1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2016-2018 Oracle. All rights reserved.
4 * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
5 * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the BSD-type
11 * license below:
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 *
17 * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 *
20 * Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials provided
23 * with the distribution.
24 *
25 * Neither the name of the Network Appliance, Inc. nor the names of
26 * its contributors may be used to endorse or promote products
27 * derived from this software without specific prior written
28 * permission.
29 *
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
35 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
36 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
37 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
38 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
40 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 *
42 * Author: Tom Tucker <tom@opengridcomputing.com>
43 */
44
45 /* Operation
46 *
47 * The main entry point is svc_rdma_recvfrom. This is called from
48 * svc_recv when the transport indicates there is incoming data to
49 * be read. "Data Ready" is signaled when an RDMA Receive completes,
50 * or when a set of RDMA Reads complete.
51 *
52 * An svc_rqst is passed in. This structure contains an array of
53 * free pages (rq_pages) that will contain the incoming RPC message.
54 *
55 * Short messages are moved directly into svc_rqst::rq_arg, and
56 * the RPC Call is ready to be processed by the Upper Layer.
57 * svc_rdma_recvfrom returns the length of the RPC Call message,
58 * completing the reception of the RPC Call.
59 *
60 * However, when an incoming message has Read chunks,
61 * svc_rdma_recvfrom must post RDMA Reads to pull the RPC Call's
62 * data payload from the client. svc_rdma_recvfrom sets up the
63 * RDMA Reads using pages in svc_rqst::rq_pages, which are
64 * transferred to an svc_rdma_recv_ctxt for the duration of the
65 * I/O. svc_rdma_recvfrom then returns zero, since the RPC message
66 * is still not yet ready.
67 *
68 * When the Read chunk payloads have become available on the
69 * server, "Data Ready" is raised again, and svc_recv calls
70 * svc_rdma_recvfrom again. This second call may use a different
71 * svc_rqst than the first one, thus any information that needs
72 * to be preserved across these two calls is kept in an
73 * svc_rdma_recv_ctxt.
74 *
75 * The second call to svc_rdma_recvfrom performs final assembly
76 * of the RPC Call message, using the RDMA Read sink pages kept in
77 * the svc_rdma_recv_ctxt. The xdr_buf is copied from the
78 * svc_rdma_recv_ctxt to the second svc_rqst. The second call returns
79 * the length of the completed RPC Call message.
80 *
81 * Page Management
82 *
83 * Pages under I/O must be transferred from the first svc_rqst to an
84 * svc_rdma_recv_ctxt before the first svc_rdma_recvfrom call returns.
85 *
86 * The first svc_rqst supplies pages for RDMA Reads. These are moved
87 * from rqstp::rq_pages into ctxt::pages. The consumed elements of
88 * the rq_pages array are set to NULL and refilled with the first
89 * svc_rdma_recvfrom call returns.
90 *
91 * During the second svc_rdma_recvfrom call, RDMA Read sink pages
92 * are transferred from the svc_rdma_recv_ctxt to the second svc_rqst.
93 */
94
