1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/svc_xprt.c
4  *
5  * Author: Tom Tucker <tom@opengridcomputing.com>
6  */
7 
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/errno.h>
11 #include <linux/freezer.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <net/sock.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/sunrpc/stats.h>
17 #include <linux/sunrpc/svc_xprt.h>
18 #include <linux/sunrpc/svcsock.h>
19 #include <linux/sunrpc/xprt.h>
20 #include <linux/module.h>
21 #include <linux/netdevice.h>
22 #include <trace/events/sunrpc.h>
23 
24 #define RPCDBG_FACILITY	RPCDBG_SVCXPRT
25 
26 static unsigned int svc_rpc_per_connection_limit __read_mostly;
27 module_param(svc_rpc_per_connection_limit, uint, 0644);
28 
29 
30 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
31 static int svc_deferred_recv(struct svc_rqst *rqstp);
32 static struct cache_deferred_req *svc_defer(struct cache_req *req);
33 static void svc_age_temp_xprts(struct timer_list *t);
34 static void svc_delete_xprt(struct svc_xprt *xprt);
35 
36 /* apparently the "standard" is that clients close
37  * idle connections after 5 minutes, servers after
38  * 6 minutes
39  *   http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
40  */
41 static int svc_conn_age_period = 6*60;
42 
43 /* List of registered transport classes */
44 static DEFINE_SPINLOCK(svc_xprt_class_lock);
45 static LIST_HEAD(svc_xprt_class_list);
46 
47 /* SMP locking strategy:
48  *
49  *	svc_pool->sp_lock protects most of the fields of that pool.
50  *	svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
51  *	when both need to be taken (rare), svc_serv->sv_lock is first.
52  *	The "service mutex" protects svc_serv->sv_nrthread.
53  *	svc_sock->sk_lock protects the svc_sock->sk_deferred list
54  *             and the ->sk_info_authunix cache.
55  *
56  *	The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
57  *	enqueued multiply. During normal transport processing this bit
58  *	is set by svc_xprt_enqueue and cleared by svc_xprt_received.
59  *	Providers should not manipulate this bit directly.
60  *
61  *	Some flags can be set to certain values at any time
62  *	providing that certain rules are followed:
63  *
64  *	XPT_CONN, XPT_DATA:
65  *		- Can be set or cleared at any time.
66  *		- After a set, svc_xprt_enqueue must be called to enqueue
67  *		  the transport for processing.
68  *		- After a clear, the transport must be read/accepted.
69  *		  If this succeeds, it must be set again.
70  *	XPT_CLOSE:
71  *		- Can set at any time. It is never cleared.
72  *      XPT_DEAD:
73  *		- Can only be set while XPT_BUSY is held which ensures
74  *		  that no other thread will be using the transport or will
75  *		  try to set XPT_DEAD.
76  */
77 
78 /**
79  * svc_reg_xprt_class - Register a server-side RPC transport class
80  * @xcl: New transport class to be registered
81  *
82  * Returns zero on success; otherwise a negative errno is returned.
83  */
svc_reg_xprt_class(struct svc_xprt_class * xcl)84 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
85 {
86 	struct svc_xprt_class *cl;
87 	int res = -EEXIST;
88 
89 	INIT_LIST_HEAD(&xcl->xcl_list);
90 	spin_lock(&svc_xprt_class_lock);
91 	/* Make sure there isn't already a class with the same name */
92 	list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
93 		if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
94 			goto out;
95 	}
96 	list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
97 	res = 0;
98 out:
99 	spin_unlock(&svc_xprt_class_lock);
100 	return res;
101 }
102 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
103 
104 /**
105  * svc_unreg_xprt_class - Unregister a server-side RPC transport class
106  * @xcl: Transport class to be unregistered
107  *
108  */
svc_unreg_xprt_class(struct svc_xprt_class * xcl)109 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
110 {
111 	spin_lock(&svc_xprt_class_lock);
112 	list_del_init(&xcl->xcl_list);
113 	spin_unlock(&svc_xprt_class_lock);
114 }
115 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
116 
117 /**
118  * svc_print_xprts - Format the transport list for printing
119  * @buf: target buffer for formatted address
120  * @maxlen: length of target buffer
121  *
122  * Fills in @buf with a string containing a list of transport names, each name
123  * terminated with '\n'. If the buffer is too small, some entries may be
124  * missing, but it is guaranteed that all lines in the output buffer are
125  * complete.
126  *
127  * Returns positive length of the filled-in string.
128  */
svc_print_xprts(char * buf,int maxlen)129 int svc_print_xprts(char *buf, int maxlen)
130 {
131 	struct svc_xprt_class *xcl;
132 	char tmpstr[80];
133 	int len = 0;
134 	buf[0] = '\0';
135 
136 	spin_lock(&svc_xprt_class_lock);
137 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
138 		int slen;
139 
140 		slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
141 				xcl->xcl_name, xcl->xcl_max_payload);
142 		if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
143 			break;
144 		len += slen;
145 		strcat(buf, tmpstr);
146 	}
147 	spin_unlock(&svc_xprt_class_lock);
148 
149 	return len;
150 }
151 
152 /**
153  * svc_xprt_deferred_close - Close a transport
154  * @xprt: transport instance
155  *
156  * Used in contexts that need to defer the work of shutting down
157  * the transport to an nfsd thread.
158  */
svc_xprt_deferred_close(struct svc_xprt * xprt)159 void svc_xprt_deferred_close(struct svc_xprt *xprt)
160 {
161 	if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
162 		svc_xprt_enqueue(xprt);
163 }
164 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
165 
svc_xprt_free(struct kref * kref)166 static void svc_xprt_free(struct kref *kref)
167 {
168 	struct svc_xprt *xprt =
169 		container_of(kref, struct svc_xprt, xpt_ref);
170 	struct module *owner = xprt->xpt_class->xcl_owner;
171 	if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
172 		svcauth_unix_info_release(xprt);
173 	put_cred(xprt->xpt_cred);
174 	put_net_track(xprt->xpt_net, &xprt->ns_tracker);
175 	/* See comment on corresponding get in xs_setup_bc_tcp(): */
176 	if (xprt->xpt_bc_xprt)
177 		xprt_put(xprt->xpt_bc_xprt);
178 	if (xprt->xpt_bc_xps)
179 		xprt_switch_put(xprt->xpt_bc_xps);
180 	trace_svc_xprt_free(xprt);
181 	xprt->xpt_ops->xpo_free(xprt);
182 	module_put(owner);
183 }
184 
svc_xprt_put(struct svc_xprt * xprt)185 void svc_xprt_put(struct svc_xprt *xprt)
186 {
187 	kref_put(&xprt->xpt_ref, svc_xprt_free);
188 }
189 EXPORT_SYMBOL_GPL(svc_xprt_put);
190 
191 /*
192  * Called by transport drivers to initialize the transport independent
193  * portion of the transport instance.
