1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * net/sunrpc/cache.c
4 *
5 * Generic code for various authentication-related caches
6 * used by sunrpc clients and servers.
7 *
8 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 */
10
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kmod.h>
18 #include <linux/list.h>
19 #include <linux/module.h>
20 #include <linux/ctype.h>
21 #include <linux/string_helpers.h>
22 #include <linux/uaccess.h>
23 #include <linux/poll.h>
24 #include <linux/seq_file.h>
25 #include <linux/proc_fs.h>
26 #include <linux/net.h>
27 #include <linux/workqueue.h>
28 #include <linux/mutex.h>
29 #include <linux/pagemap.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
34 #include <linux/sunrpc/rpc_pipe_fs.h>
35 #include <trace/events/sunrpc.h>
36 #include "netns.h"
37
38 #define RPCDBG_FACILITY RPCDBG_CACHE
39
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42
cache_init(struct cache_head * h,struct cache_detail * detail)43 static void cache_init(struct cache_head *h, struct cache_detail *detail)
44 {
45 time64_t now = seconds_since_boot();
46 INIT_HLIST_NODE(&h->cache_list);
47 h->flags = 0;
48 kref_init(&h->ref);
49 h->expiry_time = now + CACHE_NEW_EXPIRY;
50 if (now <= detail->flush_time)
51 /* ensure it isn't already expired */
52 now = detail->flush_time + 1;
53 h->last_refresh = now;
54 }
55
56 static void cache_fresh_unlocked(struct cache_head *head,
57 struct cache_detail *detail);
58
sunrpc_cache_find_rcu(struct cache_detail * detail,struct cache_head * key,int hash)59 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
60 struct cache_head *key,
61 int hash)
62 {
63 struct hlist_head *head = &detail->hash_table[hash];
64 struct cache_head *tmp;
65
66 rcu_read_lock();
67 hlist_for_each_entry_rcu(tmp, head, cache_list) {
68 if (!detail->match(tmp, key))
69 continue;
70 if (test_bit(CACHE_VALID, &tmp->flags) &&
71 cache_is_expired(detail, tmp))
72 continue;
73 tmp = cache_get_rcu(tmp);
74 rcu_read_unlock();
75 return tmp;
76 }
77 rcu_read_unlock();
78 return NULL;
79 }
80
sunrpc_begin_cache_remove_entry(struct cache_head * ch,struct cache_detail * cd)81 static void sunrpc_begin_cache_remove_entry(struct cache_head *ch,
82 struct cache_detail *cd)
83 {
84 /* Must be called under cd->hash_lock */
85 hlist_del_init_rcu(&ch->cache_list);
86 set_bit(CACHE_CLEANED, &ch->flags);
87 cd->entries --;
88 }
89
sunrpc_end_cache_remove_entry(struct cache_head * ch,struct cache_detail * cd)90 static void sunrpc_end_cache_remove_entry(struct cache_head *ch,
91 struct cache_detail *cd)
92 {
93 cache_fresh_unlocked(ch, cd);
94 cache_put(ch, cd);
95 }
96
sunrpc_cache_add_entry(struct cache_detail * detail,struct cache_head * key,int hash)97 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
98 struct cache_head *key,
99 int hash)
100 {
101 struct cache_head *new, *tmp, *freeme = NULL;
102 struct hlist_head *head = &detail->hash_table[hash];
103
104 new = detail->alloc();
105 if (!new)
106 return NULL;
107 /* must fully initialise 'new', else
108 * we might get lose if we need to
109 * cache_put it soon.
110 */
111 cache_init(new, detail);
112 detail->init(new, key);
113
114 spin_lock(&detail->hash_lock);
115
116 /* check if entry appeared while we slept */
117 hlist_for_each_entry_rcu(tmp, head, cache_list,
118 lockdep_is_held(&detail->hash_lock)) {
119 if (!detail->match(tmp, key))
120 continue;
121 if (test_bit(CACHE_VALID, &tmp->flags) &&
122 cache_is_expired(detail, tmp)) {
123 sunrpc_begin_cache_remove_entry(tmp, detail);
124 trace_cache_entry_expired(detail, tmp);
125 freeme = tmp;
126 break;
127 }
128 cache_get(tmp);
129 spin_unlock(&detail->hash_lock);
130 cache_put(new, detail);
131 return tmp;
132 }
133
134 hlist_add_head_rcu(&new->cache_list, head);
135 detail->entries++;
136 cache_get(new);
137 spin_unlock(&detail->hash_lock);
138
139 if (freeme)
140 sunrpc_end_cache_remove_entry(freeme, detail);
141 return new;
142 }
143
sunrpc_cache_lookup_rcu(struct cache_detail * detail,struct cache_head * key,int hash)144 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
145 struct cache_head *key, int hash)
146 {
147 struct cache_head *ret;
148
149 ret = sunrpc_cache_find_rcu(detail, key, hash);
150 if (ret)
151 return ret;
152 /* Didn't find anything, insert an empty entry */
153 return sunrpc_cache_add_entry(detail, key, hash);
154 }
155 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
156
157 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
158
cache_fresh_locked(struct cache_head * head,time64_t expiry,struct cache_detail * detail)159 static void cache_fresh_locked(struct cache_head *head, time64_t expiry,
160 struct cache_detail *detail)
161 {
162 time64_t now = seconds_since_boot();
163 if (now <= detail->flush_time)
164 /* ensure it isn't immediately treated as expired */
165 now = detail->flush_time + 1;
166 head->expiry_time = expiry;
167 head->last_refresh = now;
168 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
169 set_bit(CACHE_VALID, &head->flags);
170 }
171
cache_fresh_unlocked(struct cache_head * head,struct cache_detail * detail)172 static void cache_fresh_unlocked(struct cache_head *head,
173 struct cache_detail *detail)
174 {
175 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
176 cache_revisit_request(head);
177 cache_dequeue(detail, head);
178 }
179 }
180
cache_make_negative(struct cache_detail * detail,struct cache_head * h)181 static void cache_make_negative(struct cache_detail *detail,
182 struct cache_head *h)
183 {
184 set_bit(CACHE_NEGATIVE, &h->flags);
185 trace_cache_entry_make_negative(detail, h);
186 }
187
cache_entry_update(struct cache_detail * detail,struct cache_head * h,struct cache_head * new)188 static void cache_entry_update(struct cache_detail *detail,
189 struct cache_head *h,
190 struct cache_head *new)
191 {
192 if (!test_bit(CACHE_NEGATIVE, &new->flags)) {
193 detail->update(h, new);
194 trace_cache_entry_update(detail, h);
195 } else {
196 cache_make_negative(detail, h);
197 }
198 }
199
sunrpc_cache_update(struct cache_detail * detail,struct cache_head * new,struct cache_head * old,int hash)200 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
201 struct cache_head *new, struct cache_head *old, int hash)
202 {
203 /* The 'old' entry is to be replaced by 'new'.
