1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
5
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11 Documentation available at:
12 http://www.stlinux.com
13 Support available at:
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52
53 /* As long as the interface is active, we keep the timestamping counter enabled
54 * with fine resolution and binary rollover. This avoid non-monotonic behavior
55 * (clock jumps) when changing timestamping settings at runtime.
56 */
57 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 PTP_TCR_TSCTRLSSR)
59
60 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
62
63 /* Module parameters */
64 #define TX_TIMEO 5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76
77 #define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x) ((x)->dma_conf.dma_rx_size / 4)
79
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX 256
82 #define STMMAC_TX_XSK_AVAIL 16
83 #define STMMAC_RX_FILL_BATCH 16
84
85 #define STMMAC_XDP_PASS 0
86 #define STMMAC_XDP_CONSUMED BIT(0)
87 #define STMMAC_XDP_TX BIT(1)
88 #define STMMAC_XDP_REDIRECT BIT(2)
89
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102
103 #define DEFAULT_BUFSIZE 1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107
108 #define STMMAC_RX_COPYBREAK 256
109
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113
114 #define STMMAC_DEFAULT_LPI_TIMER 1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121 * but allow user to force to use the chain instead of the ring
122 */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139 u32 rxmode, u32 chan);
140
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148
stmmac_bus_clks_config(struct stmmac_priv * priv,bool enabled)149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151 int ret = 0;
152
153 if (enabled) {
154 ret = clk_prepare_enable(priv->plat->stmmac_clk);
155 if (ret)
156 return ret;
157 ret = clk_prepare_enable(priv->plat->pclk);
158 if (ret) {
159 clk_disable_unprepare(priv->plat->stmmac_clk);
160 return ret;
161 }
162 if (priv->plat->clks_config) {
163 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164 if (ret) {
165 clk_disable_unprepare(priv->plat->stmmac_clk);
166 clk_disable_unprepare(priv->plat->pclk);
167 return ret;
168 }
169 }
170 } else {
171 clk_disable_unprepare(priv->plat->stmmac_clk);
172 clk_disable_unprepare(priv->plat->pclk);
173 if (priv->plat->clks_config)
174 priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175 }
176
177 return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180
181 /**
182 * stmmac_verify_args - verify the driver parameters.
183 * Description: it checks the driver parameters and set a default in case of
184 * errors.
185 */
stmmac_verify_args(void)186 static void stmmac_verify_args(void)
187 {
188 if (unlikely(watchdog < 0))
189 watchdog = TX_TIMEO;
190 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191 buf_sz = DEFAULT_BUFSIZE;
192 if (unlikely(flow_ctrl > 1))
193 flow_ctrl = FLOW_AUTO;
194 else if (likely(flow_ctrl < 0))
195 flow_ctrl = FLOW_OFF;
196 if (unlikely((pause < 0) || (pause > 0xffff)))
197 pause = PAUSE_TIME;
198 if (eee_timer < 0)
199 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201
__stmmac_disable_all_queues(struct stmmac_priv * priv)202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207 u32 queue;
208
209 for (queue = 0; queue < maxq; queue++) {
210 struct stmmac_channel *ch = &priv->channel[queue];
211
212 if (stmmac_xdp_is_enabled(priv) &&
213 test_bit(queue, priv->af_xdp_zc_qps)) {
214 napi_disable(&ch->rxtx_napi);
215 continue;
216 }
217
218 if (queue < rx_queues_cnt)
219 napi_disable(&ch->rx_napi);
220 if (queue < tx_queues_cnt)
221 napi_disable(&ch->tx_napi);
222 }
223 }
224
225 /**
226 * stmmac_disable_all_queues - Disable all queues
227 * @priv: driver private structure
228 */
stmmac_disable_all_queues(struct stmmac_priv * priv)229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232 struct stmmac_rx_queue *rx_q;
233 u32 queue;
234
235 /* synchronize_rcu() needed for pending XDP buffers to drain */
236 for (queue = 0; queue < rx_queues_cnt; queue++) {
237 rx_q = &priv->dma_conf.rx_queue[queue];
238 if (rx_q->xsk_pool) {
239 synchronize_rcu();
240 break;
241 }
242 }
243
244 __stmmac_disable_all_queues(priv);
245 }
246
247 /**
248 * stmmac_enable_all_queues - Enable all queues
249 * @priv: driver private structure
250 */
stmmac_enable_all_queues(struct stmmac_priv * priv)251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256 u32 queue;
257
258 for (queue = 0; queue < maxq; queue++) {
259 struct stmmac_channel *ch = &priv->channel[queue];
260
261 if (stmmac_xdp_is_enabled(priv) &&
262 test_bit(queue, priv->af_xdp_zc_qps)) {
263 napi_enable(&ch->rxtx_napi);
264 continue;
265 }
266
267 if (queue < rx_queues_cnt)
268 napi_enable(&ch->rx_napi);
269 if (queue < tx_queues_cnt)
270 napi_enable(&ch->tx_napi);
271 }
272 }
273
stmmac_service_event_schedule(struct stmmac_priv * priv)274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276 if (!test_bit(STMMAC_DOWN, &priv->state) &&
277 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278 queue_work(priv->wq, &priv->service_task);
279 }
280
stmmac_global_err(struct stmmac_priv * priv)281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283 netif_carrier_off(priv->dev);
284 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285 stmmac_service_event_schedule(priv);
286 }
287
288 /**
289 * stmmac_clk_csr_set - dynamically set the MDC clock
290 * @priv: driver private structure
291 * Description: this is to dynamically set the MDC clock according to the csr
292 * clock input.
293 * Note:
294 * If a specific clk_csr value is passed from the platform
295 * this means that the CSR Clock Range selection cannot be
296 * changed at run-time and it is fixed (as reported in the driver
297 * documentation). Viceversa the driver will try to set the MDC
298 * clock dynamically according to the actual clock input.
299 */
stmmac_clk_csr_set(struct stmmac_priv * priv)300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302 u32 clk_rate;
303
304 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305
306 /* Platform provided default clk_csr would be assumed valid
307 * for all other cases except for the below mentioned ones.
308 * For values higher than the IEEE 802.3 specified frequency
309 * we can not estimate the proper divider as it is not known
310 * the frequency of clk_csr_i. So we do not change the default
311 * divider.
312 */
313 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314 if (clk_rate < CSR_F_35M)
315 priv->clk_csr = STMMAC_CSR_20_35M;
316 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317 priv->clk_csr = STMMAC_CSR_35_60M;
318 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319 priv->clk_csr = STMMAC_CSR_60_100M;
320 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321 priv->clk_csr = STMMAC_CSR_100_150M;
322 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323 priv->clk_csr = STMMAC_CSR_150_250M;
324 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325 priv->clk_csr = STMMAC_CSR_250_300M;
326 }
327
328 if (priv->plat->has_sun8i) {
329 if (clk_rate > 160000000)
330 priv->clk_csr = 0x03;
331 else if (clk_rate > 80000000)
332 priv->clk_csr = 0x02;
333 else if (clk_rate > 40000000)
334 priv->clk_csr = 0x01;
335 else
336 priv->clk_csr = 0;
337 }
338
339 if (priv->plat->has_xgmac) {
340 if (clk_rate > 400000000)
341 priv->clk_csr = 0x5;
342 else if (clk_rate > 350000000)
343 priv->clk_csr = 0x4;
344 else if (clk_rate > 300000000)
345 priv->clk_csr = 0x3;
346 else if (clk_rate > 250000000)
347 priv->clk_csr = 0x2;
348 else if (clk_rate > 150000000)
349 priv->clk_csr = 0x1;
350 else
351 priv->clk_csr = 0x0;
352 }
353 }
354
print_pkt(unsigned char * buf,int len)355 static void print_pkt(unsigned char *buf, int len)
356 {
357 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364 u32 avail;
365
366 if (tx_q->dirty_tx > tx_q->cur_tx)
367 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368 else
369 avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370
371 return avail;
372 }
373
374 /**
375 * stmmac_rx_dirty - Get RX queue dirty
376 * @priv: driver private structure
377 * @queue: RX queue index
378 */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382 u32 dirty;
383
384 if (rx_q->dirty_rx <= rx_q->cur_rx)
385 dirty = rx_q->cur_rx - rx_q->dirty_rx;
386 else
387 dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388
389 return dirty;
390 }
391
stmmac_lpi_entry_timer_config(struct stmmac_priv * priv,bool en)392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394 int tx_lpi_timer;
395
396 /* Clear/set the SW EEE timer flag based on LPI ET enablement */
397 priv->eee_sw_timer_en = en ? 0 : 1;
398 tx_lpi_timer = en ? priv->tx_lpi_timer : 0;
399 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401
402 /**
403 * stmmac_enable_eee_mode - check and enter in LPI mode
404 * @priv: driver private structure
405 * Description: this function is to verify and enter in LPI mode in case of
406 * EEE.
407 */
stmmac_enable_eee_mode(struct stmmac_priv * priv)408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410 u32 tx_cnt = priv->plat->tx_queues_to_use;
411 u32 queue;
412
413 /* check if all TX queues have the work finished */
414 for (queue = 0; queue < tx_cnt; queue++) {
415 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416
417 if (tx_q->dirty_tx != tx_q->cur_tx)
418 return -EBUSY; /* still unfinished work */
419 }
420
421 /* Check and enter in LPI mode */
422 if (!priv->tx_path_in_lpi_mode)
423 stmmac_set_eee_mode(priv, priv->hw,
424 priv->plat->en_tx_lpi_clockgating);
425 return 0;
426 }
427
428 /**
429 * stmmac_disable_eee_mode - disable and exit from LPI mode
430 * @priv: driver private structure
431 * Description: this function is to exit and disable EEE in case of
432 * LPI state is true. This is called by the xmit.
433 */
stmmac_disable_eee_mode(struct stmmac_priv * priv)434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436 if (!priv->eee_sw_timer_en) {
437 stmmac_lpi_entry_timer_config(priv, 0);
438 return;
439 }
440
441 stmmac_reset_eee_mode(priv, priv->hw);
442 del_timer_sync(&priv->eee_ctrl_timer);
443 priv->tx_path_in_lpi_mode = false;
444 }
445
446 /**
447 * stmmac_eee_ctrl_timer - EEE TX SW timer.
448 * @t: timer_list struct containing private info
449 * Description:
450 * if there is no data transfer and if we are not in LPI state,
451 * then MAC Transmitter can be moved to LPI state.
452 */
stmmac_eee_ctrl_timer(struct timer_list * t)453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456
457 if (stmmac_enable_eee_mode(priv))
458 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460
461 /**
462 * stmmac_eee_init - init EEE
463 * @priv: driver private structure
464 * Description:
465 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
466 * can also manage EEE, this function enable the LPI state and start related
467 * timer.
468 */
stmmac_eee_init(struct stmmac_priv * priv)469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471 int eee_tw_timer = priv->eee_tw_timer;
472
473 /* Using PCS we cannot dial with the phy registers at this stage
474 * so we do not support extra feature like EEE.
475 */
476 if (priv->hw->pcs == STMMAC_PCS_TBI ||
477 priv->hw->pcs == STMMAC_PCS_RTBI)
478 return false;
479
480 /* Check if MAC core supports the EEE feature. */
481 if (!priv->dma_cap.eee)
482 return false;
483
484 mutex_lock(&priv->lock);
485
486 /* Check if it needs to be deactivated */
487 if (!priv->eee_active) {
488 if (priv->eee_enabled) {
489 netdev_dbg(priv->dev, "disable EEE\n");
490 stmmac_lpi_entry_timer_config(priv, 0);
491 del_timer_sync(&priv->eee_ctrl_timer);
492 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493 if (priv->hw->xpcs)
494 xpcs_config_eee(priv->hw->xpcs,
495 priv->plat->mult_fact_100ns,
496 false);
497 }
498 mutex_unlock(&priv->lock);
499 return false;
500 }
501
502 if (priv->eee_active && !priv->eee_enabled) {
503 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505 eee_tw_timer);
506 if (priv->hw->xpcs)
507 xpcs_config_eee(priv->hw->xpcs,
508 priv->plat->mult_fact_100ns,
509 true);
510 }
511
512 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513 del_timer_sync(&priv->eee_ctrl_timer);
514 priv->tx_path_in_lpi_mode = false;
515 stmmac_lpi_entry_timer_config(priv, 1);
516 } else {
517 stmmac_lpi_entry_timer_config(priv, 0);
518 mod_timer(&priv->eee_ctrl_timer,
519 STMMAC_LPI_T(priv->tx_lpi_timer));
520 }
521
522 mutex_unlock(&priv->lock);
523 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524 return true;
525 }
526
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528 * @priv: driver private structure
529 * @p : descriptor pointer
530 * @skb : the socket buffer
531 * Description :
532 * This function will read timestamp from the descriptor & pass it to stack.
533 * and also perform some sanity checks.
534 */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536 struct dma_desc *p, struct sk_buff *skb)
537 {
538 struct skb_shared_hwtstamps shhwtstamp;
539 bool found = false;
540 u64 ns = 0;
541
542 if (!priv->hwts_tx_en)
543 return;
544
545 /* exit if skb doesn't support hw tstamp */
546 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547 return;
548
549 /* check tx tstamp status */
550 if (stmmac_get_tx_timestamp_status(priv, p)) {
551 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552 found = true;
553 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554 found = true;
555 }
556
557 if (found) {
558 ns -= priv->plat->cdc_error_adj;
559
560 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561 shhwtstamp.hwtstamp = ns_to_ktime(ns);
562
563 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564 /* pass tstamp to stack */
565 skb_tstamp_tx(skb, &shhwtstamp);
566 }
567 }
568
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570 * @priv: driver private structure
571 * @p : descriptor pointer
572 * @np : next descriptor pointer
573 * @skb : the socket buffer
574 * Description :
575 * This function will read received packet's timestamp from the descriptor
576 * and pass it to stack. It also perform some sanity checks.
577 */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579 struct dma_desc *np, struct sk_buff *skb)
580 {
581 struct skb_shared_hwtstamps *shhwtstamp = NULL;
582 struct dma_desc *desc = p;
583 u64 ns = 0;
584
585 if (!priv->hwts_rx_en)
586 return;
587 /* For GMAC4, the valid timestamp is from CTX next desc. */
588 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589 desc = np;
590
591 /* Check if timestamp is available */
592 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594
595 ns -= priv->plat->cdc_error_adj;
596
597 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598 shhwtstamp = skb_hwtstamps(skb);
599 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600 shhwtstamp->hwtstamp = ns_to_ktime(ns);
601 } else {
602 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603 }
604 }
605
606 /**
607 * stmmac_hwtstamp_set - control hardware timestamping.
608 * @dev: device pointer.
609 * @ifr: An IOCTL specific structure, that can contain a pointer to
610 * a proprietary structure used to pass information to the driver.
611 * Description:
612 * This function configures the MAC to enable/disable both outgoing(TX)
613 * and incoming(RX) packets time stamping based on user input.
614 * Return Value:
615 * 0 on success and an appropriate -ve integer on failure.
616 */
stmmac_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619 struct stmmac_priv *priv = netdev_priv(dev);
620 struct hwtstamp_config config;
621 u32 ptp_v2 = 0;
622 u32 tstamp_all = 0;
623 u32 ptp_over_ipv4_udp = 0;
624 u32 ptp_over_ipv6_udp = 0;
625 u32 ptp_over_ethernet = 0;
626 u32 snap_type_sel = 0;
627 u32 ts_master_en = 0;
628 u32 ts_event_en = 0;
629
630 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631 netdev_alert(priv->dev, "No support for HW time stamping\n");
632 priv->hwts_tx_en = 0;
633 priv->hwts_rx_en = 0;
634
635 return -EOPNOTSUPP;
636 }
637
638 if (copy_from_user(&config, ifr->ifr_data,
639 sizeof(config)))
640 return -EFAULT;
641
642 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643 __func__, config.flags, config.tx_type, config.rx_filter);
644
645 if (config.tx_type != HWTSTAMP_TX_OFF &&
646 config.tx_type != HWTSTAMP_TX_ON)
647 return -ERANGE;
648
649 if (priv->adv_ts) {
650 switch (config.rx_filter) {
651 case HWTSTAMP_FILTER_NONE:
652 /* time stamp no incoming packet at all */
653 config.rx_filter = HWTSTAMP_FILTER_NONE;
654 break;
655
656 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657 /* PTP v1, UDP, any kind of event packet */
658 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659 /* 'xmac' hardware can support Sync, Pdelay_Req and
660 * Pdelay_resp by setting bit14 and bits17/16 to 01
661 * This leaves Delay_Req timestamps out.
662 * Enable all events *and* general purpose message
663 * timestamping
664 */
665 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668 break;
669
670 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671 /* PTP v1, UDP, Sync packet */
672 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673 /* take time stamp for SYNC messages only */
674 ts_event_en = PTP_TCR_TSEVNTENA;
675
676 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678 break;
679
680 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681 /* PTP v1, UDP, Delay_req packet */
682 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683 /* take time stamp for Delay_Req messages only */
684 ts_master_en = PTP_TCR_TSMSTRENA;
685 ts_event_en = PTP_TCR_TSEVNTENA;
686
687 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689 break;
690
691 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692 /* PTP v2, UDP, any kind of event packet */
693 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694 ptp_v2 = PTP_TCR_TSVER2ENA;
695 /* take time stamp for all event messages */
696 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697
698 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700 break;
701
702 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703 /* PTP v2, UDP, Sync packet */
704 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705 ptp_v2 = PTP_TCR_TSVER2ENA;
706 /* take time stamp for SYNC messages only */
707 ts_event_en = PTP_TCR_TSEVNTENA;
708
709 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711 break;
712
713 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714 /* PTP v2, UDP, Delay_req packet */
715 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716 ptp_v2 = PTP_TCR_TSVER2ENA;
717 /* take time stamp for Delay_Req messages only */
718 ts_master_en = PTP_TCR_TSMSTRENA;
719 ts_event_en = PTP_TCR_TSEVNTENA;
720
721 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723 break;
724
725 case HWTSTAMP_FILTER_PTP_V2_EVENT:
726 /* PTP v2/802.AS1 any layer, any kind of event packet */
727 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728 ptp_v2 = PTP_TCR_TSVER2ENA;
729 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730 if (priv->synopsys_id < DWMAC_CORE_4_10)
731 ts_event_en = PTP_TCR_TSEVNTENA;
732 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734 ptp_over_ethernet = PTP_TCR_TSIPENA;
735 break;
736
737 case HWTSTAMP_FILTER_PTP_V2_SYNC:
738 /* PTP v2/802.AS1, any layer, Sync packet */
739 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740 ptp_v2 = PTP_TCR_TSVER2ENA;
741 /* take time stamp for SYNC messages only */
742 ts_event_en = PTP_TCR_TSEVNTENA;
743
744 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746 ptp_over_ethernet = PTP_TCR_TSIPENA;
747 break;
748
749 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750 /* PTP v2/802.AS1, any layer, Delay_req packet */
751 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752 ptp_v2 = PTP_TCR_TSVER2ENA;
753 /* take time stamp for Delay_Req messages only */
754 ts_master_en = PTP_TCR_TSMSTRENA;
755 ts_event_en = PTP_TCR_TSEVNTENA;
756
757 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759 ptp_over_ethernet = PTP_TCR_TSIPENA;
760 break;
761
762 case HWTSTAMP_FILTER_NTP_ALL:
763 case HWTSTAMP_FILTER_ALL:
764 /* time stamp any incoming packet */
765 config.rx_filter = HWTSTAMP_FILTER_ALL;
766 tstamp_all = PTP_TCR_TSENALL;
767 break;
768
769 default:
770 return -ERANGE;
771 }
772 } else {
773 switch (config.rx_filter) {
774 case HWTSTAMP_FILTER_NONE:
775 config.rx_filter = HWTSTAMP_FILTER_NONE;
776 break;
777 default:
778 /* PTP v1, UDP, any kind of event packet */
779 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780 break;
781 }
782 }
783 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785
786 priv->systime_flags = STMMAC_HWTS_ACTIVE;
787
788 if (priv->hwts_tx_en || priv->hwts_rx_en) {
789 priv->systime_flags |= tstamp_all | ptp_v2 |
790 ptp_over_ethernet | ptp_over_ipv6_udp |
791 ptp_over_ipv4_udp | ts_event_en |
792 ts_master_en | snap_type_sel;
793 }
794
795 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796
797 memcpy(&priv->tstamp_config, &config, sizeof(config));
798
799 return copy_to_user(ifr->ifr_data, &config,
800 sizeof(config)) ? -EFAULT : 0;
801 }
802
803 /**
804 * stmmac_hwtstamp_get - read hardware timestamping.
805 * @dev: device pointer.
806 * @ifr: An IOCTL specific structure, that can contain a pointer to
807 * a proprietary structure used to pass information to the driver.
808 * Description:
809 * This function obtain the current hardware timestamping settings
810 * as requested.
811 */
stmmac_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814 struct stmmac_priv *priv = netdev_priv(dev);
815 struct hwtstamp_config *config = &priv->tstamp_config;
816
817 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818 return -EOPNOTSUPP;
819
820 return copy_to_user(ifr->ifr_data, config,
821 sizeof(*config)) ? -EFAULT : 0;
822 }
823
824 /**
825 * stmmac_init_tstamp_counter - init hardware timestamping counter
826 * @priv: driver private structure
827 * @systime_flags: timestamping flags
828 * Description:
829 * Initialize hardware counter for packet timestamping.
830 * This is valid as long as the interface is open and not suspended.
831 * Will be rerun after resuming from suspend, case in which the timestamping
832 * flags updated by stmmac_hwtstamp_set() also need to be restored.
833 */
stmmac_init_tstamp_counter(struct stmmac_priv * priv,u32 systime_flags)834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837 struct timespec64 now;
838 u32 sec_inc = 0;
839 u64 temp = 0;
840
841 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842 return -EOPNOTSUPP;
843
844 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845 priv->systime_flags = systime_flags;
846
847 /* program Sub Second Increment reg */
848 stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849 priv->plat->clk_ptp_rate,
850 xmac, &sec_inc);
851 temp = div_u64(1000000000ULL, sec_inc);
852
853 /* Store sub second increment for later use */
854 priv->sub_second_inc = sec_inc;
855
856 /* calculate default added value:
857 * formula is :
858 * addend = (2^32)/freq_div_ratio;
859 * where, freq_div_ratio = 1e9ns/sec_inc
860 */
861 temp = (u64)(temp << 32);
862 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864
865 /* initialize system time */
866 ktime_get_real_ts64(&now);
867
868 /* lower 32 bits of tv_sec are safe until y2106 */
869 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870
871 return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874
875 /**
876 * stmmac_init_ptp - init PTP
877 * @priv: driver private structure
878 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879 * This is done by looking at the HW cap. register.
880 * This function also registers the ptp driver.
881 */
stmmac_init_ptp(struct stmmac_priv * priv)882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885 int ret;
886
887 if (priv->plat->ptp_clk_freq_config)
888 priv->plat->ptp_clk_freq_config(priv);
889
890 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891 if (ret)
892 return ret;
893
894 priv->adv_ts = 0;
895 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896 if (xmac && priv->dma_cap.atime_stamp)
897 priv->adv_ts = 1;
898 /* Dwmac 3.x core with extend_desc can support adv_ts */
899 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900 priv->adv_ts = 1;
901
902 if (priv->dma_cap.time_stamp)
903 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904
905 if (priv->adv_ts)
906 netdev_info(priv->dev,
907 "IEEE 1588-2008 Advanced Timestamp supported\n");
908
909 priv->hwts_tx_en = 0;
910 priv->hwts_rx_en = 0;
911
912 return 0;
913 }
914
stmmac_release_ptp(struct stmmac_priv * priv)915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917 clk_disable_unprepare(priv->plat->clk_ptp_ref);
918 stmmac_ptp_unregister(priv);
919 }
920
921 /**
922 * stmmac_mac_flow_ctrl - Configure flow control in all queues
923 * @priv: driver private structure
924 * @duplex: duplex passed to the next function
925 * Description: It is used for configuring the flow control in all queues
926 */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929 u32 tx_cnt = priv->plat->tx_queues_to_use;
930
931 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932 priv->pause, tx_cnt);
933 }
934
stmmac_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936 phy_interface_t interface)
937 {
938 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939
940 if (!priv->hw->xpcs)
941 return NULL;
942
943 return &priv->hw->xpcs->pcs;
944 }
945
stmmac_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947 const struct phylink_link_state *state)
948 {
949 /* Nothing to do, xpcs_config() handles everything */
950 }
951
stmmac_fpe_link_state_handle(struct stmmac_priv * priv,bool is_up)952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957 bool *hs_enable = &fpe_cfg->hs_enable;
958
959 if (is_up && *hs_enable) {
960 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961 } else {
962 *lo_state = FPE_STATE_OFF;
963 *lp_state = FPE_STATE_OFF;
964 }
965 }
966
stmmac_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)967 static void stmmac_mac_link_down(struct phylink_config *config,
968 unsigned int mode, phy_interface_t interface)
969 {
970 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971
972 stmmac_mac_set(priv, priv->ioaddr, false);
973 priv->eee_active = false;
974 priv->tx_lpi_enabled = false;
975 priv->eee_enabled = stmmac_eee_init(priv);
976 stmmac_set_eee_pls(priv, priv->hw, false);
977
978 if (priv->dma_cap.fpesel)
979 stmmac_fpe_link_state_handle(priv, false);
980 }
981
stmmac_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)982 static void stmmac_mac_link_up(struct phylink_config *config,
983 struct phy_device *phy,
984 unsigned int mode, phy_interface_t interface,
985 int speed, int duplex,
986 bool tx_pause, bool rx_pause)
987 {
988 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989 u32 old_ctrl, ctrl;
990
991 old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
992 ctrl = old_ctrl & ~priv->hw->link.speed_mask;
993
994 if (interface == PHY_INTERFACE_MODE_USXGMII) {
995 switch (speed) {
996 case SPEED_10000:
997 ctrl |= priv->hw->link.xgmii.speed10000;
998 break;
999 case SPEED_5000:
1000 ctrl |= priv->hw->link.xgmii.speed5000;
1001 break;
1002 case SPEED_2500:
1003 ctrl |= priv->hw->link.xgmii.speed2500;
1004 break;
1005 default:
1006 return;
1007 }
1008 } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1009 switch (speed) {
1010 case SPEED_100000:
1011 ctrl |= priv->hw->link.xlgmii.speed100000;
1012 break;
1013 case SPEED_50000:
1014 ctrl |= priv->hw->link.xlgmii.speed50000;
1015 break;
1016 case SPEED_40000:
1017 ctrl |= priv->hw->link.xlgmii.speed40000;
1018 break;
1019 case SPEED_25000:
1020 ctrl |= priv->hw->link.xlgmii.speed25000;
1021 break;
1022 case SPEED_10000:
1023 ctrl |= priv->hw->link.xgmii.speed10000;
1024 break;
1025 case SPEED_2500:
1026 ctrl |= priv->hw->link.speed2500;
1027 break;
1028 case SPEED_1000:
1029 ctrl |= priv->hw->link.speed1000;
1030 break;
1031 default:
1032 return;
1033 }
1034 } else {
1035 switch (speed) {
1036 case SPEED_2500:
1037 ctrl |= priv->hw->link.speed2500;
1038 break;
1039 case SPEED_1000:
1040 ctrl |= priv->hw->link.speed1000;
1041 break;
1042 case SPEED_100:
1043 ctrl |= priv->hw->link.speed100;
1044 break;
1045 case SPEED_10:
1046 ctrl |= priv->hw->link.speed10;
1047 break;
1048 default:
1049 return;
1050 }
1051 }
1052
1053 priv->speed = speed;
1054
1055 if (priv->plat->fix_mac_speed)
1056 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1057
1058 if (!duplex)
1059 ctrl &= ~priv->hw->link.duplex;
1060 else
1061 ctrl |= priv->hw->link.duplex;
1062
1063 /* Flow Control operation */
1064 if (rx_pause && tx_pause)
1065 priv->flow_ctrl = FLOW_AUTO;
1066 else if (rx_pause && !tx_pause)
1067 priv->flow_ctrl = FLOW_RX;
1068 else if (!rx_pause && tx_pause)
1069 priv->flow_ctrl = FLOW_TX;
1070 else
1071 priv->flow_ctrl = FLOW_OFF;
1072
1073 stmmac_mac_flow_ctrl(priv, duplex);
1074
1075 if (ctrl != old_ctrl)
1076 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1077
1078 stmmac_mac_set(priv, priv->ioaddr, true);
1079 if (phy && priv->dma_cap.eee) {
1080 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1081 priv->eee_enabled = stmmac_eee_init(priv);
1082 priv->tx_lpi_enabled = priv->eee_enabled;
1083 stmmac_set_eee_pls(priv, priv->hw, true);
1084 }
1085
1086 if (priv->dma_cap.fpesel)
1087 stmmac_fpe_link_state_handle(priv, true);
1088 }
1089
1090 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1091 .validate = phylink_generic_validate,
1092 .mac_select_pcs = stmmac_mac_select_pcs,
1093 .mac_config = stmmac_mac_config,
1094 .mac_link_down = stmmac_mac_link_down,
1095 .mac_link_up = stmmac_mac_link_up,
1096 };
1097
1098 /**
1099 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1100 * @priv: driver private structure
1101 * Description: this is to verify if the HW supports the PCS.
