1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2016-2018 Oracle. All rights reserved.
4 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
5 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the BSD-type
11 * license below:
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 *
17 * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 *
20 * Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials provided
23 * with the distribution.
24 *
25 * Neither the name of the Network Appliance, Inc. nor the names of
26 * its contributors may be used to endorse or promote products
27 * derived from this software without specific prior written
28 * permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Author: Tom Tucker <tom@opengridcomputing.com>
43 */
44
45 /* Operation
46 *
47 * The main entry point is svc_rdma_recvfrom. This is called from
48 * svc_recv when the transport indicates there is incoming data to
49 * be read. "Data Ready" is signaled when an RDMA Receive completes,
50 * or when a set of RDMA Reads complete.
51 *
52 * An svc_rqst is passed in. This structure contains an array of
53 * free pages (rq_pages) that will contain the incoming RPC message.
54 *
55 * Short messages are moved directly into svc_rqst::rq_arg, and
56 * the RPC Call is ready to be processed by the Upper Layer.
57 * svc_rdma_recvfrom returns the length of the RPC Call message,
58 * completing the reception of the RPC Call.
59 *
60 * However, when an incoming message has Read chunks,
61 * svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's
62 * data payload from the client. svc_rdma_recvfrom sets up the
63 * RDMA Reads using pages in svc_rqst::rq_pages, which are
64 * transferred to an svc_rdma_recv_ctxt for the duration of the
65 * I/O. svc_rdma_recvfrom then returns zero, since the RPC message
66 * is still not yet ready.
67 *
68 * When the Read chunk payloads have become available on the
69 * server, "Data Ready" is raised again, and svc_recv calls
70 * svc_rdma_recvfrom again. This second call may use a different
71 * svc_rqst than the first one, thus any information that needs
72 * to be preserved across these two calls is kept in an
73 * svc_rdma_recv_ctxt.
74 *
75 * The second call to svc_rdma_recvfrom performs final assembly
76 * of the RPC Call message, using the RDMA Read sink pages kept in
77 * the svc_rdma_recv_ctxt. The xdr_buf is copied from the
78 * svc_rdma_recv_ctxt to the second svc_rqst. The second call returns
79 * the length of the completed RPC Call message.
80 *
81 * Page Management
82 *
83 * Pages under I/O must be transferred from the first svc_rqst to an
84 * svc_rdma_recv_ctxt before the first svc_rdma_recvfrom call returns.
85 *
86 * The first svc_rqst supplies pages for RDMA Reads. These are moved
87 * from rqstp::rq_pages into ctxt::pages. The consumed elements of
88 * the rq_pages array are set to NULL and refilled with the first
89 * svc_rdma_recvfrom call returns.
90 *
91 * During the second svc_rdma_recvfrom call, RDMA Read sink pages
92 * are transferred from the svc_rdma_recv_ctxt to the second svc_rqst
93 * (see rdma_read_complete() below).
94 */
95
96 #include <linux/spinlock.h>
97 #include <asm/unaligned.h>
98 #include <rdma/ib_verbs.h>
99 #include <rdma/rdma_cm.h>
100
101 #include <linux/sunrpc/xdr.h>
102 #include <linux/sunrpc/debug.h>
103 #include <linux/sunrpc/rpc_rdma.h>
104 #include <linux/sunrpc/svc_rdma.h>
