1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (c) 2011-2014, Intel Corporation.
4 */
5
6 #ifndef _NVME_H
7 #define _NVME_H
8
9 #include <linux/nvme.h>
10 #include <linux/cdev.h>
11 #include <linux/pci.h>
12 #include <linux/kref.h>
13 #include <linux/blk-mq.h>
14 #include <linux/sed-opal.h>
15 #include <linux/fault-inject.h>
16 #include <linux/rcupdate.h>
17 #include <linux/wait.h>
18 #include <linux/t10-pi.h>
19
20 #include <trace/events/block.h>
21
22 extern const struct pr_ops nvme_pr_ops;
23
24 extern unsigned int nvme_io_timeout;
25 #define NVME_IO_TIMEOUT (nvme_io_timeout * HZ)
26
27 extern unsigned int admin_timeout;
28 #define NVME_ADMIN_TIMEOUT (admin_timeout * HZ)
29
30 #define NVME_DEFAULT_KATO 5
31
32 #ifdef CONFIG_ARCH_NO_SG_CHAIN
33 #define NVME_INLINE_SG_CNT 0
34 #define NVME_INLINE_METADATA_SG_CNT 0
35 #else
36 #define NVME_INLINE_SG_CNT 2
37 #define NVME_INLINE_METADATA_SG_CNT 1
38 #endif
39
40 /*
41 * Default to a 4K page size, with the intention to update this
42 * path in the future to accommodate architectures with differing
43 * kernel and IO page sizes.
44 */
45 #define NVME_CTRL_PAGE_SHIFT 12
46 #define NVME_CTRL_PAGE_SIZE (1 << NVME_CTRL_PAGE_SHIFT)
47
48 extern struct workqueue_struct *nvme_wq;
49 extern struct workqueue_struct *nvme_reset_wq;
50 extern struct workqueue_struct *nvme_delete_wq;
51
52 /*
53 * List of workarounds for devices that required behavior not specified in
54 * the standard.
55 */
56 enum nvme_quirks {
57 /*
58 * Prefers I/O aligned to a stripe size specified in a vendor
59 * specific Identify field.
60 */
61 NVME_QUIRK_STRIPE_SIZE = (1 << 0),
62
63 /*
64 * The controller doesn't handle Identify value others than 0 or 1
65 * correctly.
66 */
67 NVME_QUIRK_IDENTIFY_CNS = (1 << 1),
68
69 /*
70 * The controller deterministically returns O's on reads to
71 * logical blocks that deallocate was called on.
72 */
73 NVME_QUIRK_DEALLOCATE_ZEROES = (1 << 2),
74
75 /*
76 * The controller needs a delay before starts checking the device
77 * readiness, which is done by reading the NVME_CSTS_RDY bit.
78 */
79 NVME_QUIRK_DELAY_BEFORE_CHK_RDY = (1 << 3),
80
81 /*
82 * APST should not be used.
83 */
84 NVME_QUIRK_NO_APST = (1 << 4),
85
86 /*
87 * The deepest sleep state should not be used.
88 */
89 NVME_QUIRK_NO_DEEPEST_PS = (1 << 5),
90
91 /*
92 * Set MEDIUM priority on SQ creation
93 */
94 NVME_QUIRK_MEDIUM_PRIO_SQ = (1 << 7),
95
96 /*
97 * Ignore device provided subnqn.
98 */
99 NVME_QUIRK_IGNORE_DEV_SUBNQN = (1 << 8),
100
101 /*
102 * Broken Write Zeroes.
103 */
104 NVME_QUIRK_DISABLE_WRITE_ZEROES = (1 << 9),
105
106 /*
107 * Force simple suspend/resume path.
108 */
109 NVME_QUIRK_SIMPLE_SUSPEND = (1 << 10),
110
111 /*
112 * Use only one interrupt vector for all queues
113 */
114 NVME_QUIRK_SINGLE_VECTOR = (1 << 11),
115
116 /*
117 * Use non-standard 128 bytes SQEs.
118 */
119 NVME_QUIRK_128_BYTES_SQES = (1 << 12),
120
121 /*
122 * Prevent tag overlap between queues
123 */
124 NVME_QUIRK_SHARED_TAGS = (1 << 13),
125
126 /*
127 * Don't change the value of the temperature threshold feature
128 */
129 NVME_QUIRK_NO_TEMP_THRESH_CHANGE = (1 << 14),
130
131 /*
132 * The controller doesn't handle the Identify Namespace
133 * Identification Descriptor list subcommand despite claiming
134 * NVMe 1.3 compliance.
135 */
136 NVME_QUIRK_NO_NS_DESC_LIST = (1 << 15),
137
138 /*
139 * The controller does not properly handle DMA addresses over
140 * 48 bits.
141 */
142 NVME_QUIRK_DMA_ADDRESS_BITS_48 = (1 << 16),
143
144 /*
145 * The controller requires the command_id value be limited, so skip
146 * encoding the generation sequence number.
147 */
148 NVME_QUIRK_SKIP_CID_GEN = (1 << 17),
149
150 /*
151 * Reports garbage in the namespace identifiers (eui64, nguid, uuid).
152 */
153 NVME_QUIRK_BOGUS_NID = (1 << 18),
154
155 /*
156 * No temperature thresholds for channels other than 0 (Composite).
157 */
158 NVME_QUIRK_NO_SECONDARY_TEMP_THRESH = (1 << 19),
159 };
160
161 /*
162 * Common request structure for NVMe passthrough. All drivers must have
163 * this structure as the first member of their request-private data.
