1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016-2018 Oracle. All rights reserved.
4 *
5 * Use the core R/W API to move RPC-over-RDMA Read and Write chunks.
6 */
7
8 #include <rdma/rw.h>
9
10 #include <linux/sunrpc/xdr.h>
11 #include <linux/sunrpc/rpc_rdma.h>
12 #include <linux/sunrpc/svc_rdma.h>
13
14 #include "xprt_rdma.h"
15 #include <trace/events/rpcrdma.h>
16
17 static void svc_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc);
18 static void svc_rdma_wc_read_done(struct ib_cq *cq, struct ib_wc *wc);
19
20 /* Each R/W context contains state for one chain of RDMA Read or
21 * Write Work Requests.
22 *
23 * Each WR chain handles a single contiguous server-side buffer,
24 * because scatterlist entries after the first have to start on
25 * page alignment. xdr_buf iovecs cannot guarantee alignment.
26 *
27 * Each WR chain handles only one R_key. Each RPC-over-RDMA segment
28 * from a client may contain a unique R_key, so each WR chain moves
29 * up to one segment at a time.
30 *
31 * The scatterlist makes this data structure over 4KB in size. To
32 * make it less likely to fail, and to handle the allocation for
33 * smaller I/O requests without disabling bottom-halves, these
34 * contexts are created on demand, but cached and reused until the
35 * controlling svcxprt_rdma is destroyed.
36 */
37 struct svc_rdma_rw_ctxt {
38 struct list_head rw_list;
39 struct rdma_rw_ctx rw_ctx;
40 unsigned int rw_nents;
41 struct sg_table rw_sg_table;
42 struct scatterlist rw_first_sgl[];
43 };
44
45 static inline struct svc_rdma_rw_ctxt *
svc_rdma_next_ctxt(struct list_head * list)46 svc_rdma_next_ctxt(struct list_head *list)
47 {
48 return list_first_entry_or_null(list, struct svc_rdma_rw_ctxt,
49 rw_list);
50 }
51
52 static struct svc_rdma_rw_ctxt *
svc_rdma_get_rw_ctxt(struct svcxprt_rdma * rdma,unsigned int sges)53 svc_rdma_get_rw_ctxt(struct svcxprt_rdma *rdma, unsigned int sges)
54 {
55 struct svc_rdma_rw_ctxt *ctxt;
56
57 spin_lock(&rdma->sc_rw_ctxt_lock);
58
59 ctxt = svc_rdma_next_ctxt(&rdma->sc_rw_ctxts);
60 if (ctxt) {
61 list_del(&ctxt->rw_list);
62 spin_unlock(&rdma->sc_rw_ctxt_lock);
63 } else {
64 spin_unlock(&rdma->sc_rw_ctxt_lock);
65 ctxt = kmalloc(struct_size(ctxt, rw_first_sgl, SG_CHUNK_SIZE),
66 GFP_KERNEL);
67 if (!ctxt)
68 goto out_noctx;
69 INIT_LIST_HEAD(&ctxt->rw_list);
70 }
71
72 ctxt->rw_sg_table.sgl = ctxt->rw_first_sgl;
73 if (sg_alloc_table_chained(&ctxt->rw_sg_table, sges,
74 ctxt->rw_sg_table.sgl,
75 SG_CHUNK_SIZE))
76 goto out_free;
77 return ctxt;
78
79 out_free:
80 kfree(ctxt);
81 out_noctx:
82 trace_svcrdma_no_rwctx_err(rdma, sges);
83 return NULL;
84 }
85
svc_rdma_put_rw_ctxt(struct svcxprt_rdma * rdma,struct svc_rdma_rw_ctxt * ctxt)86 static void svc_rdma_put_rw_ctxt(struct svcxprt_rdma *rdma,
87 struct svc_rdma_rw_ctxt *ctxt)
88 {
89 sg_free_table_chained(&ctxt->rw_sg_table, SG_CHUNK_SIZE);
90
91 spin_lock(&rdma->sc_rw_ctxt_lock);
92 list_add(&ctxt->rw_list, &rdma->sc_rw_ctxts);
93 spin_unlock(&rdma->sc_rw_ctxt_lock);
94 }
95
96 /**
97 * svc_rdma_destroy_rw_ctxts - Free accumulated R/W contexts
98 * @rdma: transport about to be destroyed
99 *
100 */
svc_rdma_destroy_rw_ctxts(struct svcxprt_rdma * rdma)101 void svc_rdma_destroy_rw_ctxts(struct svcxprt_rdma *rdma)
102 {
103 struct svc_rdma_rw_ctxt *ctxt;
104
105 while ((ctxt = svc_rdma_next_ctxt(&rdma->sc_rw_ctxts)) != NULL) {
106 list_del(&ctxt->rw_list);
107 kfree(ctxt);
108 }
109 }
110
111 /**
112 * svc_rdma_rw_ctx_init - Prepare a R/W context for I/O
113 * @rdma: controlling transport instance
114 * @ctxt: R/W context to prepare
115 * @offset: RDMA offset
116 * @handle: RDMA tag/handle
117 * @direction: I/O direction
118 *
119 * Returns on success, the number of WQEs that will be needed
120 * on the workqueue, or a negative errno.