204 * If 'old' is not VALID, we update it directly,
205 * otherwise we need to replace it
206 */
207 struct cache_head *tmp;
208
209 if (!test_bit(CACHE_VALID, &old->flags)) {
210 spin_lock(&detail->hash_lock);
211 if (!test_bit(CACHE_VALID, &old->flags)) {
212 cache_entry_update(detail, old, new);
213 cache_fresh_locked(old, new->expiry_time, detail);
214 spin_unlock(&detail->hash_lock);
215 cache_fresh_unlocked(old, detail);
216 return old;
217 }
218 spin_unlock(&detail->hash_lock);
219 }
220 /* We need to insert a new entry */
221 tmp = detail->alloc();
222 if (!tmp) {
223 cache_put(old, detail);
224 return NULL;
225 }
226 cache_init(tmp, detail);
227 detail->init(tmp, old);
228
229 spin_lock(&detail->hash_lock);
230 cache_entry_update(detail, tmp, new);
231 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
232 detail->entries++;
233 cache_get(tmp);
234 cache_fresh_locked(tmp, new->expiry_time, detail);
235 cache_fresh_locked(old, 0, detail);
236 spin_unlock(&detail->hash_lock);
237 cache_fresh_unlocked(tmp, detail);
238 cache_fresh_unlocked(old, detail);
239 cache_put(old, detail);
240 return tmp;
241 }
242 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
243
cache_is_valid(struct cache_head * h)244 static inline int cache_is_valid(struct cache_head *h)
245 {
246 if (!test_bit(CACHE_VALID, &h->flags))
247 return -EAGAIN;
248 else {
249 /* entry is valid */
250 if (test_bit(CACHE_NEGATIVE, &h->flags))
251 return -ENOENT;
252 else {
253 /*
254 * In combination with write barrier in
255 * sunrpc_cache_update, ensures that anyone
256 * using the cache entry after this sees the
257 * updated contents:
258 */
259 smp_rmb();
260 return 0;
261 }
262 }
263 }
264
try_to_negate_entry(struct cache_detail * detail,struct cache_head * h)265 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
266 {
267 int rv;
268
269 spin_lock(&detail->hash_lock);
270 rv = cache_is_valid(h);
271 if (rv == -EAGAIN) {
272 cache_make_negative(detail, h);
273 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
274 detail);
275 rv = -ENOENT;
276 }
277 spin_unlock(&detail->hash_lock);
278 cache_fresh_unlocked(h, detail);
279 return rv;
280 }
281
282 /*
283 * This is the generic cache management routine for all
284 * the authentication caches.
285 * It checks the currency of a cache item and will (later)
286 * initiate an upcall to fill it if needed.
287 *
288 *
289 * Returns 0 if the cache_head can be used, or cache_puts it and returns
290 * -EAGAIN if upcall is pending and request has been queued
291 * -ETIMEDOUT if upcall failed or request could not be queue or
292 * upcall completed but item is still invalid (implying that
293 * the cache item has been replaced with a newer one).
294 * -ENOENT if cache entry was negative
295 */
cache_check(struct cache_detail * detail,struct cache_head * h,struct cache_req * rqstp)296 int cache_check(struct cache_detail *detail,
297 struct cache_head *h, struct cache_req *rqstp)
298 {
299 int rv;
300 time64_t refresh_age, age;
301
302 /* First decide return status as best we can */
303 rv = cache_is_valid(h);
304
305 /* now see if we want to start an upcall */
306 refresh_age = (h->expiry_time - h->last_refresh);
307 age = seconds_since_boot() - h->last_refresh;
308
309 if (rqstp == NULL) {
310 if (rv == -EAGAIN)
311 rv = -ENOENT;
312 } else if (rv == -EAGAIN ||
313 (h->expiry_time != 0 && age > refresh_age/2)) {
314 dprintk("RPC: Want update, refage=%lld, age=%lld\n",
315 refresh_age, age);
316 switch (detail->cache_upcall(detail, h)) {
317 case -EINVAL:
318 rv = try_to_negate_entry(detail, h);
319 break;
320 case -EAGAIN:
321 cache_fresh_unlocked(h, detail);
322 break;
323 }
324 }
325
326 if (rv == -EAGAIN) {
327 if (!cache_defer_req(rqstp, h)) {
328 /*
329 * Request was not deferred; handle it as best
330 * we can ourselves:
331 */
332 rv = cache_is_valid(h);
333 if (rv == -EAGAIN)
334 rv = -ETIMEDOUT;
335 }
336 }
337 if (rv)
338 cache_put(h, detail);
339 return rv;
340 }
341 EXPORT_SYMBOL_GPL(cache_check);
342
343 /*
344 * caches need to be periodically cleaned.
345 * For this we maintain a list of cache_detail and
346 * a current pointer into that list and into the table
347 * for that entry.
348 *
349 * Each time cache_clean is called it finds the next non-empty entry
350 * in the current table and walks the list in that entry
351 * looking for entries that can be removed.
352 *
353 * An entry gets removed if:
354 * - The expiry is before current time
355 * - The last_refresh time is before the flush_time for that cache
356 *
357 * later we might drop old entries with non-NEVER expiry if that table
358 * is getting 'full' for some definition of 'full'
359 *
360 * The question of "how often to scan a table" is an interesting one
361 * and is answered in part by the use of the "nextcheck" field in the
362 * cache_detail.
363 * When a scan of a table begins, the nextcheck field is set to a time
364 * that is well into the future.
365 * While scanning, if an expiry time is found that is earlier than the
366 * current nextcheck time, nextcheck is set to that expiry time.
367 * If the flush_time is ever set to a time earlier than the nextcheck
368 * time, the nextcheck time is then set to that flush_time.
369 *
370 * A table is then only scanned if the current time is at least
371 * the nextcheck time.
372 *
373 */
374
375 static LIST_HEAD(cache_list);
376 static DEFINE_SPINLOCK(cache_list_lock);
377 static struct cache_detail *current_detail;
378 static int current_index;
379
380 static void do_cache_clean(struct work_struct *work);
381 static struct delayed_work cache_cleaner;
382
sunrpc_init_cache_detail(struct cache_detail * cd)383 void sunrpc_init_cache_detail(struct cache_detail *cd)
384 {
385 spin_lock_init(&cd->hash_lock);
386 INIT_LIST_HEAD(&cd->queue);
387 spin_lock(&cache_list_lock);
388 cd->nextcheck = 0;
389 cd->entries = 0;
390 atomic_set(&cd->writers, 0);
391 cd->last_close = 0;
392 cd->last_warn = -1;
393 list_add(&cd->others, &cache_list);
394 spin_unlock(&cache_list_lock);
395
396 /* start the cleaning process */
397 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
398 }
399 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
400
sunrpc_destroy_cache_detail(struct cache_detail * cd)401 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
402 {
403 cache_purge(cd);
404 spin_lock(&cache_list_lock);
405 spin_lock(&cd->hash_lock);
406 if (current_detail == cd)
407 current_detail = NULL;
408 list_del_init(&cd->others);
409 spin_unlock(&cd->hash_lock);
410 spin_unlock(&cache_list_lock);
411 if (list_empty(&cache_list)) {
412 /* module must be being unloaded so its safe to kill the worker */
413 cancel_delayed_work_sync(&cache_cleaner);
414 }
415 }
416 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
417
418 /* clean cache tries to find something to clean
419 * and cleans it.
420 * It returns 1 if it cleaned something,
421 * 0 if it didn't find anything this time
422 * -1 if it fell off the end of the list.
423 */
cache_clean(void)424 static int cache_clean(void)
425 {
426 int rv = 0;
427 struct list_head *next;
428
429 spin_lock(&cache_list_lock);
430
431 /* find a suitable table if we don't already have one */
432 while (current_detail == NULL ||
433 current_index >= current_detail->hash_size) {
434 if (current_detail)
435 next = current_detail->others.next;
436 else
437 next = cache_list.next;
438 if (next == &cache_list) {
439 current_detail = NULL;
440 spin_unlock(&cache_list_lock);
441 return -1;
442 }
443 current_detail = list_entry(next, struct cache_detail, others);
444 if (current_detail->nextcheck > seconds_since_boot())
445 current_index = current_detail->hash_size;
446 else {
447 current_index = 0;
448 current_detail->nextcheck = seconds_since_boot()+30*60;
449 }
450 }
451
452 /* find a non-empty bucket in the table */
453 while (current_detail &&
454 current_index < current_detail->hash_size &&
455 hlist_empty(¤t_detail->hash_table[current_index]))
456 current_index++;
457
458 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
459
460 if (current_detail && current_index < current_detail->hash_size) {
461 struct cache_head *ch = NULL;
462 struct cache_detail *d;
463 struct hlist_head *head;
464 struct hlist_node *tmp;
465
466 spin_lock(¤t_detail->hash_lock);
467
468 /* Ok, now to clean this strand */
469
470 head = ¤t_detail->hash_table[current_index];
471 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
472 if (current_detail->nextcheck > ch->expiry_time)
473 current_detail->nextcheck = ch->expiry_time+1;
474 if (!cache_is_expired(current_detail, ch))
475 continue;
476
477 sunrpc_begin_cache_remove_entry(ch, current_detail);
478 trace_cache_entry_expired(current_detail, ch);
479 rv = 1;
480 break;
481 }
482
483 spin_unlock(¤t_detail->hash_lock);
484 d = current_detail;
485 if (!ch)
486 current_index ++;
487 spin_unlock(&cache_list_lock);
488 if (ch)
489 sunrpc_end_cache_remove_entry(ch, d);
490 } else
491 spin_unlock(&cache_list_lock);
492
493 return rv;
494 }
495
496 /*
497 * We want to regularly clean the cache, so we need to schedule some work ...
