(&svms->objects, addr, addr);
2445 if (!node)
2446 return NULL;
2447
2448 prange = container_of(node, struct svm_range, it_node);
2449 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2450 addr, prange->start, prange->last, node->start, node->last);
2451
2452 if (addr >= prange->start && addr <= prange->last) {
2453 if (parent)
2454 *parent = prange;
2455 return prange;
2456 }
2457 list_for_each_entry(pchild, &prange->child_list, child_list)
2458 if (addr >= pchild->start && addr <= pchild->last) {
2459 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2460 addr, pchild->start, pchild->last);
2461 if (parent)
2462 *parent = prange;
2463 return pchild;
2464 }
2465
2466 return NULL;
2467 }
2468
2469 /* svm_range_best_restore_location - decide the best fault restore location
2470 * @prange: svm range structure
2471 * @adev: the GPU on which vm fault happened
2472 *
2473 * This is only called when xnack is on, to decide the best location to restore
2474 * the range mapping after GPU vm fault. Caller uses the best location to do
2475 * migration if actual loc is not best location, then update GPU page table
2476 * mapping to the best location.
2477 *
2478 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2479 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2480 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2481 * if range actual loc is cpu, best_loc is cpu
2482 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2483 * range actual loc.
2484 * Otherwise, GPU no access, best_loc is -1.
2485 *
2486 * Return:
2487 * -1 means vm fault GPU no access
2488 * 0 for CPU or GPU id
2489 */
2490 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct amdgpu_device * adev,int32_t * gpuidx)2491 svm_range_best_restore_location(struct svm_range *prange,
2492 struct amdgpu_device *adev,
2493 int32_t *gpuidx)
2494 {
2495 struct amdgpu_device *bo_adev, *preferred_adev;
2496 struct kfd_process *p;
2497 uint32_t gpuid;
2498 int r;
2499
2500 p = container_of(prange->svms, struct kfd_process, svms);
2501
2502 r = kfd_process_gpuid_from_adev(p, adev, &gpuid, gpuidx);
2503 if (r < 0) {
2504 pr_debug("failed to get gpuid from kgd\n");
2505 return -1;
2506 }
2507
2508 if (prange->preferred_loc == gpuid ||
2509 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2510 return prange->preferred_loc;
2511 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2512 preferred_adev = svm_range_get_adev_by_id(prange,
2513 prange->preferred_loc);
2514 if (amdgpu_xgmi_same_hive(adev, preferred_adev))
2515 return prange->preferred_loc;
2516 /* fall through */
2517 }
2518
2519 if (test_bit(*gpuidx, prange->bitmap_access))
2520 return gpuid;
2521
2522 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2523 if (!prange->actual_loc)
2524 return 0;
2525
2526 bo_adev = svm_range_get_adev_by_id(prange, prange->actual_loc);
2527 if (amdgpu_xgmi_same_hive(adev, bo_adev))
2528 return prange->actual_loc;
2529 else
2530 return 0;
2531 }
2532
2533 return -1;
2534 }
2535
2536 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2537 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2538 unsigned long *start, unsigned long *last,
2539 bool *is_heap_stack)
2540 {
2541 struct vm_area_struct *vma;
2542 struct interval_tree_node *node;
2543 unsigned long start_limit, end_limit;
2544
2545 vma = find_vma(p->mm, addr << PAGE_SHIFT);
2546 if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) {
2547 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2548 return -EFAULT;
2549 }
2550
2551 *is_heap_stack = (vma->vm_start <= vma->vm_mm->brk &&
2552 vma->vm_end >= vma->vm_mm->start_brk) ||
2553 (vma->vm_start <= vma->vm_mm->start_stack &&
2554 vma->vm_end >= vma->vm_mm->start_stack);
2555
2556 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2557 (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2558 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2559 (unsigned long)ALIGN(addr + 1, 2UL << 8));
2560 /* First range that starts after the fault address */
2561 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2562 if (node) {
2563 end_limit = min(end_limit, node->start);
2564 /* Last range that ends before the fault address */
2565 node = container_of(rb_prev(&node->rb),
2566 struct interval_tree_node, rb);
2567 } else {
2568 /* Last range must end before addr because
2569 * there was no range after addr
2570 */
2571 node = container_of(rb_last(&p->svms.objects.rb_root),
2572 struct interval_tree_node, rb);
2573 }
2574 if (node) {
2575 if (node->last >= addr) {
2576 WARN(1, "Overlap with prev node and page fault addr\n");
2577 return -EFAULT;
2578 }
2579 start_limit = max(start_limit, node->last + 1);
2580 }
2581
2582 *start = start_limit;
2583 *last = end_limit - 1;
2584
2585 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2586 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2587 *start, *last, *is_heap_stack);
2588
2589 return 0;
2590 }
2591
2592 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2593 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2594 uint64_t *bo_s, uint64_t *bo_l)
2595 {
2596 struct amdgpu_bo_va_mapping *mapping;
2597 struct interval_tree_node *node;
2598 struct amdgpu_bo *bo = NULL;
2599 unsigned long userptr;
2600 uint32_t i;
2601 int r;
2602
2603 for (i = 0; i < p->n_pdds; i++) {
2604 struct amdgpu_vm *vm;
2605
2606 if (!p->pdds[i]->drm_priv)
2607 continue;
2608
2609 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2610 r = amdgpu_bo_reserve(vm->root.bo, false);
2611 if (r)
2612 return r;
2613
2614 /* Check userptr by searching entire vm->va interval tree */
2615 node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2616 while (node) {
2617 mapping = container_of((struct rb_node *)node,
2618 struct amdgpu_bo_va_mapping, rb);
2619 bo = mapping->bo_va->base.bo;
2620
2621 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2622 start << PAGE_SHIFT,
2623 last << PAGE_SHIFT,