194  */
svc_xprt_init(struct net * net,struct svc_xprt_class * xcl,struct svc_xprt * xprt,struct svc_serv * serv)195 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
196 		   struct svc_xprt *xprt, struct svc_serv *serv)
197 {
198 	memset(xprt, 0, sizeof(*xprt));
199 	xprt->xpt_class = xcl;
200 	xprt->xpt_ops = xcl->xcl_ops;
201 	kref_init(&xprt->xpt_ref);
202 	xprt->xpt_server = serv;
203 	INIT_LIST_HEAD(&xprt->xpt_list);
204 	INIT_LIST_HEAD(&xprt->xpt_ready);
205 	INIT_LIST_HEAD(&xprt->xpt_deferred);
206 	INIT_LIST_HEAD(&xprt->xpt_users);
207 	mutex_init(&xprt->xpt_mutex);
208 	spin_lock_init(&xprt->xpt_lock);
209 	set_bit(XPT_BUSY, &xprt->xpt_flags);
210 	xprt->xpt_net = get_net_track(net, &xprt->ns_tracker, GFP_ATOMIC);
211 	strcpy(xprt->xpt_remotebuf, "uninitialized");
212 }
213 EXPORT_SYMBOL_GPL(svc_xprt_init);
214 
__svc_xpo_create(struct svc_xprt_class * xcl,struct svc_serv * serv,struct net * net,const int family,const unsigned short port,int flags)215 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
216 					 struct svc_serv *serv,
217 					 struct net *net,
218 					 const int family,
219 					 const unsigned short port,
220 					 int flags)
221 {
222 	struct sockaddr_in sin = {
223 		.sin_family		= AF_INET,
224 		.sin_addr.s_addr	= htonl(INADDR_ANY),
225 		.sin_port		= htons(port),
226 	};
227 #if IS_ENABLED(CONFIG_IPV6)
228 	struct sockaddr_in6 sin6 = {
229 		.sin6_family		= AF_INET6,
230 		.sin6_addr		= IN6ADDR_ANY_INIT,
231 		.sin6_port		= htons(port),
232 	};
233 #endif
234 	struct svc_xprt *xprt;
235 	struct sockaddr *sap;
236 	size_t len;
237 
238 	switch (family) {
239 	case PF_INET:
240 		sap = (struct sockaddr *)&sin;
241 		len = sizeof(sin);
242 		break;
243 #if IS_ENABLED(CONFIG_IPV6)
244 	case PF_INET6:
245 		sap = (struct sockaddr *)&sin6;
246 		len = sizeof(sin6);
247 		break;
248 #endif
249 	default:
250 		return ERR_PTR(-EAFNOSUPPORT);
251 	}
252 
253 	xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
254 	if (IS_ERR(xprt))
255 		trace_svc_xprt_create_err(serv->sv_program->pg_name,
256 					  xcl->xcl_name, sap, len, xprt);
257 	return xprt;
258 }
259 
260 /**
261  * svc_xprt_received - start next receiver thread
262  * @xprt: controlling transport
263  *
264  * The caller must hold the XPT_BUSY bit and must
265  * not thereafter touch transport data.
266  *
267  * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
268  * insufficient) data.
269  */
svc_xprt_received(struct svc_xprt * xprt)270 void svc_xprt_received(struct svc_xprt *xprt)
271 {
272 	if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
273 		WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
274 		return;
275 	}
276 
277 	/* As soon as we clear busy, the xprt could be closed and
278 	 * 'put', so we need a reference to call svc_xprt_enqueue with:
279 	 */
280 	svc_xprt_get(xprt);
281 	smp_mb__before_atomic();
282 	clear_bit(XPT_BUSY, &xprt->xpt_flags);
283 	svc_xprt_enqueue(xprt);
284 	svc_xprt_put(xprt);
285 }
286 EXPORT_SYMBOL_GPL(svc_xprt_received);
287 
svc_add_new_perm_xprt(struct svc_serv * serv,struct svc_xprt * new)288 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
289 {
290 	clear_bit(XPT_TEMP, &new->xpt_flags);
291 	spin_lock_bh(&serv->sv_lock);
292 	list_add(&new->xpt_list, &serv->sv_permsocks);
293 	spin_unlock_bh(&serv->sv_lock);
294 	svc_xprt_received(new);
295 }
296 
_svc_xprt_create(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags,const struct cred * cred)297 static int _svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
298 			    struct net *net, const int family,
299 			    const unsigned short port, int flags,
300 			    const struct cred *cred)
301 {
302 	struct svc_xprt_class *xcl;
303 
304 	spin_lock(&svc_xprt_class_lock);
305 	list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
306 		struct svc_xprt *newxprt;
307 		unsigned short newport;
308 
309 		if (strcmp(xprt_name, xcl->xcl_name))
310 			continue;
311 
312 		if (!try_module_get(xcl->xcl_owner))
313 			goto err;
314 
315 		spin_unlock(&svc_xprt_class_lock);
316 		newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
317 		if (IS_ERR(newxprt)) {
318 			module_put(xcl->xcl_owner);
319 			return PTR_ERR(newxprt);
320 		}
321 		newxprt->xpt_cred = get_cred(cred);
322 		svc_add_new_perm_xprt(serv, newxprt);
323 		newport = svc_xprt_local_port(newxprt);
324 		return newport;
325 	}
326  err:
327 	spin_unlock(&svc_xprt_class_lock);
328 	/* This errno is exposed to user space.  Provide a reasonable
329 	 * perror msg for a bad transport. */
330 	return -EPROTONOSUPPORT;
331 }
332 
333 /**
334  * svc_xprt_create - Add a new listener to @serv
335  * @serv: target RPC service
336  * @xprt_name: transport class name
337  * @net: network namespace
338  * @family: network address family
339  * @port: listener port
340  * @flags: SVC_SOCK flags
341  * @cred: credential to bind to this transport
342  *
343  * Return values:
344  *   %0: New listener added successfully
345  *   %-EPROTONOSUPPORT: Requested transport type not supported
346  */
svc_xprt_create(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags,const struct cred * cred)347 int svc_xprt_create(struct svc_serv *serv, const char *xprt_name,
348 		    struct net *net, const int family,
349 		    const unsigned short port, int flags,
350 		    const struct cred *cred)
351 {
352 	int err;
353 
354 	err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
355 	if (err == -EPROTONOSUPPORT) {
356 		request_module("svc%s", xprt_name);
357 		err = _svc_xprt_create(serv, xprt_name, net, family, port, flags, cred);
358 	}
359 	return err;
360 }
361 EXPORT_SYMBOL_GPL(svc_xprt_create);
362 
363 /*
364  * Copy the local and remote xprt addresses to the rqstp structure
365  */
svc_xprt_copy_addrs(struct svc_rqst * rqstp,struct svc_xprt * xprt)366 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
367 {
368 	memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
369 	rqstp->rq_addrlen = xprt->xpt_remotelen;
370 
371 	/*
372 	 * Destination address in request is needed for binding the
373 	 * source address in RPC replies/callbacks later.