1102 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1103 * configured for the TBI, RTBI, or SGMII PHY interface.
1104 */
stmmac_check_pcs_mode(struct stmmac_priv * priv)1105 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1106 {
1107 int interface = priv->plat->interface;
1108
1109 if (priv->dma_cap.pcs) {
1110 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1111 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1112 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1113 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1114 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1115 priv->hw->pcs = STMMAC_PCS_RGMII;
1116 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1117 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1118 priv->hw->pcs = STMMAC_PCS_SGMII;
1119 }
1120 }
1121 }
1122
1123 /**
1124 * stmmac_init_phy - PHY initialization
1125 * @dev: net device structure
1126 * Description: it initializes the driver's PHY state, and attaches the PHY
1127 * to the mac driver.
1128 * Return value:
1129 * 0 on success
1130 */
stmmac_init_phy(struct net_device * dev)1131 static int stmmac_init_phy(struct net_device *dev)
1132 {
1133 struct stmmac_priv *priv = netdev_priv(dev);
1134 struct fwnode_handle *fwnode;
1135 int ret;
1136
1137 fwnode = of_fwnode_handle(priv->plat->phylink_node);
1138 if (!fwnode)
1139 fwnode = dev_fwnode(priv->device);
1140
1141 if (fwnode)
1142 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1143
1144 /* Some DT bindings do not set-up the PHY handle. Let's try to
1145 * manually parse it
1146 */
1147 if (!fwnode || ret) {
1148 int addr = priv->plat->phy_addr;
1149 struct phy_device *phydev;
1150
1151 phydev = mdiobus_get_phy(priv->mii, addr);
1152 if (!phydev) {
1153 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1154 return -ENODEV;
1155 }
1156
1157 ret = phylink_connect_phy(priv->phylink, phydev);
1158 }
1159
1160 if (!priv->plat->pmt) {
1161 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1162
1163 phylink_ethtool_get_wol(priv->phylink, &wol);
1164 device_set_wakeup_capable(priv->device, !!wol.supported);
1165 }
1166
1167 return ret;
1168 }
1169
stmmac_phy_setup(struct stmmac_priv * priv)1170 static int stmmac_phy_setup(struct stmmac_priv *priv)
1171 {
1172 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1173 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1174 int max_speed = priv->plat->max_speed;
1175 int mode = priv->plat->phy_interface;
1176 struct phylink *phylink;
1177
1178 priv->phylink_config.dev = &priv->dev->dev;
1179 priv->phylink_config.type = PHYLINK_NETDEV;
1180 if (priv->plat->mdio_bus_data)
1181 priv->phylink_config.ovr_an_inband =
1182 mdio_bus_data->xpcs_an_inband;
1183
1184 if (!fwnode)
1185 fwnode = dev_fwnode(priv->device);
1186
1187 /* Set the platform/firmware specified interface mode */
1188 __set_bit(mode, priv->phylink_config.supported_interfaces);
1189
1190 /* If we have an xpcs, it defines which PHY interfaces are supported. */
1191 if (priv->hw->xpcs)
1192 xpcs_get_interfaces(priv->hw->xpcs,
1193 priv->phylink_config.supported_interfaces);
1194
1195 priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1196 MAC_10 | MAC_100;
1197
1198 if (!max_speed || max_speed >= 1000)
1199 priv->phylink_config.mac_capabilities |= MAC_1000;
1200
1201 if (priv->plat->has_gmac4) {
1202 if (!max_speed || max_speed >= 2500)
1203 priv->phylink_config.mac_capabilities |= MAC_2500FD;
1204 } else if (priv->plat->has_xgmac) {
1205 if (!max_speed || max_speed >= 2500)
1206 priv->phylink_config.mac_capabilities |= MAC_2500FD;
1207 if (!max_speed || max_speed >= 5000)
1208 priv->phylink_config.mac_capabilities |= MAC_5000FD;
1209 if (!max_speed || max_speed >= 10000)
1210 priv->phylink_config.mac_capabilities |= MAC_10000FD;
1211 if (!max_speed || max_speed >= 25000)
1212 priv->phylink_config.mac_capabilities |= MAC_25000FD;
1213 if (!max_speed || max_speed >= 40000)
1214 priv->phylink_config.mac_capabilities |= MAC_40000FD;
1215 if (!max_speed || max_speed >= 50000)
1216 priv->phylink_config.mac_capabilities |= MAC_50000FD;
1217 if (!max_speed || max_speed >= 100000)
1218 priv->phylink_config.mac_capabilities |= MAC_100000FD;
1219 }
1220
1221 /* Half-Duplex can only work with single queue */
1222 if (priv->plat->tx_queues_to_use > 1)
1223 priv->phylink_config.mac_capabilities &=
1224 ~(MAC_10HD | MAC_100HD | MAC_1000HD);
1225 priv->phylink_config.mac_managed_pm = true;
1226
1227 phylink = phylink_create(&priv->phylink_config, fwnode,
1228 mode, &stmmac_phylink_mac_ops);
1229 if (IS_ERR(phylink))
1230 return PTR_ERR(phylink);
1231
1232 priv->phylink = phylink;
1233 return 0;
1234 }
1235
stmmac_display_rx_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1236 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1237 struct stmmac_dma_conf *dma_conf)
1238 {
1239 u32 rx_cnt = priv->plat->rx_queues_to_use;
1240 unsigned int desc_size;
1241 void *head_rx;
1242 u32 queue;
1243
1244 /* Display RX rings */
1245 for (queue = 0; queue < rx_cnt; queue++) {
1246 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1247
1248 pr_info("\tRX Queue %u rings\n", queue);
1249
1250 if (priv->extend_desc) {
1251 head_rx = (void *)rx_q->dma_erx;
1252 desc_size = sizeof(struct dma_extended_desc);
1253 } else {
1254 head_rx = (void *)rx_q->dma_rx;
1255 desc_size = sizeof(struct dma_desc);
1256 }
1257
1258 /* Display RX ring */
1259 stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1260 rx_q->dma_rx_phy, desc_size);
1261 }
1262 }
1263
stmmac_display_tx_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1264 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1265 struct stmmac_dma_conf *dma_conf)
1266 {
1267 u32 tx_cnt = priv->plat->tx_queues_to_use;
1268 unsigned int desc_size;
1269 void *head_tx;
1270 u32 queue;
1271
1272 /* Display TX rings */
1273 for (queue = 0; queue < tx_cnt; queue++) {
1274 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1275
1276 pr_info("\tTX Queue %d rings\n", queue);
1277
1278 if (priv->extend_desc) {
1279 head_tx = (void *)tx_q->dma_etx;
1280 desc_size = sizeof(struct dma_extended_desc);
1281 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1282 head_tx = (void *)tx_q->dma_entx;
1283 desc_size = sizeof(struct dma_edesc);
1284 } else {
1285 head_tx = (void *)tx_q->dma_tx;
1286 desc_size = sizeof(struct dma_desc);
1287 }
1288
1289 stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1290 tx_q->dma_tx_phy, desc_size);
1291 }
1292 }
1293
stmmac_display_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1294 static void stmmac_display_rings(struct stmmac_priv *priv,
1295 struct stmmac_dma_conf *dma_conf)
1296 {
1297 /* Display RX ring */
1298 stmmac_display_rx_rings(priv, dma_conf);
1299
1300 /* Display TX ring */
1301 stmmac_display_tx_rings(priv, dma_conf);
1302 }
1303
stmmac_set_bfsize(int mtu,int bufsize)1304 static int stmmac_set_bfsize(int mtu, int bufsize)
1305 {
1306 int ret = bufsize;
1307
1308 if (mtu >= BUF_SIZE_8KiB)
1309 ret = BUF_SIZE_16KiB;
1310 else if (mtu >= BUF_SIZE_4KiB)
1311 ret = BUF_SIZE_8KiB;
1312 else if (mtu >= BUF_SIZE_2KiB)
1313 ret = BUF_SIZE_4KiB;
1314 else if (mtu > DEFAULT_BUFSIZE)
1315 ret = BUF_SIZE_2KiB;
1316 else
1317 ret = DEFAULT_BUFSIZE;
1318
1319 return ret;
1320 }
1321
1322 /**
1323 * stmmac_clear_rx_descriptors - clear RX descriptors
1324 * @priv: driver private structure
1325 * @dma_conf: structure to take the dma data
1326 * @queue: RX queue index
1327 * Description: this function is called to clear the RX descriptors
1328 * in case of both basic and extended descriptors are used.
1329 */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1330 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1331 struct stmmac_dma_conf *dma_conf,
1332 u32 queue)
1333 {
1334 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1335 int i;
1336
1337 /* Clear the RX descriptors */
1338 for (i = 0; i < dma_conf->dma_rx_size; i++)
1339 if (priv->extend_desc)
1340 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1341 priv->use_riwt, priv->mode,
1342 (i == dma_conf->dma_rx_size - 1),
1343 dma_conf->dma_buf_sz);
1344 else
1345 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1346 priv->use_riwt, priv->mode,
1347 (i == dma_conf->dma_rx_size - 1),
1348 dma_conf->dma_buf_sz);
1349 }
1350
1351 /**
1352 * stmmac_clear_tx_descriptors - clear tx descriptors
1353 * @priv: driver private structure
1354 * @dma_conf: structure to take the dma data
1355 * @queue: TX queue index.
1356 * Description: this function is called to clear the TX descriptors
1357 * in case of both basic and extended descriptors are used.
1358 */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1359 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1360 struct stmmac_dma_conf *dma_conf,
1361 u32 queue)
1362 {
1363 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1364 int i;
1365
1366 /* Clear the TX descriptors */
1367 for (i = 0; i < dma_conf->dma_tx_size; i++) {
1368 int last = (i == (dma_conf->dma_tx_size - 1));
1369 struct dma_desc *p;
1370
1371 if (priv->extend_desc)
1372 p = &tx_q->dma_etx[i].basic;
1373 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1374 p = &tx_q->dma_entx[i].basic;
1375 else
1376 p = &tx_q->dma_tx[i];
1377
1378 stmmac_init_tx_desc(priv, p, priv->mode, last);
1379 }
1380 }
1381
1382 /**
1383 * stmmac_clear_descriptors - clear descriptors
1384 * @priv: driver private structure
1385 * @dma_conf: structure to take the dma data
1386 * Description: this function is called to clear the TX and RX descriptors
1387 * in case of both basic and extended descriptors are used.
1388 */
stmmac_clear_descriptors(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1389 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1390 struct stmmac_dma_conf *dma_conf)
1391 {
1392 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1393 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1394 u32 queue;
1395
1396 /* Clear the RX descriptors */
1397 for (queue = 0; queue < rx_queue_cnt; queue++)
1398 stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1399
1400 /* Clear the TX descriptors */
1401 for (queue = 0; queue < tx_queue_cnt; queue++)
1402 stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1403 }
1404
1405 /**
1406 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1407 * @priv: driver private structure
1408 * @dma_conf: structure to take the dma data
1409 * @p: descriptor pointer
1410 * @i: descriptor index
1411 * @flags: gfp flag
1412 * @queue: RX queue index
1413 * Description: this function is called to allocate a receive buffer, perform
1414 * the DMA mapping and init the descriptor.
1415 */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,struct dma_desc * p,int i,gfp_t flags,u32 queue)1416 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1417 struct stmmac_dma_conf *dma_conf,
1418 struct dma_desc *p,
1419 int i, gfp_t flags, u32 queue)
1420 {
1421 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1422 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1423 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1424
1425 if (priv->dma_cap.addr64 <= 32)
1426 gfp |= GFP_DMA32;
1427
1428 if (!buf->page) {
1429 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1430 if (!buf->page)
1431 return -ENOMEM;
1432 buf->page_offset = stmmac_rx_offset(priv);
1433 }
1434
1435 if (priv->sph && !buf->sec_page) {
1436 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1437 if (!buf->sec_page)
1438 return -ENOMEM;
1439
1440 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1441 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1442 } else {
1443 buf->sec_page = NULL;
1444 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1445 }
1446
1447 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1448
1449 stmmac_set_desc_addr(priv, p, buf->addr);
1450 if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1451 stmmac_init_desc3(priv, p);
1452
1453 return 0;
1454 }
1455
1456 /**
1457 * stmmac_free_rx_buffer - free RX dma buffers
1458 * @priv: private structure
1459 * @rx_q: RX queue
1460 * @i: buffer index.
1461 */
stmmac_free_rx_buffer(struct stmmac_priv * priv,struct stmmac_rx_queue * rx_q,int i)1462 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1463 struct stmmac_rx_queue *rx_q,
1464 int i)
1465 {
1466 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1467
1468 if (buf->page)
1469 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1470 buf->page = NULL;
1471
1472 if (buf->sec_page)
1473 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1474 buf->sec_page = NULL;
1475 }
1476
1477 /**
1478 * stmmac_free_tx_buffer - free RX dma buffers
1479 * @priv: private structure
1480 * @dma_conf: structure to take the dma data
1481 * @queue: RX queue index
1482 * @i: buffer index.
1483 */
stmmac_free_tx_buffer(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue,int i)1484 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1485 struct stmmac_dma_conf *dma_conf,
1486 u32 queue, int i)
1487 {
1488 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1489
1490 if (tx_q->tx_skbuff_dma[i].buf &&
1491 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1492 if (tx_q->tx_skbuff_dma[i].map_as_page)
1493 dma_unmap_page(priv->device,
1494 tx_q->tx_skbuff_dma[i].buf,
1495 tx_q->tx_skbuff_dma[i].len,
1496 DMA_TO_DEVICE);
1497 else
1498 dma_unmap_single(priv->device,
1499 tx_q->tx_skbuff_dma[i].buf,
1500 tx_q->tx_skbuff_dma[i].len,
1501 DMA_TO_DEVICE);
1502 }
1503
1504 if (tx_q->xdpf[i] &&
1505 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1506 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1507 xdp_return_frame(tx_q->xdpf[i]);
1508 tx_q->xdpf[i] = NULL;
1509 }
1510
1511 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1512 tx_q->xsk_frames_done++;
1513
1514 if (tx_q->tx_skbuff[i] &&
1515 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1516 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1517 tx_q->tx_skbuff[i] = NULL;
1518 }
1519
1520 tx_q->tx_skbuff_dma[i].buf = 0;
1521 tx_q->tx_skbuff_dma[i].map_as_page = false;
1522 }
1523
1524 /**
1525 * dma_free_rx_skbufs - free RX dma buffers
1526 * @priv: private structure
1527 * @dma_conf: structure to take the dma data
1528 * @queue: RX queue index
1529 */
dma_free_rx_skbufs(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1530 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1531 struct stmmac_dma_conf *dma_conf,
1532 u32 queue)
1533 {
1534 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1535 int i;
1536
1537 for (i = 0; i < dma_conf->dma_rx_size; i++)
1538 stmmac_free_rx_buffer(priv, rx_q, i);
1539 }
1540
stmmac_alloc_rx_buffers(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue,gfp_t flags)1541 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1542 struct stmmac_dma_conf *dma_conf,
1543 u32 queue, gfp_t flags)
1544 {
1545 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1546 int i;
1547
1548 for (i = 0; i < dma_conf->dma_rx_size; i++) {
1549 struct dma_desc *p;
1550 int ret;
1551
1552 if (priv->extend_desc)
1553 p = &((rx_q->dma_erx + i)->basic);
1554 else
1555 p = rx_q->dma_rx + i;
1556
1557 ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1558 queue);
1559 if (ret)
1560 return ret;
1561
1562 rx_q->buf_alloc_num++;
1563 }
1564
1565 return 0;
1566 }
1567
1568 /**
1569 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1570 * @priv: private structure
1571 * @dma_conf: structure to take the dma data
1572 * @queue: RX queue index
1573 */
dma_free_rx_xskbufs(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1574 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1575 struct stmmac_dma_conf *dma_conf,
1576 u32 queue)
1577 {
1578 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1579 int i;
1580
1581 for (i = 0; i < dma_conf->dma_rx_size; i++) {
1582 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1583
1584 if (!buf->xdp)
1585 continue;
1586
1587 xsk_buff_free(buf->xdp);
1588 buf->xdp = NULL;
1589 }
1590 }
1591
stmmac_alloc_rx_buffers_zc(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1592 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1593 struct stmmac_dma_conf *dma_conf,
1594 u32 queue)
1595 {
1596 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1597 int i;
1598
1599 for (i = 0; i < dma_conf->dma_rx_size; i++) {
1600 struct stmmac_rx_buffer *buf;
1601 dma_addr_t dma_addr;
1602 struct dma_desc *p;
1603
1604 if (priv->extend_desc)
1605 p = (struct dma_desc *)(rx_q->dma_erx + i);
1606 else
1607 p = rx_q->dma_rx + i;
1608
1609 buf = &rx_q->buf_pool[i];
1610
1611 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1612 if (!buf->xdp)
1613 return -ENOMEM;
1614
1615 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1616 stmmac_set_desc_addr(priv, p, dma_addr);
1617 rx_q->buf_alloc_num++;
1618 }
1619
1620 return 0;
1621 }
1622
stmmac_get_xsk_pool(struct stmmac_priv * priv,u32 queue)1623 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1624 {
1625 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1626 return NULL;
1627
1628 return xsk_get_pool_from_qid(priv->dev, queue);
1629 }
1630
1631 /**
1632 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1633 * @priv: driver private structure
1634 * @dma_conf: structure to take the dma data
1635 * @queue: RX queue index
1636 * @flags: gfp flag.
1637 * Description: this function initializes the DMA RX descriptors
1638 * and allocates the socket buffers. It supports the chained and ring
1639 * modes.
1640 */
__init_dma_rx_desc_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue,gfp_t flags)1641 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1642 struct stmmac_dma_conf *dma_conf,
1643 u32 queue, gfp_t flags)
1644 {
1645 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1646 int ret;
1647
1648 netif_dbg(priv, probe, priv->dev,
1649 "(%s) dma_rx_phy=0x%08x\n", __func__,
1650 (u32)rx_q->dma_rx_phy);
1651
1652 stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1653
1654 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1655
1656 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1657
1658 if (rx_q->xsk_pool) {
1659 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1660 MEM_TYPE_XSK_BUFF_POOL,
1661 NULL));
1662 netdev_info(priv->dev,
1663 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1664 rx_q->queue_index);
1665 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1666 } else {
1667 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1668 MEM_TYPE_PAGE_POOL,
1669 rx_q->page_pool));
1670 netdev_info(priv->dev,
1671 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1672 rx_q->queue_index);
1673 }
1674
1675 if (rx_q->xsk_pool) {
1676 /* RX XDP ZC buffer pool may not be populated, e.g.
1677 * xdpsock TX-only.
1678 */
1679 stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1680 } else {
1681 ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1682 if (ret < 0)
1683 return -ENOMEM;
1684 }
1685
1686 /* Setup the chained descriptor addresses */
1687 if (priv->mode == STMMAC_CHAIN_MODE) {
1688 if (priv->extend_desc)
1689 stmmac_mode_init(priv, rx_q->dma_erx,
1690 rx_q->dma_rx_phy,
1691 dma_conf->dma_rx_size, 1);
1692 else
1693 stmmac_mode_init(priv, rx_q->dma_rx,
1694 rx_q->dma_rx_phy,
1695 dma_conf->dma_rx_size, 0);
1696 }
1697
1698 return 0;
1699 }
1700
init_dma_rx_desc_rings(struct net_device * dev,struct stmmac_dma_conf * dma_conf,gfp_t flags)1701 static int init_dma_rx_desc_rings(struct net_device *dev,
1702 struct stmmac_dma_conf *dma_conf,
1703 gfp_t flags)
1704 {
1705 struct stmmac_priv *priv = netdev_priv(dev);
1706 u32 rx_count = priv->plat->rx_queues_to_use;
1707 int queue;
1708 int ret;
1709
1710 /* RX INITIALIZATION */
1711 netif_dbg(priv, probe, priv->dev,
1712 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1713
1714 for (queue = 0; queue < rx_count; queue++) {
1715 ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1716 if (ret)
1717 goto err_init_rx_buffers;
1718 }
1719
1720 return 0;
1721
1722 err_init_rx_buffers:
1723 while (queue >= 0) {
1724 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1725
1726 if (rx_q->xsk_pool)
1727 dma_free_rx_xskbufs(priv, dma_conf, queue);
1728 else
1729 dma_free_rx_skbufs(priv, dma_conf, queue);
1730
1731 rx_q->buf_alloc_num = 0;
1732 rx_q->xsk_pool = NULL;
1733
1734 queue--;
1735 }
1736
1737 return ret;
1738 }
1739
1740 /**
1741 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1742 * @priv: driver private structure
1743 * @dma_conf: structure to take the dma data
1744 * @queue: TX queue index
1745 * Description: this function initializes the DMA TX descriptors
1746 * and allocates the socket buffers. It supports the chained and ring
1747 * modes.
1748 */
__init_dma_tx_desc_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1749 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1750 struct stmmac_dma_conf *dma_conf,
1751 u32 queue)
1752 {
1753 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1754 int i;
1755
1756 netif_dbg(priv, probe, priv->dev,
1757 "(%s) dma_tx_phy=0x%08x\n", __func__,
1758 (u32)tx_q->dma_tx_phy);
1759
1760 /* Setup the chained descriptor addresses */
1761 if (priv->mode == STMMAC_CHAIN_MODE) {
1762 if (priv->extend_desc)
1763 stmmac_mode_init(priv, tx_q->dma_etx,
1764 tx_q->dma_tx_phy,
1765 dma_conf->dma_tx_size, 1);
1766 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1767 stmmac_mode_init(priv, tx_q->dma_tx,
1768 tx_q->dma_tx_phy,
1769 dma_conf->dma_tx_size, 0);
1770 }
1771
1772 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1773
1774 for (i = 0; i < dma_conf->dma_tx_size; i++) {
1775 struct dma_desc *p;
1776
1777 if (priv->extend_desc)
1778 p = &((tx_q->dma_etx + i)->basic);
1779 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1780 p = &((tx_q->dma_entx + i)->basic);
1781 else
1782 p = tx_q->dma_tx + i;
1783
1784 stmmac_clear_desc(priv, p);
1785
1786 tx_q->tx_skbuff_dma[i].buf = 0;
1787 tx_q->tx_skbuff_dma[i].map_as_page = false;
1788 tx_q->tx_skbuff_dma[i].len = 0;
1789 tx_q->tx_skbuff_dma[i].last_segment = false;
1790 tx_q->tx_skbuff[i] = NULL;
1791 }
1792
1793 return 0;
1794 }
1795
init_dma_tx_desc_rings(struct net_device * dev,struct stmmac_dma_conf * dma_conf)1796 static int init_dma_tx_desc_rings(struct net_device *dev,
1797 struct stmmac_dma_conf *dma_conf)
1798 {
1799 struct stmmac_priv *priv = netdev_priv(dev);
1800 u32 tx_queue_cnt;
1801 u32 queue;
1802
1803 tx_queue_cnt = priv->plat->tx_queues_to_use;
1804
1805 for (queue = 0; queue < tx_queue_cnt; queue++)
1806 __init_dma_tx_desc_rings(priv, dma_conf, queue);
1807
1808 return 0;
1809 }
1810
1811 /**
1812 * init_dma_desc_rings - init the RX/TX descriptor rings
1813 * @dev: net device structure
1814 * @dma_conf: structure to take the dma data
1815 * @flags: gfp flag.
1816 * Description: this function initializes the DMA RX/TX descriptors
1817 * and allocates the socket buffers. It supports the chained and ring
1818 * modes.
1819 */
init_dma_desc_rings(struct net_device * dev,struct stmmac_dma_conf * dma_conf,gfp_t flags)1820 static int init_dma_desc_rings(struct net_device *dev,
1821 struct stmmac_dma_conf *dma_conf,
1822 gfp_t flags)
1823 {
1824 struct stmmac_priv *priv = netdev_priv(dev);
1825 int ret;
1826
1827 ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1828 if (ret)
1829 return ret;
1830
1831 ret = init_dma_tx_desc_rings(dev, dma_conf);
1832
1833 stmmac_clear_descriptors(priv, dma_conf);
1834
1835 if (netif_msg_hw(priv))
1836 stmmac_display_rings(priv, dma_conf);
1837
1838 return ret;
1839 }
1840
1841 /**
1842 * dma_free_tx_skbufs - free TX dma buffers
1843 * @priv: private structure
1844 * @dma_conf: structure to take the dma data
1845 * @queue: TX queue index
1846 */
dma_free_tx_skbufs(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1847 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1848 struct stmmac_dma_conf *dma_conf,
1849 u32 queue)
1850 {
1851 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1852 int i;
1853
1854 tx_q->xsk_frames_done = 0;
1855
1856 for (i = 0; i < dma_conf->dma_tx_size; i++)
1857 stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1858
1859 if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1860 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1861 tx_q->xsk_frames_done = 0;
1862 tx_q->xsk_pool = NULL;
1863 }
1864 }
1865
1866 /**
1867 * stmmac_free_tx_skbufs - free TX skb buffers
1868 * @priv: private structure
1869 */
stmmac_free_tx_skbufs(struct stmmac_priv * priv)1870 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1871 {
1872 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1873 u32 queue;
1874
1875 for (queue = 0; queue < tx_queue_cnt; queue++)
1876 dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1877 }
1878
1879 /**
1880 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1881 * @priv: private structure
1882 * @dma_conf: structure to take the dma data
1883 * @queue: RX queue index
1884 */
__free_dma_rx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1885 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1886 struct stmmac_dma_conf *dma_conf,
1887 u32 queue)
1888 {
1889 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1890
1891 /* Release the DMA RX socket buffers */
1892 if (rx_q->xsk_pool)
1893 dma_free_rx_xskbufs(priv, dma_conf, queue);
1894 else
1895 dma_free_rx_skbufs(priv, dma_conf, queue);
1896
1897 rx_q->buf_alloc_num = 0;
1898 rx_q->xsk_pool = NULL;
1899
1900 /* Free DMA regions of consistent memory previously allocated */
1901 if (!priv->extend_desc)
1902 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1903 sizeof(struct dma_desc),
1904 rx_q->dma_rx, rx_q->dma_rx_phy);
1905 else
1906 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1907 sizeof(struct dma_extended_desc),
1908 rx_q->dma_erx, rx_q->dma_rx_phy);
1909
1910 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1911 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1912
1913 kfree(rx_q->buf_pool);
1914 if (rx_q->page_pool)
1915 page_pool_destroy(rx_q->page_pool);
1916 }
1917
free_dma_rx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1918 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1919 struct stmmac_dma_conf *dma_conf)
1920 {
1921 u32 rx_count = priv->plat->rx_queues_to_use;
1922 u32 queue;
1923
1924 /* Free RX queue resources */
1925 for (queue = 0; queue < rx_count; queue++)
1926 __free_dma_rx_desc_resources(priv, dma_conf, queue);
1927 }
1928
1929 /**
1930 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1931 * @priv: private structure
1932 * @dma_conf: structure to take the dma data
1933 * @queue: TX queue index
1934 */
__free_dma_tx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1935 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1936 struct stmmac_dma_conf *dma_conf,
1937 u32 queue)
1938 {
1939 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1940 size_t size;
1941 void *addr;
1942
1943 /* Release the DMA TX socket buffers */
1944 dma_free_tx_skbufs(priv, dma_conf, queue);
1945
1946 if (priv->extend_desc) {
1947 size = sizeof(struct dma_extended_desc);
1948 addr = tx_q->dma_etx;
1949 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1950 size = sizeof(struct dma_edesc);
1951 addr = tx_q->dma_entx;
1952 } else {
1953 size = sizeof(struct dma_desc);
1954 addr = tx_q->dma_tx;
1955 }
1956
1957 size *= dma_conf->dma_tx_size;
1958
1959 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1960
1961 kfree(tx_q->tx_skbuff_dma);
1962 kfree(tx_q->tx_skbuff);
1963 }
1964
free_dma_tx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1965 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1966 struct stmmac_dma_conf *dma_conf)
1967 {
1968 u32 tx_count = priv->plat->tx_queues_to_use;
1969 u32 queue;
1970
1971 /* Free TX queue resources */
1972 for (queue = 0; queue < tx_count; queue++)
1973 __free_dma_tx_desc_resources(priv, dma_conf, queue);
1974 }
1975
1976 /**
1977 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1978 * @priv: private structure
1979 * @dma_conf: structure to take the dma data
1980 * @queue: RX queue index
1981 * Description: according to which descriptor can be used (extend or basic)
1982 * this function allocates the resources for TX and RX paths. In case of
1983 * reception, for example, it pre-allocated the RX socket buffer in order to
1984 * allow zero-copy mechanism.
