1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/crash_core.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/rculist.h>
42 #include <linux/poll.h>
43 #include <linux/irq_work.h>
44 #include <linux/ctype.h>
45 #include <linux/uio.h>
46 #include <linux/sched/clock.h>
47 #include <linux/sched/debug.h>
48 #include <linux/sched/task_stack.h>
49
50 #include <linux/uaccess.h>
51 #include <asm/sections.h>
52
53 #include <trace/events/initcall.h>
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/printk.h>
56
57 #include "console_cmdline.h"
58 #include "braille.h"
59 #include "internal.h"
60
61 int console_printk[4] = {
62 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
63 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
64 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
65 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
66 };
67
68 atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
69 EXPORT_SYMBOL(ignore_console_lock_warning);
70
71 /*
72 * Low level drivers may need that to know if they can schedule in
73 * their unblank() callback or not. So let's export it.
74 */
75 int oops_in_progress;
76 EXPORT_SYMBOL(oops_in_progress);
77
78 /*
79 * console_sem protects the console_drivers list, and also
80 * provides serialisation for access to the entire console
81 * driver system.
82 */
83 static DEFINE_SEMAPHORE(console_sem);
84 struct console *console_drivers;
85 EXPORT_SYMBOL_GPL(console_drivers);
86
87 #ifdef CONFIG_LOCKDEP
88 static struct lockdep_map console_lock_dep_map = {
89 .name = "console_lock"
90 };
91 #endif
92
93 enum devkmsg_log_bits {
94 __DEVKMSG_LOG_BIT_ON = 0,
95 __DEVKMSG_LOG_BIT_OFF,
96 __DEVKMSG_LOG_BIT_LOCK,
97 };
98
99 enum devkmsg_log_masks {
100 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
101 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
102 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
103 };
104
105 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
106 #define DEVKMSG_LOG_MASK_DEFAULT 0
107
108 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
109
__control_devkmsg(char * str)110 static int __control_devkmsg(char *str)
111 {
112 if (!str)
113 return -EINVAL;
114
115 if (!strncmp(str, "on", 2)) {
116 devkmsg_log = DEVKMSG_LOG_MASK_ON;
117 return 2;
118 } else if (!strncmp(str, "off", 3)) {
119 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
120 return 3;
121 } else if (!strncmp(str, "ratelimit", 9)) {
122 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
123 return 9;
124 }
125 return -EINVAL;
126 }
127
control_devkmsg(char * str)128 static int __init control_devkmsg(char *str)
129 {
130 if (__control_devkmsg(str) < 0)
131 return 1;
132
133 /*
134 * Set sysctl string accordingly:
135 */
136 if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
137 strcpy(devkmsg_log_str, "on");
138 else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
139 strcpy(devkmsg_log_str, "off");
140 /* else "ratelimit" which is set by default. */
141
142 /*
143 * Sysctl cannot change it anymore. The kernel command line setting of
144 * this parameter is to force the setting to be permanent throughout the
145 * runtime of the system. This is a precation measure against userspace
146 * trying to be a smarta** and attempting to change it up on us.
147 */
148 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
149
150 return 0;
151 }
152 __setup("printk.devkmsg=", control_devkmsg);
153
154 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
155
devkmsg_sysctl_set_loglvl(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)156 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
157 void __user *buffer, size_t *lenp, loff_t *ppos)
158 {
159 char old_str[DEVKMSG_STR_MAX_SIZE];
160 unsigned int old;
161 int err;
162
163 if (write) {
164 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
165 return -EINVAL;
166
167 old = devkmsg_log;
168 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
169 }
170
171 err = proc_dostring(table, write, buffer, lenp, ppos);
172 if (err)
173 return err;
174
175 if (write) {
176 err = __control_devkmsg(devkmsg_log_str);
177
178 /*
179 * Do not accept an unknown string OR a known string with
180 * trailing crap...
181 */
182 if (err < 0 || (err + 1 != *lenp)) {
183
184 /* ... and restore old setting. */
185 devkmsg_log = old;
186 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
187
188 return -EINVAL;
189 }
190 }
191
192 return 0;
193 }
194
195 /*
196 * Number of registered extended console drivers.
197 *
198 * If extended consoles are present, in-kernel cont reassembly is disabled
199 * and each fragment is stored as a separate log entry with proper
200 * continuation flag so that every emitted message has full metadata. This
201 * doesn't change the result for regular consoles or /proc/kmsg. For
202 * /dev/kmsg, as long as the reader concatenates messages according to
203 * consecutive continuation flags, the end result should be the same too.
204 */
205 static int nr_ext_console_drivers;
206
207 /*
208 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
209 * macros instead of functions so that _RET_IP_ contains useful information.
210 */
211 #define down_console_sem() do { \
212 down(&console_sem);\
213 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
214 } while (0)
215
__down_trylock_console_sem(unsigned long ip)216 static int __down_trylock_console_sem(unsigned long ip)
217 {
218 int lock_failed;
219 unsigned long flags;
220
221 /*
222 * Here and in __up_console_sem() we need to be in safe mode,
223 * because spindump/WARN/etc from under console ->lock will
224 * deadlock in printk()->down_trylock_console_sem() otherwise.
225 */
226 printk_safe_enter_irqsave(flags);
227 lock_failed = down_trylock(&console_sem);
228 printk_safe_exit_irqrestore(flags);
229
230 if (lock_failed)
231 return 1;
232 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
233 return 0;
234 }
235 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
236
__up_console_sem(unsigned long ip)237 static void __up_console_sem(unsigned long ip)
238 {
239 unsigned long flags;
240
241 mutex_release(&console_lock_dep_map, 1, ip);
242
243 printk_safe_enter_irqsave(flags);
244 up(&console_sem);
245 printk_safe_exit_irqrestore(flags);
246 }
247 #define up_console_sem() __up_console_sem(_RET_IP_)
248
249 /*
250 * This is used for debugging the mess that is the VT code by
251 * keeping track if we have the console semaphore held. It's
252 * definitely not the perfect debug tool (we don't know if _WE_
253 * hold it and are racing, but it helps tracking those weird code
254 * paths in the console code where we end up in places I want
255 * locked without the console sempahore held).
256 */
257 static int console_locked, console_suspended;
258
259 /*
260 * If exclusive_console is non-NULL then only this console is to be printed to.
261 */
262 static struct console *exclusive_console;
263
264 /*
265 * Array of consoles built from command line options (console=)
266 */
267
268 #define MAX_CMDLINECONSOLES 8
269
270 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
271
272 static int preferred_console = -1;
273 int console_set_on_cmdline;
274 EXPORT_SYMBOL(console_set_on_cmdline);
275
276 /* Flag: console code may call schedule() */
277 static int console_may_schedule;
278
279 enum con_msg_format_flags {
280 MSG_FORMAT_DEFAULT = 0,
281 MSG_FORMAT_SYSLOG = (1 << 0),
282 };
283
284 static int console_msg_format = MSG_FORMAT_DEFAULT;
285
286 /*
287 * The printk log buffer consists of a chain of concatenated variable
288 * length records. Every record starts with a record header, containing
289 * the overall length of the record.
290 *
291 * The heads to the first and last entry in the buffer, as well as the
292 * sequence numbers of these entries are maintained when messages are
293 * stored.
294 *
295 * If the heads indicate available messages, the length in the header
296 * tells the start next message. A length == 0 for the next message
297 * indicates a wrap-around to the beginning of the buffer.
298 *
299 * Every record carries the monotonic timestamp in microseconds, as well as
300 * the standard userspace syslog level and syslog facility. The usual
301 * kernel messages use LOG_KERN; userspace-injected messages always carry
302 * a matching syslog facility, by default LOG_USER. The origin of every
303 * message can be reliably determined that way.
304 *
305 * The human readable log message directly follows the message header. The
306 * length of the message text is stored in the header, the stored message
307 * is not terminated.
308 *
309 * Optionally, a message can carry a dictionary of properties (key/value pairs),
310 * to provide userspace with a machine-readable message context.
311 *
312 * Examples for well-defined, commonly used property names are:
313 * DEVICE=b12:8 device identifier
314 * b12:8 block dev_t
315 * c127:3 char dev_t
316 * n8 netdev ifindex
317 * +sound:card0 subsystem:devname
318 * SUBSYSTEM=pci driver-core subsystem name
319 *
320 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
321 * follows directly after a '=' character. Every property is terminated by
322 * a '\0' character. The last property is not terminated.
323 *
324 * Example of a message structure:
325 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
326 * 0008 34 00 record is 52 bytes long
327 * 000a 0b 00 text is 11 bytes long
328 * 000c 1f 00 dictionary is 23 bytes long
329 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
330 * 0010 69 74 27 73 20 61 20 6c "it's a l"
331 * 69 6e 65 "ine"
332 * 001b 44 45 56 49 43 "DEVIC"
333 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
334 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
335 * 67 "g"
336 * 0032 00 00 00 padding to next message header
337 *
338 * The 'struct printk_log' buffer header must never be directly exported to
339 * userspace, it is a kernel-private implementation detail that might
340 * need to be changed in the future, when the requirements change.
341 *
342 * /dev/kmsg exports the structured data in the following line format:
343 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
344 *
345 * Users of the export format should ignore possible additional values
346 * separated by ',', and find the message after the ';' character.
347 *
348 * The optional key/value pairs are attached as continuation lines starting
349 * with a space character and terminated by a newline. All possible
350 * non-prinatable characters are escaped in the "\xff" notation.
351 */
352
353 enum log_flags {
354 LOG_NEWLINE = 2, /* text ended with a newline */
355 LOG_PREFIX = 4, /* text started with a prefix */
356 LOG_CONT = 8, /* text is a fragment of a continuation line */
357 };
358
359 struct printk_log {
360 u64 ts_nsec; /* timestamp in nanoseconds */
361 u16 len; /* length of entire record */
362 u16 text_len; /* length of text buffer */
363 u16 dict_len; /* length of dictionary buffer */
364 u8 facility; /* syslog facility */
365 u8 flags:5; /* internal record flags */
366 u8 level:3; /* syslog level */
367 }
368 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
369 __packed __aligned(4)
370 #endif
371 ;
372
373 /*
374 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
375 * within the scheduler's rq lock. It must be released before calling
376 * console_unlock() or anything else that might wake up a process.
377 */
378 DEFINE_RAW_SPINLOCK(logbuf_lock);
379
380 /*
381 * Helper macros to lock/unlock logbuf_lock and switch between
382 * printk-safe/unsafe modes.
383 */
384 #define logbuf_lock_irq() \
385 do { \
386 printk_safe_enter_irq(); \
387 raw_spin_lock(&logbuf_lock); \
388 } while (0)
389
390 #define logbuf_unlock_irq() \
391 do { \
392 raw_spin_unlock(&logbuf_lock); \
393 printk_safe_exit_irq(); \
394 } while (0)
395
396 #define logbuf_lock_irqsave(flags) \
397 do { \
398 printk_safe_enter_irqsave(flags); \
399 raw_spin_lock(&logbuf_lock); \
400 } while (0)
401
402 #define logbuf_unlock_irqrestore(flags) \
403 do { \
404 raw_spin_unlock(&logbuf_lock); \
405 printk_safe_exit_irqrestore(flags); \
406 } while (0)
407
408 #ifdef CONFIG_PRINTK
409 DECLARE_WAIT_QUEUE_HEAD(log_wait);
410 /* the next printk record to read by syslog(READ) or /proc/kmsg */
411 static u64 syslog_seq;
412 static u32 syslog_idx;
413 static size_t syslog_partial;
414
415 /* index and sequence number of the first record stored in the buffer */
416 static u64 log_first_seq;
417 static u32 log_first_idx;
418
419 /* index and sequence number of the next record to store in the buffer */
420 static u64 log_next_seq;
421 static u32 log_next_idx;
422
423 /* the next printk record to write to the console */
424 static u64 console_seq;
425 static u32 console_idx;
426
427 /* the next printk record to read after the last 'clear' command */
428 static u64 clear_seq;
429 static u32 clear_idx;
430
431 #define PREFIX_MAX 32
432 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
433
434 #define LOG_LEVEL(v) ((v) & 0x07)
435 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
436
437 /* record buffer */
438 #define LOG_ALIGN __alignof__(struct printk_log)
439 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
440 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
441 static char *log_buf = __log_buf;
442 static u32 log_buf_len = __LOG_BUF_LEN;
443
444 /* Return log buffer address */
log_buf_addr_get(void)445 char *log_buf_addr_get(void)
446 {
447 return log_buf;
448 }
449
450 /* Return log buffer size */
log_buf_len_get(void)451 u32 log_buf_len_get(void)
452 {
453 return log_buf_len;
454 }
455
456 /* human readable text of the record */
log_text(const struct printk_log * msg)457 static char *log_text(const struct printk_log *msg)
458 {
459 return (char *)msg + sizeof(struct printk_log);
460 }
461
462 /* optional key/value pair dictionary attached to the record */
log_dict(const struct printk_log * msg)463 static char *log_dict(const struct printk_log *msg)
464 {
465 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
466 }
467
468 /* get record by index; idx must point to valid msg */
log_from_idx(u32 idx)469 static struct printk_log *log_from_idx(u32 idx)
470 {
471 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
472
473 /*
474 * A length == 0 record is the end of buffer marker. Wrap around and
475 * read the message at the start of the buffer.