95 #include <linux/slab.h>
96 #include <linux/spinlock.h>
97 #include <asm/unaligned.h>
98 #include <rdma/ib_verbs.h>
99 #include <rdma/rdma_cm.h>
100
101 #include <linux/sunrpc/xdr.h>
102 #include <linux/sunrpc/debug.h>
103 #include <linux/sunrpc/rpc_rdma.h>
104 #include <linux/sunrpc/svc_rdma.h>
105
106 #include "xprt_rdma.h"
107 #include <trace/events/rpcrdma.h>
108
109 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc);
110
111 static inline struct svc_rdma_recv_ctxt *
svc_rdma_next_recv_ctxt(struct list_head * list)112 svc_rdma_next_recv_ctxt(struct list_head *list)
113 {
114 return list_first_entry_or_null(list, struct svc_rdma_recv_ctxt,
115 rc_list);
116 }
117
svc_rdma_recv_cid_init(struct svcxprt_rdma * rdma,struct rpc_rdma_cid * cid)118 static void svc_rdma_recv_cid_init(struct svcxprt_rdma *rdma,
119 struct rpc_rdma_cid *cid)
120 {
121 cid->ci_queue_id = rdma->sc_rq_cq->res.id;
122 cid->ci_completion_id = atomic_inc_return(&rdma->sc_completion_ids);
123 }
124
125 static struct svc_rdma_recv_ctxt *
svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma * rdma)126 svc_rdma_recv_ctxt_alloc(struct svcxprt_rdma *rdma)
127 {
128 int node = ibdev_to_node(rdma->sc_cm_id->device);
129 struct svc_rdma_recv_ctxt *ctxt;
130 dma_addr_t addr;
131 void *buffer;
132
133 ctxt = kmalloc_node(sizeof(*ctxt), GFP_KERNEL, node);
134 if (!ctxt)
135 goto fail0;
136 buffer = kmalloc_node(rdma->sc_max_req_size, GFP_KERNEL, node);
137 if (!buffer)
138 goto fail1;
139 addr = ib_dma_map_single(rdma->sc_pd->device, buffer,
140 rdma->sc_max_req_size, DMA_FROM_DEVICE);
141 if (ib_dma_mapping_error(rdma->sc_pd->device, addr))
142 goto fail2;
143
144 svc_rdma_recv_cid_init(rdma, &ctxt->rc_cid);
145 pcl_init(&ctxt->rc_call_pcl);
146 pcl_init(&ctxt->rc_read_pcl);
147 pcl_init(&ctxt->rc_write_pcl);
148 pcl_init(&ctxt->rc_reply_pcl);
149
150 ctxt->rc_recv_wr.next = NULL;
151 ctxt->rc_recv_wr.wr_cqe = &ctxt->rc_cqe;
152 ctxt->rc_recv_wr.sg_list = &ctxt->rc_recv_sge;
153 ctxt->rc_recv_wr.num_sge = 1;
154 ctxt->rc_cqe.done = svc_rdma_wc_receive;
155 ctxt->rc_recv_sge.addr = addr;
156 ctxt->rc_recv_sge.length = rdma->sc_max_req_size;
157 ctxt->rc_recv_sge.lkey = rdma->sc_pd->local_dma_lkey;
158 ctxt->rc_recv_buf = buffer;
159 return ctxt;
160
161 fail2:
162 kfree(buffer);
163 fail1:
164 kfree(ctxt);
165 fail0:
166 return NULL;
167 }
168
svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma * rdma,struct svc_rdma_recv_ctxt * ctxt)169 static void svc_rdma_recv_ctxt_destroy(struct svcxprt_rdma *rdma,
170 struct svc_rdma_recv_ctxt *ctxt)
171 {
172 ib_dma_unmap_single(rdma->sc_pd->device, ctxt->rc_recv_sge.addr,
173 ctxt->rc_recv_sge.length, DMA_FROM_DEVICE);
174 kfree(ctxt->rc_recv_buf);
175 kfree(ctxt);
176 }
177
178 /**
179 * svc_rdma_recv_ctxts_destroy - Release all recv_ctxt's for an xprt
180 * @rdma: svcxprt_rdma being torn down
181 *
182 */
svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma * rdma)183 void svc_rdma_recv_ctxts_destroy(struct svcxprt_rdma *rdma)
184 {
185 struct svc_rdma_recv_ctxt *ctxt;
186 struct llist_node *node;
187
188 while ((node = llist_del_first(&rdma->sc_recv_ctxts))) {
189 ctxt = llist_entry(node, struct svc_rdma_recv_ctxt, rc_node);
190 svc_rdma_recv_ctxt_destroy(rdma, ctxt);
191 }
192 }
193
194 /**
195 * svc_rdma_recv_ctxt_get - Allocate a recv_ctxt
196 * @rdma: controlling svcxprt_rdma
197 *
198 * Returns a recv_ctxt or (rarely) NULL if none are available.