121 */
svc_rdma_rw_ctx_init(struct svcxprt_rdma * rdma,struct svc_rdma_rw_ctxt * ctxt,u64 offset,u32 handle,enum dma_data_direction direction)122 static int svc_rdma_rw_ctx_init(struct svcxprt_rdma *rdma,
123 struct svc_rdma_rw_ctxt *ctxt,
124 u64 offset, u32 handle,
125 enum dma_data_direction direction)
126 {
127 int ret;
128
129 ret = rdma_rw_ctx_init(&ctxt->rw_ctx, rdma->sc_qp, rdma->sc_port_num,
130 ctxt->rw_sg_table.sgl, ctxt->rw_nents,
131 0, offset, handle, direction);
132 if (unlikely(ret < 0)) {
133 svc_rdma_put_rw_ctxt(rdma, ctxt);
134 trace_svcrdma_dma_map_rw_err(rdma, ctxt->rw_nents, ret);
135 }
136 return ret;
137 }
138
139 /* A chunk context tracks all I/O for moving one Read or Write
140 * chunk. This is a set of rdma_rw's that handle data movement
141 * for all segments of one chunk.
142 *
143 * These are small, acquired with a single allocator call, and
144 * no more than one is needed per chunk. They are allocated on
145 * demand, and not cached.
146 */
147 struct svc_rdma_chunk_ctxt {
148 struct rpc_rdma_cid cc_cid;
149 struct ib_cqe cc_cqe;
150 struct svcxprt_rdma *cc_rdma;
151 struct list_head cc_rwctxts;
152 int cc_sqecount;
153 };
154
svc_rdma_cc_cid_init(struct svcxprt_rdma * rdma,struct rpc_rdma_cid * cid)155 static void svc_rdma_cc_cid_init(struct svcxprt_rdma *rdma,
156 struct rpc_rdma_cid *cid)
157 {
158 cid->ci_queue_id = rdma->sc_sq_cq->res.id;
159 cid->ci_completion_id = atomic_inc_return(&rdma->sc_completion_ids);
160 }
161
svc_rdma_cc_init(struct svcxprt_rdma * rdma,struct svc_rdma_chunk_ctxt * cc)162 static void svc_rdma_cc_init(struct svcxprt_rdma *rdma,
163 struct svc_rdma_chunk_ctxt *cc)
164 {
165 svc_rdma_cc_cid_init(rdma, &cc->cc_cid);
166 cc->cc_rdma = rdma;
167
168 INIT_LIST_HEAD(&cc->cc_rwctxts);
169 cc->cc_sqecount = 0;
170 }
171
svc_rdma_cc_release(struct svc_rdma_chunk_ctxt * cc,enum dma_data_direction dir)172 static void svc_rdma_cc_release(struct svc_rdma_chunk_ctxt *cc,
173 enum dma_data_direction dir)
174 {
175 struct svcxprt_rdma *rdma = cc->cc_rdma;
176 struct svc_rdma_rw_ctxt *ctxt;
177
178 while ((ctxt = svc_rdma_next_ctxt(&cc->cc_rwctxts)) != NULL) {
179 list_del(&ctxt->rw_list);
180
181 rdma_rw_ctx_destroy(&ctxt->rw_ctx, rdma->sc_qp,
182 rdma->sc_port_num, ctxt->rw_sg_table.sgl,
183 ctxt->rw_nents, dir);
184 svc_rdma_put_rw_ctxt(rdma, ctxt);
185 }
186 }
187
188 /* State for sending a Write or Reply chunk.