2624 &userptr)) {
2625 node = interval_tree_iter_next(node, 0, ~0ULL);
2626 continue;
2627 }
2628
2629 pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2630 start, last);
2631 if (bo_s && bo_l) {
2632 *bo_s = userptr >> PAGE_SHIFT;
2633 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2634 }
2635 amdgpu_bo_unreserve(vm->root.bo);
2636 return -EADDRINUSE;
2637 }
2638 amdgpu_bo_unreserve(vm->root.bo);
2639 }
2640 return 0;
2641 }
2642
2643 static struct
svm_range_create_unregistered_range(struct amdgpu_device * adev,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2644 svm_range *svm_range_create_unregistered_range(struct amdgpu_device *adev,
2645 struct kfd_process *p,
2646 struct mm_struct *mm,
2647 int64_t addr)
2648 {
2649 struct svm_range *prange = NULL;
2650 unsigned long start, last;
2651 uint32_t gpuid, gpuidx;
2652 bool is_heap_stack;
2653 uint64_t bo_s = 0;
2654 uint64_t bo_l = 0;
2655 int r;
2656
2657 if (svm_range_get_range_boundaries(p, addr, &start, &last,
2658 &is_heap_stack))
2659 return NULL;
2660
2661 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2662 if (r != -EADDRINUSE)
2663 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2664
2665 if (r == -EADDRINUSE) {
2666 if (addr >= bo_s && addr <= bo_l)
2667 return NULL;
2668
2669 /* Create one page svm range if 2MB range overlapping */
2670 start = addr;
2671 last = addr;
2672 }
2673
2674 prange = svm_range_new(&p->svms, start, last, true);
2675 if (!prange) {
2676 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2677 return NULL;
2678 }
2679 if (kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpuidx)) {
2680 pr_debug("failed to get gpuid from kgd\n");
2681 svm_range_free(prange, true);
2682 return NULL;
2683 }
2684
2685 if (is_heap_stack)
2686 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2687
2688 svm_range_add_to_svms(prange);
2689 svm_range_add_notifier_locked(mm, prange);
2690
2691 return prange;
2692 }
2693
2694 /* svm_range_skip_recover - decide if prange can be recovered
2695 * @prange: svm range structure
2696 *
2697 * GPU vm retry fault handle skip recover the range for cases:
2698 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2699 * deferred list work will drain the stale fault before free the prange.
2700 * 2. prange is on deferred list to add interval notifier after split, or
2701 * 3. prange is child range, it is split from parent prange, recover later
2702 * after interval notifier is added.
2703 *
2704 * Return: true to skip recover, false to recover
2705 */
svm_range_skip_recover(struct svm_range * prange)2706 static bool svm_range_skip_recover(struct svm_range *prange)
2707 {
2708 struct svm_range_list *svms = prange->svms;
2709
2710 spin_lock(&svms->deferred_list_lock);
2711 if (list_empty(&prange->deferred_list) &&
2712 list_empty(&prange->child_list)) {
2713 spin_unlock(&svms->deferred_list_lock);
2714 return false;
2715 }
2716 spin_unlock(&svms->deferred_list_lock);
2717
2718 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2719 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2720 svms, prange, prange->start, prange->last);
2721 return true;
2722 }
2723 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2724 prange->work_item.op == SVM_OP_ADD_RANGE) {
2725 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2726 svms, prange, prange->start, prange->last);
2727 return true;
2728 }
2729 return false;
2730 }
2731
2732 static void
svm_range_count_fault(struct amdgpu_device * adev,struct kfd_process * p,int32_t gpuidx)2733 svm_range_count_fault(struct amdgpu_device *adev, struct kfd_process *p,
2734 int32_t gpuidx)
2735 {
2736 struct kfd_process_device *pdd;
2737
2738 /* fault is on different page of same range
2739 * or fault is skipped to recover later
2740 * or fault is on invalid virtual address
2741 */
2742 if (gpuidx == MAX_GPU_INSTANCE) {
2743 uint32_t gpuid;
2744 int r;
2745
2746 r = kfd_process_gpuid_from_adev(p, adev, &gpuid, &gpuidx);
2747 if (r < 0)
2748 return;
2749 }
2750
2751 /* fault is recovered
2752 * or fault cannot recover because GPU no access on the range
2753 */
2754 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2755 if (pdd)
2756 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2757 }
2758
2759 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2760 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2761 {
2762 unsigned long requested = VM_READ;
2763
2764 if (write_fault)
2765 requested |= VM_WRITE;
2766
2767 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2768 vma->vm_flags);
2769 return (vma->vm_flags & requested) == requested;
2770 }
2771
2772 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint64_t addr,bool write_fault)2773 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2774 uint64_t addr, bool write_fault)
2775 {
2776 struct mm_struct *mm = NULL;
2777 struct svm_range_list *svms;
2778 struct svm_range *prange;
2779 struct kfd_process *p;
2780 ktime_t timestamp = ktime_get_boottime();
2781 int32_t best_loc;
2782 int32_t gpuidx = MAX_GPU_INSTANCE;
2783 bool write_locked = false;
2784 struct vm_area_struct *vma;
2785 bool migration = false;
2786 int r = 0;
2787
2788 if (!KFD_IS_SVM_API_SUPPORTED(adev->kfd.dev)) {
2789 pr_debug("device does not support SVM\n");
2790 return -EFAULT;
2791 }
2792
2793 p = kfd_lookup_process_by_pasid(pasid);
2794 if (!p) {
2795 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2796 return 0;
2797 }
2798 svms = &p->svms;
2799
2800 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2801
2802 if (atomic_read(&svms->drain_pagefaults)) {
2803 pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2804 r = 0;
2805 goto out;
2806 }
2807
2808 if (!p->xnack_enabled) {
2809 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2810 r = -EFAULT;
2811 goto out;
2812 }
2813
2814 /* p->lead_thread is available as kfd_process_wq_release flush the work
2815 * before releasing task ref.