199 */
svc_rdma_recv_ctxt_get(struct svcxprt_rdma * rdma)200 struct svc_rdma_recv_ctxt *svc_rdma_recv_ctxt_get(struct svcxprt_rdma *rdma)
201 {
202 struct svc_rdma_recv_ctxt *ctxt;
203 struct llist_node *node;
204
205 node = llist_del_first(&rdma->sc_recv_ctxts);
206 if (!node)
207 goto out_empty;
208 ctxt = llist_entry(node, struct svc_rdma_recv_ctxt, rc_node);
209
210 out:
211 ctxt->rc_page_count = 0;
212 return ctxt;
213
214 out_empty:
215 ctxt = svc_rdma_recv_ctxt_alloc(rdma);
216 if (!ctxt)
217 return NULL;
218 goto out;
219 }
220
221 /**
222 * svc_rdma_recv_ctxt_put - Return recv_ctxt to free list
223 * @rdma: controlling svcxprt_rdma
224 * @ctxt: object to return to the free list
225 *
226 */
svc_rdma_recv_ctxt_put(struct svcxprt_rdma * rdma,struct svc_rdma_recv_ctxt * ctxt)227 void svc_rdma_recv_ctxt_put(struct svcxprt_rdma *rdma,
228 struct svc_rdma_recv_ctxt *ctxt)
229 {
230 pcl_free(&ctxt->rc_call_pcl);
231 pcl_free(&ctxt->rc_read_pcl);
232 pcl_free(&ctxt->rc_write_pcl);
233 pcl_free(&ctxt->rc_reply_pcl);
234
235 llist_add(&ctxt->rc_node, &rdma->sc_recv_ctxts);
236 }
237
238 /**
239 * svc_rdma_release_ctxt - Release transport-specific per-rqst resources
240 * @xprt: the transport which owned the context
241 * @vctxt: the context from rqstp->rq_xprt_ctxt or dr->xprt_ctxt
242 *
243 * Ensure that the recv_ctxt is released whether or not a Reply
244 * was sent. For example, the client could close the connection,
245 * or svc_process could drop an RPC, before the Reply is sent.
246 */
svc_rdma_release_ctxt(struct svc_xprt * xprt,void * vctxt)247 void svc_rdma_release_ctxt(struct svc_xprt *xprt, void *vctxt)
248 {
249 struct svc_rdma_recv_ctxt *ctxt = vctxt;
250 struct svcxprt_rdma *rdma =
251 container_of(xprt, struct svcxprt_rdma, sc_xprt);
252
253 if (ctxt)
254 svc_rdma_recv_ctxt_put(rdma, ctxt);
255 }
256
svc_rdma_refresh_recvs(struct svcxprt_rdma * rdma,unsigned int wanted)257 static bool svc_rdma_refresh_recvs(struct svcxprt_rdma *rdma,
258 unsigned int wanted)
259 {
260 const struct ib_recv_wr *bad_wr = NULL;
261 struct svc_rdma_recv_ctxt *ctxt;
262 struct ib_recv_wr *recv_chain;
263 int ret;
264
265 if (test_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags))
266 return false;
267
268 recv_chain = NULL;
269 while (wanted--) {
270 ctxt = svc_rdma_recv_ctxt_get(rdma);
271 if (!ctxt)
272 break;
273
274 trace_svcrdma_post_recv(ctxt);
275 ctxt->rc_recv_wr.next = recv_chain;
276 recv_chain = &ctxt->rc_recv_wr;
277 rdma->sc_pending_recvs++;
278 }
279 if (!recv_chain)
280 return false;
281
282 ret = ib_post_recv(rdma->sc_qp, recv_chain, &bad_wr);
283 if (ret)
284 goto err_free;
285 return true;
286
287 err_free:
288 trace_svcrdma_rq_post_err(rdma, ret);
289 while (bad_wr) {
290 ctxt = container_of(bad_wr, struct svc_rdma_recv_ctxt,
291 rc_recv_wr);
292 bad_wr = bad_wr->next;
293 svc_rdma_recv_ctxt_put(rdma, ctxt);
294 }
295 /* Since we're destroying the xprt, no need to reset
296 * sc_pending_recvs. */
297 return false;
298 }
299
300 /**
301 * svc_rdma_post_recvs - Post initial set of Recv WRs
302 * @rdma: fresh svcxprt_rdma
303 *
304 * Returns true if successful, otherwise false.
305 */
svc_rdma_post_recvs(struct svcxprt_rdma * rdma)306 bool svc_rdma_post_recvs(struct svcxprt_rdma *rdma)
307 {
308 return svc_rdma_refresh_recvs(rdma, rdma->sc_max_requests);
309 }
310
311 /**
312 * svc_rdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
313 * @cq: Completion Queue context
314 * @wc: Work Completion object
315 *
316 */
svc_rdma_wc_receive(struct ib_cq * cq,struct ib_wc * wc)317 static void svc_rdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
318 {
319 struct svcxprt_rdma *rdma = cq->cq_context;
320 struct ib_cqe *cqe = wc->wr_cqe;
321 struct svc_rdma_recv_ctxt *ctxt;
322
323 rdma->sc_pending_recvs--;
324
325 /* WARNING: Only wc->wr_cqe and wc->status are reliable */
326 ctxt = container_of(cqe, struct svc_rdma_recv_ctxt, rc_cqe);
327
328 if (wc->status != IB_WC_SUCCESS)
329 goto flushed;
330 trace_svcrdma_wc_recv(wc, &ctxt->rc_cid);
331
332 /* If receive posting fails, the connection is about to be
333 * lost anyway. The server will not be able to send a reply
334 * for this RPC, and the client will retransmit this RPC
335 * anyway when it reconnects.