189 * - Tracks progress of writing one chunk over all its segments
190 * - Stores arguments for the SGL constructor functions
191 */
192 struct svc_rdma_write_info {
193 /* write state of this chunk */
194 unsigned int wi_seg_off;
195 unsigned int wi_seg_no;
196 unsigned int wi_nsegs;
197 __be32 *wi_segs;
198
199 /* SGL constructor arguments */
200 struct xdr_buf *wi_xdr;
201 unsigned char *wi_base;
202 unsigned int wi_next_off;
203
204 struct svc_rdma_chunk_ctxt wi_cc;
205 };
206
207 static struct svc_rdma_write_info *
svc_rdma_write_info_alloc(struct svcxprt_rdma * rdma,__be32 * chunk)208 svc_rdma_write_info_alloc(struct svcxprt_rdma *rdma, __be32 *chunk)
209 {
210 struct svc_rdma_write_info *info;
211
212 info = kmalloc(sizeof(*info), GFP_KERNEL);
213 if (!info)
214 return info;
215
216 info->wi_seg_off = 0;
217 info->wi_seg_no = 0;
218 info->wi_nsegs = be32_to_cpup(++chunk);
219 info->wi_segs = ++chunk;
220 svc_rdma_cc_init(rdma, &info->wi_cc);
221 info->wi_cc.cc_cqe.done = svc_rdma_write_done;
222 return info;
223 }
224
svc_rdma_write_info_free(struct svc_rdma_write_info * info)225 static void svc_rdma_write_info_free(struct svc_rdma_write_info *info)
226 {
227 svc_rdma_cc_release(&info->wi_cc, DMA_TO_DEVICE);
228 kfree(info);
229 }
230
231 /**
232 * svc_rdma_write_done - Write chunk completion
233 * @cq: controlling Completion Queue
234 * @wc: Work Completion
235 *
236 * Pages under I/O are freed by a subsequent Send completion.
237 */
svc_rdma_write_done(struct ib_cq * cq,struct ib_wc * wc)238 static void svc_rdma_write_done(struct ib_cq *cq, struct ib_wc *wc)
239 {
240 struct ib_cqe *cqe = wc->wr_cqe;
241 struct svc_rdma_chunk_ctxt *cc =
242 container_of(cqe, struct svc_rdma_chunk_ctxt, cc_cqe);
243 struct svcxprt_rdma *rdma = cc->cc_rdma;
244 struct svc_rdma_write_info *info =
245 container_of(cc, struct svc_rdma_write_info, wi_cc);
246
247 trace_svcrdma_wc_write(wc, &cc->cc_cid);
248
249 atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
250 wake_up(&rdma->sc_send_wait);
251
252 if (unlikely(wc->status != IB_WC_SUCCESS))
253 set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
254
255 svc_rdma_write_info_free(info);
256 }
257
258 /* State for pulling a Read chunk.
259 */
260 struct svc_rdma_read_info {
261 struct svc_rdma_recv_ctxt *ri_readctxt;
262 unsigned int ri_position;
263 unsigned int ri_pageno;
264 unsigned int ri_pageoff;
265 unsigned int ri_chunklen;
266
267 struct svc_rdma_chunk_ctxt ri_cc;
268 };
269
270 static struct svc_rdma_read_info *
svc_rdma_read_info_alloc(struct svcxprt_rdma * rdma)271 svc_rdma_read_info_alloc(struct svcxprt_rdma *rdma)
272 {
273 struct svc_rdma_read_info *info;
274
275 info = kmalloc(sizeof(*info), GFP_KERNEL);
276 if (!info)
277 return info;
278
279 svc_rdma_cc_init(rdma, &info->ri_cc);
280 info->ri_cc.cc_cqe.done = svc_rdma_wc_read_done;
281 return info;
282 }
283
svc_rdma_read_info_free(struct svc_rdma_read_info * info)284 static void svc_rdma_read_info_free(struct svc_rdma_read_info *info)
285 {
286 svc_rdma_cc_release(&info->ri_cc, DMA_FROM_DEVICE);
287 kfree(info);
288 }
289
290 /**
291 * svc_rdma_wc_read_done - Handle completion of an RDMA Read ctx
292 * @cq: controlling Completion Queue
293 * @wc: Work Completion
294 *
295 */
svc_rdma_wc_read_done(struct ib_cq * cq,struct ib_wc * wc)296 static void svc_rdma_wc_read_done(struct ib_cq *cq, struct ib_wc *wc)
297 {
298 struct ib_cqe *cqe = wc->wr_cqe;
299 struct svc_rdma_chunk_ctxt *cc =
300 container_of(cqe, struct svc_rdma_chunk_ctxt, cc_cqe);
301 struct svcxprt_rdma *rdma = cc->cc_rdma;
302 struct svc_rdma_read_info *info =
303 container_of(cc, struct svc_rdma_read_info, ri_cc);
304
305 trace_svcrdma_wc_read(wc, &cc->cc_cid);
306
307 atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
308 wake_up(&rdma->sc_send_wait);
309
310 if (unlikely(wc->status != IB_WC_SUCCESS)) {
311 set_bit(XPT_CLOSE, &rdma->sc_xprt.xpt_flags);
312 svc_rdma_recv_ctxt_put(rdma, info->ri_readctxt);
313 } else {
314 spin_lock(&rdma->sc_rq_dto_lock);
315 list_add_tail(&info->ri_readctxt->rc_list,
316 &rdma->sc_read_complete_q);
317 /* Note the unlock pairs with the smp_rmb in svc_xprt_ready: */
318 set_bit(XPT_DATA, &rdma->sc_xprt.xpt_flags);
319 spin_unlock(&rdma->sc_rq_dto_lock);
320
321 svc_xprt_enqueue(&rdma->sc_xprt);
322 }
323
324 svc_rdma_read_info_free(info);
325 }
326
327 /* This function sleeps when the transport's Send Queue is congested.