374 	 */
375 	memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
376 	rqstp->rq_daddrlen = xprt->xpt_locallen;
377 }
378 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
379 
380 /**
381  * svc_print_addr - Format rq_addr field for printing
382  * @rqstp: svc_rqst struct containing address to print
383  * @buf: target buffer for formatted address
384  * @len: length of target buffer
385  *
386  */
svc_print_addr(struct svc_rqst * rqstp,char * buf,size_t len)387 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
388 {
389 	return __svc_print_addr(svc_addr(rqstp), buf, len);
390 }
391 EXPORT_SYMBOL_GPL(svc_print_addr);
392 
svc_xprt_slots_in_range(struct svc_xprt * xprt)393 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
394 {
395 	unsigned int limit = svc_rpc_per_connection_limit;
396 	int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
397 
398 	return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
399 }
400 
svc_xprt_reserve_slot(struct svc_rqst * rqstp,struct svc_xprt * xprt)401 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
402 {
403 	if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
404 		if (!svc_xprt_slots_in_range(xprt))
405 			return false;
406 		atomic_inc(&xprt->xpt_nr_rqsts);
407 		set_bit(RQ_DATA, &rqstp->rq_flags);
408 	}
409 	return true;
410 }
411 
svc_xprt_release_slot(struct svc_rqst * rqstp)412 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
413 {
414 	struct svc_xprt	*xprt = rqstp->rq_xprt;
415 	if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
416 		atomic_dec(&xprt->xpt_nr_rqsts);
417 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
418 		svc_xprt_enqueue(xprt);
419 	}
420 }
421 
svc_xprt_ready(struct svc_xprt * xprt)422 static bool svc_xprt_ready(struct svc_xprt *xprt)
423 {
424 	unsigned long xpt_flags;
425 
426 	/*
427 	 * If another cpu has recently updated xpt_flags,
428 	 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
429 	 * know about it; otherwise it's possible that both that cpu and
430 	 * this one could call svc_xprt_enqueue() without either
431 	 * svc_xprt_enqueue() recognizing that the conditions below
432 	 * are satisfied, and we could stall indefinitely:
433 	 */
434 	smp_rmb();
435 	xpt_flags = READ_ONCE(xprt->xpt_flags);
436 
437 	trace_svc_xprt_enqueue(xprt, xpt_flags);
438 	if (xpt_flags & BIT(XPT_BUSY))
439 		return false;
440 	if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE) | BIT(XPT_HANDSHAKE)))
441 		return true;
442 	if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
443 		if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
444 		    svc_xprt_slots_in_range(xprt))
445 			return true;
446 		trace_svc_xprt_no_write_space(xprt);
447 		return false;
448 	}
449 	return false;
450 }
451 
452 /**
453  * svc_xprt_enqueue - Queue a transport on an idle nfsd thread
454  * @xprt: transport with data pending
455  *
456  */
svc_xprt_enqueue(struct svc_xprt * xprt)457 void svc_xprt_enqueue(struct svc_xprt *xprt)
458 {
459 	struct svc_pool *pool;
460 
461 	if (!svc_xprt_ready(xprt))
462 		return;
463 
464 	/* Mark transport as busy. It will remain in this state until
465 	 * the provider calls svc_xprt_received. We update XPT_BUSY
466 	 * atomically because it also guards against trying to enqueue
467 	 * the transport twice.
468 	 */
469 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
470 		return;
471 
472 	pool = svc_pool_for_cpu(xprt->xpt_server);
473 
474 	percpu_counter_inc(&pool->sp_sockets_queued);
475 	spin_lock_bh(&pool->sp_lock);
476 	list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
477 	spin_unlock_bh(&pool->sp_lock);
478 
479 	svc_pool_wake_idle_thread(pool);
480 }
481 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
482 
483 /*
484  * Dequeue the first transport, if there is one.
485  */
svc_xprt_dequeue(struct svc_pool * pool)486 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
487 {
488 	struct svc_xprt	*xprt = NULL;
489 
490 	if (list_empty(&pool->sp_sockets))
491 		goto out;
492 
493 	spin_lock_bh(&pool->sp_lock);
494 	if (likely(!list_empty(&pool->sp_sockets))) {
495 		xprt = list_first_entry(&pool->sp_sockets,
496 					struct svc_xprt, xpt_ready);
497 		list_del_init(&xprt->xpt_ready);
498 		svc_xprt_get(xprt);
499 	}
500 	spin_unlock_bh(&pool->sp_lock);
501 out:
502 	return xprt;
503 }
504 
505 /**
506  * svc_reserve - change the space reserved for the reply to a request.
507  * @rqstp:  The request in question
508  * @space: new max space to reserve
509  *
510  * Each request reserves some space on the output queue of the transport
511  * to make sure the reply fits.  This function reduces that reserved
512  * space to be the amount of space used already, plus @space.
513  *
514  */
svc_reserve(struct svc_rqst * rqstp,int space)515 void svc_reserve(struct svc_rqst *rqstp, int space)
516 {
517 	struct svc_xprt *xprt = rqstp->rq_xprt;
518 
519 	space += rqstp->rq_res.head[0].iov_len;
520 
521 	if (xprt && space < rqstp->rq_reserved) {
522 		atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
523 		rqstp->rq_reserved = space;
524 		smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
525 		svc_xprt_enqueue(xprt);
526 	}
527 }
528 EXPORT_SYMBOL_GPL(svc_reserve);
529 
free_deferred(struct svc_xprt * xprt,struct svc_deferred_req * dr)530 static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr)
531 {
532 	if (!dr)
533 		return;
534 
535 	xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt);
536 	kfree(dr);
537 }
538 
svc_xprt_release(struct svc_rqst * rqstp)539 static void svc_xprt_release(struct svc_rqst *rqstp)
540 {
541 	struct svc_xprt	*xprt = rqstp->rq_xprt;
542 
543 	xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
544 	rqstp->rq_xprt_ctxt = NULL;
545 
546 	free_deferred(xprt, rqstp->rq_deferred);
547 	rqstp->rq_deferred = NULL;
548 
549 	svc_rqst_release_pages(rqstp);
550 	rqstp->rq_res.page_len = 0;
551 	rqstp->rq_res.page_base = 0;
552 
553 	/* Reset response buffer and release
554 	 * the reservation.