476 */
477 if (!msg->len)
478 return (struct printk_log *)log_buf;
479 return msg;
480 }
481
482 /* get next record; idx must point to valid msg */
log_next(u32 idx)483 static u32 log_next(u32 idx)
484 {
485 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
486
487 /* length == 0 indicates the end of the buffer; wrap */
488 /*
489 * A length == 0 record is the end of buffer marker. Wrap around and
490 * read the message at the start of the buffer as *this* one, and
491 * return the one after that.
492 */
493 if (!msg->len) {
494 msg = (struct printk_log *)log_buf;
495 return msg->len;
496 }
497 return idx + msg->len;
498 }
499
500 /*
501 * Check whether there is enough free space for the given message.
502 *
503 * The same values of first_idx and next_idx mean that the buffer
504 * is either empty or full.
505 *
506 * If the buffer is empty, we must respect the position of the indexes.
507 * They cannot be reset to the beginning of the buffer.
508 */
logbuf_has_space(u32 msg_size,bool empty)509 static int logbuf_has_space(u32 msg_size, bool empty)
510 {
511 u32 free;
512
513 if (log_next_idx > log_first_idx || empty)
514 free = max(log_buf_len - log_next_idx, log_first_idx);
515 else
516 free = log_first_idx - log_next_idx;
517
518 /*
519 * We need space also for an empty header that signalizes wrapping
520 * of the buffer.
521 */
522 return free >= msg_size + sizeof(struct printk_log);
523 }
524
log_make_free_space(u32 msg_size)525 static int log_make_free_space(u32 msg_size)
526 {
527 while (log_first_seq < log_next_seq &&
528 !logbuf_has_space(msg_size, false)) {
529 /* drop old messages until we have enough contiguous space */
530 log_first_idx = log_next(log_first_idx);
531 log_first_seq++;
532 }
533
534 if (clear_seq < log_first_seq) {
535 clear_seq = log_first_seq;
536 clear_idx = log_first_idx;
537 }
538
539 /* sequence numbers are equal, so the log buffer is empty */
540 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
541 return 0;
542
543 return -ENOMEM;
544 }
545
546 /* compute the message size including the padding bytes */
msg_used_size(u16 text_len,u16 dict_len,u32 * pad_len)547 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
548 {
549 u32 size;
550
551 size = sizeof(struct printk_log) + text_len + dict_len;
552 *pad_len = (-size) & (LOG_ALIGN - 1);
553 size += *pad_len;
554
555 return size;
556 }
557
558 /*
559 * Define how much of the log buffer we could take at maximum. The value
560 * must be greater than two. Note that only half of the buffer is available
561 * when the index points to the middle.
562 */
563 #define MAX_LOG_TAKE_PART 4
564 static const char trunc_msg[] = "<truncated>";
565
truncate_msg(u16 * text_len,u16 * trunc_msg_len,u16 * dict_len,u32 * pad_len)566 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
567 u16 *dict_len, u32 *pad_len)
568 {
569 /*
570 * The message should not take the whole buffer. Otherwise, it might
571 * get removed too soon.
572 */
573 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
574 if (*text_len > max_text_len)
575 *text_len = max_text_len;
576 /* enable the warning message */
577 *trunc_msg_len = strlen(trunc_msg);
578 /* disable the "dict" completely */
579 *dict_len = 0;
580 /* compute the size again, count also the warning message */
581 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
582 }
583
584 /* insert record into the buffer, discard old ones, update heads */
log_store(int facility,int level,enum log_flags flags,u64 ts_nsec,const char * dict,u16 dict_len,const char * text,u16 text_len)585 static int log_store(int facility, int level,
586 enum log_flags flags, u64 ts_nsec,
587 const char *dict, u16 dict_len,
588 const char *text, u16 text_len)
589 {
590 struct printk_log *msg;
591 u32 size, pad_len;
592 u16 trunc_msg_len = 0;
593
594 /* number of '\0' padding bytes to next message */
595 size = msg_used_size(text_len, dict_len, &pad_len);
596
597 if (log_make_free_space(size)) {
598 /* truncate the message if it is too long for empty buffer */
599 size = truncate_msg(&text_len, &trunc_msg_len,
600 &dict_len, &pad_len);
601 /* survive when the log buffer is too small for trunc_msg */
602 if (log_make_free_space(size))
603 return 0;
604 }
605
606 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
607 /*
608 * This message + an additional empty header does not fit
609 * at the end of the buffer. Add an empty header with len == 0
610 * to signify a wrap around.
611 */
612 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
613 log_next_idx = 0;
614 }
615
616 /* fill message */
617 msg = (struct printk_log *)(log_buf + log_next_idx);
618 memcpy(log_text(msg), text, text_len);
619 msg->text_len = text_len;
620 if (trunc_msg_len) {
621 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
622 msg->text_len += trunc_msg_len;
623 }
624 memcpy(log_dict(msg), dict, dict_len);
625 msg->dict_len = dict_len;
626 msg->facility = facility;
627 msg->level = level & 7;
628 msg->flags = flags & 0x1f;
629 if (ts_nsec > 0)
630 msg->ts_nsec = ts_nsec;
631 else
632 msg->ts_nsec = local_clock();
633 memset(log_dict(msg) + dict_len, 0, pad_len);
634 msg->len = size;
635
636 /* insert message */
637 log_next_idx += msg->len;
638 log_next_seq++;
639
640 return msg->text_len;
641 }
642
643 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
644
syslog_action_restricted(int type)645 static int syslog_action_restricted(int type)
646 {
647 if (dmesg_restrict)
648 return 1;
649 /*
650 * Unless restricted, we allow "read all" and "get buffer size"
651 * for everybody.
652 */
653 return type != SYSLOG_ACTION_READ_ALL &&
654 type != SYSLOG_ACTION_SIZE_BUFFER;
655 }
656
check_syslog_permissions(int type,int source)657 static int check_syslog_permissions(int type, int source)
658 {
659 /*
660 * If this is from /proc/kmsg and we've already opened it, then we've
661 * already done the capabilities checks at open time.
662 */
663 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
664 goto ok;
665
666 if (syslog_action_restricted(type)) {
667 if (capable(CAP_SYSLOG))
668 goto ok;
669 /*
670 * For historical reasons, accept CAP_SYS_ADMIN too, with
671 * a warning.
672 */
673 if (capable(CAP_SYS_ADMIN)) {
674 pr_warn_once("%s (%d): Attempt to access syslog with "
675 "CAP_SYS_ADMIN but no CAP_SYSLOG "
676 "(deprecated).\n",
677 current->comm, task_pid_nr(current));
678 goto ok;
679 }
680 return -EPERM;
681 }
682 ok:
683 return security_syslog(type);
684 }
685
append_char(char ** pp,char * e,char c)686 static void append_char(char **pp, char *e, char c)
687 {
688 if (*pp < e)
689 *(*pp)++ = c;
690 }
691
msg_print_ext_header(char * buf,size_t size,struct printk_log * msg,u64 seq)692 static ssize_t msg_print_ext_header(char *buf, size_t size,
693 struct printk_log *msg, u64 seq)
694 {
695 u64 ts_usec = msg->ts_nsec;
696
697 do_div(ts_usec, 1000);
698
699 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
700 (msg->facility << 3) | msg->level, seq, ts_usec,
701 msg->flags & LOG_CONT ? 'c' : '-');
702 }
703
msg_print_ext_body(char * buf,size_t size,char * dict,size_t dict_len,char * text,size_t text_len)704 static ssize_t msg_print_ext_body(char *buf, size_t size,
705 char *dict, size_t dict_len,
706 char *text, size_t text_len)
707 {
708 char *p = buf, *e = buf + size;
709 size_t i;
710
711 /* escape non-printable characters */
712 for (i = 0; i < text_len; i++) {
713 unsigned char c = text[i];
714
715 if (c < ' ' || c >= 127 || c == '\\')
716 p += scnprintf(p, e - p, "\\x%02x", c);
717 else
718 append_char(&p, e, c);
719 }
720 append_char(&p, e, '\n');
721
722 if (dict_len) {
723 bool line = true;
724
725 for (i = 0; i < dict_len; i++) {
726 unsigned char c = dict[i];
727
728 if (line) {
729 append_char(&p, e, ' ');
730 line = false;
731 }
732
733 if (c == '\0') {
734 append_char(&p, e, '\n');
735 line = true;
736 continue;
737 }
738
739 if (c < ' ' || c >= 127 || c == '\\') {
740 p += scnprintf(p, e - p, "\\x%02x", c);
741 continue;
742 }
743
744 append_char(&p, e, c);
745 }
746 append_char(&p, e, '\n');
747 }
748
749 return p - buf;
750 }
751
752 /* /dev/kmsg - userspace message inject/listen interface */
753 struct devkmsg_user {
754 u64 seq;
755 u32 idx;
756 struct ratelimit_state rs;
757 struct mutex lock;
758 char buf[CONSOLE_EXT_LOG_MAX];
759 };
760
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)761 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
762 {
763 char *buf, *line;
764 int level = default_message_loglevel;
765 int facility = 1; /* LOG_USER */
766 struct file *file = iocb->ki_filp;
767 struct devkmsg_user *user = file->private_data;
768 size_t len = iov_iter_count(from);
769 ssize_t ret = len;
770
771 if (!user || len > LOG_LINE_MAX)
772 return -EINVAL;
773
774 /* Ignore when user logging is disabled. */
775 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
776 return len;
777
778 /* Ratelimit when not explicitly enabled. */
779 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
780 if (!___ratelimit(&user->rs, current->comm))
781 return ret;
782 }
783
784 buf = kmalloc(len+1, GFP_KERNEL);
785 if (buf == NULL)
786 return -ENOMEM;
787
788 buf[len] = '\0';
789 if (!copy_from_iter_full(buf, len, from)) {
790 kfree(buf);
791 return -EFAULT;
792 }
793
794 /*
795 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
796 * the decimal value represents 32bit, the lower 3 bit are the log
797 * level, the rest are the log facility.
798 *
799 * If no prefix or no userspace facility is specified, we
800 * enforce LOG_USER, to be able to reliably distinguish
801 * kernel-generated messages from userspace-injected ones.
802 */
803 line = buf;
804 if (line[0] == '<') {
805 char *endp = NULL;
806 unsigned int u;
807
808 u = simple_strtoul(line + 1, &endp, 10);
809 if (endp && endp[0] == '>') {
810 level = LOG_LEVEL(u);
811 if (LOG_FACILITY(u) != 0)
812 facility = LOG_FACILITY(u);
813 endp++;
814 len -= endp - line;
815 line = endp;
816 }
817 }
818
819 printk_emit(facility, level, NULL, 0, "%s", line);
820 kfree(buf);
821 return ret;
822 }
823
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)824 static ssize_t devkmsg_read(struct file *file, char __user *buf,
825 size_t count, loff_t *ppos)
826 {
827 struct devkmsg_user *user = file->private_data;
828 struct printk_log *msg;
829 size_t len;
830 ssize_t ret;
831
832 if (!user)
833 return -EBADF;
834
835 ret = mutex_lock_interruptible(&user->lock);
836 if (ret)
837 return ret;
838
839 logbuf_lock_irq();
840 while (user->seq == log_next_seq) {
841 if (file->f_flags & O_NONBLOCK) {
842 ret = -EAGAIN;
843 logbuf_unlock_irq();
844 goto out;
845 }
846
847 logbuf_unlock_irq();
848 ret = wait_event_interruptible(log_wait,
849 user->seq != log_next_seq);
850 if (ret)
851 goto out;
852 logbuf_lock_irq();
853 }
854
855 if (user->seq < log_first_seq) {
856 /* our last seen message is gone, return error and reset */
857 user->idx = log_first_idx;
858 user->seq = log_first_seq;
859 ret = -EPIPE;
860 logbuf_unlock_irq();
861 goto out;
862 }
863
864 msg = log_from_idx(user->idx);
865 len = msg_print_ext_header(user->buf, sizeof(user->buf),
866 msg, user->seq);
867 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
868 log_dict(msg), msg->dict_len,
869 log_text(msg), msg->text_len);
870
871 user->idx = log_next(user->idx);
872 user->seq++;
873 logbuf_unlock_irq();
874
875 if (len > count) {
876 ret = -EINVAL;
877 goto out;
878 }
879
880 if (copy_to_user(buf, user->buf, len)) {
881 ret = -EFAULT;
882 goto out;
883 }
884 ret = len;
885 out:
886 mutex_unlock(&user->lock);
887 return ret;
888 }
889
devkmsg_llseek(struct file * file,loff_t offset,int whence)890 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
891 {
892 struct devkmsg_user *user = file->private_data;
893 loff_t ret = 0;
894
895 if (!user)
896 return -EBADF;
897 if (offset)
898 return -ESPIPE;
899
900 logbuf_lock_irq();
901 switch (whence) {
902 case SEEK_SET:
903 /* the first record */
904 user->idx = log_first_idx;
905 user->seq = log_first_seq;
906 break;
907 case SEEK_DATA:
908 /*
909 * The first record after the last SYSLOG_ACTION_CLEAR,
910 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
911 * changes no global state, and does not clear anything.