328 *
329 * Assumptions:
330 * - If ib_post_send() succeeds, only one completion is expected,
331 * even if one or more WRs are flushed. This is true when posting
332 * an rdma_rw_ctx or when posting a single signaled WR.
333 */
svc_rdma_post_chunk_ctxt(struct svc_rdma_chunk_ctxt * cc)334 static int svc_rdma_post_chunk_ctxt(struct svc_rdma_chunk_ctxt *cc)
335 {
336 struct svcxprt_rdma *rdma = cc->cc_rdma;
337 struct svc_xprt *xprt = &rdma->sc_xprt;
338 struct ib_send_wr *first_wr;
339 const struct ib_send_wr *bad_wr;
340 struct list_head *tmp;
341 struct ib_cqe *cqe;
342 int ret;
343
344 if (cc->cc_sqecount > rdma->sc_sq_depth)
345 return -EINVAL;
346
347 first_wr = NULL;
348 cqe = &cc->cc_cqe;
349 list_for_each(tmp, &cc->cc_rwctxts) {
350 struct svc_rdma_rw_ctxt *ctxt;
351
352 ctxt = list_entry(tmp, struct svc_rdma_rw_ctxt, rw_list);
353 first_wr = rdma_rw_ctx_wrs(&ctxt->rw_ctx, rdma->sc_qp,
354 rdma->sc_port_num, cqe, first_wr);
355 cqe = NULL;
356 }
357
358 do {
359 if (atomic_sub_return(cc->cc_sqecount,
360 &rdma->sc_sq_avail) > 0) {
361 trace_svcrdma_post_chunk(&cc->cc_cid, cc->cc_sqecount);
362 ret = ib_post_send(rdma->sc_qp, first_wr, &bad_wr);
363 if (ret)
364 break;
365 return 0;
366 }
367
368 trace_svcrdma_sq_full(rdma);
369 atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
370 wait_event(rdma->sc_send_wait,
371 atomic_read(&rdma->sc_sq_avail) > cc->cc_sqecount);
372 trace_svcrdma_sq_retry(rdma);
373 } while (1);
374
375 trace_svcrdma_sq_post_err(rdma, ret);
376 set_bit(XPT_CLOSE, &xprt->xpt_flags);
377
378 /* If even one was posted, there will be a completion. */
379 if (bad_wr != first_wr)
380 return 0;
381
382 atomic_add(cc->cc_sqecount, &rdma->sc_sq_avail);
383 wake_up(&rdma->sc_send_wait);
384 return -ENOTCONN;
385 }
386
387 /* Build and DMA-map an SGL that covers one kvec in an xdr_buf
388 */
svc_rdma_vec_to_sg(struct svc_rdma_write_info * info,unsigned int len,struct svc_rdma_rw_ctxt * ctxt)389 static void svc_rdma_vec_to_sg(struct svc_rdma_write_info *info,
390 unsigned int len,
391 struct svc_rdma_rw_ctxt *ctxt)
392 {
393 struct scatterlist *sg = ctxt->rw_sg_table.sgl;
394
395 sg_set_buf(&sg[0], info->wi_base, len);
396 info->wi_base += len;
397
398 ctxt->rw_nents = 1;
399 }
400
401 /* Build and DMA-map an SGL that covers part of an xdr_buf's pagelist.
402 */
svc_rdma_pagelist_to_sg(struct svc_rdma_write_info * info,unsigned int remaining,struct svc_rdma_rw_ctxt * ctxt)403 static void svc_rdma_pagelist_to_sg(struct svc_rdma_write_info *info,
404 unsigned int remaining,
405 struct svc_rdma_rw_ctxt *ctxt)
406 {
407 unsigned int sge_no, sge_bytes, page_off, page_no;
408 struct xdr_buf *xdr = info->wi_xdr;
409 struct scatterlist *sg;
410 struct page **page;
411
412 page_off = info->wi_next_off + xdr->page_base;
413 page_no = page_off >> PAGE_SHIFT;
414 page_off = offset_in_page(page_off);
415 page = xdr->pages + page_no;
416 info->wi_next_off += remaining;
417 sg = ctxt->rw_sg_table.sgl;
418 sge_no = 0;
419 do {
420 sge_bytes = min_t(unsigned int, remaining,
421 PAGE_SIZE - page_off);
422 sg_set_page(sg, *page, sge_bytes, page_off);
423
424 remaining -= sge_bytes;
425 sg = sg_next(sg);
426 page_off = 0;
427 sge_no++;
428 page++;
429 } while (remaining);
430
431 ctxt->rw_nents = sge_no;
432 }
433
434 /* Construct RDMA Write WRs to send a portion of an xdr_buf containing
435 * an RPC Reply.
