1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139 					  u32 rxmode, u32 chan);
140 
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146 
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148 
stmmac_bus_clks_config(struct stmmac_priv * priv,bool enabled)149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151 	int ret = 0;
152 
153 	if (enabled) {
154 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
155 		if (ret)
156 			return ret;
157 		ret = clk_prepare_enable(priv->plat->pclk);
158 		if (ret) {
159 			clk_disable_unprepare(priv->plat->stmmac_clk);
160 			return ret;
161 		}
162 		if (priv->plat->clks_config) {
163 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164 			if (ret) {
165 				clk_disable_unprepare(priv->plat->stmmac_clk);
166 				clk_disable_unprepare(priv->plat->pclk);
167 				return ret;
168 			}
169 		}
170 	} else {
171 		clk_disable_unprepare(priv->plat->stmmac_clk);
172 		clk_disable_unprepare(priv->plat->pclk);
173 		if (priv->plat->clks_config)
174 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175 	}
176 
177 	return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180 
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
stmmac_verify_args(void)186 static void stmmac_verify_args(void)
187 {
188 	if (unlikely(watchdog < 0))
189 		watchdog = TX_TIMEO;
190 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191 		buf_sz = DEFAULT_BUFSIZE;
192 	if (unlikely(flow_ctrl > 1))
193 		flow_ctrl = FLOW_AUTO;
194 	else if (likely(flow_ctrl < 0))
195 		flow_ctrl = FLOW_OFF;
196 	if (unlikely((pause < 0) || (pause > 0xffff)))
197 		pause = PAUSE_TIME;
198 	if (eee_timer < 0)
199 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201 
__stmmac_disable_all_queues(struct stmmac_priv * priv)202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207 	u32 queue;
208 
209 	for (queue = 0; queue < maxq; queue++) {
210 		struct stmmac_channel *ch = &priv->channel[queue];
211 
212 		if (stmmac_xdp_is_enabled(priv) &&
213 		    test_bit(queue, priv->af_xdp_zc_qps)) {
214 			napi_disable(&ch->rxtx_napi);
215 			continue;
216 		}
217 
218 		if (queue < rx_queues_cnt)
219 			napi_disable(&ch->rx_napi);
220 		if (queue < tx_queues_cnt)
221 			napi_disable(&ch->tx_napi);
222 	}
223 }
224 
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
stmmac_disable_all_queues(struct stmmac_priv * priv)229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232 	struct stmmac_rx_queue *rx_q;
233 	u32 queue;
234 
235 	/* synchronize_rcu() needed for pending XDP buffers to drain */
236 	for (queue = 0; queue < rx_queues_cnt; queue++) {
237 		rx_q = &priv->dma_conf.rx_queue[queue];
238 		if (rx_q->xsk_pool) {
239 			synchronize_rcu();
240 			break;
241 		}
242 	}
243 
244 	__stmmac_disable_all_queues(priv);
245 }
246 
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
stmmac_enable_all_queues(struct stmmac_priv * priv)251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256 	u32 queue;
257 
258 	for (queue = 0; queue < maxq; queue++) {
259 		struct stmmac_channel *ch = &priv->channel[queue];
260 
261 		if (stmmac_xdp_is_enabled(priv) &&
262 		    test_bit(queue, priv->af_xdp_zc_qps)) {
263 			napi_enable(&ch->rxtx_napi);
264 			continue;
265 		}
266 
267 		if (queue < rx_queues_cnt)
268 			napi_enable(&ch->rx_napi);
269 		if (queue < tx_queues_cnt)
270 			napi_enable(&ch->tx_napi);
271 	}
272 }
273 
stmmac_service_event_schedule(struct stmmac_priv * priv)274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
277 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278 		queue_work(priv->wq, &priv->service_task);
279 }
280 
stmmac_global_err(struct stmmac_priv * priv)281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283 	netif_carrier_off(priv->dev);
284 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285 	stmmac_service_event_schedule(priv);
286 }
287 
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *	If a specific clk_csr value is passed from the platform
295  *	this means that the CSR Clock Range selection cannot be
296  *	changed at run-time and it is fixed (as reported in the driver
297  *	documentation). Viceversa the driver will try to set the MDC
298  *	clock dynamically according to the actual clock input.
299  */
stmmac_clk_csr_set(struct stmmac_priv * priv)300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302 	u32 clk_rate;
303 
304 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305 
306 	/* Platform provided default clk_csr would be assumed valid
307 	 * for all other cases except for the below mentioned ones.
308 	 * For values higher than the IEEE 802.3 specified frequency
309 	 * we can not estimate the proper divider as it is not known
310 	 * the frequency of clk_csr_i. So we do not change the default
311 	 * divider.
312 	 */
313 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314 		if (clk_rate < CSR_F_35M)
315 			priv->clk_csr = STMMAC_CSR_20_35M;
316 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317 			priv->clk_csr = STMMAC_CSR_35_60M;
318 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319 			priv->clk_csr = STMMAC_CSR_60_100M;
320 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321 			priv->clk_csr = STMMAC_CSR_100_150M;
322 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323 			priv->clk_csr = STMMAC_CSR_150_250M;
324 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325 			priv->clk_csr = STMMAC_CSR_250_300M;
326 	}
327 
328 	if (priv->plat->has_sun8i) {
329 		if (clk_rate > 160000000)
330 			priv->clk_csr = 0x03;
331 		else if (clk_rate > 80000000)
332 			priv->clk_csr = 0x02;
333 		else if (clk_rate > 40000000)
334 			priv->clk_csr = 0x01;
335 		else
336 			priv->clk_csr = 0;
337 	}
338 
339 	if (priv->plat->has_xgmac) {
340 		if (clk_rate > 400000000)
341 			priv->clk_csr = 0x5;
342 		else if (clk_rate > 350000000)
343 			priv->clk_csr = 0x4;
344 		else if (clk_rate > 300000000)
345 			priv->clk_csr = 0x3;
346 		else if (clk_rate > 250000000)
347 			priv->clk_csr = 0x2;
348 		else if (clk_rate > 150000000)
349 			priv->clk_csr = 0x1;
350 		else
351 			priv->clk_csr = 0x0;
352 	}
353 }
354 
print_pkt(unsigned char * buf,int len)355 static void print_pkt(unsigned char *buf, int len)
356 {
357 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360 
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364 	u32 avail;
365 
366 	if (tx_q->dirty_tx > tx_q->cur_tx)
367 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368 	else
369 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370 
371 	return avail;
372 }
373 
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382 	u32 dirty;
383 
384 	if (rx_q->dirty_rx <= rx_q->cur_rx)
385 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
386 	else
387 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388 
389 	return dirty;
390 }
391 
stmmac_lpi_entry_timer_config(struct stmmac_priv * priv,bool en)392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394 	int tx_lpi_timer;
395 
396 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
397 	priv->eee_sw_timer_en = en ? 0 : 1;
398 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401 
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
stmmac_enable_eee_mode(struct stmmac_priv * priv)408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410 	u32 tx_cnt = priv->plat->tx_queues_to_use;
411 	u32 queue;
412 
413 	/* check if all TX queues have the work finished */
414 	for (queue = 0; queue < tx_cnt; queue++) {
415 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416 
417 		if (tx_q->dirty_tx != tx_q->cur_tx)
418 			return -EBUSY; /* still unfinished work */
419 	}
420 
421 	/* Check and enter in LPI mode */
422 	if (!priv->tx_path_in_lpi_mode)
423 		stmmac_set_eee_mode(priv, priv->hw,
424 				priv->plat->en_tx_lpi_clockgating);
425 	return 0;
426 }
427 
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
stmmac_disable_eee_mode(struct stmmac_priv * priv)434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436 	if (!priv->eee_sw_timer_en) {
437 		stmmac_lpi_entry_timer_config(priv, 0);
438 		return;
439 	}
440 
441 	stmmac_reset_eee_mode(priv, priv->hw);
442 	del_timer_sync(&priv->eee_ctrl_timer);
443 	priv->tx_path_in_lpi_mode = false;
444 }
445 
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
stmmac_eee_ctrl_timer(struct timer_list * t)453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456 
457 	if (stmmac_enable_eee_mode(priv))
458 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460 
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
stmmac_eee_init(struct stmmac_priv * priv)469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471 	int eee_tw_timer = priv->eee_tw_timer;
472 
473 	/* Using PCS we cannot dial with the phy registers at this stage
474 	 * so we do not support extra feature like EEE.
475 	 */
476 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
477 	    priv->hw->pcs == STMMAC_PCS_RTBI)
478 		return false;
479 
480 	/* Check if MAC core supports the EEE feature. */
481 	if (!priv->dma_cap.eee)
482 		return false;
483 
484 	mutex_lock(&priv->lock);
485 
486 	/* Check if it needs to be deactivated */
487 	if (!priv->eee_active) {
488 		if (priv->eee_enabled) {
489 			netdev_dbg(priv->dev, "disable EEE\n");
490 			stmmac_lpi_entry_timer_config(priv, 0);
491 			del_timer_sync(&priv->eee_ctrl_timer);
492 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493 			if (priv->hw->xpcs)
494 				xpcs_config_eee(priv->hw->xpcs,
495 						priv->plat->mult_fact_100ns,
496 						false);
497 		}
498 		mutex_unlock(&priv->lock);
499 		return false;
500 	}
501 
502 	if (priv->eee_active && !priv->eee_enabled) {
503 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505 				     eee_tw_timer);
506 		if (priv->hw->xpcs)
507 			xpcs_config_eee(priv->hw->xpcs,
508 					priv->plat->mult_fact_100ns,
509 					true);
510 	}
511 
512 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513 		del_timer_sync(&priv->eee_ctrl_timer);
514 		priv->tx_path_in_lpi_mode = false;
515 		stmmac_lpi_entry_timer_config(priv, 1);
516 	} else {
517 		stmmac_lpi_entry_timer_config(priv, 0);
518 		mod_timer(&priv->eee_ctrl_timer,
519 			  STMMAC_LPI_T(priv->tx_lpi_timer));
520 	}
521 
522 	mutex_unlock(&priv->lock);
523 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524 	return true;
525 }
526 
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536 				   struct dma_desc *p, struct sk_buff *skb)
537 {
538 	struct skb_shared_hwtstamps shhwtstamp;
539 	bool found = false;
540 	u64 ns = 0;
541 
542 	if (!priv->hwts_tx_en)
543 		return;
544 
545 	/* exit if skb doesn't support hw tstamp */
546 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547 		return;
548 
549 	/* check tx tstamp status */
550 	if (stmmac_get_tx_timestamp_status(priv, p)) {
551 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552 		found = true;
553 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554 		found = true;
555 	}
556 
557 	if (found) {
558 		ns -= priv->plat->cdc_error_adj;
559 
560 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
562 
563 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564 		/* pass tstamp to stack */
565 		skb_tstamp_tx(skb, &shhwtstamp);
566 	}
567 }
568 
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579 				   struct dma_desc *np, struct sk_buff *skb)
580 {
581 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
582 	struct dma_desc *desc = p;
583 	u64 ns = 0;
584 
585 	if (!priv->hwts_rx_en)
586 		return;
587 	/* For GMAC4, the valid timestamp is from CTX next desc. */
588 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589 		desc = np;
590 
591 	/* Check if timestamp is available */
592 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594 
595 		ns -= priv->plat->cdc_error_adj;
596 
597 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598 		shhwtstamp = skb_hwtstamps(skb);
599 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
601 	} else  {
602 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603 	}
604 }
605 
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
stmmac_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619 	struct stmmac_priv *priv = netdev_priv(dev);
620 	struct hwtstamp_config config;
621 	u32 ptp_v2 = 0;
622 	u32 tstamp_all = 0;
623 	u32 ptp_over_ipv4_udp = 0;
624 	u32 ptp_over_ipv6_udp = 0;
625 	u32 ptp_over_ethernet = 0;
626 	u32 snap_type_sel = 0;
627 	u32 ts_master_en = 0;
628 	u32 ts_event_en = 0;
629 
630 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631 		netdev_alert(priv->dev, "No support for HW time stamping\n");
632 		priv->hwts_tx_en = 0;
633 		priv->hwts_rx_en = 0;
634 
635 		return -EOPNOTSUPP;
636 	}
637 
638 	if (copy_from_user(&config, ifr->ifr_data,
639 			   sizeof(config)))
640 		return -EFAULT;
641 
642 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643 		   __func__, config.flags, config.tx_type, config.rx_filter);
644 
645 	if (config.tx_type != HWTSTAMP_TX_OFF &&
646 	    config.tx_type != HWTSTAMP_TX_ON)
647 		return -ERANGE;
648 
649 	if (priv->adv_ts) {
650 		switch (config.rx_filter) {
651 		case HWTSTAMP_FILTER_NONE:
652 			/* time stamp no incoming packet at all */
653 			config.rx_filter = HWTSTAMP_FILTER_NONE;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657 			/* PTP v1, UDP, any kind of event packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659 			/* 'xmac' hardware can support Sync, Pdelay_Req and
660 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
661 			 * This leaves Delay_Req timestamps out.
662 			 * Enable all events *and* general purpose message
663 			 * timestamping
664 			 */
665 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668 			break;
669 
670 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671 			/* PTP v1, UDP, Sync packet */
672 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673 			/* take time stamp for SYNC messages only */
674 			ts_event_en = PTP_TCR_TSEVNTENA;
675 
676 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678 			break;
679 
680 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681 			/* PTP v1, UDP, Delay_req packet */
682 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683 			/* take time stamp for Delay_Req messages only */
684 			ts_master_en = PTP_TCR_TSMSTRENA;
685 			ts_event_en = PTP_TCR_TSEVNTENA;
686 
687 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689 			break;
690 
691 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692 			/* PTP v2, UDP, any kind of event packet */
693 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694 			ptp_v2 = PTP_TCR_TSVER2ENA;
695 			/* take time stamp for all event messages */
696 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697 
698 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700 			break;
701 
702 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703 			/* PTP v2, UDP, Sync packet */
704 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705 			ptp_v2 = PTP_TCR_TSVER2ENA;
706 			/* take time stamp for SYNC messages only */
707 			ts_event_en = PTP_TCR_TSEVNTENA;
708 
709 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711 			break;
712 
713 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714 			/* PTP v2, UDP, Delay_req packet */
715 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716 			ptp_v2 = PTP_TCR_TSVER2ENA;
717 			/* take time stamp for Delay_Req messages only */
718 			ts_master_en = PTP_TCR_TSMSTRENA;
719 			ts_event_en = PTP_TCR_TSEVNTENA;
720 
721 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723 			break;
724 
725 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
726 			/* PTP v2/802.AS1 any layer, any kind of event packet */
727 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728 			ptp_v2 = PTP_TCR_TSVER2ENA;
729 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730 			if (priv->synopsys_id < DWMAC_CORE_4_10)
731 				ts_event_en = PTP_TCR_TSEVNTENA;
732 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734 			ptp_over_ethernet = PTP_TCR_TSIPENA;
735 			break;
736 
737 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
738 			/* PTP v2/802.AS1, any layer, Sync packet */
739 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740 			ptp_v2 = PTP_TCR_TSVER2ENA;
741 			/* take time stamp for SYNC messages only */
742 			ts_event_en = PTP_TCR_TSEVNTENA;
743 
744 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746 			ptp_over_ethernet = PTP_TCR_TSIPENA;
747 			break;
748 
749 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750 			/* PTP v2/802.AS1, any layer, Delay_req packet */
751 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752 			ptp_v2 = PTP_TCR_TSVER2ENA;
753 			/* take time stamp for Delay_Req messages only */
754 			ts_master_en = PTP_TCR_TSMSTRENA;
755 			ts_event_en = PTP_TCR_TSEVNTENA;
756 
757 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759 			ptp_over_ethernet = PTP_TCR_TSIPENA;
760 			break;
761 
762 		case HWTSTAMP_FILTER_NTP_ALL:
763 		case HWTSTAMP_FILTER_ALL:
764 			/* time stamp any incoming packet */
765 			config.rx_filter = HWTSTAMP_FILTER_ALL;
766 			tstamp_all = PTP_TCR_TSENALL;
767 			break;
768 
769 		default:
770 			return -ERANGE;
771 		}
772 	} else {
773 		switch (config.rx_filter) {
774 		case HWTSTAMP_FILTER_NONE:
775 			config.rx_filter = HWTSTAMP_FILTER_NONE;
776 			break;
777 		default:
778 			/* PTP v1, UDP, any kind of event packet */
779 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780 			break;
781 		}
782 	}
783 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785 
786 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
787 
788 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
789 		priv->systime_flags |= tstamp_all | ptp_v2 |
790 				       ptp_over_ethernet | ptp_over_ipv6_udp |
791 				       ptp_over_ipv4_udp | ts_event_en |
792 				       ts_master_en | snap_type_sel;
793 	}
794 
795 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796 
797 	memcpy(&priv->tstamp_config, &config, sizeof(config));
798 
799 	return copy_to_user(ifr->ifr_data, &config,
800 			    sizeof(config)) ? -EFAULT : 0;
801 }
802 
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
stmmac_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814 	struct stmmac_priv *priv = netdev_priv(dev);
815 	struct hwtstamp_config *config = &priv->tstamp_config;
816 
817 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818 		return -EOPNOTSUPP;
819 
820 	return copy_to_user(ifr->ifr_data, config,
821 			    sizeof(*config)) ? -EFAULT : 0;
822 }
823 
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
stmmac_init_tstamp_counter(struct stmmac_priv * priv,u32 systime_flags)834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837 	struct timespec64 now;
838 	u32 sec_inc = 0;
839 	u64 temp = 0;
840 
841 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842 		return -EOPNOTSUPP;
843 
844 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845 	priv->systime_flags = systime_flags;
846 
847 	/* program Sub Second Increment reg */
848 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849 					   priv->plat->clk_ptp_rate,
850 					   xmac, &sec_inc);
851 	temp = div_u64(1000000000ULL, sec_inc);
852 
853 	/* Store sub second increment for later use */
854 	priv->sub_second_inc = sec_inc;
855 
856 	/* calculate default added value:
857 	 * formula is :
858 	 * addend = (2^32)/freq_div_ratio;
859 	 * where, freq_div_ratio = 1e9ns/sec_inc
860 	 */
861 	temp = (u64)(temp << 32);
862 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864 
865 	/* initialize system time */
866 	ktime_get_real_ts64(&now);
867 
868 	/* lower 32 bits of tv_sec are safe until y2106 */
869 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874 
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
stmmac_init_ptp(struct stmmac_priv * priv)882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885 	int ret;
886 
887 	if (priv->plat->ptp_clk_freq_config)
888 		priv->plat->ptp_clk_freq_config(priv);
889 
890 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891 	if (ret)
892 		return ret;
893 
894 	priv->adv_ts = 0;
895 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896 	if (xmac && priv->dma_cap.atime_stamp)
897 		priv->adv_ts = 1;
898 	/* Dwmac 3.x core with extend_desc can support adv_ts */
899 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900 		priv->adv_ts = 1;
901 
902 	if (priv->dma_cap.time_stamp)
903 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904 
905 	if (priv->adv_ts)
906 		netdev_info(priv->dev,
907 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
908 
909 	priv->hwts_tx_en = 0;
910 	priv->hwts_rx_en = 0;
911 
912 	return 0;
913 }
914 
stmmac_release_ptp(struct stmmac_priv * priv)915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
918 	stmmac_ptp_unregister(priv);
919 }
920 
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929 	u32 tx_cnt = priv->plat->tx_queues_to_use;
930 
931 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932 			priv->pause, tx_cnt);
933 }
934 
stmmac_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936 						 phy_interface_t interface)
937 {
938 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939 
940 	if (!priv->hw->xpcs)
941 		return NULL;
942 
943 	return &priv->hw->xpcs->pcs;
944 }
945 
stmmac_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947 			      const struct phylink_link_state *state)
948 {
949 	/* Nothing to do, xpcs_config() handles everything */
950 }
951 
stmmac_fpe_link_state_handle(struct stmmac_priv * priv,bool is_up)952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957 	bool *hs_enable = &fpe_cfg->hs_enable;
958 
959 	if (is_up && *hs_enable) {
960 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961 	} else {
962 		*lo_state = FPE_STATE_OFF;
963 		*lp_state = FPE_STATE_OFF;
964 	}
965 }
966 
stmmac_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)967 static void stmmac_mac_link_down(struct phylink_config *config,
968 				 unsigned int mode, phy_interface_t interface)
969 {
970 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971 
972 	stmmac_mac_set(priv, priv->ioaddr, false);
973 	priv->eee_active = false;
974 	priv->tx_lpi_enabled = false;
975 	priv->eee_enabled = stmmac_eee_init(priv);
976 	stmmac_set_eee_pls(priv, priv->hw, false);
977 
978 	if (priv->dma_cap.fpesel)
979 		stmmac_fpe_link_state_handle(priv, false);
980 }
981 
stmmac_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)982 static void stmmac_mac_link_up(struct phylink_config *config,
983 			       struct phy_device *phy,
984 			       unsigned int mode, phy_interface_t interface,
985 			       int speed, int duplex,
986 			       bool tx_pause, bool rx_pause)
987 {
988 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989 	u32 old_ctrl, ctrl;
990 
991 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
992 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
993 
994 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
995 		switch (speed) {
996 		case SPEED_10000:
997 			ctrl |= priv->hw->link.xgmii.speed10000;
998 			break;
999 		case SPEED_5000:
1000 			ctrl |= priv->hw->link.xgmii.speed5000;
1001 			break;
1002 		case SPEED_2500:
1003 			ctrl |= priv->hw->link.xgmii.speed2500;
1004 			break;
1005 		default:
1006 			return;
1007 		}
1008 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1009 		switch (speed) {
1010 		case SPEED_100000:
1011 			ctrl |= priv->hw->link.xlgmii.speed100000;
1012 			break;
1013 		case SPEED_50000:
1014 			ctrl |= priv->hw->link.xlgmii.speed50000;
1015 			break;
1016 		case SPEED_40000:
1017 			ctrl |= priv->hw->link.xlgmii.speed40000;
1018 			break;
1019 		case SPEED_25000:
1020 			ctrl |= priv->hw->link.xlgmii.speed25000;
1021 			break;
1022 		case SPEED_10000:
1023 			ctrl |= priv->hw->link.xgmii.speed10000;
1024 			break;
1025 		case SPEED_2500:
1026 			ctrl |= priv->hw->link.speed2500;
1027 			break;
1028 		case SPEED_1000:
1029 			ctrl |= priv->hw->link.speed1000;
1030 			break;
1031 		default:
1032 			return;
1033 		}
1034 	} else {
1035 		switch (speed) {
1036 		case SPEED_2500:
1037 			ctrl |= priv->hw->link.speed2500;
1038 			break;
1039 		case SPEED_1000:
1040 			ctrl |= priv->hw->link.speed1000;
1041 			break;
1042 		case SPEED_100:
1043 			ctrl |= priv->hw->link.speed100;
1044 			break;
1045 		case SPEED_10:
1046 			ctrl |= priv->hw->link.speed10;
1047 			break;
1048 		default:
1049 			return;
1050 		}
1051 	}
1052 
1053 	priv->speed = speed;
1054 
1055 	if (priv->plat->fix_mac_speed)
1056 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1057 
1058 	if (!duplex)
1059 		ctrl &= ~priv->hw->link.duplex;
1060 	else
1061 		ctrl |= priv->hw->link.duplex;
1062 
1063 	/* Flow Control operation */
1064 	if (rx_pause && tx_pause)
1065 		priv->flow_ctrl = FLOW_AUTO;
1066 	else if (rx_pause && !tx_pause)
1067 		priv->flow_ctrl = FLOW_RX;
1068 	else if (!rx_pause && tx_pause)
1069 		priv->flow_ctrl = FLOW_TX;
1070 	else
1071 		priv->flow_ctrl = FLOW_OFF;
1072 
1073 	stmmac_mac_flow_ctrl(priv, duplex);
1074 
1075 	if (ctrl != old_ctrl)
1076 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1077 
1078 	stmmac_mac_set(priv, priv->ioaddr, true);
1079 	if (phy && priv->dma_cap.eee) {
1080 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1081 		priv->eee_enabled = stmmac_eee_init(priv);
1082 		priv->tx_lpi_enabled = priv->eee_enabled;
1083 		stmmac_set_eee_pls(priv, priv->hw, true);
1084 	}
1085 
1086 	if (priv->dma_cap.fpesel)
1087 		stmmac_fpe_link_state_handle(priv, true);
1088 }
1089 
1090 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1091 	.validate = phylink_generic_validate,
1092 	.mac_select_pcs = stmmac_mac_select_pcs,
1093 	.mac_config = stmmac_mac_config,
1094 	.mac_link_down = stmmac_mac_link_down,
1095 	.mac_link_up = stmmac_mac_link_up,
1096 };
1097 
1098 /**
1099  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1100  * @priv: driver private structure
1101  * Description: this is to verify if the HW supports the PCS.
1102  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1103  * configured for the TBI, RTBI, or SGMII PHY interface.