2816 */
2817 mm = get_task_mm(p->lead_thread);
2818 if (!mm) {
2819 pr_debug("svms 0x%p failed to get mm\n", svms);
2820 r = 0;
2821 goto out;
2822 }
2823
2824 mmap_read_lock(mm);
2825 retry_write_locked:
2826 mutex_lock(&svms->lock);
2827 prange = svm_range_from_addr(svms, addr, NULL);
2828 if (!prange) {
2829 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2830 svms, addr);
2831 if (!write_locked) {
2832 /* Need the write lock to create new range with MMU notifier.
2833 * Also flush pending deferred work to make sure the interval
2834 * tree is up to date before we add a new range
2835 */
2836 mutex_unlock(&svms->lock);
2837 mmap_read_unlock(mm);
2838 mmap_write_lock(mm);
2839 write_locked = true;
2840 goto retry_write_locked;
2841 }
2842 prange = svm_range_create_unregistered_range(adev, p, mm, addr);
2843 if (!prange) {
2844 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2845 svms, addr);
2846 mmap_write_downgrade(mm);
2847 r = -EFAULT;
2848 goto out_unlock_svms;
2849 }
2850 }
2851 if (write_locked)
2852 mmap_write_downgrade(mm);
2853
2854 mutex_lock(&prange->migrate_mutex);
2855
2856 if (svm_range_skip_recover(prange)) {
2857 amdgpu_gmc_filter_faults_remove(adev, addr, pasid);
2858 r = 0;
2859 goto out_unlock_range;
2860 }
2861
2862 /* skip duplicate vm fault on different pages of same range */
2863 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
2864 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
2865 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
2866 svms, prange->start, prange->last);
2867 r = 0;
2868 goto out_unlock_range;
2869 }
2870
2871 /* __do_munmap removed VMA, return success as we are handling stale
2872 * retry fault.
2873 */
2874 vma = find_vma(mm, addr << PAGE_SHIFT);
2875 if (!vma || (addr << PAGE_SHIFT) < vma->vm_start) {
2876 pr_debug("address 0x%llx VMA is removed\n", addr);
2877 r = 0;
2878 goto out_unlock_range;
2879 }
2880
2881 if (!svm_fault_allowed(vma, write_fault)) {
2882 pr_debug("fault addr 0x%llx no %s permission\n", addr,
2883 write_fault ? "write" : "read");
2884 r = -EPERM;
2885 goto out_unlock_range;
2886 }
2887
2888 best_loc = svm_range_best_restore_location(prange, adev, &gpuidx);
2889 if (best_loc == -1) {
2890 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
2891 svms, prange->start, prange->last);
2892 r = -EACCES;
2893 goto out_unlock_range;
2894 }
2895
2896 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
2897 svms, prange->start, prange->last, best_loc,
2898 prange->actual_loc);
2899
2900 kfd_smi_event_page_fault_start(adev->kfd.dev, p->lead_thread->pid, addr,
2901 write_fault, timestamp);
2902
2903 if (prange->actual_loc != best_loc) {
2904 migration = true;
2905 if (best_loc) {
2906 r = svm_migrate_to_vram(prange, best_loc, mm,
2907 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
2908 if (r) {
2909 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
2910 r, addr);
2911 /* Fallback to system memory if migration to
2912 * VRAM failed
2913 */
2914 if (prange->actual_loc)
2915 r = svm_migrate_vram_to_ram(prange, mm,
2916 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
2917 NULL);
2918 else
2919 r = 0;
2920 }
2921 } else {
2922 r = svm_migrate_vram_to_ram(prange, mm,
2923 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
2924 NULL);
2925 }
2926 if (r) {
2927 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
2928 r, svms, prange->start, prange->last);
2929 goto out_unlock_range;
2930 }
2931 }
2932
2933 r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false);
2934 if (r)
2935 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
2936 r, svms, prange->start, prange->last);
2937
2938 kfd_smi_event_page_fault_end(adev->kfd.dev, p->lead_thread->pid, addr,
2939 migration);
2940
2941 out_unlock_range:
2942 mutex_unlock(&prange->migrate_mutex);
2943 out_unlock_svms:
2944 mutex_unlock(&svms->lock);
2945 mmap_read_unlock(mm);
2946
2947 svm_range_count_fault(adev, p, gpuidx);
2948
2949 mmput(mm);
2950 out:
2951 kfd_unref_process(p);
2952
2953 if (r == -EAGAIN) {
2954 pr_debug("recover vm fault later\n");
2955 amdgpu_gmc_filter_faults_remove(adev, addr, pasid);
2956 r = 0;
2957 }
2958 return r;
2959 }
2960
2961 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)2962 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
2963 {
2964 struct svm_range *prange, *pchild;
2965 uint64_t reserved_size = 0;
2966 uint64_t size;
2967 int r = 0;
2968
2969 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
2970
2971 mutex_lock(&p->svms.lock);
2972
2973 list_for_each_entry(prange, &p->svms.list, list) {
2974 svm_range_lock(prange);
2975 list_for_each_entry(pchild, &prange->child_list, child_list) {
2976 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
2977 if (xnack_enabled) {
2978 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
2979 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR);
2980 } else {
2981 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
2982 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR);
2983 if (r)
2984 goto out_unlock;
2985 reserved_size += size;
2986 }
2987 }
2988
2989 size = (prange->last - prange->start + 1) << PAGE_SHIFT;
2990 if (xnack_enabled) {
2991 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
2992 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR);
2993 } else {
2994 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
2995 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR);
2996 if (r)
2997 goto out_unlock;
2998 reserved_size += size;
2999 }
3000 out_unlock:
3001 svm_range_unlock(prange);
3002 if (r)
3003 break;
3004 }
3005
3006 if (r)
3007 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3008 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR);
3009 else
3010 /* Change xnack mode must be inside svms lock, to avoid race with
3011 * svm_range_deferred_list_work unreserve memory in parallel.