498 */
do_cache_clean(struct work_struct * work)499 static void do_cache_clean(struct work_struct *work)
500 {
501 int delay;
502
503 if (list_empty(&cache_list))
504 return;
505
506 if (cache_clean() == -1)
507 delay = round_jiffies_relative(30*HZ);
508 else
509 delay = 5;
510
511 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, delay);
512 }
513
514
515 /*
516 * Clean all caches promptly. This just calls cache_clean
517 * repeatedly until we are sure that every cache has had a chance to
518 * be fully cleaned
519 */
cache_flush(void)520 void cache_flush(void)
521 {
522 while (cache_clean() != -1)
523 cond_resched();
524 while (cache_clean() != -1)
525 cond_resched();
526 }
527 EXPORT_SYMBOL_GPL(cache_flush);
528
cache_purge(struct cache_detail * detail)529 void cache_purge(struct cache_detail *detail)
530 {
531 struct cache_head *ch = NULL;
532 struct hlist_head *head = NULL;
533 int i = 0;
534
535 spin_lock(&detail->hash_lock);
536 if (!detail->entries) {
537 spin_unlock(&detail->hash_lock);
538 return;
539 }
540
541 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
542 for (i = 0; i < detail->hash_size; i++) {
543 head = &detail->hash_table[i];
544 while (!hlist_empty(head)) {
545 ch = hlist_entry(head->first, struct cache_head,
546 cache_list);
547 sunrpc_begin_cache_remove_entry(ch, detail);
548 spin_unlock(&detail->hash_lock);
549 sunrpc_end_cache_remove_entry(ch, detail);
550 spin_lock(&detail->hash_lock);
551 }
552 }
553 spin_unlock(&detail->hash_lock);
554 }
555 EXPORT_SYMBOL_GPL(cache_purge);
556
557
558 /*
559 * Deferral and Revisiting of Requests.
560 *
561 * If a cache lookup finds a pending entry, we
562 * need to defer the request and revisit it later.
563 * All deferred requests are stored in a hash table,
564 * indexed by "struct cache_head *".
565 * As it may be wasteful to store a whole request
566 * structure, we allow the request to provide a
567 * deferred form, which must contain a
568 * 'struct cache_deferred_req'
569 * This cache_deferred_req contains a method to allow
570 * it to be revisited when cache info is available
571 */
572
573 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
574 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
575
576 #define DFR_MAX 300 /* ??? */
577
578 static DEFINE_SPINLOCK(cache_defer_lock);
579 static LIST_HEAD(cache_defer_list);
580 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
581 static int cache_defer_cnt;
582
__unhash_deferred_req(struct cache_deferred_req * dreq)583 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
584 {
585 hlist_del_init(&dreq->hash);
586 if (!list_empty(&dreq->recent)) {
587 list_del_init(&dreq->recent);
588 cache_defer_cnt--;
589 }
590 }
591
__hash_deferred_req(struct cache_deferred_req * dreq,struct cache_head * item)592 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
593 {
594 int hash = DFR_HASH(item);
595
596 INIT_LIST_HEAD(&dreq->recent);
597 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
598 }
599
setup_deferral(struct cache_deferred_req * dreq,struct cache_head * item,int count_me)600 static void setup_deferral(struct cache_deferred_req *dreq,
601 struct cache_head *item,
602 int count_me)
603 {
604
605 dreq->item = item;
606
607 spin_lock(&cache_defer_lock);
608
609 __hash_deferred_req(dreq, item);
610
611 if (count_me) {
612 cache_defer_cnt++;
613 list_add(&dreq->recent, &cache_defer_list);
614 }
615
616 spin_unlock(&cache_defer_lock);
617
618 }
619
620 struct thread_deferred_req {
621 struct cache_deferred_req handle;
622 struct completion completion;
623 };
624
cache_restart_thread(struct cache_deferred_req * dreq,int too_many)625 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
626 {
627 struct thread_deferred_req *dr =
628 container_of(dreq, struct thread_deferred_req, handle);
629 complete(&dr->completion);
630 }
631
cache_wait_req(struct cache_req * req,struct cache_head * item)632 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
633 {
634 struct thread_deferred_req sleeper;
635 struct cache_deferred_req *dreq = &sleeper.handle;
636
637 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
638 dreq->revisit = cache_restart_thread;
639
640 setup_deferral(dreq, item, 0);
641
642 if (!test_bit(CACHE_PENDING, &item->flags) ||
643 wait_for_completion_interruptible_timeout(
644 &sleeper.completion, req->thread_wait) <= 0) {
645 /* The completion wasn't completed, so we need
646 * to clean up
647 */
648 spin_lock(&cache_defer_lock);
649 if (!hlist_unhashed(&sleeper.handle.hash)) {
650 __unhash_deferred_req(&sleeper.handle);
651 spin_unlock(&cache_defer_lock);
652 } else {
653 /* cache_revisit_request already removed
654 * this from the hash table, but hasn't
655 * called ->revisit yet. It will very soon
656 * and we need to wait for it.
657 */
658 spin_unlock(&cache_defer_lock);
659 wait_for_completion(&sleeper.completion);
660 }
661 }
662 }
663
cache_limit_defers(void)664 static void cache_limit_defers(void)
665 {
666 /* Make sure we haven't exceed the limit of allowed deferred
667 * requests.
668 */
669 struct cache_deferred_req *discard = NULL;
670
671 if (cache_defer_cnt <= DFR_MAX)
672 return;
673
674 spin_lock(&cache_defer_lock);
675
676 /* Consider removing either the first or the last */
677 if (cache_defer_cnt > DFR_MAX) {
678 if (prandom_u32() & 1)
679 discard = list_entry(cache_defer_list.next,
680 struct cache_deferred_req, recent);
681 else
682 discard = list_entry(cache_defer_list.prev,
683 struct cache_deferred_req, recent);
684 __unhash_deferred_req(discard);
685 }
686 spin_unlock(&cache_defer_lock);
687 if (discard)
688 discard->revisit(discard, 1);
689 }
690
691 /* Return true if and only if a deferred request is queued. */
cache_defer_req(struct cache_req * req,struct cache_head * item)692 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
693 {
694 struct cache_deferred_req *dreq;
695
696 if (req->thread_wait) {
697 cache_wait_req(req, item);
698 if (!test_bit(CACHE_PENDING, &item->flags))
699 return false;
700 }
701 dreq = req->defer(req);
702 if (dreq == NULL)
703 return false;
704 setup_deferral(dreq, item, 1);
705 if (!test_bit(CACHE_PENDING, &item->flags))
706 /* Bit could have been cleared before we managed to
707 * set up the deferral, so need to revisit just in case
708 */
709 cache_revisit_request(item);
710
711 cache_limit_defers();
712 return true;
713 }
714
cache_revisit_request(struct cache_head * item)715 static void cache_revisit_request(struct cache_head *item)
716 {
717 struct cache_deferred_req *dreq;
718 struct list_head pending;
719 struct hlist_node *tmp;
720 int hash = DFR_HASH(item);
721
722 INIT_LIST_HEAD(&pending);
723 spin_lock(&cache_defer_lock);
724
725 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
726 if (dreq->item == item) {
727 __unhash_deferred_req(dreq);
728 list_add(&dreq->recent, &pending);
729 }
730
731 spin_unlock(&cache_defer_lock);
732
733 while (!list_empty(&pending)) {
734 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
735 list_del_init(&dreq->recent);
736 dreq->revisit(dreq, 0);
737 }
738 }
739
cache_clean_deferred(void * owner)740 void cache_clean_deferred(void *owner)
741 {
742 struct cache_deferred_req *dreq, *tmp;
743 struct list_head pending;
744
745
746 INIT_LIST_HEAD(&pending);
747 spin_lock(&cache_defer_lock);
748
749 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
750 if (dreq->owner == owner) {
751 __unhash_deferred_req(dreq);
752 list_add(&dreq->recent, &pending);
753 }
754 }
755 spin_unlock(&cache_defer_lock);
756
757 while (!list_empty(&pending)) {
758 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
759 list_del_init(&dreq->recent);
760 dreq->revisit(dreq, 1);
761 }
762 }
763
764 /*
765 * communicate with user-space
766 *
767 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
768 * On read, you get a full request, or block.