336 *
337 * Therefore we drop the Receive, even if status was SUCCESS
338 * to reduce the likelihood of replayed requests once the
339 * client reconnects.
340 */
341 if (rdma->sc_pending_recvs < rdma->sc_max_requests)
342 if (!svc_rdma_refresh_recvs(rdma, rdma->sc_recv_batch))
343 goto dropped;
344
345 /* All wc fields are now known to be valid */
346 ctxt->rc_byte_len = wc->byte_len;
347
348 spin_lock(&rdma->sc_rq_dto_lock);
349 list_add_tail(&ctxt->rc_list, &rdma->sc_rq_dto_q);
350 /* Note the unlock pairs with the smp_rmb in svc_xprt_ready: */
351 set_bit(XPT_DATA, &rdma->sc_xprt.xpt_flags);
352 spin_unlock(&rdma->sc_rq_dto_lock);
353 if (!test_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags))
354 svc_xprt_enqueue(&rdma->sc_xprt);
355 return;
356
357 flushed:
358 if (wc->status == IB_WC_WR_FLUSH_ERR)
359 trace_svcrdma_wc_recv_flush(wc, &ctxt->rc_cid);
360 else
361 trace_svcrdma_wc_recv_err(wc, &ctxt->rc_cid);
362 dropped:
363 svc_rdma_recv_ctxt_put(rdma, ctxt);
364 svc_xprt_deferred_close(&rdma->sc_xprt);
365 }
366
367 /**
368 * svc_rdma_flush_recv_queues - Drain pending Receive work
369 * @rdma: svcxprt_rdma being shut down
370 *
371 */
svc_rdma_flush_recv_queues(struct svcxprt_rdma * rdma)372 void svc_rdma_flush_recv_queues(struct svcxprt_rdma *rdma)
373 {
374 struct svc_rdma_recv_ctxt *ctxt;
375
376 while ((ctxt = svc_rdma_next_recv_ctxt(&rdma->sc_rq_dto_q))) {
377 list_del(&ctxt->rc_list);
378 svc_rdma_recv_ctxt_put(rdma, ctxt);
379 }
380 }
381
svc_rdma_build_arg_xdr(struct svc_rqst * rqstp,struct svc_rdma_recv_ctxt * ctxt)382 static void svc_rdma_build_arg_xdr(struct svc_rqst *rqstp,
383 struct svc_rdma_recv_ctxt *ctxt)
384 {
385 struct xdr_buf *arg = &rqstp->rq_arg;
386
387 arg->head[0].iov_base = ctxt->rc_recv_buf;
388 arg->head[0].iov_len = ctxt->rc_byte_len;
389 arg->tail[0].iov_base = NULL;
390 arg->tail[0].iov_len = 0;
391 arg->page_len = 0;
392 arg->page_base = 0;
393 arg->buflen = ctxt->rc_byte_len;
394 arg->len = ctxt->rc_byte_len;
395 }
396
397 /**
398 * xdr_count_read_segments - Count number of Read segments in Read list
399 * @rctxt: Ingress receive context
400 * @p: Start of an un-decoded Read list
401 *
402 * Before allocating anything, ensure the ingress Read list is safe
403 * to use.
404 *
405 * The segment count is limited to how many segments can fit in the
406 * transport header without overflowing the buffer. That's about 40
407 * Read segments for a 1KB inline threshold.
408 *
409 * Return values:
410 * %true: Read list is valid. @rctxt's xdr_stream is updated to point
411 * to the first byte past the Read list. rc_read_pcl and
412 * rc_call_pcl cl_count fields are set to the number of
413 * Read segments in the list.
414 * %false: Read list is corrupt. @rctxt's xdr_stream is left in an
415 * unknown state.