3012 */
3013 p->xnack_enabled = xnack_enabled;
3014
3015 mutex_unlock(&p->svms.lock);
3016 return r;
3017 }
3018
svm_range_list_fini(struct kfd_process * p)3019 void svm_range_list_fini(struct kfd_process *p)
3020 {
3021 struct svm_range *prange;
3022 struct svm_range *next;
3023
3024 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3025
3026 cancel_delayed_work_sync(&p->svms.restore_work);
3027
3028 /* Ensure list work is finished before process is destroyed */
3029 flush_work(&p->svms.deferred_list_work);
3030
3031 /*
3032 * Ensure no retry fault comes in afterwards, as page fault handler will
3033 * not find kfd process and take mm lock to recover fault.
3034 */
3035 atomic_inc(&p->svms.drain_pagefaults);
3036 svm_range_drain_retry_fault(&p->svms);
3037
3038 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3039 svm_range_unlink(prange);
3040 svm_range_remove_notifier(prange);
3041 svm_range_free(prange, true);
3042 }
3043
3044 mutex_destroy(&p->svms.lock);
3045
3046 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3047 }
3048
svm_range_list_init(struct kfd_process * p)3049 int svm_range_list_init(struct kfd_process *p)
3050 {
3051 struct svm_range_list *svms = &p->svms;
3052 int i;
3053
3054 svms->objects = RB_ROOT_CACHED;
3055 mutex_init(&svms->lock);
3056 INIT_LIST_HEAD(&svms->list);
3057 atomic_set(&svms->evicted_ranges, 0);
3058 atomic_set(&svms->drain_pagefaults, 0);
3059 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3060 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3061 INIT_LIST_HEAD(&svms->deferred_range_list);
3062 INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3063 spin_lock_init(&svms->deferred_list_lock);
3064
3065 for (i = 0; i < p->n_pdds; i++)
3066 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev))
3067 bitmap_set(svms->bitmap_supported, i, 1);
3068
3069 return 0;
3070 }
3071
3072 /**
3073 * svm_range_check_vm - check if virtual address range mapped already
3074 * @p: current kfd_process
3075 * @start: range start address, in pages
3076 * @last: range last address, in pages
3077 * @bo_s: mapping start address in pages if address range already mapped
3078 * @bo_l: mapping last address in pages if address range already mapped
3079 *
3080 * The purpose is to avoid virtual address ranges already allocated by
3081 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3082 * It looks for each pdd in the kfd_process.
3083 *
3084 * Context: Process context
3085 *
3086 * Return 0 - OK, if the range is not mapped.
3087 * Otherwise error code:
3088 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3089 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3090 * a signal. Release all buffer reservations and return to user-space.
3091 */
3092 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3093 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3094 uint64_t *bo_s, uint64_t *bo_l)
3095 {
3096 struct amdgpu_bo_va_mapping *mapping;
3097 struct interval_tree_node *node;
3098 uint32_t i;
3099 int r;
3100
3101 for (i = 0; i < p->n_pdds; i++) {
3102 struct amdgpu_vm *vm;
3103
3104 if (!p->pdds[i]->drm_priv)
3105 continue;
3106
3107 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3108 r = amdgpu_bo_reserve(vm->root.bo, false);
3109 if (r)
3110 return r;
3111
3112 node = interval_tree_iter_first(&vm->va, start, last);
3113 if (node) {
3114 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3115 start, last);
3116 mapping = container_of((struct rb_node *)node,
3117 struct amdgpu_bo_va_mapping, rb);
3118 if (bo_s && bo_l) {
3119 *bo_s = mapping->start;
3120 *bo_l = mapping->last;
3121 }
3122 amdgpu_bo_unreserve(vm->root.bo);
3123 return -EADDRINUSE;
3124 }
3125 amdgpu_bo_unreserve(vm->root.bo);
3126 }
3127
3128 return 0;
3129 }
3130
3131 /**
3132 * svm_range_is_valid - check if virtual address range is valid
3133 * @p: current kfd_process
3134 * @start: range start address, in pages
3135 * @size: range size, in pages
3136 *
3137 * Valid virtual address range means it belongs to one or more VMAs
3138 *
3139 * Context: Process context
3140 *
3141 * Return:
3142 * 0 - OK, otherwise error code
3143 */
3144 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3145 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3146 {
3147 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3148 struct vm_area_struct *vma;
3149 unsigned long end;
3150 unsigned long start_unchg = start;
3151
3152 start <<= PAGE_SHIFT;
3153 end = start + (size << PAGE_SHIFT);
3154 do {
3155 vma = find_vma(p->mm, start);
3156 if (!vma || start < vma->vm_start ||
3157 (vma->vm_flags & device_vma))
3158 return -EFAULT;
3159 start = min(end, vma->vm_end);
3160 } while (start < end);
3161
3162 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3163 NULL);
3164 }
3165
3166 /**
3167 * svm_range_best_prefetch_location - decide the best prefetch location
3168 * @prange: svm range structure
3169 *
3170 * For xnack off:
3171 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3172 * can be CPU or GPU.
3173 *
3174 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3175 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3176 * the best prefetch location is always CPU, because GPU can not have coherent
3177 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3178 *
3179 * For xnack on:
3180 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3181 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3182 *
3183 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3184 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3185 * prefetch location is always CPU.