769 * On write, an update request is processed.
770 * Poll works if anything to read, and always allows write.
771 *
772 * Implemented by linked list of requests. Each open file has
773 * a ->private that also exists in this list. New requests are added
774 * to the end and may wakeup and preceding readers.
775 * New readers are added to the head. If, on read, an item is found with
776 * CACHE_UPCALLING clear, we free it from the list.
777 *
778 */
779
780 static DEFINE_SPINLOCK(queue_lock);
781 static DEFINE_MUTEX(queue_io_mutex);
782
783 struct cache_queue {
784 struct list_head list;
785 int reader; /* if 0, then request */
786 };
787 struct cache_request {
788 struct cache_queue q;
789 struct cache_head *item;
790 char * buf;
791 int len;
792 int readers;
793 };
794 struct cache_reader {
795 struct cache_queue q;
796 int offset; /* if non-0, we have a refcnt on next request */
797 };
798
cache_request(struct cache_detail * detail,struct cache_request * crq)799 static int cache_request(struct cache_detail *detail,
800 struct cache_request *crq)
801 {
802 char *bp = crq->buf;
803 int len = PAGE_SIZE;
804
805 detail->cache_request(detail, crq->item, &bp, &len);
806 if (len < 0)
807 return -EAGAIN;
808 return PAGE_SIZE - len;
809 }
810
cache_read(struct file * filp,char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)811 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
812 loff_t *ppos, struct cache_detail *cd)
813 {
814 struct cache_reader *rp = filp->private_data;
815 struct cache_request *rq;
816 struct inode *inode = file_inode(filp);
817 int err;
818
819 if (count == 0)
820 return 0;
821
822 inode_lock(inode); /* protect against multiple concurrent
823 * readers on this file */
824 again:
825 spin_lock(&queue_lock);
826 /* need to find next request */
827 while (rp->q.list.next != &cd->queue &&
828 list_entry(rp->q.list.next, struct cache_queue, list)
829 ->reader) {
830 struct list_head *next = rp->q.list.next;
831 list_move(&rp->q.list, next);
832 }
833 if (rp->q.list.next == &cd->queue) {
834 spin_unlock(&queue_lock);
835 inode_unlock(inode);
836 WARN_ON_ONCE(rp->offset);
837 return 0;
838 }
839 rq = container_of(rp->q.list.next, struct cache_request, q.list);
840 WARN_ON_ONCE(rq->q.reader);
841 if (rp->offset == 0)
842 rq->readers++;
843 spin_unlock(&queue_lock);
844
845 if (rq->len == 0) {
846 err = cache_request(cd, rq);
847 if (err < 0)
848 goto out;
849 rq->len = err;
850 }
851
852 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
853 err = -EAGAIN;
854 spin_lock(&queue_lock);
855 list_move(&rp->q.list, &rq->q.list);
856 spin_unlock(&queue_lock);
857 } else {
858 if (rp->offset + count > rq->len)
859 count = rq->len - rp->offset;
860 err = -EFAULT;
861 if (copy_to_user(buf, rq->buf + rp->offset, count))
862 goto out;
863 rp->offset += count;
864 if (rp->offset >= rq->len) {
865 rp->offset = 0;
866 spin_lock(&queue_lock);
867 list_move(&rp->q.list, &rq->q.list);
868 spin_unlock(&queue_lock);
869 }
870 err = 0;
871 }
872 out:
873 if (rp->offset == 0) {
874 /* need to release rq */
875 spin_lock(&queue_lock);
876 rq->readers--;
877 if (rq->readers == 0 &&
878 !test_bit(CACHE_PENDING, &rq->item->flags)) {
879 list_del(&rq->q.list);
880 spin_unlock(&queue_lock);
881 cache_put(rq->item, cd);
882 kfree(rq->buf);
883 kfree(rq);
884 } else
885 spin_unlock(&queue_lock);
886 }
887 if (err == -EAGAIN)
888 goto again;
889 inode_unlock(inode);
890 return err ? err : count;
891 }
892
cache_do_downcall(char * kaddr,const char __user * buf,size_t count,struct cache_detail * cd)893 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
894 size_t count, struct cache_detail *cd)
895 {
896 ssize_t ret;
897
898 if (count == 0)
899 return -EINVAL;
900 if (copy_from_user(kaddr, buf, count))
901 return -EFAULT;
902 kaddr[count] = '\0';
903 ret = cd->cache_parse(cd, kaddr, count);
904 if (!ret)
905 ret = count;
906 return ret;
907 }
908
cache_slow_downcall(const char __user * buf,size_t count,struct cache_detail * cd)909 static ssize_t cache_slow_downcall(const char __user *buf,
910 size_t count, struct cache_detail *cd)
911 {
912 static char write_buf[32768]; /* protected by queue_io_mutex */
913 ssize_t ret = -EINVAL;
914
915 if (count >= sizeof(write_buf))
916 goto out;
917 mutex_lock(&queue_io_mutex);
918 ret = cache_do_downcall(write_buf, buf, count, cd);
919 mutex_unlock(&queue_io_mutex);
920 out:
921 return ret;
922 }
923
cache_downcall(struct address_space * mapping,const char __user * buf,size_t count,struct cache_detail * cd)924 static ssize_t cache_downcall(struct address_space *mapping,
925 const char __user *buf,
926 size_t count, struct cache_detail *cd)
927 {
928 struct page *page;
929 char *kaddr;
930 ssize_t ret = -ENOMEM;
931
932 if (count >= PAGE_SIZE)
933 goto out_slow;
934
935 page = find_or_create_page(mapping, 0, GFP_KERNEL);
936 if (!page)
937 goto out_slow;
938
939 kaddr = kmap(page);
940 ret = cache_do_downcall(kaddr, buf, count, cd);
941 kunmap(page);
942 unlock_page(page);
943 put_page(page);
944 return ret;
945 out_slow:
946 return cache_slow_downcall(buf, count, cd);
947 }
948
cache_write(struct file * filp,const char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)949 static ssize_t cache_write(struct file *filp, const char __user *buf,
950 size_t count, loff_t *ppos,
951 struct cache_detail *cd)
952 {
953 struct address_space *mapping = filp->f_mapping;
954 struct inode *inode = file_inode(filp);
955 ssize_t ret = -EINVAL;
956
957 if (!cd->cache_parse)
958 goto out;
959
960 inode_lock(inode);
961 ret = cache_downcall(mapping, buf, count, cd);
962 inode_unlock(inode);
963 out:
964 return ret;
965 }
966
967 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
968
cache_poll(struct file * filp,poll_table * wait,struct cache_detail * cd)969 static __poll_t cache_poll(struct file *filp, poll_table *wait,
970 struct cache_detail *cd)
971 {
972 __poll_t mask;
973 struct cache_reader *rp = filp->private_data;
974 struct cache_queue *cq;
975
976 poll_wait(filp, &queue_wait, wait);
977
978 /* alway allow write */
979 mask = EPOLLOUT | EPOLLWRNORM;
980
981 if (!rp)
982 return mask;