105
106 #include "xprt_rdma.h"
107 #include <trace/events/rpcrdma.h>
108
109 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
110
111 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc);
112
113 static inline struct svc_rdma_recv_ctxt *
svc_rdma_next_recv_ctxt(struct list_head * list)114 svc_rdma_next_recv_ctxt(struct list_head *list)
115 {
116 return list_first_entry_or_null(list, struct svc_rdma_recv_ctxt,
117 rc_list);
118 }
119
120 static struct svc_rdma_recv_ctxt *
svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma * rdma)121 svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma *rdma)
122 {
123 struct svc_rdma_recv_ctxt *ctxt;
124 dma_addr_t addr;
125 void *buffer;
126
127 ctxt = kmalloc(sizeof(*ctxt), GFP_KERNEL);
128 if (!ctxt)
129 goto fail0;
130 buffer = kmalloc(rdma->sc_max_req_size, GFP_KERNEL);
131 if (!buffer)
132 goto fail1;
133 addr = ib_dma_map_single(rdma->sc_pd->device, buffer,
134 rdma->sc_max_req_size, DMA_FROM_DEVICE);
135 if (ib_dma_mapping_error(rdma->sc_pd->device, addr))
136 goto fail2;
137
138 ctxt->rc_recv_wr.next = NULL;
139 ctxt->rc_recv_wr.wr_cqe = &ctxt->rc_cqe;
140 ctxt->rc_recv_wr.sg_list = &ctxt->rc_recv_sge;
141 ctxt->rc_recv_wr.num_sge = 1;
142 ctxt->rc_cqe.done = svc_rdma_wc_receive;
143 ctxt->rc_recv_sge.addr = addr;
144 ctxt->rc_recv_sge.length = rdma->sc_max_req_size;
145 ctxt->rc_recv_sge.lkey = rdma->sc_pd->local_dma_lkey;
146 ctxt->rc_recv_buf = buffer;
147 ctxt->rc_temp = false;
148 return ctxt;
149
150 fail2:
151 kfree(buffer);
152 fail1:
153 kfree(ctxt);
154 fail0:
155 return NULL;
156 }
157
svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma * rdma,struct svc_rdma_recv_ctxt * ctxt)158 static void svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma *rdma,
159 struct svc_rdma_recv_ctxt *ctxt)
160 {
161 ib_dma_unmap_single(rdma->sc_pd->device, ctxt->rc_recv_sge.addr,
162 ctxt->rc_recv_sge.length, DMA_FROM_DEVICE);
163 kfree(ctxt->rc_recv_buf);
164 kfree(ctxt);
165 }
166
167 /**
168 * svc_rdma_recv_ctxts_destroy - Release all recv_ctxt's for an xprt
169 * @rdma: svcxprt_rdma being torn down
170 *
171 */
svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma * rdma)172 void svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma *rdma)
173 {
174 struct svc_rdma_recv_ctxt *ctxt;
175
176 while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_recv_ctxts))) {
177 list_del(&ctxt->rc_list);
178 svc_rdma_recv_ctxt_destroy(rdma, ctxt);
179 }
180 }
181
182 static struct svc_rdma_recv_ctxt *
svc_rdma_recv_ctxt_get(struct svcxprt_rdma * rdma)183 svc_rdma_recv_ctxt_get(struct svcxprt_rdma *rdma)
184 {
185 struct svc_rdma_recv_ctxt *ctxt;
186
187 spin_lock(&rdma->sc_recv_lock);
188 ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_recv_ctxts);
189 if (!ctxt)
190 goto out_empty;
191 list_del(&ctxt->rc_list);
192 spin_unlock(&rdma->sc_recv_lock);
193
194 out:
195 ctxt->rc_page_count = 0;
196 return ctxt;
197
198 out_empty:
199 spin_unlock(&rdma->sc_recv_lock);
200
201 ctxt = svc_rdma_recv_ctxt_alloc(rdma);
202 if (!ctxt)
203 return NULL;
204 goto out;
205 }
206
207 /**
208 * svc_rdma_recv_ctxt_put - Return recv_ctxt to free list
209 * @rdma: controlling svcxprt_rdma
210 * @ctxt: object to return to the free list
211 *
212 */
svc_rdma_recv_ctxt_put(struct svcxprt_rdma * rdma,struct svc_rdma_recv_ctxt * ctxt)213 void svc_rdma_recv_ctxt_put(struct svcxprt_rdma *rdma,