555 	 * But first, check that enough space was reserved
556 	 * for the reply, otherwise we have a bug!
557 	 */
558 	if ((rqstp->rq_res.len) >  rqstp->rq_reserved)
559 		printk(KERN_ERR "RPC request reserved %d but used %d\n",
560 		       rqstp->rq_reserved,
561 		       rqstp->rq_res.len);
562 
563 	rqstp->rq_res.head[0].iov_len = 0;
564 	svc_reserve(rqstp, 0);
565 	svc_xprt_release_slot(rqstp);
566 	rqstp->rq_xprt = NULL;
567 	svc_xprt_put(xprt);
568 }
569 
570 /**
571  * svc_wake_up - Wake up a service thread for non-transport work
572  * @serv: RPC service
573  *
574  * Some svc_serv's will have occasional work to do, even when a xprt is not
575  * waiting to be serviced. This function is there to "kick" a task in one of
576  * those services so that it can wake up and do that work. Note that we only
577  * bother with pool 0 as we don't need to wake up more than one thread for
578  * this purpose.
579  */
svc_wake_up(struct svc_serv * serv)580 void svc_wake_up(struct svc_serv *serv)
581 {
582 	struct svc_pool *pool = &serv->sv_pools[0];
583 
584 	set_bit(SP_TASK_PENDING, &pool->sp_flags);
585 	svc_pool_wake_idle_thread(pool);
586 }
587 EXPORT_SYMBOL_GPL(svc_wake_up);
588 
svc_port_is_privileged(struct sockaddr * sin)589 int svc_port_is_privileged(struct sockaddr *sin)
590 {
591 	switch (sin->sa_family) {
592 	case AF_INET:
593 		return ntohs(((struct sockaddr_in *)sin)->sin_port)
594 			< PROT_SOCK;
595 	case AF_INET6:
596 		return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
597 			< PROT_SOCK;
598 	default:
599 		return 0;
600 	}
601 }
602 
603 /*
604  * Make sure that we don't have too many active connections. If we have,
605  * something must be dropped. It's not clear what will happen if we allow
606  * "too many" connections, but when dealing with network-facing software,
607  * we have to code defensively. Here we do that by imposing hard limits.
608  *
609  * There's no point in trying to do random drop here for DoS
610  * prevention. The NFS clients does 1 reconnect in 15 seconds. An
611  * attacker can easily beat that.
612  *
613  * The only somewhat efficient mechanism would be if drop old
614  * connections from the same IP first. But right now we don't even
615  * record the client IP in svc_sock.
616  *
617  * single-threaded services that expect a lot of clients will probably
618  * need to set sv_maxconn to override the default value which is based
619  * on the number of threads
620  */
svc_check_conn_limits(struct svc_serv * serv)621 static void svc_check_conn_limits(struct svc_serv *serv)
622 {
623 	unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
624 				(serv->sv_nrthreads+3) * 20;
625 
626 	if (serv->sv_tmpcnt > limit) {
627 		struct svc_xprt *xprt = NULL;
628 		spin_lock_bh(&serv->sv_lock);
629 		if (!list_empty(&serv->sv_tempsocks)) {
630 			/* Try to help the admin */
631 			net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
632 					       serv->sv_name, serv->sv_maxconn ?
633 					       "max number of connections" :
634 					       "number of threads");
635 			/*
636 			 * Always select the oldest connection. It's not fair,
637 			 * but so is life
638 			 */
639 			xprt = list_entry(serv->sv_tempsocks.prev,
640 					  struct svc_xprt,
641 					  xpt_list);
642 			set_bit(XPT_CLOSE, &xprt->xpt_flags);
643 			svc_xprt_get(xprt);
644 		}
645 		spin_unlock_bh(&serv->sv_lock);
646 
647 		if (xprt) {
648 			svc_xprt_enqueue(xprt);
649 			svc_xprt_put(xprt);
650 		}
651 	}
652 }
653 
svc_alloc_arg(struct svc_rqst * rqstp)654 static bool svc_alloc_arg(struct svc_rqst *rqstp)
655 {
656 	struct svc_serv *serv = rqstp->rq_server;
657 	struct xdr_buf *arg = &rqstp->rq_arg;
658 	unsigned long pages, filled, ret;
659 
660 	pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
661 	if (pages > RPCSVC_MAXPAGES) {
662 		pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
663 			     pages, RPCSVC_MAXPAGES);
664 		/* use as many pages as possible */
665 		pages = RPCSVC_MAXPAGES;
666 	}
667 
668 	for (filled = 0; filled < pages; filled = ret) {
669 		ret = alloc_pages_bulk_array_node(GFP_KERNEL,
670 						  rqstp->rq_pool->sp_id,
671 						  pages, rqstp->rq_pages);
672 		if (ret > filled)
673 			/* Made progress, don't sleep yet */
674 			continue;
675 
676 		set_current_state(TASK_IDLE);
677 		if (kthread_should_stop()) {
678 			set_current_state(TASK_RUNNING);
679 			return false;
680 		}
681 		trace_svc_alloc_arg_err(pages, ret);
682 		memalloc_retry_wait(GFP_KERNEL);
683 	}
684 	rqstp->rq_page_end = &rqstp->rq_pages[pages];
685 	rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
686 
687 	/* Make arg->head point to first page and arg->pages point to rest */
688 	arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
689 	arg->head[0].iov_len = PAGE_SIZE;
690 	arg->pages = rqstp->rq_pages + 1;
691 	arg->page_base = 0;
692 	/* save at least one page for response */
693 	arg->page_len = (pages-2)*PAGE_SIZE;
694 	arg->len = (pages-1)*PAGE_SIZE;
695 	arg->tail[0].iov_len = 0;
696 
697 	rqstp->rq_xid = xdr_zero;
698 	return true;
699 }
700 
701 static bool
rqst_should_sleep(struct svc_rqst * rqstp)702 rqst_should_sleep(struct svc_rqst *rqstp)
703 {
704 	struct svc_pool		*pool = rqstp->rq_pool;
705 
706 	/* did someone call svc_wake_up? */
707 	if (test_bit(SP_TASK_PENDING, &pool->sp_flags))
708 		return false;
709 
710 	/* was a socket queued? */
711 	if (!list_empty(&pool->sp_sockets))
712 		return false;
713 
714 	/* are we shutting down? */
715 	if (kthread_should_stop())
716 		return false;
717 
718 	/* are we freezing? */
719 	if (freezing(current))
720 		return false;
721 
722 	return true;
723 }
724 
svc_get_next_xprt(struct svc_rqst * rqstp)725 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp)
726 {
727 	struct svc_pool		*pool = rqstp->rq_pool;
728 
729 	/* rq_xprt should be clear on entry */
730 	WARN_ON_ONCE(rqstp->rq_xprt);
731 
732 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
733 	if (rqstp->rq_xprt)
734 		goto out_found;
735 
736 	set_current_state(TASK_IDLE);
737 	smp_mb__before_atomic();
738 	clear_bit(SP_CONGESTED, &pool->sp_flags);
739 	clear_bit(RQ_BUSY, &rqstp->rq_flags);
740 	smp_mb__after_atomic();
741 
742 	if (likely(rqst_should_sleep(rqstp)))
743 		schedule();
744 	else
745 		__set_current_state(TASK_RUNNING);
746 
747 	try_to_freeze();
748 
749 	set_bit(RQ_BUSY, &rqstp->rq_flags);
750 	smp_mb__after_atomic();
751 	clear_bit(SP_TASK_PENDING, &pool->sp_flags);
752 	rqstp->rq_xprt = svc_xprt_dequeue(pool);
753 	if (rqstp->rq_xprt)
754 		goto out_found;
755 
756 	if (kthread_should_stop())
757 		return NULL;
758 	return NULL;
759 out_found:
760 	clear_bit(SP_TASK_PENDING, &pool->sp_flags);
761 	/* Normally we will wait up to 5 seconds for any required
762 	 * cache information to be provided.