1985 */
__alloc_dma_rx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1986 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1987 struct stmmac_dma_conf *dma_conf,
1988 u32 queue)
1989 {
1990 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1991 struct stmmac_channel *ch = &priv->channel[queue];
1992 bool xdp_prog = stmmac_xdp_is_enabled(priv);
1993 struct page_pool_params pp_params = { 0 };
1994 unsigned int num_pages;
1995 unsigned int napi_id;
1996 int ret;
1997
1998 rx_q->queue_index = queue;
1999 rx_q->priv_data = priv;
2000
2001 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2002 pp_params.pool_size = dma_conf->dma_rx_size;
2003 num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2004 pp_params.order = ilog2(num_pages);
2005 pp_params.nid = dev_to_node(priv->device);
2006 pp_params.dev = priv->device;
2007 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2008 pp_params.offset = stmmac_rx_offset(priv);
2009 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2010
2011 rx_q->page_pool = page_pool_create(&pp_params);
2012 if (IS_ERR(rx_q->page_pool)) {
2013 ret = PTR_ERR(rx_q->page_pool);
2014 rx_q->page_pool = NULL;
2015 return ret;
2016 }
2017
2018 rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2019 sizeof(*rx_q->buf_pool),
2020 GFP_KERNEL);
2021 if (!rx_q->buf_pool)
2022 return -ENOMEM;
2023
2024 if (priv->extend_desc) {
2025 rx_q->dma_erx = dma_alloc_coherent(priv->device,
2026 dma_conf->dma_rx_size *
2027 sizeof(struct dma_extended_desc),
2028 &rx_q->dma_rx_phy,
2029 GFP_KERNEL);
2030 if (!rx_q->dma_erx)
2031 return -ENOMEM;
2032
2033 } else {
2034 rx_q->dma_rx = dma_alloc_coherent(priv->device,
2035 dma_conf->dma_rx_size *
2036 sizeof(struct dma_desc),
2037 &rx_q->dma_rx_phy,
2038 GFP_KERNEL);
2039 if (!rx_q->dma_rx)
2040 return -ENOMEM;
2041 }
2042
2043 if (stmmac_xdp_is_enabled(priv) &&
2044 test_bit(queue, priv->af_xdp_zc_qps))
2045 napi_id = ch->rxtx_napi.napi_id;
2046 else
2047 napi_id = ch->rx_napi.napi_id;
2048
2049 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2050 rx_q->queue_index,
2051 napi_id);
2052 if (ret) {
2053 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2054 return -EINVAL;
2055 }
2056
2057 return 0;
2058 }
2059
alloc_dma_rx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)2060 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2061 struct stmmac_dma_conf *dma_conf)
2062 {
2063 u32 rx_count = priv->plat->rx_queues_to_use;
2064 u32 queue;
2065 int ret;
2066
2067 /* RX queues buffers and DMA */
2068 for (queue = 0; queue < rx_count; queue++) {
2069 ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2070 if (ret)
2071 goto err_dma;
2072 }
2073
2074 return 0;
2075
2076 err_dma:
2077 free_dma_rx_desc_resources(priv, dma_conf);
2078
2079 return ret;
2080 }
2081
2082 /**
2083 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2084 * @priv: private structure
2085 * @dma_conf: structure to take the dma data
2086 * @queue: TX queue index
2087 * Description: according to which descriptor can be used (extend or basic)
2088 * this function allocates the resources for TX and RX paths. In case of
2089 * reception, for example, it pre-allocated the RX socket buffer in order to
2090 * allow zero-copy mechanism.
2091 */
__alloc_dma_tx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)2092 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2093 struct stmmac_dma_conf *dma_conf,
2094 u32 queue)
2095 {
2096 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2097 size_t size;
2098 void *addr;
2099
2100 tx_q->queue_index = queue;
2101 tx_q->priv_data = priv;
2102
2103 tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2104 sizeof(*tx_q->tx_skbuff_dma),
2105 GFP_KERNEL);
2106 if (!tx_q->tx_skbuff_dma)
2107 return -ENOMEM;
2108
2109 tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2110 sizeof(struct sk_buff *),
2111 GFP_KERNEL);
2112 if (!tx_q->tx_skbuff)
2113 return -ENOMEM;
2114
2115 if (priv->extend_desc)
2116 size = sizeof(struct dma_extended_desc);
2117 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2118 size = sizeof(struct dma_edesc);
2119 else
2120 size = sizeof(struct dma_desc);
2121
2122 size *= dma_conf->dma_tx_size;
2123
2124 addr = dma_alloc_coherent(priv->device, size,
2125 &tx_q->dma_tx_phy, GFP_KERNEL);
2126 if (!addr)
2127 return -ENOMEM;
2128
2129 if (priv->extend_desc)
2130 tx_q->dma_etx = addr;
2131 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2132 tx_q->dma_entx = addr;
2133 else
2134 tx_q->dma_tx = addr;
2135
2136 return 0;
2137 }
2138
alloc_dma_tx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)2139 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2140 struct stmmac_dma_conf *dma_conf)
2141 {
2142 u32 tx_count = priv->plat->tx_queues_to_use;
2143 u32 queue;
2144 int ret;
2145
2146 /* TX queues buffers and DMA */
2147 for (queue = 0; queue < tx_count; queue++) {
2148 ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2149 if (ret)
2150 goto err_dma;
2151 }
2152
2153 return 0;
2154
2155 err_dma:
2156 free_dma_tx_desc_resources(priv, dma_conf);
2157 return ret;
2158 }
2159
2160 /**
2161 * alloc_dma_desc_resources - alloc TX/RX resources.
2162 * @priv: private structure
2163 * @dma_conf: structure to take the dma data
2164 * Description: according to which descriptor can be used (extend or basic)
2165 * this function allocates the resources for TX and RX paths. In case of
2166 * reception, for example, it pre-allocated the RX socket buffer in order to
2167 * allow zero-copy mechanism.
2168 */
alloc_dma_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)2169 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2170 struct stmmac_dma_conf *dma_conf)
2171 {
2172 /* RX Allocation */
2173 int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2174
2175 if (ret)
2176 return ret;
2177
2178 ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2179
2180 return ret;
2181 }
2182
2183 /**
2184 * free_dma_desc_resources - free dma desc resources
2185 * @priv: private structure
2186 * @dma_conf: structure to take the dma data
2187 */
free_dma_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)2188 static void free_dma_desc_resources(struct stmmac_priv *priv,
2189 struct stmmac_dma_conf *dma_conf)
2190 {
2191 /* Release the DMA TX socket buffers */
2192 free_dma_tx_desc_resources(priv, dma_conf);
2193
2194 /* Release the DMA RX socket buffers later
2195 * to ensure all pending XDP_TX buffers are returned.
2196 */
2197 free_dma_rx_desc_resources(priv, dma_conf);
2198 }
2199
2200 /**
2201 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
2202 * @priv: driver private structure
2203 * Description: It is used for enabling the rx queues in the MAC
2204 */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)2205 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2206 {
2207 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2208 int queue;
2209 u8 mode;
2210
2211 for (queue = 0; queue < rx_queues_count; queue++) {
2212 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2213 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2214 }
2215 }
2216
2217 /**
2218 * stmmac_start_rx_dma - start RX DMA channel
2219 * @priv: driver private structure
2220 * @chan: RX channel index
2221 * Description:
2222 * This starts a RX DMA channel
2223 */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)2224 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2225 {
2226 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2227 stmmac_start_rx(priv, priv->ioaddr, chan);
2228 }
2229
2230 /**
2231 * stmmac_start_tx_dma - start TX DMA channel
2232 * @priv: driver private structure
2233 * @chan: TX channel index
2234 * Description:
2235 * This starts a TX DMA channel
2236 */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)2237 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2238 {
2239 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2240 stmmac_start_tx(priv, priv->ioaddr, chan);
2241 }
2242
2243 /**
2244 * stmmac_stop_rx_dma - stop RX DMA channel
2245 * @priv: driver private structure
2246 * @chan: RX channel index
2247 * Description:
2248 * This stops a RX DMA channel
2249 */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)2250 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2251 {
2252 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2253 stmmac_stop_rx(priv, priv->ioaddr, chan);
2254 }
2255
2256 /**
2257 * stmmac_stop_tx_dma - stop TX DMA channel
2258 * @priv: driver private structure
2259 * @chan: TX channel index
2260 * Description:
2261 * This stops a TX DMA channel
2262 */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)2263 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2264 {
2265 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2266 stmmac_stop_tx(priv, priv->ioaddr, chan);
2267 }
2268
stmmac_enable_all_dma_irq(struct stmmac_priv * priv)2269 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2270 {
2271 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2272 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2273 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2274 u32 chan;
2275
2276 for (chan = 0; chan < dma_csr_ch; chan++) {
2277 struct stmmac_channel *ch = &priv->channel[chan];
2278 unsigned long flags;
2279
2280 spin_lock_irqsave(&ch->lock, flags);
2281 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2282 spin_unlock_irqrestore(&ch->lock, flags);
2283 }
2284 }
2285
2286 /**
2287 * stmmac_start_all_dma - start all RX and TX DMA channels
2288 * @priv: driver private structure
2289 * Description:
2290 * This starts all the RX and TX DMA channels
2291 */
stmmac_start_all_dma(struct stmmac_priv * priv)2292 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2293 {
2294 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2295 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2296 u32 chan = 0;
2297
2298 for (chan = 0; chan < rx_channels_count; chan++)
2299 stmmac_start_rx_dma(priv, chan);
2300
2301 for (chan = 0; chan < tx_channels_count; chan++)
2302 stmmac_start_tx_dma(priv, chan);
2303 }
2304
2305 /**
2306 * stmmac_stop_all_dma - stop all RX and TX DMA channels
2307 * @priv: driver private structure
2308 * Description:
2309 * This stops the RX and TX DMA channels
2310 */
stmmac_stop_all_dma(struct stmmac_priv * priv)2311 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2312 {
2313 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2314 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2315 u32 chan = 0;
2316
2317 for (chan = 0; chan < rx_channels_count; chan++)
2318 stmmac_stop_rx_dma(priv, chan);
2319
2320 for (chan = 0; chan < tx_channels_count; chan++)
2321 stmmac_stop_tx_dma(priv, chan);
2322 }
2323
2324 /**
2325 * stmmac_dma_operation_mode - HW DMA operation mode
2326 * @priv: driver private structure
2327 * Description: it is used for configuring the DMA operation mode register in
2328 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2329 */
stmmac_dma_operation_mode(struct stmmac_priv * priv)2330 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2331 {
2332 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2333 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2334 int rxfifosz = priv->plat->rx_fifo_size;
2335 int txfifosz = priv->plat->tx_fifo_size;
2336 u32 txmode = 0;
2337 u32 rxmode = 0;
2338 u32 chan = 0;
2339 u8 qmode = 0;
2340
2341 if (rxfifosz == 0)
2342 rxfifosz = priv->dma_cap.rx_fifo_size;
2343 if (txfifosz == 0)
2344 txfifosz = priv->dma_cap.tx_fifo_size;
2345
2346 /* Adjust for real per queue fifo size */
2347 rxfifosz /= rx_channels_count;
2348 txfifosz /= tx_channels_count;
2349
2350 if (priv->plat->force_thresh_dma_mode) {
2351 txmode = tc;
2352 rxmode = tc;
2353 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2354 /*
2355 * In case of GMAC, SF mode can be enabled
2356 * to perform the TX COE in HW. This depends on:
2357 * 1) TX COE if actually supported
2358 * 2) There is no bugged Jumbo frame support
2359 * that needs to not insert csum in the TDES.
2360 */
2361 txmode = SF_DMA_MODE;
2362 rxmode = SF_DMA_MODE;
2363 priv->xstats.threshold = SF_DMA_MODE;
2364 } else {
2365 txmode = tc;
2366 rxmode = SF_DMA_MODE;
2367 }
2368
2369 /* configure all channels */
2370 for (chan = 0; chan < rx_channels_count; chan++) {
2371 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2372 u32 buf_size;
2373
2374 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2375
2376 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2377 rxfifosz, qmode);
2378
2379 if (rx_q->xsk_pool) {
2380 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2381 stmmac_set_dma_bfsize(priv, priv->ioaddr,
2382 buf_size,
2383 chan);
2384 } else {
2385 stmmac_set_dma_bfsize(priv, priv->ioaddr,
2386 priv->dma_conf.dma_buf_sz,
2387 chan);
2388 }
2389 }
2390
2391 for (chan = 0; chan < tx_channels_count; chan++) {
2392 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2393
2394 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2395 txfifosz, qmode);
2396 }
2397 }
2398
stmmac_xdp_xmit_zc(struct stmmac_priv * priv,u32 queue,u32 budget)2399 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2400 {
2401 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2402 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2403 struct xsk_buff_pool *pool = tx_q->xsk_pool;
2404 unsigned int entry = tx_q->cur_tx;
2405 struct dma_desc *tx_desc = NULL;
2406 struct xdp_desc xdp_desc;
2407 bool work_done = true;
2408
2409 /* Avoids TX time-out as we are sharing with slow path */
2410 txq_trans_cond_update(nq);
2411
2412 budget = min(budget, stmmac_tx_avail(priv, queue));
2413
2414 while (budget-- > 0) {
2415 dma_addr_t dma_addr;
2416 bool set_ic;
2417
2418 /* We are sharing with slow path and stop XSK TX desc submission when
2419 * available TX ring is less than threshold.
2420 */
2421 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2422 !netif_carrier_ok(priv->dev)) {
2423 work_done = false;
2424 break;
2425 }
2426
2427 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2428 break;
2429
2430 if (likely(priv->extend_desc))
2431 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2432 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2433 tx_desc = &tx_q->dma_entx[entry].basic;
2434 else
2435 tx_desc = tx_q->dma_tx + entry;
2436
2437 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2438 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2439
2440 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2441
2442 /* To return XDP buffer to XSK pool, we simple call
2443 * xsk_tx_completed(), so we don't need to fill up
2444 * 'buf' and 'xdpf'.
2445 */
2446 tx_q->tx_skbuff_dma[entry].buf = 0;
2447 tx_q->xdpf[entry] = NULL;
2448
2449 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2450 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2451 tx_q->tx_skbuff_dma[entry].last_segment = true;
2452 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2453
2454 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2455
2456 tx_q->tx_count_frames++;
2457
2458 if (!priv->tx_coal_frames[queue])
2459 set_ic = false;
2460 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2461 set_ic = true;
2462 else
2463 set_ic = false;
2464
2465 if (set_ic) {
2466 tx_q->tx_count_frames = 0;
2467 stmmac_set_tx_ic(priv, tx_desc);
2468 priv->xstats.tx_set_ic_bit++;
2469 }
2470
2471 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2472 true, priv->mode, true, true,
2473 xdp_desc.len);
2474
2475 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2476
2477 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2478 entry = tx_q->cur_tx;
2479 }
2480
2481 if (tx_desc) {
2482 stmmac_flush_tx_descriptors(priv, queue);
2483 xsk_tx_release(pool);
2484 }
2485
2486 /* Return true if all of the 3 conditions are met
2487 * a) TX Budget is still available
2488 * b) work_done = true when XSK TX desc peek is empty (no more
2489 * pending XSK TX for transmission)
2490 */
2491 return !!budget && work_done;
2492 }
2493
stmmac_bump_dma_threshold(struct stmmac_priv * priv,u32 chan)2494 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2495 {
2496 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2497 tc += 64;
2498
2499 if (priv->plat->force_thresh_dma_mode)
2500 stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2501 else
2502 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2503 chan);
2504
2505 priv->xstats.threshold = tc;
2506 }
2507 }
2508
2509 /**
2510 * stmmac_tx_clean - to manage the transmission completion
2511 * @priv: driver private structure
2512 * @budget: napi budget limiting this functions packet handling
2513 * @queue: TX queue index
2514 * Description: it reclaims the transmit resources after transmission completes.
2515 */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)2516 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2517 {
2518 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2519 unsigned int bytes_compl = 0, pkts_compl = 0;
2520 unsigned int entry, xmits = 0, count = 0;
2521
2522 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2523
2524 priv->xstats.tx_clean++;
2525
2526 tx_q->xsk_frames_done = 0;
2527
2528 entry = tx_q->dirty_tx;
2529
2530 /* Try to clean all TX complete frame in 1 shot */
2531 while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2532 struct xdp_frame *xdpf;
2533 struct sk_buff *skb;
2534 struct dma_desc *p;
2535 int status;
2536
2537 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2538 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2539 xdpf = tx_q->xdpf[entry];
2540 skb = NULL;
2541 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2542 xdpf = NULL;
2543 skb = tx_q->tx_skbuff[entry];
2544 } else {
2545 xdpf = NULL;
2546 skb = NULL;
2547 }
2548
2549 if (priv->extend_desc)
2550 p = (struct dma_desc *)(tx_q->dma_etx + entry);
2551 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2552 p = &tx_q->dma_entx[entry].basic;
2553 else
2554 p = tx_q->dma_tx + entry;
2555
2556 status = stmmac_tx_status(priv, &priv->dev->stats,
2557 &priv->xstats, p, priv->ioaddr);
2558 /* Check if the descriptor is owned by the DMA */
2559 if (unlikely(status & tx_dma_own))
2560 break;
2561
2562 count++;
2563
2564 /* Make sure descriptor fields are read after reading
2565 * the own bit.
2566 */
2567 dma_rmb();
2568
2569 /* Just consider the last segment and ...*/
2570 if (likely(!(status & tx_not_ls))) {
2571 /* ... verify the status error condition */
2572 if (unlikely(status & tx_err)) {
2573 priv->dev->stats.tx_errors++;
2574 if (unlikely(status & tx_err_bump_tc))
2575 stmmac_bump_dma_threshold(priv, queue);
2576 } else {
2577 priv->dev->stats.tx_packets++;
2578 priv->xstats.tx_pkt_n++;
2579 priv->xstats.txq_stats[queue].tx_pkt_n++;
2580 }
2581 if (skb)
2582 stmmac_get_tx_hwtstamp(priv, p, skb);
2583 }
2584
2585 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2586 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2587 if (tx_q->tx_skbuff_dma[entry].map_as_page)
2588 dma_unmap_page(priv->device,
2589 tx_q->tx_skbuff_dma[entry].buf,
2590 tx_q->tx_skbuff_dma[entry].len,
2591 DMA_TO_DEVICE);
2592 else
2593 dma_unmap_single(priv->device,
2594 tx_q->tx_skbuff_dma[entry].buf,
2595 tx_q->tx_skbuff_dma[entry].len,
2596 DMA_TO_DEVICE);
2597 tx_q->tx_skbuff_dma[entry].buf = 0;
2598 tx_q->tx_skbuff_dma[entry].len = 0;
2599 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2600 }
2601
2602 stmmac_clean_desc3(priv, tx_q, p);
2603
2604 tx_q->tx_skbuff_dma[entry].last_segment = false;
2605 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2606
2607 if (xdpf &&
2608 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2609 xdp_return_frame_rx_napi(xdpf);
2610 tx_q->xdpf[entry] = NULL;
2611 }
2612
2613 if (xdpf &&
2614 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2615 xdp_return_frame(xdpf);
2616 tx_q->xdpf[entry] = NULL;
2617 }
2618
2619 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2620 tx_q->xsk_frames_done++;
2621
2622 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2623 if (likely(skb)) {
2624 pkts_compl++;
2625 bytes_compl += skb->len;
2626 dev_consume_skb_any(skb);
2627 tx_q->tx_skbuff[entry] = NULL;
2628 }
2629 }
2630
2631 stmmac_release_tx_desc(priv, p, priv->mode);
2632
2633 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2634 }
2635 tx_q->dirty_tx = entry;
2636
2637 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2638 pkts_compl, bytes_compl);
2639
2640 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2641 queue))) &&
2642 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2643
2644 netif_dbg(priv, tx_done, priv->dev,
2645 "%s: restart transmit\n", __func__);
2646 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2647 }
2648
2649 if (tx_q->xsk_pool) {
2650 bool work_done;
2651
2652 if (tx_q->xsk_frames_done)
2653 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2654
2655 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2656 xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2657
2658 /* For XSK TX, we try to send as many as possible.
2659 * If XSK work done (XSK TX desc empty and budget still
2660 * available), return "budget - 1" to reenable TX IRQ.
2661 * Else, return "budget" to make NAPI continue polling.
2662 */
2663 work_done = stmmac_xdp_xmit_zc(priv, queue,
2664 STMMAC_XSK_TX_BUDGET_MAX);
2665 if (work_done)
2666 xmits = budget - 1;
2667 else
2668 xmits = budget;
2669 }
2670
2671 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2672 priv->eee_sw_timer_en) {
2673 if (stmmac_enable_eee_mode(priv))
2674 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2675 }
2676
2677 /* We still have pending packets, let's call for a new scheduling */
2678 if (tx_q->dirty_tx != tx_q->cur_tx)
2679 hrtimer_start(&tx_q->txtimer,
2680 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2681 HRTIMER_MODE_REL);
2682
2683 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2684
2685 /* Combine decisions from TX clean and XSK TX */
2686 return max(count, xmits);
2687 }
2688
2689 /**
2690 * stmmac_tx_err - to manage the tx error
2691 * @priv: driver private structure
2692 * @chan: channel index
2693 * Description: it cleans the descriptors and restarts the transmission
2694 * in case of transmission errors.
2695 */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)2696 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2697 {
2698 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2699
2700 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2701
2702 stmmac_stop_tx_dma(priv, chan);
2703 dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2704 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2705 stmmac_reset_tx_queue(priv, chan);
2706 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2707 tx_q->dma_tx_phy, chan);
2708 stmmac_start_tx_dma(priv, chan);
2709
2710 priv->dev->stats.tx_errors++;
2711 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2712 }
2713
2714 /**
2715 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2716 * @priv: driver private structure
2717 * @txmode: TX operating mode
2718 * @rxmode: RX operating mode
2719 * @chan: channel index
2720 * Description: it is used for configuring of the DMA operation mode in
2721 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2722 * mode.
2723 */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)2724 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2725 u32 rxmode, u32 chan)
2726 {
2727 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2728 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2729 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2730 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2731 int rxfifosz = priv->plat->rx_fifo_size;
2732 int txfifosz = priv->plat->tx_fifo_size;
2733
2734 if (rxfifosz == 0)
2735 rxfifosz = priv->dma_cap.rx_fifo_size;
2736 if (txfifosz == 0)
2737 txfifosz = priv->dma_cap.tx_fifo_size;
2738
2739 /* Adjust for real per queue fifo size */
2740 rxfifosz /= rx_channels_count;
2741 txfifosz /= tx_channels_count;
2742
2743 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2744 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2745 }
2746
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2747 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2748 {
2749 int ret;
2750
2751 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2752 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2753 if (ret && (ret != -EINVAL)) {
2754 stmmac_global_err(priv);
2755 return true;
2756 }
2757
2758 return false;
2759 }
2760
stmmac_napi_check(struct stmmac_priv * priv,u32 chan,u32 dir)2761 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2762 {
2763 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2764 &priv->xstats, chan, dir);
2765 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2766 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2767 struct stmmac_channel *ch = &priv->channel[chan];
2768 struct napi_struct *rx_napi;
2769 struct napi_struct *tx_napi;
2770 unsigned long flags;
2771
2772 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2773 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2774
2775 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2776 if (napi_schedule_prep(rx_napi)) {
2777 spin_lock_irqsave(&ch->lock, flags);
2778 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2779 spin_unlock_irqrestore(&ch->lock, flags);
2780 __napi_schedule(rx_napi);
2781 }
2782 }
2783
2784 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2785 if (napi_schedule_prep(tx_napi)) {
2786 spin_lock_irqsave(&ch->lock, flags);
2787 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2788 spin_unlock_irqrestore(&ch->lock, flags);
2789 __napi_schedule(tx_napi);
2790 }
2791 }
2792
2793 return status;
2794 }
2795
2796 /**
2797 * stmmac_dma_interrupt - DMA ISR
2798 * @priv: driver private structure
2799 * Description: this is the DMA ISR. It is called by the main ISR.
2800 * It calls the dwmac dma routine and schedule poll method in case of some
2801 * work can be done.
2802 */
stmmac_dma_interrupt(struct stmmac_priv * priv)2803 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2804 {
2805 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2806 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2807 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2808 tx_channel_count : rx_channel_count;
2809 u32 chan;
2810 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2811
2812 /* Make sure we never check beyond our status buffer. */
2813 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2814 channels_to_check = ARRAY_SIZE(status);
2815
2816 for (chan = 0; chan < channels_to_check; chan++)
2817 status[chan] = stmmac_napi_check(priv, chan,
2818 DMA_DIR_RXTX);
2819
2820 for (chan = 0; chan < tx_channel_count; chan++) {
2821 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2822 /* Try to bump up the dma threshold on this failure */
2823 stmmac_bump_dma_threshold(priv, chan);
2824 } else if (unlikely(status[chan] == tx_hard_error)) {
2825 stmmac_tx_err(priv, chan);
2826 }
2827 }
2828 }
2829
2830 /**
2831 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2832 * @priv: driver private structure
2833 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2834 */
stmmac_mmc_setup(struct stmmac_priv * priv)2835 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2836 {
2837 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2838 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2839
2840 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2841
2842 if (priv->dma_cap.rmon) {
2843 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2844 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2845 } else
2846 netdev_info(priv->dev, "No MAC Management Counters available\n");
2847 }
2848
2849 /**
2850 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2851 * @priv: driver private structure
2852 * Description:
2853 * new GMAC chip generations have a new register to indicate the
2854 * presence of the optional feature/functions.
2855 * This can be also used to override the value passed through the
2856 * platform and necessary for old MAC10/100 and GMAC chips.
2857 */
stmmac_get_hw_features(struct stmmac_priv * priv)2858 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2859 {
2860 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2861 }
2862
2863 /**
2864 * stmmac_check_ether_addr - check if the MAC addr is valid
2865 * @priv: driver private structure
2866 * Description:
2867 * it is to verify if the MAC address is valid, in case of failures it
2868 * generates a random MAC address
2869 */
stmmac_check_ether_addr(struct stmmac_priv * priv)2870 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2871 {
2872 u8 addr[ETH_ALEN];
2873
2874 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2875 stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2876 if (is_valid_ether_addr(addr))
2877 eth_hw_addr_set(priv->dev, addr);
2878 else
2879 eth_hw_addr_random(priv->dev);
2880 dev_info(priv->device, "device MAC address %pM\n",
2881 priv->dev->dev_addr);
2882 }
2883 }
2884
2885 /**
2886 * stmmac_init_dma_engine - DMA init.
2887 * @priv: driver private structure
2888 * Description:
2889 * It inits the DMA invoking the specific MAC/GMAC callback.
2890 * Some DMA parameters can be passed from the platform;
2891 * in case of these are not passed a default is kept for the MAC or GMAC.
2892 */
stmmac_init_dma_engine(struct stmmac_priv * priv)2893 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2894 {
2895 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2896 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2897 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2898 struct stmmac_rx_queue *rx_q;
2899 struct stmmac_tx_queue *tx_q;
2900 u32 chan = 0;
2901 int atds = 0;
2902 int ret = 0;
2903
2904 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2905 dev_err(priv->device, "Invalid DMA configuration\n");
2906 return -EINVAL;
2907 }
2908
2909 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2910 atds = 1;
2911
2912 ret = stmmac_reset(priv, priv->ioaddr);
2913 if (ret) {
2914 dev_err(priv->device, "Failed to reset the dma\n");
2915 return ret;
2916 }
2917
2918 /* DMA Configuration */
2919 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2920
2921 if (priv->plat->axi)
2922 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2923
2924 /* DMA CSR Channel configuration */
2925 for (chan = 0; chan < dma_csr_ch; chan++) {
2926 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2927 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2928 }
2929
2930 /* DMA RX Channel Configuration */
2931 for (chan = 0; chan < rx_channels_count; chan++) {
2932 rx_q = &priv->dma_conf.rx_queue[chan];
2933
2934 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2935 rx_q->dma_rx_phy, chan);
2936
2937 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2938 (rx_q->buf_alloc_num *
2939 sizeof(struct dma_desc));
2940 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2941 rx_q->rx_tail_addr, chan);
2942 }
2943
2944 /* DMA TX Channel Configuration */
2945 for (chan = 0; chan < tx_channels_count; chan++) {
2946 tx_q = &priv->dma_conf.tx_queue[chan];
2947
2948 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2949 tx_q->dma_tx_phy, chan);
2950
2951 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2952 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2953 tx_q->tx_tail_addr, chan);
2954 }
2955
2956 return ret;
2957 }
2958
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2959 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2960 {
2961 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2962
2963 hrtimer_start(&tx_q->txtimer,
2964 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2965 HRTIMER_MODE_REL);
2966 }
2967
2968 /**
2969 * stmmac_tx_timer - mitigation sw timer for tx.
2970 * @t: data pointer
2971 * Description:
2972 * This is the timer handler to directly invoke the stmmac_tx_clean.
2973 */
stmmac_tx_timer(struct hrtimer * t)2974 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2975 {
2976 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2977 struct stmmac_priv *priv = tx_q->priv_data;
2978 struct stmmac_channel *ch;
2979 struct napi_struct *napi;
2980
2981 ch = &priv->channel[tx_q->queue_index];
2982 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2983
2984 if (likely(napi_schedule_prep(napi))) {
2985 unsigned long flags;
2986
2987 spin_lock_irqsave(&ch->lock, flags);
2988 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2989 spin_unlock_irqrestore(&ch->lock, flags);
2990 __napi_schedule(napi);
2991 }
2992
2993 return HRTIMER_NORESTART;
2994 }
2995
2996 /**
2997 * stmmac_init_coalesce - init mitigation options.
2998 * @priv: driver private structure
2999 * Description:
3000 * This inits the coalesce parameters: i.e. timer rate,
3001 * timer handler and default threshold used for enabling the
3002 * interrupt on completion bit.