1104  */
stmmac_check_pcs_mode(struct stmmac_priv * priv)1105 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1106 {
1107 	int interface = priv->plat->interface;
1108 
1109 	if (priv->dma_cap.pcs) {
1110 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1111 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1112 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1113 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1114 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1115 			priv->hw->pcs = STMMAC_PCS_RGMII;
1116 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1117 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1118 			priv->hw->pcs = STMMAC_PCS_SGMII;
1119 		}
1120 	}
1121 }
1122 
1123 /**
1124  * stmmac_init_phy - PHY initialization
1125  * @dev: net device structure
1126  * Description: it initializes the driver's PHY state, and attaches the PHY
1127  * to the mac driver.
1128  *  Return value:
1129  *  0 on success
1130  */
stmmac_init_phy(struct net_device * dev)1131 static int stmmac_init_phy(struct net_device *dev)
1132 {
1133 	struct stmmac_priv *priv = netdev_priv(dev);
1134 	struct fwnode_handle *fwnode;
1135 	int ret;
1136 
1137 	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1138 	if (!fwnode)
1139 		fwnode = dev_fwnode(priv->device);
1140 
1141 	if (fwnode)
1142 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1143 
1144 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1145 	 * manually parse it
1146 	 */
1147 	if (!fwnode || ret) {
1148 		int addr = priv->plat->phy_addr;
1149 		struct phy_device *phydev;
1150 
1151 		phydev = mdiobus_get_phy(priv->mii, addr);
1152 		if (!phydev) {
1153 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1154 			return -ENODEV;
1155 		}
1156 
1157 		ret = phylink_connect_phy(priv->phylink, phydev);
1158 	}
1159 
1160 	if (!priv->plat->pmt) {
1161 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1162 
1163 		phylink_ethtool_get_wol(priv->phylink, &wol);
1164 		device_set_wakeup_capable(priv->device, !!wol.supported);
1165 	}
1166 
1167 	return ret;
1168 }
1169 
stmmac_phy_setup(struct stmmac_priv * priv)1170 static int stmmac_phy_setup(struct stmmac_priv *priv)
1171 {
1172 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1173 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1174 	int max_speed = priv->plat->max_speed;
1175 	int mode = priv->plat->phy_interface;
1176 	struct phylink *phylink;
1177 
1178 	priv->phylink_config.dev = &priv->dev->dev;
1179 	priv->phylink_config.type = PHYLINK_NETDEV;
1180 	if (priv->plat->mdio_bus_data)
1181 		priv->phylink_config.ovr_an_inband =
1182 			mdio_bus_data->xpcs_an_inband;
1183 
1184 	if (!fwnode)
1185 		fwnode = dev_fwnode(priv->device);
1186 
1187 	/* Set the platform/firmware specified interface mode */
1188 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1189 
1190 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1191 	if (priv->hw->xpcs)
1192 		xpcs_get_interfaces(priv->hw->xpcs,
1193 				    priv->phylink_config.supported_interfaces);
1194 
1195 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1196 		MAC_10 | MAC_100;
1197 
1198 	if (!max_speed || max_speed >= 1000)
1199 		priv->phylink_config.mac_capabilities |= MAC_1000;
1200 
1201 	if (priv->plat->has_gmac4) {
1202 		if (!max_speed || max_speed >= 2500)
1203 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1204 	} else if (priv->plat->has_xgmac) {
1205 		if (!max_speed || max_speed >= 2500)
1206 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1207 		if (!max_speed || max_speed >= 5000)
1208 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1209 		if (!max_speed || max_speed >= 10000)
1210 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1211 		if (!max_speed || max_speed >= 25000)
1212 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1213 		if (!max_speed || max_speed >= 40000)
1214 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1215 		if (!max_speed || max_speed >= 50000)
1216 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1217 		if (!max_speed || max_speed >= 100000)
1218 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1219 	}
1220 
1221 	/* Half-Duplex can only work with single queue */
1222 	if (priv->plat->tx_queues_to_use > 1)
1223 		priv->phylink_config.mac_capabilities &=
1224 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1225 	priv->phylink_config.mac_managed_pm = true;
1226 
1227 	phylink = phylink_create(&priv->phylink_config, fwnode,
1228 				 mode, &stmmac_phylink_mac_ops);
1229 	if (IS_ERR(phylink))
1230 		return PTR_ERR(phylink);
1231 
1232 	priv->phylink = phylink;
1233 	return 0;
1234 }
1235 
stmmac_display_rx_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1236 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1237 				    struct stmmac_dma_conf *dma_conf)
1238 {
1239 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1240 	unsigned int desc_size;
1241 	void *head_rx;
1242 	u32 queue;
1243 
1244 	/* Display RX rings */
1245 	for (queue = 0; queue < rx_cnt; queue++) {
1246 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1247 
1248 		pr_info("\tRX Queue %u rings\n", queue);
1249 
1250 		if (priv->extend_desc) {
1251 			head_rx = (void *)rx_q->dma_erx;
1252 			desc_size = sizeof(struct dma_extended_desc);
1253 		} else {
1254 			head_rx = (void *)rx_q->dma_rx;
1255 			desc_size = sizeof(struct dma_desc);
1256 		}
1257 
1258 		/* Display RX ring */
1259 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1260 				    rx_q->dma_rx_phy, desc_size);
1261 	}
1262 }
1263 
stmmac_display_tx_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1264 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1265 				    struct stmmac_dma_conf *dma_conf)
1266 {
1267 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1268 	unsigned int desc_size;
1269 	void *head_tx;
1270 	u32 queue;
1271 
1272 	/* Display TX rings */
1273 	for (queue = 0; queue < tx_cnt; queue++) {
1274 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1275 
1276 		pr_info("\tTX Queue %d rings\n", queue);
1277 
1278 		if (priv->extend_desc) {
1279 			head_tx = (void *)tx_q->dma_etx;
1280 			desc_size = sizeof(struct dma_extended_desc);
1281 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1282 			head_tx = (void *)tx_q->dma_entx;
1283 			desc_size = sizeof(struct dma_edesc);
1284 		} else {
1285 			head_tx = (void *)tx_q->dma_tx;
1286 			desc_size = sizeof(struct dma_desc);
1287 		}
1288 
1289 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1290 				    tx_q->dma_tx_phy, desc_size);
1291 	}
1292 }
1293 
stmmac_display_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1294 static void stmmac_display_rings(struct stmmac_priv *priv,
1295 				 struct stmmac_dma_conf *dma_conf)
1296 {
1297 	/* Display RX ring */
1298 	stmmac_display_rx_rings(priv, dma_conf);
1299 
1300 	/* Display TX ring */
1301 	stmmac_display_tx_rings(priv, dma_conf);
1302 }
1303 
stmmac_set_bfsize(int mtu,int bufsize)1304 static int stmmac_set_bfsize(int mtu, int bufsize)
1305 {
1306 	int ret = bufsize;
1307 
1308 	if (mtu >= BUF_SIZE_8KiB)
1309 		ret = BUF_SIZE_16KiB;
1310 	else if (mtu >= BUF_SIZE_4KiB)
1311 		ret = BUF_SIZE_8KiB;
1312 	else if (mtu >= BUF_SIZE_2KiB)
1313 		ret = BUF_SIZE_4KiB;
1314 	else if (mtu > DEFAULT_BUFSIZE)
1315 		ret = BUF_SIZE_2KiB;
1316 	else
1317 		ret = DEFAULT_BUFSIZE;
1318 
1319 	return ret;
1320 }
1321 
1322 /**
1323  * stmmac_clear_rx_descriptors - clear RX descriptors
1324  * @priv: driver private structure
1325  * @dma_conf: structure to take the dma data
1326  * @queue: RX queue index
1327  * Description: this function is called to clear the RX descriptors
1328  * in case of both basic and extended descriptors are used.
1329  */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1330 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1331 					struct stmmac_dma_conf *dma_conf,
1332 					u32 queue)
1333 {
1334 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1335 	int i;
1336 
1337 	/* Clear the RX descriptors */
1338 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1339 		if (priv->extend_desc)
1340 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1341 					priv->use_riwt, priv->mode,
1342 					(i == dma_conf->dma_rx_size - 1),
1343 					dma_conf->dma_buf_sz);
1344 		else
1345 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1346 					priv->use_riwt, priv->mode,
1347 					(i == dma_conf->dma_rx_size - 1),
1348 					dma_conf->dma_buf_sz);
1349 }
1350 
1351 /**
1352  * stmmac_clear_tx_descriptors - clear tx descriptors
1353  * @priv: driver private structure
1354  * @dma_conf: structure to take the dma data
1355  * @queue: TX queue index.
1356  * Description: this function is called to clear the TX descriptors
1357  * in case of both basic and extended descriptors are used.
1358  */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1359 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1360 					struct stmmac_dma_conf *dma_conf,
1361 					u32 queue)
1362 {
1363 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1364 	int i;
1365 
1366 	/* Clear the TX descriptors */
1367 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1368 		int last = (i == (dma_conf->dma_tx_size - 1));
1369 		struct dma_desc *p;
1370 
1371 		if (priv->extend_desc)
1372 			p = &tx_q->dma_etx[i].basic;
1373 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1374 			p = &tx_q->dma_entx[i].basic;
1375 		else
1376 			p = &tx_q->dma_tx[i];
1377 
1378 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1379 	}
1380 }
1381 
1382 /**
1383  * stmmac_clear_descriptors - clear descriptors
1384  * @priv: driver private structure
1385  * @dma_conf: structure to take the dma data
1386  * Description: this function is called to clear the TX and RX descriptors
1387  * in case of both basic and extended descriptors are used.
1388  */
stmmac_clear_descriptors(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1389 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1390 				     struct stmmac_dma_conf *dma_conf)
1391 {
1392 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1393 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1394 	u32 queue;
1395 
1396 	/* Clear the RX descriptors */
1397 	for (queue = 0; queue < rx_queue_cnt; queue++)
1398 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1399 
1400 	/* Clear the TX descriptors */
1401 	for (queue = 0; queue < tx_queue_cnt; queue++)
1402 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1403 }
1404 
1405 /**
1406  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1407  * @priv: driver private structure
1408  * @dma_conf: structure to take the dma data
1409  * @p: descriptor pointer
1410  * @i: descriptor index
1411  * @flags: gfp flag
1412  * @queue: RX queue index
1413  * Description: this function is called to allocate a receive buffer, perform
1414  * the DMA mapping and init the descriptor.
1415  */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,struct dma_desc * p,int i,gfp_t flags,u32 queue)1416 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1417 				  struct stmmac_dma_conf *dma_conf,
1418 				  struct dma_desc *p,
1419 				  int i, gfp_t flags, u32 queue)
1420 {
1421 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1422 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1423 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1424 
1425 	if (priv->dma_cap.addr64 <= 32)
1426 		gfp |= GFP_DMA32;
1427 
1428 	if (!buf->page) {
1429 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1430 		if (!buf->page)
1431 			return -ENOMEM;
1432 		buf->page_offset = stmmac_rx_offset(priv);
1433 	}
1434 
1435 	if (priv->sph && !buf->sec_page) {
1436 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1437 		if (!buf->sec_page)
1438 			return -ENOMEM;
1439 
1440 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1441 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1442 	} else {
1443 		buf->sec_page = NULL;
1444 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1445 	}
1446 
1447 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1448 
1449 	stmmac_set_desc_addr(priv, p, buf->addr);
1450 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1451 		stmmac_init_desc3(priv, p);
1452 
1453 	return 0;
1454 }
1455 
1456 /**
1457  * stmmac_free_rx_buffer - free RX dma buffers
1458  * @priv: private structure
1459  * @rx_q: RX queue
1460  * @i: buffer index.
1461  */
stmmac_free_rx_buffer(struct stmmac_priv * priv,struct stmmac_rx_queue * rx_q,int i)1462 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1463 				  struct stmmac_rx_queue *rx_q,
1464 				  int i)
1465 {
1466 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1467 
1468 	if (buf->page)
1469 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1470 	buf->page = NULL;
1471 
1472 	if (buf->sec_page)
1473 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1474 	buf->sec_page = NULL;
1475 }
1476 
1477 /**
1478  * stmmac_free_tx_buffer - free RX dma buffers
1479  * @priv: private structure
1480  * @dma_conf: structure to take the dma data
1481  * @queue: RX queue index
1482  * @i: buffer index.
1483  */
stmmac_free_tx_buffer(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue,int i)1484 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1485 				  struct stmmac_dma_conf *dma_conf,
1486 				  u32 queue, int i)
1487 {
1488 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1489 
1490 	if (tx_q->tx_skbuff_dma[i].buf &&
1491 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1492 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1493 			dma_unmap_page(priv->device,
1494 				       tx_q->tx_skbuff_dma[i].buf,
1495 				       tx_q->tx_skbuff_dma[i].len,
1496 				       DMA_TO_DEVICE);
1497 		else
1498 			dma_unmap_single(priv->device,
1499 					 tx_q->tx_skbuff_dma[i].buf,
1500 					 tx_q->tx_skbuff_dma[i].len,
1501 					 DMA_TO_DEVICE);
1502 	}
1503 
1504 	if (tx_q->xdpf[i] &&
1505 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1506 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1507 		xdp_return_frame(tx_q->xdpf[i]);
1508 		tx_q->xdpf[i] = NULL;
1509 	}
1510 
1511 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1512 		tx_q->xsk_frames_done++;
1513 
1514 	if (tx_q->tx_skbuff[i] &&
1515 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1516 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1517 		tx_q->tx_skbuff[i] = NULL;
1518 	}
1519 
1520 	tx_q->tx_skbuff_dma[i].buf = 0;
1521 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1522 }
1523 
1524 /**
1525  * dma_free_rx_skbufs - free RX dma buffers
1526  * @priv: private structure
1527  * @dma_conf: structure to take the dma data
1528  * @queue: RX queue index
1529  */
dma_free_rx_skbufs(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1530 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1531 			       struct stmmac_dma_conf *dma_conf,
1532 			       u32 queue)
1533 {
1534 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1535 	int i;
1536 
1537 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1538 		stmmac_free_rx_buffer(priv, rx_q, i);
1539 }
1540 
stmmac_alloc_rx_buffers(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue,gfp_t flags)1541 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1542 				   struct stmmac_dma_conf *dma_conf,
1543 				   u32 queue, gfp_t flags)
1544 {
1545 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1546 	int i;
1547 
1548 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1549 		struct dma_desc *p;
1550 		int ret;
1551 
1552 		if (priv->extend_desc)
1553 			p = &((rx_q->dma_erx + i)->basic);
1554 		else
1555 			p = rx_q->dma_rx + i;
1556 
1557 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1558 					     queue);
1559 		if (ret)
1560 			return ret;
1561 
1562 		rx_q->buf_alloc_num++;
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 /**
1569  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1570  * @priv: private structure
1571  * @dma_conf: structure to take the dma data
1572  * @queue: RX queue index
1573  */
dma_free_rx_xskbufs(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1574 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1575 				struct stmmac_dma_conf *dma_conf,
1576 				u32 queue)
1577 {
1578 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1579 	int i;
1580 
1581 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1582 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1583 
1584 		if (!buf->xdp)
1585 			continue;
1586 
1587 		xsk_buff_free(buf->xdp);
1588 		buf->xdp = NULL;
1589 	}
1590 }
1591 
stmmac_alloc_rx_buffers_zc(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1592 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1593 				      struct stmmac_dma_conf *dma_conf,
1594 				      u32 queue)
1595 {
1596 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1597 	int i;
1598 
1599 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1600 		struct stmmac_rx_buffer *buf;
1601 		dma_addr_t dma_addr;
1602 		struct dma_desc *p;
1603 
1604 		if (priv->extend_desc)
1605 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1606 		else
1607 			p = rx_q->dma_rx + i;
1608 
1609 		buf = &rx_q->buf_pool[i];
1610 
1611 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1612 		if (!buf->xdp)
1613 			return -ENOMEM;
1614 
1615 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1616 		stmmac_set_desc_addr(priv, p, dma_addr);
1617 		rx_q->buf_alloc_num++;
1618 	}
1619 
1620 	return 0;
1621 }
1622 
stmmac_get_xsk_pool(struct stmmac_priv * priv,u32 queue)1623 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1624 {
1625 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1626 		return NULL;
1627 
1628 	return xsk_get_pool_from_qid(priv->dev, queue);
1629 }
1630 
1631 /**
1632  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1633  * @priv: driver private structure
1634  * @dma_conf: structure to take the dma data
1635  * @queue: RX queue index
1636  * @flags: gfp flag.
1637  * Description: this function initializes the DMA RX descriptors
1638  * and allocates the socket buffers. It supports the chained and ring
1639  * modes.
1640  */
__init_dma_rx_desc_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue,gfp_t flags)1641 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1642 				    struct stmmac_dma_conf *dma_conf,
1643 				    u32 queue, gfp_t flags)
1644 {
1645 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1646 	int ret;
1647 
1648 	netif_dbg(priv, probe, priv->dev,
1649 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1650 		  (u32)rx_q->dma_rx_phy);
1651 
1652 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1653 
1654 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1655 
1656 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1657 
1658 	if (rx_q->xsk_pool) {
1659 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1660 						   MEM_TYPE_XSK_BUFF_POOL,
1661 						   NULL));
1662 		netdev_info(priv->dev,
1663 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1664 			    rx_q->queue_index);
1665 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1666 	} else {
1667 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1668 						   MEM_TYPE_PAGE_POOL,
1669 						   rx_q->page_pool));
1670 		netdev_info(priv->dev,
1671 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1672 			    rx_q->queue_index);
1673 	}
1674 
1675 	if (rx_q->xsk_pool) {
1676 		/* RX XDP ZC buffer pool may not be populated, e.g.
1677 		 * xdpsock TX-only.
1678 		 */
1679 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1680 	} else {
1681 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1682 		if (ret < 0)
1683 			return -ENOMEM;
1684 	}
1685 
1686 	/* Setup the chained descriptor addresses */
1687 	if (priv->mode == STMMAC_CHAIN_MODE) {
1688 		if (priv->extend_desc)
1689 			stmmac_mode_init(priv, rx_q->dma_erx,
1690 					 rx_q->dma_rx_phy,
1691 					 dma_conf->dma_rx_size, 1);
1692 		else
1693 			stmmac_mode_init(priv, rx_q->dma_rx,
1694 					 rx_q->dma_rx_phy,
1695 					 dma_conf->dma_rx_size, 0);
1696 	}
1697 
1698 	return 0;
1699 }
1700 
init_dma_rx_desc_rings(struct net_device * dev,struct stmmac_dma_conf * dma_conf,gfp_t flags)1701 static int init_dma_rx_desc_rings(struct net_device *dev,
1702 				  struct stmmac_dma_conf *dma_conf,
1703 				  gfp_t flags)
1704 {
1705 	struct stmmac_priv *priv = netdev_priv(dev);
1706 	u32 rx_count = priv->plat->rx_queues_to_use;
1707 	int queue;
1708 	int ret;
1709 
1710 	/* RX INITIALIZATION */
1711 	netif_dbg(priv, probe, priv->dev,
1712 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1713 
1714 	for (queue = 0; queue < rx_count; queue++) {
1715 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1716 		if (ret)
1717 			goto err_init_rx_buffers;
1718 	}
1719 
1720 	return 0;
1721 
1722 err_init_rx_buffers:
1723 	while (queue >= 0) {
1724 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1725 
1726 		if (rx_q->xsk_pool)
1727 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1728 		else
1729 			dma_free_rx_skbufs(priv, dma_conf, queue);
1730 
1731 		rx_q->buf_alloc_num = 0;
1732 		rx_q->xsk_pool = NULL;
1733 
1734 		queue--;
1735 	}
1736 
1737 	return ret;
1738 }
1739 
1740 /**
1741  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1742  * @priv: driver private structure
1743  * @dma_conf: structure to take the dma data
1744  * @queue: TX queue index
1745  * Description: this function initializes the DMA TX descriptors
1746  * and allocates the socket buffers. It supports the chained and ring
1747  * modes.
1748  */
__init_dma_tx_desc_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1749 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1750 				    struct stmmac_dma_conf *dma_conf,
1751 				    u32 queue)
1752 {
1753 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1754 	int i;
1755 
1756 	netif_dbg(priv, probe, priv->dev,
1757 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1758 		  (u32)tx_q->dma_tx_phy);
1759 
1760 	/* Setup the chained descriptor addresses */
1761 	if (priv->mode == STMMAC_CHAIN_MODE) {
1762 		if (priv->extend_desc)
1763 			stmmac_mode_init(priv, tx_q->dma_etx,
1764 					 tx_q->dma_tx_phy,
1765 					 dma_conf->dma_tx_size, 1);
1766 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1767 			stmmac_mode_init(priv, tx_q->dma_tx,
1768 					 tx_q->dma_tx_phy,
1769 					 dma_conf->dma_tx_size, 0);
1770 	}
1771 
1772 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1773 
1774 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1775 		struct dma_desc *p;
1776 
1777 		if (priv->extend_desc)
1778 			p = &((tx_q->dma_etx + i)->basic);
1779 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1780 			p = &((tx_q->dma_entx + i)->basic);
1781 		else
1782 			p = tx_q->dma_tx + i;
1783 
1784 		stmmac_clear_desc(priv, p);
1785 
1786 		tx_q->tx_skbuff_dma[i].buf = 0;
1787 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1788 		tx_q->tx_skbuff_dma[i].len = 0;
1789 		tx_q->tx_skbuff_dma[i].last_segment = false;
1790 		tx_q->tx_skbuff[i] = NULL;
1791 	}
1792 
1793 	return 0;
1794 }
1795 
init_dma_tx_desc_rings(struct net_device * dev,struct stmmac_dma_conf * dma_conf)1796 static int init_dma_tx_desc_rings(struct net_device *dev,
1797 				  struct stmmac_dma_conf *dma_conf)
1798 {
1799 	struct stmmac_priv *priv = netdev_priv(dev);
1800 	u32 tx_queue_cnt;
1801 	u32 queue;
1802 
1803 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1804 
1805 	for (queue = 0; queue < tx_queue_cnt; queue++)
1806 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1807 
1808 	return 0;
1809 }
1810 
1811 /**
1812  * init_dma_desc_rings - init the RX/TX descriptor rings
1813  * @dev: net device structure
1814  * @dma_conf: structure to take the dma data
1815  * @flags: gfp flag.
1816  * Description: this function initializes the DMA RX/TX descriptors
1817  * and allocates the socket buffers. It supports the chained and ring
1818  * modes.