164 */
165 struct nvme_request {
166 struct nvme_command *cmd;
167 union nvme_result result;
168 u8 genctr;
169 u8 retries;
170 u8 flags;
171 u16 status;
172 #ifdef CONFIG_NVME_MULTIPATH
173 unsigned long start_time;
174 #endif
175 struct nvme_ctrl *ctrl;
176 };
177
178 /*
179 * Mark a bio as coming in through the mpath node.
180 */
181 #define REQ_NVME_MPATH REQ_DRV
182
183 enum {
184 NVME_REQ_CANCELLED = (1 << 0),
185 NVME_REQ_USERCMD = (1 << 1),
186 NVME_MPATH_IO_STATS = (1 << 2),
187 };
188
nvme_req(struct request * req)189 static inline struct nvme_request *nvme_req(struct request *req)
190 {
191 return blk_mq_rq_to_pdu(req);
192 }
193
nvme_req_qid(struct request * req)194 static inline u16 nvme_req_qid(struct request *req)
195 {
196 if (!req->q->queuedata)
197 return 0;
198
199 return req->mq_hctx->queue_num + 1;
200 }
201
202 /* The below value is the specific amount of delay needed before checking
203 * readiness in case of the PCI_DEVICE(0x1c58, 0x0003), which needs the
204 * NVME_QUIRK_DELAY_BEFORE_CHK_RDY quirk enabled. The value (in ms) was
205 * found empirically.
206 */
207 #define NVME_QUIRK_DELAY_AMOUNT 2300
208
209 /*
210 * enum nvme_ctrl_state: Controller state
211 *
212 * @NVME_CTRL_NEW: New controller just allocated, initial state
213 * @NVME_CTRL_LIVE: Controller is connected and I/O capable
214 * @NVME_CTRL_RESETTING: Controller is resetting (or scheduled reset)
215 * @NVME_CTRL_CONNECTING: Controller is disconnected, now connecting the
216 * transport
217 * @NVME_CTRL_DELETING: Controller is deleting (or scheduled deletion)
218 * @NVME_CTRL_DELETING_NOIO: Controller is deleting and I/O is not
219 * disabled/failed immediately. This state comes
220 * after all async event processing took place and
221 * before ns removal and the controller deletion
222 * progress
223 * @NVME_CTRL_DEAD: Controller is non-present/unresponsive during
224 * shutdown or removal. In this case we forcibly
225 * kill all inflight I/O as they have no chance to
226 * complete
227 */
228 enum nvme_ctrl_state {
229 NVME_CTRL_NEW,
230 NVME_CTRL_LIVE,
231 NVME_CTRL_RESETTING,
232 NVME_CTRL_CONNECTING,
233 NVME_CTRL_DELETING,
234 NVME_CTRL_DELETING_NOIO,
235 NVME_CTRL_DEAD,
236 };
237
238 struct nvme_fault_inject {
239 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
240 struct fault_attr attr;
241 struct dentry *parent;
242 bool dont_retry; /* DNR, do not retry */
243 u16 status; /* status code */
244 #endif
245 };
246
247 enum nvme_ctrl_flags {
248 NVME_CTRL_FAILFAST_EXPIRED = 0,
249 NVME_CTRL_ADMIN_Q_STOPPED = 1,
250 NVME_CTRL_STARTED_ONCE = 2,
251 NVME_CTRL_STOPPED = 3,
252 NVME_CTRL_SKIP_ID_CNS_CS = 4,
253 NVME_CTRL_DIRTY_CAPABILITY = 5,
254 };
255
256 struct nvme_ctrl {
257 bool comp_seen;
258 bool identified;
259 enum nvme_ctrl_state state;
260 spinlock_t lock;
261 struct mutex scan_lock;
262 const struct nvme_ctrl_ops *ops;
263 struct request_queue *admin_q;
264 struct request_queue *connect_q;
265 struct request_queue *fabrics_q;
266 struct device *dev;
267 int instance;
268 int numa_node;
269 struct blk_mq_tag_set *tagset;
270 struct blk_mq_tag_set *admin_tagset;
271 struct list_head namespaces;
272 struct rw_semaphore namespaces_rwsem;
273 struct device ctrl_device;
274 struct device *device; /* char device */
275 #ifdef CONFIG_NVME_HWMON
276 struct device *hwmon_device;
277 #endif
278 struct cdev cdev;
279 struct work_struct reset_work;
280 struct work_struct delete_work;
281 wait_queue_head_t state_wq;
282
283 struct nvme_subsystem *subsys;
284 struct list_head subsys_entry;