214 struct svc_rdma_recv_ctxt *ctxt)
215 {
216 unsigned int i;
217
218 for (i = 0; i < ctxt->rc_page_count; i++)
219 put_page(ctxt->rc_pages[i]);
220
221 if (!ctxt->rc_temp) {
222 spin_lock(&rdma->sc_recv_lock);
223 list_add(&ctxt->rc_list, &rdma->sc_recv_ctxts);
224 spin_unlock(&rdma->sc_recv_lock);
225 } else
226 svc_rdma_recv_ctxt_destroy(rdma, ctxt);
227 }
228
__svc_rdma_post_recv(struct svcxprt_rdma * rdma,struct svc_rdma_recv_ctxt * ctxt)229 static int __svc_rdma_post_recv(struct svcxprt_rdma *rdma,
230 struct svc_rdma_recv_ctxt *ctxt)
231 {
232 int ret;
233
234 svc_xprt_get(&rdma->sc_xprt);
235 ret = ib_post_recv(rdma->sc_qp, &ctxt->rc_recv_wr, NULL);
236 trace_svcrdma_post_recv(&ctxt->rc_recv_wr, ret);
237 if (ret)
238 goto err_post;
239 return 0;
240
241 err_post:
242 svc_rdma_recv_ctxt_put(rdma, ctxt);
243 svc_xprt_put(&rdma->sc_xprt);
244 return ret;
245 }
246
svc_rdma_post_recv(struct svcxprt_rdma * rdma)247 static int svc_rdma_post_recv(struct svcxprt_rdma *rdma)
248 {
249 struct svc_rdma_recv_ctxt *ctxt;
250
251 ctxt = svc_rdma_recv_ctxt_get(rdma);
252 if (!ctxt)
253 return -ENOMEM;
254 return __svc_rdma_post_recv(rdma, ctxt);
255 }
256
257 /**
258 * svc_rdma_post_recvs - Post initial set of Recv WRs
259 * @rdma: fresh svcxprt_rdma
260 *
261 * Returns true if successful, otherwise false.
262 */
svc_rdma_post_recvs(struct svcxprt_rdma * rdma)263 bool svc_rdma_post_recvs(struct svcxprt_rdma *rdma)
264 {
265 struct svc_rdma_recv_ctxt *ctxt;
266 unsigned int i;
267 int ret;
268
269 for (i = 0; i < rdma->sc_max_requests; i++) {
270 ctxt = svc_rdma_recv_ctxt_get(rdma);
271 if (!ctxt)
272 return false;
273 ctxt->rc_temp = true;
274 ret = __svc_rdma_post_recv(rdma, ctxt);
275 if (ret) {
276 pr_err("svcrdma: failure posting recv buffers: %d\n",
277 ret);
278 return false;
279 }
280 }
281 return true;
282 }
283
284 /**
285 * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
286 * @cq: Completion Queue context
287 * @wc: Work Completion object
288 *
289 * NB: The svc_xprt/svcxprt_rdma is pinned whenever it's possible that
290 * the Receive completion handler could be running.
291 */
svc_rdma_wc_receive(struct ib_cq * cq,struct ib_wc * wc)292 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
293 {
294 struct svcxprt_rdma *rdma = cq->cq_context;
295 struct ib_cqe *cqe = wc->wr_cqe;
296 struct svc_rdma_recv_ctxt *ctxt;
297
298 trace_svcrdma_wc_receive(wc);
299
300 /* WARNING: Only wc->wr_cqe and wc->status are reliable */
301 ctxt = container_of(cqe, struct svc_rdma_recv_ctxt, rc_cqe);
302
303 if (wc->status != IB_WC_SUCCESS)
304 goto flushed;
305
306 if (svc_rdma_post_recv(rdma))
307 goto post_err;
308
309 /* All wc fields are now known to be valid */
310 ctxt->rc_byte_len = wc->byte_len;
311 ib_dma_sync_single_for_cpu(rdma->sc_pd->device,
312 ctxt->rc_recv_sge.addr,
313 wc->byte_len, DMA_FROM_DEVICE);
314
315 spin_lock(&rdma->sc_rq_dto_lock);
316 list_add_tail(&ctxt->rc_list, &rdma->sc_rq_dto_q);
317 spin_unlock(&rdma->sc_rq_dto_lock);
318 set_bit(XPT_DATA, &rdma->sc_xprt.xpt_flags);
319 if (!test_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags))
320 svc_xprt_enqueue(&rdma->sc_xprt);
321 goto out;
322
323 flushed:
324 if (wc->status != IB_WC_WR_FLUSH_ERR)
325 pr_err("svcrdma: Recv: %s (%u/0x%x)\n",
326 ib_wc_status_msg(wc->status),
327 wc->status, wc->vendor_err);
328 post_err:
329 svc_rdma_recv_ctxt_put(rdma, ctxt);
330 set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
331 svc_xprt_enqueue(&rdma->sc_xprt);
332 out:
333 svc_xprt_put(&rdma->sc_xprt);
334 }
335
336 /**
337 * svc_rdma_flush_recv_queues - Drain pending Receive work
338 * @rdma: svcxprt_rdma being shut down
339 *
340 */
svc_rdma_flush_recv_queues(struct svcxprt_rdma * rdma)341 void svc_rdma_flush_recv_queues(struct svcxprt_rdma *rdma)
342 {
343 struct svc_rdma_recv_ctxt *ctxt;
344
345 while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_read_complete_q))) {
346 list_del(&ctxt->rc_list);
347 svc_rdma_recv_ctxt_put(rdma, ctxt);
348 }
349 while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_rq_dto_q))) {
350 list_del(&ctxt->rc_list);
351 svc_rdma_recv_ctxt_put(rdma, ctxt);
352 }
353 }
354
svc_rdma_build_arg_xdr(struct svc_rqst * rqstp,struct svc_rdma_recv_ctxt * ctxt)355 static void svc_rdma_build_arg_xdr(struct svc_rqst *rqstp,
356 struct svc_rdma_recv_ctxt *ctxt)
357 {
358 struct xdr_buf *arg = &rqstp->rq_arg;
359
360 arg->head[0].iov_base = ctxt->rc_recv_buf;
361 arg->head[0].iov_len = ctxt->rc_byte_len;
362 arg->tail[0].iov_base = NULL;
363 arg->tail[0].iov_len = 0;
364 arg->page_len = 0;
365 arg->page_base = 0;
366 arg->buflen = ctxt->rc_byte_len;
367 arg->len = ctxt->rc_byte_len;
368 }
369
370 /* This accommodates the largest possible Write chunk,
371 * in one segment.
372 */
373 #define MAX_BYTES_WRITE_SEG ((u32)(RPCSVC_MAXPAGES << PAGE_SHIFT))
374
375 /* This accommodates the largest possible Position-Zero
376 * Read chunk or Reply chunk, in one segment.
377 */
378 #define MAX_BYTES_SPECIAL_SEG ((u32)((RPCSVC_MAXPAGES + 2) << PAGE_SHIFT))
379
380 /* Sanity check the Read list.
381 *
382 * Implementation limits:
383 * - This implementation supports only one Read chunk.
384 *
385 * Sanity checks:
386 * - Read list does not overflow buffer.
387 * - Segment size limited by largest NFS data payload.
388 *
389 * The segment count is limited to how many segments can
390 * fit in the transport header without overflowing the
391 * buffer. That's about 40 Read segments for a 1KB inline
392 * threshold.
393 *
394 * Returns pointer to the following Write list.
395 */
xdr_check_read_list(__be32 * p,const __be32 * end)396 static __be32 *xdr_check_read_list(__be32 *p, const __be32 *end)
397 {
398 u32 position;
399 bool first;
400
401 first = true;
402 while (*p++ != xdr_zero) {
403 if (first) {
404 position = be32_to_cpup(p++);
405 first = false;
406 } else if (be32_to_cpup(p++) != position) {
407 return NULL;
408 }
409 p++; /* handle */
410 if (be32_to_cpup(p++) > MAX_BYTES_SPECIAL_SEG)
411 return NULL;
412 p += 2; /* offset */
413
414 if (p > end)
415 return NULL;
416 }
417 return p;
418 }
419
420 /* The segment count is limited to how many segments can
421 * fit in the transport header without overflowing the
422 * buffer. That's about 60 Write segments for a 1KB inline
423 * threshold.
424 */
xdr_check_write_chunk(__be32 * p,const __be32 * end,u32 maxlen)425 static __be32 *xdr_check_write_chunk(__be32 *p, const __be32 *end,
426 u32 maxlen)
427 {
428 u32 i, segcount;
429
430 segcount = be32_to_cpup(p++);
431 for (i = 0; i < segcount; i++) {
432 p++; /* handle */
433 if (be32_to_cpup(p++) > maxlen)
434 return NULL;
435 p += 2; /* offset */
436
437 if (p > end)
438 return NULL;
439 }
440
441 return p;
442 }
443
444 /* Sanity check the Write list.