983
984 spin_lock(&queue_lock);
985
986 for (cq= &rp->q; &cq->list != &cd->queue;
987 cq = list_entry(cq->list.next, struct cache_queue, list))
988 if (!cq->reader) {
989 mask |= EPOLLIN | EPOLLRDNORM;
990 break;
991 }
992 spin_unlock(&queue_lock);
993 return mask;
994 }
995
cache_ioctl(struct inode * ino,struct file * filp,unsigned int cmd,unsigned long arg,struct cache_detail * cd)996 static int cache_ioctl(struct inode *ino, struct file *filp,
997 unsigned int cmd, unsigned long arg,
998 struct cache_detail *cd)
999 {
1000 int len = 0;
1001 struct cache_reader *rp = filp->private_data;
1002 struct cache_queue *cq;
1003
1004 if (cmd != FIONREAD || !rp)
1005 return -EINVAL;
1006
1007 spin_lock(&queue_lock);
1008
1009 /* only find the length remaining in current request,
1010 * or the length of the next request
1011 */
1012 for (cq= &rp->q; &cq->list != &cd->queue;
1013 cq = list_entry(cq->list.next, struct cache_queue, list))
1014 if (!cq->reader) {
1015 struct cache_request *cr =
1016 container_of(cq, struct cache_request, q);
1017 len = cr->len - rp->offset;
1018 break;
1019 }
1020 spin_unlock(&queue_lock);
1021
1022 return put_user(len, (int __user *)arg);
1023 }
1024
cache_open(struct inode * inode,struct file * filp,struct cache_detail * cd)1025 static int cache_open(struct inode *inode, struct file *filp,
1026 struct cache_detail *cd)
1027 {
1028 struct cache_reader *rp = NULL;
1029
1030 if (!cd || !try_module_get(cd->owner))
1031 return -EACCES;
1032 nonseekable_open(inode, filp);
1033 if (filp->f_mode & FMODE_READ) {
1034 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1035 if (!rp) {
1036 module_put(cd->owner);
1037 return -ENOMEM;
1038 }
1039 rp->offset = 0;
1040 rp->q.reader = 1;
1041
1042 spin_lock(&queue_lock);
1043 list_add(&rp->q.list, &cd->queue);
1044 spin_unlock(&queue_lock);
1045 }
1046 if (filp->f_mode & FMODE_WRITE)
1047 atomic_inc(&cd->writers);
1048 filp->private_data = rp;
1049 return 0;
1050 }
1051
cache_release(struct inode * inode,struct file * filp,struct cache_detail * cd)1052 static int cache_release(struct inode *inode, struct file *filp,
1053 struct cache_detail *cd)
1054 {
1055 struct cache_reader *rp = filp->private_data;
1056
1057 if (rp) {
1058 spin_lock(&queue_lock);
1059 if (rp->offset) {
1060 struct cache_queue *cq;
1061 for (cq= &rp->q; &cq->list != &cd->queue;
1062 cq = list_entry(cq->list.next, struct cache_queue, list))
1063 if (!cq->reader) {
1064 container_of(cq, struct cache_request, q)
1065 ->readers--;
1066 break;
1067 }
1068 rp->offset = 0;
1069 }
1070 list_del(&rp->q.list);
1071 spin_unlock(&queue_lock);
1072
1073 filp->private_data = NULL;
1074 kfree(rp);
1075
1076 }
1077 if (filp->f_mode & FMODE_WRITE) {
1078 atomic_dec(&cd->writers);
1079 cd->last_close = seconds_since_boot();
1080 }
1081 module_put(cd->owner);
1082 return 0;
1083 }
1084
1085
1086
cache_dequeue(struct cache_detail * detail,struct cache_head * ch)1087 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1088 {
1089 struct cache_queue *cq, *tmp;
1090 struct cache_request *cr;
1091 struct list_head dequeued;
1092
1093 INIT_LIST_HEAD(&dequeued);
1094 spin_lock(&queue_lock);
1095 list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1096 if (!cq->reader) {
1097 cr = container_of(cq, struct cache_request, q);
1098 if (cr->item != ch)
1099 continue;
1100 if (test_bit(CACHE_PENDING, &ch->flags))
1101 /* Lost a race and it is pending again */
1102 break;
1103 if (cr->readers != 0)
1104 continue;
1105 list_move(&cr->q.list, &dequeued);
1106 }
1107 spin_unlock(&queue_lock);
1108 while (!list_empty(&dequeued)) {
1109 cr = list_entry(dequeued.next, struct cache_request, q.list);
1110 list_del(&cr->q.list);
1111 cache_put(cr->item, detail);
1112 kfree(cr->buf);
1113 kfree(cr);
1114 }
1115 }
1116
1117 /*
1118 * Support routines for text-based upcalls.
1119 * Fields are separated by spaces.
1120 * Fields are either mangled to quote space tab newline slosh with slosh
1121 * or a hexified with a leading \x
1122 * Record is terminated with newline.
1123 *
1124 */
1125
qword_add(char ** bpp,int * lp,char * str)1126 void qword_add(char **bpp, int *lp, char *str)
1127 {
1128 char *bp = *bpp;
1129 int len = *lp;
1130 int ret;
1131
1132 if (len < 0) return;
1133
1134 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1135 if (ret >= len) {
1136 bp += len;
1137 len = -1;
1138 } else {
1139 bp += ret;
1140 len -= ret;
1141 *bp++ = ' ';
1142 len--;
1143 }
1144 *bpp = bp;
1145 *lp = len;
1146 }
1147 EXPORT_SYMBOL_GPL(qword_add);
1148
qword_addhex(char ** bpp,int * lp,char * buf,int blen)1149 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1150 {
1151 char *bp = *bpp;
1152 int len = *lp;
1153
1154 if (len < 0) return;
1155
1156 if (len > 2) {
1157 *bp++ = '\\';
1158 *bp++ = 'x';
1159 len -= 2;
1160 while (blen && len >= 2) {
1161 bp = hex_byte_pack(bp, *buf++);
1162 len -= 2;
1163 blen--;
1164 }
1165 }
1166 if (blen || len<1) len = -1;
1167 else {
1168 *bp++ = ' ';
1169 len--;
1170 }
1171 *bpp = bp;
1172 *lp = len;
1173 }
1174 EXPORT_SYMBOL_GPL(qword_addhex);
1175
warn_no_listener(struct cache_detail * detail)1176 static void warn_no_listener(struct cache_detail *detail)
1177 {
1178 if (detail->last_warn != detail->last_close) {
1179 detail->last_warn = detail->last_close;
1180 if (detail->warn_no_listener)
1181 detail->warn_no_listener(detail, detail->last_close != 0);
1182 }
1183 }
1184
cache_listeners_exist(struct cache_detail * detail)1185 static bool cache_listeners_exist(struct cache_detail *detail)
1186 {
1187 if (atomic_read(&detail->writers))
1188 return true;
1189 if (detail->last_close == 0)
1190 /* This cache was never opened */
1191 return false;
1192 if (detail->last_close < seconds_since_boot() - 30)
1193 /*
1194 * We allow for the possibility that someone might
1195 * restart a userspace daemon without restarting the
1196 * server; but after 30 seconds, we give up.
1197 */
1198 return false;
1199 return true;
1200 }
1201
1202 /*
1203 * register an upcall request to user-space and queue it up for read() by the
1204 * upcall daemon.
1205 *
1206 * Each request is at most one page long.