912 */
913 user->idx = clear_idx;
914 user->seq = clear_seq;
915 break;
916 case SEEK_END:
917 /* after the last record */
918 user->idx = log_next_idx;
919 user->seq = log_next_seq;
920 break;
921 default:
922 ret = -EINVAL;
923 }
924 logbuf_unlock_irq();
925 return ret;
926 }
927
devkmsg_poll(struct file * file,poll_table * wait)928 static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
929 {
930 struct devkmsg_user *user = file->private_data;
931 __poll_t ret = 0;
932
933 if (!user)
934 return EPOLLERR|EPOLLNVAL;
935
936 poll_wait(file, &log_wait, wait);
937
938 logbuf_lock_irq();
939 if (user->seq < log_next_seq) {
940 /* return error when data has vanished underneath us */
941 if (user->seq < log_first_seq)
942 ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
943 else
944 ret = EPOLLIN|EPOLLRDNORM;
945 }
946 logbuf_unlock_irq();
947
948 return ret;
949 }
950
devkmsg_open(struct inode * inode,struct file * file)951 static int devkmsg_open(struct inode *inode, struct file *file)
952 {
953 struct devkmsg_user *user;
954 int err;
955
956 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
957 return -EPERM;
958
959 /* write-only does not need any file context */
960 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
961 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
962 SYSLOG_FROM_READER);
963 if (err)
964 return err;
965 }
966
967 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
968 if (!user)
969 return -ENOMEM;
970
971 ratelimit_default_init(&user->rs);
972 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
973
974 mutex_init(&user->lock);
975
976 logbuf_lock_irq();
977 user->idx = log_first_idx;
978 user->seq = log_first_seq;
979 logbuf_unlock_irq();
980
981 file->private_data = user;
982 return 0;
983 }
984
devkmsg_release(struct inode * inode,struct file * file)985 static int devkmsg_release(struct inode *inode, struct file *file)
986 {
987 struct devkmsg_user *user = file->private_data;
988
989 if (!user)
990 return 0;
991
992 ratelimit_state_exit(&user->rs);
993
994 mutex_destroy(&user->lock);
995 kfree(user);
996 return 0;
997 }
998
999 const struct file_operations kmsg_fops = {
1000 .open = devkmsg_open,
1001 .read = devkmsg_read,
1002 .write_iter = devkmsg_write,
1003 .llseek = devkmsg_llseek,
1004 .poll = devkmsg_poll,
1005 .release = devkmsg_release,
1006 };
1007
1008 #ifdef CONFIG_CRASH_CORE
1009 /*
1010 * This appends the listed symbols to /proc/vmcore
1011 *
1012 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1013 * obtain access to symbols that are otherwise very difficult to locate. These
1014 * symbols are specifically used so that utilities can access and extract the
1015 * dmesg log from a vmcore file after a crash.
1016 */
log_buf_vmcoreinfo_setup(void)1017 void log_buf_vmcoreinfo_setup(void)
1018 {
1019 VMCOREINFO_SYMBOL(log_buf);
1020 VMCOREINFO_SYMBOL(log_buf_len);
1021 VMCOREINFO_SYMBOL(log_first_idx);
1022 VMCOREINFO_SYMBOL(clear_idx);
1023 VMCOREINFO_SYMBOL(log_next_idx);
1024 /*
1025 * Export struct printk_log size and field offsets. User space tools can
1026 * parse it and detect any changes to structure down the line.
1027 */
1028 VMCOREINFO_STRUCT_SIZE(printk_log);
1029 VMCOREINFO_OFFSET(printk_log, ts_nsec);
1030 VMCOREINFO_OFFSET(printk_log, len);
1031 VMCOREINFO_OFFSET(printk_log, text_len);
1032 VMCOREINFO_OFFSET(printk_log, dict_len);
1033 }
1034 #endif
1035
1036 /* requested log_buf_len from kernel cmdline */
1037 static unsigned long __initdata new_log_buf_len;
1038
1039 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(unsigned size)1040 static void __init log_buf_len_update(unsigned size)
1041 {
1042 if (size)
1043 size = roundup_pow_of_two(size);
1044 if (size > log_buf_len)
1045 new_log_buf_len = size;
1046 }
1047
1048 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)1049 static int __init log_buf_len_setup(char *str)
1050 {
1051 unsigned size = memparse(str, &str);
1052
1053 log_buf_len_update(size);
1054
1055 return 0;
1056 }
1057 early_param("log_buf_len", log_buf_len_setup);
1058
1059 #ifdef CONFIG_SMP
1060 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1061
log_buf_add_cpu(void)1062 static void __init log_buf_add_cpu(void)
1063 {
1064 unsigned int cpu_extra;
1065
1066 /*
1067 * archs should set up cpu_possible_bits properly with
1068 * set_cpu_possible() after setup_arch() but just in
1069 * case lets ensure this is valid.
1070 */
1071 if (num_possible_cpus() == 1)
1072 return;
1073
1074 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1075
1076 /* by default this will only continue through for large > 64 CPUs */
1077 if (cpu_extra <= __LOG_BUF_LEN / 2)
1078 return;
1079
1080 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1081 __LOG_CPU_MAX_BUF_LEN);
1082 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1083 cpu_extra);
1084 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1085
1086 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1087 }
1088 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1089 static inline void log_buf_add_cpu(void) {}
1090 #endif /* CONFIG_SMP */
1091
setup_log_buf(int early)1092 void __init setup_log_buf(int early)
1093 {
1094 unsigned long flags;
1095 char *new_log_buf;
1096 int free;
1097
1098 if (log_buf != __log_buf)
1099 return;
1100
1101 if (!early && !new_log_buf_len)
1102 log_buf_add_cpu();
1103
1104 if (!new_log_buf_len)
1105 return;
1106
1107 if (early) {
1108 new_log_buf =
1109 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1110 } else {
1111 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1112 LOG_ALIGN);
1113 }
1114
1115 if (unlikely(!new_log_buf)) {
1116 pr_err("log_buf_len: %ld bytes not available\n",
1117 new_log_buf_len);
1118 return;
1119 }
1120
1121 logbuf_lock_irqsave(flags);
1122 log_buf_len = new_log_buf_len;
1123 log_buf = new_log_buf;
1124 new_log_buf_len = 0;
1125 free = __LOG_BUF_LEN - log_next_idx;
1126 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1127 logbuf_unlock_irqrestore(flags);
1128
1129 pr_info("log_buf_len: %d bytes\n", log_buf_len);
1130 pr_info("early log buf free: %d(%d%%)\n",
1131 free, (free * 100) / __LOG_BUF_LEN);
1132 }
1133
1134 static bool __read_mostly ignore_loglevel;
1135
ignore_loglevel_setup(char * str)1136 static int __init ignore_loglevel_setup(char *str)
1137 {
1138 ignore_loglevel = true;
1139 pr_info("debug: ignoring loglevel setting.\n");
1140
1141 return 0;
1142 }
1143
1144 early_param("ignore_loglevel", ignore_loglevel_setup);
1145 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1146 MODULE_PARM_DESC(ignore_loglevel,
1147 "ignore loglevel setting (prints all kernel messages to the console)");
1148
suppress_message_printing(int level)1149 static bool suppress_message_printing(int level)
1150 {
1151 return (level >= console_loglevel && !ignore_loglevel);
1152 }
1153
1154 #ifdef CONFIG_BOOT_PRINTK_DELAY
1155
1156 static int boot_delay; /* msecs delay after each printk during bootup */
1157 static unsigned long long loops_per_msec; /* based on boot_delay */
1158
boot_delay_setup(char * str)1159 static int __init boot_delay_setup(char *str)
1160 {
1161 unsigned long lpj;
1162
1163 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1164 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1165
1166 get_option(&str, &boot_delay);
1167 if (boot_delay > 10 * 1000)
1168 boot_delay = 0;
1169
1170 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1171 "HZ: %d, loops_per_msec: %llu\n",
1172 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1173 return 0;
1174 }
1175 early_param("boot_delay", boot_delay_setup);
1176
boot_delay_msec(int level)1177 static void boot_delay_msec(int level)
1178 {
1179 unsigned long long k;
1180 unsigned long timeout;
1181
1182 if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1183 || suppress_message_printing(level)) {
1184 return;
1185 }
1186
1187 k = (unsigned long long)loops_per_msec * boot_delay;
1188
1189 timeout = jiffies + msecs_to_jiffies(boot_delay);
1190 while (k) {
1191 k--;
1192 cpu_relax();
1193 /*
1194 * use (volatile) jiffies to prevent
1195 * compiler reduction; loop termination via jiffies
1196 * is secondary and may or may not happen.
1197 */
1198 if (time_after(jiffies, timeout))
1199 break;
1200 touch_nmi_watchdog();
1201 }
1202 }
1203 #else
boot_delay_msec(int level)1204 static inline void boot_delay_msec(int level)
1205 {
1206 }
1207 #endif
1208
1209 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1210 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1211
print_time(u64 ts,char * buf)1212 static size_t print_time(u64 ts, char *buf)
1213 {
1214 unsigned long rem_nsec;
1215
1216 if (!printk_time)
1217 return 0;
1218
1219 rem_nsec = do_div(ts, 1000000000);
1220
1221 if (!buf)
1222 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1223
1224 return sprintf(buf, "[%5lu.%06lu] ",
1225 (unsigned long)ts, rem_nsec / 1000);
1226 }
1227
print_prefix(const struct printk_log * msg,bool syslog,char * buf)1228 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1229 {
1230 size_t len = 0;
1231 unsigned int prefix = (msg->facility << 3) | msg->level;
1232
1233 if (syslog) {
1234 if (buf) {
1235 len += sprintf(buf, "<%u>", prefix);
1236 } else {
1237 len += 3;
1238 if (prefix > 999)
1239 len += 3;
1240 else if (prefix > 99)
1241 len += 2;
1242 else if (prefix > 9)
1243 len++;
1244 }
1245 }
1246
1247 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1248 return len;
1249 }
1250
msg_print_text(const struct printk_log * msg,bool syslog,char * buf,size_t size)1251 static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1252 {
1253 const char *text = log_text(msg);
1254 size_t text_size = msg->text_len;
1255 size_t len = 0;
1256
1257 do {
1258 const char *next = memchr(text, '\n', text_size);
1259 size_t text_len;
1260
1261 if (next) {
1262 text_len = next - text;
1263 next++;
1264 text_size -= next - text;
1265 } else {
1266 text_len = text_size;
1267 }
1268
1269 if (buf) {
1270 if (print_prefix(msg, syslog, NULL) +
1271 text_len + 1 >= size - len)
1272 break;
1273
1274 len += print_prefix(msg, syslog, buf + len);
1275 memcpy(buf + len, text, text_len);
1276 len += text_len;
1277 buf[len++] = '\n';
1278 } else {
1279 /* SYSLOG_ACTION_* buffer size only calculation */
1280 len += print_prefix(msg, syslog, NULL);
1281 len += text_len;
1282 len++;
1283 }
1284
1285 text = next;
1286 } while (text);
1287
1288 return len;
1289 }
1290
syslog_print(char __user * buf,int size)1291 static int syslog_print(char __user *buf, int size)
1292 {
1293 char *text;
1294 struct printk_log *msg;
1295 int len = 0;
1296
1297 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1298 if (!text)
1299 return -ENOMEM;
1300
1301 while (size > 0) {
1302 size_t n;
1303 size_t skip;
1304
1305 logbuf_lock_irq();
1306 if (syslog_seq < log_first_seq) {
1307 /* messages are gone, move to first one */
1308 syslog_seq = log_first_seq;
1309 syslog_idx = log_first_idx;
1310 syslog_partial = 0;
1311 }
1312 if (syslog_seq == log_next_seq) {
1313 logbuf_unlock_irq();
1314 break;
1315 }
1316
1317 skip = syslog_partial;
1318 msg = log_from_idx(syslog_idx);
1319 n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1320 if (n - syslog_partial <= size) {
1321 /* message fits into buffer, move forward */
1322 syslog_idx = log_next(syslog_idx);
1323 syslog_seq++;
1324 n -= syslog_partial;
1325 syslog_partial = 0;
1326 } else if (!len){
1327 /* partial read(), remember position */
1328 n = size;
1329 syslog_partial += n;
1330 } else
1331 n = 0;
1332 logbuf_unlock_irq();
1333
1334 if (!n)
1335 break;
1336
1337 if (copy_to_user(buf, text + skip, n)) {
1338 if (!len)
1339 len = -EFAULT;
1340 break;
1341 }
1342
1343 len += n;
1344 size -= n;
1345 buf += n;
1346 }
1347
1348 kfree(text);
1349 return len;
1350 }
1351
syslog_print_all(char __user * buf,int size,bool clear)1352 static int syslog_print_all(char __user *buf, int size, bool clear)
1353 {
1354 char *text;
1355 int len = 0;
1356 u64 next_seq;
1357 u64 seq;
1358 u32 idx;
1359
1360 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1361 if (!text)
1362 return -ENOMEM;
1363
1364 logbuf_lock_irq();
1365 /*
1366 * Find first record that fits, including all following records,
1367 * into the user-provided buffer for this dump.