3003 */
stmmac_init_coalesce(struct stmmac_priv * priv)3004 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3005 {
3006 u32 tx_channel_count = priv->plat->tx_queues_to_use;
3007 u32 rx_channel_count = priv->plat->rx_queues_to_use;
3008 u32 chan;
3009
3010 for (chan = 0; chan < tx_channel_count; chan++) {
3011 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3012
3013 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3014 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3015
3016 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3017 tx_q->txtimer.function = stmmac_tx_timer;
3018 }
3019
3020 for (chan = 0; chan < rx_channel_count; chan++)
3021 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3022 }
3023
stmmac_set_rings_length(struct stmmac_priv * priv)3024 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3025 {
3026 u32 rx_channels_count = priv->plat->rx_queues_to_use;
3027 u32 tx_channels_count = priv->plat->tx_queues_to_use;
3028 u32 chan;
3029
3030 /* set TX ring length */
3031 for (chan = 0; chan < tx_channels_count; chan++)
3032 stmmac_set_tx_ring_len(priv, priv->ioaddr,
3033 (priv->dma_conf.dma_tx_size - 1), chan);
3034
3035 /* set RX ring length */
3036 for (chan = 0; chan < rx_channels_count; chan++)
3037 stmmac_set_rx_ring_len(priv, priv->ioaddr,
3038 (priv->dma_conf.dma_rx_size - 1), chan);
3039 }
3040
3041 /**
3042 * stmmac_set_tx_queue_weight - Set TX queue weight
3043 * @priv: driver private structure
3044 * Description: It is used for setting TX queues weight
3045 */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)3046 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3047 {
3048 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3049 u32 weight;
3050 u32 queue;
3051
3052 for (queue = 0; queue < tx_queues_count; queue++) {
3053 weight = priv->plat->tx_queues_cfg[queue].weight;
3054 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3055 }
3056 }
3057
3058 /**
3059 * stmmac_configure_cbs - Configure CBS in TX queue
3060 * @priv: driver private structure
3061 * Description: It is used for configuring CBS in AVB TX queues
3062 */
stmmac_configure_cbs(struct stmmac_priv * priv)3063 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3064 {
3065 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3066 u32 mode_to_use;
3067 u32 queue;
3068
3069 /* queue 0 is reserved for legacy traffic */
3070 for (queue = 1; queue < tx_queues_count; queue++) {
3071 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3072 if (mode_to_use == MTL_QUEUE_DCB)
3073 continue;
3074
3075 stmmac_config_cbs(priv, priv->hw,
3076 priv->plat->tx_queues_cfg[queue].send_slope,
3077 priv->plat->tx_queues_cfg[queue].idle_slope,
3078 priv->plat->tx_queues_cfg[queue].high_credit,
3079 priv->plat->tx_queues_cfg[queue].low_credit,
3080 queue);
3081 }
3082 }
3083
3084 /**
3085 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3086 * @priv: driver private structure
3087 * Description: It is used for mapping RX queues to RX dma channels
3088 */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)3089 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3090 {
3091 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3092 u32 queue;
3093 u32 chan;
3094
3095 for (queue = 0; queue < rx_queues_count; queue++) {
3096 chan = priv->plat->rx_queues_cfg[queue].chan;
3097 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3098 }
3099 }
3100
3101 /**
3102 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3103 * @priv: driver private structure
3104 * Description: It is used for configuring the RX Queue Priority
3105 */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)3106 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3107 {
3108 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3109 u32 queue;
3110 u32 prio;
3111
3112 for (queue = 0; queue < rx_queues_count; queue++) {
3113 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3114 continue;
3115
3116 prio = priv->plat->rx_queues_cfg[queue].prio;
3117 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3118 }
3119 }
3120
3121 /**
3122 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3123 * @priv: driver private structure
3124 * Description: It is used for configuring the TX Queue Priority
3125 */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)3126 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3127 {
3128 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3129 u32 queue;
3130 u32 prio;
3131
3132 for (queue = 0; queue < tx_queues_count; queue++) {
3133 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3134 continue;
3135
3136 prio = priv->plat->tx_queues_cfg[queue].prio;
3137 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3138 }
3139 }
3140
3141 /**
3142 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3143 * @priv: driver private structure
3144 * Description: It is used for configuring the RX queue routing
3145 */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)3146 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3147 {
3148 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3149 u32 queue;
3150 u8 packet;
3151
3152 for (queue = 0; queue < rx_queues_count; queue++) {
3153 /* no specific packet type routing specified for the queue */
3154 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3155 continue;
3156
3157 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3158 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3159 }
3160 }
3161
stmmac_mac_config_rss(struct stmmac_priv * priv)3162 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3163 {
3164 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3165 priv->rss.enable = false;
3166 return;
3167 }
3168
3169 if (priv->dev->features & NETIF_F_RXHASH)
3170 priv->rss.enable = true;
3171 else
3172 priv->rss.enable = false;
3173
3174 stmmac_rss_configure(priv, priv->hw, &priv->rss,
3175 priv->plat->rx_queues_to_use);
3176 }
3177
3178 /**
3179 * stmmac_mtl_configuration - Configure MTL
3180 * @priv: driver private structure
3181 * Description: It is used for configurring MTL
3182 */
stmmac_mtl_configuration(struct stmmac_priv * priv)3183 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3184 {
3185 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3186 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3187
3188 if (tx_queues_count > 1)
3189 stmmac_set_tx_queue_weight(priv);
3190
3191 /* Configure MTL RX algorithms */
3192 if (rx_queues_count > 1)
3193 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3194 priv->plat->rx_sched_algorithm);
3195
3196 /* Configure MTL TX algorithms */
3197 if (tx_queues_count > 1)
3198 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3199 priv->plat->tx_sched_algorithm);
3200
3201 /* Configure CBS in AVB TX queues */
3202 if (tx_queues_count > 1)
3203 stmmac_configure_cbs(priv);
3204
3205 /* Map RX MTL to DMA channels */
3206 stmmac_rx_queue_dma_chan_map(priv);
3207
3208 /* Enable MAC RX Queues */
3209 stmmac_mac_enable_rx_queues(priv);
3210
3211 /* Set RX priorities */
3212 if (rx_queues_count > 1)
3213 stmmac_mac_config_rx_queues_prio(priv);
3214
3215 /* Set TX priorities */
3216 if (tx_queues_count > 1)
3217 stmmac_mac_config_tx_queues_prio(priv);
3218
3219 /* Set RX routing */
3220 if (rx_queues_count > 1)
3221 stmmac_mac_config_rx_queues_routing(priv);
3222
3223 /* Receive Side Scaling */
3224 if (rx_queues_count > 1)
3225 stmmac_mac_config_rss(priv);
3226 }
3227
stmmac_safety_feat_configuration(struct stmmac_priv * priv)3228 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3229 {
3230 if (priv->dma_cap.asp) {
3231 netdev_info(priv->dev, "Enabling Safety Features\n");
3232 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3233 priv->plat->safety_feat_cfg);
3234 } else {
3235 netdev_info(priv->dev, "No Safety Features support found\n");
3236 }
3237 }
3238
stmmac_fpe_start_wq(struct stmmac_priv * priv)3239 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3240 {
3241 char *name;
3242
3243 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3244 clear_bit(__FPE_REMOVING, &priv->fpe_task_state);
3245
3246 name = priv->wq_name;
3247 sprintf(name, "%s-fpe", priv->dev->name);
3248
3249 priv->fpe_wq = create_singlethread_workqueue(name);
3250 if (!priv->fpe_wq) {
3251 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3252
3253 return -ENOMEM;
3254 }
3255 netdev_info(priv->dev, "FPE workqueue start");
3256
3257 return 0;
3258 }
3259
3260 /**
3261 * stmmac_hw_setup - setup mac in a usable state.
3262 * @dev : pointer to the device structure.
3263 * @ptp_register: register PTP if set
3264 * Description:
3265 * this is the main function to setup the HW in a usable state because the
3266 * dma engine is reset, the core registers are configured (e.g. AXI,
3267 * Checksum features, timers). The DMA is ready to start receiving and
3268 * transmitting.
3269 * Return value:
3270 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3271 * file on failure.
3272 */
stmmac_hw_setup(struct net_device * dev,bool ptp_register)3273 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3274 {
3275 struct stmmac_priv *priv = netdev_priv(dev);
3276 u32 rx_cnt = priv->plat->rx_queues_to_use;
3277 u32 tx_cnt = priv->plat->tx_queues_to_use;
3278 bool sph_en;
3279 u32 chan;
3280 int ret;
3281
3282 /* DMA initialization and SW reset */
3283 ret = stmmac_init_dma_engine(priv);
3284 if (ret < 0) {
3285 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3286 __func__);
3287 return ret;
3288 }
3289
3290 /* Copy the MAC addr into the HW */
3291 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3292
3293 /* PS and related bits will be programmed according to the speed */
3294 if (priv->hw->pcs) {
3295 int speed = priv->plat->mac_port_sel_speed;
3296
3297 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3298 (speed == SPEED_1000)) {
3299 priv->hw->ps = speed;
3300 } else {
3301 dev_warn(priv->device, "invalid port speed\n");
3302 priv->hw->ps = 0;
3303 }
3304 }
3305
3306 /* Initialize the MAC Core */
3307 stmmac_core_init(priv, priv->hw, dev);
3308
3309 /* Initialize MTL*/
3310 stmmac_mtl_configuration(priv);
3311
3312 /* Initialize Safety Features */
3313 stmmac_safety_feat_configuration(priv);
3314
3315 ret = stmmac_rx_ipc(priv, priv->hw);
3316 if (!ret) {
3317 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3318 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3319 priv->hw->rx_csum = 0;
3320 }
3321
3322 /* Enable the MAC Rx/Tx */
3323 stmmac_mac_set(priv, priv->ioaddr, true);
3324
3325 /* Set the HW DMA mode and the COE */
3326 stmmac_dma_operation_mode(priv);
3327
3328 stmmac_mmc_setup(priv);
3329
3330 if (ptp_register) {
3331 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3332 if (ret < 0)
3333 netdev_warn(priv->dev,
3334 "failed to enable PTP reference clock: %pe\n",
3335 ERR_PTR(ret));
3336 }
3337
3338 ret = stmmac_init_ptp(priv);
3339 if (ret == -EOPNOTSUPP)
3340 netdev_info(priv->dev, "PTP not supported by HW\n");
3341 else if (ret)
3342 netdev_warn(priv->dev, "PTP init failed\n");
3343 else if (ptp_register)
3344 stmmac_ptp_register(priv);
3345
3346 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3347
3348 /* Convert the timer from msec to usec */
3349 if (!priv->tx_lpi_timer)
3350 priv->tx_lpi_timer = eee_timer * 1000;
3351
3352 if (priv->use_riwt) {
3353 u32 queue;
3354
3355 for (queue = 0; queue < rx_cnt; queue++) {
3356 if (!priv->rx_riwt[queue])
3357 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3358
3359 stmmac_rx_watchdog(priv, priv->ioaddr,
3360 priv->rx_riwt[queue], queue);
3361 }
3362 }
3363
3364 if (priv->hw->pcs)
3365 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3366
3367 /* set TX and RX rings length */
3368 stmmac_set_rings_length(priv);
3369
3370 /* Enable TSO */
3371 if (priv->tso) {
3372 for (chan = 0; chan < tx_cnt; chan++) {
3373 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3374
3375 /* TSO and TBS cannot co-exist */
3376 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3377 continue;
3378
3379 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3380 }
3381 }
3382
3383 /* Enable Split Header */
3384 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3385 for (chan = 0; chan < rx_cnt; chan++)
3386 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3387
3388
3389 /* VLAN Tag Insertion */
3390 if (priv->dma_cap.vlins)
3391 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3392
3393 /* TBS */
3394 for (chan = 0; chan < tx_cnt; chan++) {
3395 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3396 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3397
3398 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3399 }
3400
3401 /* Configure real RX and TX queues */
3402 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3403 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3404
3405 /* Start the ball rolling... */
3406 stmmac_start_all_dma(priv);
3407
3408 if (priv->dma_cap.fpesel) {
3409 stmmac_fpe_start_wq(priv);
3410
3411 if (priv->plat->fpe_cfg->enable)
3412 stmmac_fpe_handshake(priv, true);
3413 }
3414
3415 return 0;
3416 }
3417
stmmac_hw_teardown(struct net_device * dev)3418 static void stmmac_hw_teardown(struct net_device *dev)
3419 {
3420 struct stmmac_priv *priv = netdev_priv(dev);
3421
3422 clk_disable_unprepare(priv->plat->clk_ptp_ref);
3423 }
3424
stmmac_free_irq(struct net_device * dev,enum request_irq_err irq_err,int irq_idx)3425 static void stmmac_free_irq(struct net_device *dev,
3426 enum request_irq_err irq_err, int irq_idx)
3427 {
3428 struct stmmac_priv *priv = netdev_priv(dev);
3429 int j;
3430
3431 switch (irq_err) {
3432 case REQ_IRQ_ERR_ALL:
3433 irq_idx = priv->plat->tx_queues_to_use;
3434 fallthrough;
3435 case REQ_IRQ_ERR_TX:
3436 for (j = irq_idx - 1; j >= 0; j--) {
3437 if (priv->tx_irq[j] > 0) {
3438 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3439 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3440 }
3441 }
3442 irq_idx = priv->plat->rx_queues_to_use;
3443 fallthrough;
3444 case REQ_IRQ_ERR_RX:
3445 for (j = irq_idx - 1; j >= 0; j--) {
3446 if (priv->rx_irq[j] > 0) {
3447 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3448 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3449 }
3450 }
3451
3452 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3453 free_irq(priv->sfty_ue_irq, dev);
3454 fallthrough;
3455 case REQ_IRQ_ERR_SFTY_UE:
3456 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3457 free_irq(priv->sfty_ce_irq, dev);
3458 fallthrough;
3459 case REQ_IRQ_ERR_SFTY_CE:
3460 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3461 free_irq(priv->lpi_irq, dev);
3462 fallthrough;
3463 case REQ_IRQ_ERR_LPI:
3464 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3465 free_irq(priv->wol_irq, dev);
3466 fallthrough;
3467 case REQ_IRQ_ERR_WOL:
3468 free_irq(dev->irq, dev);
3469 fallthrough;
3470 case REQ_IRQ_ERR_MAC:
3471 case REQ_IRQ_ERR_NO:
3472 /* If MAC IRQ request error, no more IRQ to free */
3473 break;
3474 }
3475 }
3476
stmmac_request_irq_multi_msi(struct net_device * dev)3477 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3478 {
3479 struct stmmac_priv *priv = netdev_priv(dev);
3480 enum request_irq_err irq_err;
3481 cpumask_t cpu_mask;
3482 int irq_idx = 0;
3483 char *int_name;
3484 int ret;
3485 int i;
3486
3487 /* For common interrupt */
3488 int_name = priv->int_name_mac;
3489 sprintf(int_name, "%s:%s", dev->name, "mac");
3490 ret = request_irq(dev->irq, stmmac_mac_interrupt,
3491 0, int_name, dev);
3492 if (unlikely(ret < 0)) {
3493 netdev_err(priv->dev,
3494 "%s: alloc mac MSI %d (error: %d)\n",
3495 __func__, dev->irq, ret);
3496 irq_err = REQ_IRQ_ERR_MAC;
3497 goto irq_error;
3498 }
3499
3500 /* Request the Wake IRQ in case of another line
3501 * is used for WoL
3502 */
3503 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3504 int_name = priv->int_name_wol;
3505 sprintf(int_name, "%s:%s", dev->name, "wol");
3506 ret = request_irq(priv->wol_irq,
3507 stmmac_mac_interrupt,
3508 0, int_name, dev);
3509 if (unlikely(ret < 0)) {
3510 netdev_err(priv->dev,
3511 "%s: alloc wol MSI %d (error: %d)\n",
3512 __func__, priv->wol_irq, ret);
3513 irq_err = REQ_IRQ_ERR_WOL;
3514 goto irq_error;
3515 }
3516 }
3517
3518 /* Request the LPI IRQ in case of another line
3519 * is used for LPI
3520 */
3521 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3522 int_name = priv->int_name_lpi;
3523 sprintf(int_name, "%s:%s", dev->name, "lpi");
3524 ret = request_irq(priv->lpi_irq,
3525 stmmac_mac_interrupt,
3526 0, int_name, dev);
3527 if (unlikely(ret < 0)) {
3528 netdev_err(priv->dev,
3529 "%s: alloc lpi MSI %d (error: %d)\n",
3530 __func__, priv->lpi_irq, ret);
3531 irq_err = REQ_IRQ_ERR_LPI;
3532 goto irq_error;
3533 }
3534 }
3535
3536 /* Request the Safety Feature Correctible Error line in
3537 * case of another line is used
3538 */
3539 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3540 int_name = priv->int_name_sfty_ce;
3541 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3542 ret = request_irq(priv->sfty_ce_irq,
3543 stmmac_safety_interrupt,
3544 0, int_name, dev);
3545 if (unlikely(ret < 0)) {
3546 netdev_err(priv->dev,
3547 "%s: alloc sfty ce MSI %d (error: %d)\n",
3548 __func__, priv->sfty_ce_irq, ret);
3549 irq_err = REQ_IRQ_ERR_SFTY_CE;
3550 goto irq_error;
3551 }
3552 }
3553
3554 /* Request the Safety Feature Uncorrectible Error line in
3555 * case of another line is used
3556 */
3557 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3558 int_name = priv->int_name_sfty_ue;
3559 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3560 ret = request_irq(priv->sfty_ue_irq,
3561 stmmac_safety_interrupt,
3562 0, int_name, dev);
3563 if (unlikely(ret < 0)) {
3564 netdev_err(priv->dev,
3565 "%s: alloc sfty ue MSI %d (error: %d)\n",
3566 __func__, priv->sfty_ue_irq, ret);
3567 irq_err = REQ_IRQ_ERR_SFTY_UE;
3568 goto irq_error;
3569 }
3570 }
3571
3572 /* Request Rx MSI irq */
3573 for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3574 if (i >= MTL_MAX_RX_QUEUES)
3575 break;
3576 if (priv->rx_irq[i] == 0)
3577 continue;
3578
3579 int_name = priv->int_name_rx_irq[i];
3580 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3581 ret = request_irq(priv->rx_irq[i],
3582 stmmac_msi_intr_rx,
3583 0, int_name, &priv->dma_conf.rx_queue[i]);
3584 if (unlikely(ret < 0)) {
3585 netdev_err(priv->dev,
3586 "%s: alloc rx-%d MSI %d (error: %d)\n",
3587 __func__, i, priv->rx_irq[i], ret);
3588 irq_err = REQ_IRQ_ERR_RX;
3589 irq_idx = i;
3590 goto irq_error;
3591 }
3592 cpumask_clear(&cpu_mask);
3593 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3594 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3595 }
3596
3597 /* Request Tx MSI irq */
3598 for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3599 if (i >= MTL_MAX_TX_QUEUES)
3600 break;
3601 if (priv->tx_irq[i] == 0)
3602 continue;
3603
3604 int_name = priv->int_name_tx_irq[i];
3605 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3606 ret = request_irq(priv->tx_irq[i],
3607 stmmac_msi_intr_tx,
3608 0, int_name, &priv->dma_conf.tx_queue[i]);
3609 if (unlikely(ret < 0)) {
3610 netdev_err(priv->dev,
3611 "%s: alloc tx-%d MSI %d (error: %d)\n",
3612 __func__, i, priv->tx_irq[i], ret);
3613 irq_err = REQ_IRQ_ERR_TX;
3614 irq_idx = i;
3615 goto irq_error;
3616 }
3617 cpumask_clear(&cpu_mask);
3618 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3619 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3620 }
3621
3622 return 0;
3623
3624 irq_error:
3625 stmmac_free_irq(dev, irq_err, irq_idx);
3626 return ret;
3627 }
3628
stmmac_request_irq_single(struct net_device * dev)3629 static int stmmac_request_irq_single(struct net_device *dev)
3630 {
3631 struct stmmac_priv *priv = netdev_priv(dev);
3632 enum request_irq_err irq_err;
3633 int ret;
3634
3635 ret = request_irq(dev->irq, stmmac_interrupt,
3636 IRQF_SHARED, dev->name, dev);
3637 if (unlikely(ret < 0)) {
3638 netdev_err(priv->dev,
3639 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3640 __func__, dev->irq, ret);
3641 irq_err = REQ_IRQ_ERR_MAC;
3642 goto irq_error;
3643 }
3644
3645 /* Request the Wake IRQ in case of another line
3646 * is used for WoL
3647 */
3648 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3649 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3650 IRQF_SHARED, dev->name, dev);
3651 if (unlikely(ret < 0)) {
3652 netdev_err(priv->dev,
3653 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3654 __func__, priv->wol_irq, ret);
3655 irq_err = REQ_IRQ_ERR_WOL;
3656 goto irq_error;
3657 }
3658 }
3659
3660 /* Request the IRQ lines */
3661 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3662 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3663 IRQF_SHARED, dev->name, dev);
3664 if (unlikely(ret < 0)) {
3665 netdev_err(priv->dev,
3666 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3667 __func__, priv->lpi_irq, ret);
3668 irq_err = REQ_IRQ_ERR_LPI;
3669 goto irq_error;
3670 }
3671 }
3672
3673 return 0;
3674
3675 irq_error:
3676 stmmac_free_irq(dev, irq_err, 0);
3677 return ret;
3678 }
3679
stmmac_request_irq(struct net_device * dev)3680 static int stmmac_request_irq(struct net_device *dev)
3681 {
3682 struct stmmac_priv *priv = netdev_priv(dev);
3683 int ret;
3684
3685 /* Request the IRQ lines */
3686 if (priv->plat->multi_msi_en)
3687 ret = stmmac_request_irq_multi_msi(dev);
3688 else
3689 ret = stmmac_request_irq_single(dev);
3690
3691 return ret;
3692 }
3693
3694 /**
3695 * stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3696 * @priv: driver private structure
3697 * @mtu: MTU to setup the dma queue and buf with
3698 * Description: Allocate and generate a dma_conf based on the provided MTU.
3699 * Allocate the Tx/Rx DMA queue and init them.
3700 * Return value:
3701 * the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3702 */
3703 static struct stmmac_dma_conf *
stmmac_setup_dma_desc(struct stmmac_priv * priv,unsigned int mtu)3704 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3705 {
3706 struct stmmac_dma_conf *dma_conf;
3707 int chan, bfsize, ret;
3708
3709 dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3710 if (!dma_conf) {
3711 netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3712 __func__);
3713 return ERR_PTR(-ENOMEM);
3714 }
3715
3716 bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3717 if (bfsize < 0)
3718 bfsize = 0;
3719
3720 if (bfsize < BUF_SIZE_16KiB)
3721 bfsize = stmmac_set_bfsize(mtu, 0);
3722
3723 dma_conf->dma_buf_sz = bfsize;
3724 /* Chose the tx/rx size from the already defined one in the
3725 * priv struct. (if defined)
3726 */
3727 dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3728 dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3729
3730 if (!dma_conf->dma_tx_size)
3731 dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3732 if (!dma_conf->dma_rx_size)
3733 dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3734
3735 /* Earlier check for TBS */
3736 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3737 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3738 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3739
3740 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3741 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3742 }
3743
3744 ret = alloc_dma_desc_resources(priv, dma_conf);
3745 if (ret < 0) {
3746 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3747 __func__);
3748 goto alloc_error;
3749 }
3750
3751 ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3752 if (ret < 0) {
3753 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3754 __func__);
3755 goto init_error;
3756 }
3757
3758 return dma_conf;
3759
3760 init_error:
3761 free_dma_desc_resources(priv, dma_conf);
3762 alloc_error:
3763 kfree(dma_conf);
3764 return ERR_PTR(ret);
3765 }
3766
3767 /**
3768 * __stmmac_open - open entry point of the driver
3769 * @dev : pointer to the device structure.
3770 * @dma_conf : structure to take the dma data
3771 * Description:
3772 * This function is the open entry point of the driver.
3773 * Return value:
3774 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3775 * file on failure.
3776 */
__stmmac_open(struct net_device * dev,struct stmmac_dma_conf * dma_conf)3777 static int __stmmac_open(struct net_device *dev,
3778 struct stmmac_dma_conf *dma_conf)
3779 {
3780 struct stmmac_priv *priv = netdev_priv(dev);
3781 int mode = priv->plat->phy_interface;
3782 u32 chan;
3783 int ret;
3784
3785 ret = pm_runtime_resume_and_get(priv->device);
3786 if (ret < 0)
3787 return ret;
3788
3789 if (priv->hw->pcs != STMMAC_PCS_TBI &&
3790 priv->hw->pcs != STMMAC_PCS_RTBI &&
3791 (!priv->hw->xpcs ||
3792 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3793 ret = stmmac_init_phy(dev);
3794 if (ret) {
3795 netdev_err(priv->dev,
3796 "%s: Cannot attach to PHY (error: %d)\n",
3797 __func__, ret);
3798 goto init_phy_error;
3799 }
3800 }
3801
3802 /* Extra statistics */
3803 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3804 priv->xstats.threshold = tc;
3805
3806 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3807
3808 buf_sz = dma_conf->dma_buf_sz;
3809 memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3810
3811 stmmac_reset_queues_param(priv);
3812
3813 if (priv->plat->serdes_powerup) {
3814 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3815 if (ret < 0) {
3816 netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3817 __func__);
3818 goto init_error;
3819 }
3820 }
3821
3822 ret = stmmac_hw_setup(dev, true);
3823 if (ret < 0) {
3824 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3825 goto init_error;
3826 }
3827
3828 stmmac_init_coalesce(priv);
3829
3830 phylink_start(priv->phylink);
3831 /* We may have called phylink_speed_down before */
3832 phylink_speed_up(priv->phylink);
3833
3834 ret = stmmac_request_irq(dev);
3835 if (ret)
3836 goto irq_error;
3837
3838 stmmac_enable_all_queues(priv);
3839 netif_tx_start_all_queues(priv->dev);
3840 stmmac_enable_all_dma_irq(priv);
3841
3842 return 0;
3843
3844 irq_error:
3845 phylink_stop(priv->phylink);
3846
3847 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3848 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3849
3850 stmmac_hw_teardown(dev);
3851 init_error:
3852 free_dma_desc_resources(priv, &priv->dma_conf);
3853 phylink_disconnect_phy(priv->phylink);
3854 init_phy_error:
3855 pm_runtime_put(priv->device);
3856 return ret;
3857 }
3858
stmmac_open(struct net_device * dev)3859 static int stmmac_open(struct net_device *dev)
3860 {
3861 struct stmmac_priv *priv = netdev_priv(dev);
3862 struct stmmac_dma_conf *dma_conf;
3863 int ret;
3864
3865 dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3866 if (IS_ERR(dma_conf))
3867 return PTR_ERR(dma_conf);
3868
3869 ret = __stmmac_open(dev, dma_conf);
3870 kfree(dma_conf);
3871 return ret;
3872 }
3873
stmmac_fpe_stop_wq(struct stmmac_priv * priv)3874 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3875 {
3876 set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3877
3878 if (priv->fpe_wq)
3879 destroy_workqueue(priv->fpe_wq);
3880
3881 netdev_info(priv->dev, "FPE workqueue stop");
3882 }
3883
3884 /**
3885 * stmmac_release - close entry point of the driver
3886 * @dev : device pointer.
3887 * Description:
3888 * This is the stop entry point of the driver.