445 *
446 * Implementation limits:
447 * - This implementation supports only one Write chunk.
448 *
449 * Sanity checks:
450 * - Write list does not overflow buffer.
451 * - Segment size limited by largest NFS data payload.
452 *
453 * Returns pointer to the following Reply chunk.
454 */
xdr_check_write_list(__be32 * p,const __be32 * end)455 static __be32 *xdr_check_write_list(__be32 *p, const __be32 *end)
456 {
457 u32 chcount;
458
459 chcount = 0;
460 while (*p++ != xdr_zero) {
461 p = xdr_check_write_chunk(p, end, MAX_BYTES_WRITE_SEG);
462 if (!p)
463 return NULL;
464 if (chcount++ > 1)
465 return NULL;
466 }
467 return p;
468 }
469
470 /* Sanity check the Reply chunk.
471 *
472 * Sanity checks:
473 * - Reply chunk does not overflow buffer.
474 * - Segment size limited by largest NFS data payload.
475 *
476 * Returns pointer to the following RPC header.
477 */
xdr_check_reply_chunk(__be32 * p,const __be32 * end)478 static __be32 *xdr_check_reply_chunk(__be32 *p, const __be32 *end)
479 {
480 if (*p++ != xdr_zero) {
481 p = xdr_check_write_chunk(p, end, MAX_BYTES_SPECIAL_SEG);
482 if (!p)
483 return NULL;
484 }
485 return p;
486 }
487
488 /* On entry, xdr->head[0].iov_base points to first byte in the
489 * RPC-over-RDMA header.
490 *
491 * On successful exit, head[0] points to first byte past the
492 * RPC-over-RDMA header. For RDMA_MSG, this is the RPC message.
493 * The length of the RPC-over-RDMA header is returned.
494 *
495 * Assumptions:
496 * - The transport header is entirely contained in the head iovec.
497 */
svc_rdma_xdr_decode_req(struct xdr_buf * rq_arg)498 static int svc_rdma_xdr_decode_req(struct xdr_buf *rq_arg)
499 {
500 __be32 *p, *end, *rdma_argp;
501 unsigned int hdr_len;
502
503 /* Verify that there's enough bytes for header + something */
504 if (rq_arg->len <= RPCRDMA_HDRLEN_ERR)
505 goto out_short;
506
507 rdma_argp = rq_arg->head[0].iov_base;
508 if (*(rdma_argp + 1) != rpcrdma_version)
509 goto out_version;
510
511 switch (*(rdma_argp + 3)) {
512 case rdma_msg:
513 break;
514 case rdma_nomsg:
515 break;
516
517 case rdma_done:
518 goto out_drop;
519
520 case rdma_error:
521 goto out_drop;
522
523 default:
524 goto out_proc;
525 }
526
527 end = (__be32 *)((unsigned long)rdma_argp + rq_arg->len);
528 p = xdr_check_read_list(rdma_argp + 4, end);
529 if (!p)
530 goto out_inval;
531 p = xdr_check_write_list(p, end);
532 if (!p)
533 goto out_inval;
534 p = xdr_check_reply_chunk(p, end);
535 if (!p)
536 goto out_inval;
537 if (p > end)
538 goto out_inval;
539
540 rq_arg->head[0].iov_base = p;
541 hdr_len = (unsigned long)p - (unsigned long)rdma_argp;
542 rq_arg->head[0].iov_len -= hdr_len;
543 rq_arg->len -= hdr_len;
544 trace_svcrdma_decode_rqst(rdma_argp, hdr_len);
545 return hdr_len;
546
547 out_short:
548 trace_svcrdma_decode_short(rq_arg->len);
549 return -EINVAL;
550
551 out_version:
552 trace_svcrdma_decode_badvers(rdma_argp);
553 return -EPROTONOSUPPORT;
554
555 out_drop:
556 trace_svcrdma_decode_drop(rdma_argp);
557 return 0;
558
559 out_proc:
560 trace_svcrdma_decode_badproc(rdma_argp);
561 return -EINVAL;
562
563 out_inval:
564 trace_svcrdma_decode_parse(rdma_argp);
565 return -EINVAL;
566 }
567
rdma_read_complete(struct svc_rqst * rqstp,struct svc_rdma_recv_ctxt * head)568 static void rdma_read_complete(struct svc_rqst *rqstp,
569 struct svc_rdma_recv_ctxt *head)
570 {
571 int page_no;
572
573 /* Move Read chunk pages to rqstp so that they will be released
574 * when svc_process is done with them.