1368 */
1369 seq = clear_seq;
1370 idx = clear_idx;
1371 while (seq < log_next_seq) {
1372 struct printk_log *msg = log_from_idx(idx);
1373
1374 len += msg_print_text(msg, true, NULL, 0);
1375 idx = log_next(idx);
1376 seq++;
1377 }
1378
1379 /* move first record forward until length fits into the buffer */
1380 seq = clear_seq;
1381 idx = clear_idx;
1382 while (len > size && seq < log_next_seq) {
1383 struct printk_log *msg = log_from_idx(idx);
1384
1385 len -= msg_print_text(msg, true, NULL, 0);
1386 idx = log_next(idx);
1387 seq++;
1388 }
1389
1390 /* last message fitting into this dump */
1391 next_seq = log_next_seq;
1392
1393 len = 0;
1394 while (len >= 0 && seq < next_seq) {
1395 struct printk_log *msg = log_from_idx(idx);
1396 int textlen;
1397
1398 textlen = msg_print_text(msg, true, text,
1399 LOG_LINE_MAX + PREFIX_MAX);
1400 if (textlen < 0) {
1401 len = textlen;
1402 break;
1403 }
1404 idx = log_next(idx);
1405 seq++;
1406
1407 logbuf_unlock_irq();
1408 if (copy_to_user(buf + len, text, textlen))
1409 len = -EFAULT;
1410 else
1411 len += textlen;
1412 logbuf_lock_irq();
1413
1414 if (seq < log_first_seq) {
1415 /* messages are gone, move to next one */
1416 seq = log_first_seq;
1417 idx = log_first_idx;
1418 }
1419 }
1420
1421 if (clear) {
1422 clear_seq = log_next_seq;
1423 clear_idx = log_next_idx;
1424 }
1425 logbuf_unlock_irq();
1426
1427 kfree(text);
1428 return len;
1429 }
1430
syslog_clear(void)1431 static void syslog_clear(void)
1432 {
1433 logbuf_lock_irq();
1434 clear_seq = log_next_seq;
1435 clear_idx = log_next_idx;
1436 logbuf_unlock_irq();
1437 }
1438
do_syslog(int type,char __user * buf,int len,int source)1439 int do_syslog(int type, char __user *buf, int len, int source)
1440 {
1441 bool clear = false;
1442 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1443 int error;
1444
1445 error = check_syslog_permissions(type, source);
1446 if (error)
1447 return error;
1448
1449 switch (type) {
1450 case SYSLOG_ACTION_CLOSE: /* Close log */
1451 break;
1452 case SYSLOG_ACTION_OPEN: /* Open log */
1453 break;
1454 case SYSLOG_ACTION_READ: /* Read from log */
1455 if (!buf || len < 0)
1456 return -EINVAL;
1457 if (!len)
1458 return 0;
1459 if (!access_ok(VERIFY_WRITE, buf, len))
1460 return -EFAULT;
1461 error = wait_event_interruptible(log_wait,
1462 syslog_seq != log_next_seq);
1463 if (error)
1464 return error;
1465 error = syslog_print(buf, len);
1466 break;
1467 /* Read/clear last kernel messages */
1468 case SYSLOG_ACTION_READ_CLEAR:
1469 clear = true;
1470 /* FALL THRU */
1471 /* Read last kernel messages */
1472 case SYSLOG_ACTION_READ_ALL:
1473 if (!buf || len < 0)
1474 return -EINVAL;
1475 if (!len)
1476 return 0;
1477 if (!access_ok(VERIFY_WRITE, buf, len))
1478 return -EFAULT;
1479 error = syslog_print_all(buf, len, clear);
1480 break;
1481 /* Clear ring buffer */
1482 case SYSLOG_ACTION_CLEAR:
1483 syslog_clear();
1484 break;
1485 /* Disable logging to console */
1486 case SYSLOG_ACTION_CONSOLE_OFF:
1487 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1488 saved_console_loglevel = console_loglevel;
1489 console_loglevel = minimum_console_loglevel;
1490 break;
1491 /* Enable logging to console */
1492 case SYSLOG_ACTION_CONSOLE_ON:
1493 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1494 console_loglevel = saved_console_loglevel;
1495 saved_console_loglevel = LOGLEVEL_DEFAULT;
1496 }
1497 break;
1498 /* Set level of messages printed to console */
1499 case SYSLOG_ACTION_CONSOLE_LEVEL:
1500 if (len < 1 || len > 8)
1501 return -EINVAL;
1502 if (len < minimum_console_loglevel)
1503 len = minimum_console_loglevel;
1504 console_loglevel = len;
1505 /* Implicitly re-enable logging to console */
1506 saved_console_loglevel = LOGLEVEL_DEFAULT;
1507 break;
1508 /* Number of chars in the log buffer */
1509 case SYSLOG_ACTION_SIZE_UNREAD:
1510 logbuf_lock_irq();
1511 if (syslog_seq < log_first_seq) {
1512 /* messages are gone, move to first one */
1513 syslog_seq = log_first_seq;
1514 syslog_idx = log_first_idx;
1515 syslog_partial = 0;
1516 }
1517 if (source == SYSLOG_FROM_PROC) {
1518 /*
1519 * Short-cut for poll(/"proc/kmsg") which simply checks
1520 * for pending data, not the size; return the count of
1521 * records, not the length.
1522 */
1523 error = log_next_seq - syslog_seq;
1524 } else {
1525 u64 seq = syslog_seq;
1526 u32 idx = syslog_idx;
1527
1528 while (seq < log_next_seq) {
1529 struct printk_log *msg = log_from_idx(idx);
1530
1531 error += msg_print_text(msg, true, NULL, 0);
1532 idx = log_next(idx);
1533 seq++;
1534 }
1535 error -= syslog_partial;
1536 }
1537 logbuf_unlock_irq();
1538 break;
1539 /* Size of the log buffer */
1540 case SYSLOG_ACTION_SIZE_BUFFER:
1541 error = log_buf_len;
1542 break;
1543 default:
1544 error = -EINVAL;
1545 break;
1546 }
1547
1548 return error;
1549 }
1550
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1551 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1552 {
1553 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1554 }
1555
1556 /*
1557 * Special console_lock variants that help to reduce the risk of soft-lockups.
1558 * They allow to pass console_lock to another printk() call using a busy wait.
1559 */
1560
1561 #ifdef CONFIG_LOCKDEP
1562 static struct lockdep_map console_owner_dep_map = {
1563 .name = "console_owner"
1564 };
1565 #endif
1566
1567 static DEFINE_RAW_SPINLOCK(console_owner_lock);
1568 static struct task_struct *console_owner;
1569 static bool console_waiter;
1570
1571 /**
1572 * console_lock_spinning_enable - mark beginning of code where another
1573 * thread might safely busy wait
1574 *
1575 * This basically converts console_lock into a spinlock. This marks
1576 * the section where the console_lock owner can not sleep, because
1577 * there may be a waiter spinning (like a spinlock). Also it must be
1578 * ready to hand over the lock at the end of the section.
1579 */
console_lock_spinning_enable(void)1580 static void console_lock_spinning_enable(void)
1581 {
1582 raw_spin_lock(&console_owner_lock);
1583 console_owner = current;
1584 raw_spin_unlock(&console_owner_lock);
1585
1586 /* The waiter may spin on us after setting console_owner */
1587 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1588 }
1589
1590 /**
1591 * console_lock_spinning_disable_and_check - mark end of code where another
1592 * thread was able to busy wait and check if there is a waiter
1593 *
1594 * This is called at the end of the section where spinning is allowed.
1595 * It has two functions. First, it is a signal that it is no longer
1596 * safe to start busy waiting for the lock. Second, it checks if
1597 * there is a busy waiter and passes the lock rights to her.
1598 *
1599 * Important: Callers lose the lock if there was a busy waiter.
1600 * They must not touch items synchronized by console_lock
1601 * in this case.
1602 *
1603 * Return: 1 if the lock rights were passed, 0 otherwise.
1604 */
console_lock_spinning_disable_and_check(void)1605 static int console_lock_spinning_disable_and_check(void)
1606 {
1607 int waiter;
1608
1609 raw_spin_lock(&console_owner_lock);
1610 waiter = READ_ONCE(console_waiter);
1611 console_owner = NULL;
1612 raw_spin_unlock(&console_owner_lock);
1613
1614 if (!waiter) {
1615 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1616 return 0;
1617 }
1618
1619 /* The waiter is now free to continue */
1620 WRITE_ONCE(console_waiter, false);
1621
1622 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1623
1624 /*
1625 * Hand off console_lock to waiter. The waiter will perform
1626 * the up(). After this, the waiter is the console_lock owner.
1627 */
1628 mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1629 return 1;
1630 }
1631
1632 /**
1633 * console_trylock_spinning - try to get console_lock by busy waiting
1634 *
1635 * This allows to busy wait for the console_lock when the current
1636 * owner is running in specially marked sections. It means that
1637 * the current owner is running and cannot reschedule until it
1638 * is ready to lose the lock.
1639 *
1640 * Return: 1 if we got the lock, 0 othrewise
1641 */
console_trylock_spinning(void)1642 static int console_trylock_spinning(void)
1643 {
1644 struct task_struct *owner = NULL;
1645 bool waiter;
1646 bool spin = false;
1647 unsigned long flags;
1648
1649 if (console_trylock())
1650 return 1;
1651
1652 printk_safe_enter_irqsave(flags);
1653
1654 raw_spin_lock(&console_owner_lock);
1655 owner = READ_ONCE(console_owner);
1656 waiter = READ_ONCE(console_waiter);
1657 if (!waiter && owner && owner != current) {
1658 WRITE_ONCE(console_waiter, true);
1659 spin = true;
1660 }
1661 raw_spin_unlock(&console_owner_lock);
1662
1663 /*
1664 * If there is an active printk() writing to the
1665 * consoles, instead of having it write our data too,
1666 * see if we can offload that load from the active
1667 * printer, and do some printing ourselves.
1668 * Go into a spin only if there isn't already a waiter
1669 * spinning, and there is an active printer, and
1670 * that active printer isn't us (recursive printk?).
1671 */
1672 if (!spin) {
1673 printk_safe_exit_irqrestore(flags);
1674 return 0;
1675 }
1676
1677 /* We spin waiting for the owner to release us */
1678 spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1679 /* Owner will clear console_waiter on hand off */
1680 while (READ_ONCE(console_waiter))
1681 cpu_relax();
1682 spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1683
1684 printk_safe_exit_irqrestore(flags);
1685 /*
1686 * The owner passed the console lock to us.
1687 * Since we did not spin on console lock, annotate
1688 * this as a trylock. Otherwise lockdep will
1689 * complain.
1690 */
1691 mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1692
1693 return 1;
1694 }
1695
1696 /*
1697 * Call the console drivers, asking them to write out
1698 * log_buf[start] to log_buf[end - 1].
1699 * The console_lock must be held.