3889 */
stmmac_release(struct net_device * dev)3890 static int stmmac_release(struct net_device *dev)
3891 {
3892 struct stmmac_priv *priv = netdev_priv(dev);
3893 u32 chan;
3894
3895 if (device_may_wakeup(priv->device))
3896 phylink_speed_down(priv->phylink, false);
3897 /* Stop and disconnect the PHY */
3898 phylink_stop(priv->phylink);
3899 phylink_disconnect_phy(priv->phylink);
3900
3901 stmmac_disable_all_queues(priv);
3902
3903 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3904 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3905
3906 netif_tx_disable(dev);
3907
3908 /* Free the IRQ lines */
3909 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3910
3911 if (priv->eee_enabled) {
3912 priv->tx_path_in_lpi_mode = false;
3913 del_timer_sync(&priv->eee_ctrl_timer);
3914 }
3915
3916 /* Stop TX/RX DMA and clear the descriptors */
3917 stmmac_stop_all_dma(priv);
3918
3919 /* Release and free the Rx/Tx resources */
3920 free_dma_desc_resources(priv, &priv->dma_conf);
3921
3922 /* Disable the MAC Rx/Tx */
3923 stmmac_mac_set(priv, priv->ioaddr, false);
3924
3925 /* Powerdown Serdes if there is */
3926 if (priv->plat->serdes_powerdown)
3927 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3928
3929 netif_carrier_off(dev);
3930
3931 stmmac_release_ptp(priv);
3932
3933 pm_runtime_put(priv->device);
3934
3935 if (priv->dma_cap.fpesel)
3936 stmmac_fpe_stop_wq(priv);
3937
3938 return 0;
3939 }
3940
stmmac_vlan_insert(struct stmmac_priv * priv,struct sk_buff * skb,struct stmmac_tx_queue * tx_q)3941 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3942 struct stmmac_tx_queue *tx_q)
3943 {
3944 u16 tag = 0x0, inner_tag = 0x0;
3945 u32 inner_type = 0x0;
3946 struct dma_desc *p;
3947
3948 if (!priv->dma_cap.vlins)
3949 return false;
3950 if (!skb_vlan_tag_present(skb))
3951 return false;
3952 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3953 inner_tag = skb_vlan_tag_get(skb);
3954 inner_type = STMMAC_VLAN_INSERT;
3955 }
3956
3957 tag = skb_vlan_tag_get(skb);
3958
3959 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3960 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3961 else
3962 p = &tx_q->dma_tx[tx_q->cur_tx];
3963
3964 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3965 return false;
3966
3967 stmmac_set_tx_owner(priv, p);
3968 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3969 return true;
3970 }
3971
3972 /**
3973 * stmmac_tso_allocator - close entry point of the driver
3974 * @priv: driver private structure
3975 * @des: buffer start address
3976 * @total_len: total length to fill in descriptors
3977 * @last_segment: condition for the last descriptor
3978 * @queue: TX queue index
3979 * Description:
3980 * This function fills descriptor and request new descriptors according to
3981 * buffer length to fill
3982 */
stmmac_tso_allocator(struct stmmac_priv * priv,dma_addr_t des,int total_len,bool last_segment,u32 queue)3983 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3984 int total_len, bool last_segment, u32 queue)
3985 {
3986 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3987 struct dma_desc *desc;
3988 u32 buff_size;
3989 int tmp_len;
3990
3991 tmp_len = total_len;
3992
3993 while (tmp_len > 0) {
3994 dma_addr_t curr_addr;
3995
3996 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3997 priv->dma_conf.dma_tx_size);
3998 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3999
4000 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4001 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4002 else
4003 desc = &tx_q->dma_tx[tx_q->cur_tx];
4004
4005 curr_addr = des + (total_len - tmp_len);
4006 if (priv->dma_cap.addr64 <= 32)
4007 desc->des0 = cpu_to_le32(curr_addr);
4008 else
4009 stmmac_set_desc_addr(priv, desc, curr_addr);
4010
4011 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4012 TSO_MAX_BUFF_SIZE : tmp_len;
4013
4014 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4015 0, 1,
4016 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4017 0, 0);
4018
4019 tmp_len -= TSO_MAX_BUFF_SIZE;
4020 }
4021 }
4022
stmmac_flush_tx_descriptors(struct stmmac_priv * priv,int queue)4023 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4024 {
4025 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4026 int desc_size;
4027
4028 if (likely(priv->extend_desc))
4029 desc_size = sizeof(struct dma_extended_desc);
4030 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4031 desc_size = sizeof(struct dma_edesc);
4032 else
4033 desc_size = sizeof(struct dma_desc);
4034
4035 /* The own bit must be the latest setting done when prepare the
4036 * descriptor and then barrier is needed to make sure that
4037 * all is coherent before granting the DMA engine.
4038 */
4039 wmb();
4040
4041 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4042 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4043 }
4044
4045 /**
4046 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4047 * @skb : the socket buffer
4048 * @dev : device pointer
4049 * Description: this is the transmit function that is called on TSO frames
4050 * (support available on GMAC4 and newer chips).
4051 * Diagram below show the ring programming in case of TSO frames:
4052 *
4053 * First Descriptor
4054 * --------
4055 * | DES0 |---> buffer1 = L2/L3/L4 header
4056 * | DES1 |---> TCP Payload (can continue on next descr...)
4057 * | DES2 |---> buffer 1 and 2 len
4058 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4059 * --------
4060 * |
4061 * ...
4062 * |
4063 * --------
4064 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
4065 * | DES1 | --|
4066 * | DES2 | --> buffer 1 and 2 len
4067 * | DES3 |
4068 * --------
4069 *
4070 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4071 */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)4072 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4073 {
4074 struct dma_desc *desc, *first, *mss_desc = NULL;
4075 struct stmmac_priv *priv = netdev_priv(dev);
4076 int nfrags = skb_shinfo(skb)->nr_frags;
4077 u32 queue = skb_get_queue_mapping(skb);
4078 unsigned int first_entry, tx_packets;
4079 int tmp_pay_len = 0, first_tx;
4080 struct stmmac_tx_queue *tx_q;
4081 bool has_vlan, set_ic;
4082 u8 proto_hdr_len, hdr;
4083 u32 pay_len, mss;
4084 dma_addr_t des;
4085 int i;
4086
4087 tx_q = &priv->dma_conf.tx_queue[queue];
4088 first_tx = tx_q->cur_tx;
4089
4090 /* Compute header lengths */
4091 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4092 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4093 hdr = sizeof(struct udphdr);
4094 } else {
4095 proto_hdr_len = skb_tcp_all_headers(skb);
4096 hdr = tcp_hdrlen(skb);
4097 }
4098
4099 /* Desc availability based on threshold should be enough safe */
4100 if (unlikely(stmmac_tx_avail(priv, queue) <
4101 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4102 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4103 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4104 queue));
4105 /* This is a hard error, log it. */
4106 netdev_err(priv->dev,
4107 "%s: Tx Ring full when queue awake\n",
4108 __func__);
4109 }
4110 return NETDEV_TX_BUSY;
4111 }
4112
4113 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4114
4115 mss = skb_shinfo(skb)->gso_size;
4116
4117 /* set new MSS value if needed */
4118 if (mss != tx_q->mss) {
4119 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4120 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4121 else
4122 mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4123
4124 stmmac_set_mss(priv, mss_desc, mss);
4125 tx_q->mss = mss;
4126 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4127 priv->dma_conf.dma_tx_size);
4128 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4129 }
4130
4131 if (netif_msg_tx_queued(priv)) {
4132 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4133 __func__, hdr, proto_hdr_len, pay_len, mss);
4134 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4135 skb->data_len);
4136 }
4137
4138 /* Check if VLAN can be inserted by HW */
4139 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4140
4141 first_entry = tx_q->cur_tx;
4142 WARN_ON(tx_q->tx_skbuff[first_entry]);
4143
4144 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4145 desc = &tx_q->dma_entx[first_entry].basic;
4146 else
4147 desc = &tx_q->dma_tx[first_entry];
4148 first = desc;
4149
4150 if (has_vlan)
4151 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4152
4153 /* first descriptor: fill Headers on Buf1 */
4154 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4155 DMA_TO_DEVICE);
4156 if (dma_mapping_error(priv->device, des))
4157 goto dma_map_err;
4158
4159 tx_q->tx_skbuff_dma[first_entry].buf = des;
4160 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4161 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4162 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4163
4164 if (priv->dma_cap.addr64 <= 32) {
4165 first->des0 = cpu_to_le32(des);
4166
4167 /* Fill start of payload in buff2 of first descriptor */
4168 if (pay_len)
4169 first->des1 = cpu_to_le32(des + proto_hdr_len);
4170
4171 /* If needed take extra descriptors to fill the remaining payload */
4172 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4173 } else {
4174 stmmac_set_desc_addr(priv, first, des);
4175 tmp_pay_len = pay_len;
4176 des += proto_hdr_len;
4177 pay_len = 0;
4178 }
4179
4180 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4181
4182 /* Prepare fragments */
4183 for (i = 0; i < nfrags; i++) {
4184 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4185
4186 des = skb_frag_dma_map(priv->device, frag, 0,
4187 skb_frag_size(frag),
4188 DMA_TO_DEVICE);
4189 if (dma_mapping_error(priv->device, des))
4190 goto dma_map_err;
4191
4192 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4193 (i == nfrags - 1), queue);
4194
4195 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4196 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4197 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4198 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4199 }
4200
4201 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4202
4203 /* Only the last descriptor gets to point to the skb. */
4204 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4205 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4206
4207 /* Manage tx mitigation */
4208 tx_packets = (tx_q->cur_tx + 1) - first_tx;
4209 tx_q->tx_count_frames += tx_packets;
4210
4211 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4212 set_ic = true;
4213 else if (!priv->tx_coal_frames[queue])
4214 set_ic = false;
4215 else if (tx_packets > priv->tx_coal_frames[queue])
4216 set_ic = true;
4217 else if ((tx_q->tx_count_frames %
4218 priv->tx_coal_frames[queue]) < tx_packets)
4219 set_ic = true;
4220 else
4221 set_ic = false;
4222
4223 if (set_ic) {
4224 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4225 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4226 else
4227 desc = &tx_q->dma_tx[tx_q->cur_tx];
4228
4229 tx_q->tx_count_frames = 0;
4230 stmmac_set_tx_ic(priv, desc);
4231 priv->xstats.tx_set_ic_bit++;
4232 }
4233
4234 /* We've used all descriptors we need for this skb, however,
4235 * advance cur_tx so that it references a fresh descriptor.
4236 * ndo_start_xmit will fill this descriptor the next time it's
4237 * called and stmmac_tx_clean may clean up to this descriptor.
4238 */
4239 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4240
4241 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4242 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4243 __func__);
4244 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4245 }
4246
4247 dev->stats.tx_bytes += skb->len;
4248 priv->xstats.tx_tso_frames++;
4249 priv->xstats.tx_tso_nfrags += nfrags;
4250
4251 if (priv->sarc_type)
4252 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4253
4254 skb_tx_timestamp(skb);
4255
4256 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4257 priv->hwts_tx_en)) {
4258 /* declare that device is doing timestamping */
4259 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4260 stmmac_enable_tx_timestamp(priv, first);
4261 }
4262
4263 /* Complete the first descriptor before granting the DMA */
4264 stmmac_prepare_tso_tx_desc(priv, first, 1,
4265 proto_hdr_len,
4266 pay_len,
4267 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4268 hdr / 4, (skb->len - proto_hdr_len));
4269
4270 /* If context desc is used to change MSS */
4271 if (mss_desc) {
4272 /* Make sure that first descriptor has been completely
4273 * written, including its own bit. This is because MSS is
4274 * actually before first descriptor, so we need to make
4275 * sure that MSS's own bit is the last thing written.
4276 */
4277 dma_wmb();
4278 stmmac_set_tx_owner(priv, mss_desc);
4279 }
4280
4281 if (netif_msg_pktdata(priv)) {
4282 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4283 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4284 tx_q->cur_tx, first, nfrags);
4285 pr_info(">>> frame to be transmitted: ");
4286 print_pkt(skb->data, skb_headlen(skb));
4287 }
4288
4289 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4290
4291 stmmac_flush_tx_descriptors(priv, queue);
4292 stmmac_tx_timer_arm(priv, queue);
4293
4294 return NETDEV_TX_OK;
4295
4296 dma_map_err:
4297 dev_err(priv->device, "Tx dma map failed\n");
4298 dev_kfree_skb(skb);
4299 priv->dev->stats.tx_dropped++;
4300 return NETDEV_TX_OK;
4301 }
4302
4303 /**
4304 * stmmac_xmit - Tx entry point of the driver
4305 * @skb : the socket buffer
4306 * @dev : device pointer
4307 * Description : this is the tx entry point of the driver.
4308 * It programs the chain or the ring and supports oversized frames
4309 * and SG feature.
4310 */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)4311 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4312 {
4313 unsigned int first_entry, tx_packets, enh_desc;
4314 struct stmmac_priv *priv = netdev_priv(dev);
4315 unsigned int nopaged_len = skb_headlen(skb);
4316 int i, csum_insertion = 0, is_jumbo = 0;
4317 u32 queue = skb_get_queue_mapping(skb);
4318 int nfrags = skb_shinfo(skb)->nr_frags;
4319 int gso = skb_shinfo(skb)->gso_type;
4320 struct dma_edesc *tbs_desc = NULL;
4321 struct dma_desc *desc, *first;
4322 struct stmmac_tx_queue *tx_q;
4323 bool has_vlan, set_ic;
4324 int entry, first_tx;
4325 dma_addr_t des;
4326
4327 tx_q = &priv->dma_conf.tx_queue[queue];
4328 first_tx = tx_q->cur_tx;
4329
4330 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4331 stmmac_disable_eee_mode(priv);
4332
4333 /* Manage oversized TCP frames for GMAC4 device */
4334 if (skb_is_gso(skb) && priv->tso) {
4335 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4336 return stmmac_tso_xmit(skb, dev);
4337 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4338 return stmmac_tso_xmit(skb, dev);
4339 }
4340
4341 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4342 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4343 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4344 queue));
4345 /* This is a hard error, log it. */
4346 netdev_err(priv->dev,
4347 "%s: Tx Ring full when queue awake\n",
4348 __func__);
4349 }
4350 return NETDEV_TX_BUSY;
4351 }
4352
4353 /* Check if VLAN can be inserted by HW */
4354 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4355
4356 entry = tx_q->cur_tx;
4357 first_entry = entry;
4358 WARN_ON(tx_q->tx_skbuff[first_entry]);
4359
4360 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4361
4362 if (likely(priv->extend_desc))
4363 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4364 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4365 desc = &tx_q->dma_entx[entry].basic;
4366 else
4367 desc = tx_q->dma_tx + entry;
4368
4369 first = desc;
4370
4371 if (has_vlan)
4372 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4373
4374 enh_desc = priv->plat->enh_desc;
4375 /* To program the descriptors according to the size of the frame */
4376 if (enh_desc)
4377 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4378
4379 if (unlikely(is_jumbo)) {
4380 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4381 if (unlikely(entry < 0) && (entry != -EINVAL))
4382 goto dma_map_err;
4383 }
4384
4385 for (i = 0; i < nfrags; i++) {
4386 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4387 int len = skb_frag_size(frag);
4388 bool last_segment = (i == (nfrags - 1));
4389
4390 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4391 WARN_ON(tx_q->tx_skbuff[entry]);
4392
4393 if (likely(priv->extend_desc))
4394 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4395 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4396 desc = &tx_q->dma_entx[entry].basic;
4397 else
4398 desc = tx_q->dma_tx + entry;
4399
4400 des = skb_frag_dma_map(priv->device, frag, 0, len,
4401 DMA_TO_DEVICE);
4402 if (dma_mapping_error(priv->device, des))
4403 goto dma_map_err; /* should reuse desc w/o issues */
4404
4405 tx_q->tx_skbuff_dma[entry].buf = des;
4406
4407 stmmac_set_desc_addr(priv, desc, des);
4408
4409 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4410 tx_q->tx_skbuff_dma[entry].len = len;
4411 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4412 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4413
4414 /* Prepare the descriptor and set the own bit too */
4415 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4416 priv->mode, 1, last_segment, skb->len);
4417 }
4418
4419 /* Only the last descriptor gets to point to the skb. */
4420 tx_q->tx_skbuff[entry] = skb;
4421 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4422
4423 /* According to the coalesce parameter the IC bit for the latest
4424 * segment is reset and the timer re-started to clean the tx status.
4425 * This approach takes care about the fragments: desc is the first
4426 * element in case of no SG.
4427 */
4428 tx_packets = (entry + 1) - first_tx;
4429 tx_q->tx_count_frames += tx_packets;
4430
4431 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4432 set_ic = true;
4433 else if (!priv->tx_coal_frames[queue])
4434 set_ic = false;
4435 else if (tx_packets > priv->tx_coal_frames[queue])
4436 set_ic = true;
4437 else if ((tx_q->tx_count_frames %
4438 priv->tx_coal_frames[queue]) < tx_packets)
4439 set_ic = true;
4440 else
4441 set_ic = false;
4442
4443 if (set_ic) {
4444 if (likely(priv->extend_desc))
4445 desc = &tx_q->dma_etx[entry].basic;
4446 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4447 desc = &tx_q->dma_entx[entry].basic;
4448 else
4449 desc = &tx_q->dma_tx[entry];
4450
4451 tx_q->tx_count_frames = 0;
4452 stmmac_set_tx_ic(priv, desc);
4453 priv->xstats.tx_set_ic_bit++;
4454 }
4455
4456 /* We've used all descriptors we need for this skb, however,
4457 * advance cur_tx so that it references a fresh descriptor.
4458 * ndo_start_xmit will fill this descriptor the next time it's
4459 * called and stmmac_tx_clean may clean up to this descriptor.
4460 */
4461 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4462 tx_q->cur_tx = entry;
4463
4464 if (netif_msg_pktdata(priv)) {
4465 netdev_dbg(priv->dev,
4466 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4467 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4468 entry, first, nfrags);
4469
4470 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4471 print_pkt(skb->data, skb->len);
4472 }
4473
4474 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4475 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4476 __func__);
4477 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4478 }
4479
4480 dev->stats.tx_bytes += skb->len;
4481
4482 if (priv->sarc_type)
4483 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4484
4485 skb_tx_timestamp(skb);
4486
4487 /* Ready to fill the first descriptor and set the OWN bit w/o any
4488 * problems because all the descriptors are actually ready to be
4489 * passed to the DMA engine.
4490 */
4491 if (likely(!is_jumbo)) {
4492 bool last_segment = (nfrags == 0);
4493
4494 des = dma_map_single(priv->device, skb->data,
4495 nopaged_len, DMA_TO_DEVICE);
4496 if (dma_mapping_error(priv->device, des))
4497 goto dma_map_err;
4498
4499 tx_q->tx_skbuff_dma[first_entry].buf = des;
4500 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4501 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4502
4503 stmmac_set_desc_addr(priv, first, des);
4504
4505 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4506 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4507
4508 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4509 priv->hwts_tx_en)) {
4510 /* declare that device is doing timestamping */
4511 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4512 stmmac_enable_tx_timestamp(priv, first);
4513 }
4514
4515 /* Prepare the first descriptor setting the OWN bit too */
4516 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4517 csum_insertion, priv->mode, 0, last_segment,
4518 skb->len);
4519 }
4520
4521 if (tx_q->tbs & STMMAC_TBS_EN) {
4522 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4523
4524 tbs_desc = &tx_q->dma_entx[first_entry];
4525 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4526 }
4527
4528 stmmac_set_tx_owner(priv, first);
4529
4530 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4531
4532 stmmac_enable_dma_transmission(priv, priv->ioaddr);
4533
4534 stmmac_flush_tx_descriptors(priv, queue);
4535 stmmac_tx_timer_arm(priv, queue);
4536
4537 return NETDEV_TX_OK;
4538
4539 dma_map_err:
4540 netdev_err(priv->dev, "Tx DMA map failed\n");
4541 dev_kfree_skb(skb);
4542 priv->dev->stats.tx_dropped++;
4543 return NETDEV_TX_OK;
4544 }
4545
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)4546 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4547 {
4548 struct vlan_ethhdr *veth;
4549 __be16 vlan_proto;
4550 u16 vlanid;
4551
4552 veth = (struct vlan_ethhdr *)skb->data;
4553 vlan_proto = veth->h_vlan_proto;
4554
4555 if ((vlan_proto == htons(ETH_P_8021Q) &&
4556 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4557 (vlan_proto == htons(ETH_P_8021AD) &&
4558 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4559 /* pop the vlan tag */
4560 vlanid = ntohs(veth->h_vlan_TCI);
4561 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4562 skb_pull(skb, VLAN_HLEN);
4563 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4564 }
4565 }
4566
4567 /**
4568 * stmmac_rx_refill - refill used skb preallocated buffers
4569 * @priv: driver private structure
4570 * @queue: RX queue index
4571 * Description : this is to reallocate the skb for the reception process
4572 * that is based on zero-copy.
4573 */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)4574 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4575 {
4576 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4577 int dirty = stmmac_rx_dirty(priv, queue);
4578 unsigned int entry = rx_q->dirty_rx;
4579 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4580
4581 if (priv->dma_cap.addr64 <= 32)
4582 gfp |= GFP_DMA32;
4583
4584 while (dirty-- > 0) {
4585 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4586 struct dma_desc *p;
4587 bool use_rx_wd;
4588
4589 if (priv->extend_desc)
4590 p = (struct dma_desc *)(rx_q->dma_erx + entry);
4591 else
4592 p = rx_q->dma_rx + entry;
4593
4594 if (!buf->page) {
4595 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4596 if (!buf->page)
4597 break;
4598 }
4599
4600 if (priv->sph && !buf->sec_page) {
4601 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4602 if (!buf->sec_page)
4603 break;
4604
4605 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4606 }
4607
4608 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4609
4610 stmmac_set_desc_addr(priv, p, buf->addr);
4611 if (priv->sph)
4612 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4613 else
4614 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4615 stmmac_refill_desc3(priv, rx_q, p);
4616
4617 rx_q->rx_count_frames++;
4618 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4619 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4620 rx_q->rx_count_frames = 0;
4621
4622 use_rx_wd = !priv->rx_coal_frames[queue];
4623 use_rx_wd |= rx_q->rx_count_frames > 0;
4624 if (!priv->use_riwt)
4625 use_rx_wd = false;
4626
4627 dma_wmb();
4628 stmmac_set_rx_owner(priv, p, use_rx_wd);
4629
4630 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4631 }
4632 rx_q->dirty_rx = entry;
4633 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4634 (rx_q->dirty_rx * sizeof(struct dma_desc));
4635 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4636 }
4637
stmmac_rx_buf1_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)4638 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4639 struct dma_desc *p,
4640 int status, unsigned int len)
4641 {
4642 unsigned int plen = 0, hlen = 0;
4643 int coe = priv->hw->rx_csum;
4644
4645 /* Not first descriptor, buffer is always zero */
4646 if (priv->sph && len)
4647 return 0;
4648
4649 /* First descriptor, get split header length */
4650 stmmac_get_rx_header_len(priv, p, &hlen);
4651 if (priv->sph && hlen) {
4652 priv->xstats.rx_split_hdr_pkt_n++;
4653 return hlen;
4654 }
4655
4656 /* First descriptor, not last descriptor and not split header */
4657 if (status & rx_not_ls)
4658 return priv->dma_conf.dma_buf_sz;
4659
4660 plen = stmmac_get_rx_frame_len(priv, p, coe);
4661
4662 /* First descriptor and last descriptor and not split header */
4663 return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4664 }
4665
stmmac_rx_buf2_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)4666 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4667 struct dma_desc *p,
4668 int status, unsigned int len)
4669 {
4670 int coe = priv->hw->rx_csum;
4671 unsigned int plen = 0;
4672
4673 /* Not split header, buffer is not available */
4674 if (!priv->sph)
4675 return 0;
4676
4677 /* Not last descriptor */
4678 if (status & rx_not_ls)
4679 return priv->dma_conf.dma_buf_sz;
4680
4681 plen = stmmac_get_rx_frame_len(priv, p, coe);
4682
4683 /* Last descriptor */
4684 return plen - len;
4685 }
4686
stmmac_xdp_xmit_xdpf(struct stmmac_priv * priv,int queue,struct xdp_frame * xdpf,bool dma_map)4687 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4688 struct xdp_frame *xdpf, bool dma_map)
4689 {
4690 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4691 unsigned int entry = tx_q->cur_tx;
4692 struct dma_desc *tx_desc;
4693 dma_addr_t dma_addr;
4694 bool set_ic;
4695
4696 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4697 return STMMAC_XDP_CONSUMED;
4698
4699 if (likely(priv->extend_desc))
4700 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4701 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4702 tx_desc = &tx_q->dma_entx[entry].basic;
4703 else
4704 tx_desc = tx_q->dma_tx + entry;
4705
4706 if (dma_map) {
4707 dma_addr = dma_map_single(priv->device, xdpf->data,
4708 xdpf->len, DMA_TO_DEVICE);
4709 if (dma_mapping_error(priv->device, dma_addr))
4710 return STMMAC_XDP_CONSUMED;
4711
4712 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4713 } else {
4714 struct page *page = virt_to_page(xdpf->data);
4715
4716 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4717 xdpf->headroom;
4718 dma_sync_single_for_device(priv->device, dma_addr,
4719 xdpf->len, DMA_BIDIRECTIONAL);
4720
4721 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4722 }
4723
4724 tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4725 tx_q->tx_skbuff_dma[entry].map_as_page = false;
4726 tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4727 tx_q->tx_skbuff_dma[entry].last_segment = true;
4728 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4729
4730 tx_q->xdpf[entry] = xdpf;
4731
4732 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4733
4734 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4735 true, priv->mode, true, true,
4736 xdpf->len);
4737
4738 tx_q->tx_count_frames++;
4739
4740 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4741 set_ic = true;
4742 else
4743 set_ic = false;
4744
4745 if (set_ic) {
4746 tx_q->tx_count_frames = 0;
4747 stmmac_set_tx_ic(priv, tx_desc);
4748 priv->xstats.tx_set_ic_bit++;
4749 }
4750
4751 stmmac_enable_dma_transmission(priv, priv->ioaddr);
4752
4753 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4754 tx_q->cur_tx = entry;
4755
4756 return STMMAC_XDP_TX;
4757 }
4758
stmmac_xdp_get_tx_queue(struct stmmac_priv * priv,int cpu)4759 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4760 int cpu)
4761 {
4762 int index = cpu;
4763
4764 if (unlikely(index < 0))
4765 index = 0;
4766
4767 while (index >= priv->plat->tx_queues_to_use)
4768 index -= priv->plat->tx_queues_to_use;
4769
4770 return index;
4771 }
4772
stmmac_xdp_xmit_back(struct stmmac_priv * priv,struct xdp_buff * xdp)4773 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4774 struct xdp_buff *xdp)
4775 {
4776 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4777 int cpu = smp_processor_id();
4778 struct netdev_queue *nq;
4779 int queue;
4780 int res;
4781
4782 if (unlikely(!xdpf))
4783 return STMMAC_XDP_CONSUMED;
4784
4785 queue = stmmac_xdp_get_tx_queue(priv, cpu);
4786 nq = netdev_get_tx_queue(priv->dev, queue);
4787
4788 __netif_tx_lock(nq, cpu);
4789 /* Avoids TX time-out as we are sharing with slow path */
4790 txq_trans_cond_update(nq);
4791
4792 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4793 if (res == STMMAC_XDP_TX)
4794 stmmac_flush_tx_descriptors(priv, queue);
4795
4796 __netif_tx_unlock(nq);
4797
4798 return res;
4799 }
4800
__stmmac_xdp_run_prog(struct stmmac_priv * priv,struct bpf_prog * prog,struct xdp_buff * xdp)4801 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4802 struct bpf_prog *prog,
4803 struct xdp_buff *xdp)
4804 {
4805 u32 act;
4806 int res;
4807
4808 act = bpf_prog_run_xdp(prog, xdp);
4809 switch (act) {
4810 case XDP_PASS:
4811 res = STMMAC_XDP_PASS;
4812 break;
4813 case XDP_TX:
4814 res = stmmac_xdp_xmit_back(priv, xdp);
4815 break;
4816 case XDP_REDIRECT:
4817 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4818 res = STMMAC_XDP_CONSUMED;
4819 else
4820 res = STMMAC_XDP_REDIRECT;
4821 break;
4822 default:
4823 bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4824 fallthrough;
4825 case XDP_ABORTED:
4826 trace_xdp_exception(priv->dev, prog, act);
4827 fallthrough;
4828 case XDP_DROP:
4829 res = STMMAC_XDP_CONSUMED;
4830 break;
4831 }
4832
4833 return res;
4834 }
4835
stmmac_xdp_run_prog(struct stmmac_priv * priv,struct xdp_buff * xdp)4836 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4837 struct xdp_buff *xdp)
4838 {
4839 struct bpf_prog *prog;
4840 int res;
4841
4842 prog = READ_ONCE(priv->xdp_prog);
4843 if (!prog) {
4844 res = STMMAC_XDP_PASS;
4845 goto out;
4846 }
4847
4848 res = __stmmac_xdp_run_prog(priv, prog, xdp);
4849 out:
4850 return ERR_PTR(-res);
4851 }
4852
stmmac_finalize_xdp_rx(struct stmmac_priv * priv,int xdp_status)4853 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4854 int xdp_status)
4855 {
4856 int cpu = smp_processor_id();
4857 int queue;
4858
4859 queue = stmmac_xdp_get_tx_queue(priv, cpu);
4860
4861 if (xdp_status & STMMAC_XDP_TX)
4862 stmmac_tx_timer_arm(priv, queue);
4863
4864 if (xdp_status & STMMAC_XDP_REDIRECT)
4865 xdp_do_flush();
4866 }
4867
stmmac_construct_skb_zc(struct stmmac_channel * ch,struct xdp_buff * xdp)4868 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4869 struct xdp_buff *xdp)
4870 {
4871 unsigned int metasize = xdp->data - xdp->data_meta;
4872 unsigned int datasize = xdp->data_end - xdp->data;
4873 struct sk_buff *skb;
4874
4875 skb = __napi_alloc_skb(&ch->rxtx_napi,
4876 xdp->data_end - xdp->data_hard_start,
4877 GFP_ATOMIC | __GFP_NOWARN);
4878 if (unlikely(!skb))
4879 return NULL;
4880
4881 skb_reserve(skb, xdp->data - xdp->data_hard_start);
4882 memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4883 if (metasize)
4884 skb_metadata_set(skb, metasize);
4885
4886 return skb;
4887 }
4888
stmmac_dispatch_skb_zc(struct stmmac_priv * priv,u32 queue,struct dma_desc * p,struct dma_desc * np,struct xdp_buff * xdp)4889 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4890 struct dma_desc *p, struct dma_desc *np,
4891 struct xdp_buff *xdp)
4892 {
4893 struct stmmac_channel *ch = &priv->channel[queue];
4894 unsigned int len = xdp->data_end - xdp->data;
4895 enum pkt_hash_types hash_type;
4896 int coe = priv->hw->rx_csum;
4897 struct sk_buff *skb;
4898 u32 hash;
4899
4900 skb = stmmac_construct_skb_zc(ch, xdp);
4901 if (!skb) {
4902 priv->dev->stats.rx_dropped++;
4903 return;
4904 }
4905
4906 stmmac_get_rx_hwtstamp(priv, p, np, skb);
4907 stmmac_rx_vlan(priv->dev, skb);
4908 skb->protocol = eth_type_trans(skb, priv->dev);
4909
4910 if (unlikely(!coe))
4911 skb_checksum_none_assert(skb);
4912 else
4913 skb->ip_summed = CHECKSUM_UNNECESSARY;
4914
4915 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4916 skb_set_hash(skb, hash, hash_type);
4917
4918 skb_record_rx_queue(skb, queue);
4919 napi_gro_receive(&ch->rxtx_napi, skb);
4920
4921 priv->dev->stats.rx_packets++;
4922 priv->dev->stats.rx_bytes += len;
4923 }
4924
stmmac_rx_refill_zc(struct stmmac_priv * priv,u32 queue,u32 budget)4925 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4926 {
4927 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4928 unsigned int entry = rx_q->dirty_rx;
4929 struct dma_desc *rx_desc = NULL;
4930 bool ret = true;
4931
4932 budget = min(budget, stmmac_rx_dirty(priv, queue));
4933
4934 while (budget-- > 0 && entry != rx_q->cur_rx) {
4935 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4936 dma_addr_t dma_addr;
4937 bool use_rx_wd;
4938
4939 if (!buf->xdp) {
4940 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4941 if (!buf->xdp) {
4942 ret = false;
4943 break;
4944 }
4945 }
4946
4947 if (priv->extend_desc)
4948 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4949 else
4950 rx_desc = rx_q->dma_rx + entry;
4951
4952 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4953 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4954 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4955 stmmac_refill_desc3(priv, rx_q, rx_desc);
4956
4957 rx_q->rx_count_frames++;
4958 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4959 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4960 rx_q->rx_count_frames = 0;
4961
4962 use_rx_wd = !priv->rx_coal_frames[queue];
4963 use_rx_wd |= rx_q->rx_count_frames > 0;
4964 if (!priv->use_riwt)
4965 use_rx_wd = false;
4966
4967 dma_wmb();
4968 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4969
4970 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4971 }
4972
4973 if (rx_desc) {
4974 rx_q->dirty_rx = entry;
4975 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4976 (rx_q->dirty_rx * sizeof(struct dma_desc));
4977 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4978 }
4979
4980 return ret;
4981 }
4982
stmmac_rx_zc(struct stmmac_priv * priv,int limit,u32 queue)4983 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4984 {
4985 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4986 unsigned int count = 0, error = 0, len = 0;
4987 int dirty = stmmac_rx_dirty(priv, queue);
4988 unsigned int next_entry = rx_q->cur_rx;
4989 unsigned int desc_size;
4990 struct bpf_prog *prog;
4991 bool failure = false;
4992 int xdp_status = 0;
4993 int status = 0;
4994
4995 if (netif_msg_rx_status(priv)) {
4996 void *rx_head;
4997
4998 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4999 if (priv->extend_desc) {
5000 rx_head = (void *)rx_q->dma_erx;
5001 desc_size = sizeof(struct dma_extended_desc);
5002 } else {
5003 rx_head = (void *)rx_q->dma_rx;
5004 desc_size = sizeof(struct dma_desc);
5005 }
5006
5007 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5008 rx_q->dma_rx_phy, desc_size);
5009 }
5010 while (count < limit) {
5011 struct stmmac_rx_buffer *buf;
5012 unsigned int buf1_len = 0;
5013 struct dma_desc *np, *p;
5014 int entry;
5015 int res;
5016
5017 if (!count && rx_q->state_saved) {
5018 error = rx_q->state.error;
5019 len = rx_q->state.len;
5020 } else {
5021 rx_q->state_saved = false;
5022 error = 0;
5023 len = 0;
5024 }
5025
5026 if (count >= limit)
5027 break;
5028
5029 read_again:
5030 buf1_len = 0;
5031 entry = next_entry;
5032 buf = &rx_q->buf_pool[entry];
5033
5034 if (dirty >= STMMAC_RX_FILL_BATCH) {
5035 failure = failure ||
5036 !stmmac_rx_refill_zc(priv, queue, dirty);
5037 dirty = 0;
5038 }
5039
5040 if (priv->extend_desc)
5041 p = (struct dma_desc *)(rx_q->dma_erx + entry);
5042 else
5043 p = rx_q->dma_rx + entry;
5044
5045 /* read the status of the incoming frame */
5046 status = stmmac_rx_status(priv, &priv->dev->stats,
5047 &priv->xstats, p);
5048 /* check if managed by the DMA otherwise go ahead */
5049 if (unlikely(status & dma_own))
5050 break;
5051
5052 /* Prefetch the next RX descriptor */
5053 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5054 priv->dma_conf.dma_rx_size);
5055 next_entry = rx_q->cur_rx;
5056
5057 if (priv->extend_desc)
5058 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5059 else
5060 np = rx_q->dma_rx + next_entry;
5061
5062 prefetch(np);
5063
5064 /* Ensure a valid XSK buffer before proceed */
5065 if (!buf->xdp)
5066 break;
5067
5068 if (priv->extend_desc)
5069 stmmac_rx_extended_status(priv, &priv->dev->stats,
5070 &priv->xstats,
5071 rx_q->dma_erx + entry);
5072 if (unlikely(status == discard_frame)) {
5073 xsk_buff_free(buf->xdp);
5074 buf->xdp = NULL;
5075 dirty++;
5076 error = 1;
5077 if (!priv->hwts_rx_en)
5078 priv->dev->stats.rx_errors++;
5079 }
5080
5081 if (unlikely(error && (status & rx_not_ls)))
5082 goto read_again;
5083 if (unlikely(error)) {
5084 count++;
5085 continue;
5086 }
5087
5088 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5089 if (likely(status & rx_not_ls)) {
5090 xsk_buff_free(buf->xdp);
5091 buf->xdp = NULL;
5092 dirty++;
5093 count++;
5094 goto read_again;
5095 }
5096
5097 /* XDP ZC Frame only support primary buffers for now */
5098 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5099 len += buf1_len;
5100
5101 /* ACS is disabled; strip manually. */
5102 if (likely(!(status & rx_not_ls))) {
5103 buf1_len -= ETH_FCS_LEN;
5104 len -= ETH_FCS_LEN;
5105 }
5106
5107 /* RX buffer is good and fit into a XSK pool buffer */
5108 buf->xdp->data_end = buf->xdp->data + buf1_len;
5109 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5110
5111 prog = READ_ONCE(priv->xdp_prog);
5112 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5113
5114 switch (res) {
5115 case STMMAC_XDP_PASS:
5116 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5117 xsk_buff_free(buf->xdp);
5118 break;
5119 case STMMAC_XDP_CONSUMED:
5120 xsk_buff_free(buf->xdp);
5121 priv->dev->stats.rx_dropped++;
5122 break;
5123 case STMMAC_XDP_TX:
5124 case STMMAC_XDP_REDIRECT:
5125 xdp_status |= res;
5126 break;
5127 }
5128
5129 buf->xdp = NULL;
5130 dirty++;
5131 count++;
5132 }
5133
5134 if (status & rx_not_ls) {
5135 rx_q->state_saved = true;
5136 rx_q->state.error = error;
5137 rx_q->state.len = len;
5138 }
5139
5140 stmmac_finalize_xdp_rx(priv, xdp_status);
5141
5142 priv->xstats.rx_pkt_n += count;
5143 priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5144
5145 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5146 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5147 xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5148 else
5149 xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5150
5151 return (int)count;
5152 }
5153
5154 return failure ? limit : (int)count;
5155 }
5156
5157 /**
5158 * stmmac_rx - manage the receive process
5159 * @priv: driver private structure
5160 * @limit: napi bugget
5161 * @queue: RX queue index.