416 */
xdr_count_read_segments(struct svc_rdma_recv_ctxt * rctxt,__be32 * p)417 static bool xdr_count_read_segments(struct svc_rdma_recv_ctxt *rctxt, __be32 *p)
418 {
419 rctxt->rc_call_pcl.cl_count = 0;
420 rctxt->rc_read_pcl.cl_count = 0;
421 while (xdr_item_is_present(p)) {
422 u32 position, handle, length;
423 u64 offset;
424
425 p = xdr_inline_decode(&rctxt->rc_stream,
426 rpcrdma_readseg_maxsz * sizeof(*p));
427 if (!p)
428 return false;
429
430 xdr_decode_read_segment(p, &position, &handle,
431 &length, &offset);
432 if (position) {
433 if (position & 3)
434 return false;
435 ++rctxt->rc_read_pcl.cl_count;
436 } else {
437 ++rctxt->rc_call_pcl.cl_count;
438 }
439
440 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
441 if (!p)
442 return false;
443 }
444 return true;
445 }
446
447 /* Sanity check the Read list.
448 *
449 * Sanity checks:
450 * - Read list does not overflow Receive buffer.
451 * - Chunk size limited by largest NFS data payload.
452 *
453 * Return values:
454 * %true: Read list is valid. @rctxt's xdr_stream is updated
455 * to point to the first byte past the Read list.
456 * %false: Read list is corrupt. @rctxt's xdr_stream is left
457 * in an unknown state.
458 */
xdr_check_read_list(struct svc_rdma_recv_ctxt * rctxt)459 static bool xdr_check_read_list(struct svc_rdma_recv_ctxt *rctxt)
460 {
461 __be32 *p;
462
463 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
464 if (!p)
465 return false;
466 if (!xdr_count_read_segments(rctxt, p))
467 return false;
468 if (!pcl_alloc_call(rctxt, p))
469 return false;
470 return pcl_alloc_read(rctxt, p);
471 }
472
xdr_check_write_chunk(struct svc_rdma_recv_ctxt * rctxt)473 static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt *rctxt)
474 {
475 u32 segcount;
476 __be32 *p;
477
478 if (xdr_stream_decode_u32(&rctxt->rc_stream, &segcount))
479 return false;
480
481 /* A bogus segcount causes this buffer overflow check to fail. */
482 p = xdr_inline_decode(&rctxt->rc_stream,
483 segcount * rpcrdma_segment_maxsz * sizeof(*p));
484 return p != NULL;
485 }
486
487 /**
488 * xdr_count_write_chunks - Count number of Write chunks in Write list
489 * @rctxt: Received header and decoding state
490 * @p: start of an un-decoded Write list
491 *
492 * Before allocating anything, ensure the ingress Write list is
493 * safe to use.
494 *
495 * Return values:
496 * %true: Write list is valid. @rctxt's xdr_stream is updated
497 * to point to the first byte past the Write list, and
498 * the number of Write chunks is in rc_write_pcl.cl_count.
499 * %false: Write list is corrupt. @rctxt's xdr_stream is left
500 * in an indeterminate state.
501 */
xdr_count_write_chunks(struct svc_rdma_recv_ctxt * rctxt,__be32 * p)502 static bool xdr_count_write_chunks(struct svc_rdma_recv_ctxt *rctxt, __be32 *p)
503 {
504 rctxt->rc_write_pcl.cl_count = 0;
505 while (xdr_item_is_present(p)) {
506 if (!xdr_check_write_chunk(rctxt))
507 return false;
508 ++rctxt->rc_write_pcl.cl_count;
509 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
510 if (!p)
511 return false;
512 }
513 return true;
514 }
515
516 /* Sanity check the Write list.
517 *
518 * Implementation limits:
519 * - This implementation currently supports only one Write chunk.
520 *
521 * Sanity checks:
522 * - Write list does not overflow Receive buffer.
523 * - Chunk size limited by largest NFS data payload.
524 *
525 * Return values:
526 * %true: Write list is valid. @rctxt's xdr_stream is updated
527 * to point to the first byte past the Write list.
528 * %false: Write list is corrupt. @rctxt's xdr_stream is left
529 * in an unknown state.
530 */
xdr_check_write_list(struct svc_rdma_recv_ctxt * rctxt)531 static bool xdr_check_write_list(struct svc_rdma_recv_ctxt *rctxt)
532 {
533 __be32 *p;
534
535 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
536 if (!p)
537 return false;
538 if (!xdr_count_write_chunks(rctxt, p))
539 return false;
540 if (!pcl_alloc_write(rctxt, &rctxt->rc_write_pcl, p))
541 return false;
542
543 rctxt->rc_cur_result_payload = pcl_first_chunk(&rctxt->rc_write_pcl);
544 return true;
545 }
546
547 /* Sanity check the Reply chunk.