1819  */
init_dma_desc_rings(struct net_device * dev,struct stmmac_dma_conf * dma_conf,gfp_t flags)1820 static int init_dma_desc_rings(struct net_device *dev,
1821 			       struct stmmac_dma_conf *dma_conf,
1822 			       gfp_t flags)
1823 {
1824 	struct stmmac_priv *priv = netdev_priv(dev);
1825 	int ret;
1826 
1827 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1828 	if (ret)
1829 		return ret;
1830 
1831 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1832 
1833 	stmmac_clear_descriptors(priv, dma_conf);
1834 
1835 	if (netif_msg_hw(priv))
1836 		stmmac_display_rings(priv, dma_conf);
1837 
1838 	return ret;
1839 }
1840 
1841 /**
1842  * dma_free_tx_skbufs - free TX dma buffers
1843  * @priv: private structure
1844  * @dma_conf: structure to take the dma data
1845  * @queue: TX queue index
1846  */
dma_free_tx_skbufs(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1847 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1848 			       struct stmmac_dma_conf *dma_conf,
1849 			       u32 queue)
1850 {
1851 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1852 	int i;
1853 
1854 	tx_q->xsk_frames_done = 0;
1855 
1856 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1857 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1858 
1859 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1860 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1861 		tx_q->xsk_frames_done = 0;
1862 		tx_q->xsk_pool = NULL;
1863 	}
1864 }
1865 
1866 /**
1867  * stmmac_free_tx_skbufs - free TX skb buffers
1868  * @priv: private structure
1869  */
stmmac_free_tx_skbufs(struct stmmac_priv * priv)1870 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1871 {
1872 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1873 	u32 queue;
1874 
1875 	for (queue = 0; queue < tx_queue_cnt; queue++)
1876 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1877 }
1878 
1879 /**
1880  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1881  * @priv: private structure
1882  * @dma_conf: structure to take the dma data
1883  * @queue: RX queue index
1884  */
__free_dma_rx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1885 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1886 					 struct stmmac_dma_conf *dma_conf,
1887 					 u32 queue)
1888 {
1889 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1890 
1891 	/* Release the DMA RX socket buffers */
1892 	if (rx_q->xsk_pool)
1893 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1894 	else
1895 		dma_free_rx_skbufs(priv, dma_conf, queue);
1896 
1897 	rx_q->buf_alloc_num = 0;
1898 	rx_q->xsk_pool = NULL;
1899 
1900 	/* Free DMA regions of consistent memory previously allocated */
1901 	if (!priv->extend_desc)
1902 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1903 				  sizeof(struct dma_desc),
1904 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1905 	else
1906 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1907 				  sizeof(struct dma_extended_desc),
1908 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1909 
1910 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1911 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1912 
1913 	kfree(rx_q->buf_pool);
1914 	if (rx_q->page_pool)
1915 		page_pool_destroy(rx_q->page_pool);
1916 }
1917 
free_dma_rx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1918 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1919 				       struct stmmac_dma_conf *dma_conf)
1920 {
1921 	u32 rx_count = priv->plat->rx_queues_to_use;
1922 	u32 queue;
1923 
1924 	/* Free RX queue resources */
1925 	for (queue = 0; queue < rx_count; queue++)
1926 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1927 }
1928 
1929 /**
1930  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1931  * @priv: private structure
1932  * @dma_conf: structure to take the dma data
1933  * @queue: TX queue index
1934  */
__free_dma_tx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1935 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1936 					 struct stmmac_dma_conf *dma_conf,
1937 					 u32 queue)
1938 {
1939 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1940 	size_t size;
1941 	void *addr;
1942 
1943 	/* Release the DMA TX socket buffers */
1944 	dma_free_tx_skbufs(priv, dma_conf, queue);
1945 
1946 	if (priv->extend_desc) {
1947 		size = sizeof(struct dma_extended_desc);
1948 		addr = tx_q->dma_etx;
1949 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1950 		size = sizeof(struct dma_edesc);
1951 		addr = tx_q->dma_entx;
1952 	} else {
1953 		size = sizeof(struct dma_desc);
1954 		addr = tx_q->dma_tx;
1955 	}
1956 
1957 	size *= dma_conf->dma_tx_size;
1958 
1959 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1960 
1961 	kfree(tx_q->tx_skbuff_dma);
1962 	kfree(tx_q->tx_skbuff);
1963 }
1964 
free_dma_tx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1965 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1966 				       struct stmmac_dma_conf *dma_conf)
1967 {
1968 	u32 tx_count = priv->plat->tx_queues_to_use;
1969 	u32 queue;
1970 
1971 	/* Free TX queue resources */
1972 	for (queue = 0; queue < tx_count; queue++)
1973 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
1974 }
1975 
1976 /**
1977  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1978  * @priv: private structure
1979  * @dma_conf: structure to take the dma data
1980  * @queue: RX queue index
1981  * Description: according to which descriptor can be used (extend or basic)
1982  * this function allocates the resources for TX and RX paths. In case of
1983  * reception, for example, it pre-allocated the RX socket buffer in order to
1984  * allow zero-copy mechanism.
1985  */
__alloc_dma_rx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1986 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1987 					 struct stmmac_dma_conf *dma_conf,
1988 					 u32 queue)
1989 {
1990 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1991 	struct stmmac_channel *ch = &priv->channel[queue];
1992 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1993 	struct page_pool_params pp_params = { 0 };
1994 	unsigned int num_pages;
1995 	unsigned int napi_id;
1996 	int ret;
1997 
1998 	rx_q->queue_index = queue;
1999 	rx_q->priv_data = priv;
2000 
2001 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2002 	pp_params.pool_size = dma_conf->dma_rx_size;
2003 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2004 	pp_params.order = ilog2(num_pages);
2005 	pp_params.nid = dev_to_node(priv->device);
2006 	pp_params.dev = priv->device;
2007 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2008 	pp_params.offset = stmmac_rx_offset(priv);
2009 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2010 
2011 	rx_q->page_pool = page_pool_create(&pp_params);
2012 	if (IS_ERR(rx_q->page_pool)) {
2013 		ret = PTR_ERR(rx_q->page_pool);
2014 		rx_q->page_pool = NULL;
2015 		return ret;
2016 	}
2017 
2018 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2019 				 sizeof(*rx_q->buf_pool),
2020 				 GFP_KERNEL);
2021 	if (!rx_q->buf_pool)
2022 		return -ENOMEM;
2023 
2024 	if (priv->extend_desc) {
2025 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2026 						   dma_conf->dma_rx_size *
2027 						   sizeof(struct dma_extended_desc),
2028 						   &rx_q->dma_rx_phy,
2029 						   GFP_KERNEL);
2030 		if (!rx_q->dma_erx)
2031 			return -ENOMEM;
2032 
2033 	} else {
2034 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2035 						  dma_conf->dma_rx_size *
2036 						  sizeof(struct dma_desc),
2037 						  &rx_q->dma_rx_phy,
2038 						  GFP_KERNEL);
2039 		if (!rx_q->dma_rx)
2040 			return -ENOMEM;
2041 	}
2042 
2043 	if (stmmac_xdp_is_enabled(priv) &&
2044 	    test_bit(queue, priv->af_xdp_zc_qps))
2045 		napi_id = ch->rxtx_napi.napi_id;
2046 	else
2047 		napi_id = ch->rx_napi.napi_id;
2048 
2049 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2050 			       rx_q->queue_index,
2051 			       napi_id);
2052 	if (ret) {
2053 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2054 		return -EINVAL;
2055 	}
2056 
2057 	return 0;
2058 }
2059 
alloc_dma_rx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)2060 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2061 				       struct stmmac_dma_conf *dma_conf)
2062 {
2063 	u32 rx_count = priv->plat->rx_queues_to_use;
2064 	u32 queue;
2065 	int ret;
2066 
2067 	/* RX queues buffers and DMA */
2068 	for (queue = 0; queue < rx_count; queue++) {
2069 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2070 		if (ret)
2071 			goto err_dma;
2072 	}
2073 
2074 	return 0;
2075 
2076 err_dma:
2077 	free_dma_rx_desc_resources(priv, dma_conf);
2078 
2079 	return ret;
2080 }
2081 
2082 /**
2083  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2084  * @priv: private structure
2085  * @dma_conf: structure to take the dma data
2086  * @queue: TX queue index
2087  * Description: according to which descriptor can be used (extend or basic)
2088  * this function allocates the resources for TX and RX paths. In case of
2089  * reception, for example, it pre-allocated the RX socket buffer in order to
2090  * allow zero-copy mechanism.
2091  */
__alloc_dma_tx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)2092 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2093 					 struct stmmac_dma_conf *dma_conf,
2094 					 u32 queue)
2095 {
2096 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2097 	size_t size;
2098 	void *addr;
2099 
2100 	tx_q->queue_index = queue;
2101 	tx_q->priv_data = priv;
2102 
2103 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2104 				      sizeof(*tx_q->tx_skbuff_dma),
2105 				      GFP_KERNEL);
2106 	if (!tx_q->tx_skbuff_dma)
2107 		return -ENOMEM;
2108 
2109 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2110 				  sizeof(struct sk_buff *),
2111 				  GFP_KERNEL);
2112 	if (!tx_q->tx_skbuff)
2113 		return -ENOMEM;
2114 
2115 	if (priv->extend_desc)
2116 		size = sizeof(struct dma_extended_desc);
2117 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2118 		size = sizeof(struct dma_edesc);
2119 	else
2120 		size = sizeof(struct dma_desc);
2121 
2122 	size *= dma_conf->dma_tx_size;
2123 
2124 	addr = dma_alloc_coherent(priv->device, size,
2125 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2126 	if (!addr)
2127 		return -ENOMEM;
2128 
2129 	if (priv->extend_desc)
2130 		tx_q->dma_etx = addr;
2131 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2132 		tx_q->dma_entx = addr;
2133 	else
2134 		tx_q->dma_tx = addr;
2135 
2136 	return 0;
2137 }
2138 
alloc_dma_tx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)2139 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2140 				       struct stmmac_dma_conf *dma_conf)
2141 {
2142 	u32 tx_count = priv->plat->tx_queues_to_use;
2143 	u32 queue;
2144 	int ret;
2145 
2146 	/* TX queues buffers and DMA */
2147 	for (queue = 0; queue < tx_count; queue++) {
2148 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2149 		if (ret)
2150 			goto err_dma;
2151 	}
2152 
2153 	return 0;
2154 
2155 err_dma:
2156 	free_dma_tx_desc_resources(priv, dma_conf);
2157 	return ret;
2158 }
2159 
2160 /**
2161  * alloc_dma_desc_resources - alloc TX/RX resources.
2162  * @priv: private structure
2163  * @dma_conf: structure to take the dma data
2164  * Description: according to which descriptor can be used (extend or basic)
2165  * this function allocates the resources for TX and RX paths. In case of
2166  * reception, for example, it pre-allocated the RX socket buffer in order to
2167  * allow zero-copy mechanism.
2168  */
alloc_dma_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)2169 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2170 				    struct stmmac_dma_conf *dma_conf)
2171 {
2172 	/* RX Allocation */
2173 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2174 
2175 	if (ret)
2176 		return ret;
2177 
2178 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2179 
2180 	return ret;
2181 }
2182 
2183 /**
2184  * free_dma_desc_resources - free dma desc resources
2185  * @priv: private structure
2186  * @dma_conf: structure to take the dma data
2187  */
free_dma_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)2188 static void free_dma_desc_resources(struct stmmac_priv *priv,
2189 				    struct stmmac_dma_conf *dma_conf)
2190 {
2191 	/* Release the DMA TX socket buffers */
2192 	free_dma_tx_desc_resources(priv, dma_conf);
2193 
2194 	/* Release the DMA RX socket buffers later
2195 	 * to ensure all pending XDP_TX buffers are returned.
2196 	 */
2197 	free_dma_rx_desc_resources(priv, dma_conf);
2198 }
2199 
2200 /**
2201  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2202  *  @priv: driver private structure
2203  *  Description: It is used for enabling the rx queues in the MAC
2204  */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)2205 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2206 {
2207 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2208 	int queue;
2209 	u8 mode;
2210 
2211 	for (queue = 0; queue < rx_queues_count; queue++) {
2212 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2213 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2214 	}
2215 }
2216 
2217 /**
2218  * stmmac_start_rx_dma - start RX DMA channel
2219  * @priv: driver private structure
2220  * @chan: RX channel index
2221  * Description:
2222  * This starts a RX DMA channel
2223  */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)2224 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2225 {
2226 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2227 	stmmac_start_rx(priv, priv->ioaddr, chan);
2228 }
2229 
2230 /**
2231  * stmmac_start_tx_dma - start TX DMA channel
2232  * @priv: driver private structure
2233  * @chan: TX channel index
2234  * Description:
2235  * This starts a TX DMA channel
2236  */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)2237 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2238 {
2239 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2240 	stmmac_start_tx(priv, priv->ioaddr, chan);
2241 }
2242 
2243 /**
2244  * stmmac_stop_rx_dma - stop RX DMA channel
2245  * @priv: driver private structure
2246  * @chan: RX channel index
2247  * Description:
2248  * This stops a RX DMA channel
2249  */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)2250 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2251 {
2252 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2253 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2254 }
2255 
2256 /**
2257  * stmmac_stop_tx_dma - stop TX DMA channel
2258  * @priv: driver private structure
2259  * @chan: TX channel index
2260  * Description:
2261  * This stops a TX DMA channel
2262  */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)2263 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2264 {
2265 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2266 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2267 }
2268 
stmmac_enable_all_dma_irq(struct stmmac_priv * priv)2269 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2270 {
2271 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2272 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2273 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2274 	u32 chan;
2275 
2276 	for (chan = 0; chan < dma_csr_ch; chan++) {
2277 		struct stmmac_channel *ch = &priv->channel[chan];
2278 		unsigned long flags;
2279 
2280 		spin_lock_irqsave(&ch->lock, flags);
2281 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2282 		spin_unlock_irqrestore(&ch->lock, flags);
2283 	}
2284 }
2285 
2286 /**
2287  * stmmac_start_all_dma - start all RX and TX DMA channels
2288  * @priv: driver private structure
2289  * Description:
2290  * This starts all the RX and TX DMA channels
2291  */
stmmac_start_all_dma(struct stmmac_priv * priv)2292 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2293 {
2294 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2295 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2296 	u32 chan = 0;
2297 
2298 	for (chan = 0; chan < rx_channels_count; chan++)
2299 		stmmac_start_rx_dma(priv, chan);
2300 
2301 	for (chan = 0; chan < tx_channels_count; chan++)
2302 		stmmac_start_tx_dma(priv, chan);
2303 }
2304 
2305 /**
2306  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2307  * @priv: driver private structure
2308  * Description:
2309  * This stops the RX and TX DMA channels
2310  */
stmmac_stop_all_dma(struct stmmac_priv * priv)2311 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2312 {
2313 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2314 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2315 	u32 chan = 0;
2316 
2317 	for (chan = 0; chan < rx_channels_count; chan++)
2318 		stmmac_stop_rx_dma(priv, chan);
2319 
2320 	for (chan = 0; chan < tx_channels_count; chan++)
2321 		stmmac_stop_tx_dma(priv, chan);
2322 }
2323 
2324 /**
2325  *  stmmac_dma_operation_mode - HW DMA operation mode
2326  *  @priv: driver private structure
2327  *  Description: it is used for configuring the DMA operation mode register in
2328  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2329  */
stmmac_dma_operation_mode(struct stmmac_priv * priv)2330 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2331 {
2332 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2333 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2334 	int rxfifosz = priv->plat->rx_fifo_size;
2335 	int txfifosz = priv->plat->tx_fifo_size;
2336 	u32 txmode = 0;
2337 	u32 rxmode = 0;
2338 	u32 chan = 0;
2339 	u8 qmode = 0;
2340 
2341 	if (rxfifosz == 0)
2342 		rxfifosz = priv->dma_cap.rx_fifo_size;
2343 	if (txfifosz == 0)
2344 		txfifosz = priv->dma_cap.tx_fifo_size;
2345 
2346 	/* Adjust for real per queue fifo size */
2347 	rxfifosz /= rx_channels_count;
2348 	txfifosz /= tx_channels_count;
2349 
2350 	if (priv->plat->force_thresh_dma_mode) {
2351 		txmode = tc;
2352 		rxmode = tc;
2353 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2354 		/*
2355 		 * In case of GMAC, SF mode can be enabled
2356 		 * to perform the TX COE in HW. This depends on:
2357 		 * 1) TX COE if actually supported
2358 		 * 2) There is no bugged Jumbo frame support
2359 		 *    that needs to not insert csum in the TDES.
2360 		 */
2361 		txmode = SF_DMA_MODE;
2362 		rxmode = SF_DMA_MODE;
2363 		priv->xstats.threshold = SF_DMA_MODE;
2364 	} else {
2365 		txmode = tc;
2366 		rxmode = SF_DMA_MODE;
2367 	}
2368 
2369 	/* configure all channels */
2370 	for (chan = 0; chan < rx_channels_count; chan++) {
2371 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2372 		u32 buf_size;
2373 
2374 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2375 
2376 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2377 				rxfifosz, qmode);
2378 
2379 		if (rx_q->xsk_pool) {
2380 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2381 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2382 					      buf_size,
2383 					      chan);
2384 		} else {
2385 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2386 					      priv->dma_conf.dma_buf_sz,
2387 					      chan);
2388 		}
2389 	}
2390 
2391 	for (chan = 0; chan < tx_channels_count; chan++) {
2392 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2393 
2394 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2395 				txfifosz, qmode);
2396 	}
2397 }
2398 
stmmac_xdp_xmit_zc(struct stmmac_priv * priv,u32 queue,u32 budget)2399 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2400 {
2401 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2402 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2403 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2404 	unsigned int entry = tx_q->cur_tx;
2405 	struct dma_desc *tx_desc = NULL;
2406 	struct xdp_desc xdp_desc;
2407 	bool work_done = true;
2408 
2409 	/* Avoids TX time-out as we are sharing with slow path */
2410 	txq_trans_cond_update(nq);
2411 
2412 	budget = min(budget, stmmac_tx_avail(priv, queue));
2413 
2414 	while (budget-- > 0) {
2415 		dma_addr_t dma_addr;
2416 		bool set_ic;
2417 
2418 		/* We are sharing with slow path and stop XSK TX desc submission when
2419 		 * available TX ring is less than threshold.
2420 		 */
2421 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2422 		    !netif_carrier_ok(priv->dev)) {
2423 			work_done = false;
2424 			break;
2425 		}
2426 
2427 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2428 			break;
2429 
2430 		if (likely(priv->extend_desc))
2431 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2432 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2433 			tx_desc = &tx_q->dma_entx[entry].basic;
2434 		else
2435 			tx_desc = tx_q->dma_tx + entry;
2436 
2437 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2438 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2439 
2440 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2441 
2442 		/* To return XDP buffer to XSK pool, we simple call
2443 		 * xsk_tx_completed(), so we don't need to fill up
2444 		 * 'buf' and 'xdpf'.
2445 		 */
2446 		tx_q->tx_skbuff_dma[entry].buf = 0;
2447 		tx_q->xdpf[entry] = NULL;
2448 
2449 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2450 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2451 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2452 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2453 
2454 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2455 
2456 		tx_q->tx_count_frames++;
2457 
2458 		if (!priv->tx_coal_frames[queue])
2459 			set_ic = false;
2460 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2461 			set_ic = true;
2462 		else
2463 			set_ic = false;
2464 
2465 		if (set_ic) {
2466 			tx_q->tx_count_frames = 0;
2467 			stmmac_set_tx_ic(priv, tx_desc);
2468 			priv->xstats.tx_set_ic_bit++;
2469 		}
2470 
2471 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2472 				       true, priv->mode, true, true,
2473 				       xdp_desc.len);
2474 
2475 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2476 
2477 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2478 		entry = tx_q->cur_tx;
2479 	}
2480 
2481 	if (tx_desc) {
2482 		stmmac_flush_tx_descriptors(priv, queue);
2483 		xsk_tx_release(pool);
2484 	}
2485 
2486 	/* Return true if all of the 3 conditions are met
2487 	 *  a) TX Budget is still available
2488 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2489 	 *     pending XSK TX for transmission)
2490 	 */
2491 	return !!budget && work_done;
2492 }
2493 
stmmac_bump_dma_threshold(struct stmmac_priv * priv,u32 chan)2494 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2495 {
2496 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2497 		tc += 64;
2498 
2499 		if (priv->plat->force_thresh_dma_mode)
2500 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2501 		else
2502 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2503 						      chan);
2504 
2505 		priv->xstats.threshold = tc;
2506 	}
2507 }
2508 
2509 /**
2510  * stmmac_tx_clean - to manage the transmission completion
2511  * @priv: driver private structure
2512  * @budget: napi budget limiting this functions packet handling
2513  * @queue: TX queue index
2514  * Description: it reclaims the transmit resources after transmission completes.
2515  */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)2516 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2517 {
2518 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2519 	unsigned int bytes_compl = 0, pkts_compl = 0;
2520 	unsigned int entry, xmits = 0, count = 0;
2521 
2522 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2523 
2524 	priv->xstats.tx_clean++;
2525 
2526 	tx_q->xsk_frames_done = 0;
2527 
2528 	entry = tx_q->dirty_tx;
2529 
2530 	/* Try to clean all TX complete frame in 1 shot */
2531 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2532 		struct xdp_frame *xdpf;
2533 		struct sk_buff *skb;
2534 		struct dma_desc *p;
2535 		int status;
2536 
2537 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2538 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2539 			xdpf = tx_q->xdpf[entry];
2540 			skb = NULL;
2541 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2542 			xdpf = NULL;
2543 			skb = tx_q->tx_skbuff[entry];
2544 		} else {
2545 			xdpf = NULL;
2546 			skb = NULL;
2547 		}
2548 
2549 		if (priv->extend_desc)
2550 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2551 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2552 			p = &tx_q->dma_entx[entry].basic;
2553 		else
2554 			p = tx_q->dma_tx + entry;
2555 
2556 		status = stmmac_tx_status(priv, &priv->dev->stats,
2557 				&priv->xstats, p, priv->ioaddr);
2558 		/* Check if the descriptor is owned by the DMA */
2559 		if (unlikely(status & tx_dma_own))
2560 			break;
2561 
2562 		count++;
2563 
2564 		/* Make sure descriptor fields are read after reading
2565 		 * the own bit.
2566 		 */
2567 		dma_rmb();
2568 
2569 		/* Just consider the last segment and ...*/
2570 		if (likely(!(status & tx_not_ls))) {
2571 			/* ... verify the status error condition */
2572 			if (unlikely(status & tx_err)) {
2573 				priv->dev->stats.tx_errors++;
2574 				if (unlikely(status & tx_err_bump_tc))
2575 					stmmac_bump_dma_threshold(priv, queue);
2576 			} else {
2577 				priv->dev->stats.tx_packets++;
2578 				priv->xstats.tx_pkt_n++;
2579 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2580 			}
2581 			if (skb)
2582 				stmmac_get_tx_hwtstamp(priv, p, skb);
2583 		}
2584 
2585 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2586 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2587 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2588 				dma_unmap_page(priv->device,
2589 					       tx_q->tx_skbuff_dma[entry].buf,
2590 					       tx_q->tx_skbuff_dma[entry].len,
2591 					       DMA_TO_DEVICE);
2592 			else
2593 				dma_unmap_single(priv->device,
2594 						 tx_q->tx_skbuff_dma[entry].buf,
2595 						 tx_q->tx_skbuff_dma[entry].len,
2596 						 DMA_TO_DEVICE);
2597 			tx_q->tx_skbuff_dma[entry].buf = 0;
2598 			tx_q->tx_skbuff_dma[entry].len = 0;
2599 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2600 		}
2601 
2602 		stmmac_clean_desc3(priv, tx_q, p);
2603 
2604 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2605 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2606 
2607 		if (xdpf &&
2608 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2609 			xdp_return_frame_rx_napi(xdpf);
2610 			tx_q->xdpf[entry] = NULL;
2611 		}
2612 
2613 		if (xdpf &&
2614 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2615 			xdp_return_frame(xdpf);
2616 			tx_q->xdpf[entry] = NULL;
2617 		}
2618 
2619 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2620 			tx_q->xsk_frames_done++;
2621 
2622 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2623 			if (likely(skb)) {
2624 				pkts_compl++;
2625 				bytes_compl += skb->len;
2626 				dev_consume_skb_any(skb);
2627 				tx_q->tx_skbuff[entry] = NULL;
2628 			}
2629 		}
2630 
2631 		stmmac_release_tx_desc(priv, p, priv->mode);
2632 
2633 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2634 	}
2635 	tx_q->dirty_tx = entry;
2636 
2637 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2638 				  pkts_compl, bytes_compl);
2639 
2640 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2641 								queue))) &&
2642 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2643 
2644 		netif_dbg(priv, tx_done, priv->dev,
2645 			  "%s: restart transmit\n", __func__);
2646 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2647 	}
2648 
2649 	if (tx_q->xsk_pool) {
2650 		bool work_done;
2651 
2652 		if (tx_q->xsk_frames_done)
2653 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2654 
2655 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2656 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2657 
2658 		/* For XSK TX, we try to send as many as possible.
2659 		 * If XSK work done (XSK TX desc empty and budget still
2660 		 * available), return "budget - 1" to reenable TX IRQ.
2661 		 * Else, return "budget" to make NAPI continue polling.
2662 		 */
2663 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2664 					       STMMAC_XSK_TX_BUDGET_MAX);
2665 		if (work_done)
2666 			xmits = budget - 1;
2667 		else
2668 			xmits = budget;
2669 	}
2670 
2671 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2672 	    priv->eee_sw_timer_en) {
2673 		if (stmmac_enable_eee_mode(priv))
2674 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2675 	}
2676 
2677 	/* We still have pending packets, let's call for a new scheduling */
2678 	if (tx_q->dirty_tx != tx_q->cur_tx)
2679 		hrtimer_start(&tx_q->txtimer,
2680 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2681 			      HRTIMER_MODE_REL);
2682 
2683 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2684 
2685 	/* Combine decisions from TX clean and XSK TX */
2686 	return max(count, xmits);
2687 }
2688 
2689 /**
2690  * stmmac_tx_err - to manage the tx error
2691  * @priv: driver private structure
2692  * @chan: channel index
2693  * Description: it cleans the descriptors and restarts the transmission
2694  * in case of transmission errors.
2695  */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)2696 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2697 {
2698 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2699 
2700 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2701 
2702 	stmmac_stop_tx_dma(priv, chan);
2703 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2704 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2705 	stmmac_reset_tx_queue(priv, chan);
2706 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2707 			    tx_q->dma_tx_phy, chan);
2708 	stmmac_start_tx_dma(priv, chan);
2709 
2710 	priv->dev->stats.tx_errors++;
2711 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2712 }
2713 
2714 /**
2715  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2716  *  @priv: driver private structure
2717  *  @txmode: TX operating mode
2718  *  @rxmode: RX operating mode
2719  *  @chan: channel index
2720  *  Description: it is used for configuring of the DMA operation mode in
2721  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2722  *  mode.