5162 * Description : this the function called by the napi poll method.
5163 * It gets all the frames inside the ring.
5164 */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)5165 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5166 {
5167 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5168 struct stmmac_channel *ch = &priv->channel[queue];
5169 unsigned int count = 0, error = 0, len = 0;
5170 int status = 0, coe = priv->hw->rx_csum;
5171 unsigned int next_entry = rx_q->cur_rx;
5172 enum dma_data_direction dma_dir;
5173 unsigned int desc_size;
5174 struct sk_buff *skb = NULL;
5175 struct xdp_buff xdp;
5176 int xdp_status = 0;
5177 int buf_sz;
5178
5179 dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5180 buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5181
5182 if (netif_msg_rx_status(priv)) {
5183 void *rx_head;
5184
5185 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5186 if (priv->extend_desc) {
5187 rx_head = (void *)rx_q->dma_erx;
5188 desc_size = sizeof(struct dma_extended_desc);
5189 } else {
5190 rx_head = (void *)rx_q->dma_rx;
5191 desc_size = sizeof(struct dma_desc);
5192 }
5193
5194 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5195 rx_q->dma_rx_phy, desc_size);
5196 }
5197 while (count < limit) {
5198 unsigned int buf1_len = 0, buf2_len = 0;
5199 enum pkt_hash_types hash_type;
5200 struct stmmac_rx_buffer *buf;
5201 struct dma_desc *np, *p;
5202 int entry;
5203 u32 hash;
5204
5205 if (!count && rx_q->state_saved) {
5206 skb = rx_q->state.skb;
5207 error = rx_q->state.error;
5208 len = rx_q->state.len;
5209 } else {
5210 rx_q->state_saved = false;
5211 skb = NULL;
5212 error = 0;
5213 len = 0;
5214 }
5215
5216 if (count >= limit)
5217 break;
5218
5219 read_again:
5220 buf1_len = 0;
5221 buf2_len = 0;
5222 entry = next_entry;
5223 buf = &rx_q->buf_pool[entry];
5224
5225 if (priv->extend_desc)
5226 p = (struct dma_desc *)(rx_q->dma_erx + entry);
5227 else
5228 p = rx_q->dma_rx + entry;
5229
5230 /* read the status of the incoming frame */
5231 status = stmmac_rx_status(priv, &priv->dev->stats,
5232 &priv->xstats, p);
5233 /* check if managed by the DMA otherwise go ahead */
5234 if (unlikely(status & dma_own))
5235 break;
5236
5237 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5238 priv->dma_conf.dma_rx_size);
5239 next_entry = rx_q->cur_rx;
5240
5241 if (priv->extend_desc)
5242 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5243 else
5244 np = rx_q->dma_rx + next_entry;
5245
5246 prefetch(np);
5247
5248 if (priv->extend_desc)
5249 stmmac_rx_extended_status(priv, &priv->dev->stats,
5250 &priv->xstats, rx_q->dma_erx + entry);
5251 if (unlikely(status == discard_frame)) {
5252 page_pool_recycle_direct(rx_q->page_pool, buf->page);
5253 buf->page = NULL;
5254 error = 1;
5255 if (!priv->hwts_rx_en)
5256 priv->dev->stats.rx_errors++;
5257 }
5258
5259 if (unlikely(error && (status & rx_not_ls)))
5260 goto read_again;
5261 if (unlikely(error)) {
5262 dev_kfree_skb(skb);
5263 skb = NULL;
5264 count++;
5265 continue;
5266 }
5267
5268 /* Buffer is good. Go on. */
5269
5270 prefetch(page_address(buf->page) + buf->page_offset);
5271 if (buf->sec_page)
5272 prefetch(page_address(buf->sec_page));
5273
5274 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5275 len += buf1_len;
5276 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5277 len += buf2_len;
5278
5279 /* ACS is disabled; strip manually. */
5280 if (likely(!(status & rx_not_ls))) {
5281 if (buf2_len) {
5282 buf2_len -= ETH_FCS_LEN;
5283 len -= ETH_FCS_LEN;
5284 } else if (buf1_len) {
5285 buf1_len -= ETH_FCS_LEN;
5286 len -= ETH_FCS_LEN;
5287 }
5288 }
5289
5290 if (!skb) {
5291 unsigned int pre_len, sync_len;
5292
5293 dma_sync_single_for_cpu(priv->device, buf->addr,
5294 buf1_len, dma_dir);
5295
5296 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5297 xdp_prepare_buff(&xdp, page_address(buf->page),
5298 buf->page_offset, buf1_len, false);
5299
5300 pre_len = xdp.data_end - xdp.data_hard_start -
5301 buf->page_offset;
5302 skb = stmmac_xdp_run_prog(priv, &xdp);
5303 /* Due xdp_adjust_tail: DMA sync for_device
5304 * cover max len CPU touch
5305 */
5306 sync_len = xdp.data_end - xdp.data_hard_start -
5307 buf->page_offset;
5308 sync_len = max(sync_len, pre_len);
5309
5310 /* For Not XDP_PASS verdict */
5311 if (IS_ERR(skb)) {
5312 unsigned int xdp_res = -PTR_ERR(skb);
5313
5314 if (xdp_res & STMMAC_XDP_CONSUMED) {
5315 page_pool_put_page(rx_q->page_pool,
5316 virt_to_head_page(xdp.data),
5317 sync_len, true);
5318 buf->page = NULL;
5319 priv->dev->stats.rx_dropped++;
5320
5321 /* Clear skb as it was set as
5322 * status by XDP program.
5323 */
5324 skb = NULL;
5325
5326 if (unlikely((status & rx_not_ls)))
5327 goto read_again;
5328
5329 count++;
5330 continue;
5331 } else if (xdp_res & (STMMAC_XDP_TX |
5332 STMMAC_XDP_REDIRECT)) {
5333 xdp_status |= xdp_res;
5334 buf->page = NULL;
5335 skb = NULL;
5336 count++;
5337 continue;
5338 }
5339 }
5340 }
5341
5342 if (!skb) {
5343 /* XDP program may expand or reduce tail */
5344 buf1_len = xdp.data_end - xdp.data;
5345
5346 skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5347 if (!skb) {
5348 priv->dev->stats.rx_dropped++;
5349 count++;
5350 goto drain_data;
5351 }
5352
5353 /* XDP program may adjust header */
5354 skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5355 skb_put(skb, buf1_len);
5356
5357 /* Data payload copied into SKB, page ready for recycle */
5358 page_pool_recycle_direct(rx_q->page_pool, buf->page);
5359 buf->page = NULL;
5360 } else if (buf1_len) {
5361 dma_sync_single_for_cpu(priv->device, buf->addr,
5362 buf1_len, dma_dir);
5363 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5364 buf->page, buf->page_offset, buf1_len,
5365 priv->dma_conf.dma_buf_sz);
5366
5367 /* Data payload appended into SKB */
5368 page_pool_release_page(rx_q->page_pool, buf->page);
5369 buf->page = NULL;
5370 }
5371
5372 if (buf2_len) {
5373 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5374 buf2_len, dma_dir);
5375 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5376 buf->sec_page, 0, buf2_len,
5377 priv->dma_conf.dma_buf_sz);
5378
5379 /* Data payload appended into SKB */
5380 page_pool_release_page(rx_q->page_pool, buf->sec_page);
5381 buf->sec_page = NULL;
5382 }
5383
5384 drain_data:
5385 if (likely(status & rx_not_ls))
5386 goto read_again;
5387 if (!skb)
5388 continue;
5389
5390 /* Got entire packet into SKB. Finish it. */
5391
5392 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5393 stmmac_rx_vlan(priv->dev, skb);
5394 skb->protocol = eth_type_trans(skb, priv->dev);
5395
5396 if (unlikely(!coe))
5397 skb_checksum_none_assert(skb);
5398 else
5399 skb->ip_summed = CHECKSUM_UNNECESSARY;
5400
5401 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5402 skb_set_hash(skb, hash, hash_type);
5403
5404 skb_record_rx_queue(skb, queue);
5405 napi_gro_receive(&ch->rx_napi, skb);
5406 skb = NULL;
5407
5408 priv->dev->stats.rx_packets++;
5409 priv->dev->stats.rx_bytes += len;
5410 count++;
5411 }
5412
5413 if (status & rx_not_ls || skb) {
5414 rx_q->state_saved = true;
5415 rx_q->state.skb = skb;
5416 rx_q->state.error = error;
5417 rx_q->state.len = len;
5418 }
5419
5420 stmmac_finalize_xdp_rx(priv, xdp_status);
5421
5422 stmmac_rx_refill(priv, queue);
5423
5424 priv->xstats.rx_pkt_n += count;
5425 priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5426
5427 return count;
5428 }
5429
stmmac_napi_poll_rx(struct napi_struct * napi,int budget)5430 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5431 {
5432 struct stmmac_channel *ch =
5433 container_of(napi, struct stmmac_channel, rx_napi);
5434 struct stmmac_priv *priv = ch->priv_data;
5435 u32 chan = ch->index;
5436 int work_done;
5437
5438 priv->xstats.napi_poll++;
5439
5440 work_done = stmmac_rx(priv, budget, chan);
5441 if (work_done < budget && napi_complete_done(napi, work_done)) {
5442 unsigned long flags;
5443
5444 spin_lock_irqsave(&ch->lock, flags);
5445 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5446 spin_unlock_irqrestore(&ch->lock, flags);
5447 }
5448
5449 return work_done;
5450 }
5451
stmmac_napi_poll_tx(struct napi_struct * napi,int budget)5452 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5453 {
5454 struct stmmac_channel *ch =
5455 container_of(napi, struct stmmac_channel, tx_napi);
5456 struct stmmac_priv *priv = ch->priv_data;
5457 u32 chan = ch->index;
5458 int work_done;
5459
5460 priv->xstats.napi_poll++;
5461
5462 work_done = stmmac_tx_clean(priv, budget, chan);
5463 work_done = min(work_done, budget);
5464
5465 if (work_done < budget && napi_complete_done(napi, work_done)) {
5466 unsigned long flags;
5467
5468 spin_lock_irqsave(&ch->lock, flags);
5469 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5470 spin_unlock_irqrestore(&ch->lock, flags);
5471 }
5472
5473 return work_done;
5474 }
5475
stmmac_napi_poll_rxtx(struct napi_struct * napi,int budget)5476 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5477 {
5478 struct stmmac_channel *ch =
5479 container_of(napi, struct stmmac_channel, rxtx_napi);
5480 struct stmmac_priv *priv = ch->priv_data;
5481 int rx_done, tx_done, rxtx_done;
5482 u32 chan = ch->index;
5483
5484 priv->xstats.napi_poll++;
5485
5486 tx_done = stmmac_tx_clean(priv, budget, chan);
5487 tx_done = min(tx_done, budget);
5488
5489 rx_done = stmmac_rx_zc(priv, budget, chan);
5490
5491 rxtx_done = max(tx_done, rx_done);
5492
5493 /* If either TX or RX work is not complete, return budget
5494 * and keep pooling
5495 */
5496 if (rxtx_done >= budget)
5497 return budget;
5498
5499 /* all work done, exit the polling mode */
5500 if (napi_complete_done(napi, rxtx_done)) {
5501 unsigned long flags;
5502
5503 spin_lock_irqsave(&ch->lock, flags);
5504 /* Both RX and TX work done are compelte,
5505 * so enable both RX & TX IRQs.
5506 */
5507 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5508 spin_unlock_irqrestore(&ch->lock, flags);
5509 }
5510
5511 return min(rxtx_done, budget - 1);
5512 }
5513
5514 /**
5515 * stmmac_tx_timeout
5516 * @dev : Pointer to net device structure
5517 * @txqueue: the index of the hanging transmit queue
5518 * Description: this function is called when a packet transmission fails to
5519 * complete within a reasonable time. The driver will mark the error in the
5520 * netdev structure and arrange for the device to be reset to a sane state
5521 * in order to transmit a new packet.
5522 */
stmmac_tx_timeout(struct net_device * dev,unsigned int txqueue)5523 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5524 {
5525 struct stmmac_priv *priv = netdev_priv(dev);
5526
5527 stmmac_global_err(priv);
5528 }
5529
5530 /**
5531 * stmmac_set_rx_mode - entry point for multicast addressing
5532 * @dev : pointer to the device structure
5533 * Description:
5534 * This function is a driver entry point which gets called by the kernel
5535 * whenever multicast addresses must be enabled/disabled.
5536 * Return value:
5537 * void.
5538 */
stmmac_set_rx_mode(struct net_device * dev)5539 static void stmmac_set_rx_mode(struct net_device *dev)
5540 {
5541 struct stmmac_priv *priv = netdev_priv(dev);
5542
5543 stmmac_set_filter(priv, priv->hw, dev);
5544 }
5545
5546 /**
5547 * stmmac_change_mtu - entry point to change MTU size for the device.
5548 * @dev : device pointer.
5549 * @new_mtu : the new MTU size for the device.
5550 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
5551 * to drive packet transmission. Ethernet has an MTU of 1500 octets
5552 * (ETH_DATA_LEN). This value can be changed with ifconfig.
5553 * Return value:
5554 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5555 * file on failure.
5556 */
stmmac_change_mtu(struct net_device * dev,int new_mtu)5557 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5558 {
5559 struct stmmac_priv *priv = netdev_priv(dev);
5560 int txfifosz = priv->plat->tx_fifo_size;
5561 struct stmmac_dma_conf *dma_conf;
5562 const int mtu = new_mtu;
5563 int ret;
5564
5565 if (txfifosz == 0)
5566 txfifosz = priv->dma_cap.tx_fifo_size;
5567
5568 txfifosz /= priv->plat->tx_queues_to_use;
5569
5570 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5571 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5572 return -EINVAL;
5573 }
5574
5575 new_mtu = STMMAC_ALIGN(new_mtu);
5576
5577 /* If condition true, FIFO is too small or MTU too large */
5578 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5579 return -EINVAL;
5580
5581 if (netif_running(dev)) {
5582 netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5583 /* Try to allocate the new DMA conf with the new mtu */
5584 dma_conf = stmmac_setup_dma_desc(priv, mtu);
5585 if (IS_ERR(dma_conf)) {
5586 netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5587 mtu);
5588 return PTR_ERR(dma_conf);
5589 }
5590
5591 stmmac_release(dev);
5592
5593 ret = __stmmac_open(dev, dma_conf);
5594 kfree(dma_conf);
5595 if (ret) {
5596 netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5597 return ret;
5598 }
5599
5600 stmmac_set_rx_mode(dev);
5601 }
5602
5603 dev->mtu = mtu;
5604 netdev_update_features(dev);
5605
5606 return 0;
5607 }
5608
stmmac_fix_features(struct net_device * dev,netdev_features_t features)5609 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5610 netdev_features_t features)
5611 {
5612 struct stmmac_priv *priv = netdev_priv(dev);
5613
5614 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5615 features &= ~NETIF_F_RXCSUM;
5616
5617 if (!priv->plat->tx_coe)
5618 features &= ~NETIF_F_CSUM_MASK;
5619
5620 /* Some GMAC devices have a bugged Jumbo frame support that
5621 * needs to have the Tx COE disabled for oversized frames
5622 * (due to limited buffer sizes). In this case we disable
5623 * the TX csum insertion in the TDES and not use SF.
5624 */
5625 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5626 features &= ~NETIF_F_CSUM_MASK;
5627
5628 /* Disable tso if asked by ethtool */
5629 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5630 if (features & NETIF_F_TSO)
5631 priv->tso = true;
5632 else
5633 priv->tso = false;
5634 }
5635
5636 return features;
5637 }
5638
stmmac_set_features(struct net_device * netdev,netdev_features_t features)5639 static int stmmac_set_features(struct net_device *netdev,
5640 netdev_features_t features)
5641 {
5642 struct stmmac_priv *priv = netdev_priv(netdev);
5643
5644 /* Keep the COE Type in case of csum is supporting */
5645 if (features & NETIF_F_RXCSUM)
5646 priv->hw->rx_csum = priv->plat->rx_coe;
5647 else
5648 priv->hw->rx_csum = 0;
5649 /* No check needed because rx_coe has been set before and it will be
5650 * fixed in case of issue.
5651 */
5652 stmmac_rx_ipc(priv, priv->hw);
5653
5654 if (priv->sph_cap) {
5655 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5656 u32 chan;
5657
5658 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5659 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5660 }
5661
5662 return 0;
5663 }
5664
stmmac_fpe_event_status(struct stmmac_priv * priv,int status)5665 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5666 {
5667 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5668 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5669 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5670 bool *hs_enable = &fpe_cfg->hs_enable;
5671
5672 if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5673 return;
5674
5675 /* If LP has sent verify mPacket, LP is FPE capable */
5676 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5677 if (*lp_state < FPE_STATE_CAPABLE)
5678 *lp_state = FPE_STATE_CAPABLE;
5679
5680 /* If user has requested FPE enable, quickly response */
5681 if (*hs_enable)
5682 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5683 MPACKET_RESPONSE);
5684 }
5685
5686 /* If Local has sent verify mPacket, Local is FPE capable */
5687 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5688 if (*lo_state < FPE_STATE_CAPABLE)
5689 *lo_state = FPE_STATE_CAPABLE;
5690 }
5691
5692 /* If LP has sent response mPacket, LP is entering FPE ON */
5693 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5694 *lp_state = FPE_STATE_ENTERING_ON;
5695
5696 /* If Local has sent response mPacket, Local is entering FPE ON */
5697 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5698 *lo_state = FPE_STATE_ENTERING_ON;
5699
5700 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5701 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5702 priv->fpe_wq) {
5703 queue_work(priv->fpe_wq, &priv->fpe_task);
5704 }
5705 }
5706
stmmac_common_interrupt(struct stmmac_priv * priv)5707 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5708 {
5709 u32 rx_cnt = priv->plat->rx_queues_to_use;
5710 u32 tx_cnt = priv->plat->tx_queues_to_use;
5711 u32 queues_count;
5712 u32 queue;
5713 bool xmac;
5714
5715 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5716 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5717
5718 if (priv->irq_wake)
5719 pm_wakeup_event(priv->device, 0);
5720
5721 if (priv->dma_cap.estsel)
5722 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5723 &priv->xstats, tx_cnt);
5724
5725 if (priv->dma_cap.fpesel) {
5726 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5727 priv->dev);
5728
5729 stmmac_fpe_event_status(priv, status);
5730 }
5731
5732 /* To handle GMAC own interrupts */
5733 if ((priv->plat->has_gmac) || xmac) {
5734 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5735
5736 if (unlikely(status)) {
5737 /* For LPI we need to save the tx status */
5738 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5739 priv->tx_path_in_lpi_mode = true;
5740 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5741 priv->tx_path_in_lpi_mode = false;
5742 }
5743
5744 for (queue = 0; queue < queues_count; queue++) {
5745 status = stmmac_host_mtl_irq_status(priv, priv->hw,
5746 queue);
5747 }
5748
5749 /* PCS link status */
5750 if (priv->hw->pcs) {
5751 if (priv->xstats.pcs_link)
5752 netif_carrier_on(priv->dev);
5753 else
5754 netif_carrier_off(priv->dev);
5755 }
5756
5757 stmmac_timestamp_interrupt(priv, priv);
5758 }
5759 }
5760
5761 /**
5762 * stmmac_interrupt - main ISR
5763 * @irq: interrupt number.
5764 * @dev_id: to pass the net device pointer.
5765 * Description: this is the main driver interrupt service routine.
5766 * It can call:
5767 * o DMA service routine (to manage incoming frame reception and transmission
5768 * status)
5769 * o Core interrupts to manage: remote wake-up, management counter, LPI
5770 * interrupts.