285
286 struct opal_dev *opal_dev;
287
288 char name[12];
289 u16 cntlid;
290
291 u16 mtfa;
292 u32 ctrl_config;
293 u32 queue_count;
294
295 u64 cap;
296 u32 max_hw_sectors;
297 u32 max_segments;
298 u32 max_integrity_segments;
299 u32 max_discard_sectors;
300 u32 max_discard_segments;
301 u32 max_zeroes_sectors;
302 #ifdef CONFIG_BLK_DEV_ZONED
303 u32 max_zone_append;
304 #endif
305 u16 crdt[3];
306 u16 oncs;
307 u32 dmrsl;
308 u16 oacs;
309 u16 sqsize;
310 u32 max_namespaces;
311 atomic_t abort_limit;
312 u8 vwc;
313 u32 vs;
314 u32 sgls;
315 u16 kas;
316 u8 npss;
317 u8 apsta;
318 u16 wctemp;
319 u16 cctemp;
320 u32 oaes;
321 u32 aen_result;
322 u32 ctratt;
323 unsigned int shutdown_timeout;
324 unsigned int kato;
325 bool subsystem;
326 unsigned long quirks;
327 struct nvme_id_power_state psd[32];
328 struct nvme_effects_log *effects;
329 struct xarray cels;
330 struct work_struct scan_work;
331 struct work_struct async_event_work;
332 struct delayed_work ka_work;
333 struct delayed_work failfast_work;
334 struct nvme_command ka_cmd;
335 unsigned long ka_last_check_time;
336 struct work_struct fw_act_work;
337 unsigned long events;
338
339 #ifdef CONFIG_NVME_MULTIPATH
340 /* asymmetric namespace access: */
341 u8 anacap;
342 u8 anatt;
343 u32 anagrpmax;
344 u32 nanagrpid;
345 struct mutex ana_lock;
346 struct nvme_ana_rsp_hdr *ana_log_buf;
347 size_t ana_log_size;
348 struct timer_list anatt_timer;
349 struct work_struct ana_work;
350 #endif
351
352 #ifdef CONFIG_NVME_AUTH
353 struct work_struct dhchap_auth_work;
354 struct mutex dhchap_auth_mutex;
355 struct nvme_dhchap_queue_context *dhchap_ctxs;
356 struct nvme_dhchap_key *host_key;
357 struct nvme_dhchap_key *ctrl_key;
358 u16 transaction;
359 #endif
360
361 /* Power saving configuration */
362 u64 ps_max_latency_us;
363 bool apst_enabled;
364
365 /* PCIe only: */
366 u16 hmmaxd;
367 u32 hmpre;
368 u32 hmmin;
369 u32 hmminds;
370
371 /* Fabrics only */
372 u32 ioccsz;
373 u32 iorcsz;
374 u16 icdoff;
375 u16 maxcmd;
376 int nr_reconnects;
377 unsigned long flags;
378 struct nvmf_ctrl_options *opts;
379
380 struct page *discard_page;
381 unsigned long discard_page_busy;
382
383 struct nvme_fault_inject fault_inject;
384
385 enum nvme_ctrl_type cntrltype;
386 enum nvme_dctype dctype;
387 };
388
389 enum nvme_iopolicy {
390 NVME_IOPOLICY_NUMA,
391 NVME_IOPOLICY_RR,
392 };
393
394 struct nvme_subsystem {
395 int instance;
396 struct device dev;
397 /*
398 * Because we unregister the device on the last put we need
399 * a separate refcount.
400 */
401 struct kref ref;
402 struct list_head entry;
403 struct mutex lock;
404 struct list_head ctrls;
405 struct list_head nsheads;
406 char subnqn[NVMF_NQN_SIZE];
407 char serial[20];
408 char model[40];
409 char firmware_rev[8];
410 u8 cmic;
411 enum nvme_subsys_type subtype;
412 u16 vendor_id;
413 u16 awupf; /* 0's based awupf value. */
414 struct ida ns_ida;
415 #ifdef CONFIG_NVME_MULTIPATH
416 enum nvme_iopolicy iopolicy;
417 #endif
418 };
419
420 /*
421 * Container structure for uniqueue namespace identifiers.
422 */
423 struct nvme_ns_ids {
424 u8 eui64[8];
425 u8 nguid[16];
426 uuid_t uuid;
427 u8 csi;
428 };
429
430 /*
431 * Anchor structure for namespaces. There is one for each namespace in a
432 * NVMe subsystem that any of our controllers can see, and the namespace
433 * structure for each controller is chained of it. For private namespaces
434 * there is a 1:1 relation to our namespace structures, that is ->list
435 * only ever has a single entry for private namespaces.