436 */
437 static int
svc_rdma_build_writes(struct svc_rdma_write_info * info,void (* constructor)(struct svc_rdma_write_info * info,unsigned int len,struct svc_rdma_rw_ctxt * ctxt),unsigned int remaining)438 svc_rdma_build_writes(struct svc_rdma_write_info *info,
439 void (*constructor)(struct svc_rdma_write_info *info,
440 unsigned int len,
441 struct svc_rdma_rw_ctxt *ctxt),
442 unsigned int remaining)
443 {
444 struct svc_rdma_chunk_ctxt *cc = &info->wi_cc;
445 struct svcxprt_rdma *rdma = cc->cc_rdma;
446 struct svc_rdma_rw_ctxt *ctxt;
447 __be32 *seg;
448 int ret;
449
450 seg = info->wi_segs + info->wi_seg_no * rpcrdma_segment_maxsz;
451 do {
452 unsigned int write_len;
453 u32 handle, length;
454 u64 offset;
455
456 if (info->wi_seg_no >= info->wi_nsegs)
457 goto out_overflow;
458
459 xdr_decode_rdma_segment(seg, &handle, &length, &offset);
460 offset += info->wi_seg_off;
461
462 write_len = min(remaining, length - info->wi_seg_off);
463 ctxt = svc_rdma_get_rw_ctxt(rdma,
464 (write_len >> PAGE_SHIFT) + 2);
465 if (!ctxt)
466 return -ENOMEM;
467
468 constructor(info, write_len, ctxt);
469 ret = svc_rdma_rw_ctx_init(rdma, ctxt, offset, handle,
470 DMA_TO_DEVICE);
471 if (ret < 0)
472 return -EIO;
473
474 trace_svcrdma_send_wseg(handle, write_len, offset);
475
476 list_add(&ctxt->rw_list, &cc->cc_rwctxts);
477 cc->cc_sqecount += ret;
478 if (write_len == length - info->wi_seg_off) {
479 seg += 4;
480 info->wi_seg_no++;
481 info->wi_seg_off = 0;
482 } else {
483 info->wi_seg_off += write_len;
484 }
485 remaining -= write_len;
486 } while (remaining);
487
488 return 0;
489
490 out_overflow:
491 trace_svcrdma_small_wrch_err(rdma, remaining, info->wi_seg_no,
492 info->wi_nsegs);
493 return -E2BIG;
494 }
495
496 /* Send one of an xdr_buf's kvecs by itself. To send a Reply
497 * chunk, the whole RPC Reply is written back to the client.
498 * This function writes either the head or tail of the xdr_buf
499 * containing the Reply.
500 */
svc_rdma_send_xdr_kvec(struct svc_rdma_write_info * info,struct kvec * vec)501 static int svc_rdma_send_xdr_kvec(struct svc_rdma_write_info *info,
502 struct kvec *vec)
503 {
504 info->wi_base = vec->iov_base;
505 return svc_rdma_build_writes(info, svc_rdma_vec_to_sg,
506 vec->iov_len);
507 }
508
509 /* Send an xdr_buf's page list by itself. A Write chunk is just
510 * the page list. A Reply chunk is @xdr's head, page list, and
511 * tail. This function is shared between the two types of chunk.