1207 */
cache_pipe_upcall(struct cache_detail * detail,struct cache_head * h)1208 static int cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1209 {
1210 char *buf;
1211 struct cache_request *crq;
1212 int ret = 0;
1213
1214 if (test_bit(CACHE_CLEANED, &h->flags))
1215 /* Too late to make an upcall */
1216 return -EAGAIN;
1217
1218 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1219 if (!buf)
1220 return -EAGAIN;
1221
1222 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1223 if (!crq) {
1224 kfree(buf);
1225 return -EAGAIN;
1226 }
1227
1228 crq->q.reader = 0;
1229 crq->buf = buf;
1230 crq->len = 0;
1231 crq->readers = 0;
1232 spin_lock(&queue_lock);
1233 if (test_bit(CACHE_PENDING, &h->flags)) {
1234 crq->item = cache_get(h);
1235 list_add_tail(&crq->q.list, &detail->queue);
1236 trace_cache_entry_upcall(detail, h);
1237 } else
1238 /* Lost a race, no longer PENDING, so don't enqueue */
1239 ret = -EAGAIN;
1240 spin_unlock(&queue_lock);
1241 wake_up(&queue_wait);
1242 if (ret == -EAGAIN) {
1243 kfree(buf);
1244 kfree(crq);
1245 }
1246 return ret;
1247 }
1248
sunrpc_cache_pipe_upcall(struct cache_detail * detail,struct cache_head * h)1249 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1250 {
1251 if (test_and_set_bit(CACHE_PENDING, &h->flags))
1252 return 0;
1253 return cache_pipe_upcall(detail, h);
1254 }
1255 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1256
sunrpc_cache_pipe_upcall_timeout(struct cache_detail * detail,struct cache_head * h)1257 int sunrpc_cache_pipe_upcall_timeout(struct cache_detail *detail,
1258 struct cache_head *h)
1259 {
1260 if (!cache_listeners_exist(detail)) {
1261 warn_no_listener(detail);
1262 trace_cache_entry_no_listener(detail, h);
1263 return -EINVAL;
1264 }
1265 return sunrpc_cache_pipe_upcall(detail, h);
1266 }
1267 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall_timeout);
1268
1269 /*
1270 * parse a message from user-space and pass it
1271 * to an appropriate cache
1272 * Messages are, like requests, separated into fields by
1273 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1274 *
1275 * Message is
1276 * reply cachename expiry key ... content....
1277 *
1278 * key and content are both parsed by cache
1279 */
1280
qword_get(char ** bpp,char * dest,int bufsize)1281 int qword_get(char **bpp, char *dest, int bufsize)
1282 {
1283 /* return bytes copied, or -1 on error */
1284 char *bp = *bpp;
1285 int len = 0;
1286
1287 while (*bp == ' ') bp++;
1288
1289 if (bp[0] == '\\' && bp[1] == 'x') {
1290 /* HEX STRING */
1291 bp += 2;
1292 while (len < bufsize - 1) {
1293 int h, l;
1294
1295 h = hex_to_bin(bp[0]);
1296 if (h < 0)
1297 break;
1298
1299 l = hex_to_bin(bp[1]);
1300 if (l < 0)
1301 break;
1302
1303 *dest++ = (h << 4) | l;
1304 bp += 2;
1305 len++;
1306 }
1307 } else {
1308 /* text with \nnn octal quoting */
1309 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1310 if (*bp == '\\' &&
1311 isodigit(bp[1]) && (bp[1] <= '3') &&
1312 isodigit(bp[2]) &&
1313 isodigit(bp[3])) {
1314 int byte = (*++bp -'0');
1315 bp++;
1316 byte = (byte << 3) | (*bp++ - '0');
1317 byte = (byte << 3) | (*bp++ - '0');
1318 *dest++ = byte;
1319 len++;
1320 } else {
1321 *dest++ = *bp++;
1322 len++;
1323 }
1324 }
1325 }
1326
1327 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1328 return -1;
1329 while (*bp == ' ') bp++;
1330 *bpp = bp;
1331 *dest = '\0';
1332 return len;
1333 }
1334 EXPORT_SYMBOL_GPL(qword_get);
1335
1336
1337 /*
1338 * support /proc/net/rpc/$CACHENAME/content
1339 * as a seqfile.
1340 * We call ->cache_show passing NULL for the item to
1341 * get a header, then pass each real item in the cache
1342 */
1343
__cache_seq_start(struct seq_file * m,loff_t * pos)1344 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1345 {
1346 loff_t n = *pos;
1347 unsigned int hash, entry;
1348 struct cache_head *ch;
1349 struct cache_detail *cd = m->private;
1350
1351 if (!n--)
1352 return SEQ_START_TOKEN;
1353 hash = n >> 32;
1354 entry = n & ((1LL<<32) - 1);
1355
1356 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1357 if (!entry--)
1358 return ch;
1359 n &= ~((1LL<<32) - 1);
1360 do {
1361 hash++;
1362 n += 1LL<<32;
1363 } while(hash < cd->hash_size &&
1364 hlist_empty(&cd->hash_table[hash]));
1365 if (hash >= cd->hash_size)
1366 return NULL;
1367 *pos = n+1;
1368 return hlist_entry_safe(rcu_dereference_raw(
1369 hlist_first_rcu(&cd->hash_table[hash])),
1370 struct cache_head, cache_list);
1371 }
1372
cache_seq_next(struct seq_file * m,void * p,loff_t * pos)1373 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1374 {
1375 struct cache_head *ch = p;
1376 int hash = (*pos >> 32);
1377 struct cache_detail *cd = m->private;
1378
1379 if (p == SEQ_START_TOKEN)
1380 hash = 0;
1381 else if (ch->cache_list.next == NULL) {
1382 hash++;
1383 *pos += 1LL<<32;
1384 } else {
1385 ++*pos;
1386 return hlist_entry_safe(rcu_dereference_raw(
1387 hlist_next_rcu(&ch->cache_list)),
1388 struct cache_head, cache_list);
1389 }
1390 *pos &= ~((1LL<<32) - 1);
1391 while (hash < cd->hash_size &&
1392 hlist_empty(&cd->hash_table[hash])) {
1393 hash++;
1394 *pos += 1LL<<32;
1395 }
1396 if (hash >= cd->hash_size)
1397 return NULL;
1398 ++*pos;
1399 return hlist_entry_safe(rcu_dereference_raw(
1400 hlist_first_rcu(&cd->hash_table[hash])),
1401 struct cache_head, cache_list);
1402 }
1403
cache_seq_start_rcu(struct seq_file * m,loff_t * pos)1404 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1405 __acquires(RCU)
1406 {
1407 rcu_read_lock();
1408 return __cache_seq_start(m, pos);
1409 }
1410 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1411
cache_seq_next_rcu(struct seq_file * file,void * p,loff_t * pos)1412 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1413 {
1414 return cache_seq_next(file, p, pos);
1415 }
1416 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1417
cache_seq_stop_rcu(struct seq_file * m,void * p)1418 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1419 __releases(RCU)
1420 {
1421 rcu_read_unlock();
1422 }
1423 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1424
c_show(struct seq_file * m,void * p)1425 static int c_show(struct seq_file *m, void *p)
1426 {
1427 struct cache_head *cp = p;
1428 struct cache_detail *cd = m->private;
1429
1430 if (p == SEQ_START_TOKEN)
1431 return cd->cache_show(m, cd, NULL);
1432
1433 ifdebug(CACHE)
1434 seq_printf(m, "# expiry=%lld refcnt=%d flags=%lx\n",
1435 convert_to_wallclock(cp->expiry_time),
1436 kref_read(&cp->ref), cp->flags);
1437 cache_get(cp);
1438 if (cache_check(cd, cp, NULL))
1439 /* cache_check does a cache_put on failure */
1440 seq_puts(m, "# ");
1441 else {
1442 if (cache_is_expired(cd, cp))
1443 seq_puts(m, "# ");
1444 cache_put(cp, cd);
1445 }
1446
1447 return cd->cache_show(m, cd, cp);
1448 }
1449
1450 static const struct seq_operations cache_content_op = {
1451 .start = cache_seq_start_rcu,
1452 .next = cache_seq_next_rcu,
1453 .stop = cache_seq_stop_rcu,
1454 .show = c_show,
1455 };
1456
content_open(struct inode * inode,struct file * file,struct cache_detail * cd)1457 static int content_open(struct inode *inode, struct file *file,
1458 struct cache_detail *cd)
1459 {
1460 struct seq_file *seq;
1461 int err;
1462
1463 if (!cd || !try_module_get(cd->owner))
1464 return -EACCES;
1465
1466 err = seq_open(file, &cache_content_op);
1467 if (err) {
1468 module_put(cd->owner);
1469 return err;
1470 }
1471
1472 seq = file->private_data;
1473 seq->private = cd;
1474 return 0;
1475 }
1476