2723  */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)2724 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2725 					  u32 rxmode, u32 chan)
2726 {
2727 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2728 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2729 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2730 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2731 	int rxfifosz = priv->plat->rx_fifo_size;
2732 	int txfifosz = priv->plat->tx_fifo_size;
2733 
2734 	if (rxfifosz == 0)
2735 		rxfifosz = priv->dma_cap.rx_fifo_size;
2736 	if (txfifosz == 0)
2737 		txfifosz = priv->dma_cap.tx_fifo_size;
2738 
2739 	/* Adjust for real per queue fifo size */
2740 	rxfifosz /= rx_channels_count;
2741 	txfifosz /= tx_channels_count;
2742 
2743 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2744 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2745 }
2746 
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2747 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2748 {
2749 	int ret;
2750 
2751 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2752 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2753 	if (ret && (ret != -EINVAL)) {
2754 		stmmac_global_err(priv);
2755 		return true;
2756 	}
2757 
2758 	return false;
2759 }
2760 
stmmac_napi_check(struct stmmac_priv * priv,u32 chan,u32 dir)2761 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2762 {
2763 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2764 						 &priv->xstats, chan, dir);
2765 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2766 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2767 	struct stmmac_channel *ch = &priv->channel[chan];
2768 	struct napi_struct *rx_napi;
2769 	struct napi_struct *tx_napi;
2770 	unsigned long flags;
2771 
2772 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2773 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2774 
2775 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2776 		if (napi_schedule_prep(rx_napi)) {
2777 			spin_lock_irqsave(&ch->lock, flags);
2778 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2779 			spin_unlock_irqrestore(&ch->lock, flags);
2780 			__napi_schedule(rx_napi);
2781 		}
2782 	}
2783 
2784 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2785 		if (napi_schedule_prep(tx_napi)) {
2786 			spin_lock_irqsave(&ch->lock, flags);
2787 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2788 			spin_unlock_irqrestore(&ch->lock, flags);
2789 			__napi_schedule(tx_napi);
2790 		}
2791 	}
2792 
2793 	return status;
2794 }
2795 
2796 /**
2797  * stmmac_dma_interrupt - DMA ISR
2798  * @priv: driver private structure
2799  * Description: this is the DMA ISR. It is called by the main ISR.
2800  * It calls the dwmac dma routine and schedule poll method in case of some
2801  * work can be done.
2802  */
stmmac_dma_interrupt(struct stmmac_priv * priv)2803 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2804 {
2805 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2806 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2807 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2808 				tx_channel_count : rx_channel_count;
2809 	u32 chan;
2810 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2811 
2812 	/* Make sure we never check beyond our status buffer. */
2813 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2814 		channels_to_check = ARRAY_SIZE(status);
2815 
2816 	for (chan = 0; chan < channels_to_check; chan++)
2817 		status[chan] = stmmac_napi_check(priv, chan,
2818 						 DMA_DIR_RXTX);
2819 
2820 	for (chan = 0; chan < tx_channel_count; chan++) {
2821 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2822 			/* Try to bump up the dma threshold on this failure */
2823 			stmmac_bump_dma_threshold(priv, chan);
2824 		} else if (unlikely(status[chan] == tx_hard_error)) {
2825 			stmmac_tx_err(priv, chan);
2826 		}
2827 	}
2828 }
2829 
2830 /**
2831  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2832  * @priv: driver private structure
2833  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2834  */
stmmac_mmc_setup(struct stmmac_priv * priv)2835 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2836 {
2837 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2838 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2839 
2840 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2841 
2842 	if (priv->dma_cap.rmon) {
2843 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2844 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2845 	} else
2846 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2847 }
2848 
2849 /**
2850  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2851  * @priv: driver private structure
2852  * Description:
2853  *  new GMAC chip generations have a new register to indicate the
2854  *  presence of the optional feature/functions.
2855  *  This can be also used to override the value passed through the
2856  *  platform and necessary for old MAC10/100 and GMAC chips.
2857  */
stmmac_get_hw_features(struct stmmac_priv * priv)2858 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2859 {
2860 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2861 }
2862 
2863 /**
2864  * stmmac_check_ether_addr - check if the MAC addr is valid
2865  * @priv: driver private structure
2866  * Description:
2867  * it is to verify if the MAC address is valid, in case of failures it
2868  * generates a random MAC address
2869  */
stmmac_check_ether_addr(struct stmmac_priv * priv)2870 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2871 {
2872 	u8 addr[ETH_ALEN];
2873 
2874 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2875 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2876 		if (is_valid_ether_addr(addr))
2877 			eth_hw_addr_set(priv->dev, addr);
2878 		else
2879 			eth_hw_addr_random(priv->dev);
2880 		dev_info(priv->device, "device MAC address %pM\n",
2881 			 priv->dev->dev_addr);
2882 	}
2883 }
2884 
2885 /**
2886  * stmmac_init_dma_engine - DMA init.
2887  * @priv: driver private structure
2888  * Description:
2889  * It inits the DMA invoking the specific MAC/GMAC callback.
2890  * Some DMA parameters can be passed from the platform;
2891  * in case of these are not passed a default is kept for the MAC or GMAC.
2892  */
stmmac_init_dma_engine(struct stmmac_priv * priv)2893 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2894 {
2895 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2896 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2897 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2898 	struct stmmac_rx_queue *rx_q;
2899 	struct stmmac_tx_queue *tx_q;
2900 	u32 chan = 0;
2901 	int atds = 0;
2902 	int ret = 0;
2903 
2904 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2905 		dev_err(priv->device, "Invalid DMA configuration\n");
2906 		return -EINVAL;
2907 	}
2908 
2909 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2910 		atds = 1;
2911 
2912 	ret = stmmac_reset(priv, priv->ioaddr);
2913 	if (ret) {
2914 		dev_err(priv->device, "Failed to reset the dma\n");
2915 		return ret;
2916 	}
2917 
2918 	/* DMA Configuration */
2919 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2920 
2921 	if (priv->plat->axi)
2922 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2923 
2924 	/* DMA CSR Channel configuration */
2925 	for (chan = 0; chan < dma_csr_ch; chan++) {
2926 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2927 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2928 	}
2929 
2930 	/* DMA RX Channel Configuration */
2931 	for (chan = 0; chan < rx_channels_count; chan++) {
2932 		rx_q = &priv->dma_conf.rx_queue[chan];
2933 
2934 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2935 				    rx_q->dma_rx_phy, chan);
2936 
2937 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2938 				     (rx_q->buf_alloc_num *
2939 				      sizeof(struct dma_desc));
2940 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2941 				       rx_q->rx_tail_addr, chan);
2942 	}
2943 
2944 	/* DMA TX Channel Configuration */
2945 	for (chan = 0; chan < tx_channels_count; chan++) {
2946 		tx_q = &priv->dma_conf.tx_queue[chan];
2947 
2948 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2949 				    tx_q->dma_tx_phy, chan);
2950 
2951 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2952 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2953 				       tx_q->tx_tail_addr, chan);
2954 	}
2955 
2956 	return ret;
2957 }
2958 
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2959 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2960 {
2961 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2962 
2963 	hrtimer_start(&tx_q->txtimer,
2964 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2965 		      HRTIMER_MODE_REL);
2966 }
2967 
2968 /**
2969  * stmmac_tx_timer - mitigation sw timer for tx.
2970  * @t: data pointer
2971  * Description:
2972  * This is the timer handler to directly invoke the stmmac_tx_clean.
2973  */
stmmac_tx_timer(struct hrtimer * t)2974 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2975 {
2976 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2977 	struct stmmac_priv *priv = tx_q->priv_data;
2978 	struct stmmac_channel *ch;
2979 	struct napi_struct *napi;
2980 
2981 	ch = &priv->channel[tx_q->queue_index];
2982 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2983 
2984 	if (likely(napi_schedule_prep(napi))) {
2985 		unsigned long flags;
2986 
2987 		spin_lock_irqsave(&ch->lock, flags);
2988 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2989 		spin_unlock_irqrestore(&ch->lock, flags);
2990 		__napi_schedule(napi);
2991 	}
2992 
2993 	return HRTIMER_NORESTART;
2994 }
2995 
2996 /**
2997  * stmmac_init_coalesce - init mitigation options.
2998  * @priv: driver private structure
2999  * Description:
3000  * This inits the coalesce parameters: i.e. timer rate,
3001  * timer handler and default threshold used for enabling the
3002  * interrupt on completion bit.
3003  */
stmmac_init_coalesce(struct stmmac_priv * priv)3004 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3005 {
3006 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
3007 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3008 	u32 chan;
3009 
3010 	for (chan = 0; chan < tx_channel_count; chan++) {
3011 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3012 
3013 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3014 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3015 
3016 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3017 		tx_q->txtimer.function = stmmac_tx_timer;
3018 	}
3019 
3020 	for (chan = 0; chan < rx_channel_count; chan++)
3021 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3022 }
3023 
stmmac_set_rings_length(struct stmmac_priv * priv)3024 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3025 {
3026 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3027 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3028 	u32 chan;
3029 
3030 	/* set TX ring length */
3031 	for (chan = 0; chan < tx_channels_count; chan++)
3032 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3033 				       (priv->dma_conf.dma_tx_size - 1), chan);
3034 
3035 	/* set RX ring length */
3036 	for (chan = 0; chan < rx_channels_count; chan++)
3037 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3038 				       (priv->dma_conf.dma_rx_size - 1), chan);
3039 }
3040 
3041 /**
3042  *  stmmac_set_tx_queue_weight - Set TX queue weight
3043  *  @priv: driver private structure
3044  *  Description: It is used for setting TX queues weight
3045  */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)3046 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3047 {
3048 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3049 	u32 weight;
3050 	u32 queue;
3051 
3052 	for (queue = 0; queue < tx_queues_count; queue++) {
3053 		weight = priv->plat->tx_queues_cfg[queue].weight;
3054 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3055 	}
3056 }
3057 
3058 /**
3059  *  stmmac_configure_cbs - Configure CBS in TX queue
3060  *  @priv: driver private structure
3061  *  Description: It is used for configuring CBS in AVB TX queues
3062  */
stmmac_configure_cbs(struct stmmac_priv * priv)3063 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3064 {
3065 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3066 	u32 mode_to_use;
3067 	u32 queue;
3068 
3069 	/* queue 0 is reserved for legacy traffic */
3070 	for (queue = 1; queue < tx_queues_count; queue++) {
3071 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3072 		if (mode_to_use == MTL_QUEUE_DCB)
3073 			continue;
3074 
3075 		stmmac_config_cbs(priv, priv->hw,
3076 				priv->plat->tx_queues_cfg[queue].send_slope,
3077 				priv->plat->tx_queues_cfg[queue].idle_slope,
3078 				priv->plat->tx_queues_cfg[queue].high_credit,
3079 				priv->plat->tx_queues_cfg[queue].low_credit,
3080 				queue);
3081 	}
3082 }
3083 
3084 /**
3085  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3086  *  @priv: driver private structure
3087  *  Description: It is used for mapping RX queues to RX dma channels
3088  */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)3089 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3090 {
3091 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3092 	u32 queue;
3093 	u32 chan;
3094 
3095 	for (queue = 0; queue < rx_queues_count; queue++) {
3096 		chan = priv->plat->rx_queues_cfg[queue].chan;
3097 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3098 	}
3099 }
3100 
3101 /**
3102  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3103  *  @priv: driver private structure
3104  *  Description: It is used for configuring the RX Queue Priority
3105  */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)3106 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3107 {
3108 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3109 	u32 queue;
3110 	u32 prio;
3111 
3112 	for (queue = 0; queue < rx_queues_count; queue++) {
3113 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3114 			continue;
3115 
3116 		prio = priv->plat->rx_queues_cfg[queue].prio;
3117 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3118 	}
3119 }
3120 
3121 /**
3122  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3123  *  @priv: driver private structure
3124  *  Description: It is used for configuring the TX Queue Priority
3125  */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)3126 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3127 {
3128 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3129 	u32 queue;
3130 	u32 prio;
3131 
3132 	for (queue = 0; queue < tx_queues_count; queue++) {
3133 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3134 			continue;
3135 
3136 		prio = priv->plat->tx_queues_cfg[queue].prio;
3137 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3138 	}
3139 }
3140 
3141 /**
3142  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3143  *  @priv: driver private structure
3144  *  Description: It is used for configuring the RX queue routing
3145  */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)3146 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3147 {
3148 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3149 	u32 queue;
3150 	u8 packet;
3151 
3152 	for (queue = 0; queue < rx_queues_count; queue++) {
3153 		/* no specific packet type routing specified for the queue */
3154 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3155 			continue;
3156 
3157 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3158 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3159 	}
3160 }
3161 
stmmac_mac_config_rss(struct stmmac_priv * priv)3162 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3163 {
3164 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3165 		priv->rss.enable = false;
3166 		return;
3167 	}
3168 
3169 	if (priv->dev->features & NETIF_F_RXHASH)
3170 		priv->rss.enable = true;
3171 	else
3172 		priv->rss.enable = false;
3173 
3174 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3175 			     priv->plat->rx_queues_to_use);
3176 }
3177 
3178 /**
3179  *  stmmac_mtl_configuration - Configure MTL
3180  *  @priv: driver private structure
3181  *  Description: It is used for configurring MTL
3182  */
stmmac_mtl_configuration(struct stmmac_priv * priv)3183 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3184 {
3185 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3186 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3187 
3188 	if (tx_queues_count > 1)
3189 		stmmac_set_tx_queue_weight(priv);
3190 
3191 	/* Configure MTL RX algorithms */
3192 	if (rx_queues_count > 1)
3193 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3194 				priv->plat->rx_sched_algorithm);
3195 
3196 	/* Configure MTL TX algorithms */
3197 	if (tx_queues_count > 1)
3198 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3199 				priv->plat->tx_sched_algorithm);
3200 
3201 	/* Configure CBS in AVB TX queues */
3202 	if (tx_queues_count > 1)
3203 		stmmac_configure_cbs(priv);
3204 
3205 	/* Map RX MTL to DMA channels */
3206 	stmmac_rx_queue_dma_chan_map(priv);
3207 
3208 	/* Enable MAC RX Queues */
3209 	stmmac_mac_enable_rx_queues(priv);
3210 
3211 	/* Set RX priorities */
3212 	if (rx_queues_count > 1)
3213 		stmmac_mac_config_rx_queues_prio(priv);
3214 
3215 	/* Set TX priorities */
3216 	if (tx_queues_count > 1)
3217 		stmmac_mac_config_tx_queues_prio(priv);
3218 
3219 	/* Set RX routing */
3220 	if (rx_queues_count > 1)
3221 		stmmac_mac_config_rx_queues_routing(priv);
3222 
3223 	/* Receive Side Scaling */
3224 	if (rx_queues_count > 1)
3225 		stmmac_mac_config_rss(priv);
3226 }
3227 
stmmac_safety_feat_configuration(struct stmmac_priv * priv)3228 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3229 {
3230 	if (priv->dma_cap.asp) {
3231 		netdev_info(priv->dev, "Enabling Safety Features\n");
3232 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3233 					  priv->plat->safety_feat_cfg);
3234 	} else {
3235 		netdev_info(priv->dev, "No Safety Features support found\n");
3236 	}
3237 }
3238 
stmmac_fpe_start_wq(struct stmmac_priv * priv)3239 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3240 {
3241 	char *name;
3242 
3243 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3244 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3245 
3246 	name = priv->wq_name;
3247 	sprintf(name, "%s-fpe", priv->dev->name);
3248 
3249 	priv->fpe_wq = create_singlethread_workqueue(name);
3250 	if (!priv->fpe_wq) {
3251 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3252 
3253 		return -ENOMEM;
3254 	}
3255 	netdev_info(priv->dev, "FPE workqueue start");
3256 
3257 	return 0;
3258 }
3259 
3260 /**
3261  * stmmac_hw_setup - setup mac in a usable state.
3262  *  @dev : pointer to the device structure.
3263  *  @ptp_register: register PTP if set
3264  *  Description:
3265  *  this is the main function to setup the HW in a usable state because the
3266  *  dma engine is reset, the core registers are configured (e.g. AXI,
3267  *  Checksum features, timers). The DMA is ready to start receiving and
3268  *  transmitting.
3269  *  Return value:
3270  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3271  *  file on failure.
3272  */
stmmac_hw_setup(struct net_device * dev,bool ptp_register)3273 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3274 {
3275 	struct stmmac_priv *priv = netdev_priv(dev);
3276 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3277 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3278 	bool sph_en;
3279 	u32 chan;
3280 	int ret;
3281 
3282 	/* DMA initialization and SW reset */
3283 	ret = stmmac_init_dma_engine(priv);
3284 	if (ret < 0) {
3285 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3286 			   __func__);
3287 		return ret;
3288 	}
3289 
3290 	/* Copy the MAC addr into the HW  */
3291 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3292 
3293 	/* PS and related bits will be programmed according to the speed */
3294 	if (priv->hw->pcs) {
3295 		int speed = priv->plat->mac_port_sel_speed;
3296 
3297 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3298 		    (speed == SPEED_1000)) {
3299 			priv->hw->ps = speed;
3300 		} else {
3301 			dev_warn(priv->device, "invalid port speed\n");
3302 			priv->hw->ps = 0;
3303 		}
3304 	}
3305 
3306 	/* Initialize the MAC Core */
3307 	stmmac_core_init(priv, priv->hw, dev);
3308 
3309 	/* Initialize MTL*/
3310 	stmmac_mtl_configuration(priv);
3311 
3312 	/* Initialize Safety Features */
3313 	stmmac_safety_feat_configuration(priv);
3314 
3315 	ret = stmmac_rx_ipc(priv, priv->hw);
3316 	if (!ret) {
3317 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3318 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3319 		priv->hw->rx_csum = 0;
3320 	}
3321 
3322 	/* Enable the MAC Rx/Tx */
3323 	stmmac_mac_set(priv, priv->ioaddr, true);
3324 
3325 	/* Set the HW DMA mode and the COE */
3326 	stmmac_dma_operation_mode(priv);
3327 
3328 	stmmac_mmc_setup(priv);
3329 
3330 	if (ptp_register) {
3331 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3332 		if (ret < 0)
3333 			netdev_warn(priv->dev,
3334 				    "failed to enable PTP reference clock: %pe\n",
3335 				    ERR_PTR(ret));
3336 	}
3337 
3338 	ret = stmmac_init_ptp(priv);
3339 	if (ret == -EOPNOTSUPP)
3340 		netdev_info(priv->dev, "PTP not supported by HW\n");
3341 	else if (ret)
3342 		netdev_warn(priv->dev, "PTP init failed\n");
3343 	else if (ptp_register)
3344 		stmmac_ptp_register(priv);
3345 
3346 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3347 
3348 	/* Convert the timer from msec to usec */
3349 	if (!priv->tx_lpi_timer)
3350 		priv->tx_lpi_timer = eee_timer * 1000;
3351 
3352 	if (priv->use_riwt) {
3353 		u32 queue;
3354 
3355 		for (queue = 0; queue < rx_cnt; queue++) {
3356 			if (!priv->rx_riwt[queue])
3357 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3358 
3359 			stmmac_rx_watchdog(priv, priv->ioaddr,
3360 					   priv->rx_riwt[queue], queue);
3361 		}
3362 	}
3363 
3364 	if (priv->hw->pcs)
3365 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3366 
3367 	/* set TX and RX rings length */
3368 	stmmac_set_rings_length(priv);
3369 
3370 	/* Enable TSO */
3371 	if (priv->tso) {
3372 		for (chan = 0; chan < tx_cnt; chan++) {
3373 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3374 
3375 			/* TSO and TBS cannot co-exist */
3376 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3377 				continue;
3378 
3379 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3380 		}
3381 	}
3382 
3383 	/* Enable Split Header */
3384 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3385 	for (chan = 0; chan < rx_cnt; chan++)
3386 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3387 
3388 
3389 	/* VLAN Tag Insertion */
3390 	if (priv->dma_cap.vlins)
3391 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3392 
3393 	/* TBS */
3394 	for (chan = 0; chan < tx_cnt; chan++) {
3395 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3396 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3397 
3398 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3399 	}
3400 
3401 	/* Configure real RX and TX queues */
3402 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3403 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3404 
3405 	/* Start the ball rolling... */
3406 	stmmac_start_all_dma(priv);
3407 
3408 	if (priv->dma_cap.fpesel) {
3409 		stmmac_fpe_start_wq(priv);
3410 
3411 		if (priv->plat->fpe_cfg->enable)
3412 			stmmac_fpe_handshake(priv, true);
3413 	}
3414 
3415 	return 0;
3416 }
3417 
stmmac_hw_teardown(struct net_device * dev)3418 static void stmmac_hw_teardown(struct net_device *dev)
3419 {
3420 	struct stmmac_priv *priv = netdev_priv(dev);
3421 
3422 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3423 }
3424 
stmmac_free_irq(struct net_device * dev,enum request_irq_err irq_err,int irq_idx)3425 static void stmmac_free_irq(struct net_device *dev,
3426 			    enum request_irq_err irq_err, int irq_idx)
3427 {
3428 	struct stmmac_priv *priv = netdev_priv(dev);
3429 	int j;
3430 
3431 	switch (irq_err) {
3432 	case REQ_IRQ_ERR_ALL:
3433 		irq_idx = priv->plat->tx_queues_to_use;
3434 		fallthrough;
3435 	case REQ_IRQ_ERR_TX:
3436 		for (j = irq_idx - 1; j >= 0; j--) {
3437 			if (priv->tx_irq[j] > 0) {
3438 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3439 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3440 			}
3441 		}
3442 		irq_idx = priv->plat->rx_queues_to_use;
3443 		fallthrough;
3444 	case REQ_IRQ_ERR_RX:
3445 		for (j = irq_idx - 1; j >= 0; j--) {
3446 			if (priv->rx_irq[j] > 0) {
3447 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3448 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3449 			}
3450 		}
3451 
3452 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3453 			free_irq(priv->sfty_ue_irq, dev);
3454 		fallthrough;
3455 	case REQ_IRQ_ERR_SFTY_UE:
3456 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3457 			free_irq(priv->sfty_ce_irq, dev);
3458 		fallthrough;
3459 	case REQ_IRQ_ERR_SFTY_CE:
3460 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3461 			free_irq(priv->lpi_irq, dev);
3462 		fallthrough;
3463 	case REQ_IRQ_ERR_LPI:
3464 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3465 			free_irq(priv->wol_irq, dev);
3466 		fallthrough;
3467 	case REQ_IRQ_ERR_WOL:
3468 		free_irq(dev->irq, dev);
3469 		fallthrough;
3470 	case REQ_IRQ_ERR_MAC:
3471 	case REQ_IRQ_ERR_NO:
3472 		/* If MAC IRQ request error, no more IRQ to free */
3473 		break;
3474 	}
3475 }
3476 
stmmac_request_irq_multi_msi(struct net_device * dev)3477 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3478 {
3479 	struct stmmac_priv *priv = netdev_priv(dev);
3480 	enum request_irq_err irq_err;
3481 	cpumask_t cpu_mask;
3482 	int irq_idx = 0;
3483 	char *int_name;
3484 	int ret;
3485 	int i;
3486 
3487 	/* For common interrupt */
3488 	int_name = priv->int_name_mac;
3489 	sprintf(int_name, "%s:%s", dev->name, "mac");
3490 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3491 			  0, int_name, dev);
3492 	if (unlikely(ret < 0)) {
3493 		netdev_err(priv->dev,
3494 			   "%s: alloc mac MSI %d (error: %d)\n",
3495 			   __func__, dev->irq, ret);
3496 		irq_err = REQ_IRQ_ERR_MAC;
3497 		goto irq_error;
3498 	}
3499 
3500 	/* Request the Wake IRQ in case of another line
3501 	 * is used for WoL
3502 	 */
3503 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3504 		int_name = priv->int_name_wol;
3505 		sprintf(int_name, "%s:%s", dev->name, "wol");
3506 		ret = request_irq(priv->wol_irq,
3507 				  stmmac_mac_interrupt,
3508 				  0, int_name, dev);
3509 		if (unlikely(ret < 0)) {
3510 			netdev_err(priv->dev,
3511 				   "%s: alloc wol MSI %d (error: %d)\n",
3512 				   __func__, priv->wol_irq, ret);
3513 			irq_err = REQ_IRQ_ERR_WOL;
3514 			goto irq_error;
3515 		}
3516 	}
3517 
3518 	/* Request the LPI IRQ in case of another line
3519 	 * is used for LPI
3520 	 */
3521 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3522 		int_name = priv->int_name_lpi;
3523 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3524 		ret = request_irq(priv->lpi_irq,
3525 				  stmmac_mac_interrupt,
3526 				  0, int_name, dev);
3527 		if (unlikely(ret < 0)) {
3528 			netdev_err(priv->dev,
3529 				   "%s: alloc lpi MSI %d (error: %d)\n",
3530 				   __func__, priv->lpi_irq, ret);
3531 			irq_err = REQ_IRQ_ERR_LPI;
3532 			goto irq_error;
3533 		}
3534 	}
3535 
3536 	/* Request the Safety Feature Correctible Error line in
3537 	 * case of another line is used
3538 	 */
3539 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3540 		int_name = priv->int_name_sfty_ce;
3541 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3542 		ret = request_irq(priv->sfty_ce_irq,
3543 				  stmmac_safety_interrupt,
3544 				  0, int_name, dev);
3545 		if (unlikely(ret < 0)) {
3546 			netdev_err(priv->dev,
3547 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3548 				   __func__, priv->sfty_ce_irq, ret);
3549 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3550 			goto irq_error;
3551 		}
3552 	}
3553 
3554 	/* Request the Safety Feature Uncorrectible Error line in
3555 	 * case of another line is used
3556 	 */
3557 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3558 		int_name = priv->int_name_sfty_ue;
3559 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3560 		ret = request_irq(priv->sfty_ue_irq,
3561 				  stmmac_safety_interrupt,
3562 				  0, int_name, dev);
3563 		if (unlikely(ret < 0)) {
3564 			netdev_err(priv->dev,
3565 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3566 				   __func__, priv->sfty_ue_irq, ret);
3567 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3568 			goto irq_error;
3569 		}
3570 	}
3571 
3572 	/* Request Rx MSI irq */
3573 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3574 		if (i >= MTL_MAX_RX_QUEUES)
3575 			break;
3576 		if (priv->rx_irq[i] == 0)
3577 			continue;
3578 
3579 		int_name = priv->int_name_rx_irq[i];
3580 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3581 		ret = request_irq(priv->rx_irq[i],
3582 				  stmmac_msi_intr_rx,
3583 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3584 		if (unlikely(ret < 0)) {
3585 			netdev_err(priv->dev,
3586 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3587 				   __func__, i, priv->rx_irq[i], ret);
3588 			irq_err = REQ_IRQ_ERR_RX;
3589 			irq_idx = i;
3590 			goto irq_error;
3591 		}
3592 		cpumask_clear(&cpu_mask);
3593 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3594 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3595 	}
3596 
3597 	/* Request Tx MSI irq */
3598 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3599 		if (i >= MTL_MAX_TX_QUEUES)
3600 			break;
3601 		if (priv->tx_irq[i] == 0)
3602 			continue;
3603 
3604 		int_name = priv->int_name_tx_irq[i];
3605 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3606 		ret = request_irq(priv->tx_irq[i],
3607 				  stmmac_msi_intr_tx,
3608 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3609 		if (unlikely(ret < 0)) {
3610 			netdev_err(priv->dev,
3611 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3612 				   __func__, i, priv->tx_irq[i], ret);
3613 			irq_err = REQ_IRQ_ERR_TX;
3614 			irq_idx = i;
3615 			goto irq_error;
3616 		}
3617 		cpumask_clear(&cpu_mask);
3618 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3619 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3620 	}
3621 
3622 	return 0;
3623 
3624 irq_error:
3625 	stmmac_free_irq(dev, irq_err, irq_idx);
3626 	return ret;
3627 }
3628 
stmmac_request_irq_single(struct net_device * dev)3629 static int stmmac_request_irq_single(struct net_device *dev)
3630 {
3631 	struct stmmac_priv *priv = netdev_priv(dev);
3632 	enum request_irq_err irq_err;
3633 	int ret;
3634 
3635 	ret = request_irq(dev->irq, stmmac_interrupt,
3636 			  IRQF_SHARED, dev->name, dev);
3637 	if (unlikely(ret < 0)) {
3638 		netdev_err(priv->dev,
3639 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3640 			   __func__, dev->irq, ret);
3641 		irq_err = REQ_IRQ_ERR_MAC;
3642 		goto irq_error;
3643 	}
3644 
3645 	/* Request the Wake IRQ in case of another line
3646 	 * is used for WoL
3647 	 */
3648 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3649 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3650 				  IRQF_SHARED, dev->name, dev);
3651 		if (unlikely(ret < 0)) {
3652 			netdev_err(priv->dev,
3653 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3654 				   __func__, priv->wol_irq, ret);
3655 			irq_err = REQ_IRQ_ERR_WOL;
3656 			goto irq_error;
3657 		}
3658 	}
3659 
3660 	/* Request the IRQ lines */
3661 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3662 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3663 				  IRQF_SHARED, dev->name, dev);
3664 		if (unlikely(ret < 0)) {
3665 			netdev_err(priv->dev,
3666 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3667 				   __func__, priv->lpi_irq, ret);
3668 			irq_err = REQ_IRQ_ERR_LPI;
3669 			goto irq_error;
3670 		}
3671 	}
3672 
3673 	return 0;
3674 
3675 irq_error:
3676 	stmmac_free_irq(dev, irq_err, 0);
3677 	return ret;
3678 }
3679 
stmmac_request_irq(struct net_device * dev)3680 static int stmmac_request_irq(struct net_device *dev)
3681 {
3682 	struct stmmac_priv *priv = netdev_priv(dev);
3683 	int ret;
3684 
3685 	/* Request the IRQ lines */
3686 	if (priv->plat->multi_msi_en)
3687 		ret = stmmac_request_irq_multi_msi(dev);
3688 	else
3689 		ret = stmmac_request_irq_single(dev);
3690 
3691 	return ret;
3692 }
3693 
3694 /**
3695  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3696  *  @priv: driver private structure
3697  *  @mtu: MTU to setup the dma queue and buf with
3698  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3699  *  Allocate the Tx/Rx DMA queue and init them.