436 */
437 struct nvme_ns_head {
438 struct list_head list;
439 struct srcu_struct srcu;
440 struct nvme_subsystem *subsys;
441 unsigned ns_id;
442 struct nvme_ns_ids ids;
443 struct list_head entry;
444 struct kref ref;
445 bool shared;
446 int instance;
447 struct nvme_effects_log *effects;
448
449 struct cdev cdev;
450 struct device cdev_device;
451
452 struct gendisk *disk;
453 #ifdef CONFIG_NVME_MULTIPATH
454 struct bio_list requeue_list;
455 spinlock_t requeue_lock;
456 struct work_struct requeue_work;
457 struct mutex lock;
458 unsigned long flags;
459 #define NVME_NSHEAD_DISK_LIVE 0
460 struct nvme_ns __rcu *current_path[];
461 #endif
462 };
463
nvme_ns_head_multipath(struct nvme_ns_head * head)464 static inline bool nvme_ns_head_multipath(struct nvme_ns_head *head)
465 {
466 return IS_ENABLED(CONFIG_NVME_MULTIPATH) && head->disk;
467 }
468
469 enum nvme_ns_features {
470 NVME_NS_EXT_LBAS = 1 << 0, /* support extended LBA format */
471 NVME_NS_METADATA_SUPPORTED = 1 << 1, /* support getting generated md */
472 NVME_NS_DEAC, /* DEAC bit in Write Zeores supported */
473 };
474
475 struct nvme_ns {
476 struct list_head list;
477
478 struct nvme_ctrl *ctrl;
479 struct request_queue *queue;
480 struct gendisk *disk;
481 #ifdef CONFIG_NVME_MULTIPATH
482 enum nvme_ana_state ana_state;
483 u32 ana_grpid;
484 #endif
485 struct list_head siblings;
486 struct kref kref;
487 struct nvme_ns_head *head;
488
489 int lba_shift;
490 u16 ms;
491 u16 pi_size;
492 u16 sgs;
493 u32 sws;
494 u8 pi_type;
495 u8 guard_type;
496 #ifdef CONFIG_BLK_DEV_ZONED
497 u64 zsze;
498 #endif
499 unsigned long features;
500 unsigned long flags;
501 #define NVME_NS_REMOVING 0
502 #define NVME_NS_ANA_PENDING 2
503 #define NVME_NS_FORCE_RO 3
504 #define NVME_NS_READY 4
505
506 struct cdev cdev;
507 struct device cdev_device;
508
509 struct nvme_fault_inject fault_inject;
510
511 };
512
513 /* NVMe ns supports metadata actions by the controller (generate/strip) */
nvme_ns_has_pi(struct nvme_ns * ns)514 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
515 {
516 return ns->pi_type && ns->ms == ns->pi_size;
517 }
518
519 struct nvme_ctrl_ops {
520 const char *name;
521 struct module *module;
522 unsigned int flags;
523 #define NVME_F_FABRICS (1 << 0)
524 #define NVME_F_METADATA_SUPPORTED (1 << 1)
525 #define NVME_F_BLOCKING (1 << 2)
526
527 const struct attribute_group **dev_attr_groups;
528 int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
529 int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
530 int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
531 void (*free_ctrl)(struct nvme_ctrl *ctrl);
532 void (*submit_async_event)(struct nvme_ctrl *ctrl);
533 void (*delete_ctrl)(struct nvme_ctrl *ctrl);
534 void (*stop_ctrl)(struct nvme_ctrl *ctrl);
535 int (*get_address)(struct nvme_ctrl *ctrl, char *buf, int size);
536 void (*print_device_info)(struct nvme_ctrl *ctrl);
537 bool (*supports_pci_p2pdma)(struct nvme_ctrl *ctrl);
538 };
539
540 /*
541 * nvme command_id is constructed as such:
542 * | xxxx | xxxxxxxxxxxx |
543 * gen request tag
544 */
545 #define nvme_genctr_mask(gen) (gen & 0xf)
546 #define nvme_cid_install_genctr(gen) (nvme_genctr_mask(gen) << 12)
547 #define nvme_genctr_from_cid(cid) ((cid & 0xf000) >> 12)
548 #define nvme_tag_from_cid(cid) (cid & 0xfff)
549
nvme_cid(struct request * rq)550 static inline u16 nvme_cid(struct request *rq)
551 {
552 return nvme_cid_install_genctr(nvme_req(rq)->genctr) | rq->tag;
553 }
554
nvme_find_rq(struct blk_mq_tags * tags,u16 command_id)555 static inline struct request *nvme_find_rq(struct blk_mq_tags *tags,
556 u16 command_id)
557 {
558 u8 genctr = nvme_genctr_from_cid(command_id);
559 u16 tag = nvme_tag_from_cid(command_id);
560 struct request *rq;
561
562 rq = blk_mq_tag_to_rq(tags, tag);
563 if (unlikely(!rq)) {
564 pr_err("could not locate request for tag %#x\n",
565 tag);
566 return NULL;
567 }
568 if (unlikely(nvme_genctr_mask(nvme_req(rq)->genctr) != genctr)) {
569 dev_err(nvme_req(rq)->ctrl->device,
570 "request %#x genctr mismatch (got %#x expected %#x)\n",
571 tag, genctr, nvme_genctr_mask(nvme_req(rq)->genctr));
572 return NULL;
573 }
574 return rq;
575 }
576
nvme_cid_to_rq(struct blk_mq_tags * tags,u16 command_id)577 static inline struct request *nvme_cid_to_rq(struct blk_mq_tags *tags,
578 u16 command_id)
579 {
580 return blk_mq_tag_to_rq(tags, nvme_tag_from_cid(command_id));
581 }
582
583 /*
584 * Return the length of the string without the space padding
585 */
nvme_strlen(char * s,int len)586 static inline int nvme_strlen(char *s, int len)
587 {
588 while (s[len - 1] == ' ')
589 len--;
590 return len;
591 }
592
nvme_print_device_info(struct nvme_ctrl * ctrl)593 static inline void nvme_print_device_info(struct nvme_ctrl *ctrl)
594 {
595 struct nvme_subsystem *subsys = ctrl->subsys;
596
597 if (ctrl->ops->print_device_info) {
598 ctrl->ops->print_device_info(ctrl);
599 return;
600 }
601
602 dev_err(ctrl->device,
603 "VID:%04x model:%.*s firmware:%.*s\n", subsys->vendor_id,
604 nvme_strlen(subsys->model, sizeof(subsys->model)),
605 subsys->model, nvme_strlen(subsys->firmware_rev,
606 sizeof(subsys->firmware_rev)),
607 subsys->firmware_rev);
608 }
609
610 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
611 void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
612 const char *dev_name);
613 void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inject);
614 void nvme_should_fail(struct request *req);
615 #else
nvme_fault_inject_init(struct nvme_fault_inject * fault_inj,const char * dev_name)616 static inline void nvme_fault_inject_init(struct nvme_fault_inject *fault_inj,
617 const char *dev_name)
618 {
619 }
nvme_fault_inject_fini(struct nvme_fault_inject * fault_inj)620 static inline void nvme_fault_inject_fini(struct nvme_fault_inject *fault_inj)
621 {
622 }
nvme_should_fail(struct request * req)623 static inline void nvme_should_fail(struct request *req) {}
624 #endif
625
626 bool nvme_wait_reset(struct nvme_ctrl *ctrl);
627 int nvme_try_sched_reset(struct nvme_ctrl *ctrl);
628
nvme_reset_subsystem(struct nvme_ctrl * ctrl)629 static inline int nvme_reset_subsystem(struct nvme_ctrl *ctrl)
630 {
631 int ret;
632
633 if (!ctrl->subsystem)
634 return -ENOTTY;
635 if (!nvme_wait_reset(ctrl))
636 return -EBUSY;
637
638 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_NSSR, 0x4E564D65);
639 if (ret)
640 return ret;
641
642 return nvme_try_sched_reset(ctrl);
643 }
644
645 /*
646 * Convert a 512B sector number to a device logical block number.