763 	 */
764 	if (!test_bit(SP_CONGESTED, &pool->sp_flags))
765 		rqstp->rq_chandle.thread_wait = 5*HZ;
766 	else
767 		rqstp->rq_chandle.thread_wait = 1*HZ;
768 	trace_svc_xprt_dequeue(rqstp);
769 	return rqstp->rq_xprt;
770 }
771 
svc_add_new_temp_xprt(struct svc_serv * serv,struct svc_xprt * newxpt)772 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
773 {
774 	spin_lock_bh(&serv->sv_lock);
775 	set_bit(XPT_TEMP, &newxpt->xpt_flags);
776 	list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
777 	serv->sv_tmpcnt++;
778 	if (serv->sv_temptimer.function == NULL) {
779 		/* setup timer to age temp transports */
780 		serv->sv_temptimer.function = svc_age_temp_xprts;
781 		mod_timer(&serv->sv_temptimer,
782 			  jiffies + svc_conn_age_period * HZ);
783 	}
784 	spin_unlock_bh(&serv->sv_lock);
785 	svc_xprt_received(newxpt);
786 }
787 
svc_handle_xprt(struct svc_rqst * rqstp,struct svc_xprt * xprt)788 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
789 {
790 	struct svc_serv *serv = rqstp->rq_server;
791 	int len = 0;
792 
793 	if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
794 		if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
795 			xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
796 		svc_delete_xprt(xprt);
797 		/* Leave XPT_BUSY set on the dead xprt: */
798 		goto out;
799 	}
800 	if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
801 		struct svc_xprt *newxpt;
802 		/*
803 		 * We know this module_get will succeed because the
804 		 * listener holds a reference too
805 		 */
806 		__module_get(xprt->xpt_class->xcl_owner);
807 		svc_check_conn_limits(xprt->xpt_server);
808 		newxpt = xprt->xpt_ops->xpo_accept(xprt);
809 		if (newxpt) {
810 			newxpt->xpt_cred = get_cred(xprt->xpt_cred);
811 			svc_add_new_temp_xprt(serv, newxpt);
812 			trace_svc_xprt_accept(newxpt, serv->sv_name);
813 		} else {
814 			module_put(xprt->xpt_class->xcl_owner);
815 		}
816 		svc_xprt_received(xprt);
817 	} else if (test_bit(XPT_HANDSHAKE, &xprt->xpt_flags)) {
818 		xprt->xpt_ops->xpo_handshake(xprt);
819 		svc_xprt_received(xprt);
820 	} else if (svc_xprt_reserve_slot(rqstp, xprt)) {
821 		/* XPT_DATA|XPT_DEFERRED case: */
822 		rqstp->rq_deferred = svc_deferred_dequeue(xprt);
823 		if (rqstp->rq_deferred)
824 			len = svc_deferred_recv(rqstp);
825 		else
826 			len = xprt->xpt_ops->xpo_recvfrom(rqstp);
827 		rqstp->rq_reserved = serv->sv_max_mesg;
828 		atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
829 	} else
830 		svc_xprt_received(xprt);
831 
832 out:
833 	return len;
834 }
835 
836 /**
837  * svc_recv - Receive and process the next request on any transport
838  * @rqstp: an idle RPC service thread
839  *
840  * This code is carefully organised not to touch any cachelines in
841  * the shared svc_serv structure, only cachelines in the local
842  * svc_pool.
843  */
svc_recv(struct svc_rqst * rqstp)844 void svc_recv(struct svc_rqst *rqstp)
845 {
846 	struct svc_xprt		*xprt = NULL;
847 	struct svc_serv		*serv = rqstp->rq_server;
848 	int			len;
849 
850 	if (!svc_alloc_arg(rqstp))
851 		goto out;
852 
853 	try_to_freeze();
854 	cond_resched();
855 	if (kthread_should_stop())
856 		goto out;
857 
858 	xprt = svc_get_next_xprt(rqstp);
859 	if (!xprt)
860 		goto out;
861 
862 	len = svc_handle_xprt(rqstp, xprt);
863 
864 	/* No data, incomplete (TCP) read, or accept() */
865 	if (len <= 0)
866 		goto out_release;
867 
868 	trace_svc_xdr_recvfrom(&rqstp->rq_arg);
869 
870 	clear_bit(XPT_OLD, &xprt->xpt_flags);
871 
872 	rqstp->rq_chandle.defer = svc_defer;
873 
874 	if (serv->sv_stats)
875 		serv->sv_stats->netcnt++;
876 	percpu_counter_inc(&rqstp->rq_pool->sp_messages_arrived);
877 	rqstp->rq_stime = ktime_get();
878 	svc_process(rqstp);
879 out:
880 	return;
881 out_release:
882 	rqstp->rq_res.len = 0;
883 	svc_xprt_release(rqstp);
884 }
885 EXPORT_SYMBOL_GPL(svc_recv);
886 
887 /*
888  * Drop request
889  */
svc_drop(struct svc_rqst * rqstp)890 void svc_drop(struct svc_rqst *rqstp)
891 {
892 	trace_svc_drop(rqstp);
893 	svc_xprt_release(rqstp);
894 }
895 EXPORT_SYMBOL_GPL(svc_drop);
896 
897 /**
898  * svc_send - Return reply to client
899  * @rqstp: RPC transaction context
900  *
901  */
svc_send(struct svc_rqst * rqstp)902 void svc_send(struct svc_rqst *rqstp)
903 {
904 	struct svc_xprt	*xprt;
905 	struct xdr_buf	*xb;
906 	int status;
907 
908 	xprt = rqstp->rq_xprt;
909 	if (!xprt)
910 		return;
911 
912 	/* calculate over-all length */
913 	xb = &rqstp->rq_res;
914 	xb->len = xb->head[0].iov_len +
915 		xb->page_len +
916 		xb->tail[0].iov_len;
917 	trace_svc_xdr_sendto(rqstp->rq_xid, xb);
918 	trace_svc_stats_latency(rqstp);
919 
920 	status = xprt->xpt_ops->xpo_sendto(rqstp);
921 
922 	trace_svc_send(rqstp, status);
923 	svc_xprt_release(rqstp);
924 }
925 
926 /*
927  * Timer function to close old temporary transports, using
928  * a mark-and-sweep algorithm.