3186 *
3187 * Context: Process context
3188 *
3189 * Return:
3190 * 0 for CPU or GPU id
3191 */
3192 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3193 svm_range_best_prefetch_location(struct svm_range *prange)
3194 {
3195 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3196 uint32_t best_loc = prange->prefetch_loc;
3197 struct kfd_process_device *pdd;
3198 struct amdgpu_device *bo_adev;
3199 struct kfd_process *p;
3200 uint32_t gpuidx;
3201
3202 p = container_of(prange->svms, struct kfd_process, svms);
3203
3204 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3205 goto out;
3206
3207 bo_adev = svm_range_get_adev_by_id(prange, best_loc);
3208 if (!bo_adev) {
3209 WARN_ONCE(1, "failed to get device by id 0x%x\n", best_loc);
3210 best_loc = 0;
3211 goto out;
3212 }
3213
3214 if (p->xnack_enabled)
3215 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3216 else
3217 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3218 MAX_GPU_INSTANCE);
3219
3220 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3221 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3222 if (!pdd) {
3223 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3224 continue;
3225 }
3226
3227 if (pdd->dev->adev == bo_adev)
3228 continue;
3229
3230 if (!amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
3231 best_loc = 0;
3232 break;
3233 }
3234 }
3235
3236 out:
3237 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3238 p->xnack_enabled, &p->svms, prange->start, prange->last,
3239 best_loc);
3240
3241 return best_loc;
3242 }
3243
3244 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3245 * @mm: current process mm_struct
3246 * @prange: svm range structure
3247 * @migrated: output, true if migration is triggered
3248 *
3249 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3250 * from ram to vram.
3251 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3252 * from vram to ram.
3253 *
3254 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3255 * and restore work:
3256 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3257 * stops all queues, schedule restore work
3258 * 2. svm_range_restore_work wait for migration is done by
3259 * a. svm_range_validate_vram takes prange->migrate_mutex
3260 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3261 * 3. restore work update mappings of GPU, resume all queues.
3262 *
3263 * Context: Process context
3264 *
3265 * Return:
3266 * 0 - OK, otherwise - error code of migration
3267 */
3268 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3269 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3270 bool *migrated)
3271 {
3272 uint32_t best_loc;
3273 int r = 0;
3274
3275 *migrated = false;
3276 best_loc = svm_range_best_prefetch_location(prange);
3277
3278 if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3279 best_loc == prange->actual_loc)
3280 return 0;
3281
3282 if (!best_loc) {
3283 r = svm_migrate_vram_to_ram(prange, mm,
3284 KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3285 *migrated = !r;
3286 return r;
3287 }
3288
3289 r = svm_migrate_to_vram(prange, best_loc, mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3290 *migrated = !r;
3291
3292 return r;
3293 }
3294
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3295 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3296 {
3297 if (!fence)
3298 return -EINVAL;
3299
3300 if (dma_fence_is_signaled(&fence->base))
3301 return 0;
3302
3303 if (fence->svm_bo) {
3304 WRITE_ONCE(fence->svm_bo->evicting, 1);
3305 schedule_work(&fence->svm_bo->eviction_work);
3306 }
3307
3308 return 0;
3309 }
3310
svm_range_evict_svm_bo_worker(struct work_struct * work)3311 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3312 {
3313 struct svm_range_bo *svm_bo;
3314 struct mm_struct *mm;
3315 int r = 0;
3316
3317 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3318 if (!svm_bo_ref_unless_zero(svm_bo))
3319 return; /* svm_bo was freed while eviction was pending */
3320
3321 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3322 mm = svm_bo->eviction_fence->mm;
3323 } else {
3324 svm_range_bo_unref(svm_bo);
3325 return;
3326 }
3327
3328 mmap_read_lock(mm);
3329 spin_lock(&svm_bo->list_lock);
3330 while (!list_empty(&svm_bo->range_list) && !r) {
3331 struct svm_range *prange =
3332 list_first_entry(&svm_bo->range_list,
3333 struct svm_range, svm_bo_list);
3334 int retries = 3;
3335
3336 list_del_init(&prange->svm_bo_list);
3337 spin_unlock(&svm_bo->list_lock);
3338
3339 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3340 prange->start, prange->last);
3341
3342 mutex_lock(&prange->migrate_mutex);
3343 do {
3344 r = svm_migrate_vram_to_ram(prange, mm,
3345 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3346 } while (!r && prange->actual_loc && --retries);
3347
3348 if (!r && prange->actual_loc)
3349 pr_info_once("Migration failed during eviction");
3350
3351 if (!prange->actual_loc) {
3352 mutex_lock(&prange->lock);
3353 prange->svm_bo = NULL;
3354 mutex_unlock(&prange->lock);
3355 }
3356 mutex_unlock(&prange->migrate_mutex);
3357
3358 spin_lock(&svm_bo->list_lock);
3359 }
3360 spin_unlock(&svm_bo->list_lock);
3361 mmap_read_unlock(mm);
3362 mmput(mm);
3363
3364 dma_fence_signal(&svm_bo->eviction_fence->base);
3365
3366 /* This is the last reference to svm_bo, after svm_range_vram_node_free
3367 * has been called in svm_migrate_vram_to_ram
3368 */
3369 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3370 svm_range_bo_unref(svm_bo);
3371 }
3372
3373 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3374 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3375 uint64_t start, uint64_t size, uint32_t nattr,
3376 struct kfd_ioctl_svm_attribute *attrs)
3377 {
3378 struct amdkfd_process_info *process_info = p->kgd_process_info;
3379 struct list_head update_list;
3380 struct list_head insert_list;
3381 struct list_head remove_list;
3382 struct svm_range_list *svms;
3383 struct svm_range *prange;
3384 struct svm_range *next;
3385 bool update_mapping = false;
3386 bool flush_tlb;
3387 int r = 0;
3388
3389 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3390 p->pasid, &p->svms, start, start + size - 1, size);
3391
3392 r = svm_range_check_attr(p, nattr, attrs);
3393 if (r)
3394 return r;
3395
3396 svms = &p->svms;
3397
3398 mutex_lock(&process_info->lock);
3399
3400 svm_range_list_lock_and_flush_work(svms, mm);
3401
3402 r = svm_range_is_valid(p, start, size);
3403 if (r) {
3404 pr_debug("invalid range r=%d\n", r);
3405 mmap_write_unlock(mm);
3406 goto out;
3407 }
3408
3409 mutex_lock(&svms->lock);
3410
3411 /* Add new range and split existing ranges as needed */
3412 r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3413 &insert_list, &remove_list);
3414 if (r) {
3415 mutex_unlock(&svms->lock);
3416 mmap_write_unlock(mm);
3417 goto out;
3418 }
3419 /* Apply changes as a transaction */
3420 list_for_each_entry_safe(prange, next, &insert_list, list) {
3421 svm_range_add_to_svms(prange);
3422 svm_range_add_notifier_locked(mm, prange);
3423 }
3424 list_for_each_entry(prange, &update_list, update_list) {
3425 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3426 /* TODO: unmap ranges from GPU that lost access */
3427 }
3428 list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3429 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3430 prange->svms, prange, prange->start,
3431 prange->last);
3432 svm_range_unlink(prange);
3433 svm_range_remove_notifier(prange);
3434 svm_range_free(prange, false);
3435 }
3436
3437 mmap_write_downgrade(mm);
3438 /* Trigger migrations and revalidate and map to GPUs as needed. If
3439 * this fails we may be left with partially completed actions. There
3440 * is no clean way of rolling back to the previous state in such a
3441 * case because the rollback wouldn't be guaranteed to work either.