647 */
nvme_sect_to_lba(struct nvme_ns * ns,sector_t sector)648 static inline u64 nvme_sect_to_lba(struct nvme_ns *ns, sector_t sector)
649 {
650 return sector >> (ns->lba_shift - SECTOR_SHIFT);
651 }
652
653 /*
654 * Convert a device logical block number to a 512B sector number.
655 */
nvme_lba_to_sect(struct nvme_ns * ns,u64 lba)656 static inline sector_t nvme_lba_to_sect(struct nvme_ns *ns, u64 lba)
657 {
658 return lba << (ns->lba_shift - SECTOR_SHIFT);
659 }
660
661 /*
662 * Convert byte length to nvme's 0-based num dwords
663 */
nvme_bytes_to_numd(size_t len)664 static inline u32 nvme_bytes_to_numd(size_t len)
665 {
666 return (len >> 2) - 1;
667 }
668
nvme_is_ana_error(u16 status)669 static inline bool nvme_is_ana_error(u16 status)
670 {
671 switch (status & 0x7ff) {
672 case NVME_SC_ANA_TRANSITION:
673 case NVME_SC_ANA_INACCESSIBLE:
674 case NVME_SC_ANA_PERSISTENT_LOSS:
675 return true;
676 default:
677 return false;
678 }
679 }
680
nvme_is_path_error(u16 status)681 static inline bool nvme_is_path_error(u16 status)
682 {
683 /* check for a status code type of 'path related status' */
684 return (status & 0x700) == 0x300;
685 }
686
687 /*
688 * Fill in the status and result information from the CQE, and then figure out
689 * if blk-mq will need to use IPI magic to complete the request, and if yes do
690 * so. If not let the caller complete the request without an indirect function
691 * call.
692 */
nvme_try_complete_req(struct request * req,__le16 status,union nvme_result result)693 static inline bool nvme_try_complete_req(struct request *req, __le16 status,
694 union nvme_result result)
695 {
696 struct nvme_request *rq = nvme_req(req);
697 struct nvme_ctrl *ctrl = rq->ctrl;
698
699 if (!(ctrl->quirks & NVME_QUIRK_SKIP_CID_GEN))
700 rq->genctr++;
701
702 rq->status = le16_to_cpu(status) >> 1;
703 rq->result = result;
704 /* inject error when permitted by fault injection framework */
705 nvme_should_fail(req);
706 if (unlikely(blk_should_fake_timeout(req->q)))
707 return true;
708 return blk_mq_complete_request_remote(req);
709 }
710
nvme_get_ctrl(struct nvme_ctrl * ctrl)711 static inline void nvme_get_ctrl(struct nvme_ctrl *ctrl)
712 {
713 get_device(ctrl->device);
714 }
715
nvme_put_ctrl(struct nvme_ctrl * ctrl)716 static inline void nvme_put_ctrl(struct nvme_ctrl *ctrl)
717 {
718 put_device(ctrl->device);
719 }
720
nvme_is_aen_req(u16 qid,__u16 command_id)721 static inline bool nvme_is_aen_req(u16 qid, __u16 command_id)
722 {
723 return !qid &&
724 nvme_tag_from_cid(command_id) >= NVME_AQ_BLK_MQ_DEPTH;
725 }
726
727 void nvme_complete_rq(struct request *req);
728 void nvme_complete_batch_req(struct request *req);
729
nvme_complete_batch(struct io_comp_batch * iob,void (* fn)(struct request * rq))730 static __always_inline void nvme_complete_batch(struct io_comp_batch *iob,
731 void (*fn)(struct request *rq))
732 {
733 struct request *req;
734
735 rq_list_for_each(&iob->req_list, req) {
736 fn(req);
737 nvme_complete_batch_req(req);
738 }
739 blk_mq_end_request_batch(iob);
740 }
741
742 blk_status_t nvme_host_path_error(struct request *req);
743 bool nvme_cancel_request(struct request *req, void *data);
744 void nvme_cancel_tagset(struct nvme_ctrl *ctrl);
745 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl);
746 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
747 enum nvme_ctrl_state new_state);
748 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown);
749 int nvme_enable_ctrl(struct nvme_ctrl *ctrl);
750 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
751 const struct nvme_ctrl_ops *ops, unsigned long quirks);
752 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl);
753 void nvme_start_ctrl(struct nvme_ctrl *ctrl);
754 void nvme_stop_ctrl(struct nvme_ctrl *ctrl);
755 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended);
756 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
757 const struct blk_mq_ops *ops, unsigned int cmd_size);
758 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl);
759 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
760 const struct blk_mq_ops *ops, unsigned int nr_maps,
761 unsigned int cmd_size);
762 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl);
763
764 void nvme_remove_namespaces(struct nvme_ctrl *ctrl);
765
766 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
767 volatile union nvme_result *res);
768
769 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl);
770 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl);
771 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl);
772 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl);
773 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl);
774 void nvme_sync_queues(struct nvme_ctrl *ctrl);
775 void nvme_sync_io_queues(struct nvme_ctrl *ctrl);
776 void nvme_unfreeze(struct nvme_ctrl *ctrl);
777 void nvme_wait_freeze(struct nvme_ctrl *ctrl);
778 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout);
779 void nvme_start_freeze(struct nvme_ctrl *ctrl);
780