929  */
svc_age_temp_xprts(struct timer_list * t)930 static void svc_age_temp_xprts(struct timer_list *t)
931 {
932 	struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
933 	struct svc_xprt *xprt;
934 	struct list_head *le, *next;
935 
936 	dprintk("svc_age_temp_xprts\n");
937 
938 	if (!spin_trylock_bh(&serv->sv_lock)) {
939 		/* busy, try again 1 sec later */
940 		dprintk("svc_age_temp_xprts: busy\n");
941 		mod_timer(&serv->sv_temptimer, jiffies + HZ);
942 		return;
943 	}
944 
945 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
946 		xprt = list_entry(le, struct svc_xprt, xpt_list);
947 
948 		/* First time through, just mark it OLD. Second time
949 		 * through, close it. */
950 		if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
951 			continue;
952 		if (kref_read(&xprt->xpt_ref) > 1 ||
953 		    test_bit(XPT_BUSY, &xprt->xpt_flags))
954 			continue;
955 		list_del_init(le);
956 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
957 		dprintk("queuing xprt %p for closing\n", xprt);
958 
959 		/* a thread will dequeue and close it soon */
960 		svc_xprt_enqueue(xprt);
961 	}
962 	spin_unlock_bh(&serv->sv_lock);
963 
964 	mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
965 }
966 
967 /* Close temporary transports whose xpt_local matches server_addr immediately
968  * instead of waiting for them to be picked up by the timer.
969  *
970  * This is meant to be called from a notifier_block that runs when an ip
971  * address is deleted.
972  */
svc_age_temp_xprts_now(struct svc_serv * serv,struct sockaddr * server_addr)973 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
974 {
975 	struct svc_xprt *xprt;
976 	struct list_head *le, *next;
977 	LIST_HEAD(to_be_closed);
978 
979 	spin_lock_bh(&serv->sv_lock);
980 	list_for_each_safe(le, next, &serv->sv_tempsocks) {
981 		xprt = list_entry(le, struct svc_xprt, xpt_list);
982 		if (rpc_cmp_addr(server_addr, (struct sockaddr *)
983 				&xprt->xpt_local)) {
984 			dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
985 			list_move(le, &to_be_closed);
986 		}
987 	}
988 	spin_unlock_bh(&serv->sv_lock);
989 
990 	while (!list_empty(&to_be_closed)) {
991 		le = to_be_closed.next;
992 		list_del_init(le);
993 		xprt = list_entry(le, struct svc_xprt, xpt_list);
994 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
995 		set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
996 		dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
997 				xprt);
998 		svc_xprt_enqueue(xprt);
999 	}
1000 }
1001 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1002 
call_xpt_users(struct svc_xprt * xprt)1003 static void call_xpt_users(struct svc_xprt *xprt)
1004 {
1005 	struct svc_xpt_user *u;
1006 
1007 	spin_lock(&xprt->xpt_lock);
1008 	while (!list_empty(&xprt->xpt_users)) {
1009 		u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1010 		list_del_init(&u->list);
1011 		u->callback(u);
1012 	}
1013 	spin_unlock(&xprt->xpt_lock);
1014 }
1015 
1016 /*
1017  * Remove a dead transport
1018  */
svc_delete_xprt(struct svc_xprt * xprt)1019 static void svc_delete_xprt(struct svc_xprt *xprt)
1020 {
1021 	struct svc_serv	*serv = xprt->xpt_server;
1022 	struct svc_deferred_req *dr;
1023 
1024 	if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1025 		return;
1026 
1027 	trace_svc_xprt_detach(xprt);
1028 	xprt->xpt_ops->xpo_detach(xprt);
1029 	if (xprt->xpt_bc_xprt)
1030 		xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1031 
1032 	spin_lock_bh(&serv->sv_lock);
1033 	list_del_init(&xprt->xpt_list);
1034 	WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1035 	if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1036 		serv->sv_tmpcnt--;
1037 	spin_unlock_bh(&serv->sv_lock);
1038 
1039 	while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1040 		free_deferred(xprt, dr);
1041 
1042 	call_xpt_users(xprt);
1043 	svc_xprt_put(xprt);
1044 }
1045 
1046 /**
1047  * svc_xprt_close - Close a client connection
1048  * @xprt: transport to disconnect
1049  *
1050  */
svc_xprt_close(struct svc_xprt * xprt)1051 void svc_xprt_close(struct svc_xprt *xprt)
1052 {
1053 	trace_svc_xprt_close(xprt);
1054 	set_bit(XPT_CLOSE, &xprt->xpt_flags);
1055 	if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1056 		/* someone else will have to effect the close */
1057 		return;
1058 	/*
1059 	 * We expect svc_close_xprt() to work even when no threads are
1060 	 * running (e.g., while configuring the server before starting
1061 	 * any threads), so if the transport isn't busy, we delete
1062 	 * it ourself:
1063 	 */
1064 	svc_delete_xprt(xprt);
1065 }
1066 EXPORT_SYMBOL_GPL(svc_xprt_close);
1067 
svc_close_list(struct svc_serv * serv,struct list_head * xprt_list,struct net * net)1068 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1069 {
1070 	struct svc_xprt *xprt;
1071 	int ret = 0;
1072 
1073 	spin_lock_bh(&serv->sv_lock);
1074 	list_for_each_entry(xprt, xprt_list, xpt_list) {
1075 		if (xprt->xpt_net != net)
1076 			continue;
1077 		ret++;
1078 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1079 		svc_xprt_enqueue(xprt);
1080 	}
1081 	spin_unlock_bh(&serv->sv_lock);
1082 	return ret;
1083 }
1084 
svc_dequeue_net(struct svc_serv * serv,struct net * net)1085 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1086 {
1087 	struct svc_pool *pool;
1088 	struct svc_xprt *xprt;
1089 	struct svc_xprt *tmp;
1090 	int i;
1091 
1092 	for (i = 0; i < serv->sv_nrpools; i++) {
1093 		pool = &serv->sv_pools[i];
1094 
1095 		spin_lock_bh(&pool->sp_lock);
1096 		list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1097 			if (xprt->xpt_net != net)
1098 				continue;
1099 			list_del_init(&xprt->xpt_ready);
1100 			spin_unlock_bh(&pool->sp_lock);
1101 			return xprt;
1102 		}
1103 		spin_unlock_bh(&pool->sp_lock);
1104 	}
1105 	return NULL;
1106 }
1107 
svc_clean_up_xprts(struct svc_serv * serv,struct net * net)1108 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1109 {
1110 	struct svc_xprt *xprt;
1111 
1112 	while ((xprt = svc_dequeue_net(serv, net))) {
1113 		set_bit(XPT_CLOSE, &xprt->xpt_flags);
1114 		svc_delete_xprt(xprt);
1115 	}
1116 }
1117 
1118 /**
1119  * svc_xprt_destroy_all - Destroy transports associated with @serv
1120  * @serv: RPC service to be shut down
1121  * @net: target network namespace
1122  *
1123  * Server threads may still be running (especially in the case where the
1124  * service is still running in other network namespaces).