3442 */
3443 list_for_each_entry(prange, &update_list, update_list) {
3444 bool migrated;
3445
3446 mutex_lock(&prange->migrate_mutex);
3447
3448 r = svm_range_trigger_migration(mm, prange, &migrated);
3449 if (r)
3450 goto out_unlock_range;
3451
3452 if (migrated && (!p->xnack_enabled ||
3453 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3454 prange->mapped_to_gpu) {
3455 pr_debug("restore_work will update mappings of GPUs\n");
3456 mutex_unlock(&prange->migrate_mutex);
3457 continue;
3458 }
3459
3460 if (!migrated && !update_mapping) {
3461 mutex_unlock(&prange->migrate_mutex);
3462 continue;
3463 }
3464
3465 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3466
3467 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3468 true, true, flush_tlb);
3469 if (r)
3470 pr_debug("failed %d to map svm range\n", r);
3471
3472 out_unlock_range:
3473 mutex_unlock(&prange->migrate_mutex);
3474 if (r)
3475 break;
3476 }
3477
3478 svm_range_debug_dump(svms);
3479
3480 mutex_unlock(&svms->lock);
3481 mmap_read_unlock(mm);
3482 out:
3483 mutex_unlock(&process_info->lock);
3484
3485 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3486 &p->svms, start, start + size - 1, r);
3487
3488 return r;
3489 }
3490
3491 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3492 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3493 uint64_t start, uint64_t size, uint32_t nattr,
3494 struct kfd_ioctl_svm_attribute *attrs)
3495 {
3496 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3497 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3498 bool get_preferred_loc = false;
3499 bool get_prefetch_loc = false;
3500 bool get_granularity = false;
3501 bool get_accessible = false;
3502 bool get_flags = false;
3503 uint64_t last = start + size - 1UL;
3504 uint8_t granularity = 0xff;
3505 struct interval_tree_node *node;
3506 struct svm_range_list *svms;
3507 struct svm_range *prange;
3508 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3509 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3510 uint32_t flags_and = 0xffffffff;
3511 uint32_t flags_or = 0;
3512 int gpuidx;
3513 uint32_t i;
3514 int r = 0;
3515
3516 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3517 start + size - 1, nattr);
3518
3519 /* Flush pending deferred work to avoid racing with deferred actions from
3520 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3521 * can still race with get_attr because we don't hold the mmap lock. But that
3522 * would be a race condition in the application anyway, and undefined
3523 * behaviour is acceptable in that case.
3524 */
3525 flush_work(&p->svms.deferred_list_work);
3526
3527 mmap_read_lock(mm);
3528 r = svm_range_is_valid(p, start, size);
3529 mmap_read_unlock(mm);
3530 if (r) {
3531 pr_debug("invalid range r=%d\n", r);
3532 return r;
3533 }
3534
3535 for (i = 0; i < nattr; i++) {
3536 switch (attrs[i].type) {
3537 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3538 get_preferred_loc = true;
3539 break;
3540 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3541 get_prefetch_loc = true;
3542 break;
3543 case KFD_IOCTL_SVM_ATTR_ACCESS:
3544 get_accessible = true;
3545 break;
3546 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3547 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3548 get_flags = true;
3549 break;
3550 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3551 get_granularity = true;
3552 break;
3553 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3554 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3555 fallthrough;
3556 default:
3557 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3558 return -EINVAL;
3559 }
3560 }
3561
3562 svms = &p->svms;
3563
3564 mutex_lock(&svms->lock);
3565
3566 node = interval_tree_iter_first(&svms->objects, start, last);
3567 if (!node) {
3568 pr_debug("range attrs not found return default values\n");
3569 svm_range_set_default_attributes(&location, &prefetch_loc,
3570 &granularity, &flags_and);
3571 flags_or = flags_and;
3572 if (p->xnack_enabled)
3573 bitmap_copy(bitmap_access, svms->bitmap_supported,
3574 MAX_GPU_INSTANCE);
3575 else
3576 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3577 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3578 goto fill_values;
3579 }
3580 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3581 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3582
3583 while (node) {
3584 struct interval_tree_node *next;
3585
3586 prange = container_of(node, struct svm_range, it_node);
3587 next = interval_tree_iter_next(node, start, last);
3588
3589 if (get_preferred_loc) {
3590 if (prange->preferred_loc ==
3591 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3592 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3593 location != prange->preferred_loc)) {
3594 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3595 get_preferred_loc = false;
3596 } else {
3597 location = prange->preferred_loc;
3598 }
3599 }
3600 if (get_prefetch_loc) {
3601 if (prange->prefetch_loc ==
3602 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3603 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3604 prefetch_loc != prange->prefetch_loc)) {
3605 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3606 get_prefetch_loc = false;
3607 } else {
3608 prefetch_loc = prange->prefetch_loc;
3609 }
3610 }
3611 if (get_accessible) {
3612 bitmap_and(bitmap_access, bitmap_access,
3613 prange->bitmap_access, MAX_GPU_INSTANCE);
3614 bitmap_and(bitmap_aip, bitmap_aip,
3615 prange->bitmap_aip, MAX_GPU_INSTANCE);
3616 }
3617 if (get_flags) {
3618 flags_and &= prange->flags;
3619 flags_or |= prange->flags;
3620 }
3621
3622 if (get_granularity && prange->granularity < granularity)
3623 granularity = prange->granularity;
3624
3625 node = next;
3626 }
3627 fill_values:
3628 mutex_unlock(&svms->lock);
3629