512 */
svc_rdma_send_xdr_pagelist(struct svc_rdma_write_info * info,struct xdr_buf * xdr,unsigned int offset,unsigned long length)513 static int svc_rdma_send_xdr_pagelist(struct svc_rdma_write_info *info,
514 struct xdr_buf *xdr,
515 unsigned int offset,
516 unsigned long length)
517 {
518 info->wi_xdr = xdr;
519 info->wi_next_off = offset - xdr->head[0].iov_len;
520 return svc_rdma_build_writes(info, svc_rdma_pagelist_to_sg,
521 length);
522 }
523
524 /**
525 * svc_rdma_send_write_chunk - Write all segments in a Write chunk
526 * @rdma: controlling RDMA transport
527 * @wr_ch: Write chunk provided by client
528 * @xdr: xdr_buf containing the data payload
529 * @offset: payload's byte offset in @xdr
530 * @length: size of payload, in bytes
531 *
532 * Returns a non-negative number of bytes the chunk consumed, or
533 * %-E2BIG if the payload was larger than the Write chunk,
534 * %-EINVAL if client provided too many segments,
535 * %-ENOMEM if rdma_rw context pool was exhausted,
536 * %-ENOTCONN if posting failed (connection is lost),
537 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
538 */
svc_rdma_send_write_chunk(struct svcxprt_rdma * rdma,__be32 * wr_ch,struct xdr_buf * xdr,unsigned int offset,unsigned long length)539 int svc_rdma_send_write_chunk(struct svcxprt_rdma *rdma, __be32 *wr_ch,
540 struct xdr_buf *xdr,
541 unsigned int offset, unsigned long length)
542 {
543 struct svc_rdma_write_info *info;
544 int ret;
545
546 if (!length)
547 return 0;
548
549 info = svc_rdma_write_info_alloc(rdma, wr_ch);
550 if (!info)
551 return -ENOMEM;
552
553 ret = svc_rdma_send_xdr_pagelist(info, xdr, offset, length);
554 if (ret < 0)
555 goto out_err;
556
557 ret = svc_rdma_post_chunk_ctxt(&info->wi_cc);
558 if (ret < 0)
559 goto out_err;
560
561 trace_svcrdma_send_write_chunk(xdr->page_len);
562 return length;
563
564 out_err:
565 svc_rdma_write_info_free(info);
566 return ret;
567 }
568
569 /**
570 * svc_rdma_send_reply_chunk - Write all segments in the Reply chunk
571 * @rdma: controlling RDMA transport
572 * @rctxt: Write and Reply chunks from client
573 * @xdr: xdr_buf containing an RPC Reply
574 *
575 * Returns a non-negative number of bytes the chunk consumed, or
576 * %-E2BIG if the payload was larger than the Reply chunk,
577 * %-EINVAL if client provided too many segments,
578 * %-ENOMEM if rdma_rw context pool was exhausted,
579 * %-ENOTCONN if posting failed (connection is lost),
580 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
581 */
svc_rdma_send_reply_chunk(struct svcxprt_rdma * rdma,const struct svc_rdma_recv_ctxt * rctxt,struct xdr_buf * xdr)582 int svc_rdma_send_reply_chunk(struct svcxprt_rdma *rdma,
583 const struct svc_rdma_recv_ctxt *rctxt,
584 struct xdr_buf *xdr)
585 {
586 struct svc_rdma_write_info *info;
587 int consumed, ret;
588
589 info = svc_rdma_write_info_alloc(rdma, rctxt->rc_reply_chunk);
590 if (!info)
591 return -ENOMEM;
592
593 ret = svc_rdma_send_xdr_kvec(info, &xdr->head[0]);
594 if (ret < 0)
595 goto out_err;
596 consumed = xdr->head[0].iov_len;
597
598 /* Send the page list in the Reply chunk only if the
599 * client did not provide Write chunks.
600 */
601 if (!rctxt->rc_write_list && xdr->page_len) {
602 ret = svc_rdma_send_xdr_pagelist(info, xdr,
603 xdr->head[0].iov_len,
604 xdr->page_len);
605 if (ret < 0)
606 goto out_err;
607 consumed += xdr->page_len;
608 }
609
610 if (xdr->tail[0].iov_len) {
611 ret = svc_rdma_send_xdr_kvec(info, &xdr->tail[0]);
612 if (ret < 0)
613 goto out_err;
614 consumed += xdr->tail[0].iov_len;
615 }
616
617 ret = svc_rdma_post_chunk_ctxt(&info->wi_cc);
618 if (ret < 0)
619 goto out_err;
620
621 trace_svcrdma_send_reply_chunk(consumed);
622 return consumed;
623
624 out_err:
625 svc_rdma_write_info_free(info);
626 return ret;
627 }
628
svc_rdma_build_read_segment(struct svc_rdma_read_info * info,struct svc_rqst * rqstp,u32 rkey,u32 len,u64 offset)629 static int svc_rdma_build_read_segment(struct svc_rdma_read_info *info,
630 struct svc_rqst *rqstp,
631 u32 rkey, u32 len, u64 offset)
632 {
633 struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
634 struct svc_rdma_chunk_ctxt *cc = &info->ri_cc;
635 struct svc_rdma_rw_ctxt *ctxt;
636 unsigned int sge_no, seg_len;
637 struct scatterlist *sg;
638 int ret;
639
640 sge_no = PAGE_ALIGN(info->ri_pageoff + len) >> PAGE_SHIFT;
641 ctxt = svc_rdma_get_rw_ctxt(cc->cc_rdma, sge_no);
642 if (!ctxt)
643 return -ENOMEM;
644 ctxt->rw_nents = sge_no;
645
646 sg = ctxt->rw_sg_table.sgl;
647 for (sge_no = 0; sge_no < ctxt->rw_nents; sge_no++) {
648 seg_len = min_t(unsigned int, len,
649 PAGE_SIZE - info->ri_pageoff);
650
651 head->rc_arg.pages[info->ri_pageno] =
652 rqstp->rq_pages[info->ri_pageno];
653 if (!info->ri_pageoff)
654 head->rc_page_count++;
655
656 sg_set_page(sg, rqstp->rq_pages[info->ri_pageno],
657 seg_len, info->ri_pageoff);
658 sg = sg_next(sg);
659
660 info->ri_pageoff += seg_len;
661 if (info->ri_pageoff == PAGE_SIZE) {
662 info->ri_pageno++;
663 info->ri_pageoff = 0;
664 }
665 len -= seg_len;
666
667 /* Safety check */
668 if (len &&
669 &rqstp->rq_pages[info->ri_pageno + 1] > rqstp->rq_page_end)
670 goto out_overrun;
671 }
672
673 ret = svc_rdma_rw_ctx_init(cc->cc_rdma, ctxt, offset, rkey,
674 DMA_FROM_DEVICE);
675 if (ret < 0)
676 return -EIO;
677
678 list_add(&ctxt->rw_list, &cc->cc_rwctxts);
679 cc->cc_sqecount += ret;
680 return 0;
681
682 out_overrun:
683 trace_svcrdma_page_overrun_err(cc->cc_rdma, rqstp, info->ri_pageno);
684 return -EINVAL;
685 }
686
687 /* Walk the segments in the Read chunk starting at @p and construct
688 * RDMA Read operations to pull the chunk to the server.