nvme_req_op(struct nvme_command * cmd)781 static inline enum req_op nvme_req_op(struct nvme_command *cmd)
782 {
783 return nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
784 }
785
786 #define NVME_QID_ANY -1
787 void nvme_init_request(struct request *req, struct nvme_command *cmd);
788 void nvme_cleanup_cmd(struct request *req);
789 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req);
790 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
791 struct request *req);
792 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
793 bool queue_live);
794
nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live)795 static inline bool nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
796 bool queue_live)
797 {
798 if (likely(ctrl->state == NVME_CTRL_LIVE))
799 return true;
800 if (ctrl->ops->flags & NVME_F_FABRICS &&
801 ctrl->state == NVME_CTRL_DELETING)
802 return queue_live;
803 return __nvme_check_ready(ctrl, rq, queue_live);
804 }
805
806 /*
807 * NSID shall be unique for all shared namespaces, or if at least one of the
808 * following conditions is met:
809 * 1. Namespace Management is supported by the controller
810 * 2. ANA is supported by the controller
811 * 3. NVM Set are supported by the controller
812 *
813 * In other case, private namespace are not required to report a unique NSID.
814 */
nvme_is_unique_nsid(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)815 static inline bool nvme_is_unique_nsid(struct nvme_ctrl *ctrl,
816 struct nvme_ns_head *head)
817 {
818 return head->shared ||
819 (ctrl->oacs & NVME_CTRL_OACS_NS_MNGT_SUPP) ||
820 (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA) ||
821 (ctrl->ctratt & NVME_CTRL_CTRATT_NVM_SETS);
822 }
823
824 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
825 void *buf, unsigned bufflen);
826 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
827 union nvme_result *result, void *buffer, unsigned bufflen,
828 int qid, int at_head,
829 blk_mq_req_flags_t flags);
830 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
831 unsigned int dword11, void *buffer, size_t buflen,
832 u32 *result);
833 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
834 unsigned int dword11, void *buffer, size_t buflen,
835 u32 *result);
836 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count);
837 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl);
838 int nvme_reset_ctrl(struct nvme_ctrl *ctrl);
839 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl);
840 int nvme_delete_ctrl(struct nvme_ctrl *ctrl);
841 void nvme_queue_scan(struct nvme_ctrl *ctrl);
842 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
843 void *log, size_t size, u64 offset);
844 bool nvme_tryget_ns_head(struct nvme_ns_head *head);
845 void nvme_put_ns_head(struct nvme_ns_head *head);
846 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
847 const struct file_operations *fops, struct module *owner);
848 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device);
849 int nvme_ioctl(struct block_device *bdev, blk_mode_t mode,
850 unsigned int cmd, unsigned long arg);
851 long nvme_ns_chr_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
852 int nvme_ns_head_ioctl(struct block_device *bdev, blk_mode_t mode,
853 unsigned int cmd, unsigned long arg);
854 long nvme_ns_head_chr_ioctl(struct file *file, unsigned int cmd,
855 unsigned long arg);
856 long nvme_dev_ioctl(struct file *file, unsigned int cmd,
857 unsigned long arg);
858 int nvme_ns_chr_uring_cmd_iopoll(struct io_uring_cmd *ioucmd,
859 struct io_comp_batch *iob, unsigned int poll_flags);
860 int nvme_ns_chr_uring_cmd(struct io_uring_cmd *ioucmd,
861 unsigned int issue_flags);
862 int nvme_ns_head_chr_uring_cmd(struct io_uring_cmd *ioucmd,
863 unsigned int issue_flags);
864 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo);
865 int nvme_dev_uring_cmd(struct io_uring_cmd *ioucmd, unsigned int issue_flags);
866
867 extern const struct attribute_group *nvme_ns_id_attr_groups[];
868 extern const struct pr_ops nvme_pr_ops;
869 extern const struct block_device_operations nvme_ns_head_ops;
870 extern const struct attribute_group nvme_dev_attrs_group;
871 extern const struct attribute_group *nvme_subsys_attrs_groups[];
872 extern const struct attribute_group *nvme_dev_attr_groups[];
873 extern const struct block_device_operations nvme_bdev_ops;
874
875 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl);
876 struct nvme_ns *nvme_find_path(struct nvme_ns_head *head);
877 #ifdef CONFIG_NVME_MULTIPATH
nvme_ctrl_use_ana(struct nvme_ctrl * ctrl)878 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
879 {
880 return ctrl->ana_log_buf != NULL;
881 }
882
883 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys);
884 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys);
885 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys);
886 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys);
887 void nvme_failover_req(struct request *req);
888 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl);