1700 */
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)1701 static void call_console_drivers(const char *ext_text, size_t ext_len,
1702 const char *text, size_t len)
1703 {
1704 struct console *con;
1705
1706 trace_console_rcuidle(text, len);
1707
1708 if (!console_drivers)
1709 return;
1710
1711 for_each_console(con) {
1712 if (exclusive_console && con != exclusive_console)
1713 continue;
1714 if (!(con->flags & CON_ENABLED))
1715 continue;
1716 if (!con->write)
1717 continue;
1718 if (!cpu_online(smp_processor_id()) &&
1719 !(con->flags & CON_ANYTIME))
1720 continue;
1721 if (con->flags & CON_EXTENDED)
1722 con->write(con, ext_text, ext_len);
1723 else
1724 con->write(con, text, len);
1725 }
1726 }
1727
1728 int printk_delay_msec __read_mostly;
1729
printk_delay(void)1730 static inline void printk_delay(void)
1731 {
1732 if (unlikely(printk_delay_msec)) {
1733 int m = printk_delay_msec;
1734
1735 while (m--) {
1736 mdelay(1);
1737 touch_nmi_watchdog();
1738 }
1739 }
1740 }
1741
1742 /*
1743 * Continuation lines are buffered, and not committed to the record buffer
1744 * until the line is complete, or a race forces it. The line fragments
1745 * though, are printed immediately to the consoles to ensure everything has
1746 * reached the console in case of a kernel crash.
1747 */
1748 static struct cont {
1749 char buf[LOG_LINE_MAX];
1750 size_t len; /* length == 0 means unused buffer */
1751 struct task_struct *owner; /* task of first print*/
1752 u64 ts_nsec; /* time of first print */
1753 u8 level; /* log level of first message */
1754 u8 facility; /* log facility of first message */
1755 enum log_flags flags; /* prefix, newline flags */
1756 } cont;
1757
cont_flush(void)1758 static void cont_flush(void)
1759 {
1760 if (cont.len == 0)
1761 return;
1762
1763 log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1764 NULL, 0, cont.buf, cont.len);
1765 cont.len = 0;
1766 }
1767
cont_add(int facility,int level,enum log_flags flags,const char * text,size_t len)1768 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1769 {
1770 /*
1771 * If ext consoles are present, flush and skip in-kernel
1772 * continuation. See nr_ext_console_drivers definition. Also, if
1773 * the line gets too long, split it up in separate records.
1774 */
1775 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1776 cont_flush();
1777 return false;
1778 }
1779
1780 if (!cont.len) {
1781 cont.facility = facility;
1782 cont.level = level;
1783 cont.owner = current;
1784 cont.ts_nsec = local_clock();
1785 cont.flags = flags;
1786 }
1787
1788 memcpy(cont.buf + cont.len, text, len);
1789 cont.len += len;
1790
1791 // The original flags come from the first line,
1792 // but later continuations can add a newline.
1793 if (flags & LOG_NEWLINE) {
1794 cont.flags |= LOG_NEWLINE;
1795 cont_flush();
1796 }
1797
1798 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1799 cont_flush();
1800
1801 return true;
1802 }
1803
log_output(int facility,int level,enum log_flags lflags,const char * dict,size_t dictlen,char * text,size_t text_len)1804 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1805 {
1806 /*
1807 * If an earlier line was buffered, and we're a continuation
1808 * write from the same process, try to add it to the buffer.
1809 */
1810 if (cont.len) {
1811 if (cont.owner == current && (lflags & LOG_CONT)) {
1812 if (cont_add(facility, level, lflags, text, text_len))
1813 return text_len;
1814 }
1815 /* Otherwise, make sure it's flushed */
1816 cont_flush();
1817 }
1818
1819 /* Skip empty continuation lines that couldn't be added - they just flush */
1820 if (!text_len && (lflags & LOG_CONT))
1821 return 0;
1822
1823 /* If it doesn't end in a newline, try to buffer the current line */
1824 if (!(lflags & LOG_NEWLINE)) {
1825 if (cont_add(facility, level, lflags, text, text_len))
1826 return text_len;
1827 }
1828
1829 /* Store it in the record log */
1830 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1831 }
1832
1833 /* Must be called under logbuf_lock. */
vprintk_store(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1834 int vprintk_store(int facility, int level,
1835 const char *dict, size_t dictlen,
1836 const char *fmt, va_list args)
1837 {
1838 static char textbuf[LOG_LINE_MAX];
1839 char *text = textbuf;
1840 size_t text_len;
1841 enum log_flags lflags = 0;
1842
1843 /*
1844 * The printf needs to come first; we need the syslog
1845 * prefix which might be passed-in as a parameter.
1846 */
1847 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1848
1849 /* mark and strip a trailing newline */
1850 if (text_len && text[text_len-1] == '\n') {
1851 text_len--;
1852 lflags |= LOG_NEWLINE;
1853 }
1854
1855 /* strip kernel syslog prefix and extract log level or control flags */
1856 if (facility == 0) {
1857 int kern_level;
1858
1859 while ((kern_level = printk_get_level(text)) != 0) {
1860 switch (kern_level) {
1861 case '0' ... '7':
1862 if (level == LOGLEVEL_DEFAULT)
1863 level = kern_level - '0';
1864 /* fallthrough */
1865 case 'd': /* KERN_DEFAULT */
1866 lflags |= LOG_PREFIX;
1867 break;
1868 case 'c': /* KERN_CONT */
1869 lflags |= LOG_CONT;
1870 }
1871
1872 text_len -= 2;
1873 text += 2;
1874 }
1875 }
1876
1877 if (level == LOGLEVEL_DEFAULT)
1878 level = default_message_loglevel;
1879
1880 if (dict)
1881 lflags |= LOG_PREFIX|LOG_NEWLINE;
1882
1883 return log_output(facility, level, lflags,
1884 dict, dictlen, text, text_len);
1885 }
1886
vprintk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1887 asmlinkage int vprintk_emit(int facility, int level,
1888 const char *dict, size_t dictlen,
1889 const char *fmt, va_list args)
1890 {
1891 int printed_len;
1892 bool in_sched = false;
1893 unsigned long flags;
1894
1895 if (level == LOGLEVEL_SCHED) {
1896 level = LOGLEVEL_DEFAULT;
1897 in_sched = true;
1898 }
1899
1900 boot_delay_msec(level);
1901 printk_delay();
1902
1903 /* This stops the holder of console_sem just where we want him */
1904 logbuf_lock_irqsave(flags);
1905 printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1906 logbuf_unlock_irqrestore(flags);
1907
1908 /* If called from the scheduler, we can not call up(). */
1909 if (!in_sched) {
1910 /*
1911 * Disable preemption to avoid being preempted while holding
1912 * console_sem which would prevent anyone from printing to
1913 * console
1914 */
1915 preempt_disable();
1916 /*
1917 * Try to acquire and then immediately release the console
1918 * semaphore. The release will print out buffers and wake up
1919 * /dev/kmsg and syslog() users.
1920 */
1921 if (console_trylock_spinning())
1922 console_unlock();
1923 preempt_enable();
1924 }
1925
1926 wake_up_klogd();
1927 return printed_len;
1928 }
1929 EXPORT_SYMBOL(vprintk_emit);
1930
vprintk(const char * fmt,va_list args)1931 asmlinkage int vprintk(const char *fmt, va_list args)
1932 {
1933 return vprintk_func(fmt, args);
1934 }
1935 EXPORT_SYMBOL(vprintk);
1936
printk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,...)1937 asmlinkage int printk_emit(int facility, int level,
1938 const char *dict, size_t dictlen,
1939 const char *fmt, ...)
1940 {
1941 va_list args;
1942 int r;
1943
1944 va_start(args, fmt);
1945 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1946 va_end(args);
1947
1948 return r;
1949 }
1950 EXPORT_SYMBOL(printk_emit);
1951
vprintk_default(const char * fmt,va_list args)1952 int vprintk_default(const char *fmt, va_list args)
1953 {
1954 int r;
1955
1956 #ifdef CONFIG_KGDB_KDB
1957 /* Allow to pass printk() to kdb but avoid a recursion. */
1958 if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1959 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1960 return r;
1961 }
1962 #endif
1963 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1964
1965 return r;
1966 }
1967 EXPORT_SYMBOL_GPL(vprintk_default);
1968
1969 /**
1970 * printk - print a kernel message
1971 * @fmt: format string
1972 *
1973 * This is printk(). It can be called from any context. We want it to work.
1974 *
1975 * We try to grab the console_lock. If we succeed, it's easy - we log the
1976 * output and call the console drivers. If we fail to get the semaphore, we
1977 * place the output into the log buffer and return. The current holder of
1978 * the console_sem will notice the new output in console_unlock(); and will
1979 * send it to the consoles before releasing the lock.
1980 *
1981 * One effect of this deferred printing is that code which calls printk() and
1982 * then changes console_loglevel may break. This is because console_loglevel
1983 * is inspected when the actual printing occurs.
1984 *
1985 * See also:
1986 * printf(3)
1987 *
1988 * See the vsnprintf() documentation for format string extensions over C99.
1989 */
printk(const char * fmt,...)1990 asmlinkage __visible int printk(const char *fmt, ...)
1991 {
1992 va_list args;
1993 int r;
1994
1995 va_start(args, fmt);
1996 r = vprintk_func(fmt, args);
1997 va_end(args);
1998
1999 return r;
2000 }
2001 EXPORT_SYMBOL(printk);
2002
2003 #else /* CONFIG_PRINTK */
2004
2005 #define LOG_LINE_MAX 0
2006 #define PREFIX_MAX 0
2007
2008 static u64 syslog_seq;
2009 static u32 syslog_idx;
2010 static u64 console_seq;
2011 static u32 console_idx;
2012 static u64 log_first_seq;
2013 static u32 log_first_idx;
2014 static u64 log_next_seq;
log_text(const struct printk_log * msg)2015 static char *log_text(const struct printk_log *msg) { return NULL; }
log_dict(const struct printk_log * msg)2016 static char *log_dict(const struct printk_log *msg) { return NULL; }
log_from_idx(u32 idx)2017 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
log_next(u32 idx)2018 static u32 log_next(u32 idx) { return 0; }
msg_print_ext_header(char * buf,size_t size,struct printk_log * msg,u64 seq)2019 static ssize_t msg_print_ext_header(char *buf, size_t size,
2020 struct printk_log *msg,
2021 u64 seq) { return 0; }
msg_print_ext_body(char * buf,size_t size,char * dict,size_t dict_len,char * text,size_t text_len)2022 static ssize_t msg_print_ext_body(char *buf, size_t size,
2023 char *dict, size_t dict_len,
2024 char *text, size_t text_len) { return 0; }
console_lock_spinning_enable(void)2025 static void console_lock_spinning_enable(void) { }
console_lock_spinning_disable_and_check(void)2026 static int console_lock_spinning_disable_and_check(void) { return 0; }
call_console_drivers(const char * ext_text,size_t ext_len,const char * text,size_t len)2027 static void call_console_drivers(const char *ext_text, size_t ext_len,
2028 const char *text, size_t len) {}
msg_print_text(const struct printk_log * msg,bool syslog,char * buf,size_t size)2029 static size_t msg_print_text(const struct printk_log *msg,
2030 bool syslog, char *buf, size_t size) { return 0; }
suppress_message_printing(int level)2031 static bool suppress_message_printing(int level) { return false; }
2032
2033 #endif /* CONFIG_PRINTK */
2034
2035 #ifdef CONFIG_EARLY_PRINTK
2036 struct console *early_console;
2037
early_printk(const char * fmt,...)2038 asmlinkage __visible void early_printk(const char *fmt, ...)
2039 {
2040 va_list ap;
2041 char buf[512];
2042 int n;
2043
2044 if (!early_console)
2045 return;
2046
2047 va_start(ap, fmt);
2048 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2049 va_end(ap);
2050
2051 early_console->write(early_console, buf, n);
2052 }
2053 #endif
2054
__add_preferred_console(char * name,int idx,char * options,char * brl_options)2055 static int __add_preferred_console(char *name, int idx, char *options,
2056 char *brl_options)
2057 {
2058 struct console_cmdline *c;
2059 int i;
2060
2061 /*
2062 * See if this tty is not yet registered, and
2063 * if we have a slot free.
2064 */
2065 for (i = 0, c = console_cmdline;
2066 i < MAX_CMDLINECONSOLES && c->name[0];
2067 i++, c++) {
2068 if (strcmp(c->name, name) == 0 && c->index == idx) {
2069 if (!brl_options)
2070 preferred_console = i;
2071 return 0;
2072 }
2073 }
2074 if (i == MAX_CMDLINECONSOLES)
2075 return -E2BIG;
2076 if (!brl_options)
2077 preferred_console = i;
2078 strlcpy(c->name, name, sizeof(c->name));
2079 c->options = options;
2080 braille_set_options(c, brl_options);
2081
2082 c->index = idx;
2083 return 0;
2084 }
2085
console_msg_format_setup(char * str)2086 static int __init console_msg_format_setup(char *str)
2087 {
2088 if (!strcmp(str, "syslog"))
2089 console_msg_format = MSG_FORMAT_SYSLOG;
2090 if (!strcmp(str, "default"))
2091 console_msg_format = MSG_FORMAT_DEFAULT;
2092 return 1;
2093 }
2094 __setup("console_msg_format=", console_msg_format_setup);
2095
2096 /*
2097 * Set up a console. Called via do_early_param() in init/main.c
2098 * for each "console=" parameter in the boot command line.