575 */
576 for (page_no = 0; page_no < head->rc_page_count; page_no++) {
577 put_page(rqstp->rq_pages[page_no]);
578 rqstp->rq_pages[page_no] = head->rc_pages[page_no];
579 }
580 head->rc_page_count = 0;
581
582 /* Point rq_arg.pages past header */
583 rqstp->rq_arg.pages = &rqstp->rq_pages[head->rc_hdr_count];
584 rqstp->rq_arg.page_len = head->rc_arg.page_len;
585
586 /* rq_respages starts after the last arg page */
587 rqstp->rq_respages = &rqstp->rq_pages[page_no];
588 rqstp->rq_next_page = rqstp->rq_respages + 1;
589
590 /* Rebuild rq_arg head and tail. */
591 rqstp->rq_arg.head[0] = head->rc_arg.head[0];
592 rqstp->rq_arg.tail[0] = head->rc_arg.tail[0];
593 rqstp->rq_arg.len = head->rc_arg.len;
594 rqstp->rq_arg.buflen = head->rc_arg.buflen;
595 }
596
svc_rdma_send_error(struct svcxprt_rdma * xprt,__be32 * rdma_argp,int status)597 static void svc_rdma_send_error(struct svcxprt_rdma *xprt,
598 __be32 *rdma_argp, int status)
599 {
600 struct svc_rdma_send_ctxt *ctxt;
601 unsigned int length;
602 __be32 *p;
603 int ret;
604
605 ctxt = svc_rdma_send_ctxt_get(xprt);
606 if (!ctxt)
607 return;
608
609 p = ctxt->sc_xprt_buf;
610 *p++ = *rdma_argp;
611 *p++ = *(rdma_argp + 1);
612 *p++ = xprt->sc_fc_credits;
613 *p++ = rdma_error;
614 switch (status) {
615 case -EPROTONOSUPPORT:
616 *p++ = err_vers;
617 *p++ = rpcrdma_version;
618 *p++ = rpcrdma_version;
619 trace_svcrdma_err_vers(*rdma_argp);
620 break;
621 default:
622 *p++ = err_chunk;
623 trace_svcrdma_err_chunk(*rdma_argp);
624 }
625 length = (unsigned long)p - (unsigned long)ctxt->sc_xprt_buf;
626 svc_rdma_sync_reply_hdr(xprt, ctxt, length);
627
628 ctxt->sc_send_wr.opcode = IB_WR_SEND;
629 ret = svc_rdma_send(xprt, &ctxt->sc_send_wr);
630 if (ret)
631 svc_rdma_send_ctxt_put(xprt, ctxt);
632 }
633
634 /* By convention, backchannel calls arrive via rdma_msg type
635 * messages, and never populate the chunk lists. This makes
636 * the RPC/RDMA header small and fixed in size, so it is
637 * straightforward to check the RPC header's direction field.
638 */
svc_rdma_is_backchannel_reply(struct svc_xprt * xprt,__be32 * rdma_resp)639 static bool svc_rdma_is_backchannel_reply(struct svc_xprt *xprt,
640 __be32 *rdma_resp)
641 {
642 __be32 *p;
643
644 if (!xprt->xpt_bc_xprt)
645 return false;
646
647 p = rdma_resp + 3;
648 if (*p++ != rdma_msg)
649 return false;
650
651 if (*p++ != xdr_zero)
652 return false;
653 if (*p++ != xdr_zero)
654 return false;
655 if (*p++ != xdr_zero)
656 return false;
657
658 /* XID sanity */
659 if (*p++ != *rdma_resp)
660 return false;
661 /* call direction */
662 if (*p == cpu_to_be32(RPC_CALL))
663 return false;
664
665 return true;
666 }
667
668 /**
669 * svc_rdma_recvfrom - Receive an RPC call
670 * @rqstp: request structure into which to receive an RPC Call
671 *
672 * Returns:
673 * The positive number of bytes in the RPC Call message,
674 * %0 if there were no Calls ready to return,
675 * %-EINVAL if the Read chunk data is too large,
676 * %-ENOMEM if rdma_rw context pool was exhausted,
677 * %-ENOTCONN if posting failed (connection is lost),
678 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
679 *
680 * Called in a loop when XPT_DATA is set. XPT_DATA is cleared only
681 * when there are no remaining ctxt's to process.