3700  *  Return value:
3701  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3702  */
3703 static struct stmmac_dma_conf *
stmmac_setup_dma_desc(struct stmmac_priv * priv,unsigned int mtu)3704 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3705 {
3706 	struct stmmac_dma_conf *dma_conf;
3707 	int chan, bfsize, ret;
3708 
3709 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3710 	if (!dma_conf) {
3711 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3712 			   __func__);
3713 		return ERR_PTR(-ENOMEM);
3714 	}
3715 
3716 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3717 	if (bfsize < 0)
3718 		bfsize = 0;
3719 
3720 	if (bfsize < BUF_SIZE_16KiB)
3721 		bfsize = stmmac_set_bfsize(mtu, 0);
3722 
3723 	dma_conf->dma_buf_sz = bfsize;
3724 	/* Chose the tx/rx size from the already defined one in the
3725 	 * priv struct. (if defined)
3726 	 */
3727 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3728 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3729 
3730 	if (!dma_conf->dma_tx_size)
3731 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3732 	if (!dma_conf->dma_rx_size)
3733 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3734 
3735 	/* Earlier check for TBS */
3736 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3737 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3738 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3739 
3740 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3741 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3742 	}
3743 
3744 	ret = alloc_dma_desc_resources(priv, dma_conf);
3745 	if (ret < 0) {
3746 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3747 			   __func__);
3748 		goto alloc_error;
3749 	}
3750 
3751 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3752 	if (ret < 0) {
3753 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3754 			   __func__);
3755 		goto init_error;
3756 	}
3757 
3758 	return dma_conf;
3759 
3760 init_error:
3761 	free_dma_desc_resources(priv, dma_conf);
3762 alloc_error:
3763 	kfree(dma_conf);
3764 	return ERR_PTR(ret);
3765 }
3766 
3767 /**
3768  *  __stmmac_open - open entry point of the driver
3769  *  @dev : pointer to the device structure.
3770  *  @dma_conf :  structure to take the dma data
3771  *  Description:
3772  *  This function is the open entry point of the driver.
3773  *  Return value:
3774  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3775  *  file on failure.
3776  */
__stmmac_open(struct net_device * dev,struct stmmac_dma_conf * dma_conf)3777 static int __stmmac_open(struct net_device *dev,
3778 			 struct stmmac_dma_conf *dma_conf)
3779 {
3780 	struct stmmac_priv *priv = netdev_priv(dev);
3781 	int mode = priv->plat->phy_interface;
3782 	u32 chan;
3783 	int ret;
3784 
3785 	ret = pm_runtime_resume_and_get(priv->device);
3786 	if (ret < 0)
3787 		return ret;
3788 
3789 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3790 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3791 	    (!priv->hw->xpcs ||
3792 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3793 		ret = stmmac_init_phy(dev);
3794 		if (ret) {
3795 			netdev_err(priv->dev,
3796 				   "%s: Cannot attach to PHY (error: %d)\n",
3797 				   __func__, ret);
3798 			goto init_phy_error;
3799 		}
3800 	}
3801 
3802 	/* Extra statistics */
3803 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3804 	priv->xstats.threshold = tc;
3805 
3806 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3807 
3808 	buf_sz = dma_conf->dma_buf_sz;
3809 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3810 
3811 	stmmac_reset_queues_param(priv);
3812 
3813 	if (priv->plat->serdes_powerup) {
3814 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3815 		if (ret < 0) {
3816 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3817 				   __func__);
3818 			goto init_error;
3819 		}
3820 	}
3821 
3822 	ret = stmmac_hw_setup(dev, true);
3823 	if (ret < 0) {
3824 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3825 		goto init_error;
3826 	}
3827 
3828 	stmmac_init_coalesce(priv);
3829 
3830 	phylink_start(priv->phylink);
3831 	/* We may have called phylink_speed_down before */
3832 	phylink_speed_up(priv->phylink);
3833 
3834 	ret = stmmac_request_irq(dev);
3835 	if (ret)
3836 		goto irq_error;
3837 
3838 	stmmac_enable_all_queues(priv);
3839 	netif_tx_start_all_queues(priv->dev);
3840 	stmmac_enable_all_dma_irq(priv);
3841 
3842 	return 0;
3843 
3844 irq_error:
3845 	phylink_stop(priv->phylink);
3846 
3847 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3848 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3849 
3850 	stmmac_hw_teardown(dev);
3851 init_error:
3852 	free_dma_desc_resources(priv, &priv->dma_conf);
3853 	phylink_disconnect_phy(priv->phylink);
3854 init_phy_error:
3855 	pm_runtime_put(priv->device);
3856 	return ret;
3857 }
3858 
stmmac_open(struct net_device * dev)3859 static int stmmac_open(struct net_device *dev)
3860 {
3861 	struct stmmac_priv *priv = netdev_priv(dev);
3862 	struct stmmac_dma_conf *dma_conf;
3863 	int ret;
3864 
3865 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3866 	if (IS_ERR(dma_conf))
3867 		return PTR_ERR(dma_conf);
3868 
3869 	ret = __stmmac_open(dev, dma_conf);
3870 	kfree(dma_conf);
3871 	return ret;
3872 }
3873 
stmmac_fpe_stop_wq(struct stmmac_priv * priv)3874 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3875 {
3876 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3877 
3878 	if (priv->fpe_wq)
3879 		destroy_workqueue(priv->fpe_wq);
3880 
3881 	netdev_info(priv->dev, "FPE workqueue stop");
3882 }
3883 
3884 /**
3885  *  stmmac_release - close entry point of the driver
3886  *  @dev : device pointer.
3887  *  Description:
3888  *  This is the stop entry point of the driver.
3889  */
stmmac_release(struct net_device * dev)3890 static int stmmac_release(struct net_device *dev)
3891 {
3892 	struct stmmac_priv *priv = netdev_priv(dev);
3893 	u32 chan;
3894 
3895 	if (device_may_wakeup(priv->device))
3896 		phylink_speed_down(priv->phylink, false);
3897 	/* Stop and disconnect the PHY */
3898 	phylink_stop(priv->phylink);
3899 	phylink_disconnect_phy(priv->phylink);
3900 
3901 	stmmac_disable_all_queues(priv);
3902 
3903 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3904 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3905 
3906 	netif_tx_disable(dev);
3907 
3908 	/* Free the IRQ lines */
3909 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3910 
3911 	if (priv->eee_enabled) {
3912 		priv->tx_path_in_lpi_mode = false;
3913 		del_timer_sync(&priv->eee_ctrl_timer);
3914 	}
3915 
3916 	/* Stop TX/RX DMA and clear the descriptors */
3917 	stmmac_stop_all_dma(priv);
3918 
3919 	/* Release and free the Rx/Tx resources */
3920 	free_dma_desc_resources(priv, &priv->dma_conf);
3921 
3922 	/* Disable the MAC Rx/Tx */
3923 	stmmac_mac_set(priv, priv->ioaddr, false);
3924 
3925 	/* Powerdown Serdes if there is */
3926 	if (priv->plat->serdes_powerdown)
3927 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3928 
3929 	netif_carrier_off(dev);
3930 
3931 	stmmac_release_ptp(priv);
3932 
3933 	pm_runtime_put(priv->device);
3934 
3935 	if (priv->dma_cap.fpesel)
3936 		stmmac_fpe_stop_wq(priv);
3937 
3938 	return 0;
3939 }
3940 
stmmac_vlan_insert(struct stmmac_priv * priv,struct sk_buff * skb,struct stmmac_tx_queue * tx_q)3941 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3942 			       struct stmmac_tx_queue *tx_q)
3943 {
3944 	u16 tag = 0x0, inner_tag = 0x0;
3945 	u32 inner_type = 0x0;
3946 	struct dma_desc *p;
3947 
3948 	if (!priv->dma_cap.vlins)
3949 		return false;
3950 	if (!skb_vlan_tag_present(skb))
3951 		return false;
3952 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3953 		inner_tag = skb_vlan_tag_get(skb);
3954 		inner_type = STMMAC_VLAN_INSERT;
3955 	}
3956 
3957 	tag = skb_vlan_tag_get(skb);
3958 
3959 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3960 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3961 	else
3962 		p = &tx_q->dma_tx[tx_q->cur_tx];
3963 
3964 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3965 		return false;
3966 
3967 	stmmac_set_tx_owner(priv, p);
3968 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3969 	return true;
3970 }
3971 
3972 /**
3973  *  stmmac_tso_allocator - close entry point of the driver
3974  *  @priv: driver private structure
3975  *  @des: buffer start address
3976  *  @total_len: total length to fill in descriptors
3977  *  @last_segment: condition for the last descriptor
3978  *  @queue: TX queue index
3979  *  Description:
3980  *  This function fills descriptor and request new descriptors according to
3981  *  buffer length to fill
3982  */
stmmac_tso_allocator(struct stmmac_priv * priv,dma_addr_t des,int total_len,bool last_segment,u32 queue)3983 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3984 				 int total_len, bool last_segment, u32 queue)
3985 {
3986 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3987 	struct dma_desc *desc;
3988 	u32 buff_size;
3989 	int tmp_len;
3990 
3991 	tmp_len = total_len;
3992 
3993 	while (tmp_len > 0) {
3994 		dma_addr_t curr_addr;
3995 
3996 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3997 						priv->dma_conf.dma_tx_size);
3998 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3999 
4000 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4001 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4002 		else
4003 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4004 
4005 		curr_addr = des + (total_len - tmp_len);
4006 		if (priv->dma_cap.addr64 <= 32)
4007 			desc->des0 = cpu_to_le32(curr_addr);
4008 		else
4009 			stmmac_set_desc_addr(priv, desc, curr_addr);
4010 
4011 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4012 			    TSO_MAX_BUFF_SIZE : tmp_len;
4013 
4014 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4015 				0, 1,
4016 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4017 				0, 0);
4018 
4019 		tmp_len -= TSO_MAX_BUFF_SIZE;
4020 	}
4021 }
4022 
stmmac_flush_tx_descriptors(struct stmmac_priv * priv,int queue)4023 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4024 {
4025 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4026 	int desc_size;
4027 
4028 	if (likely(priv->extend_desc))
4029 		desc_size = sizeof(struct dma_extended_desc);
4030 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4031 		desc_size = sizeof(struct dma_edesc);
4032 	else
4033 		desc_size = sizeof(struct dma_desc);
4034 
4035 	/* The own bit must be the latest setting done when prepare the
4036 	 * descriptor and then barrier is needed to make sure that
4037 	 * all is coherent before granting the DMA engine.
4038 	 */
4039 	wmb();
4040 
4041 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4042 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4043 }
4044 
4045 /**
4046  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4047  *  @skb : the socket buffer
4048  *  @dev : device pointer
4049  *  Description: this is the transmit function that is called on TSO frames
4050  *  (support available on GMAC4 and newer chips).
4051  *  Diagram below show the ring programming in case of TSO frames:
4052  *
4053  *  First Descriptor
4054  *   --------
4055  *   | DES0 |---> buffer1 = L2/L3/L4 header
4056  *   | DES1 |---> TCP Payload (can continue on next descr...)
4057  *   | DES2 |---> buffer 1 and 2 len
4058  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4059  *   --------
4060  *	|
4061  *     ...
4062  *	|
4063  *   --------
4064  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4065  *   | DES1 | --|
4066  *   | DES2 | --> buffer 1 and 2 len
4067  *   | DES3 |
4068  *   --------
4069  *
4070  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4071  */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)4072 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4073 {
4074 	struct dma_desc *desc, *first, *mss_desc = NULL;
4075 	struct stmmac_priv *priv = netdev_priv(dev);
4076 	int nfrags = skb_shinfo(skb)->nr_frags;
4077 	u32 queue = skb_get_queue_mapping(skb);
4078 	unsigned int first_entry, tx_packets;
4079 	int tmp_pay_len = 0, first_tx;
4080 	struct stmmac_tx_queue *tx_q;
4081 	bool has_vlan, set_ic;
4082 	u8 proto_hdr_len, hdr;
4083 	u32 pay_len, mss;
4084 	dma_addr_t des;
4085 	int i;
4086 
4087 	tx_q = &priv->dma_conf.tx_queue[queue];
4088 	first_tx = tx_q->cur_tx;
4089 
4090 	/* Compute header lengths */
4091 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4092 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4093 		hdr = sizeof(struct udphdr);
4094 	} else {
4095 		proto_hdr_len = skb_tcp_all_headers(skb);
4096 		hdr = tcp_hdrlen(skb);
4097 	}
4098 
4099 	/* Desc availability based on threshold should be enough safe */
4100 	if (unlikely(stmmac_tx_avail(priv, queue) <
4101 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4102 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4103 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4104 								queue));
4105 			/* This is a hard error, log it. */
4106 			netdev_err(priv->dev,
4107 				   "%s: Tx Ring full when queue awake\n",
4108 				   __func__);
4109 		}
4110 		return NETDEV_TX_BUSY;
4111 	}
4112 
4113 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4114 
4115 	mss = skb_shinfo(skb)->gso_size;
4116 
4117 	/* set new MSS value if needed */
4118 	if (mss != tx_q->mss) {
4119 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4120 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4121 		else
4122 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4123 
4124 		stmmac_set_mss(priv, mss_desc, mss);
4125 		tx_q->mss = mss;
4126 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4127 						priv->dma_conf.dma_tx_size);
4128 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4129 	}
4130 
4131 	if (netif_msg_tx_queued(priv)) {
4132 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4133 			__func__, hdr, proto_hdr_len, pay_len, mss);
4134 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4135 			skb->data_len);
4136 	}
4137 
4138 	/* Check if VLAN can be inserted by HW */
4139 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4140 
4141 	first_entry = tx_q->cur_tx;
4142 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4143 
4144 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4145 		desc = &tx_q->dma_entx[first_entry].basic;
4146 	else
4147 		desc = &tx_q->dma_tx[first_entry];
4148 	first = desc;
4149 
4150 	if (has_vlan)
4151 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4152 
4153 	/* first descriptor: fill Headers on Buf1 */
4154 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4155 			     DMA_TO_DEVICE);
4156 	if (dma_mapping_error(priv->device, des))
4157 		goto dma_map_err;
4158 
4159 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4160 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4161 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4162 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4163 
4164 	if (priv->dma_cap.addr64 <= 32) {
4165 		first->des0 = cpu_to_le32(des);
4166 
4167 		/* Fill start of payload in buff2 of first descriptor */
4168 		if (pay_len)
4169 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4170 
4171 		/* If needed take extra descriptors to fill the remaining payload */
4172 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4173 	} else {
4174 		stmmac_set_desc_addr(priv, first, des);
4175 		tmp_pay_len = pay_len;
4176 		des += proto_hdr_len;
4177 		pay_len = 0;
4178 	}
4179 
4180 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4181 
4182 	/* Prepare fragments */
4183 	for (i = 0; i < nfrags; i++) {
4184 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4185 
4186 		des = skb_frag_dma_map(priv->device, frag, 0,
4187 				       skb_frag_size(frag),
4188 				       DMA_TO_DEVICE);
4189 		if (dma_mapping_error(priv->device, des))
4190 			goto dma_map_err;
4191 
4192 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4193 				     (i == nfrags - 1), queue);
4194 
4195 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4196 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4197 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4198 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4199 	}
4200 
4201 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4202 
4203 	/* Only the last descriptor gets to point to the skb. */
4204 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4205 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4206 
4207 	/* Manage tx mitigation */
4208 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4209 	tx_q->tx_count_frames += tx_packets;
4210 
4211 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4212 		set_ic = true;
4213 	else if (!priv->tx_coal_frames[queue])
4214 		set_ic = false;
4215 	else if (tx_packets > priv->tx_coal_frames[queue])
4216 		set_ic = true;
4217 	else if ((tx_q->tx_count_frames %
4218 		  priv->tx_coal_frames[queue]) < tx_packets)
4219 		set_ic = true;
4220 	else
4221 		set_ic = false;
4222 
4223 	if (set_ic) {
4224 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4225 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4226 		else
4227 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4228 
4229 		tx_q->tx_count_frames = 0;
4230 		stmmac_set_tx_ic(priv, desc);
4231 		priv->xstats.tx_set_ic_bit++;
4232 	}
4233 
4234 	/* We've used all descriptors we need for this skb, however,
4235 	 * advance cur_tx so that it references a fresh descriptor.
4236 	 * ndo_start_xmit will fill this descriptor the next time it's
4237 	 * called and stmmac_tx_clean may clean up to this descriptor.
4238 	 */
4239 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4240 
4241 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4242 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4243 			  __func__);
4244 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4245 	}
4246 
4247 	dev->stats.tx_bytes += skb->len;
4248 	priv->xstats.tx_tso_frames++;
4249 	priv->xstats.tx_tso_nfrags += nfrags;
4250 
4251 	if (priv->sarc_type)
4252 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4253 
4254 	skb_tx_timestamp(skb);
4255 
4256 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4257 		     priv->hwts_tx_en)) {
4258 		/* declare that device is doing timestamping */
4259 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4260 		stmmac_enable_tx_timestamp(priv, first);
4261 	}
4262 
4263 	/* Complete the first descriptor before granting the DMA */
4264 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4265 			proto_hdr_len,
4266 			pay_len,
4267 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4268 			hdr / 4, (skb->len - proto_hdr_len));
4269 
4270 	/* If context desc is used to change MSS */
4271 	if (mss_desc) {
4272 		/* Make sure that first descriptor has been completely
4273 		 * written, including its own bit. This is because MSS is
4274 		 * actually before first descriptor, so we need to make
4275 		 * sure that MSS's own bit is the last thing written.
4276 		 */
4277 		dma_wmb();
4278 		stmmac_set_tx_owner(priv, mss_desc);
4279 	}
4280 
4281 	if (netif_msg_pktdata(priv)) {
4282 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4283 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4284 			tx_q->cur_tx, first, nfrags);
4285 		pr_info(">>> frame to be transmitted: ");
4286 		print_pkt(skb->data, skb_headlen(skb));
4287 	}
4288 
4289 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4290 
4291 	stmmac_flush_tx_descriptors(priv, queue);
4292 	stmmac_tx_timer_arm(priv, queue);
4293 
4294 	return NETDEV_TX_OK;
4295 
4296 dma_map_err:
4297 	dev_err(priv->device, "Tx dma map failed\n");
4298 	dev_kfree_skb(skb);
4299 	priv->dev->stats.tx_dropped++;
4300 	return NETDEV_TX_OK;
4301 }
4302 
4303 /**
4304  *  stmmac_xmit - Tx entry point of the driver
4305  *  @skb : the socket buffer
4306  *  @dev : device pointer
4307  *  Description : this is the tx entry point of the driver.
4308  *  It programs the chain or the ring and supports oversized frames
4309  *  and SG feature.