2099 */
console_setup(char * str)2100 static int __init console_setup(char *str)
2101 {
2102 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2103 char *s, *options, *brl_options = NULL;
2104 int idx;
2105
2106 if (_braille_console_setup(&str, &brl_options))
2107 return 1;
2108
2109 /*
2110 * Decode str into name, index, options.
2111 */
2112 if (str[0] >= '0' && str[0] <= '9') {
2113 strcpy(buf, "ttyS");
2114 strncpy(buf + 4, str, sizeof(buf) - 5);
2115 } else {
2116 strncpy(buf, str, sizeof(buf) - 1);
2117 }
2118 buf[sizeof(buf) - 1] = 0;
2119 options = strchr(str, ',');
2120 if (options)
2121 *(options++) = 0;
2122 #ifdef __sparc__
2123 if (!strcmp(str, "ttya"))
2124 strcpy(buf, "ttyS0");
2125 if (!strcmp(str, "ttyb"))
2126 strcpy(buf, "ttyS1");
2127 #endif
2128 for (s = buf; *s; s++)
2129 if (isdigit(*s) || *s == ',')
2130 break;
2131 idx = simple_strtoul(s, NULL, 10);
2132 *s = 0;
2133
2134 __add_preferred_console(buf, idx, options, brl_options);
2135 console_set_on_cmdline = 1;
2136 return 1;
2137 }
2138 __setup("console=", console_setup);
2139
2140 /**
2141 * add_preferred_console - add a device to the list of preferred consoles.
2142 * @name: device name
2143 * @idx: device index
2144 * @options: options for this console
2145 *
2146 * The last preferred console added will be used for kernel messages
2147 * and stdin/out/err for init. Normally this is used by console_setup
2148 * above to handle user-supplied console arguments; however it can also
2149 * be used by arch-specific code either to override the user or more
2150 * commonly to provide a default console (ie from PROM variables) when
2151 * the user has not supplied one.
2152 */
add_preferred_console(char * name,int idx,char * options)2153 int add_preferred_console(char *name, int idx, char *options)
2154 {
2155 return __add_preferred_console(name, idx, options, NULL);
2156 }
2157
2158 bool console_suspend_enabled = true;
2159 EXPORT_SYMBOL(console_suspend_enabled);
2160
console_suspend_disable(char * str)2161 static int __init console_suspend_disable(char *str)
2162 {
2163 console_suspend_enabled = false;
2164 return 1;
2165 }
2166 __setup("no_console_suspend", console_suspend_disable);
2167 module_param_named(console_suspend, console_suspend_enabled,
2168 bool, S_IRUGO | S_IWUSR);
2169 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2170 " and hibernate operations");
2171
2172 /**
2173 * suspend_console - suspend the console subsystem
2174 *
2175 * This disables printk() while we go into suspend states
2176 */
suspend_console(void)2177 void suspend_console(void)
2178 {
2179 if (!console_suspend_enabled)
2180 return;
2181 pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2182 console_lock();
2183 console_suspended = 1;
2184 up_console_sem();
2185 }
2186
resume_console(void)2187 void resume_console(void)
2188 {
2189 if (!console_suspend_enabled)
2190 return;
2191 down_console_sem();
2192 console_suspended = 0;
2193 console_unlock();
2194 }
2195
2196 /**
2197 * console_cpu_notify - print deferred console messages after CPU hotplug
2198 * @cpu: unused
2199 *
2200 * If printk() is called from a CPU that is not online yet, the messages
2201 * will be printed on the console only if there are CON_ANYTIME consoles.
2202 * This function is called when a new CPU comes online (or fails to come
2203 * up) or goes offline.
2204 */
console_cpu_notify(unsigned int cpu)2205 static int console_cpu_notify(unsigned int cpu)
2206 {
2207 if (!cpuhp_tasks_frozen) {
2208 /* If trylock fails, someone else is doing the printing */
2209 if (console_trylock())
2210 console_unlock();
2211 }
2212 return 0;
2213 }
2214
2215 /**
2216 * console_lock - lock the console system for exclusive use.
2217 *
2218 * Acquires a lock which guarantees that the caller has
2219 * exclusive access to the console system and the console_drivers list.
2220 *
2221 * Can sleep, returns nothing.
2222 */
console_lock(void)2223 void console_lock(void)
2224 {
2225 might_sleep();
2226
2227 down_console_sem();
2228 if (console_suspended)
2229 return;
2230 console_locked = 1;
2231 console_may_schedule = 1;
2232 }
2233 EXPORT_SYMBOL(console_lock);
2234
2235 /**
2236 * console_trylock - try to lock the console system for exclusive use.
2237 *
2238 * Try to acquire a lock which guarantees that the caller has exclusive
2239 * access to the console system and the console_drivers list.
2240 *
2241 * returns 1 on success, and 0 on failure to acquire the lock.
2242 */
console_trylock(void)2243 int console_trylock(void)
2244 {
2245 if (down_trylock_console_sem())
2246 return 0;
2247 if (console_suspended) {
2248 up_console_sem();
2249 return 0;
2250 }
2251 console_locked = 1;
2252 console_may_schedule = 0;
2253 return 1;
2254 }
2255 EXPORT_SYMBOL(console_trylock);
2256
is_console_locked(void)2257 int is_console_locked(void)
2258 {
2259 return console_locked;
2260 }
2261 EXPORT_SYMBOL(is_console_locked);
2262
2263 /*
2264 * Check if we have any console that is capable of printing while cpu is
2265 * booting or shutting down. Requires console_sem.
2266 */
have_callable_console(void)2267 static int have_callable_console(void)
2268 {
2269 struct console *con;
2270
2271 for_each_console(con)
2272 if ((con->flags & CON_ENABLED) &&
2273 (con->flags & CON_ANYTIME))
2274 return 1;
2275
2276 return 0;
2277 }
2278
2279 /*
2280 * Can we actually use the console at this time on this cpu?
2281 *
2282 * Console drivers may assume that per-cpu resources have been allocated. So
2283 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2284 * call them until this CPU is officially up.
2285 */
can_use_console(void)2286 static inline int can_use_console(void)
2287 {
2288 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2289 }
2290
2291 /**
2292 * console_unlock - unlock the console system
2293 *
2294 * Releases the console_lock which the caller holds on the console system
2295 * and the console driver list.
2296 *
2297 * While the console_lock was held, console output may have been buffered
2298 * by printk(). If this is the case, console_unlock(); emits
2299 * the output prior to releasing the lock.
2300 *
2301 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2302 *
2303 * console_unlock(); may be called from any context.
2304 */
console_unlock(void)2305 void console_unlock(void)
2306 {
2307 static char ext_text[CONSOLE_EXT_LOG_MAX];
2308 static char text[LOG_LINE_MAX + PREFIX_MAX];
2309 unsigned long flags;
2310 bool do_cond_resched, retry;
2311
2312 if (console_suspended) {
2313 up_console_sem();
2314 return;
2315 }
2316
2317 /*
2318 * Console drivers are called with interrupts disabled, so
2319 * @console_may_schedule should be cleared before; however, we may
2320 * end up dumping a lot of lines, for example, if called from
2321 * console registration path, and should invoke cond_resched()
2322 * between lines if allowable. Not doing so can cause a very long
2323 * scheduling stall on a slow console leading to RCU stall and
2324 * softlockup warnings which exacerbate the issue with more
2325 * messages practically incapacitating the system.
2326 *
2327 * console_trylock() is not able to detect the preemptive
2328 * context reliably. Therefore the value must be stored before
2329 * and cleared after the the "again" goto label.
2330 */
2331 do_cond_resched = console_may_schedule;
2332 again:
2333 console_may_schedule = 0;
2334
2335 /*
2336 * We released the console_sem lock, so we need to recheck if
2337 * cpu is online and (if not) is there at least one CON_ANYTIME
2338 * console.
2339 */
2340 if (!can_use_console()) {
2341 console_locked = 0;
2342 up_console_sem();
2343 return;
2344 }
2345
2346 for (;;) {
2347 struct printk_log *msg;
2348 size_t ext_len = 0;
2349 size_t len;
2350
2351 printk_safe_enter_irqsave(flags);
2352 raw_spin_lock(&logbuf_lock);
2353 if (console_seq < log_first_seq) {
2354 len = sprintf(text, "** %u printk messages dropped **\n",
2355 (unsigned)(log_first_seq - console_seq));
2356
2357 /* messages are gone, move to first one */
2358 console_seq = log_first_seq;
2359 console_idx = log_first_idx;
2360 } else {
2361 len = 0;
2362 }
2363 skip:
2364 if (console_seq == log_next_seq)
2365 break;
2366
2367 msg = log_from_idx(console_idx);
2368 if (suppress_message_printing(msg->level)) {
2369 /*
2370 * Skip record we have buffered and already printed
2371 * directly to the console when we received it, and
2372 * record that has level above the console loglevel.
2373 */
2374 console_idx = log_next(console_idx);
2375 console_seq++;
2376 goto skip;
2377 }
2378
2379 len += msg_print_text(msg,
2380 console_msg_format & MSG_FORMAT_SYSLOG,
2381 text + len,
2382 sizeof(text) - len);
2383 if (nr_ext_console_drivers) {
2384 ext_len = msg_print_ext_header(ext_text,
2385 sizeof(ext_text),
2386 msg, console_seq);
2387 ext_len += msg_print_ext_body(ext_text + ext_len,
2388 sizeof(ext_text) - ext_len,
2389 log_dict(msg), msg->dict_len,
2390 log_text(msg), msg->text_len);
2391 }
2392 console_idx = log_next(console_idx);
2393 console_seq++;
2394 raw_spin_unlock(&logbuf_lock);
2395
2396 /*
2397 * While actively printing out messages, if another printk()
2398 * were to occur on another CPU, it may wait for this one to
2399 * finish. This task can not be preempted if there is a
2400 * waiter waiting to take over.
2401 */
2402 console_lock_spinning_enable();
2403
2404 stop_critical_timings(); /* don't trace print latency */
2405 call_console_drivers(ext_text, ext_len, text, len);
2406 start_critical_timings();
2407
2408 if (console_lock_spinning_disable_and_check()) {
2409 printk_safe_exit_irqrestore(flags);
2410 return;
2411 }
2412
2413 printk_safe_exit_irqrestore(flags);
2414
2415 if (do_cond_resched)
2416 cond_resched();
2417 }
2418
2419 console_locked = 0;
2420
2421 /* Release the exclusive_console once it is used */
2422 if (unlikely(exclusive_console))
2423 exclusive_console = NULL;
2424
2425 raw_spin_unlock(&logbuf_lock);
2426
2427 up_console_sem();
2428
2429 /*
2430 * Someone could have filled up the buffer again, so re-check if there's
2431 * something to flush. In case we cannot trylock the console_sem again,
2432 * there's a new owner and the console_unlock() from them will do the
2433 * flush, no worries.
2434 */
2435 raw_spin_lock(&logbuf_lock);
2436 retry = console_seq != log_next_seq;
2437 raw_spin_unlock(&logbuf_lock);
2438 printk_safe_exit_irqrestore(flags);
2439
2440 if (retry && console_trylock())
2441 goto again;
2442 }
2443 EXPORT_SYMBOL(console_unlock);
2444
2445 /**
2446 * console_conditional_schedule - yield the CPU if required
2447 *
2448 * If the console code is currently allowed to sleep, and
2449 * if this CPU should yield the CPU to another task, do
2450 * so here.
2451 *
2452 * Must be called within console_lock();.
2453 */
console_conditional_schedule(void)2454 void __sched console_conditional_schedule(void)
2455 {
2456 if (console_may_schedule)
2457 cond_resched();
2458 }
2459 EXPORT_SYMBOL(console_conditional_schedule);
2460
console_unblank(void)2461 void console_unblank(void)
2462 {
2463 struct console *c;
2464
2465 /*
2466 * console_unblank can no longer be called in interrupt context unless
2467 * oops_in_progress is set to 1..