3630 for (i = 0; i < nattr; i++) {
3631 switch (attrs[i].type) {
3632 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3633 attrs[i].value = location;
3634 break;
3635 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3636 attrs[i].value = prefetch_loc;
3637 break;
3638 case KFD_IOCTL_SVM_ATTR_ACCESS:
3639 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3640 attrs[i].value);
3641 if (gpuidx < 0) {
3642 pr_debug("invalid gpuid %x\n", attrs[i].value);
3643 return -EINVAL;
3644 }
3645 if (test_bit(gpuidx, bitmap_access))
3646 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3647 else if (test_bit(gpuidx, bitmap_aip))
3648 attrs[i].type =
3649 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3650 else
3651 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3652 break;
3653 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3654 attrs[i].value = flags_and;
3655 break;
3656 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3657 attrs[i].value = ~flags_or;
3658 break;
3659 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3660 attrs[i].value = (uint32_t)granularity;
3661 break;
3662 }
3663 }
3664
3665 return 0;
3666 }
3667
kfd_criu_resume_svm(struct kfd_process * p)3668 int kfd_criu_resume_svm(struct kfd_process *p)
3669 {
3670 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3671 int nattr_common = 4, nattr_accessibility = 1;
3672 struct criu_svm_metadata *criu_svm_md = NULL;
3673 struct svm_range_list *svms = &p->svms;
3674 struct criu_svm_metadata *next = NULL;
3675 uint32_t set_flags = 0xffffffff;
3676 int i, j, num_attrs, ret = 0;
3677 uint64_t set_attr_size;
3678 struct mm_struct *mm;
3679
3680 if (list_empty(&svms->criu_svm_metadata_list)) {
3681 pr_debug("No SVM data from CRIU restore stage 2\n");
3682 return ret;
3683 }
3684
3685 mm = get_task_mm(p->lead_thread);
3686 if (!mm) {
3687 pr_err("failed to get mm for the target process\n");
3688 return -ESRCH;
3689 }
3690
3691 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3692
3693 i = j = 0;
3694 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3695 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3696 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3697
3698 for (j = 0; j < num_attrs; j++) {
3699 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3700 i, j, criu_svm_md->data.attrs[j].type,
3701 i, j, criu_svm_md->data.attrs[j].value);
3702 switch (criu_svm_md->data.attrs[j].type) {
3703 /* During Checkpoint operation, the query for
3704 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3705 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3706 * not used by the range which was checkpointed. Care
3707 * must be taken to not restore with an invalid value
3708 * otherwise the gpuidx value will be invalid and
3709 * set_attr would eventually fail so just replace those
3710 * with another dummy attribute such as
3711 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3712 */
3713 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3714 if (criu_svm_md->data.attrs[j].value ==
3715 KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3716 criu_svm_md->data.attrs[j].type =
3717 KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3718 criu_svm_md->data.attrs[j].value = 0;
3719 }
3720 break;
3721 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3722 set_flags = criu_svm_md->data.attrs[j].value;
3723 break;
3724 default:
3725 break;
3726 }
3727 }
3728
3729 /* CLR_FLAGS is not available via get_attr during checkpoint but
3730 * it needs to be inserted before restoring the ranges so
3731 * allocate extra space for it before calling set_attr
3732 */
3733 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3734 (num_attrs + 1);
3735 set_attr_new = krealloc(set_attr, set_attr_size,
3736 GFP_KERNEL);
3737 if (!set_attr_new) {
3738 ret = -ENOMEM;
3739 goto exit;
3740 }
3741 set_attr = set_attr_new;
3742
3743 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3744 sizeof(struct kfd_ioctl_svm_attribute));
3745 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3746 set_attr[num_attrs].value = ~set_flags;
3747
3748 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3749 criu_svm_md->data.size, num_attrs + 1,
3750 set_attr);
3751 if (ret) {
3752 pr_err("CRIU: failed to set range attributes\n");
3753 goto exit;
3754 }
3755
3756 i++;
3757 }
3758 exit:
3759 kfree(set_attr);
3760 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3761 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3762 criu_svm_md->data.start_addr);
3763 kfree(criu_svm_md);
3764 }
3765
3766 mmput(mm);
3767 return ret;
3768
3769 }
3770
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)3771 int kfd_criu_restore_svm(struct kfd_process *p,
3772 uint8_t __user *user_priv_ptr,
3773 uint64_t *priv_data_offset,
3774 uint64_t max_priv_data_size)
3775 {
3776 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3777 int nattr_common = 4, nattr_accessibility = 1;
3778 struct criu_svm_metadata *criu_svm_md = NULL;
3779 struct svm_range_list *svms = &p->svms;
3780 uint32_t num_devices;
3781 int ret = 0;
3782
3783 num_devices = p->n_pdds;
3784 /* Handle one SVM range object at a time, also the number of gpus are
3785 * assumed to be same on the restore node, checking must be done while
3786 * evaluating the topology earlier
3787 */
3788
3789 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3790 (nattr_common + nattr_accessibility * num_devices);
3791 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3792
3793 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3794 svm_attrs_size;
3795
3796 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3797 if (!criu_svm_md) {
3798 pr_err("failed to allocate memory to store svm metadata\n");
3799 return -ENOMEM;
3800 }
3801 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3802 ret = -EINVAL;
3803 goto exit;
3804 }
3805