4310  */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)4311 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4312 {
4313 	unsigned int first_entry, tx_packets, enh_desc;
4314 	struct stmmac_priv *priv = netdev_priv(dev);
4315 	unsigned int nopaged_len = skb_headlen(skb);
4316 	int i, csum_insertion = 0, is_jumbo = 0;
4317 	u32 queue = skb_get_queue_mapping(skb);
4318 	int nfrags = skb_shinfo(skb)->nr_frags;
4319 	int gso = skb_shinfo(skb)->gso_type;
4320 	struct dma_edesc *tbs_desc = NULL;
4321 	struct dma_desc *desc, *first;
4322 	struct stmmac_tx_queue *tx_q;
4323 	bool has_vlan, set_ic;
4324 	int entry, first_tx;
4325 	dma_addr_t des;
4326 
4327 	tx_q = &priv->dma_conf.tx_queue[queue];
4328 	first_tx = tx_q->cur_tx;
4329 
4330 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4331 		stmmac_disable_eee_mode(priv);
4332 
4333 	/* Manage oversized TCP frames for GMAC4 device */
4334 	if (skb_is_gso(skb) && priv->tso) {
4335 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4336 			return stmmac_tso_xmit(skb, dev);
4337 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4338 			return stmmac_tso_xmit(skb, dev);
4339 	}
4340 
4341 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4342 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4343 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4344 								queue));
4345 			/* This is a hard error, log it. */
4346 			netdev_err(priv->dev,
4347 				   "%s: Tx Ring full when queue awake\n",
4348 				   __func__);
4349 		}
4350 		return NETDEV_TX_BUSY;
4351 	}
4352 
4353 	/* Check if VLAN can be inserted by HW */
4354 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4355 
4356 	entry = tx_q->cur_tx;
4357 	first_entry = entry;
4358 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4359 
4360 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4361 
4362 	if (likely(priv->extend_desc))
4363 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4364 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4365 		desc = &tx_q->dma_entx[entry].basic;
4366 	else
4367 		desc = tx_q->dma_tx + entry;
4368 
4369 	first = desc;
4370 
4371 	if (has_vlan)
4372 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4373 
4374 	enh_desc = priv->plat->enh_desc;
4375 	/* To program the descriptors according to the size of the frame */
4376 	if (enh_desc)
4377 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4378 
4379 	if (unlikely(is_jumbo)) {
4380 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4381 		if (unlikely(entry < 0) && (entry != -EINVAL))
4382 			goto dma_map_err;
4383 	}
4384 
4385 	for (i = 0; i < nfrags; i++) {
4386 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4387 		int len = skb_frag_size(frag);
4388 		bool last_segment = (i == (nfrags - 1));
4389 
4390 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4391 		WARN_ON(tx_q->tx_skbuff[entry]);
4392 
4393 		if (likely(priv->extend_desc))
4394 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4395 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4396 			desc = &tx_q->dma_entx[entry].basic;
4397 		else
4398 			desc = tx_q->dma_tx + entry;
4399 
4400 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4401 				       DMA_TO_DEVICE);
4402 		if (dma_mapping_error(priv->device, des))
4403 			goto dma_map_err; /* should reuse desc w/o issues */
4404 
4405 		tx_q->tx_skbuff_dma[entry].buf = des;
4406 
4407 		stmmac_set_desc_addr(priv, desc, des);
4408 
4409 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4410 		tx_q->tx_skbuff_dma[entry].len = len;
4411 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4412 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4413 
4414 		/* Prepare the descriptor and set the own bit too */
4415 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4416 				priv->mode, 1, last_segment, skb->len);
4417 	}
4418 
4419 	/* Only the last descriptor gets to point to the skb. */
4420 	tx_q->tx_skbuff[entry] = skb;
4421 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4422 
4423 	/* According to the coalesce parameter the IC bit for the latest
4424 	 * segment is reset and the timer re-started to clean the tx status.
4425 	 * This approach takes care about the fragments: desc is the first
4426 	 * element in case of no SG.
4427 	 */
4428 	tx_packets = (entry + 1) - first_tx;
4429 	tx_q->tx_count_frames += tx_packets;
4430 
4431 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4432 		set_ic = true;
4433 	else if (!priv->tx_coal_frames[queue])
4434 		set_ic = false;
4435 	else if (tx_packets > priv->tx_coal_frames[queue])
4436 		set_ic = true;
4437 	else if ((tx_q->tx_count_frames %
4438 		  priv->tx_coal_frames[queue]) < tx_packets)
4439 		set_ic = true;
4440 	else
4441 		set_ic = false;
4442 
4443 	if (set_ic) {
4444 		if (likely(priv->extend_desc))
4445 			desc = &tx_q->dma_etx[entry].basic;
4446 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4447 			desc = &tx_q->dma_entx[entry].basic;
4448 		else
4449 			desc = &tx_q->dma_tx[entry];
4450 
4451 		tx_q->tx_count_frames = 0;
4452 		stmmac_set_tx_ic(priv, desc);
4453 		priv->xstats.tx_set_ic_bit++;
4454 	}
4455 
4456 	/* We've used all descriptors we need for this skb, however,
4457 	 * advance cur_tx so that it references a fresh descriptor.
4458 	 * ndo_start_xmit will fill this descriptor the next time it's
4459 	 * called and stmmac_tx_clean may clean up to this descriptor.
4460 	 */
4461 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4462 	tx_q->cur_tx = entry;
4463 
4464 	if (netif_msg_pktdata(priv)) {
4465 		netdev_dbg(priv->dev,
4466 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4467 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4468 			   entry, first, nfrags);
4469 
4470 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4471 		print_pkt(skb->data, skb->len);
4472 	}
4473 
4474 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4475 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4476 			  __func__);
4477 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4478 	}
4479 
4480 	dev->stats.tx_bytes += skb->len;
4481 
4482 	if (priv->sarc_type)
4483 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4484 
4485 	skb_tx_timestamp(skb);
4486 
4487 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4488 	 * problems because all the descriptors are actually ready to be
4489 	 * passed to the DMA engine.
4490 	 */
4491 	if (likely(!is_jumbo)) {
4492 		bool last_segment = (nfrags == 0);
4493 
4494 		des = dma_map_single(priv->device, skb->data,
4495 				     nopaged_len, DMA_TO_DEVICE);
4496 		if (dma_mapping_error(priv->device, des))
4497 			goto dma_map_err;
4498 
4499 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4500 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4501 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4502 
4503 		stmmac_set_desc_addr(priv, first, des);
4504 
4505 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4506 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4507 
4508 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4509 			     priv->hwts_tx_en)) {
4510 			/* declare that device is doing timestamping */
4511 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4512 			stmmac_enable_tx_timestamp(priv, first);
4513 		}
4514 
4515 		/* Prepare the first descriptor setting the OWN bit too */
4516 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4517 				csum_insertion, priv->mode, 0, last_segment,
4518 				skb->len);
4519 	}
4520 
4521 	if (tx_q->tbs & STMMAC_TBS_EN) {
4522 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4523 
4524 		tbs_desc = &tx_q->dma_entx[first_entry];
4525 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4526 	}
4527 
4528 	stmmac_set_tx_owner(priv, first);
4529 
4530 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4531 
4532 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4533 
4534 	stmmac_flush_tx_descriptors(priv, queue);
4535 	stmmac_tx_timer_arm(priv, queue);
4536 
4537 	return NETDEV_TX_OK;
4538 
4539 dma_map_err:
4540 	netdev_err(priv->dev, "Tx DMA map failed\n");
4541 	dev_kfree_skb(skb);
4542 	priv->dev->stats.tx_dropped++;
4543 	return NETDEV_TX_OK;
4544 }
4545 
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)4546 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4547 {
4548 	struct vlan_ethhdr *veth;
4549 	__be16 vlan_proto;
4550 	u16 vlanid;
4551 
4552 	veth = (struct vlan_ethhdr *)skb->data;
4553 	vlan_proto = veth->h_vlan_proto;
4554 
4555 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4556 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4557 	    (vlan_proto == htons(ETH_P_8021AD) &&
4558 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4559 		/* pop the vlan tag */
4560 		vlanid = ntohs(veth->h_vlan_TCI);
4561 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4562 		skb_pull(skb, VLAN_HLEN);
4563 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4564 	}
4565 }
4566 
4567 /**
4568  * stmmac_rx_refill - refill used skb preallocated buffers
4569  * @priv: driver private structure
4570  * @queue: RX queue index
4571  * Description : this is to reallocate the skb for the reception process
4572  * that is based on zero-copy.
4573  */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)4574 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4575 {
4576 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4577 	int dirty = stmmac_rx_dirty(priv, queue);
4578 	unsigned int entry = rx_q->dirty_rx;
4579 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4580 
4581 	if (priv->dma_cap.addr64 <= 32)
4582 		gfp |= GFP_DMA32;
4583 
4584 	while (dirty-- > 0) {
4585 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4586 		struct dma_desc *p;
4587 		bool use_rx_wd;
4588 
4589 		if (priv->extend_desc)
4590 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4591 		else
4592 			p = rx_q->dma_rx + entry;
4593 
4594 		if (!buf->page) {
4595 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4596 			if (!buf->page)
4597 				break;
4598 		}
4599 
4600 		if (priv->sph && !buf->sec_page) {
4601 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4602 			if (!buf->sec_page)
4603 				break;
4604 
4605 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4606 		}
4607 
4608 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4609 
4610 		stmmac_set_desc_addr(priv, p, buf->addr);
4611 		if (priv->sph)
4612 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4613 		else
4614 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4615 		stmmac_refill_desc3(priv, rx_q, p);
4616 
4617 		rx_q->rx_count_frames++;
4618 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4619 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4620 			rx_q->rx_count_frames = 0;
4621 
4622 		use_rx_wd = !priv->rx_coal_frames[queue];
4623 		use_rx_wd |= rx_q->rx_count_frames > 0;
4624 		if (!priv->use_riwt)
4625 			use_rx_wd = false;
4626 
4627 		dma_wmb();
4628 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4629 
4630 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4631 	}
4632 	rx_q->dirty_rx = entry;
4633 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4634 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4635 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4636 }
4637 
stmmac_rx_buf1_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)4638 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4639 				       struct dma_desc *p,
4640 				       int status, unsigned int len)
4641 {
4642 	unsigned int plen = 0, hlen = 0;
4643 	int coe = priv->hw->rx_csum;
4644 
4645 	/* Not first descriptor, buffer is always zero */
4646 	if (priv->sph && len)
4647 		return 0;
4648 
4649 	/* First descriptor, get split header length */
4650 	stmmac_get_rx_header_len(priv, p, &hlen);
4651 	if (priv->sph && hlen) {
4652 		priv->xstats.rx_split_hdr_pkt_n++;
4653 		return hlen;
4654 	}
4655 
4656 	/* First descriptor, not last descriptor and not split header */
4657 	if (status & rx_not_ls)
4658 		return priv->dma_conf.dma_buf_sz;
4659 
4660 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4661 
4662 	/* First descriptor and last descriptor and not split header */
4663 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4664 }
4665 
stmmac_rx_buf2_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)4666 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4667 				       struct dma_desc *p,
4668 				       int status, unsigned int len)
4669 {
4670 	int coe = priv->hw->rx_csum;
4671 	unsigned int plen = 0;
4672 
4673 	/* Not split header, buffer is not available */
4674 	if (!priv->sph)
4675 		return 0;
4676 
4677 	/* Not last descriptor */
4678 	if (status & rx_not_ls)
4679 		return priv->dma_conf.dma_buf_sz;
4680 
4681 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4682 
4683 	/* Last descriptor */
4684 	return plen - len;
4685 }
4686 
stmmac_xdp_xmit_xdpf(struct stmmac_priv * priv,int queue,struct xdp_frame * xdpf,bool dma_map)4687 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4688 				struct xdp_frame *xdpf, bool dma_map)
4689 {
4690 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4691 	unsigned int entry = tx_q->cur_tx;
4692 	struct dma_desc *tx_desc;
4693 	dma_addr_t dma_addr;
4694 	bool set_ic;
4695 
4696 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4697 		return STMMAC_XDP_CONSUMED;
4698 
4699 	if (likely(priv->extend_desc))
4700 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4701 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4702 		tx_desc = &tx_q->dma_entx[entry].basic;
4703 	else
4704 		tx_desc = tx_q->dma_tx + entry;
4705 
4706 	if (dma_map) {
4707 		dma_addr = dma_map_single(priv->device, xdpf->data,
4708 					  xdpf->len, DMA_TO_DEVICE);
4709 		if (dma_mapping_error(priv->device, dma_addr))
4710 			return STMMAC_XDP_CONSUMED;
4711 
4712 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4713 	} else {
4714 		struct page *page = virt_to_page(xdpf->data);
4715 
4716 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4717 			   xdpf->headroom;
4718 		dma_sync_single_for_device(priv->device, dma_addr,
4719 					   xdpf->len, DMA_BIDIRECTIONAL);
4720 
4721 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4722 	}
4723 
4724 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4725 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4726 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4727 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4728 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4729 
4730 	tx_q->xdpf[entry] = xdpf;
4731 
4732 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4733 
4734 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4735 			       true, priv->mode, true, true,
4736 			       xdpf->len);
4737 
4738 	tx_q->tx_count_frames++;
4739 
4740 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4741 		set_ic = true;
4742 	else
4743 		set_ic = false;
4744 
4745 	if (set_ic) {
4746 		tx_q->tx_count_frames = 0;
4747 		stmmac_set_tx_ic(priv, tx_desc);
4748 		priv->xstats.tx_set_ic_bit++;
4749 	}
4750 
4751 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4752 
4753 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4754 	tx_q->cur_tx = entry;
4755 
4756 	return STMMAC_XDP_TX;
4757 }
4758 
stmmac_xdp_get_tx_queue(struct stmmac_priv * priv,int cpu)4759 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4760 				   int cpu)
4761 {
4762 	int index = cpu;
4763 
4764 	if (unlikely(index < 0))
4765 		index = 0;
4766 
4767 	while (index >= priv->plat->tx_queues_to_use)
4768 		index -= priv->plat->tx_queues_to_use;
4769 
4770 	return index;
4771 }
4772 
stmmac_xdp_xmit_back(struct stmmac_priv * priv,struct xdp_buff * xdp)4773 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4774 				struct xdp_buff *xdp)
4775 {
4776 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4777 	int cpu = smp_processor_id();
4778 	struct netdev_queue *nq;
4779 	int queue;
4780 	int res;
4781 
4782 	if (unlikely(!xdpf))
4783 		return STMMAC_XDP_CONSUMED;
4784 
4785 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4786 	nq = netdev_get_tx_queue(priv->dev, queue);
4787 
4788 	__netif_tx_lock(nq, cpu);
4789 	/* Avoids TX time-out as we are sharing with slow path */
4790 	txq_trans_cond_update(nq);
4791 
4792 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4793 	if (res == STMMAC_XDP_TX)
4794 		stmmac_flush_tx_descriptors(priv, queue);
4795 
4796 	__netif_tx_unlock(nq);
4797 
4798 	return res;
4799 }
4800 
__stmmac_xdp_run_prog(struct stmmac_priv * priv,struct bpf_prog * prog,struct xdp_buff * xdp)4801 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4802 				 struct bpf_prog *prog,
4803 				 struct xdp_buff *xdp)
4804 {
4805 	u32 act;
4806 	int res;
4807 
4808 	act = bpf_prog_run_xdp(prog, xdp);
4809 	switch (act) {
4810 	case XDP_PASS:
4811 		res = STMMAC_XDP_PASS;
4812 		break;
4813 	case XDP_TX:
4814 		res = stmmac_xdp_xmit_back(priv, xdp);
4815 		break;
4816 	case XDP_REDIRECT:
4817 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4818 			res = STMMAC_XDP_CONSUMED;
4819 		else
4820 			res = STMMAC_XDP_REDIRECT;
4821 		break;
4822 	default:
4823 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4824 		fallthrough;
4825 	case XDP_ABORTED:
4826 		trace_xdp_exception(priv->dev, prog, act);
4827 		fallthrough;
4828 	case XDP_DROP:
4829 		res = STMMAC_XDP_CONSUMED;
4830 		break;
4831 	}
4832 
4833 	return res;
4834 }
4835 
stmmac_xdp_run_prog(struct stmmac_priv * priv,struct xdp_buff * xdp)4836 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4837 					   struct xdp_buff *xdp)
4838 {
4839 	struct bpf_prog *prog;
4840 	int res;
4841 
4842 	prog = READ_ONCE(priv->xdp_prog);
4843 	if (!prog) {
4844 		res = STMMAC_XDP_PASS;
4845 		goto out;
4846 	}
4847 
4848 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4849 out:
4850 	return ERR_PTR(-res);
4851 }
4852 
stmmac_finalize_xdp_rx(struct stmmac_priv * priv,int xdp_status)4853 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4854 				   int xdp_status)
4855 {
4856 	int cpu = smp_processor_id();
4857 	int queue;
4858 
4859 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4860 
4861 	if (xdp_status & STMMAC_XDP_TX)
4862 		stmmac_tx_timer_arm(priv, queue);
4863 
4864 	if (xdp_status & STMMAC_XDP_REDIRECT)
4865 		xdp_do_flush();
4866 }
4867 
stmmac_construct_skb_zc(struct stmmac_channel * ch,struct xdp_buff * xdp)4868 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4869 					       struct xdp_buff *xdp)
4870 {
4871 	unsigned int metasize = xdp->data - xdp->data_meta;
4872 	unsigned int datasize = xdp->data_end - xdp->data;
4873 	struct sk_buff *skb;
4874 
4875 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4876 			       xdp->data_end - xdp->data_hard_start,
4877 			       GFP_ATOMIC | __GFP_NOWARN);
4878 	if (unlikely(!skb))
4879 		return NULL;
4880 
4881 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4882 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4883 	if (metasize)
4884 		skb_metadata_set(skb, metasize);
4885 
4886 	return skb;
4887 }
4888 
stmmac_dispatch_skb_zc(struct stmmac_priv * priv,u32 queue,struct dma_desc * p,struct dma_desc * np,struct xdp_buff * xdp)4889 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4890 				   struct dma_desc *p, struct dma_desc *np,
4891 				   struct xdp_buff *xdp)
4892 {
4893 	struct stmmac_channel *ch = &priv->channel[queue];
4894 	unsigned int len = xdp->data_end - xdp->data;
4895 	enum pkt_hash_types hash_type;
4896 	int coe = priv->hw->rx_csum;
4897 	struct sk_buff *skb;
4898 	u32 hash;
4899 
4900 	skb = stmmac_construct_skb_zc(ch, xdp);
4901 	if (!skb) {
4902 		priv->dev->stats.rx_dropped++;
4903 		return;
4904 	}
4905 
4906 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4907 	stmmac_rx_vlan(priv->dev, skb);
4908 	skb->protocol = eth_type_trans(skb, priv->dev);
4909 
4910 	if (unlikely(!coe))
4911 		skb_checksum_none_assert(skb);
4912 	else
4913 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4914 
4915 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4916 		skb_set_hash(skb, hash, hash_type);
4917 
4918 	skb_record_rx_queue(skb, queue);
4919 	napi_gro_receive(&ch->rxtx_napi, skb);
4920 
4921 	priv->dev->stats.rx_packets++;
4922 	priv->dev->stats.rx_bytes += len;
4923 }
4924 
stmmac_rx_refill_zc(struct stmmac_priv * priv,u32 queue,u32 budget)4925 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4926 {
4927 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4928 	unsigned int entry = rx_q->dirty_rx;
4929 	struct dma_desc *rx_desc = NULL;
4930 	bool ret = true;
4931 
4932 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4933 
4934 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4935 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4936 		dma_addr_t dma_addr;
4937 		bool use_rx_wd;
4938 
4939 		if (!buf->xdp) {
4940 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4941 			if (!buf->xdp) {
4942 				ret = false;
4943 				break;
4944 			}
4945 		}
4946 
4947 		if (priv->extend_desc)
4948 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4949 		else
4950 			rx_desc = rx_q->dma_rx + entry;
4951 
4952 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4953 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4954 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4955 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4956 
4957 		rx_q->rx_count_frames++;
4958 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4959 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4960 			rx_q->rx_count_frames = 0;
4961 
4962 		use_rx_wd = !priv->rx_coal_frames[queue];
4963 		use_rx_wd |= rx_q->rx_count_frames > 0;
4964 		if (!priv->use_riwt)
4965 			use_rx_wd = false;
4966 
4967 		dma_wmb();
4968 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4969 
4970 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4971 	}
4972 
4973 	if (rx_desc) {
4974 		rx_q->dirty_rx = entry;
4975 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4976 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4977 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4978 	}
4979 
4980 	return ret;
4981 }
4982 
stmmac_rx_zc(struct stmmac_priv * priv,int limit,u32 queue)4983 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4984 {
4985 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4986 	unsigned int count = 0, error = 0, len = 0;
4987 	int dirty = stmmac_rx_dirty(priv, queue);
4988 	unsigned int next_entry = rx_q->cur_rx;
4989 	unsigned int desc_size;
4990 	struct bpf_prog *prog;
4991 	bool failure = false;
4992 	int xdp_status = 0;
4993 	int status = 0;
4994 
4995 	if (netif_msg_rx_status(priv)) {
4996 		void *rx_head;
4997 
4998 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4999 		if (priv->extend_desc) {
5000 			rx_head = (void *)rx_q->dma_erx;
5001 			desc_size = sizeof(struct dma_extended_desc);
5002 		} else {
5003 			rx_head = (void *)rx_q->dma_rx;
5004 			desc_size = sizeof(struct dma_desc);
5005 		}
5006 
5007 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5008 				    rx_q->dma_rx_phy, desc_size);
5009 	}
5010 	while (count < limit) {
5011 		struct stmmac_rx_buffer *buf;
5012 		unsigned int buf1_len = 0;
5013 		struct dma_desc *np, *p;
5014 		int entry;
5015 		int res;
5016 
5017 		if (!count && rx_q->state_saved) {
5018 			error = rx_q->state.error;
5019 			len = rx_q->state.len;
5020 		} else {
5021 			rx_q->state_saved = false;
5022 			error = 0;
5023 			len = 0;
5024 		}
5025 
5026 		if (count >= limit)
5027 			break;
5028 
5029 read_again:
5030 		buf1_len = 0;
5031 		entry = next_entry;
5032 		buf = &rx_q->buf_pool[entry];
5033 
5034 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5035 			failure = failure ||
5036 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5037 			dirty = 0;
5038 		}
5039 
5040 		if (priv->extend_desc)
5041 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5042 		else
5043 			p = rx_q->dma_rx + entry;
5044 
5045 		/* read the status of the incoming frame */
5046 		status = stmmac_rx_status(priv, &priv->dev->stats,
5047 					  &priv->xstats, p);
5048 		/* check if managed by the DMA otherwise go ahead */
5049 		if (unlikely(status & dma_own))
5050 			break;
5051 
5052 		/* Prefetch the next RX descriptor */
5053 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5054 						priv->dma_conf.dma_rx_size);
5055 		next_entry = rx_q->cur_rx;
5056 
5057 		if (priv->extend_desc)
5058 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5059 		else
5060 			np = rx_q->dma_rx + next_entry;
5061 
5062 		prefetch(np);
5063 
5064 		/* Ensure a valid XSK buffer before proceed */
5065 		if (!buf->xdp)
5066 			break;
5067 
5068 		if (priv->extend_desc)
5069 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5070 						  &priv->xstats,
5071 						  rx_q->dma_erx + entry);
5072 		if (unlikely(status == discard_frame)) {
5073 			xsk_buff_free(buf->xdp);
5074 			buf->xdp = NULL;
5075 			dirty++;
5076 			error = 1;
5077 			if (!priv->hwts_rx_en)
5078 				priv->dev->stats.rx_errors++;
5079 		}
5080 
5081 		if (unlikely(error && (status & rx_not_ls)))
5082 			goto read_again;
5083 		if (unlikely(error)) {
5084 			count++;
5085 			continue;
5086 		}
5087 
5088 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5089 		if (likely(status & rx_not_ls)) {
5090 			xsk_buff_free(buf->xdp);
5091 			buf->xdp = NULL;
5092 			dirty++;
5093 			count++;
5094 			goto read_again;
5095 		}
5096 
5097 		/* XDP ZC Frame only support primary buffers for now */
5098 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5099 		len += buf1_len;
5100 
5101 		/* ACS is disabled; strip manually. */
5102 		if (likely(!(status & rx_not_ls))) {
5103 			buf1_len -= ETH_FCS_LEN;
5104 			len -= ETH_FCS_LEN;
5105 		}
5106 
5107 		/* RX buffer is good and fit into a XSK pool buffer */
5108 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5109 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5110 
5111 		prog = READ_ONCE(priv->xdp_prog);
5112 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5113 
5114 		switch (res) {
5115 		case STMMAC_XDP_PASS:
5116 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5117 			xsk_buff_free(buf->xdp);
5118 			break;
5119 		case STMMAC_XDP_CONSUMED:
5120 			xsk_buff_free(buf->xdp);
5121 			priv->dev->stats.rx_dropped++;
5122 			break;
5123 		case STMMAC_XDP_TX:
5124 		case STMMAC_XDP_REDIRECT:
5125 			xdp_status |= res;
5126 			break;
5127 		}
5128 
5129 		buf->xdp = NULL;
5130 		dirty++;
5131 		count++;
5132 	}
5133 
5134 	if (status & rx_not_ls) {
5135 		rx_q->state_saved = true;
5136 		rx_q->state.error = error;
5137 		rx_q->state.len = len;
5138 	}
5139 
5140 	stmmac_finalize_xdp_rx(priv, xdp_status);
5141 
5142 	priv->xstats.rx_pkt_n += count;
5143 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5144 
5145 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5146 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5147 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5148 		else
5149 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5150 
5151 		return (int)count;
5152 	}
5153 
5154 	return failure ? limit : (int)count;
5155 }
5156 
5157 /**
5158  * stmmac_rx - manage the receive process
5159  * @priv: driver private structure
5160  * @limit: napi bugget
5161  * @queue: RX queue index.
5162  * Description :  this the function called by the napi poll method.