2468 */
2469 if (oops_in_progress) {
2470 if (down_trylock_console_sem() != 0)
2471 return;
2472 } else
2473 console_lock();
2474
2475 console_locked = 1;
2476 console_may_schedule = 0;
2477 for_each_console(c)
2478 if ((c->flags & CON_ENABLED) && c->unblank)
2479 c->unblank();
2480 console_unlock();
2481 }
2482
2483 /**
2484 * console_flush_on_panic - flush console content on panic
2485 *
2486 * Immediately output all pending messages no matter what.
2487 */
console_flush_on_panic(void)2488 void console_flush_on_panic(void)
2489 {
2490 /*
2491 * If someone else is holding the console lock, trylock will fail
2492 * and may_schedule may be set. Ignore and proceed to unlock so
2493 * that messages are flushed out. As this can be called from any
2494 * context and we don't want to get preempted while flushing,
2495 * ensure may_schedule is cleared.
2496 */
2497 console_trylock();
2498 console_may_schedule = 0;
2499 console_unlock();
2500 }
2501
2502 /*
2503 * Return the console tty driver structure and its associated index
2504 */
console_device(int * index)2505 struct tty_driver *console_device(int *index)
2506 {
2507 struct console *c;
2508 struct tty_driver *driver = NULL;
2509
2510 console_lock();
2511 for_each_console(c) {
2512 if (!c->device)
2513 continue;
2514 driver = c->device(c, index);
2515 if (driver)
2516 break;
2517 }
2518 console_unlock();
2519 return driver;
2520 }
2521
2522 /*
2523 * Prevent further output on the passed console device so that (for example)
2524 * serial drivers can disable console output before suspending a port, and can
2525 * re-enable output afterwards.
2526 */
console_stop(struct console * console)2527 void console_stop(struct console *console)
2528 {
2529 console_lock();
2530 console->flags &= ~CON_ENABLED;
2531 console_unlock();
2532 }
2533 EXPORT_SYMBOL(console_stop);
2534
console_start(struct console * console)2535 void console_start(struct console *console)
2536 {
2537 console_lock();
2538 console->flags |= CON_ENABLED;
2539 console_unlock();
2540 }
2541 EXPORT_SYMBOL(console_start);
2542
2543 static int __read_mostly keep_bootcon;
2544
keep_bootcon_setup(char * str)2545 static int __init keep_bootcon_setup(char *str)
2546 {
2547 keep_bootcon = 1;
2548 pr_info("debug: skip boot console de-registration.\n");
2549
2550 return 0;
2551 }
2552
2553 early_param("keep_bootcon", keep_bootcon_setup);
2554
2555 /*
2556 * The console driver calls this routine during kernel initialization
2557 * to register the console printing procedure with printk() and to
2558 * print any messages that were printed by the kernel before the
2559 * console driver was initialized.
2560 *
2561 * This can happen pretty early during the boot process (because of
2562 * early_printk) - sometimes before setup_arch() completes - be careful
2563 * of what kernel features are used - they may not be initialised yet.
2564 *
2565 * There are two types of consoles - bootconsoles (early_printk) and
2566 * "real" consoles (everything which is not a bootconsole) which are
2567 * handled differently.
2568 * - Any number of bootconsoles can be registered at any time.
2569 * - As soon as a "real" console is registered, all bootconsoles
2570 * will be unregistered automatically.
2571 * - Once a "real" console is registered, any attempt to register a
2572 * bootconsoles will be rejected
2573 */
register_console(struct console * newcon)2574 void register_console(struct console *newcon)
2575 {
2576 int i;
2577 unsigned long flags;
2578 struct console *bcon = NULL;
2579 struct console_cmdline *c;
2580 static bool has_preferred;
2581
2582 if (console_drivers)
2583 for_each_console(bcon)
2584 if (WARN(bcon == newcon,
2585 "console '%s%d' already registered\n",
2586 bcon->name, bcon->index))
2587 return;
2588
2589 /*
2590 * before we register a new CON_BOOT console, make sure we don't
2591 * already have a valid console
2592 */
2593 if (console_drivers && newcon->flags & CON_BOOT) {
2594 /* find the last or real console */
2595 for_each_console(bcon) {
2596 if (!(bcon->flags & CON_BOOT)) {
2597 pr_info("Too late to register bootconsole %s%d\n",
2598 newcon->name, newcon->index);
2599 return;
2600 }
2601 }
2602 }
2603
2604 if (console_drivers && console_drivers->flags & CON_BOOT)
2605 bcon = console_drivers;
2606
2607 if (!has_preferred || bcon || !console_drivers)
2608 has_preferred = preferred_console >= 0;
2609
2610 /*
2611 * See if we want to use this console driver. If we
2612 * didn't select a console we take the first one
2613 * that registers here.
2614 */
2615 if (!has_preferred) {
2616 if (newcon->index < 0)
2617 newcon->index = 0;
2618 if (newcon->setup == NULL ||
2619 newcon->setup(newcon, NULL) == 0) {
2620 newcon->flags |= CON_ENABLED;
2621 if (newcon->device) {
2622 newcon->flags |= CON_CONSDEV;
2623 has_preferred = true;
2624 }
2625 }
2626 }
2627
2628 /*
2629 * See if this console matches one we selected on
2630 * the command line.
2631 */
2632 for (i = 0, c = console_cmdline;
2633 i < MAX_CMDLINECONSOLES && c->name[0];
2634 i++, c++) {
2635 if (!newcon->match ||
2636 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2637 /* default matching */
2638 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2639 if (strcmp(c->name, newcon->name) != 0)
2640 continue;
2641 if (newcon->index >= 0 &&
2642 newcon->index != c->index)
2643 continue;
2644 if (newcon->index < 0)
2645 newcon->index = c->index;
2646
2647 if (_braille_register_console(newcon, c))
2648 return;
2649
2650 if (newcon->setup &&
2651 newcon->setup(newcon, c->options) != 0)
2652 break;
2653 }
2654
2655 newcon->flags |= CON_ENABLED;
2656 if (i == preferred_console) {
2657 newcon->flags |= CON_CONSDEV;
2658 has_preferred = true;
2659 }
2660 break;
2661 }
2662
2663 if (!(newcon->flags & CON_ENABLED))
2664 return;
2665
2666 /*
2667 * If we have a bootconsole, and are switching to a real console,
2668 * don't print everything out again, since when the boot console, and
2669 * the real console are the same physical device, it's annoying to
2670 * see the beginning boot messages twice
2671 */
2672 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2673 newcon->flags &= ~CON_PRINTBUFFER;
2674
2675 /*
2676 * Put this console in the list - keep the
2677 * preferred driver at the head of the list.
2678 */
2679 console_lock();
2680 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2681 newcon->next = console_drivers;
2682 console_drivers = newcon;
2683 if (newcon->next)
2684 newcon->next->flags &= ~CON_CONSDEV;
2685 } else {
2686 newcon->next = console_drivers->next;
2687 console_drivers->next = newcon;
2688 }
2689
2690 if (newcon->flags & CON_EXTENDED)
2691 if (!nr_ext_console_drivers++)
2692 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2693
2694 if (newcon->flags & CON_PRINTBUFFER) {
2695 /*
2696 * console_unlock(); will print out the buffered messages
2697 * for us.
2698 */
2699 logbuf_lock_irqsave(flags);
2700 console_seq = syslog_seq;
2701 console_idx = syslog_idx;
2702 logbuf_unlock_irqrestore(flags);
2703 /*
2704 * We're about to replay the log buffer. Only do this to the
2705 * just-registered console to avoid excessive message spam to
2706 * the already-registered consoles.
2707 */
2708 exclusive_console = newcon;
2709 }
2710 console_unlock();
2711 console_sysfs_notify();
2712
2713 /*
2714 * By unregistering the bootconsoles after we enable the real console
2715 * we get the "console xxx enabled" message on all the consoles -
2716 * boot consoles, real consoles, etc - this is to ensure that end
2717 * users know there might be something in the kernel's log buffer that
2718 * went to the bootconsole (that they do not see on the real console)
2719 */
2720 pr_info("%sconsole [%s%d] enabled\n",
2721 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2722 newcon->name, newcon->index);
2723 if (bcon &&
2724 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2725 !keep_bootcon) {
2726 /* We need to iterate through all boot consoles, to make
2727 * sure we print everything out, before we unregister them.
2728 */
2729 for_each_console(bcon)
2730 if (bcon->flags & CON_BOOT)
2731 unregister_console(bcon);
2732 }
2733 }
2734 EXPORT_SYMBOL(register_console);
2735
unregister_console(struct console * console)2736 int unregister_console(struct console *console)
2737 {
2738 struct console *a, *b;
2739 int res;
2740
2741 pr_info("%sconsole [%s%d] disabled\n",
2742 (console->flags & CON_BOOT) ? "boot" : "" ,
2743 console->name, console->index);
2744
2745 res = _braille_unregister_console(console);
2746 if (res)
2747 return res;
2748
2749 res = 1;
2750 console_lock();
2751 if (console_drivers == console) {
2752 console_drivers=console->next;
2753 res = 0;
2754 } else if (console_drivers) {
2755 for (a=console_drivers->next, b=console_drivers ;
2756 a; b=a, a=b->next) {
2757 if (a == console) {
2758 b->next = a->next;
2759 res = 0;
2760 break;
2761 }
2762 }
2763 }
2764
2765 if (!res && (console->flags & CON_EXTENDED))
2766 nr_ext_console_drivers--;
2767
2768 /*
2769 * If this isn't the last console and it has CON_CONSDEV set, we
2770 * need to set it on the next preferred console.
2771 */
2772 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2773 console_drivers->flags |= CON_CONSDEV;
2774
2775 console->flags &= ~CON_ENABLED;
2776 console_unlock();
2777 console_sysfs_notify();
2778 return res;
2779 }
2780 EXPORT_SYMBOL(unregister_console);
2781
2782 /*
2783 * Initialize the console device. This is called *early*, so
2784 * we can't necessarily depend on lots of kernel help here.
2785 * Just do some early initializations, and do the complex setup
2786 * later.
2787 */
console_init(void)2788 void __init console_init(void)
2789 {
2790 int ret;
2791 initcall_t call;
2792 initcall_entry_t *ce;
2793
2794 /* Setup the default TTY line discipline. */
2795 n_tty_init();
2796
2797 /*
2798 * set up the console device so that later boot sequences can
2799 * inform about problems etc..
2800 */
2801 ce = __con_initcall_start;
2802 trace_initcall_level("console");
2803 while (ce < __con_initcall_end) {
2804 call = initcall_from_entry(ce);
2805 trace_initcall_start(call);
2806 ret = call();
2807 trace_initcall_finish(call, ret);
2808 ce++;
2809 }
2810 }
2811
2812 /*
2813 * Some boot consoles access data that is in the init section and which will
2814 * be discarded after the initcalls have been run. To make sure that no code
2815 * will access this data, unregister the boot consoles in a late initcall.
2816 *
2817 * If for some reason, such as deferred probe or the driver being a loadable
2818 * module, the real console hasn't registered yet at this point, there will
2819 * be a brief interval in which no messages are logged to the console, which
2820 * makes it difficult to diagnose problems that occur during this time.
2821 *
2822 * To mitigate this problem somewhat, only unregister consoles whose memory
2823 * intersects with the init section. Note that all other boot consoles will
2824 * get unregistred when the real preferred console is registered.
2825 */
printk_late_init(void)2826 static int __init printk_late_init(void)
2827 {
2828 struct console *con;
2829 int ret;
2830
2831 for_each_console(con) {
2832 if (!(con->flags & CON_BOOT))
2833 continue;
2834
2835 /* Check addresses that might be used for enabled consoles. */
2836 if (init_section_intersects(con, sizeof(*con)) ||
2837 init_section_contains(con->write, 0) ||
2838 init_section_contains(con->read, 0) ||
2839 init_section_contains(con->device, 0) ||
2840 init_section_contains(con->unblank, 0) ||
2841 init_section_contains(con->data, 0)) {
2842 /*
2843 * Please, consider moving the reported consoles out
2844 * of the init section.