682 *
683 * The next ctxt is removed from the "receive" lists.
684 *
685 * - If the ctxt completes a Read, then finish assembling the Call
686 * message and return the number of bytes in the message.
687 *
688 * - If the ctxt completes a Receive, then construct the Call
689 * message from the contents of the Receive buffer.
690 *
691 * - If there are no Read chunks in this message, then finish
692 * assembling the Call message and return the number of bytes
693 * in the message.
694 *
695 * - If there are Read chunks in this message, post Read WRs to
696 * pull that payload and return 0.
697 */
svc_rdma_recvfrom(struct svc_rqst * rqstp)698 int svc_rdma_recvfrom(struct svc_rqst *rqstp)
699 {
700 struct svc_xprt *xprt = rqstp->rq_xprt;
701 struct svcxprt_rdma *rdma_xprt =
702 container_of(xprt, struct svcxprt_rdma, sc_xprt);
703 struct svc_rdma_recv_ctxt *ctxt;
704 __be32 *p;
705 int ret;
706
707 spin_lock(&rdma_xprt->sc_rq_dto_lock);
708 ctxt = svc_rdma_next_recv_ctxt(&rdma_xprt->sc_read_complete_q);
709 if (ctxt) {
710 list_del(&ctxt->rc_list);
711 spin_unlock(&rdma_xprt->sc_rq_dto_lock);
712 rdma_read_complete(rqstp, ctxt);
713 goto complete;
714 }
715 ctxt = svc_rdma_next_recv_ctxt(&rdma_xprt->sc_rq_dto_q);
716 if (!ctxt) {
717 /* No new incoming requests, terminate the loop */
718 clear_bit(XPT_DATA, &xprt->xpt_flags);
719 spin_unlock(&rdma_xprt->sc_rq_dto_lock);
720 return 0;
721 }
722 list_del(&ctxt->rc_list);
723 spin_unlock(&rdma_xprt->sc_rq_dto_lock);
724
725 atomic_inc(&rdma_stat_recv);
726
727 svc_rdma_build_arg_xdr(rqstp, ctxt);
728
729 /* Prevent svc_xprt_release from releasing pages in rq_pages
730 * if we return 0 or an error.
731 */
732 rqstp->rq_respages = rqstp->rq_pages;
733 rqstp->rq_next_page = rqstp->rq_respages;
734
735 p = (__be32 *)rqstp->rq_arg.head[0].iov_base;
736 ret = svc_rdma_xdr_decode_req(&rqstp->rq_arg);
737 if (ret < 0)
738 goto out_err;
739 if (ret == 0)
740 goto out_drop;
741 rqstp->rq_xprt_hlen = ret;
742
743 if (svc_rdma_is_backchannel_reply(xprt, p)) {
744 ret = svc_rdma_handle_bc_reply(xprt->xpt_bc_xprt, p,
745 &rqstp->rq_arg);
746 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
747 return ret;
748 }
749
750 p += rpcrdma_fixed_maxsz;
751 if (*p != xdr_zero)
752 goto out_readchunk;
753
754 complete:
755 rqstp->rq_xprt_ctxt = ctxt;
756 rqstp->rq_prot = IPPROTO_MAX;
757 svc_xprt_copy_addrs(rqstp, xprt);
758 return rqstp->rq_arg.len;
759
760 out_readchunk:
761 ret = svc_rdma_recv_read_chunk(rdma_xprt, rqstp, ctxt, p);
762 if (ret < 0)
763 goto out_postfail;
764 return 0;
765
766 out_err:
767 svc_rdma_send_error(rdma_xprt, p, ret);
768 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
769 return 0;
770
771 out_postfail:
772 if (ret == -EINVAL)
773 svc_rdma_send_error(rdma_xprt, p, ret);
774 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
775 return ret;
776
777 out_drop:
778 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
779 return 0;
780 }
781