5163  * It gets all the frames inside the ring.
5164  */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)5165 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5166 {
5167 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5168 	struct stmmac_channel *ch = &priv->channel[queue];
5169 	unsigned int count = 0, error = 0, len = 0;
5170 	int status = 0, coe = priv->hw->rx_csum;
5171 	unsigned int next_entry = rx_q->cur_rx;
5172 	enum dma_data_direction dma_dir;
5173 	unsigned int desc_size;
5174 	struct sk_buff *skb = NULL;
5175 	struct xdp_buff xdp;
5176 	int xdp_status = 0;
5177 	int buf_sz;
5178 
5179 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5180 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5181 
5182 	if (netif_msg_rx_status(priv)) {
5183 		void *rx_head;
5184 
5185 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5186 		if (priv->extend_desc) {
5187 			rx_head = (void *)rx_q->dma_erx;
5188 			desc_size = sizeof(struct dma_extended_desc);
5189 		} else {
5190 			rx_head = (void *)rx_q->dma_rx;
5191 			desc_size = sizeof(struct dma_desc);
5192 		}
5193 
5194 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5195 				    rx_q->dma_rx_phy, desc_size);
5196 	}
5197 	while (count < limit) {
5198 		unsigned int buf1_len = 0, buf2_len = 0;
5199 		enum pkt_hash_types hash_type;
5200 		struct stmmac_rx_buffer *buf;
5201 		struct dma_desc *np, *p;
5202 		int entry;
5203 		u32 hash;
5204 
5205 		if (!count && rx_q->state_saved) {
5206 			skb = rx_q->state.skb;
5207 			error = rx_q->state.error;
5208 			len = rx_q->state.len;
5209 		} else {
5210 			rx_q->state_saved = false;
5211 			skb = NULL;
5212 			error = 0;
5213 			len = 0;
5214 		}
5215 
5216 		if (count >= limit)
5217 			break;
5218 
5219 read_again:
5220 		buf1_len = 0;
5221 		buf2_len = 0;
5222 		entry = next_entry;
5223 		buf = &rx_q->buf_pool[entry];
5224 
5225 		if (priv->extend_desc)
5226 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5227 		else
5228 			p = rx_q->dma_rx + entry;
5229 
5230 		/* read the status of the incoming frame */
5231 		status = stmmac_rx_status(priv, &priv->dev->stats,
5232 				&priv->xstats, p);
5233 		/* check if managed by the DMA otherwise go ahead */
5234 		if (unlikely(status & dma_own))
5235 			break;
5236 
5237 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5238 						priv->dma_conf.dma_rx_size);
5239 		next_entry = rx_q->cur_rx;
5240 
5241 		if (priv->extend_desc)
5242 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5243 		else
5244 			np = rx_q->dma_rx + next_entry;
5245 
5246 		prefetch(np);
5247 
5248 		if (priv->extend_desc)
5249 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5250 					&priv->xstats, rx_q->dma_erx + entry);
5251 		if (unlikely(status == discard_frame)) {
5252 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5253 			buf->page = NULL;
5254 			error = 1;
5255 			if (!priv->hwts_rx_en)
5256 				priv->dev->stats.rx_errors++;
5257 		}
5258 
5259 		if (unlikely(error && (status & rx_not_ls)))
5260 			goto read_again;
5261 		if (unlikely(error)) {
5262 			dev_kfree_skb(skb);
5263 			skb = NULL;
5264 			count++;
5265 			continue;
5266 		}
5267 
5268 		/* Buffer is good. Go on. */
5269 
5270 		prefetch(page_address(buf->page) + buf->page_offset);
5271 		if (buf->sec_page)
5272 			prefetch(page_address(buf->sec_page));
5273 
5274 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5275 		len += buf1_len;
5276 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5277 		len += buf2_len;
5278 
5279 		/* ACS is disabled; strip manually. */
5280 		if (likely(!(status & rx_not_ls))) {
5281 			if (buf2_len) {
5282 				buf2_len -= ETH_FCS_LEN;
5283 				len -= ETH_FCS_LEN;
5284 			} else if (buf1_len) {
5285 				buf1_len -= ETH_FCS_LEN;
5286 				len -= ETH_FCS_LEN;
5287 			}
5288 		}
5289 
5290 		if (!skb) {
5291 			unsigned int pre_len, sync_len;
5292 
5293 			dma_sync_single_for_cpu(priv->device, buf->addr,
5294 						buf1_len, dma_dir);
5295 
5296 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5297 			xdp_prepare_buff(&xdp, page_address(buf->page),
5298 					 buf->page_offset, buf1_len, false);
5299 
5300 			pre_len = xdp.data_end - xdp.data_hard_start -
5301 				  buf->page_offset;
5302 			skb = stmmac_xdp_run_prog(priv, &xdp);
5303 			/* Due xdp_adjust_tail: DMA sync for_device
5304 			 * cover max len CPU touch
5305 			 */
5306 			sync_len = xdp.data_end - xdp.data_hard_start -
5307 				   buf->page_offset;
5308 			sync_len = max(sync_len, pre_len);
5309 
5310 			/* For Not XDP_PASS verdict */
5311 			if (IS_ERR(skb)) {
5312 				unsigned int xdp_res = -PTR_ERR(skb);
5313 
5314 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5315 					page_pool_put_page(rx_q->page_pool,
5316 							   virt_to_head_page(xdp.data),
5317 							   sync_len, true);
5318 					buf->page = NULL;
5319 					priv->dev->stats.rx_dropped++;
5320 
5321 					/* Clear skb as it was set as
5322 					 * status by XDP program.
5323 					 */
5324 					skb = NULL;
5325 
5326 					if (unlikely((status & rx_not_ls)))
5327 						goto read_again;
5328 
5329 					count++;
5330 					continue;
5331 				} else if (xdp_res & (STMMAC_XDP_TX |
5332 						      STMMAC_XDP_REDIRECT)) {
5333 					xdp_status |= xdp_res;
5334 					buf->page = NULL;
5335 					skb = NULL;
5336 					count++;
5337 					continue;
5338 				}
5339 			}
5340 		}
5341 
5342 		if (!skb) {
5343 			/* XDP program may expand or reduce tail */
5344 			buf1_len = xdp.data_end - xdp.data;
5345 
5346 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5347 			if (!skb) {
5348 				priv->dev->stats.rx_dropped++;
5349 				count++;
5350 				goto drain_data;
5351 			}
5352 
5353 			/* XDP program may adjust header */
5354 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5355 			skb_put(skb, buf1_len);
5356 
5357 			/* Data payload copied into SKB, page ready for recycle */
5358 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5359 			buf->page = NULL;
5360 		} else if (buf1_len) {
5361 			dma_sync_single_for_cpu(priv->device, buf->addr,
5362 						buf1_len, dma_dir);
5363 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5364 					buf->page, buf->page_offset, buf1_len,
5365 					priv->dma_conf.dma_buf_sz);
5366 
5367 			/* Data payload appended into SKB */
5368 			page_pool_release_page(rx_q->page_pool, buf->page);
5369 			buf->page = NULL;
5370 		}
5371 
5372 		if (buf2_len) {
5373 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5374 						buf2_len, dma_dir);
5375 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5376 					buf->sec_page, 0, buf2_len,
5377 					priv->dma_conf.dma_buf_sz);
5378 
5379 			/* Data payload appended into SKB */
5380 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5381 			buf->sec_page = NULL;
5382 		}
5383 
5384 drain_data:
5385 		if (likely(status & rx_not_ls))
5386 			goto read_again;
5387 		if (!skb)
5388 			continue;
5389 
5390 		/* Got entire packet into SKB. Finish it. */
5391 
5392 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5393 		stmmac_rx_vlan(priv->dev, skb);
5394 		skb->protocol = eth_type_trans(skb, priv->dev);
5395 
5396 		if (unlikely(!coe))
5397 			skb_checksum_none_assert(skb);
5398 		else
5399 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5400 
5401 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5402 			skb_set_hash(skb, hash, hash_type);
5403 
5404 		skb_record_rx_queue(skb, queue);
5405 		napi_gro_receive(&ch->rx_napi, skb);
5406 		skb = NULL;
5407 
5408 		priv->dev->stats.rx_packets++;
5409 		priv->dev->stats.rx_bytes += len;
5410 		count++;
5411 	}
5412 
5413 	if (status & rx_not_ls || skb) {
5414 		rx_q->state_saved = true;
5415 		rx_q->state.skb = skb;
5416 		rx_q->state.error = error;
5417 		rx_q->state.len = len;
5418 	}
5419 
5420 	stmmac_finalize_xdp_rx(priv, xdp_status);
5421 
5422 	stmmac_rx_refill(priv, queue);
5423 
5424 	priv->xstats.rx_pkt_n += count;
5425 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5426 
5427 	return count;
5428 }
5429 
stmmac_napi_poll_rx(struct napi_struct * napi,int budget)5430 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5431 {
5432 	struct stmmac_channel *ch =
5433 		container_of(napi, struct stmmac_channel, rx_napi);
5434 	struct stmmac_priv *priv = ch->priv_data;
5435 	u32 chan = ch->index;
5436 	int work_done;
5437 
5438 	priv->xstats.napi_poll++;
5439 
5440 	work_done = stmmac_rx(priv, budget, chan);
5441 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5442 		unsigned long flags;
5443 
5444 		spin_lock_irqsave(&ch->lock, flags);
5445 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5446 		spin_unlock_irqrestore(&ch->lock, flags);
5447 	}
5448 
5449 	return work_done;
5450 }
5451 
stmmac_napi_poll_tx(struct napi_struct * napi,int budget)5452 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5453 {
5454 	struct stmmac_channel *ch =
5455 		container_of(napi, struct stmmac_channel, tx_napi);
5456 	struct stmmac_priv *priv = ch->priv_data;
5457 	u32 chan = ch->index;
5458 	int work_done;
5459 
5460 	priv->xstats.napi_poll++;
5461 
5462 	work_done = stmmac_tx_clean(priv, budget, chan);
5463 	work_done = min(work_done, budget);
5464 
5465 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5466 		unsigned long flags;
5467 
5468 		spin_lock_irqsave(&ch->lock, flags);
5469 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5470 		spin_unlock_irqrestore(&ch->lock, flags);
5471 	}
5472 
5473 	return work_done;
5474 }
5475 
stmmac_napi_poll_rxtx(struct napi_struct * napi,int budget)5476 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5477 {
5478 	struct stmmac_channel *ch =
5479 		container_of(napi, struct stmmac_channel, rxtx_napi);
5480 	struct stmmac_priv *priv = ch->priv_data;
5481 	int rx_done, tx_done, rxtx_done;
5482 	u32 chan = ch->index;
5483 
5484 	priv->xstats.napi_poll++;
5485 
5486 	tx_done = stmmac_tx_clean(priv, budget, chan);
5487 	tx_done = min(tx_done, budget);
5488 
5489 	rx_done = stmmac_rx_zc(priv, budget, chan);
5490 
5491 	rxtx_done = max(tx_done, rx_done);
5492 
5493 	/* If either TX or RX work is not complete, return budget
5494 	 * and keep pooling
5495 	 */
5496 	if (rxtx_done >= budget)
5497 		return budget;
5498 
5499 	/* all work done, exit the polling mode */
5500 	if (napi_complete_done(napi, rxtx_done)) {
5501 		unsigned long flags;
5502 
5503 		spin_lock_irqsave(&ch->lock, flags);
5504 		/* Both RX and TX work done are compelte,
5505 		 * so enable both RX & TX IRQs.
5506 		 */
5507 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5508 		spin_unlock_irqrestore(&ch->lock, flags);
5509 	}
5510 
5511 	return min(rxtx_done, budget - 1);
5512 }
5513 
5514 /**
5515  *  stmmac_tx_timeout
5516  *  @dev : Pointer to net device structure
5517  *  @txqueue: the index of the hanging transmit queue
5518  *  Description: this function is called when a packet transmission fails to
5519  *   complete within a reasonable time. The driver will mark the error in the
5520  *   netdev structure and arrange for the device to be reset to a sane state
5521  *   in order to transmit a new packet.
5522  */
stmmac_tx_timeout(struct net_device * dev,unsigned int txqueue)5523 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5524 {
5525 	struct stmmac_priv *priv = netdev_priv(dev);
5526 
5527 	stmmac_global_err(priv);
5528 }
5529 
5530 /**
5531  *  stmmac_set_rx_mode - entry point for multicast addressing
5532  *  @dev : pointer to the device structure
5533  *  Description:
5534  *  This function is a driver entry point which gets called by the kernel
5535  *  whenever multicast addresses must be enabled/disabled.
5536  *  Return value:
5537  *  void.
5538  */
stmmac_set_rx_mode(struct net_device * dev)5539 static void stmmac_set_rx_mode(struct net_device *dev)
5540 {
5541 	struct stmmac_priv *priv = netdev_priv(dev);
5542 
5543 	stmmac_set_filter(priv, priv->hw, dev);
5544 }
5545 
5546 /**
5547  *  stmmac_change_mtu - entry point to change MTU size for the device.
5548  *  @dev : device pointer.
5549  *  @new_mtu : the new MTU size for the device.
5550  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5551  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5552  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5553  *  Return value:
5554  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5555  *  file on failure.
5556  */
stmmac_change_mtu(struct net_device * dev,int new_mtu)5557 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5558 {
5559 	struct stmmac_priv *priv = netdev_priv(dev);
5560 	int txfifosz = priv->plat->tx_fifo_size;
5561 	struct stmmac_dma_conf *dma_conf;
5562 	const int mtu = new_mtu;
5563 	int ret;
5564 
5565 	if (txfifosz == 0)
5566 		txfifosz = priv->dma_cap.tx_fifo_size;
5567 
5568 	txfifosz /= priv->plat->tx_queues_to_use;
5569 
5570 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5571 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5572 		return -EINVAL;
5573 	}
5574 
5575 	new_mtu = STMMAC_ALIGN(new_mtu);
5576 
5577 	/* If condition true, FIFO is too small or MTU too large */
5578 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5579 		return -EINVAL;
5580 
5581 	if (netif_running(dev)) {
5582 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5583 		/* Try to allocate the new DMA conf with the new mtu */
5584 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5585 		if (IS_ERR(dma_conf)) {
5586 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5587 				   mtu);
5588 			return PTR_ERR(dma_conf);
5589 		}
5590 
5591 		stmmac_release(dev);
5592 
5593 		ret = __stmmac_open(dev, dma_conf);
5594 		kfree(dma_conf);
5595 		if (ret) {
5596 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5597 			return ret;
5598 		}
5599 
5600 		stmmac_set_rx_mode(dev);
5601 	}
5602 
5603 	dev->mtu = mtu;
5604 	netdev_update_features(dev);
5605 
5606 	return 0;
5607 }
5608 
stmmac_fix_features(struct net_device * dev,netdev_features_t features)5609 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5610 					     netdev_features_t features)
5611 {
5612 	struct stmmac_priv *priv = netdev_priv(dev);
5613 
5614 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5615 		features &= ~NETIF_F_RXCSUM;
5616 
5617 	if (!priv->plat->tx_coe)
5618 		features &= ~NETIF_F_CSUM_MASK;
5619 
5620 	/* Some GMAC devices have a bugged Jumbo frame support that
5621 	 * needs to have the Tx COE disabled for oversized frames
5622 	 * (due to limited buffer sizes). In this case we disable
5623 	 * the TX csum insertion in the TDES and not use SF.
5624 	 */
5625 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5626 		features &= ~NETIF_F_CSUM_MASK;
5627 
5628 	/* Disable tso if asked by ethtool */
5629 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5630 		if (features & NETIF_F_TSO)
5631 			priv->tso = true;
5632 		else
5633 			priv->tso = false;
5634 	}
5635 
5636 	return features;
5637 }
5638 
stmmac_set_features(struct net_device * netdev,netdev_features_t features)5639 static int stmmac_set_features(struct net_device *netdev,
5640 			       netdev_features_t features)
5641 {
5642 	struct stmmac_priv *priv = netdev_priv(netdev);
5643 
5644 	/* Keep the COE Type in case of csum is supporting */
5645 	if (features & NETIF_F_RXCSUM)
5646 		priv->hw->rx_csum = priv->plat->rx_coe;
5647 	else
5648 		priv->hw->rx_csum = 0;
5649 	/* No check needed because rx_coe has been set before and it will be
5650 	 * fixed in case of issue.
5651 	 */
5652 	stmmac_rx_ipc(priv, priv->hw);
5653 
5654 	if (priv->sph_cap) {
5655 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5656 		u32 chan;
5657 
5658 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5659 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5660 	}
5661 
5662 	return 0;
5663 }
5664 
stmmac_fpe_event_status(struct stmmac_priv * priv,int status)5665 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5666 {
5667 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5668 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5669 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5670 	bool *hs_enable = &fpe_cfg->hs_enable;
5671 
5672 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5673 		return;
5674 
5675 	/* If LP has sent verify mPacket, LP is FPE capable */
5676 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5677 		if (*lp_state < FPE_STATE_CAPABLE)
5678 			*lp_state = FPE_STATE_CAPABLE;
5679 
5680 		/* If user has requested FPE enable, quickly response */
5681 		if (*hs_enable)
5682 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5683 						MPACKET_RESPONSE);
5684 	}
5685 
5686 	/* If Local has sent verify mPacket, Local is FPE capable */
5687 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5688 		if (*lo_state < FPE_STATE_CAPABLE)
5689 			*lo_state = FPE_STATE_CAPABLE;
5690 	}
5691 
5692 	/* If LP has sent response mPacket, LP is entering FPE ON */
5693 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5694 		*lp_state = FPE_STATE_ENTERING_ON;
5695 
5696 	/* If Local has sent response mPacket, Local is entering FPE ON */
5697 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5698 		*lo_state = FPE_STATE_ENTERING_ON;
5699 
5700 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5701 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5702 	    priv->fpe_wq) {
5703 		queue_work(priv->fpe_wq, &priv->fpe_task);
5704 	}
5705 }
5706 
stmmac_common_interrupt(struct stmmac_priv * priv)5707 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5708 {
5709 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5710 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5711 	u32 queues_count;
5712 	u32 queue;
5713 	bool xmac;
5714 
5715 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5716 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5717 
5718 	if (priv->irq_wake)
5719 		pm_wakeup_event(priv->device, 0);
5720 
5721 	if (priv->dma_cap.estsel)
5722 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5723 				      &priv->xstats, tx_cnt);
5724 
5725 	if (priv->dma_cap.fpesel) {
5726 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5727 						   priv->dev);
5728 
5729 		stmmac_fpe_event_status(priv, status);
5730 	}
5731 
5732 	/* To handle GMAC own interrupts */
5733 	if ((priv->plat->has_gmac) || xmac) {
5734 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5735 
5736 		if (unlikely(status)) {
5737 			/* For LPI we need to save the tx status */
5738 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5739 				priv->tx_path_in_lpi_mode = true;
5740 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5741 				priv->tx_path_in_lpi_mode = false;
5742 		}
5743 
5744 		for (queue = 0; queue < queues_count; queue++) {
5745 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5746 							    queue);
5747 		}
5748 
5749 		/* PCS link status */
5750 		if (priv->hw->pcs) {
5751 			if (priv->xstats.pcs_link)
5752 				netif_carrier_on(priv->dev);
5753 			else
5754 				netif_carrier_off(priv->dev);
5755 		}
5756 
5757 		stmmac_timestamp_interrupt(priv, priv);
5758 	}
5759 }
5760 
5761 /**
5762  *  stmmac_interrupt - main ISR
5763  *  @irq: interrupt number.
5764  *  @dev_id: to pass the net device pointer.
5765  *  Description: this is the main driver interrupt service routine.
5766  *  It can call:
5767  *  o DMA service routine (to manage incoming frame reception and transmission
5768  *    status)
5769  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5770  *    interrupts.
5771  */
stmmac_interrupt(int irq,void * dev_id)5772 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5773 {
5774 	struct net_device *dev = (struct net_device *)dev_id;
5775 	struct stmmac_priv *priv = netdev_priv(dev);
5776 
5777 	/* Check if adapter is up */
5778 	if (test_bit(STMMAC_DOWN, &priv->state))
5779 		return IRQ_HANDLED;
5780 
5781 	/* Check if a fatal error happened */
5782 	if (stmmac_safety_feat_interrupt(priv))
5783 		return IRQ_HANDLED;
5784 
5785 	/* To handle Common interrupts */
5786 	stmmac_common_interrupt(priv);
5787 
5788 	/* To handle DMA interrupts */
5789 	stmmac_dma_interrupt(priv);
5790 
5791 	return IRQ_HANDLED;
5792 }
5793 
stmmac_mac_interrupt(int irq,void * dev_id)5794 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5795 {
5796 	struct net_device *dev = (struct net_device *)dev_id;
5797 	struct stmmac_priv *priv = netdev_priv(dev);
5798 
5799 	if (unlikely(!dev)) {
5800 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5801 		return IRQ_NONE;
5802 	}
5803 
5804 	/* Check if adapter is up */
5805 	if (test_bit(STMMAC_DOWN, &priv->state))
5806 		return IRQ_HANDLED;
5807 
5808 	/* To handle Common interrupts */
5809 	stmmac_common_interrupt(priv);
5810 
5811 	return IRQ_HANDLED;
5812 }
5813 
stmmac_safety_interrupt(int irq,void * dev_id)5814 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5815 {
5816 	struct net_device *dev = (struct net_device *)dev_id;
5817 	struct stmmac_priv *priv = netdev_priv(dev);
5818 
5819 	if (unlikely(!dev)) {
5820 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5821 		return IRQ_NONE;
5822 	}
5823 
5824 	/* Check if adapter is up */
5825 	if (test_bit(STMMAC_DOWN, &priv->state))
5826 		return IRQ_HANDLED;
5827 
5828 	/* Check if a fatal error happened */
5829 	stmmac_safety_feat_interrupt(priv);
5830 
5831 	return IRQ_HANDLED;
5832 }
5833 
stmmac_msi_intr_tx(int irq,void * data)5834 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5835 {
5836 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5837 	struct stmmac_dma_conf *dma_conf;
5838 	int chan = tx_q->queue_index;
5839 	struct stmmac_priv *priv;
5840 	int status;
5841 
5842 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5843 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5844 
5845 	if (unlikely(!data)) {
5846 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5847 		return IRQ_NONE;
5848 	}
5849 
5850 	/* Check if adapter is up */
5851 	if (test_bit(STMMAC_DOWN, &priv->state))
5852 		return IRQ_HANDLED;
5853 
5854 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5855 
5856 	if (unlikely(status & tx_hard_error_bump_tc)) {
5857 		/* Try to bump up the dma threshold on this failure */
5858 		stmmac_bump_dma_threshold(priv, chan);
5859 	} else if (unlikely(status == tx_hard_error)) {
5860 		stmmac_tx_err(priv, chan);
5861 	}
5862 
5863 	return IRQ_HANDLED;
5864 }
5865 
stmmac_msi_intr_rx(int irq,void * data)5866 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5867 {
5868 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5869 	struct stmmac_dma_conf *dma_conf;
5870 	int chan = rx_q->queue_index;
5871 	struct stmmac_priv *priv;
5872 
5873 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5874 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5875 
5876 	if (unlikely(!data)) {
5877 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5878 		return IRQ_NONE;
5879 	}
5880 
5881 	/* Check if adapter is up */
5882 	if (test_bit(STMMAC_DOWN, &priv->state))
5883 		return IRQ_HANDLED;
5884 
5885 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5886 
5887 	return IRQ_HANDLED;
5888 }
5889 
5890 #ifdef CONFIG_NET_POLL_CONTROLLER
5891 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5892  * to allow network I/O with interrupts disabled.
5893  */
stmmac_poll_controller(struct net_device * dev)5894 static void stmmac_poll_controller(struct net_device *dev)
5895 {
5896 	struct stmmac_priv *priv = netdev_priv(dev);
5897 	int i;
5898 
5899 	/* If adapter is down, do nothing */
5900 	if (test_bit(STMMAC_DOWN, &priv->state))
5901 		return;
5902 
5903 	if (priv->plat->multi_msi_en) {
5904 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5905 			stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5906 
5907 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5908 			stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5909 	} else {
5910 		disable_irq(dev->irq);
5911 		stmmac_interrupt(dev->irq, dev);
5912 		enable_irq(dev->irq);
5913 	}
5914 }
5915 #endif
5916 
5917 /**
5918  *  stmmac_ioctl - Entry point for the Ioctl
5919  *  @dev: Device pointer.
5920  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5921  *  a proprietary structure used to pass information to the driver.