689 */
svc_rdma_build_read_chunk(struct svc_rqst * rqstp,struct svc_rdma_read_info * info,__be32 * p)690 static int svc_rdma_build_read_chunk(struct svc_rqst *rqstp,
691 struct svc_rdma_read_info *info,
692 __be32 *p)
693 {
694 int ret;
695
696 ret = -EINVAL;
697 info->ri_chunklen = 0;
698 while (*p++ != xdr_zero && be32_to_cpup(p++) == info->ri_position) {
699 u32 handle, length;
700 u64 offset;
701
702 p = xdr_decode_rdma_segment(p, &handle, &length, &offset);
703 ret = svc_rdma_build_read_segment(info, rqstp, handle, length,
704 offset);
705 if (ret < 0)
706 break;
707
708 trace_svcrdma_send_rseg(handle, length, offset);
709 info->ri_chunklen += length;
710 }
711
712 return ret;
713 }
714
715 /* Construct RDMA Reads to pull over a normal Read chunk. The chunk
716 * data lands in the page list of head->rc_arg.pages.
717 *
718 * Currently NFSD does not look at the head->rc_arg.tail[0] iovec.
719 * Therefore, XDR round-up of the Read chunk and trailing
720 * inline content must both be added at the end of the pagelist.
721 */
svc_rdma_build_normal_read_chunk(struct svc_rqst * rqstp,struct svc_rdma_read_info * info,__be32 * p)722 static int svc_rdma_build_normal_read_chunk(struct svc_rqst *rqstp,
723 struct svc_rdma_read_info *info,
724 __be32 *p)
725 {
726 struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
727 int ret;
728
729 ret = svc_rdma_build_read_chunk(rqstp, info, p);
730 if (ret < 0)
731 goto out;
732
733 trace_svcrdma_send_read_chunk(info->ri_chunklen, info->ri_position);
734
735 head->rc_hdr_count = 0;
736
737 /* Split the Receive buffer between the head and tail
738 * buffers at Read chunk's position. XDR roundup of the
739 * chunk is not included in either the pagelist or in
740 * the tail.
741 */
742 head->rc_arg.tail[0].iov_base =
743 head->rc_arg.head[0].iov_base + info->ri_position;
744 head->rc_arg.tail[0].iov_len =
745 head->rc_arg.head[0].iov_len - info->ri_position;
746 head->rc_arg.head[0].iov_len = info->ri_position;
747
748 /* Read chunk may need XDR roundup (see RFC 8166, s. 3.4.5.2).
749 *
750 * If the client already rounded up the chunk length, the
751 * length does not change. Otherwise, the length of the page
752 * list is increased to include XDR round-up.
753 *
754 * Currently these chunks always start at page offset 0,
755 * thus the rounded-up length never crosses a page boundary.
756 */
757 info->ri_chunklen = XDR_QUADLEN(info->ri_chunklen) << 2;
758
759 head->rc_arg.page_len = info->ri_chunklen;
760 head->rc_arg.len += info->ri_chunklen;
761 head->rc_arg.buflen += info->ri_chunklen;
762
763 out:
764 return ret;
765 }
766
767 /* Construct RDMA Reads to pull over a Position Zero Read chunk.
768 * The start of the data lands in the first page just after
769 * the Transport header, and the rest lands in the page list of
770 * head->rc_arg.pages.
771 *
772 * Assumptions:
773 * - A PZRC has an XDR-aligned length (no implicit round-up).
774 * - There can be no trailing inline content (IOW, we assume
775 * a PZRC is never sent in an RDMA_MSG message, though it's
776 * allowed by spec).