2845 */
2846 pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2847 con->name, con->index);
2848 unregister_console(con);
2849 }
2850 }
2851 ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2852 console_cpu_notify);
2853 WARN_ON(ret < 0);
2854 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2855 console_cpu_notify, NULL);
2856 WARN_ON(ret < 0);
2857 return 0;
2858 }
2859 late_initcall(printk_late_init);
2860
2861 #if defined CONFIG_PRINTK
2862 /*
2863 * Delayed printk version, for scheduler-internal messages:
2864 */
2865 #define PRINTK_PENDING_WAKEUP 0x01
2866 #define PRINTK_PENDING_OUTPUT 0x02
2867
2868 static DEFINE_PER_CPU(int, printk_pending);
2869
wake_up_klogd_work_func(struct irq_work * irq_work)2870 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2871 {
2872 int pending = __this_cpu_xchg(printk_pending, 0);
2873
2874 if (pending & PRINTK_PENDING_OUTPUT) {
2875 /* If trylock fails, someone else is doing the printing */
2876 if (console_trylock())
2877 console_unlock();
2878 }
2879
2880 if (pending & PRINTK_PENDING_WAKEUP)
2881 wake_up_interruptible(&log_wait);
2882 }
2883
2884 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2885 .func = wake_up_klogd_work_func,
2886 .flags = IRQ_WORK_LAZY,
2887 };
2888
wake_up_klogd(void)2889 void wake_up_klogd(void)
2890 {
2891 preempt_disable();
2892 if (waitqueue_active(&log_wait)) {
2893 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2894 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2895 }
2896 preempt_enable();
2897 }
2898
defer_console_output(void)2899 void defer_console_output(void)
2900 {
2901 preempt_disable();
2902 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2903 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2904 preempt_enable();
2905 }
2906
vprintk_deferred(const char * fmt,va_list args)2907 int vprintk_deferred(const char *fmt, va_list args)
2908 {
2909 int r;
2910
2911 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2912 defer_console_output();
2913
2914 return r;
2915 }
2916
printk_deferred(const char * fmt,...)2917 int printk_deferred(const char *fmt, ...)
2918 {
2919 va_list args;
2920 int r;
2921
2922 va_start(args, fmt);
2923 r = vprintk_deferred(fmt, args);
2924 va_end(args);
2925
2926 return r;
2927 }
2928
2929 /*
2930 * printk rate limiting, lifted from the networking subsystem.
2931 *
2932 * This enforces a rate limit: not more than 10 kernel messages
2933 * every 5s to make a denial-of-service attack impossible.
2934 */
2935 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2936
__printk_ratelimit(const char * func)2937 int __printk_ratelimit(const char *func)
2938 {
2939 return ___ratelimit(&printk_ratelimit_state, func);
2940 }
2941 EXPORT_SYMBOL(__printk_ratelimit);
2942
2943 /**
2944 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2945 * @caller_jiffies: pointer to caller's state
2946 * @interval_msecs: minimum interval between prints
2947 *
2948 * printk_timed_ratelimit() returns true if more than @interval_msecs
2949 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2950 * returned true.
2951 */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)2952 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2953 unsigned int interval_msecs)
2954 {
2955 unsigned long elapsed = jiffies - *caller_jiffies;
2956
2957 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2958 return false;
2959
2960 *caller_jiffies = jiffies;
2961 return true;
2962 }
2963 EXPORT_SYMBOL(printk_timed_ratelimit);
2964
2965 static DEFINE_SPINLOCK(dump_list_lock);
2966 static LIST_HEAD(dump_list);
2967
2968 /**
2969 * kmsg_dump_register - register a kernel log dumper.
2970 * @dumper: pointer to the kmsg_dumper structure
2971 *
2972 * Adds a kernel log dumper to the system. The dump callback in the
2973 * structure will be called when the kernel oopses or panics and must be
2974 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2975 */
kmsg_dump_register(struct kmsg_dumper * dumper)2976 int kmsg_dump_register(struct kmsg_dumper *dumper)
2977 {
2978 unsigned long flags;
2979 int err = -EBUSY;
2980
2981 /* The dump callback needs to be set */
2982 if (!dumper->dump)
2983 return -EINVAL;
2984
2985 spin_lock_irqsave(&dump_list_lock, flags);
2986 /* Don't allow registering multiple times */
2987 if (!dumper->registered) {
2988 dumper->registered = 1;
2989 list_add_tail_rcu(&dumper->list, &dump_list);
2990 err = 0;
2991 }
2992 spin_unlock_irqrestore(&dump_list_lock, flags);
2993
2994 return err;
2995 }
2996 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2997
2998 /**
2999 * kmsg_dump_unregister - unregister a kmsg dumper.
3000 * @dumper: pointer to the kmsg_dumper structure
3001 *
3002 * Removes a dump device from the system. Returns zero on success and
3003 * %-EINVAL otherwise.
3004 */
kmsg_dump_unregister(struct kmsg_dumper * dumper)3005 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3006 {
3007 unsigned long flags;
3008 int err = -EINVAL;
3009
3010 spin_lock_irqsave(&dump_list_lock, flags);
3011 if (dumper->registered) {
3012 dumper->registered = 0;
3013 list_del_rcu(&dumper->list);
3014 err = 0;
3015 }
3016 spin_unlock_irqrestore(&dump_list_lock, flags);
3017 synchronize_rcu();
3018
3019 return err;
3020 }
3021 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3022
3023 static bool always_kmsg_dump;
3024 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3025
3026 /**
3027 * kmsg_dump - dump kernel log to kernel message dumpers.
3028 * @reason: the reason (oops, panic etc) for dumping
3029 *
3030 * Call each of the registered dumper's dump() callback, which can
3031 * retrieve the kmsg records with kmsg_dump_get_line() or
3032 * kmsg_dump_get_buffer().
3033 */
kmsg_dump(enum kmsg_dump_reason reason)3034 void kmsg_dump(enum kmsg_dump_reason reason)
3035 {
3036 struct kmsg_dumper *dumper;
3037 unsigned long flags;
3038
3039 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3040 return;
3041
3042 rcu_read_lock();
3043 list_for_each_entry_rcu(dumper, &dump_list, list) {
3044 if (dumper->max_reason && reason > dumper->max_reason)
3045 continue;
3046
3047 /* initialize iterator with data about the stored records */
3048 dumper->active = true;
3049
3050 logbuf_lock_irqsave(flags);
3051 dumper->cur_seq = clear_seq;
3052 dumper->cur_idx = clear_idx;
3053 dumper->next_seq = log_next_seq;
3054 dumper->next_idx = log_next_idx;
3055 logbuf_unlock_irqrestore(flags);
3056
3057 /* invoke dumper which will iterate over records */
3058 dumper->dump(dumper, reason);
3059
3060 /* reset iterator */
3061 dumper->active = false;
3062 }
3063 rcu_read_unlock();
3064 }
3065
3066 /**
3067 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3068 * @dumper: registered kmsg dumper
3069 * @syslog: include the "<4>" prefixes
3070 * @line: buffer to copy the line to
3071 * @size: maximum size of the buffer
3072 * @len: length of line placed into buffer
3073 *
3074 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3075 * record, and copy one record into the provided buffer.
3076 *
3077 * Consecutive calls will return the next available record moving
3078 * towards the end of the buffer with the youngest messages.
3079 *
3080 * A return value of FALSE indicates that there are no more records to
3081 * read.
3082 *
3083 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3084 */
kmsg_dump_get_line_nolock(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)3085 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3086 char *line, size_t size, size_t *len)
3087 {
3088 struct printk_log *msg;
3089 size_t l = 0;
3090 bool ret = false;
3091
3092 if (!dumper->active)
3093 goto out;
3094
3095 if (dumper->cur_seq < log_first_seq) {
3096 /* messages are gone, move to first available one */
3097 dumper->cur_seq = log_first_seq;
3098 dumper->cur_idx = log_first_idx;
3099 }
3100
3101 /* last entry */
3102 if (dumper->cur_seq >= log_next_seq)
3103 goto out;
3104
3105 msg = log_from_idx(dumper->cur_idx);
3106 l = msg_print_text(msg, syslog, line, size);
3107
3108 dumper->cur_idx = log_next(dumper->cur_idx);
3109 dumper->cur_seq++;
3110 ret = true;
3111 out:
3112 if (len)
3113 *len = l;
3114 return ret;
3115 }
3116
3117 /**
3118 * kmsg_dump_get_line - retrieve one kmsg log line
3119 * @dumper: registered kmsg dumper
3120 * @syslog: include the "<4>" prefixes
3121 * @line: buffer to copy the line to
3122 * @size: maximum size of the buffer
3123 * @len: length of line placed into buffer
3124 *
3125 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3126 * record, and copy one record into the provided buffer.
3127 *
3128 * Consecutive calls will return the next available record moving
3129 * towards the end of the buffer with the youngest messages.
3130 *
3131 * A return value of FALSE indicates that there are no more records to
3132 * read.
3133 */
kmsg_dump_get_line(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)3134 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3135 char *line, size_t size, size_t *len)
3136 {
3137 unsigned long flags;
3138 bool ret;
3139
3140 logbuf_lock_irqsave(flags);
3141 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3142 logbuf_unlock_irqrestore(flags);
3143
3144 return ret;
3145 }
3146 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3147
3148 /**
3149 * kmsg_dump_get_buffer - copy kmsg log lines
3150 * @dumper: registered kmsg dumper
3151 * @syslog: include the "<4>" prefixes
3152 * @buf: buffer to copy the line to
3153 * @size: maximum size of the buffer
3154 * @len: length of line placed into buffer
3155 *
3156 * Start at the end of the kmsg buffer and fill the provided buffer
3157 * with as many of the the *youngest* kmsg records that fit into it.
3158 * If the buffer is large enough, all available kmsg records will be
3159 * copied with a single call.
3160 *
3161 * Consecutive calls will fill the buffer with the next block of
3162 * available older records, not including the earlier retrieved ones.
3163 *
3164 * A return value of FALSE indicates that there are no more records to
3165 * read.
3166 */
kmsg_dump_get_buffer(struct kmsg_dumper * dumper,bool syslog,char * buf,size_t size,size_t * len)3167 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3168 char *buf, size_t size, size_t *len)
3169 {
3170 unsigned long flags;
3171 u64 seq;
3172 u32 idx;
3173 u64 next_seq;
3174 u32 next_idx;
3175 size_t l = 0;
3176 bool ret = false;
3177
3178 if (!dumper->active)
3179 goto out;
3180
3181 logbuf_lock_irqsave(flags);
3182 if (dumper->cur_seq < log_first_seq) {
3183 /* messages are gone, move to first available one */
3184 dumper->cur_seq = log_first_seq;
3185 dumper->cur_idx = log_first_idx;
3186 }
3187
3188 /* last entry */
3189 if (dumper->cur_seq >= dumper->next_seq) {
3190 logbuf_unlock_irqrestore(flags);
3191 goto out;
3192 }
3193
3194 /* calculate length of entire buffer */
3195 seq = dumper->cur_seq;
3196 idx = dumper->cur_idx;
3197 while (seq < dumper->next_seq) {
3198 struct printk_log *msg = log_from_idx(idx);
3199
3200 l += msg_print_text(msg, true, NULL, 0);
3201 idx = log_next(idx);
3202 seq++;
3203 }
3204
3205 /* move first record forward until length fits into the buffer */
3206 seq = dumper->cur_seq;
3207 idx = dumper->cur_idx;
3208 while (l > size && seq < dumper->next_seq) {
3209 struct printk_log *msg = log_from_idx(idx);
3210
3211 l -= msg_print_text(msg, true, NULL, 0);
3212 idx = log_next(idx);
3213 seq++;
3214 }
3215
3216 /* last message in next interation */
3217 next_seq = seq;
3218 next_idx = idx;
3219
3220 l = 0;
3221 while (seq < dumper->next_seq) {
3222 struct printk_log *msg = log_from_idx(idx);
3223
3224 l += msg_print_text(msg, syslog, buf + l, size - l);
3225 idx = log_next(idx);
3226 seq++;
3227 }
3228
3229 dumper->next_seq = next_seq;
3230 dumper->next_idx = next_idx;
3231 ret = true;
3232 logbuf_unlock_irqrestore(flags);
3233 out:
3234 if (len)
3235 *len = l;
3236 return ret;
3237 }
3238 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3239
3240 /**
3241 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3242 * @dumper: registered kmsg dumper
3243 *
3244 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3245 * kmsg_dump_get_buffer() can be called again and used multiple
3246 * times within the same dumper.dump() callback.
3247 *
3248 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3249 */
kmsg_dump_rewind_nolock(struct kmsg_dumper * dumper)3250 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3251 {
3252 dumper->cur_seq = clear_seq;
3253 dumper->cur_idx = clear_idx;
3254 dumper->next_seq = log_next_seq;
3255 dumper->next_idx = log_next_idx;
3256 }
3257
3258 /**
3259 * kmsg_dump_rewind - reset the interator
3260 * @dumper: registered kmsg dumper
3261 *
3262 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3263 * kmsg_dump_get_buffer() can be called again and used multiple
3264 * times within the same dumper.dump() callback.
3265 */
kmsg_dump_rewind(struct kmsg_dumper * dumper)3266 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3267 {
3268 unsigned long flags;
3269
3270 logbuf_lock_irqsave(flags);
3271 kmsg_dump_rewind_nolock(dumper);
3272 logbuf_unlock_irqrestore(flags);
3273 }
3274 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3275
3276 #endif
3277