3806 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3807 svm_priv_data_size);
3808 if (ret) {
3809 ret = -EFAULT;
3810 goto exit;
3811 }
3812 *priv_data_offset += svm_priv_data_size;
3813
3814 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3815
3816 return 0;
3817
3818
3819 exit:
3820 kfree(criu_svm_md);
3821 return ret;
3822 }
3823
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)3824 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3825 uint64_t *svm_priv_data_size)
3826 {
3827 uint64_t total_size, accessibility_size, common_attr_size;
3828 int nattr_common = 4, nattr_accessibility = 1;
3829 int num_devices = p->n_pdds;
3830 struct svm_range_list *svms;
3831 struct svm_range *prange;
3832 uint32_t count = 0;
3833
3834 *svm_priv_data_size = 0;
3835
3836 svms = &p->svms;
3837 if (!svms)
3838 return -EINVAL;
3839
3840 mutex_lock(&svms->lock);
3841 list_for_each_entry(prange, &svms->list, list) {
3842 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
3843 prange, prange->start, prange->npages,
3844 prange->start + prange->npages - 1);
3845 count++;
3846 }
3847 mutex_unlock(&svms->lock);
3848
3849 *num_svm_ranges = count;
3850 /* Only the accessbility attributes need to be queried for all the gpus
3851 * individually, remaining ones are spanned across the entire process
3852 * regardless of the various gpu nodes. Of the remaining attributes,
3853 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
3854 *
3855 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
3856 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
3857 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
3858 * KFD_IOCTL_SVM_ATTR_GRANULARITY
3859 *
3860 * ** ACCESSBILITY ATTRIBUTES **
3861 * (Considered as one, type is altered during query, value is gpuid)
3862 * KFD_IOCTL_SVM_ATTR_ACCESS
3863 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
3864 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
3865 */
3866 if (*num_svm_ranges > 0) {
3867 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3868 nattr_common;
3869 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
3870 nattr_accessibility * num_devices;
3871
3872 total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3873 common_attr_size + accessibility_size;
3874
3875 *svm_priv_data_size = *num_svm_ranges * total_size;
3876 }
3877
3878 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
3879 *svm_priv_data_size);
3880 return 0;
3881 }
3882
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)3883 int kfd_criu_checkpoint_svm(struct kfd_process *p,
3884 uint8_t __user *user_priv_data,
3885 uint64_t *priv_data_offset)
3886 {
3887 struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
3888 struct kfd_ioctl_svm_attribute *query_attr = NULL;
3889 uint64_t svm_priv_data_size, query_attr_size = 0;
3890 int index, nattr_common = 4, ret = 0;
3891 struct svm_range_list *svms;
3892 int num_devices = p->n_pdds;
3893 struct svm_range *prange;
3894 struct mm_struct *mm;
3895
3896 svms = &p->svms;
3897 if (!svms)
3898 return -EINVAL;
3899
3900 mm = get_task_mm(p->lead_thread);
3901 if (!mm) {
3902 pr_err("failed to get mm for the target process\n");
3903 return -ESRCH;
3904 }
3905
3906 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3907 (nattr_common + num_devices);
3908
3909 query_attr = kzalloc(query_attr_size, GFP_KERNEL);
3910 if (!query_attr) {
3911 ret = -ENOMEM;
3912 goto exit;
3913 }
3914
3915 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
3916 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
3917 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3918 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
3919
3920 for (index = 0; index < num_devices; index++) {
3921 struct kfd_process_device *pdd = p->pdds[index];
3922
3923 query_attr[index + nattr_common].type =
3924 KFD_IOCTL_SVM_ATTR_ACCESS;
3925 query_attr[index + nattr_common].value = pdd->user_gpu_id;
3926 }
3927
3928 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
3929
3930 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
3931 if (!svm_priv) {
3932 ret = -ENOMEM;
3933 goto exit_query;
3934 }
3935
3936 index = 0;
3937 list_for_each_entry(prange, &svms->list, list) {
3938
3939 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
3940 svm_priv->start_addr = prange->start;
3941 svm_priv->size = prange->npages;
3942 memcpy(&svm_priv->attrs, query_attr, query_attr_size);
3943 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
3944 prange, prange->start, prange->npages,
3945 prange->start + prange->npages - 1,
3946 prange->npages * PAGE_SIZE);
3947
3948 ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
3949 svm_priv->size,
3950 (nattr_common + num_devices),
3951 svm_priv->attrs);
3952 if (ret) {
3953 pr_err("CRIU: failed to obtain range attributes\n");
3954 goto exit_priv;
3955 }
3956
3957 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
3958 svm_priv_data_size)) {
3959 pr_err("Failed to copy svm priv to user\n");
3960 ret = -EFAULT;
3961 goto exit_priv;
3962 }
3963
3964 *priv_data_offset += svm_priv_data_size;
3965
3966 }
3967
3968
3969 exit_priv:
3970 kfree(svm_priv);
3971 exit_query:
3972 kfree(query_attr);
3973 exit:
3974 mmput(mm);
3975 return ret;
3976 }
3977
3978 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)3979 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
3980 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
3981 {
3982 struct mm_struct *mm = current->mm;
3983 int r;
3984
3985 start >>= PAGE_SHIFT;
3986 size >>= PAGE_SHIFT;
3987
3988 switch (op) {
3989 case KFD_IOCTL_SVM_OP_SET_ATTR:
3990 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
3991 break;
3992 case KFD_IOCTL_SVM_OP_GET_ATTR:
3993 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
3994 break;
3995 default:
3996 r = EINVAL;
3997 break;
3998 }
3999
4000 return r;
4001 }
4002