777 */
svc_rdma_build_pz_read_chunk(struct svc_rqst * rqstp,struct svc_rdma_read_info * info,__be32 * p)778 static int svc_rdma_build_pz_read_chunk(struct svc_rqst *rqstp,
779 struct svc_rdma_read_info *info,
780 __be32 *p)
781 {
782 struct svc_rdma_recv_ctxt *head = info->ri_readctxt;
783 int ret;
784
785 ret = svc_rdma_build_read_chunk(rqstp, info, p);
786 if (ret < 0)
787 goto out;
788
789 trace_svcrdma_send_pzr(info->ri_chunklen);
790
791 head->rc_arg.len += info->ri_chunklen;
792 head->rc_arg.buflen += info->ri_chunklen;
793
794 head->rc_hdr_count = 1;
795 head->rc_arg.head[0].iov_base = page_address(head->rc_pages[0]);
796 head->rc_arg.head[0].iov_len = min_t(size_t, PAGE_SIZE,
797 info->ri_chunklen);
798
799 head->rc_arg.page_len = info->ri_chunklen -
800 head->rc_arg.head[0].iov_len;
801
802 out:
803 return ret;
804 }
805
806 /* Pages under I/O have been copied to head->rc_pages. Ensure they
807 * are not released by svc_xprt_release() until the I/O is complete.
808 *
809 * This has to be done after all Read WRs are constructed to properly
810 * handle a page that is part of I/O on behalf of two different RDMA
811 * segments.
812 *
813 * Do this only if I/O has been posted. Otherwise, we do indeed want
814 * svc_xprt_release() to clean things up properly.
815 */
svc_rdma_save_io_pages(struct svc_rqst * rqstp,const unsigned int start,const unsigned int num_pages)816 static void svc_rdma_save_io_pages(struct svc_rqst *rqstp,
817 const unsigned int start,
818 const unsigned int num_pages)
819 {
820 unsigned int i;
821
822 for (i = start; i < num_pages + start; i++)
823 rqstp->rq_pages[i] = NULL;
824 }
825
826 /**
827 * svc_rdma_recv_read_chunk - Pull a Read chunk from the client
828 * @rdma: controlling RDMA transport
829 * @rqstp: set of pages to use as Read sink buffers
830 * @head: pages under I/O collect here
831 * @p: pointer to start of Read chunk
832 *
833 * Returns:
834 * %0 if all needed RDMA Reads were posted successfully,
835 * %-EINVAL if client provided too many segments,
836 * %-ENOMEM if rdma_rw context pool was exhausted,
837 * %-ENOTCONN if posting failed (connection is lost),
838 * %-EIO if rdma_rw initialization failed (DMA mapping, etc).
839 *
840 * Assumptions:
841 * - All Read segments in @p have the same Position value.
842 */
svc_rdma_recv_read_chunk(struct svcxprt_rdma * rdma,struct svc_rqst * rqstp,struct svc_rdma_recv_ctxt * head,__be32 * p)843 int svc_rdma_recv_read_chunk(struct svcxprt_rdma *rdma, struct svc_rqst *rqstp,
844 struct svc_rdma_recv_ctxt *head, __be32 *p)
845 {
846 struct svc_rdma_read_info *info;
847 int ret;
848
849 /* The request (with page list) is constructed in
850 * head->rc_arg. Pages involved with RDMA Read I/O are
851 * transferred there.
852 */
853 head->rc_arg.head[0] = rqstp->rq_arg.head[0];
854 head->rc_arg.tail[0] = rqstp->rq_arg.tail[0];
855 head->rc_arg.pages = head->rc_pages;
856 head->rc_arg.page_base = 0;
857 head->rc_arg.page_len = 0;
858 head->rc_arg.len = rqstp->rq_arg.len;
859 head->rc_arg.buflen = rqstp->rq_arg.buflen;
860
861 info = svc_rdma_read_info_alloc(rdma);
862 if (!info)
863 return -ENOMEM;
864 info->ri_readctxt = head;
865 info->ri_pageno = 0;
866 info->ri_pageoff = 0;
867
868 info->ri_position = be32_to_cpup(p + 1);
869 if (info->ri_position)
870 ret = svc_rdma_build_normal_read_chunk(rqstp, info, p);
871 else
872 ret = svc_rdma_build_pz_read_chunk(rqstp, info, p);
873 if (ret < 0)
874 goto out_err;
875
876 ret = svc_rdma_post_chunk_ctxt(&info->ri_cc);
877 if (ret < 0)
878 goto out_err;
879 svc_rdma_save_io_pages(rqstp, 0, head->rc_page_count);
880 return 0;
881
882 out_err:
883 svc_rdma_read_info_free(info);
884 return ret;
885 }
886