548 *
549 * Sanity checks:
550 * - Reply chunk does not overflow Receive buffer.
551 * - Chunk size limited by largest NFS data payload.
552 *
553 * Return values:
554 * %true: Reply chunk is valid. @rctxt's xdr_stream is updated
555 * to point to the first byte past the Reply chunk.
556 * %false: Reply chunk is corrupt. @rctxt's xdr_stream is left
557 * in an unknown state.
558 */
xdr_check_reply_chunk(struct svc_rdma_recv_ctxt * rctxt)559 static bool xdr_check_reply_chunk(struct svc_rdma_recv_ctxt *rctxt)
560 {
561 __be32 *p;
562
563 p = xdr_inline_decode(&rctxt->rc_stream, sizeof(*p));
564 if (!p)
565 return false;
566
567 if (!xdr_item_is_present(p))
568 return true;
569 if (!xdr_check_write_chunk(rctxt))
570 return false;
571
572 rctxt->rc_reply_pcl.cl_count = 1;
573 return pcl_alloc_write(rctxt, &rctxt->rc_reply_pcl, p);
574 }
575
576 /* RPC-over-RDMA Version One private extension: Remote Invalidation.
577 * Responder's choice: requester signals it can handle Send With
578 * Invalidate, and responder chooses one R_key to invalidate.
579 *
580 * If there is exactly one distinct R_key in the received transport
581 * header, set rc_inv_rkey to that R_key. Otherwise, set it to zero.
582 */
svc_rdma_get_inv_rkey(struct svcxprt_rdma * rdma,struct svc_rdma_recv_ctxt * ctxt)583 static void svc_rdma_get_inv_rkey(struct svcxprt_rdma *rdma,
584 struct svc_rdma_recv_ctxt *ctxt)
585 {
586 struct svc_rdma_segment *segment;
587 struct svc_rdma_chunk *chunk;
588 u32 inv_rkey;
589
590 ctxt->rc_inv_rkey = 0;
591
592 if (!rdma->sc_snd_w_inv)
593 return;
594
595 inv_rkey = 0;
596 pcl_for_each_chunk(chunk, &ctxt->rc_call_pcl) {
597 pcl_for_each_segment(segment, chunk) {
598 if (inv_rkey == 0)
599 inv_rkey = segment->rs_handle;
600 else if (inv_rkey != segment->rs_handle)
601 return;
602 }
603 }
604 pcl_for_each_chunk(chunk, &ctxt->rc_read_pcl) {
605 pcl_for_each_segment(segment, chunk) {
606 if (inv_rkey == 0)
607 inv_rkey = segment->rs_handle;
608 else if (inv_rkey != segment->rs_handle)
609 return;
610 }
611 }
612 pcl_for_each_chunk(chunk, &ctxt->rc_write_pcl) {
613 pcl_for_each_segment(segment, chunk) {
614 if (inv_rkey == 0)
615 inv_rkey = segment->rs_handle;
616 else if (inv_rkey != segment->rs_handle)
617 return;
618 }
619 }
620 pcl_for_each_chunk(chunk, &ctxt->rc_reply_pcl) {
621 pcl_for_each_segment(segment, chunk) {
622 if (inv_rkey == 0)
623 inv_rkey = segment->rs_handle;
624 else if (inv_rkey != segment->rs_handle)
625 return;
626 }
627 }
628 ctxt->rc_inv_rkey = inv_rkey;
629 }
630
631 /**
632 * svc_rdma_xdr_decode_req - Decode the transport header
633 * @rq_arg: xdr_buf containing ingress RPC/RDMA message
634 * @rctxt: state of decoding
635 *
636 * On entry, xdr->head[0].iov_base points to first byte of the
637 * RPC-over-RDMA transport header.
638 *
639 * On successful exit, head[0] points to first byte past the
640 * RPC-over-RDMA header. For RDMA_MSG, this is the RPC message.
641 *
642 * The length of the RPC-over-RDMA header is returned.
643 *
644 * Assumptions:
645 * - The transport header is entirely contained in the head iovec.