5771 */
stmmac_interrupt(int irq,void * dev_id)5772 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5773 {
5774 struct net_device *dev = (struct net_device *)dev_id;
5775 struct stmmac_priv *priv = netdev_priv(dev);
5776
5777 /* Check if adapter is up */
5778 if (test_bit(STMMAC_DOWN, &priv->state))
5779 return IRQ_HANDLED;
5780
5781 /* Check if a fatal error happened */
5782 if (stmmac_safety_feat_interrupt(priv))
5783 return IRQ_HANDLED;
5784
5785 /* To handle Common interrupts */
5786 stmmac_common_interrupt(priv);
5787
5788 /* To handle DMA interrupts */
5789 stmmac_dma_interrupt(priv);
5790
5791 return IRQ_HANDLED;
5792 }
5793
stmmac_mac_interrupt(int irq,void * dev_id)5794 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5795 {
5796 struct net_device *dev = (struct net_device *)dev_id;
5797 struct stmmac_priv *priv = netdev_priv(dev);
5798
5799 if (unlikely(!dev)) {
5800 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5801 return IRQ_NONE;
5802 }
5803
5804 /* Check if adapter is up */
5805 if (test_bit(STMMAC_DOWN, &priv->state))
5806 return IRQ_HANDLED;
5807
5808 /* To handle Common interrupts */
5809 stmmac_common_interrupt(priv);
5810
5811 return IRQ_HANDLED;
5812 }
5813
stmmac_safety_interrupt(int irq,void * dev_id)5814 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5815 {
5816 struct net_device *dev = (struct net_device *)dev_id;
5817 struct stmmac_priv *priv = netdev_priv(dev);
5818
5819 if (unlikely(!dev)) {
5820 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5821 return IRQ_NONE;
5822 }
5823
5824 /* Check if adapter is up */
5825 if (test_bit(STMMAC_DOWN, &priv->state))
5826 return IRQ_HANDLED;
5827
5828 /* Check if a fatal error happened */
5829 stmmac_safety_feat_interrupt(priv);
5830
5831 return IRQ_HANDLED;
5832 }
5833
stmmac_msi_intr_tx(int irq,void * data)5834 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5835 {
5836 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5837 struct stmmac_dma_conf *dma_conf;
5838 int chan = tx_q->queue_index;
5839 struct stmmac_priv *priv;
5840 int status;
5841
5842 dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5843 priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5844
5845 if (unlikely(!data)) {
5846 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5847 return IRQ_NONE;
5848 }
5849
5850 /* Check if adapter is up */
5851 if (test_bit(STMMAC_DOWN, &priv->state))
5852 return IRQ_HANDLED;
5853
5854 status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5855
5856 if (unlikely(status & tx_hard_error_bump_tc)) {
5857 /* Try to bump up the dma threshold on this failure */
5858 stmmac_bump_dma_threshold(priv, chan);
5859 } else if (unlikely(status == tx_hard_error)) {
5860 stmmac_tx_err(priv, chan);
5861 }
5862
5863 return IRQ_HANDLED;
5864 }
5865
stmmac_msi_intr_rx(int irq,void * data)5866 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5867 {
5868 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5869 struct stmmac_dma_conf *dma_conf;
5870 int chan = rx_q->queue_index;
5871 struct stmmac_priv *priv;
5872
5873 dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5874 priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5875
5876 if (unlikely(!data)) {
5877 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5878 return IRQ_NONE;
5879 }
5880
5881 /* Check if adapter is up */
5882 if (test_bit(STMMAC_DOWN, &priv->state))
5883 return IRQ_HANDLED;
5884
5885 stmmac_napi_check(priv, chan, DMA_DIR_RX);
5886
5887 return IRQ_HANDLED;
5888 }
5889
5890 #ifdef CONFIG_NET_POLL_CONTROLLER
5891 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5892 * to allow network I/O with interrupts disabled.
5893 */
stmmac_poll_controller(struct net_device * dev)5894 static void stmmac_poll_controller(struct net_device *dev)
5895 {
5896 struct stmmac_priv *priv = netdev_priv(dev);
5897 int i;
5898
5899 /* If adapter is down, do nothing */
5900 if (test_bit(STMMAC_DOWN, &priv->state))
5901 return;
5902
5903 if (priv->plat->multi_msi_en) {
5904 for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5905 stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5906
5907 for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5908 stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5909 } else {
5910 disable_irq(dev->irq);
5911 stmmac_interrupt(dev->irq, dev);
5912 enable_irq(dev->irq);
5913 }
5914 }
5915 #endif
5916
5917 /**
5918 * stmmac_ioctl - Entry point for the Ioctl
5919 * @dev: Device pointer.
5920 * @rq: An IOCTL specefic structure, that can contain a pointer to
5921 * a proprietary structure used to pass information to the driver.
5922 * @cmd: IOCTL command
5923 * Description:
5924 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5925 */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)5926 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5927 {
5928 struct stmmac_priv *priv = netdev_priv (dev);
5929 int ret = -EOPNOTSUPP;
5930
5931 if (!netif_running(dev))
5932 return -EINVAL;
5933
5934 switch (cmd) {
5935 case SIOCGMIIPHY:
5936 case SIOCGMIIREG:
5937 case SIOCSMIIREG:
5938 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5939 break;
5940 case SIOCSHWTSTAMP:
5941 ret = stmmac_hwtstamp_set(dev, rq);
5942 break;
5943 case SIOCGHWTSTAMP:
5944 ret = stmmac_hwtstamp_get(dev, rq);
5945 break;
5946 default:
5947 break;
5948 }
5949
5950 return ret;
5951 }
5952
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)5953 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5954 void *cb_priv)
5955 {
5956 struct stmmac_priv *priv = cb_priv;
5957 int ret = -EOPNOTSUPP;
5958
5959 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5960 return ret;
5961
5962 __stmmac_disable_all_queues(priv);
5963
5964 switch (type) {
5965 case TC_SETUP_CLSU32:
5966 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5967 break;
5968 case TC_SETUP_CLSFLOWER:
5969 ret = stmmac_tc_setup_cls(priv, priv, type_data);
5970 break;
5971 default:
5972 break;
5973 }
5974
5975 stmmac_enable_all_queues(priv);
5976 return ret;
5977 }
5978
5979 static LIST_HEAD(stmmac_block_cb_list);
5980
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)5981 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5982 void *type_data)
5983 {
5984 struct stmmac_priv *priv = netdev_priv(ndev);
5985
5986 switch (type) {
5987 case TC_SETUP_BLOCK:
5988 return flow_block_cb_setup_simple(type_data,
5989 &stmmac_block_cb_list,
5990 stmmac_setup_tc_block_cb,
5991 priv, priv, true);
5992 case TC_SETUP_QDISC_CBS:
5993 return stmmac_tc_setup_cbs(priv, priv, type_data);
5994 case TC_SETUP_QDISC_TAPRIO:
5995 return stmmac_tc_setup_taprio(priv, priv, type_data);
5996 case TC_SETUP_QDISC_ETF:
5997 return stmmac_tc_setup_etf(priv, priv, type_data);
5998 default:
5999 return -EOPNOTSUPP;
6000 }
6001 }
6002
stmmac_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)6003 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6004 struct net_device *sb_dev)
6005 {
6006 int gso = skb_shinfo(skb)->gso_type;
6007
6008 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6009 /*
6010 * There is no way to determine the number of TSO/USO
6011 * capable Queues. Let's use always the Queue 0
6012 * because if TSO/USO is supported then at least this
6013 * one will be capable.
6014 */
6015 return 0;
6016 }
6017
6018 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6019 }
6020
stmmac_set_mac_address(struct net_device * ndev,void * addr)6021 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6022 {
6023 struct stmmac_priv *priv = netdev_priv(ndev);
6024 int ret = 0;
6025
6026 ret = pm_runtime_resume_and_get(priv->device);
6027 if (ret < 0)
6028 return ret;
6029
6030 ret = eth_mac_addr(ndev, addr);
6031 if (ret)
6032 goto set_mac_error;
6033
6034 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6035
6036 set_mac_error:
6037 pm_runtime_put(priv->device);
6038
6039 return ret;
6040 }
6041
6042 #ifdef CONFIG_DEBUG_FS
6043 static struct dentry *stmmac_fs_dir;
6044
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq,dma_addr_t dma_phy_addr)6045 static void sysfs_display_ring(void *head, int size, int extend_desc,
6046 struct seq_file *seq, dma_addr_t dma_phy_addr)
6047 {
6048 int i;
6049 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6050 struct dma_desc *p = (struct dma_desc *)head;
6051 dma_addr_t dma_addr;
6052
6053 for (i = 0; i < size; i++) {
6054 if (extend_desc) {
6055 dma_addr = dma_phy_addr + i * sizeof(*ep);
6056 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6057 i, &dma_addr,
6058 le32_to_cpu(ep->basic.des0),
6059 le32_to_cpu(ep->basic.des1),
6060 le32_to_cpu(ep->basic.des2),
6061 le32_to_cpu(ep->basic.des3));
6062 ep++;
6063 } else {
6064 dma_addr = dma_phy_addr + i * sizeof(*p);
6065 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6066 i, &dma_addr,
6067 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6068 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6069 p++;
6070 }
6071 seq_printf(seq, "\n");
6072 }
6073 }
6074
stmmac_rings_status_show(struct seq_file * seq,void * v)6075 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6076 {
6077 struct net_device *dev = seq->private;
6078 struct stmmac_priv *priv = netdev_priv(dev);
6079 u32 rx_count = priv->plat->rx_queues_to_use;
6080 u32 tx_count = priv->plat->tx_queues_to_use;
6081 u32 queue;
6082
6083 if ((dev->flags & IFF_UP) == 0)
6084 return 0;
6085
6086 for (queue = 0; queue < rx_count; queue++) {
6087 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6088
6089 seq_printf(seq, "RX Queue %d:\n", queue);
6090
6091 if (priv->extend_desc) {
6092 seq_printf(seq, "Extended descriptor ring:\n");
6093 sysfs_display_ring((void *)rx_q->dma_erx,
6094 priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6095 } else {
6096 seq_printf(seq, "Descriptor ring:\n");
6097 sysfs_display_ring((void *)rx_q->dma_rx,
6098 priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6099 }
6100 }
6101
6102 for (queue = 0; queue < tx_count; queue++) {
6103 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6104
6105 seq_printf(seq, "TX Queue %d:\n", queue);
6106
6107 if (priv->extend_desc) {
6108 seq_printf(seq, "Extended descriptor ring:\n");
6109 sysfs_display_ring((void *)tx_q->dma_etx,
6110 priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6111 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6112 seq_printf(seq, "Descriptor ring:\n");
6113 sysfs_display_ring((void *)tx_q->dma_tx,
6114 priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6115 }
6116 }
6117
6118 return 0;
6119 }
6120 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6121
stmmac_dma_cap_show(struct seq_file * seq,void * v)6122 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6123 {
6124 struct net_device *dev = seq->private;
6125 struct stmmac_priv *priv = netdev_priv(dev);
6126
6127 if (!priv->hw_cap_support) {
6128 seq_printf(seq, "DMA HW features not supported\n");
6129 return 0;
6130 }
6131
6132 seq_printf(seq, "==============================\n");
6133 seq_printf(seq, "\tDMA HW features\n");
6134 seq_printf(seq, "==============================\n");
6135
6136 seq_printf(seq, "\t10/100 Mbps: %s\n",
6137 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6138 seq_printf(seq, "\t1000 Mbps: %s\n",
6139 (priv->dma_cap.mbps_1000) ? "Y" : "N");
6140 seq_printf(seq, "\tHalf duplex: %s\n",
6141 (priv->dma_cap.half_duplex) ? "Y" : "N");
6142 seq_printf(seq, "\tHash Filter: %s\n",
6143 (priv->dma_cap.hash_filter) ? "Y" : "N");
6144 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6145 (priv->dma_cap.multi_addr) ? "Y" : "N");
6146 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6147 (priv->dma_cap.pcs) ? "Y" : "N");
6148 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6149 (priv->dma_cap.sma_mdio) ? "Y" : "N");
6150 seq_printf(seq, "\tPMT Remote wake up: %s\n",
6151 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6152 seq_printf(seq, "\tPMT Magic Frame: %s\n",
6153 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6154 seq_printf(seq, "\tRMON module: %s\n",
6155 (priv->dma_cap.rmon) ? "Y" : "N");
6156 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6157 (priv->dma_cap.time_stamp) ? "Y" : "N");
6158 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6159 (priv->dma_cap.atime_stamp) ? "Y" : "N");
6160 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6161 (priv->dma_cap.eee) ? "Y" : "N");
6162 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6163 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6164 (priv->dma_cap.tx_coe) ? "Y" : "N");
6165 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6166 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6167 (priv->dma_cap.rx_coe) ? "Y" : "N");
6168 } else {
6169 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6170 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6171 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6172 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6173 }
6174 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6175 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6176 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6177 priv->dma_cap.number_rx_channel);
6178 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6179 priv->dma_cap.number_tx_channel);
6180 seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6181 priv->dma_cap.number_rx_queues);
6182 seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6183 priv->dma_cap.number_tx_queues);
6184 seq_printf(seq, "\tEnhanced descriptors: %s\n",
6185 (priv->dma_cap.enh_desc) ? "Y" : "N");
6186 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6187 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6188 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6189 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6190 seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6191 priv->dma_cap.pps_out_num);
6192 seq_printf(seq, "\tSafety Features: %s\n",
6193 priv->dma_cap.asp ? "Y" : "N");
6194 seq_printf(seq, "\tFlexible RX Parser: %s\n",
6195 priv->dma_cap.frpsel ? "Y" : "N");
6196 seq_printf(seq, "\tEnhanced Addressing: %d\n",
6197 priv->dma_cap.addr64);
6198 seq_printf(seq, "\tReceive Side Scaling: %s\n",
6199 priv->dma_cap.rssen ? "Y" : "N");
6200 seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6201 priv->dma_cap.vlhash ? "Y" : "N");
6202 seq_printf(seq, "\tSplit Header: %s\n",
6203 priv->dma_cap.sphen ? "Y" : "N");
6204 seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6205 priv->dma_cap.vlins ? "Y" : "N");
6206 seq_printf(seq, "\tDouble VLAN: %s\n",
6207 priv->dma_cap.dvlan ? "Y" : "N");
6208 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6209 priv->dma_cap.l3l4fnum);
6210 seq_printf(seq, "\tARP Offloading: %s\n",
6211 priv->dma_cap.arpoffsel ? "Y" : "N");
6212 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6213 priv->dma_cap.estsel ? "Y" : "N");
6214 seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6215 priv->dma_cap.fpesel ? "Y" : "N");
6216 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6217 priv->dma_cap.tbssel ? "Y" : "N");
6218 return 0;
6219 }
6220 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6221
6222 /* Use network device events to rename debugfs file entries.
6223 */
stmmac_device_event(struct notifier_block * unused,unsigned long event,void * ptr)6224 static int stmmac_device_event(struct notifier_block *unused,
6225 unsigned long event, void *ptr)
6226 {
6227 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6228 struct stmmac_priv *priv = netdev_priv(dev);
6229
6230 if (dev->netdev_ops != &stmmac_netdev_ops)
6231 goto done;
6232
6233 switch (event) {
6234 case NETDEV_CHANGENAME:
6235 if (priv->dbgfs_dir)
6236 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6237 priv->dbgfs_dir,
6238 stmmac_fs_dir,
6239 dev->name);
6240 break;
6241 }
6242 done:
6243 return NOTIFY_DONE;
6244 }
6245
6246 static struct notifier_block stmmac_notifier = {
6247 .notifier_call = stmmac_device_event,
6248 };
6249
stmmac_init_fs(struct net_device * dev)6250 static void stmmac_init_fs(struct net_device *dev)
6251 {
6252 struct stmmac_priv *priv = netdev_priv(dev);
6253
6254 rtnl_lock();
6255
6256 /* Create per netdev entries */
6257 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6258
6259 /* Entry to report DMA RX/TX rings */
6260 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6261 &stmmac_rings_status_fops);
6262
6263 /* Entry to report the DMA HW features */
6264 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6265 &stmmac_dma_cap_fops);
6266
6267 rtnl_unlock();
6268 }
6269
stmmac_exit_fs(struct net_device * dev)6270 static void stmmac_exit_fs(struct net_device *dev)
6271 {
6272 struct stmmac_priv *priv = netdev_priv(dev);
6273
6274 debugfs_remove_recursive(priv->dbgfs_dir);
6275 }
6276 #endif /* CONFIG_DEBUG_FS */
6277
stmmac_vid_crc32_le(__le16 vid_le)6278 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6279 {
6280 unsigned char *data = (unsigned char *)&vid_le;
6281 unsigned char data_byte = 0;
6282 u32 crc = ~0x0;
6283 u32 temp = 0;
6284 int i, bits;
6285
6286 bits = get_bitmask_order(VLAN_VID_MASK);
6287 for (i = 0; i < bits; i++) {
6288 if ((i % 8) == 0)
6289 data_byte = data[i / 8];
6290
6291 temp = ((crc & 1) ^ data_byte) & 1;
6292 crc >>= 1;
6293 data_byte >>= 1;
6294
6295 if (temp)
6296 crc ^= 0xedb88320;
6297 }
6298
6299 return crc;
6300 }
6301
stmmac_vlan_update(struct stmmac_priv * priv,bool is_double)6302 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6303 {
6304 u32 crc, hash = 0;
6305 __le16 pmatch = 0;
6306 int count = 0;
6307 u16 vid = 0;
6308
6309 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6310 __le16 vid_le = cpu_to_le16(vid);
6311 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6312 hash |= (1 << crc);
6313 count++;
6314 }
6315
6316 if (!priv->dma_cap.vlhash) {
6317 if (count > 2) /* VID = 0 always passes filter */
6318 return -EOPNOTSUPP;
6319
6320 pmatch = cpu_to_le16(vid);
6321 hash = 0;
6322 }
6323
6324 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6325 }
6326
stmmac_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)6327 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6328 {
6329 struct stmmac_priv *priv = netdev_priv(ndev);
6330 bool is_double = false;
6331 int ret;
6332
6333 if (be16_to_cpu(proto) == ETH_P_8021AD)
6334 is_double = true;
6335
6336 set_bit(vid, priv->active_vlans);
6337 ret = stmmac_vlan_update(priv, is_double);
6338 if (ret) {
6339 clear_bit(vid, priv->active_vlans);
6340 return ret;
6341 }
6342
6343 if (priv->hw->num_vlan) {
6344 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6345 if (ret)
6346 return ret;
6347 }
6348
6349 return 0;
6350 }
6351
stmmac_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)6352 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6353 {
6354 struct stmmac_priv *priv = netdev_priv(ndev);
6355 bool is_double = false;
6356 int ret;
6357
6358 ret = pm_runtime_resume_and_get(priv->device);
6359 if (ret < 0)
6360 return ret;
6361
6362 if (be16_to_cpu(proto) == ETH_P_8021AD)
6363 is_double = true;
6364
6365 clear_bit(vid, priv->active_vlans);
6366
6367 if (priv->hw->num_vlan) {
6368 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6369 if (ret)
6370 goto del_vlan_error;
6371 }
6372
6373 ret = stmmac_vlan_update(priv, is_double);
6374
6375 del_vlan_error:
6376 pm_runtime_put(priv->device);
6377
6378 return ret;
6379 }
6380
stmmac_bpf(struct net_device * dev,struct netdev_bpf * bpf)6381 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6382 {
6383 struct stmmac_priv *priv = netdev_priv(dev);
6384
6385 switch (bpf->command) {
6386 case XDP_SETUP_PROG:
6387 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6388 case XDP_SETUP_XSK_POOL:
6389 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6390 bpf->xsk.queue_id);
6391 default:
6392 return -EOPNOTSUPP;
6393 }
6394 }
6395
stmmac_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6396 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6397 struct xdp_frame **frames, u32 flags)
6398 {
6399 struct stmmac_priv *priv = netdev_priv(dev);
6400 int cpu = smp_processor_id();
6401 struct netdev_queue *nq;
6402 int i, nxmit = 0;
6403 int queue;
6404
6405 if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6406 return -ENETDOWN;
6407
6408 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6409 return -EINVAL;
6410
6411 queue = stmmac_xdp_get_tx_queue(priv, cpu);
6412 nq = netdev_get_tx_queue(priv->dev, queue);
6413
6414 __netif_tx_lock(nq, cpu);
6415 /* Avoids TX time-out as we are sharing with slow path */
6416 txq_trans_cond_update(nq);
6417
6418 for (i = 0; i < num_frames; i++) {
6419 int res;
6420
6421 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6422 if (res == STMMAC_XDP_CONSUMED)
6423 break;
6424
6425 nxmit++;
6426 }
6427
6428 if (flags & XDP_XMIT_FLUSH) {
6429 stmmac_flush_tx_descriptors(priv, queue);
6430 stmmac_tx_timer_arm(priv, queue);
6431 }
6432
6433 __netif_tx_unlock(nq);
6434
6435 return nxmit;
6436 }
6437
stmmac_disable_rx_queue(struct stmmac_priv * priv,u32 queue)6438 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6439 {
6440 struct stmmac_channel *ch = &priv->channel[queue];
6441 unsigned long flags;
6442
6443 spin_lock_irqsave(&ch->lock, flags);
6444 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6445 spin_unlock_irqrestore(&ch->lock, flags);
6446
6447 stmmac_stop_rx_dma(priv, queue);
6448 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6449 }
6450
stmmac_enable_rx_queue(struct stmmac_priv * priv,u32 queue)6451 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6452 {
6453 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6454 struct stmmac_channel *ch = &priv->channel[queue];
6455 unsigned long flags;
6456 u32 buf_size;
6457 int ret;
6458
6459 ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6460 if (ret) {
6461 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6462 return;
6463 }
6464
6465 ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6466 if (ret) {
6467 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6468 netdev_err(priv->dev, "Failed to init RX desc.\n");
6469 return;
6470 }
6471
6472 stmmac_reset_rx_queue(priv, queue);
6473 stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6474
6475 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6476 rx_q->dma_rx_phy, rx_q->queue_index);
6477
6478 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6479 sizeof(struct dma_desc));
6480 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6481 rx_q->rx_tail_addr, rx_q->queue_index);
6482
6483 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6484 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6485 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6486 buf_size,
6487 rx_q->queue_index);
6488 } else {
6489 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6490 priv->dma_conf.dma_buf_sz,
6491 rx_q->queue_index);
6492 }
6493
6494 stmmac_start_rx_dma(priv, queue);
6495
6496 spin_lock_irqsave(&ch->lock, flags);
6497 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6498 spin_unlock_irqrestore(&ch->lock, flags);
6499 }
6500
stmmac_disable_tx_queue(struct stmmac_priv * priv,u32 queue)6501 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6502 {
6503 struct stmmac_channel *ch = &priv->channel[queue];
6504 unsigned long flags;
6505
6506 spin_lock_irqsave(&ch->lock, flags);
6507 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6508 spin_unlock_irqrestore(&ch->lock, flags);
6509
6510 stmmac_stop_tx_dma(priv, queue);
6511 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6512 }
6513
stmmac_enable_tx_queue(struct stmmac_priv * priv,u32 queue)6514 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6515 {
6516 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6517 struct stmmac_channel *ch = &priv->channel[queue];
6518 unsigned long flags;
6519 int ret;
6520
6521 ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6522 if (ret) {
6523 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6524 return;
6525 }
6526
6527 ret = __init_dma_tx_desc_rings(priv, &priv->dma_conf, queue);
6528 if (ret) {
6529 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6530 netdev_err(priv->dev, "Failed to init TX desc.\n");
6531 return;
6532 }
6533
6534 stmmac_reset_tx_queue(priv, queue);
6535 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6536
6537 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6538 tx_q->dma_tx_phy, tx_q->queue_index);
6539
6540 if (tx_q->tbs & STMMAC_TBS_AVAIL)
6541 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6542
6543 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6544 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6545 tx_q->tx_tail_addr, tx_q->queue_index);
6546
6547 stmmac_start_tx_dma(priv, queue);
6548
6549 spin_lock_irqsave(&ch->lock, flags);
6550 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6551 spin_unlock_irqrestore(&ch->lock, flags);
6552 }
6553
stmmac_xdp_release(struct net_device * dev)6554 void stmmac_xdp_release(struct net_device *dev)
6555 {
6556 struct stmmac_priv *priv = netdev_priv(dev);
6557 u32 chan;
6558
6559 /* Ensure tx function is not running */
6560 netif_tx_disable(dev);
6561
6562 /* Disable NAPI process */
6563 stmmac_disable_all_queues(priv);
6564
6565 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6566 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6567
6568 /* Free the IRQ lines */
6569 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6570
6571 /* Stop TX/RX DMA channels */
6572 stmmac_stop_all_dma(priv);
6573
6574 /* Release and free the Rx/Tx resources */
6575 free_dma_desc_resources(priv, &priv->dma_conf);
6576
6577 /* Disable the MAC Rx/Tx */
6578 stmmac_mac_set(priv, priv->ioaddr, false);
6579
6580 /* set trans_start so we don't get spurious
6581 * watchdogs during reset
6582 */
6583 netif_trans_update(dev);
6584 netif_carrier_off(dev);
6585 }
6586
stmmac_xdp_open(struct net_device * dev)6587 int stmmac_xdp_open(struct net_device *dev)
6588 {
6589 struct stmmac_priv *priv = netdev_priv(dev);
6590 u32 rx_cnt = priv->plat->rx_queues_to_use;
6591 u32 tx_cnt = priv->plat->tx_queues_to_use;
6592 u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6593 struct stmmac_rx_queue *rx_q;
6594 struct stmmac_tx_queue *tx_q;
6595 u32 buf_size;
6596 bool sph_en;
6597 u32 chan;
6598 int ret;
6599
6600 ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6601 if (ret < 0) {
6602 netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6603 __func__);
6604 goto dma_desc_error;
6605 }
6606
6607 ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6608 if (ret < 0) {
6609 netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6610 __func__);
6611 goto init_error;
6612 }
6613
6614 /* DMA CSR Channel configuration */
6615 for (chan = 0; chan < dma_csr_ch; chan++) {
6616 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6617 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6618 }
6619
6620 /* Adjust Split header */
6621 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6622
6623 /* DMA RX Channel Configuration */
6624 for (chan = 0; chan < rx_cnt; chan++) {
6625 rx_q = &priv->dma_conf.rx_queue[chan];
6626
6627 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6628 rx_q->dma_rx_phy, chan);
6629
6630 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6631 (rx_q->buf_alloc_num *
6632 sizeof(struct dma_desc));
6633 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6634 rx_q->rx_tail_addr, chan);
6635
6636 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6637 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6638 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6639 buf_size,
6640 rx_q->queue_index);
6641 } else {
6642 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6643 priv->dma_conf.dma_buf_sz,
6644 rx_q->queue_index);
6645 }
6646
6647 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6648 }
6649
6650 /* DMA TX Channel Configuration */
6651 for (chan = 0; chan < tx_cnt; chan++) {
6652 tx_q = &priv->dma_conf.tx_queue[chan];
6653
6654 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6655 tx_q->dma_tx_phy, chan);
6656
6657 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6658 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6659 tx_q->tx_tail_addr, chan);
6660
6661 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6662 tx_q->txtimer.function = stmmac_tx_timer;
6663 }
6664
6665 /* Enable the MAC Rx/Tx */
6666 stmmac_mac_set(priv, priv->ioaddr, true);
6667
6668 /* Start Rx & Tx DMA Channels */
6669 stmmac_start_all_dma(priv);
6670
6671 ret = stmmac_request_irq(dev);
6672 if (ret)
6673 goto irq_error;
6674
6675 /* Enable NAPI process*/
6676 stmmac_enable_all_queues(priv);
6677 netif_carrier_on(dev);
6678 netif_tx_start_all_queues(dev);
6679 stmmac_enable_all_dma_irq(priv);
6680
6681 return 0;
6682
6683 irq_error:
6684 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6685 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6686
6687 stmmac_hw_teardown(dev);
6688 init_error:
6689 free_dma_desc_resources(priv, &priv->dma_conf);
6690 dma_desc_error:
6691 return ret;
6692 }
6693
stmmac_xsk_wakeup(struct net_device * dev,u32 queue,u32 flags)6694 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6695 {
6696 struct stmmac_priv *priv = netdev_priv(dev);
6697 struct stmmac_rx_queue *rx_q;
6698 struct stmmac_tx_queue *tx_q;
6699 struct stmmac_channel *ch;
6700
6701 if (test_bit(STMMAC_DOWN, &priv->state) ||
6702 !netif_carrier_ok(priv->dev))
6703 return -ENETDOWN;
6704
6705 if (!stmmac_xdp_is_enabled(priv))
6706 return -EINVAL;
6707
6708 if (queue >= priv->plat->rx_queues_to_use ||
6709 queue >= priv->plat->tx_queues_to_use)
6710 return -EINVAL;
6711
6712 rx_q = &priv->dma_conf.rx_queue[queue];
6713 tx_q = &priv->dma_conf.tx_queue[queue];
6714 ch = &priv->channel[queue];
6715
6716 if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6717 return -EINVAL;
6718
6719 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6720 /* EQoS does not have per-DMA channel SW interrupt,
6721 * so we schedule RX Napi straight-away.
6722 */
6723 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6724 __napi_schedule(&ch->rxtx_napi);
6725 }
6726
6727 return 0;
6728 }
6729
6730 static const struct net_device_ops stmmac_netdev_ops = {
6731 .ndo_open = stmmac_open,
6732 .ndo_start_xmit = stmmac_xmit,
6733 .ndo_stop = stmmac_release,
6734 .ndo_change_mtu = stmmac_change_mtu,
6735 .ndo_fix_features = stmmac_fix_features,
6736 .ndo_set_features = stmmac_set_features,
6737 .ndo_set_rx_mode = stmmac_set_rx_mode,
6738 .ndo_tx_timeout = stmmac_tx_timeout,
6739 .ndo_eth_ioctl = stmmac_ioctl,
6740 .ndo_setup_tc = stmmac_setup_tc,
6741 .ndo_select_queue = stmmac_select_queue,
6742 #ifdef CONFIG_NET_POLL_CONTROLLER
6743 .ndo_poll_controller = stmmac_poll_controller,
6744 #endif
6745 .ndo_set_mac_address = stmmac_set_mac_address,
6746 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6747 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6748 .ndo_bpf = stmmac_bpf,
6749 .ndo_xdp_xmit = stmmac_xdp_xmit,
6750 .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6751 };
6752
stmmac_reset_subtask(struct stmmac_priv * priv)6753 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6754 {
6755 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6756 return;
6757 if (test_bit(STMMAC_DOWN, &priv->state))
6758 return;
6759
6760 netdev_err(priv->dev, "Reset adapter.\n");
6761
6762 rtnl_lock();
6763 netif_trans_update(priv->dev);
6764 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6765 usleep_range(1000, 2000);
6766
6767 set_bit(STMMAC_DOWN, &priv->state);
6768 dev_close(priv->dev);
6769 dev_open(priv->dev, NULL);
6770 clear_bit(STMMAC_DOWN, &priv->state);
6771 clear_bit(STMMAC_RESETING, &priv->state);
6772 rtnl_unlock();
6773 }
6774
stmmac_service_task(struct work_struct * work)6775 static void stmmac_service_task(struct work_struct *work)
6776 {
6777 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6778 service_task);
6779
6780 stmmac_reset_subtask(priv);
6781 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6782 }
6783
6784 /**
6785 * stmmac_hw_init - Init the MAC device
6786 * @priv: driver private structure
6787 * Description: this function is to configure the MAC device according to
6788 * some platform parameters or the HW capability register. It prepares the
6789 * driver to use either ring or chain modes and to setup either enhanced or
6790 * normal descriptors.