1125  *
1126  * So we shut down sockets the same way we would on a running server, by
1127  * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1128  * the close.  In the case there are no such other threads,
1129  * threads running, svc_clean_up_xprts() does a simple version of a
1130  * server's main event loop, and in the case where there are other
1131  * threads, we may need to wait a little while and then check again to
1132  * see if they're done.
1133  */
svc_xprt_destroy_all(struct svc_serv * serv,struct net * net)1134 void svc_xprt_destroy_all(struct svc_serv *serv, struct net *net)
1135 {
1136 	int delay = 0;
1137 
1138 	while (svc_close_list(serv, &serv->sv_permsocks, net) +
1139 	       svc_close_list(serv, &serv->sv_tempsocks, net)) {
1140 
1141 		svc_clean_up_xprts(serv, net);
1142 		msleep(delay++);
1143 	}
1144 }
1145 EXPORT_SYMBOL_GPL(svc_xprt_destroy_all);
1146 
1147 /*
1148  * Handle defer and revisit of requests
1149  */
1150 
svc_revisit(struct cache_deferred_req * dreq,int too_many)1151 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1152 {
1153 	struct svc_deferred_req *dr =
1154 		container_of(dreq, struct svc_deferred_req, handle);
1155 	struct svc_xprt *xprt = dr->xprt;
1156 
1157 	spin_lock(&xprt->xpt_lock);
1158 	set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1159 	if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1160 		spin_unlock(&xprt->xpt_lock);
1161 		trace_svc_defer_drop(dr);
1162 		free_deferred(xprt, dr);
1163 		svc_xprt_put(xprt);
1164 		return;
1165 	}
1166 	dr->xprt = NULL;
1167 	list_add(&dr->handle.recent, &xprt->xpt_deferred);
1168 	spin_unlock(&xprt->xpt_lock);
1169 	trace_svc_defer_queue(dr);
1170 	svc_xprt_enqueue(xprt);
1171 	svc_xprt_put(xprt);
1172 }
1173 
1174 /*
1175  * Save the request off for later processing. The request buffer looks
1176  * like this:
1177  *
1178  * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1179  *
1180  * This code can only handle requests that consist of an xprt-header
1181  * and rpc-header.
1182  */
svc_defer(struct cache_req * req)1183 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1184 {
1185 	struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1186 	struct svc_deferred_req *dr;
1187 
1188 	if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1189 		return NULL; /* if more than a page, give up FIXME */
1190 	if (rqstp->rq_deferred) {
1191 		dr = rqstp->rq_deferred;
1192 		rqstp->rq_deferred = NULL;
1193 	} else {
1194 		size_t skip;
1195 		size_t size;
1196 		/* FIXME maybe discard if size too large */
1197 		size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1198 		dr = kmalloc(size, GFP_KERNEL);
1199 		if (dr == NULL)
1200 			return NULL;
1201 
1202 		dr->handle.owner = rqstp->rq_server;
1203 		dr->prot = rqstp->rq_prot;
1204 		memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1205 		dr->addrlen = rqstp->rq_addrlen;
1206 		dr->daddr = rqstp->rq_daddr;
1207 		dr->argslen = rqstp->rq_arg.len >> 2;
1208 
1209 		/* back up head to the start of the buffer and copy */
1210 		skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1211 		memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1212 		       dr->argslen << 2);
1213 	}
1214 	dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1215 	rqstp->rq_xprt_ctxt = NULL;
1216 	trace_svc_defer(rqstp);
1217 	svc_xprt_get(rqstp->rq_xprt);
1218 	dr->xprt = rqstp->rq_xprt;
1219 	set_bit(RQ_DROPME, &rqstp->rq_flags);
1220 
1221 	dr->handle.revisit = svc_revisit;
1222 	return &dr->handle;
1223 }
1224 
1225 /*
1226  * recv data from a deferred request into an active one
1227  */
svc_deferred_recv(struct svc_rqst * rqstp)1228 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1229 {
1230 	struct svc_deferred_req *dr = rqstp->rq_deferred;
1231 
1232 	trace_svc_defer_recv(dr);
1233 
1234 	/* setup iov_base past transport header */
1235 	rqstp->rq_arg.head[0].iov_base = dr->args;
1236 	/* The iov_len does not include the transport header bytes */
1237 	rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1238 	rqstp->rq_arg.page_len = 0;
1239 	/* The rq_arg.len includes the transport header bytes */
1240 	rqstp->rq_arg.len     = dr->argslen << 2;
1241 	rqstp->rq_prot        = dr->prot;
1242 	memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1243 	rqstp->rq_addrlen     = dr->addrlen;
1244 	/* Save off transport header len in case we get deferred again */
1245 	rqstp->rq_daddr       = dr->daddr;
1246 	rqstp->rq_respages    = rqstp->rq_pages;
1247 	rqstp->rq_xprt_ctxt   = dr->xprt_ctxt;
1248 
1249 	dr->xprt_ctxt = NULL;
1250 	svc_xprt_received(rqstp->rq_xprt);
1251 	return dr->argslen << 2;
1252 }
1253 
1254 
svc_deferred_dequeue(struct svc_xprt * xprt)1255 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1256 {
1257 	struct svc_deferred_req *dr = NULL;
1258 
1259 	if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1260 		return NULL;
1261 	spin_lock(&xprt->xpt_lock);
1262 	if (!list_empty(&xprt->xpt_deferred)) {
1263 		dr = list_entry(xprt->xpt_deferred.next,
1264 				struct svc_deferred_req,
1265 				handle.recent);
1266 		list_del_init(&dr->handle.recent);
1267 	} else
1268 		clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1269 	spin_unlock(&xprt->xpt_lock);
1270 	return dr;
1271 }
1272 
1273 /**
1274  * svc_find_xprt - find an RPC transport instance
1275  * @serv: pointer to svc_serv to search
1276  * @xcl_name: C string containing transport's class name
1277  * @net: owner net pointer
1278  * @af: Address family of transport's local address
1279  * @port: transport's IP port number
1280  *
1281  * Return the transport instance pointer for the endpoint accepting
1282  * connections/peer traffic from the specified transport class,
1283  * address family and port.