646 */
svc_rdma_xdr_decode_req(struct xdr_buf * rq_arg,struct svc_rdma_recv_ctxt * rctxt)647 static int svc_rdma_xdr_decode_req(struct xdr_buf *rq_arg,
648 struct svc_rdma_recv_ctxt *rctxt)
649 {
650 __be32 *p, *rdma_argp;
651 unsigned int hdr_len;
652
653 rdma_argp = rq_arg->head[0].iov_base;
654 xdr_init_decode(&rctxt->rc_stream, rq_arg, rdma_argp, NULL);
655
656 p = xdr_inline_decode(&rctxt->rc_stream,
657 rpcrdma_fixed_maxsz * sizeof(*p));
658 if (unlikely(!p))
659 goto out_short;
660 p++;
661 if (*p != rpcrdma_version)
662 goto out_version;
663 p += 2;
664 rctxt->rc_msgtype = *p;
665 switch (rctxt->rc_msgtype) {
666 case rdma_msg:
667 break;
668 case rdma_nomsg:
669 break;
670 case rdma_done:
671 goto out_drop;
672 case rdma_error:
673 goto out_drop;
674 default:
675 goto out_proc;
676 }
677
678 if (!xdr_check_read_list(rctxt))
679 goto out_inval;
680 if (!xdr_check_write_list(rctxt))
681 goto out_inval;
682 if (!xdr_check_reply_chunk(rctxt))
683 goto out_inval;
684
685 rq_arg->head[0].iov_base = rctxt->rc_stream.p;
686 hdr_len = xdr_stream_pos(&rctxt->rc_stream);
687 rq_arg->head[0].iov_len -= hdr_len;
688 rq_arg->len -= hdr_len;
689 trace_svcrdma_decode_rqst(rctxt, rdma_argp, hdr_len);
690 return hdr_len;
691
692 out_short:
693 trace_svcrdma_decode_short_err(rctxt, rq_arg->len);
694 return -EINVAL;
695
696 out_version:
697 trace_svcrdma_decode_badvers_err(rctxt, rdma_argp);
698 return -EPROTONOSUPPORT;
699
700 out_drop:
701 trace_svcrdma_decode_drop_err(rctxt, rdma_argp);
702 return 0;
703
704 out_proc:
705 trace_svcrdma_decode_badproc_err(rctxt, rdma_argp);
706 return -EINVAL;
707
708 out_inval:
709 trace_svcrdma_decode_parse_err(rctxt, rdma_argp);
710 return -EINVAL;
711 }
712
svc_rdma_send_error(struct svcxprt_rdma * rdma,struct svc_rdma_recv_ctxt * rctxt,int status)713 static void svc_rdma_send_error(struct svcxprt_rdma *rdma,
714 struct svc_rdma_recv_ctxt *rctxt,
715 int status)
716 {
717 struct svc_rdma_send_ctxt *sctxt;
718
719 sctxt = svc_rdma_send_ctxt_get(rdma);
720 if (!sctxt)
721 return;
722 svc_rdma_send_error_msg(rdma, sctxt, rctxt, status);
723 }
724
725 /* By convention, backchannel calls arrive via rdma_msg type
726 * messages, and never populate the chunk lists. This makes
727 * the RPC/RDMA header small and fixed in size, so it is
728 * straightforward to check the RPC header's direction field.
729 */
svc_rdma_is_reverse_direction_reply(struct svc_xprt * xprt,struct svc_rdma_recv_ctxt * rctxt)730 static bool svc_rdma_is_reverse_direction_reply(struct svc_xprt *xprt,
731 struct svc_rdma_recv_ctxt *rctxt)
732 {
733 __be32 *p = rctxt->rc_recv_buf;
734
735 if (!xprt->xpt_bc_xprt)
736 return false;
737
738 if (rctxt->rc_msgtype != rdma_msg)
739 return false;
740
741 if (!pcl_is_empty(&rctxt->rc_call_pcl))
742 return false;
743 if (!pcl_is_empty(&rctxt->rc_read_pcl))
744 return false;
745 if (!pcl_is_empty(&rctxt->rc_write_pcl))
746 return false;
747 if (!pcl_is_empty(&rctxt->rc_reply_pcl))
748 return false;
749
750 /* RPC call direction */
751 if (*(p + 8) == cpu_to_be32(RPC_CALL))
752 return false;
753
754 return true;
755 }
756
757 /**
758 * svc_rdma_recvfrom - Receive an RPC call
759 * @rqstp: request structure into which to receive an RPC Call
760 *
761 * Returns:
762 * The positive number of bytes in the RPC Call message,
763 * %0 if there were no Calls ready to return,
764 * %-EINVAL if the Read chunk data is too large,
765 * %-ENOMEM if rdma_rw context pool was exhausted,
766 * %-ENOTCONN if posting failed (connection is lost),
767 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
768 *
769 * Called in a loop when XPT_DATA is set. XPT_DATA is cleared only
770 * when there are no remaining ctxt's to process.