content_release(struct inode * inode,struct file * file,struct cache_detail * cd)1477 static int content_release(struct inode *inode, struct file *file,
1478 struct cache_detail *cd)
1479 {
1480 int ret = seq_release(inode, file);
1481 module_put(cd->owner);
1482 return ret;
1483 }
1484
open_flush(struct inode * inode,struct file * file,struct cache_detail * cd)1485 static int open_flush(struct inode *inode, struct file *file,
1486 struct cache_detail *cd)
1487 {
1488 if (!cd || !try_module_get(cd->owner))
1489 return -EACCES;
1490 return nonseekable_open(inode, file);
1491 }
1492
release_flush(struct inode * inode,struct file * file,struct cache_detail * cd)1493 static int release_flush(struct inode *inode, struct file *file,
1494 struct cache_detail *cd)
1495 {
1496 module_put(cd->owner);
1497 return 0;
1498 }
1499
read_flush(struct file * file,char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)1500 static ssize_t read_flush(struct file *file, char __user *buf,
1501 size_t count, loff_t *ppos,
1502 struct cache_detail *cd)
1503 {
1504 char tbuf[22];
1505 size_t len;
1506
1507 len = snprintf(tbuf, sizeof(tbuf), "%llu\n",
1508 convert_to_wallclock(cd->flush_time));
1509 return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1510 }
1511
write_flush(struct file * file,const char __user * buf,size_t count,loff_t * ppos,struct cache_detail * cd)1512 static ssize_t write_flush(struct file *file, const char __user *buf,
1513 size_t count, loff_t *ppos,
1514 struct cache_detail *cd)
1515 {
1516 char tbuf[20];
1517 char *ep;
1518 time64_t now;
1519
1520 if (*ppos || count > sizeof(tbuf)-1)
1521 return -EINVAL;
1522 if (copy_from_user(tbuf, buf, count))
1523 return -EFAULT;
1524 tbuf[count] = 0;
1525 simple_strtoul(tbuf, &ep, 0);
1526 if (*ep && *ep != '\n')
1527 return -EINVAL;
1528 /* Note that while we check that 'buf' holds a valid number,
1529 * we always ignore the value and just flush everything.
1530 * Making use of the number leads to races.
1531 */
1532
1533 now = seconds_since_boot();
1534 /* Always flush everything, so behave like cache_purge()
1535 * Do this by advancing flush_time to the current time,
1536 * or by one second if it has already reached the current time.
1537 * Newly added cache entries will always have ->last_refresh greater
1538 * that ->flush_time, so they don't get flushed prematurely.
1539 */
1540
1541 if (cd->flush_time >= now)
1542 now = cd->flush_time + 1;
1543
1544 cd->flush_time = now;
1545 cd->nextcheck = now;
1546 cache_flush();
1547
1548 if (cd->flush)
1549 cd->flush();
1550
1551 *ppos += count;
1552 return count;
1553 }
1554
cache_read_procfs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1555 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1556 size_t count, loff_t *ppos)
1557 {
1558 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1559
1560 return cache_read(filp, buf, count, ppos, cd);
1561 }
1562
cache_write_procfs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1563 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1564 size_t count, loff_t *ppos)
1565 {
1566 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1567
1568 return cache_write(filp, buf, count, ppos, cd);
1569 }
1570
cache_poll_procfs(struct file * filp,poll_table * wait)1571 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1572 {
1573 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1574
1575 return cache_poll(filp, wait, cd);
1576 }
1577
cache_ioctl_procfs(struct file * filp,unsigned int cmd,unsigned long arg)1578 static long cache_ioctl_procfs(struct file *filp,
1579 unsigned int cmd, unsigned long arg)
1580 {
1581 struct inode *inode = file_inode(filp);
1582 struct cache_detail *cd = PDE_DATA(inode);
1583
1584 return cache_ioctl(inode, filp, cmd, arg, cd);
1585 }
1586
cache_open_procfs(struct inode * inode,struct file * filp)1587 static int cache_open_procfs(struct inode *inode, struct file *filp)
1588 {
1589 struct cache_detail *cd = PDE_DATA(inode);
1590
1591 return cache_open(inode, filp, cd);
1592 }
1593
cache_release_procfs(struct inode * inode,struct file * filp)1594 static int cache_release_procfs(struct inode *inode, struct file *filp)
1595 {
1596 struct cache_detail *cd = PDE_DATA(inode);
1597
1598 return cache_release(inode, filp, cd);
1599 }
1600
1601 static const struct proc_ops cache_channel_proc_ops = {
1602 .proc_lseek = no_llseek,
1603 .proc_read = cache_read_procfs,
1604 .proc_write = cache_write_procfs,
1605 .proc_poll = cache_poll_procfs,
1606 .proc_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1607 .proc_open = cache_open_procfs,
1608 .proc_release = cache_release_procfs,
1609 };
1610
content_open_procfs(struct inode * inode,struct file * filp)1611 static int content_open_procfs(struct inode *inode, struct file *filp)
1612 {
1613 struct cache_detail *cd = PDE_DATA(inode);
1614
1615 return content_open(inode, filp, cd);
1616 }
1617
content_release_procfs(struct inode * inode,struct file * filp)1618 static int content_release_procfs(struct inode *inode, struct file *filp)
1619 {
1620 struct cache_detail *cd = PDE_DATA(inode);
1621
1622 return content_release(inode, filp, cd);
1623 }
1624
1625 static const struct proc_ops content_proc_ops = {
1626 .proc_open = content_open_procfs,
1627 .proc_read = seq_read,
1628 .proc_lseek = seq_lseek,
1629 .proc_release = content_release_procfs,
1630 };
1631
open_flush_procfs(struct inode * inode,struct file * filp)1632 static int open_flush_procfs(struct inode *inode, struct file *filp)
1633 {
1634 struct cache_detail *cd = PDE_DATA(inode);
1635
1636 return open_flush(inode, filp, cd);
1637 }
1638
release_flush_procfs(struct inode * inode,struct file * filp)1639 static int release_flush_procfs(struct inode *inode, struct file *filp)
1640 {
1641 struct cache_detail *cd = PDE_DATA(inode);
1642
1643 return release_flush(inode, filp, cd);
1644 }
1645
read_flush_procfs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1646 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1647 size_t count, loff_t *ppos)
1648 {
1649 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1650
1651 return read_flush(filp, buf, count, ppos, cd);
1652 }
1653
write_flush_procfs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1654 static ssize_t write_flush_procfs(struct file *filp,
1655 const char __user *buf,
1656 size_t count, loff_t *ppos)
1657 {
1658 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1659
1660 return write_flush(filp, buf, count, ppos, cd);
1661 }
1662
1663 static const struct proc_ops cache_flush_proc_ops = {
1664 .proc_open = open_flush_procfs,
1665 .proc_read = read_flush_procfs,
1666 .proc_write = write_flush_procfs,
1667 .proc_release = release_flush_procfs,
1668 .proc_lseek = no_llseek,
1669 };
1670
remove_cache_proc_entries(struct cache_detail * cd)1671 static void remove_cache_proc_entries(struct cache_detail *cd)
1672 {
1673 if (cd->procfs) {
1674 proc_remove(cd->procfs);
1675 cd->procfs = NULL;
1676 }
1677 }
1678
1679 #ifdef CONFIG_PROC_FS
create_cache_proc_entries(struct cache_detail * cd,struct net * net)1680 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1681 {
1682 struct proc_dir_entry *p;
1683 struct sunrpc_net *sn;
1684
1685 sn = net_generic(net, sunrpc_net_id);
1686 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1687 if (cd->procfs == NULL)
1688 goto out_nomem;
1689
1690 p = proc_create_data("flush", S_IFREG | 0600,
1691 cd->procfs, &cache_flush_proc_ops, cd);
1692 if (p == NULL)
1693 goto out_nomem;
1694
1695 if (cd->cache_request || cd->cache_parse) {