1284  *
1285  * Specifying 0 for the address family or port is effectively a
1286  * wild-card, and will result in matching the first transport in the
1287  * service's list that has a matching class name.
1288  */
svc_find_xprt(struct svc_serv * serv,const char * xcl_name,struct net * net,const sa_family_t af,const unsigned short port)1289 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1290 			       struct net *net, const sa_family_t af,
1291 			       const unsigned short port)
1292 {
1293 	struct svc_xprt *xprt;
1294 	struct svc_xprt *found = NULL;
1295 
1296 	/* Sanity check the args */
1297 	if (serv == NULL || xcl_name == NULL)
1298 		return found;
1299 
1300 	spin_lock_bh(&serv->sv_lock);
1301 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1302 		if (xprt->xpt_net != net)
1303 			continue;
1304 		if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1305 			continue;
1306 		if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1307 			continue;
1308 		if (port != 0 && port != svc_xprt_local_port(xprt))
1309 			continue;
1310 		found = xprt;
1311 		svc_xprt_get(xprt);
1312 		break;
1313 	}
1314 	spin_unlock_bh(&serv->sv_lock);
1315 	return found;
1316 }
1317 EXPORT_SYMBOL_GPL(svc_find_xprt);
1318 
svc_one_xprt_name(const struct svc_xprt * xprt,char * pos,int remaining)1319 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1320 			     char *pos, int remaining)
1321 {
1322 	int len;
1323 
1324 	len = snprintf(pos, remaining, "%s %u\n",
1325 			xprt->xpt_class->xcl_name,
1326 			svc_xprt_local_port(xprt));
1327 	if (len >= remaining)
1328 		return -ENAMETOOLONG;
1329 	return len;
1330 }
1331 
1332 /**
1333  * svc_xprt_names - format a buffer with a list of transport names
1334  * @serv: pointer to an RPC service
1335  * @buf: pointer to a buffer to be filled in
1336  * @buflen: length of buffer to be filled in
1337  *
1338  * Fills in @buf with a string containing a list of transport names,
1339  * each name terminated with '\n'.
1340  *
1341  * Returns positive length of the filled-in string on success; otherwise
1342  * a negative errno value is returned if an error occurs.
1343  */
svc_xprt_names(struct svc_serv * serv,char * buf,const int buflen)1344 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1345 {
1346 	struct svc_xprt *xprt;
1347 	int len, totlen;
1348 	char *pos;
1349 
1350 	/* Sanity check args */
1351 	if (!serv)
1352 		return 0;
1353 
1354 	spin_lock_bh(&serv->sv_lock);
1355 
1356 	pos = buf;
1357 	totlen = 0;
1358 	list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1359 		len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1360 		if (len < 0) {
1361 			*buf = '\0';
1362 			totlen = len;
1363 		}
1364 		if (len <= 0)
1365 			break;
1366 
1367 		pos += len;
1368 		totlen += len;
1369 	}
1370 
1371 	spin_unlock_bh(&serv->sv_lock);
1372 	return totlen;
1373 }
1374 EXPORT_SYMBOL_GPL(svc_xprt_names);
1375 
1376 
1377 /*----------------------------------------------------------------------------*/
1378 
svc_pool_stats_start(struct seq_file * m,loff_t * pos)1379 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1380 {
1381 	unsigned int pidx = (unsigned int)*pos;
1382 	struct svc_serv *serv = m->private;
1383 
1384 	dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1385 
1386 	if (!pidx)
1387 		return SEQ_START_TOKEN;
1388 	return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1389 }
1390 
svc_pool_stats_next(struct seq_file * m,void * p,loff_t * pos)1391 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1392 {
1393 	struct svc_pool *pool = p;
1394 	struct svc_serv *serv = m->private;
1395 
1396 	dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1397 
1398 	if (p == SEQ_START_TOKEN) {
1399 		pool = &serv->sv_pools[0];
1400 	} else {
1401 		unsigned int pidx = (pool - &serv->sv_pools[0]);
1402 		if (pidx < serv->sv_nrpools-1)
1403 			pool = &serv->sv_pools[pidx+1];
1404 		else
1405 			pool = NULL;
1406 	}
1407 	++*pos;
1408 	return pool;
1409 }
1410 
svc_pool_stats_stop(struct seq_file * m,void * p)1411 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1412 {
1413 }
1414 
svc_pool_stats_show(struct seq_file * m,void * p)1415 static int svc_pool_stats_show(struct seq_file *m, void *p)
1416 {
1417 	struct svc_pool *pool = p;
1418 
1419 	if (p == SEQ_START_TOKEN) {
1420 		seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1421 		return 0;
1422 	}
1423 
1424 	seq_printf(m, "%u %llu %llu %llu 0\n",
1425 		   pool->sp_id,
1426 		   percpu_counter_sum_positive(&pool->sp_messages_arrived),
1427 		   percpu_counter_sum_positive(&pool->sp_sockets_queued),
1428 		   percpu_counter_sum_positive(&pool->sp_threads_woken));
1429 
1430 	return 0;
1431 }
1432 
1433 static const struct seq_operations svc_pool_stats_seq_ops = {
1434 	.start	= svc_pool_stats_start,
1435 	.next	= svc_pool_stats_next,
1436 	.stop	= svc_pool_stats_stop,
1437 	.show	= svc_pool_stats_show,
1438 };
1439 
svc_pool_stats_open(struct svc_serv * serv,struct file * file)1440 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1441 {
1442 	int err;
1443 
1444 	err = seq_open(file, &svc_pool_stats_seq_ops);
1445 	if (!err)
1446 		((struct seq_file *) file->private_data)->private = serv;
1447 	return err;
1448 }
1449 EXPORT_SYMBOL(svc_pool_stats_open);
1450 
1451 /*----------------------------------------------------------------------------*/
1452