771 *
772 * The next ctxt is removed from the "receive" lists.
773 *
774 * - If the ctxt completes a Receive, then construct the Call
775 * message from the contents of the Receive buffer.
776 *
777 * - If there are no Read chunks in this message, then finish
778 * assembling the Call message and return the number of bytes
779 * in the message.
780 *
781 * - If there are Read chunks in this message, post Read WRs to
782 * pull that payload. When the Read WRs complete, build the
783 * full message and return the number of bytes in it.
784 */
svc_rdma_recvfrom(struct svc_rqst * rqstp)785 int svc_rdma_recvfrom(struct svc_rqst *rqstp)
786 {
787 struct svc_xprt *xprt = rqstp->rq_xprt;
788 struct svcxprt_rdma *rdma_xprt =
789 container_of(xprt, struct svcxprt_rdma, sc_xprt);
790 struct svc_rdma_recv_ctxt *ctxt;
791 int ret;
792
793 /* Prevent svc_xprt_release() from releasing pages in rq_pages
794 * when returning 0 or an error.
795 */
796 rqstp->rq_respages = rqstp->rq_pages;
797 rqstp->rq_next_page = rqstp->rq_respages;
798
799 rqstp->rq_xprt_ctxt = NULL;
800
801 ctxt = NULL;
802 spin_lock(&rdma_xprt->sc_rq_dto_lock);
803 ctxt = svc_rdma_next_recv_ctxt(&rdma_xprt->sc_rq_dto_q);
804 if (ctxt)
805 list_del(&ctxt->rc_list);
806 else
807 /* No new incoming requests, terminate the loop */
808 clear_bit(XPT_DATA, &xprt->xpt_flags);
809 spin_unlock(&rdma_xprt->sc_rq_dto_lock);
810
811 /* Unblock the transport for the next receive */
812 svc_xprt_received(xprt);
813 if (!ctxt)
814 return 0;
815
816 percpu_counter_inc(&svcrdma_stat_recv);
817 ib_dma_sync_single_for_cpu(rdma_xprt->sc_pd->device,
818 ctxt->rc_recv_sge.addr, ctxt->rc_byte_len,
819 DMA_FROM_DEVICE);
820 svc_rdma_build_arg_xdr(rqstp, ctxt);
821
822 ret = svc_rdma_xdr_decode_req(&rqstp->rq_arg, ctxt);
823 if (ret < 0)
824 goto out_err;
825 if (ret == 0)
826 goto out_drop;
827
828 if (svc_rdma_is_reverse_direction_reply(xprt, ctxt))
829 goto out_backchannel;
830
831 svc_rdma_get_inv_rkey(rdma_xprt, ctxt);
832
833 if (!pcl_is_empty(&ctxt->rc_read_pcl) ||
834 !pcl_is_empty(&ctxt->rc_call_pcl)) {
835 ret = svc_rdma_process_read_list(rdma_xprt, rqstp, ctxt);
836 if (ret < 0)
837 goto out_readfail;
838 }
839
840 rqstp->rq_xprt_ctxt = ctxt;
841 rqstp->rq_prot = IPPROTO_MAX;
842 svc_xprt_copy_addrs(rqstp, xprt);
843 set_bit(RQ_SECURE, &rqstp->rq_flags);
844 return rqstp->rq_arg.len;
845
846 out_err:
847 svc_rdma_send_error(rdma_xprt, ctxt, ret);
848 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
849 return 0;
850
851 out_readfail:
852 if (ret == -EINVAL)
853 svc_rdma_send_error(rdma_xprt, ctxt, ret);
854 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
855 return ret;
856
857 out_backchannel:
858 svc_rdma_handle_bc_reply(rqstp, ctxt);
859 out_drop:
860 svc_rdma_recv_ctxt_put(rdma_xprt, ctxt);
861 return 0;
862 }
863