889 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,struct nvme_ns_head *head);
890 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid);
891 void nvme_mpath_remove_disk(struct nvme_ns_head *head);
892 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id);
893 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl);
894 void nvme_mpath_update(struct nvme_ctrl *ctrl);
895 void nvme_mpath_uninit(struct nvme_ctrl *ctrl);
896 void nvme_mpath_stop(struct nvme_ctrl *ctrl);
897 bool nvme_mpath_clear_current_path(struct nvme_ns *ns);
898 void nvme_mpath_revalidate_paths(struct nvme_ns *ns);
899 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl);
900 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head);
901 void nvme_mpath_start_request(struct request *rq);
902 void nvme_mpath_end_request(struct request *rq);
903
nvme_trace_bio_complete(struct request * req)904 static inline void nvme_trace_bio_complete(struct request *req)
905 {
906 struct nvme_ns *ns = req->q->queuedata;
907
908 if ((req->cmd_flags & REQ_NVME_MPATH) && req->bio)
909 trace_block_bio_complete(ns->head->disk->queue, req->bio);
910 }
911
912 extern bool multipath;
913 extern struct device_attribute dev_attr_ana_grpid;
914 extern struct device_attribute dev_attr_ana_state;
915 extern struct device_attribute subsys_attr_iopolicy;
916
917 #else
918 #define multipath false
nvme_ctrl_use_ana(struct nvme_ctrl * ctrl)919 static inline bool nvme_ctrl_use_ana(struct nvme_ctrl *ctrl)
920 {
921 return false;
922 }
nvme_failover_req(struct request * req)923 static inline void nvme_failover_req(struct request *req)
924 {
925 }
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)926 static inline void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
927 {
928 }
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)929 static inline int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl,
930 struct nvme_ns_head *head)
931 {
932 return 0;
933 }
nvme_mpath_add_disk(struct nvme_ns * ns,__le32 anagrpid)934 static inline void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
935 {
936 }
nvme_mpath_remove_disk(struct nvme_ns_head * head)937 static inline void nvme_mpath_remove_disk(struct nvme_ns_head *head)
938 {
939 }
nvme_mpath_clear_current_path(struct nvme_ns * ns)940 static inline bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
941 {
942 return false;
943 }
nvme_mpath_revalidate_paths(struct nvme_ns * ns)944 static inline void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
945 {
946 }
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)947 static inline void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
948 {
949 }
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)950 static inline void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
951 {
952 }
nvme_trace_bio_complete(struct request * req)953 static inline void nvme_trace_bio_complete(struct request *req)
954 {
955 }
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)956 static inline void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
957 {
958 }
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)959 static inline int nvme_mpath_init_identify(struct nvme_ctrl *ctrl,
960 struct nvme_id_ctrl *id)
961 {
962 if (ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA)
963 dev_warn(ctrl->device,
964 "Please enable CONFIG_NVME_MULTIPATH for full support of multi-port devices.\n");
965 return 0;
966 }
nvme_mpath_update(struct nvme_ctrl * ctrl)967 static inline void nvme_mpath_update(struct nvme_ctrl *ctrl)
968 {
969 }
nvme_mpath_uninit(struct nvme_ctrl * ctrl)970 static inline void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
971 {
972 }
nvme_mpath_stop(struct nvme_ctrl * ctrl)973 static inline void nvme_mpath_stop(struct nvme_ctrl *ctrl)
974 {
975 }
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)976 static inline void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
977 {
978 }
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)979 static inline void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
980 {
981 }
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)982 static inline void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
983 {
984 }
nvme_mpath_default_iopolicy(struct nvme_subsystem * subsys)985 static inline void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
986 {
987 }
nvme_mpath_start_request(struct request * rq)988 static inline void nvme_mpath_start_request(struct request *rq)
989 {
990 }
nvme_mpath_end_request(struct request * rq)991 static inline void nvme_mpath_end_request(struct request *rq)
992 {
993 }
994 #endif /* CONFIG_NVME_MULTIPATH */
995
996 int nvme_revalidate_zones(struct nvme_ns *ns);
997 int nvme_ns_report_zones(struct nvme_ns *ns, sector_t sector,
998 unsigned int nr_zones, report_zones_cb cb, void *data);
999 #ifdef CONFIG_BLK_DEV_ZONED
1000 int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf);
1001 blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns, struct request *req,
1002 struct nvme_command *cmnd,