1696 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1697 &cache_channel_proc_ops, cd);
1698 if (p == NULL)
1699 goto out_nomem;
1700 }
1701 if (cd->cache_show) {
1702 p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1703 &content_proc_ops, cd);
1704 if (p == NULL)
1705 goto out_nomem;
1706 }
1707 return 0;
1708 out_nomem:
1709 remove_cache_proc_entries(cd);
1710 return -ENOMEM;
1711 }
1712 #else /* CONFIG_PROC_FS */
create_cache_proc_entries(struct cache_detail * cd,struct net * net)1713 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1714 {
1715 return 0;
1716 }
1717 #endif
1718
cache_initialize(void)1719 void __init cache_initialize(void)
1720 {
1721 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1722 }
1723
cache_register_net(struct cache_detail * cd,struct net * net)1724 int cache_register_net(struct cache_detail *cd, struct net *net)
1725 {
1726 int ret;
1727
1728 sunrpc_init_cache_detail(cd);
1729 ret = create_cache_proc_entries(cd, net);
1730 if (ret)
1731 sunrpc_destroy_cache_detail(cd);
1732 return ret;
1733 }
1734 EXPORT_SYMBOL_GPL(cache_register_net);
1735
cache_unregister_net(struct cache_detail * cd,struct net * net)1736 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1737 {
1738 remove_cache_proc_entries(cd);
1739 sunrpc_destroy_cache_detail(cd);
1740 }
1741 EXPORT_SYMBOL_GPL(cache_unregister_net);
1742
cache_create_net(const struct cache_detail * tmpl,struct net * net)1743 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1744 {
1745 struct cache_detail *cd;
1746 int i;
1747
1748 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1749 if (cd == NULL)
1750 return ERR_PTR(-ENOMEM);
1751
1752 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1753 GFP_KERNEL);
1754 if (cd->hash_table == NULL) {
1755 kfree(cd);
1756 return ERR_PTR(-ENOMEM);
1757 }
1758
1759 for (i = 0; i < cd->hash_size; i++)
1760 INIT_HLIST_HEAD(&cd->hash_table[i]);
1761 cd->net = net;
1762 return cd;
1763 }
1764 EXPORT_SYMBOL_GPL(cache_create_net);
1765
cache_destroy_net(struct cache_detail * cd,struct net * net)1766 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1767 {
1768 kfree(cd->hash_table);
1769 kfree(cd);
1770 }
1771 EXPORT_SYMBOL_GPL(cache_destroy_net);
1772
cache_read_pipefs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1773 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1774 size_t count, loff_t *ppos)
1775 {
1776 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1777
1778 return cache_read(filp, buf, count, ppos, cd);
1779 }
1780
cache_write_pipefs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1781 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1782 size_t count, loff_t *ppos)
1783 {
1784 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1785
1786 return cache_write(filp, buf, count, ppos, cd);
1787 }
1788
cache_poll_pipefs(struct file * filp,poll_table * wait)1789 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1790 {
1791 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1792
1793 return cache_poll(filp, wait, cd);
1794 }
1795
cache_ioctl_pipefs(struct file * filp,unsigned int cmd,unsigned long arg)1796 static long cache_ioctl_pipefs(struct file *filp,
1797 unsigned int cmd, unsigned long arg)
1798 {
1799 struct inode *inode = file_inode(filp);
1800 struct cache_detail *cd = RPC_I(inode)->private;
1801
1802 return cache_ioctl(inode, filp, cmd, arg, cd);
1803 }
1804
cache_open_pipefs(struct inode * inode,struct file * filp)1805 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1806 {
1807 struct cache_detail *cd = RPC_I(inode)->private;
1808
1809 return cache_open(inode, filp, cd);
1810 }
1811
cache_release_pipefs(struct inode * inode,struct file * filp)1812 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1813 {
1814 struct cache_detail *cd = RPC_I(inode)->private;
1815
1816 return cache_release(inode, filp, cd);
1817 }
1818
1819 const struct file_operations cache_file_operations_pipefs = {
1820 .owner = THIS_MODULE,
1821 .llseek = no_llseek,
1822 .read = cache_read_pipefs,
1823 .write = cache_write_pipefs,
1824 .poll = cache_poll_pipefs,
1825 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1826 .open = cache_open_pipefs,
1827 .release = cache_release_pipefs,
1828 };
1829
content_open_pipefs(struct inode * inode,struct file * filp)1830 static int content_open_pipefs(struct inode *inode, struct file *filp)
1831 {
1832 struct cache_detail *cd = RPC_I(inode)->private;
1833
1834 return content_open(inode, filp, cd);
1835 }
1836
content_release_pipefs(struct inode * inode,struct file * filp)1837 static int content_release_pipefs(struct inode *inode, struct file *filp)
1838 {
1839 struct cache_detail *cd = RPC_I(inode)->private;
1840
1841 return content_release(inode, filp, cd);
1842 }
1843
1844 const struct file_operations content_file_operations_pipefs = {
1845 .open = content_open_pipefs,
1846 .read = seq_read,
1847 .llseek = seq_lseek,
1848 .release = content_release_pipefs,
1849 };
1850
open_flush_pipefs(struct inode * inode,struct file * filp)1851 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1852 {
1853 struct cache_detail *cd = RPC_I(inode)->private;
1854
1855 return open_flush(inode, filp, cd);
1856 }
1857
release_flush_pipefs(struct inode * inode,struct file * filp)1858 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1859 {
1860 struct cache_detail *cd = RPC_I(inode)->private;
1861
1862 return release_flush(inode, filp, cd);
1863 }
1864
read_flush_pipefs(struct file * filp,char __user * buf,size_t count,loff_t * ppos)1865 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1866 size_t count, loff_t *ppos)
1867 {
1868 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1869
1870 return read_flush(filp, buf, count, ppos, cd);
1871 }
1872
write_flush_pipefs(struct file * filp,const char __user * buf,size_t count,loff_t * ppos)1873 static ssize_t write_flush_pipefs(struct file *filp,
1874 const char __user *buf,
1875 size_t count, loff_t *ppos)
1876 {
1877 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1878
1879 return write_flush(filp, buf, count, ppos, cd);
1880 }
1881
1882 const struct file_operations cache_flush_operations_pipefs = {
1883 .open = open_flush_pipefs,
1884 .read = read_flush_pipefs,
1885 .write = write_flush_pipefs,
1886 .release = release_flush_pipefs,
1887 .llseek = no_llseek,
1888 };
1889
sunrpc_cache_register_pipefs(struct dentry * parent,const char * name,umode_t umode,struct cache_detail * cd)1890 int sunrpc_cache_register_pipefs(struct dentry *parent,
1891 const char *name, umode_t umode,
1892 struct cache_detail *cd)
1893 {
1894 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1895 if (IS_ERR(dir))
1896 return PTR_ERR(dir);
1897 cd->pipefs = dir;
1898 return 0;
1899 }
1900 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1901
sunrpc_cache_unregister_pipefs(struct cache_detail * cd)1902 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1903 {
1904 if (cd->pipefs) {
1905 rpc_remove_cache_dir(cd->pipefs);
1906 cd->pipefs = NULL;
1907 }
1908 }
1909 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1910
sunrpc_cache_unhash(struct cache_detail * cd,struct cache_head * h)1911 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1912 {
1913 spin_lock(&cd->hash_lock);
1914 if (!hlist_unhashed(&h->cache_list)){
1915 sunrpc_begin_cache_remove_entry(h, cd);
1916 spin_unlock(&cd->hash_lock);
1917 sunrpc_end_cache_remove_entry(h, cd);
1918 } else
1919 spin_unlock(&cd->hash_lock);
1920 }
1921 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);
1922