6791 */
stmmac_hw_init(struct stmmac_priv * priv)6792 static int stmmac_hw_init(struct stmmac_priv *priv)
6793 {
6794 int ret;
6795
6796 /* dwmac-sun8i only work in chain mode */
6797 if (priv->plat->has_sun8i)
6798 chain_mode = 1;
6799 priv->chain_mode = chain_mode;
6800
6801 /* Initialize HW Interface */
6802 ret = stmmac_hwif_init(priv);
6803 if (ret)
6804 return ret;
6805
6806 /* Get the HW capability (new GMAC newer than 3.50a) */
6807 priv->hw_cap_support = stmmac_get_hw_features(priv);
6808 if (priv->hw_cap_support) {
6809 dev_info(priv->device, "DMA HW capability register supported\n");
6810
6811 /* We can override some gmac/dma configuration fields: e.g.
6812 * enh_desc, tx_coe (e.g. that are passed through the
6813 * platform) with the values from the HW capability
6814 * register (if supported).
6815 */
6816 priv->plat->enh_desc = priv->dma_cap.enh_desc;
6817 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6818 !priv->plat->use_phy_wol;
6819 priv->hw->pmt = priv->plat->pmt;
6820 if (priv->dma_cap.hash_tb_sz) {
6821 priv->hw->multicast_filter_bins =
6822 (BIT(priv->dma_cap.hash_tb_sz) << 5);
6823 priv->hw->mcast_bits_log2 =
6824 ilog2(priv->hw->multicast_filter_bins);
6825 }
6826
6827 /* TXCOE doesn't work in thresh DMA mode */
6828 if (priv->plat->force_thresh_dma_mode)
6829 priv->plat->tx_coe = 0;
6830 else
6831 priv->plat->tx_coe = priv->dma_cap.tx_coe;
6832
6833 /* In case of GMAC4 rx_coe is from HW cap register. */
6834 priv->plat->rx_coe = priv->dma_cap.rx_coe;
6835
6836 if (priv->dma_cap.rx_coe_type2)
6837 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6838 else if (priv->dma_cap.rx_coe_type1)
6839 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6840
6841 } else {
6842 dev_info(priv->device, "No HW DMA feature register supported\n");
6843 }
6844
6845 if (priv->plat->rx_coe) {
6846 priv->hw->rx_csum = priv->plat->rx_coe;
6847 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6848 if (priv->synopsys_id < DWMAC_CORE_4_00)
6849 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6850 }
6851 if (priv->plat->tx_coe)
6852 dev_info(priv->device, "TX Checksum insertion supported\n");
6853
6854 if (priv->plat->pmt) {
6855 dev_info(priv->device, "Wake-Up On Lan supported\n");
6856 device_set_wakeup_capable(priv->device, 1);
6857 }
6858
6859 if (priv->dma_cap.tsoen)
6860 dev_info(priv->device, "TSO supported\n");
6861
6862 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6863 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6864
6865 /* Run HW quirks, if any */
6866 if (priv->hwif_quirks) {
6867 ret = priv->hwif_quirks(priv);
6868 if (ret)
6869 return ret;
6870 }
6871
6872 /* Rx Watchdog is available in the COREs newer than the 3.40.
6873 * In some case, for example on bugged HW this feature
6874 * has to be disable and this can be done by passing the
6875 * riwt_off field from the platform.
6876 */
6877 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6878 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6879 priv->use_riwt = 1;
6880 dev_info(priv->device,
6881 "Enable RX Mitigation via HW Watchdog Timer\n");
6882 }
6883
6884 return 0;
6885 }
6886
stmmac_napi_add(struct net_device * dev)6887 static void stmmac_napi_add(struct net_device *dev)
6888 {
6889 struct stmmac_priv *priv = netdev_priv(dev);
6890 u32 queue, maxq;
6891
6892 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6893
6894 for (queue = 0; queue < maxq; queue++) {
6895 struct stmmac_channel *ch = &priv->channel[queue];
6896
6897 ch->priv_data = priv;
6898 ch->index = queue;
6899 spin_lock_init(&ch->lock);
6900
6901 if (queue < priv->plat->rx_queues_to_use) {
6902 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6903 }
6904 if (queue < priv->plat->tx_queues_to_use) {
6905 netif_napi_add_tx(dev, &ch->tx_napi,
6906 stmmac_napi_poll_tx);
6907 }
6908 if (queue < priv->plat->rx_queues_to_use &&
6909 queue < priv->plat->tx_queues_to_use) {
6910 netif_napi_add(dev, &ch->rxtx_napi,
6911 stmmac_napi_poll_rxtx);
6912 }
6913 }
6914 }
6915
stmmac_napi_del(struct net_device * dev)6916 static void stmmac_napi_del(struct net_device *dev)
6917 {
6918 struct stmmac_priv *priv = netdev_priv(dev);
6919 u32 queue, maxq;
6920
6921 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6922
6923 for (queue = 0; queue < maxq; queue++) {
6924 struct stmmac_channel *ch = &priv->channel[queue];
6925
6926 if (queue < priv->plat->rx_queues_to_use)
6927 netif_napi_del(&ch->rx_napi);
6928 if (queue < priv->plat->tx_queues_to_use)
6929 netif_napi_del(&ch->tx_napi);
6930 if (queue < priv->plat->rx_queues_to_use &&
6931 queue < priv->plat->tx_queues_to_use) {
6932 netif_napi_del(&ch->rxtx_napi);
6933 }
6934 }
6935 }
6936
stmmac_reinit_queues(struct net_device * dev,u32 rx_cnt,u32 tx_cnt)6937 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6938 {
6939 struct stmmac_priv *priv = netdev_priv(dev);
6940 int ret = 0;
6941
6942 if (netif_running(dev))
6943 stmmac_release(dev);
6944
6945 stmmac_napi_del(dev);
6946
6947 priv->plat->rx_queues_to_use = rx_cnt;
6948 priv->plat->tx_queues_to_use = tx_cnt;
6949
6950 stmmac_napi_add(dev);
6951
6952 if (netif_running(dev))
6953 ret = stmmac_open(dev);
6954
6955 return ret;
6956 }
6957
stmmac_reinit_ringparam(struct net_device * dev,u32 rx_size,u32 tx_size)6958 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6959 {
6960 struct stmmac_priv *priv = netdev_priv(dev);
6961 int ret = 0;
6962
6963 if (netif_running(dev))
6964 stmmac_release(dev);
6965
6966 priv->dma_conf.dma_rx_size = rx_size;
6967 priv->dma_conf.dma_tx_size = tx_size;
6968
6969 if (netif_running(dev))
6970 ret = stmmac_open(dev);
6971
6972 return ret;
6973 }
6974
6975 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
stmmac_fpe_lp_task(struct work_struct * work)6976 static void stmmac_fpe_lp_task(struct work_struct *work)
6977 {
6978 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6979 fpe_task);
6980 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6981 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6982 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6983 bool *hs_enable = &fpe_cfg->hs_enable;
6984 bool *enable = &fpe_cfg->enable;
6985 int retries = 20;
6986
6987 while (retries-- > 0) {
6988 /* Bail out immediately if FPE handshake is OFF */
6989 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6990 break;
6991
6992 if (*lo_state == FPE_STATE_ENTERING_ON &&
6993 *lp_state == FPE_STATE_ENTERING_ON) {
6994 stmmac_fpe_configure(priv, priv->ioaddr,
6995 priv->plat->tx_queues_to_use,
6996 priv->plat->rx_queues_to_use,
6997 *enable);
6998
6999 netdev_info(priv->dev, "configured FPE\n");
7000
7001 *lo_state = FPE_STATE_ON;
7002 *lp_state = FPE_STATE_ON;
7003 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7004 break;
7005 }
7006
7007 if ((*lo_state == FPE_STATE_CAPABLE ||
7008 *lo_state == FPE_STATE_ENTERING_ON) &&
7009 *lp_state != FPE_STATE_ON) {
7010 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7011 *lo_state, *lp_state);
7012 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7013 MPACKET_VERIFY);
7014 }
7015 /* Sleep then retry */
7016 msleep(500);
7017 }
7018
7019 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7020 }
7021
stmmac_fpe_handshake(struct stmmac_priv * priv,bool enable)7022 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7023 {
7024 if (priv->plat->fpe_cfg->hs_enable != enable) {
7025 if (enable) {
7026 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7027 MPACKET_VERIFY);
7028 } else {
7029 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7030 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7031 }
7032
7033 priv->plat->fpe_cfg->hs_enable = enable;
7034 }
7035 }
7036
7037 /**
7038 * stmmac_dvr_probe
7039 * @device: device pointer
7040 * @plat_dat: platform data pointer
7041 * @res: stmmac resource pointer
7042 * Description: this is the main probe function used to
7043 * call the alloc_etherdev, allocate the priv structure.
7044 * Return:
7045 * returns 0 on success, otherwise errno.
7046 */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)7047 int stmmac_dvr_probe(struct device *device,
7048 struct plat_stmmacenet_data *plat_dat,
7049 struct stmmac_resources *res)
7050 {
7051 struct net_device *ndev = NULL;
7052 struct stmmac_priv *priv;
7053 u32 rxq;
7054 int i, ret = 0;
7055
7056 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7057 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7058 if (!ndev)
7059 return -ENOMEM;
7060
7061 SET_NETDEV_DEV(ndev, device);
7062
7063 priv = netdev_priv(ndev);
7064 priv->device = device;
7065 priv->dev = ndev;
7066
7067 stmmac_set_ethtool_ops(ndev);
7068 priv->pause = pause;
7069 priv->plat = plat_dat;
7070 priv->ioaddr = res->addr;
7071 priv->dev->base_addr = (unsigned long)res->addr;
7072 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7073
7074 priv->dev->irq = res->irq;
7075 priv->wol_irq = res->wol_irq;
7076 priv->lpi_irq = res->lpi_irq;
7077 priv->sfty_ce_irq = res->sfty_ce_irq;
7078 priv->sfty_ue_irq = res->sfty_ue_irq;
7079 for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7080 priv->rx_irq[i] = res->rx_irq[i];
7081 for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7082 priv->tx_irq[i] = res->tx_irq[i];
7083
7084 if (!is_zero_ether_addr(res->mac))
7085 eth_hw_addr_set(priv->dev, res->mac);
7086
7087 dev_set_drvdata(device, priv->dev);
7088
7089 /* Verify driver arguments */
7090 stmmac_verify_args();
7091
7092 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7093 if (!priv->af_xdp_zc_qps)
7094 return -ENOMEM;
7095
7096 /* Allocate workqueue */
7097 priv->wq = create_singlethread_workqueue("stmmac_wq");
7098 if (!priv->wq) {
7099 dev_err(priv->device, "failed to create workqueue\n");
7100 return -ENOMEM;
7101 }
7102
7103 INIT_WORK(&priv->service_task, stmmac_service_task);
7104
7105 /* Initialize Link Partner FPE workqueue */
7106 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7107
7108 /* Override with kernel parameters if supplied XXX CRS XXX
7109 * this needs to have multiple instances
7110 */
7111 if ((phyaddr >= 0) && (phyaddr <= 31))
7112 priv->plat->phy_addr = phyaddr;
7113
7114 if (priv->plat->stmmac_rst) {
7115 ret = reset_control_assert(priv->plat->stmmac_rst);
7116 reset_control_deassert(priv->plat->stmmac_rst);
7117 /* Some reset controllers have only reset callback instead of
7118 * assert + deassert callbacks pair.
7119 */
7120 if (ret == -ENOTSUPP)
7121 reset_control_reset(priv->plat->stmmac_rst);
7122 }
7123
7124 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7125 if (ret == -ENOTSUPP)
7126 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7127 ERR_PTR(ret));
7128
7129 /* Init MAC and get the capabilities */
7130 ret = stmmac_hw_init(priv);
7131 if (ret)
7132 goto error_hw_init;
7133
7134 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7135 */
7136 if (priv->synopsys_id < DWMAC_CORE_5_20)
7137 priv->plat->dma_cfg->dche = false;
7138
7139 stmmac_check_ether_addr(priv);
7140
7141 ndev->netdev_ops = &stmmac_netdev_ops;
7142
7143 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7144 NETIF_F_RXCSUM;
7145
7146 ret = stmmac_tc_init(priv, priv);
7147 if (!ret) {
7148 ndev->hw_features |= NETIF_F_HW_TC;
7149 }
7150
7151 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7152 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7153 if (priv->plat->has_gmac4)
7154 ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7155 priv->tso = true;
7156 dev_info(priv->device, "TSO feature enabled\n");
7157 }
7158
7159 if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7160 ndev->hw_features |= NETIF_F_GRO;
7161 priv->sph_cap = true;
7162 priv->sph = priv->sph_cap;
7163 dev_info(priv->device, "SPH feature enabled\n");
7164 }
7165
7166 /* The current IP register MAC_HW_Feature1[ADDR64] only define
7167 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7168 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7169 * So overwrite dma_cap.addr64 according to HW real design.
7170 */
7171 if (priv->plat->addr64)
7172 priv->dma_cap.addr64 = priv->plat->addr64;
7173
7174 if (priv->dma_cap.addr64) {
7175 ret = dma_set_mask_and_coherent(device,
7176 DMA_BIT_MASK(priv->dma_cap.addr64));
7177 if (!ret) {
7178 dev_info(priv->device, "Using %d bits DMA width\n",
7179 priv->dma_cap.addr64);
7180
7181 /*
7182 * If more than 32 bits can be addressed, make sure to
7183 * enable enhanced addressing mode.
7184 */
7185 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7186 priv->plat->dma_cfg->eame = true;
7187 } else {
7188 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7189 if (ret) {
7190 dev_err(priv->device, "Failed to set DMA Mask\n");
7191 goto error_hw_init;
7192 }
7193
7194 priv->dma_cap.addr64 = 32;
7195 }
7196 }
7197
7198 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7199 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7200 #ifdef STMMAC_VLAN_TAG_USED
7201 /* Both mac100 and gmac support receive VLAN tag detection */
7202 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7203 if (priv->dma_cap.vlhash) {
7204 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7205 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7206 }
7207 if (priv->dma_cap.vlins) {
7208 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7209 if (priv->dma_cap.dvlan)
7210 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7211 }
7212 #endif
7213 priv->msg_enable = netif_msg_init(debug, default_msg_level);
7214
7215 /* Initialize RSS */
7216 rxq = priv->plat->rx_queues_to_use;
7217 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7218 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7219 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7220
7221 if (priv->dma_cap.rssen && priv->plat->rss_en)
7222 ndev->features |= NETIF_F_RXHASH;
7223
7224 /* MTU range: 46 - hw-specific max */
7225 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7226 if (priv->plat->has_xgmac)
7227 ndev->max_mtu = XGMAC_JUMBO_LEN;
7228 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7229 ndev->max_mtu = JUMBO_LEN;
7230 else
7231 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7232 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7233 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7234 */
7235 if ((priv->plat->maxmtu < ndev->max_mtu) &&
7236 (priv->plat->maxmtu >= ndev->min_mtu))
7237 ndev->max_mtu = priv->plat->maxmtu;
7238 else if (priv->plat->maxmtu < ndev->min_mtu)
7239 dev_warn(priv->device,
7240 "%s: warning: maxmtu having invalid value (%d)\n",
7241 __func__, priv->plat->maxmtu);
7242
7243 if (flow_ctrl)
7244 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
7245
7246 /* Setup channels NAPI */
7247 stmmac_napi_add(ndev);
7248
7249 mutex_init(&priv->lock);
7250
7251 /* If a specific clk_csr value is passed from the platform
7252 * this means that the CSR Clock Range selection cannot be
7253 * changed at run-time and it is fixed. Viceversa the driver'll try to
7254 * set the MDC clock dynamically according to the csr actual
7255 * clock input.
7256 */
7257 if (priv->plat->clk_csr >= 0)
7258 priv->clk_csr = priv->plat->clk_csr;
7259 else
7260 stmmac_clk_csr_set(priv);
7261
7262 stmmac_check_pcs_mode(priv);
7263
7264 pm_runtime_get_noresume(device);
7265 pm_runtime_set_active(device);
7266 if (!pm_runtime_enabled(device))
7267 pm_runtime_enable(device);
7268
7269 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7270 priv->hw->pcs != STMMAC_PCS_RTBI) {
7271 /* MDIO bus Registration */
7272 ret = stmmac_mdio_register(ndev);
7273 if (ret < 0) {
7274 dev_err_probe(priv->device, ret,
7275 "%s: MDIO bus (id: %d) registration failed\n",
7276 __func__, priv->plat->bus_id);
7277 goto error_mdio_register;
7278 }
7279 }
7280
7281 if (priv->plat->speed_mode_2500)
7282 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7283
7284 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7285 ret = stmmac_xpcs_setup(priv->mii);
7286 if (ret)
7287 goto error_xpcs_setup;
7288 }
7289
7290 ret = stmmac_phy_setup(priv);
7291 if (ret) {
7292 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7293 goto error_phy_setup;
7294 }
7295
7296 ret = register_netdev(ndev);
7297 if (ret) {
7298 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7299 __func__, ret);
7300 goto error_netdev_register;
7301 }
7302
7303 #ifdef CONFIG_DEBUG_FS
7304 stmmac_init_fs(ndev);
7305 #endif
7306
7307 if (priv->plat->dump_debug_regs)
7308 priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7309
7310 /* Let pm_runtime_put() disable the clocks.
7311 * If CONFIG_PM is not enabled, the clocks will stay powered.
7312 */
7313 pm_runtime_put(device);
7314
7315 return ret;
7316
7317 error_netdev_register:
7318 phylink_destroy(priv->phylink);
7319 error_xpcs_setup:
7320 error_phy_setup:
7321 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7322 priv->hw->pcs != STMMAC_PCS_RTBI)
7323 stmmac_mdio_unregister(ndev);
7324 error_mdio_register:
7325 stmmac_napi_del(ndev);
7326 error_hw_init:
7327 destroy_workqueue(priv->wq);
7328 bitmap_free(priv->af_xdp_zc_qps);
7329
7330 return ret;
7331 }
7332 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7333
7334 /**
7335 * stmmac_dvr_remove
7336 * @dev: device pointer
7337 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7338 * changes the link status, releases the DMA descriptor rings.
7339 */
stmmac_dvr_remove(struct device * dev)7340 int stmmac_dvr_remove(struct device *dev)
7341 {
7342 struct net_device *ndev = dev_get_drvdata(dev);
7343 struct stmmac_priv *priv = netdev_priv(ndev);
7344
7345 netdev_info(priv->dev, "%s: removing driver", __func__);
7346
7347 pm_runtime_get_sync(dev);
7348
7349 stmmac_stop_all_dma(priv);
7350 stmmac_mac_set(priv, priv->ioaddr, false);
7351 netif_carrier_off(ndev);
7352 unregister_netdev(ndev);
7353
7354 /* Serdes power down needs to happen after VLAN filter
7355 * is deleted that is triggered by unregister_netdev().
7356 */
7357 if (priv->plat->serdes_powerdown)
7358 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7359
7360 #ifdef CONFIG_DEBUG_FS
7361 stmmac_exit_fs(ndev);
7362 #endif
7363 phylink_destroy(priv->phylink);
7364 if (priv->plat->stmmac_rst)
7365 reset_control_assert(priv->plat->stmmac_rst);
7366 reset_control_assert(priv->plat->stmmac_ahb_rst);
7367 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7368 priv->hw->pcs != STMMAC_PCS_RTBI)
7369 stmmac_mdio_unregister(ndev);
7370 destroy_workqueue(priv->wq);
7371 mutex_destroy(&priv->lock);
7372 bitmap_free(priv->af_xdp_zc_qps);
7373
7374 pm_runtime_disable(dev);
7375 pm_runtime_put_noidle(dev);
7376
7377 return 0;
7378 }
7379 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7380
7381 /**
7382 * stmmac_suspend - suspend callback
7383 * @dev: device pointer
7384 * Description: this is the function to suspend the device and it is called
7385 * by the platform driver to stop the network queue, release the resources,
7386 * program the PMT register (for WoL), clean and release driver resources.
7387 */
stmmac_suspend(struct device * dev)7388 int stmmac_suspend(struct device *dev)
7389 {
7390 struct net_device *ndev = dev_get_drvdata(dev);
7391 struct stmmac_priv *priv = netdev_priv(ndev);
7392 u32 chan;
7393
7394 if (!ndev || !netif_running(ndev))
7395 return 0;
7396
7397 mutex_lock(&priv->lock);
7398
7399 netif_device_detach(ndev);
7400
7401 stmmac_disable_all_queues(priv);
7402
7403 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7404 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7405
7406 if (priv->eee_enabled) {
7407 priv->tx_path_in_lpi_mode = false;
7408 del_timer_sync(&priv->eee_ctrl_timer);
7409 }
7410
7411 /* Stop TX/RX DMA */
7412 stmmac_stop_all_dma(priv);
7413
7414 if (priv->plat->serdes_powerdown)
7415 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7416
7417 /* Enable Power down mode by programming the PMT regs */
7418 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7419 stmmac_pmt(priv, priv->hw, priv->wolopts);
7420 priv->irq_wake = 1;
7421 } else {
7422 stmmac_mac_set(priv, priv->ioaddr, false);
7423 pinctrl_pm_select_sleep_state(priv->device);
7424 }
7425
7426 mutex_unlock(&priv->lock);
7427
7428 rtnl_lock();
7429 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7430 phylink_suspend(priv->phylink, true);
7431 } else {
7432 if (device_may_wakeup(priv->device))
7433 phylink_speed_down(priv->phylink, false);
7434 phylink_suspend(priv->phylink, false);
7435 }
7436 rtnl_unlock();
7437
7438 if (priv->dma_cap.fpesel) {
7439 /* Disable FPE */
7440 stmmac_fpe_configure(priv, priv->ioaddr,
7441 priv->plat->tx_queues_to_use,
7442 priv->plat->rx_queues_to_use, false);
7443
7444 stmmac_fpe_handshake(priv, false);
7445 stmmac_fpe_stop_wq(priv);
7446 }
7447
7448 priv->speed = SPEED_UNKNOWN;
7449 return 0;
7450 }
7451 EXPORT_SYMBOL_GPL(stmmac_suspend);
7452
stmmac_reset_rx_queue(struct stmmac_priv * priv,u32 queue)7453 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7454 {
7455 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7456
7457 rx_q->cur_rx = 0;
7458 rx_q->dirty_rx = 0;
7459 }
7460
stmmac_reset_tx_queue(struct stmmac_priv * priv,u32 queue)7461 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7462 {
7463 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7464
7465 tx_q->cur_tx = 0;
7466 tx_q->dirty_tx = 0;
7467 tx_q->mss = 0;
7468
7469 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7470 }
7471
7472 /**
7473 * stmmac_reset_queues_param - reset queue parameters
7474 * @priv: device pointer
7475 */
stmmac_reset_queues_param(struct stmmac_priv * priv)7476 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7477 {
7478 u32 rx_cnt = priv->plat->rx_queues_to_use;
7479 u32 tx_cnt = priv->plat->tx_queues_to_use;
7480 u32 queue;
7481
7482 for (queue = 0; queue < rx_cnt; queue++)
7483 stmmac_reset_rx_queue(priv, queue);
7484
7485 for (queue = 0; queue < tx_cnt; queue++)
7486 stmmac_reset_tx_queue(priv, queue);
7487 }
7488
7489 /**
7490 * stmmac_resume - resume callback
7491 * @dev: device pointer
7492 * Description: when resume this function is invoked to setup the DMA and CORE
7493 * in a usable state.
7494 */
stmmac_resume(struct device * dev)7495 int stmmac_resume(struct device *dev)
7496 {
7497 struct net_device *ndev = dev_get_drvdata(dev);
7498 struct stmmac_priv *priv = netdev_priv(ndev);
7499 int ret;
7500
7501 if (!netif_running(ndev))
7502 return 0;
7503
7504 /* Power Down bit, into the PM register, is cleared
7505 * automatically as soon as a magic packet or a Wake-up frame
7506 * is received. Anyway, it's better to manually clear
7507 * this bit because it can generate problems while resuming
7508 * from another devices (e.g. serial console).
7509 */
7510 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7511 mutex_lock(&priv->lock);
7512 stmmac_pmt(priv, priv->hw, 0);
7513 mutex_unlock(&priv->lock);
7514 priv->irq_wake = 0;
7515 } else {
7516 pinctrl_pm_select_default_state(priv->device);
7517 /* reset the phy so that it's ready */
7518 if (priv->mii)
7519 stmmac_mdio_reset(priv->mii);
7520 }
7521
7522 if (priv->plat->serdes_powerup) {
7523 ret = priv->plat->serdes_powerup(ndev,
7524 priv->plat->bsp_priv);
7525
7526 if (ret < 0)
7527 return ret;
7528 }
7529
7530 rtnl_lock();
7531 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7532 phylink_resume(priv->phylink);
7533 } else {
7534 phylink_resume(priv->phylink);
7535 if (device_may_wakeup(priv->device))
7536 phylink_speed_up(priv->phylink);
7537 }
7538 rtnl_unlock();
7539
7540 rtnl_lock();
7541 mutex_lock(&priv->lock);
7542
7543 stmmac_reset_queues_param(priv);
7544
7545 stmmac_free_tx_skbufs(priv);
7546 stmmac_clear_descriptors(priv, &priv->dma_conf);
7547
7548 stmmac_hw_setup(ndev, false);
7549 stmmac_init_coalesce(priv);
7550 stmmac_set_rx_mode(ndev);
7551
7552 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7553
7554 stmmac_enable_all_queues(priv);
7555 stmmac_enable_all_dma_irq(priv);
7556
7557 mutex_unlock(&priv->lock);
7558 rtnl_unlock();
7559
7560 netif_device_attach(ndev);
7561
7562 return 0;
7563 }
7564 EXPORT_SYMBOL_GPL(stmmac_resume);
7565
7566 #ifndef MODULE
stmmac_cmdline_opt(char * str)7567 static int __init stmmac_cmdline_opt(char *str)
7568 {
7569 char *opt;
7570
7571 if (!str || !*str)
7572 return 1;
7573 while ((opt = strsep(&str, ",")) != NULL) {
7574 if (!strncmp(opt, "debug:", 6)) {
7575 if (kstrtoint(opt + 6, 0, &debug))
7576 goto err;
7577 } else if (!strncmp(opt, "phyaddr:", 8)) {
7578 if (kstrtoint(opt + 8, 0, &phyaddr))
7579 goto err;
7580 } else if (!strncmp(opt, "buf_sz:", 7)) {
7581 if (kstrtoint(opt + 7, 0, &buf_sz))
7582 goto err;
7583 } else if (!strncmp(opt, "tc:", 3)) {
7584 if (kstrtoint(opt + 3, 0, &tc))
7585 goto err;
7586 } else if (!strncmp(opt, "watchdog:", 9)) {
7587 if (kstrtoint(opt + 9, 0, &watchdog))
7588 goto err;
7589 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7590 if (kstrtoint(opt + 10, 0, &flow_ctrl))
7591 goto err;
7592 } else if (!strncmp(opt, "pause:", 6)) {
7593 if (kstrtoint(opt + 6, 0, &pause))
7594 goto err;
7595 } else if (!strncmp(opt, "eee_timer:", 10)) {
7596 if (kstrtoint(opt + 10, 0, &eee_timer))
7597 goto err;
7598 } else if (!strncmp(opt, "chain_mode:", 11)) {
7599 if (kstrtoint(opt + 11, 0, &chain_mode))
7600 goto err;
7601 }
7602 }
7603 return 1;
7604
7605 err:
7606 pr_err("%s: ERROR broken module parameter conversion", __func__);
7607 return 1;
7608 }
7609
7610 __setup("stmmaceth=", stmmac_cmdline_opt);
7611 #endif /* MODULE */
7612
stmmac_init(void)7613 static int __init stmmac_init(void)
7614 {
7615 #ifdef CONFIG_DEBUG_FS
7616 /* Create debugfs main directory if it doesn't exist yet */
7617 if (!stmmac_fs_dir)
7618 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7619 register_netdevice_notifier(&stmmac_notifier);
7620 #endif
7621
7622 return 0;
7623 }
7624
stmmac_exit(void)7625 static void __exit stmmac_exit(void)
7626 {
7627 #ifdef CONFIG_DEBUG_FS
7628 unregister_netdevice_notifier(&stmmac_notifier);
7629 debugfs_remove_recursive(stmmac_fs_dir);
7630 #endif
7631 }
7632
7633 module_init(stmmac_init)
7634 module_exit(stmmac_exit)
7635
7636 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7637 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7638 MODULE_LICENSE("GPL");
7639