1003 enum nvme_zone_mgmt_action action);
1004 #else
nvme_setup_zone_mgmt_send(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_zone_mgmt_action action)1005 static inline blk_status_t nvme_setup_zone_mgmt_send(struct nvme_ns *ns,
1006 struct request *req, struct nvme_command *cmnd,
1007 enum nvme_zone_mgmt_action action)
1008 {
1009 return BLK_STS_NOTSUPP;
1010 }
1011
nvme_update_zone_info(struct nvme_ns * ns,unsigned lbaf)1012 static inline int nvme_update_zone_info(struct nvme_ns *ns, unsigned lbaf)
1013 {
1014 dev_warn(ns->ctrl->device,
1015 "Please enable CONFIG_BLK_DEV_ZONED to support ZNS devices\n");
1016 return -EPROTONOSUPPORT;
1017 }
1018 #endif
1019
nvme_get_ns_from_dev(struct device * dev)1020 static inline struct nvme_ns *nvme_get_ns_from_dev(struct device *dev)
1021 {
1022 return dev_to_disk(dev)->private_data;
1023 }
1024
1025 #ifdef CONFIG_NVME_HWMON
1026 int nvme_hwmon_init(struct nvme_ctrl *ctrl);
1027 void nvme_hwmon_exit(struct nvme_ctrl *ctrl);
1028 #else
nvme_hwmon_init(struct nvme_ctrl * ctrl)1029 static inline int nvme_hwmon_init(struct nvme_ctrl *ctrl)
1030 {
1031 return 0;
1032 }
1033
nvme_hwmon_exit(struct nvme_ctrl * ctrl)1034 static inline void nvme_hwmon_exit(struct nvme_ctrl *ctrl)
1035 {
1036 }
1037 #endif
1038
nvme_start_request(struct request * rq)1039 static inline void nvme_start_request(struct request *rq)
1040 {
1041 if (rq->cmd_flags & REQ_NVME_MPATH)
1042 nvme_mpath_start_request(rq);
1043 blk_mq_start_request(rq);
1044 }
1045
nvme_ctrl_sgl_supported(struct nvme_ctrl * ctrl)1046 static inline bool nvme_ctrl_sgl_supported(struct nvme_ctrl *ctrl)
1047 {
1048 return ctrl->sgls & ((1 << 0) | (1 << 1));
1049 }
1050
1051 #ifdef CONFIG_NVME_AUTH
1052 int __init nvme_init_auth(void);
1053 void __exit nvme_exit_auth(void);
1054 int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl);
1055 void nvme_auth_stop(struct nvme_ctrl *ctrl);
1056 int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid);
1057 int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid);
1058 void nvme_auth_free(struct nvme_ctrl *ctrl);
1059 #else
nvme_auth_init_ctrl(struct nvme_ctrl * ctrl)1060 static inline int nvme_auth_init_ctrl(struct nvme_ctrl *ctrl)
1061 {
1062 return 0;
1063 }
nvme_init_auth(void)1064 static inline int __init nvme_init_auth(void)
1065 {
1066 return 0;
1067 }
nvme_exit_auth(void)1068 static inline void __exit nvme_exit_auth(void)
1069 {
1070 }
nvme_auth_stop(struct nvme_ctrl * ctrl)1071 static inline void nvme_auth_stop(struct nvme_ctrl *ctrl) {};
nvme_auth_negotiate(struct nvme_ctrl * ctrl,int qid)1072 static inline int nvme_auth_negotiate(struct nvme_ctrl *ctrl, int qid)
1073 {
1074 return -EPROTONOSUPPORT;
1075 }
nvme_auth_wait(struct nvme_ctrl * ctrl,int qid)1076 static inline int nvme_auth_wait(struct nvme_ctrl *ctrl, int qid)
1077 {
1078 return NVME_SC_AUTH_REQUIRED;
1079 }
nvme_auth_free(struct nvme_ctrl * ctrl)1080 static inline void nvme_auth_free(struct nvme_ctrl *ctrl) {};
1081 #endif
1082
1083 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1084 u8 opcode);
1085 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode);
1086 int nvme_execute_rq(struct request *rq, bool at_head);
1087 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1088 struct nvme_command *cmd, int status);
1089 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file);
1090 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid);
1091 void nvme_put_ns(struct nvme_ns *ns);
1092
nvme_multi_css(struct nvme_ctrl * ctrl)1093 static inline bool nvme_multi_css(struct nvme_ctrl *ctrl)
1094 {
1095 return (ctrl->ctrl_config & NVME_CC_CSS_MASK) == NVME_CC_CSS_CSI;
1096 }
1097
1098 #ifdef CONFIG_NVME_VERBOSE_ERRORS
1099 const unsigned char *nvme_get_error_status_str(u16 status);
1100 const unsigned char *nvme_get_opcode_str(u8 opcode);
1101 const unsigned char *nvme_get_admin_opcode_str(u8 opcode);
1102 const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode);
1103 #else /* CONFIG_NVME_VERBOSE_ERRORS */
nvme_get_error_status_str(u16 status)1104 static inline const unsigned char *nvme_get_error_status_str(u16 status)
1105 {
1106 return "I/O Error";
1107 }
nvme_get_opcode_str(u8 opcode)1108 static inline const unsigned char *nvme_get_opcode_str(u8 opcode)
1109 {
1110 return "I/O Cmd";
1111 }
nvme_get_admin_opcode_str(u8 opcode)1112 static inline const unsigned char *nvme_get_admin_opcode_str(u8 opcode)
1113 {
1114 return "Admin Cmd";
1115 }
1116
nvme_get_fabrics_opcode_str(u8 opcode)1117 static inline const unsigned char *nvme_get_fabrics_opcode_str(u8 opcode)
1118 {
1119 return "Fabrics Cmd";
1120 }
1121 #endif /* CONFIG_NVME_VERBOSE_ERRORS */
1122
nvme_opcode_str(int qid,u8 opcode,u8 fctype)1123 static inline const unsigned char *nvme_opcode_str(int qid, u8 opcode, u8 fctype)
1124 {
1125 if (opcode == nvme_fabrics_command)
1126 return nvme_get_fabrics_opcode_str(fctype);
1127 return qid ? nvme_get_opcode_str(opcode) :
1128 nvme_get_admin_opcode_str(opcode);
1129 }
1130 #endif /* _NVME_H */
1131