5922  *  @cmd: IOCTL command
5923  *  Description:
5924  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5925  */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)5926 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5927 {
5928 	struct stmmac_priv *priv = netdev_priv (dev);
5929 	int ret = -EOPNOTSUPP;
5930 
5931 	if (!netif_running(dev))
5932 		return -EINVAL;
5933 
5934 	switch (cmd) {
5935 	case SIOCGMIIPHY:
5936 	case SIOCGMIIREG:
5937 	case SIOCSMIIREG:
5938 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5939 		break;
5940 	case SIOCSHWTSTAMP:
5941 		ret = stmmac_hwtstamp_set(dev, rq);
5942 		break;
5943 	case SIOCGHWTSTAMP:
5944 		ret = stmmac_hwtstamp_get(dev, rq);
5945 		break;
5946 	default:
5947 		break;
5948 	}
5949 
5950 	return ret;
5951 }
5952 
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)5953 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5954 				    void *cb_priv)
5955 {
5956 	struct stmmac_priv *priv = cb_priv;
5957 	int ret = -EOPNOTSUPP;
5958 
5959 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5960 		return ret;
5961 
5962 	__stmmac_disable_all_queues(priv);
5963 
5964 	switch (type) {
5965 	case TC_SETUP_CLSU32:
5966 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5967 		break;
5968 	case TC_SETUP_CLSFLOWER:
5969 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5970 		break;
5971 	default:
5972 		break;
5973 	}
5974 
5975 	stmmac_enable_all_queues(priv);
5976 	return ret;
5977 }
5978 
5979 static LIST_HEAD(stmmac_block_cb_list);
5980 
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)5981 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5982 			   void *type_data)
5983 {
5984 	struct stmmac_priv *priv = netdev_priv(ndev);
5985 
5986 	switch (type) {
5987 	case TC_SETUP_BLOCK:
5988 		return flow_block_cb_setup_simple(type_data,
5989 						  &stmmac_block_cb_list,
5990 						  stmmac_setup_tc_block_cb,
5991 						  priv, priv, true);
5992 	case TC_SETUP_QDISC_CBS:
5993 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5994 	case TC_SETUP_QDISC_TAPRIO:
5995 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5996 	case TC_SETUP_QDISC_ETF:
5997 		return stmmac_tc_setup_etf(priv, priv, type_data);
5998 	default:
5999 		return -EOPNOTSUPP;
6000 	}
6001 }
6002 
stmmac_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)6003 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6004 			       struct net_device *sb_dev)
6005 {
6006 	int gso = skb_shinfo(skb)->gso_type;
6007 
6008 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6009 		/*
6010 		 * There is no way to determine the number of TSO/USO
6011 		 * capable Queues. Let's use always the Queue 0
6012 		 * because if TSO/USO is supported then at least this
6013 		 * one will be capable.
6014 		 */
6015 		return 0;
6016 	}
6017 
6018 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6019 }
6020 
stmmac_set_mac_address(struct net_device * ndev,void * addr)6021 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6022 {
6023 	struct stmmac_priv *priv = netdev_priv(ndev);
6024 	int ret = 0;
6025 
6026 	ret = pm_runtime_resume_and_get(priv->device);
6027 	if (ret < 0)
6028 		return ret;
6029 
6030 	ret = eth_mac_addr(ndev, addr);
6031 	if (ret)
6032 		goto set_mac_error;
6033 
6034 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6035 
6036 set_mac_error:
6037 	pm_runtime_put(priv->device);
6038 
6039 	return ret;
6040 }
6041 
6042 #ifdef CONFIG_DEBUG_FS
6043 static struct dentry *stmmac_fs_dir;
6044 
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq,dma_addr_t dma_phy_addr)6045 static void sysfs_display_ring(void *head, int size, int extend_desc,
6046 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6047 {
6048 	int i;
6049 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6050 	struct dma_desc *p = (struct dma_desc *)head;
6051 	dma_addr_t dma_addr;
6052 
6053 	for (i = 0; i < size; i++) {
6054 		if (extend_desc) {
6055 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6056 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6057 				   i, &dma_addr,
6058 				   le32_to_cpu(ep->basic.des0),
6059 				   le32_to_cpu(ep->basic.des1),
6060 				   le32_to_cpu(ep->basic.des2),
6061 				   le32_to_cpu(ep->basic.des3));
6062 			ep++;
6063 		} else {
6064 			dma_addr = dma_phy_addr + i * sizeof(*p);
6065 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6066 				   i, &dma_addr,
6067 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6068 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6069 			p++;
6070 		}
6071 		seq_printf(seq, "\n");
6072 	}
6073 }
6074 
stmmac_rings_status_show(struct seq_file * seq,void * v)6075 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6076 {
6077 	struct net_device *dev = seq->private;
6078 	struct stmmac_priv *priv = netdev_priv(dev);
6079 	u32 rx_count = priv->plat->rx_queues_to_use;
6080 	u32 tx_count = priv->plat->tx_queues_to_use;
6081 	u32 queue;
6082 
6083 	if ((dev->flags & IFF_UP) == 0)
6084 		return 0;
6085 
6086 	for (queue = 0; queue < rx_count; queue++) {
6087 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6088 
6089 		seq_printf(seq, "RX Queue %d:\n", queue);
6090 
6091 		if (priv->extend_desc) {
6092 			seq_printf(seq, "Extended descriptor ring:\n");
6093 			sysfs_display_ring((void *)rx_q->dma_erx,
6094 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6095 		} else {
6096 			seq_printf(seq, "Descriptor ring:\n");
6097 			sysfs_display_ring((void *)rx_q->dma_rx,
6098 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6099 		}
6100 	}
6101 
6102 	for (queue = 0; queue < tx_count; queue++) {
6103 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6104 
6105 		seq_printf(seq, "TX Queue %d:\n", queue);
6106 
6107 		if (priv->extend_desc) {
6108 			seq_printf(seq, "Extended descriptor ring:\n");
6109 			sysfs_display_ring((void *)tx_q->dma_etx,
6110 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6111 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6112 			seq_printf(seq, "Descriptor ring:\n");
6113 			sysfs_display_ring((void *)tx_q->dma_tx,
6114 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6115 		}
6116 	}
6117 
6118 	return 0;
6119 }
6120 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6121 
stmmac_dma_cap_show(struct seq_file * seq,void * v)6122 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6123 {
6124 	struct net_device *dev = seq->private;
6125 	struct stmmac_priv *priv = netdev_priv(dev);
6126 
6127 	if (!priv->hw_cap_support) {
6128 		seq_printf(seq, "DMA HW features not supported\n");
6129 		return 0;
6130 	}
6131 
6132 	seq_printf(seq, "==============================\n");
6133 	seq_printf(seq, "\tDMA HW features\n");
6134 	seq_printf(seq, "==============================\n");
6135 
6136 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6137 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6138 	seq_printf(seq, "\t1000 Mbps: %s\n",
6139 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6140 	seq_printf(seq, "\tHalf duplex: %s\n",
6141 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6142 	seq_printf(seq, "\tHash Filter: %s\n",
6143 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6144 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6145 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6146 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6147 		   (priv->dma_cap.pcs) ? "Y" : "N");
6148 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6149 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6150 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6151 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6152 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6153 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6154 	seq_printf(seq, "\tRMON module: %s\n",
6155 		   (priv->dma_cap.rmon) ? "Y" : "N");
6156 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6157 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6158 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6159 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6160 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6161 		   (priv->dma_cap.eee) ? "Y" : "N");
6162 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6163 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6164 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6165 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6166 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6167 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6168 	} else {
6169 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6170 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6171 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6172 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6173 	}
6174 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6175 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6176 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6177 		   priv->dma_cap.number_rx_channel);
6178 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6179 		   priv->dma_cap.number_tx_channel);
6180 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6181 		   priv->dma_cap.number_rx_queues);
6182 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6183 		   priv->dma_cap.number_tx_queues);
6184 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6185 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6186 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6187 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6188 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6189 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6190 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6191 		   priv->dma_cap.pps_out_num);
6192 	seq_printf(seq, "\tSafety Features: %s\n",
6193 		   priv->dma_cap.asp ? "Y" : "N");
6194 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6195 		   priv->dma_cap.frpsel ? "Y" : "N");
6196 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6197 		   priv->dma_cap.addr64);
6198 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6199 		   priv->dma_cap.rssen ? "Y" : "N");
6200 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6201 		   priv->dma_cap.vlhash ? "Y" : "N");
6202 	seq_printf(seq, "\tSplit Header: %s\n",
6203 		   priv->dma_cap.sphen ? "Y" : "N");
6204 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6205 		   priv->dma_cap.vlins ? "Y" : "N");
6206 	seq_printf(seq, "\tDouble VLAN: %s\n",
6207 		   priv->dma_cap.dvlan ? "Y" : "N");
6208 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6209 		   priv->dma_cap.l3l4fnum);
6210 	seq_printf(seq, "\tARP Offloading: %s\n",
6211 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6212 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6213 		   priv->dma_cap.estsel ? "Y" : "N");
6214 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6215 		   priv->dma_cap.fpesel ? "Y" : "N");
6216 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6217 		   priv->dma_cap.tbssel ? "Y" : "N");
6218 	return 0;
6219 }
6220 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6221 
6222 /* Use network device events to rename debugfs file entries.
6223  */
stmmac_device_event(struct notifier_block * unused,unsigned long event,void * ptr)6224 static int stmmac_device_event(struct notifier_block *unused,
6225 			       unsigned long event, void *ptr)
6226 {
6227 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6228 	struct stmmac_priv *priv = netdev_priv(dev);
6229 
6230 	if (dev->netdev_ops != &stmmac_netdev_ops)
6231 		goto done;
6232 
6233 	switch (event) {
6234 	case NETDEV_CHANGENAME:
6235 		if (priv->dbgfs_dir)
6236 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6237 							 priv->dbgfs_dir,
6238 							 stmmac_fs_dir,
6239 							 dev->name);
6240 		break;
6241 	}
6242 done:
6243 	return NOTIFY_DONE;
6244 }
6245 
6246 static struct notifier_block stmmac_notifier = {
6247 	.notifier_call = stmmac_device_event,
6248 };
6249 
stmmac_init_fs(struct net_device * dev)6250 static void stmmac_init_fs(struct net_device *dev)
6251 {
6252 	struct stmmac_priv *priv = netdev_priv(dev);
6253 
6254 	rtnl_lock();
6255 
6256 	/* Create per netdev entries */
6257 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6258 
6259 	/* Entry to report DMA RX/TX rings */
6260 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6261 			    &stmmac_rings_status_fops);
6262 
6263 	/* Entry to report the DMA HW features */
6264 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6265 			    &stmmac_dma_cap_fops);
6266 
6267 	rtnl_unlock();
6268 }
6269 
stmmac_exit_fs(struct net_device * dev)6270 static void stmmac_exit_fs(struct net_device *dev)
6271 {
6272 	struct stmmac_priv *priv = netdev_priv(dev);
6273 
6274 	debugfs_remove_recursive(priv->dbgfs_dir);
6275 }
6276 #endif /* CONFIG_DEBUG_FS */
6277 
stmmac_vid_crc32_le(__le16 vid_le)6278 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6279 {
6280 	unsigned char *data = (unsigned char *)&vid_le;
6281 	unsigned char data_byte = 0;
6282 	u32 crc = ~0x0;
6283 	u32 temp = 0;
6284 	int i, bits;
6285 
6286 	bits = get_bitmask_order(VLAN_VID_MASK);
6287 	for (i = 0; i < bits; i++) {
6288 		if ((i % 8) == 0)
6289 			data_byte = data[i / 8];
6290 
6291 		temp = ((crc & 1) ^ data_byte) & 1;
6292 		crc >>= 1;
6293 		data_byte >>= 1;
6294 
6295 		if (temp)
6296 			crc ^= 0xedb88320;
6297 	}
6298 
6299 	return crc;
6300 }
6301 
stmmac_vlan_update(struct stmmac_priv * priv,bool is_double)6302 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6303 {
6304 	u32 crc, hash = 0;
6305 	__le16 pmatch = 0;
6306 	int count = 0;
6307 	u16 vid = 0;
6308 
6309 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6310 		__le16 vid_le = cpu_to_le16(vid);
6311 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6312 		hash |= (1 << crc);
6313 		count++;
6314 	}
6315 
6316 	if (!priv->dma_cap.vlhash) {
6317 		if (count > 2) /* VID = 0 always passes filter */
6318 			return -EOPNOTSUPP;
6319 
6320 		pmatch = cpu_to_le16(vid);
6321 		hash = 0;
6322 	}
6323 
6324 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6325 }
6326 
stmmac_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)6327 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6328 {
6329 	struct stmmac_priv *priv = netdev_priv(ndev);
6330 	bool is_double = false;
6331 	int ret;
6332 
6333 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6334 		is_double = true;
6335 
6336 	set_bit(vid, priv->active_vlans);
6337 	ret = stmmac_vlan_update(priv, is_double);
6338 	if (ret) {
6339 		clear_bit(vid, priv->active_vlans);
6340 		return ret;
6341 	}
6342 
6343 	if (priv->hw->num_vlan) {
6344 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6345 		if (ret)
6346 			return ret;
6347 	}
6348 
6349 	return 0;
6350 }
6351 
stmmac_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)6352 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6353 {
6354 	struct stmmac_priv *priv = netdev_priv(ndev);
6355 	bool is_double = false;
6356 	int ret;
6357 
6358 	ret = pm_runtime_resume_and_get(priv->device);
6359 	if (ret < 0)
6360 		return ret;
6361 
6362 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6363 		is_double = true;
6364 
6365 	clear_bit(vid, priv->active_vlans);
6366 
6367 	if (priv->hw->num_vlan) {
6368 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6369 		if (ret)
6370 			goto del_vlan_error;
6371 	}
6372 
6373 	ret = stmmac_vlan_update(priv, is_double);
6374 
6375 del_vlan_error:
6376 	pm_runtime_put(priv->device);
6377 
6378 	return ret;
6379 }
6380 
stmmac_bpf(struct net_device * dev,struct netdev_bpf * bpf)6381 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6382 {
6383 	struct stmmac_priv *priv = netdev_priv(dev);
6384 
6385 	switch (bpf->command) {
6386 	case XDP_SETUP_PROG:
6387 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6388 	case XDP_SETUP_XSK_POOL:
6389 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6390 					     bpf->xsk.queue_id);
6391 	default:
6392 		return -EOPNOTSUPP;
6393 	}
6394 }
6395 
stmmac_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6396 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6397 			   struct xdp_frame **frames, u32 flags)
6398 {
6399 	struct stmmac_priv *priv = netdev_priv(dev);
6400 	int cpu = smp_processor_id();
6401 	struct netdev_queue *nq;
6402 	int i, nxmit = 0;
6403 	int queue;
6404 
6405 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6406 		return -ENETDOWN;
6407 
6408 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6409 		return -EINVAL;
6410 
6411 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6412 	nq = netdev_get_tx_queue(priv->dev, queue);
6413 
6414 	__netif_tx_lock(nq, cpu);
6415 	/* Avoids TX time-out as we are sharing with slow path */
6416 	txq_trans_cond_update(nq);
6417 
6418 	for (i = 0; i < num_frames; i++) {
6419 		int res;
6420 
6421 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6422 		if (res == STMMAC_XDP_CONSUMED)
6423 			break;
6424 
6425 		nxmit++;
6426 	}
6427 
6428 	if (flags & XDP_XMIT_FLUSH) {
6429 		stmmac_flush_tx_descriptors(priv, queue);
6430 		stmmac_tx_timer_arm(priv, queue);
6431 	}
6432 
6433 	__netif_tx_unlock(nq);
6434 
6435 	return nxmit;
6436 }
6437 
stmmac_disable_rx_queue(struct stmmac_priv * priv,u32 queue)6438 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6439 {
6440 	struct stmmac_channel *ch = &priv->channel[queue];
6441 	unsigned long flags;
6442 
6443 	spin_lock_irqsave(&ch->lock, flags);
6444 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6445 	spin_unlock_irqrestore(&ch->lock, flags);
6446 
6447 	stmmac_stop_rx_dma(priv, queue);
6448 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6449 }
6450 
stmmac_enable_rx_queue(struct stmmac_priv * priv,u32 queue)6451 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6452 {
6453 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6454 	struct stmmac_channel *ch = &priv->channel[queue];
6455 	unsigned long flags;
6456 	u32 buf_size;
6457 	int ret;
6458 
6459 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6460 	if (ret) {
6461 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6462 		return;
6463 	}
6464 
6465 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6466 	if (ret) {
6467 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6468 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6469 		return;
6470 	}
6471 
6472 	stmmac_reset_rx_queue(priv, queue);
6473 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6474 
6475 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6476 			    rx_q->dma_rx_phy, rx_q->queue_index);
6477 
6478 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6479 			     sizeof(struct dma_desc));
6480 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6481 			       rx_q->rx_tail_addr, rx_q->queue_index);
6482 
6483 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6484 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6485 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6486 				      buf_size,
6487 				      rx_q->queue_index);
6488 	} else {
6489 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6490 				      priv->dma_conf.dma_buf_sz,
6491 				      rx_q->queue_index);
6492 	}
6493 
6494 	stmmac_start_rx_dma(priv, queue);
6495 
6496 	spin_lock_irqsave(&ch->lock, flags);
6497 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6498 	spin_unlock_irqrestore(&ch->lock, flags);
6499 }
6500 
stmmac_disable_tx_queue(struct stmmac_priv * priv,u32 queue)6501 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6502 {
6503 	struct stmmac_channel *ch = &priv->channel[queue];
6504 	unsigned long flags;
6505 
6506 	spin_lock_irqsave(&ch->lock, flags);
6507 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6508 	spin_unlock_irqrestore(&ch->lock, flags);
6509 
6510 	stmmac_stop_tx_dma(priv, queue);
6511 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6512 }
6513 
stmmac_enable_tx_queue(struct stmmac_priv * priv,u32 queue)6514 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6515 {
6516 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6517 	struct stmmac_channel *ch = &priv->channel[queue];
6518 	unsigned long flags;
6519 	int ret;
6520 
6521 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6522 	if (ret) {
6523 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6524 		return;
6525 	}
6526 
6527 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6528 	if (ret) {
6529 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6530 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6531 		return;
6532 	}
6533 
6534 	stmmac_reset_tx_queue(priv, queue);
6535 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6536 
6537 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6538 			    tx_q->dma_tx_phy, tx_q->queue_index);
6539 
6540 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6541 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6542 
6543 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6544 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6545 			       tx_q->tx_tail_addr, tx_q->queue_index);
6546 
6547 	stmmac_start_tx_dma(priv, queue);
6548 
6549 	spin_lock_irqsave(&ch->lock, flags);
6550 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6551 	spin_unlock_irqrestore(&ch->lock, flags);
6552 }
6553 
stmmac_xdp_release(struct net_device * dev)6554 void stmmac_xdp_release(struct net_device *dev)
6555 {
6556 	struct stmmac_priv *priv = netdev_priv(dev);
6557 	u32 chan;
6558 
6559 	/* Ensure tx function is not running */
6560 	netif_tx_disable(dev);
6561 
6562 	/* Disable NAPI process */
6563 	stmmac_disable_all_queues(priv);
6564 
6565 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6566 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6567 
6568 	/* Free the IRQ lines */
6569 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6570 
6571 	/* Stop TX/RX DMA channels */
6572 	stmmac_stop_all_dma(priv);
6573 
6574 	/* Release and free the Rx/Tx resources */
6575 	free_dma_desc_resources(priv, &priv->dma_conf);
6576 
6577 	/* Disable the MAC Rx/Tx */
6578 	stmmac_mac_set(priv, priv->ioaddr, false);
6579 
6580 	/* set trans_start so we don't get spurious
6581 	 * watchdogs during reset
6582 	 */
6583 	netif_trans_update(dev);
6584 	netif_carrier_off(dev);
6585 }
6586 
stmmac_xdp_open(struct net_device * dev)6587 int stmmac_xdp_open(struct net_device *dev)
6588 {
6589 	struct stmmac_priv *priv = netdev_priv(dev);
6590 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6591 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6592 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6593 	struct stmmac_rx_queue *rx_q;
6594 	struct stmmac_tx_queue *tx_q;
6595 	u32 buf_size;
6596 	bool sph_en;
6597 	u32 chan;
6598 	int ret;
6599 
6600 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6601 	if (ret < 0) {
6602 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6603 			   __func__);
6604 		goto dma_desc_error;
6605 	}
6606 
6607 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6608 	if (ret < 0) {
6609 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6610 			   __func__);
6611 		goto init_error;
6612 	}
6613 
6614 	/* DMA CSR Channel configuration */
6615 	for (chan = 0; chan < dma_csr_ch; chan++) {
6616 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6617 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6618 	}
6619 
6620 	/* Adjust Split header */
6621 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6622 
6623 	/* DMA RX Channel Configuration */
6624 	for (chan = 0; chan < rx_cnt; chan++) {
6625 		rx_q = &priv->dma_conf.rx_queue[chan];
6626 
6627 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6628 				    rx_q->dma_rx_phy, chan);
6629 
6630 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6631 				     (rx_q->buf_alloc_num *
6632 				      sizeof(struct dma_desc));
6633 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6634 				       rx_q->rx_tail_addr, chan);
6635 
6636 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6637 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6638 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6639 					      buf_size,
6640 					      rx_q->queue_index);
6641 		} else {
6642 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6643 					      priv->dma_conf.dma_buf_sz,
6644 					      rx_q->queue_index);
6645 		}
6646 
6647 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6648 	}
6649 
6650 	/* DMA TX Channel Configuration */
6651 	for (chan = 0; chan < tx_cnt; chan++) {
6652 		tx_q = &priv->dma_conf.tx_queue[chan];
6653 
6654 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6655 				    tx_q->dma_tx_phy, chan);
6656 
6657 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6658 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6659 				       tx_q->tx_tail_addr, chan);
6660 
6661 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6662 		tx_q->txtimer.function = stmmac_tx_timer;
6663 	}
6664 
6665 	/* Enable the MAC Rx/Tx */
6666 	stmmac_mac_set(priv, priv->ioaddr, true);
6667 
6668 	/* Start Rx & Tx DMA Channels */
6669 	stmmac_start_all_dma(priv);
6670 
6671 	ret = stmmac_request_irq(dev);
6672 	if (ret)
6673 		goto irq_error;
6674 
6675 	/* Enable NAPI process*/
6676 	stmmac_enable_all_queues(priv);
6677 	netif_carrier_on(dev);
6678 	netif_tx_start_all_queues(dev);
6679 	stmmac_enable_all_dma_irq(priv);
6680 
6681 	return 0;
6682 
6683 irq_error:
6684 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6685 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6686 
6687 	stmmac_hw_teardown(dev);
6688 init_error:
6689 	free_dma_desc_resources(priv, &priv->dma_conf);
6690 dma_desc_error:
6691 	return ret;
6692 }
6693 
stmmac_xsk_wakeup(struct net_device * dev,u32 queue,u32 flags)6694 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6695 {
6696 	struct stmmac_priv *priv = netdev_priv(dev);
6697 	struct stmmac_rx_queue *rx_q;
6698 	struct stmmac_tx_queue *tx_q;
6699 	struct stmmac_channel *ch;
6700 
6701 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6702 	    !netif_carrier_ok(priv->dev))
6703 		return -ENETDOWN;
6704 
6705 	if (!stmmac_xdp_is_enabled(priv))
6706 		return -EINVAL;
6707 
6708 	if (queue >= priv->plat->rx_queues_to_use ||
6709 	    queue >= priv->plat->tx_queues_to_use)
6710 		return -EINVAL;
6711 
6712 	rx_q = &priv->dma_conf.rx_queue[queue];
6713 	tx_q = &priv->dma_conf.tx_queue[queue];
6714 	ch = &priv->channel[queue];
6715 
6716 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6717 		return -EINVAL;
6718 
6719 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6720 		/* EQoS does not have per-DMA channel SW interrupt,
6721 		 * so we schedule RX Napi straight-away.
6722 		 */
6723 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6724 			__napi_schedule(&ch->rxtx_napi);
6725 	}
6726 
6727 	return 0;
6728 }
6729 
6730 static const struct net_device_ops stmmac_netdev_ops = {
6731 	.ndo_open = stmmac_open,
6732 	.ndo_start_xmit = stmmac_xmit,
6733 	.ndo_stop = stmmac_release,
6734 	.ndo_change_mtu = stmmac_change_mtu,
6735 	.ndo_fix_features = stmmac_fix_features,
6736 	.ndo_set_features = stmmac_set_features,
6737 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6738 	.ndo_tx_timeout = stmmac_tx_timeout,
6739 	.ndo_eth_ioctl = stmmac_ioctl,
6740 	.ndo_setup_tc = stmmac_setup_tc,
6741 	.ndo_select_queue = stmmac_select_queue,
6742 #ifdef CONFIG_NET_POLL_CONTROLLER
6743 	.ndo_poll_controller = stmmac_poll_controller,
6744 #endif
6745 	.ndo_set_mac_address = stmmac_set_mac_address,
6746 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6747 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6748 	.ndo_bpf = stmmac_bpf,
6749 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6750 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6751 };
6752 
stmmac_reset_subtask(struct stmmac_priv * priv)6753 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6754 {
6755 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6756 		return;
6757 	if (test_bit(STMMAC_DOWN, &priv->state))
6758 		return;
6759 
6760 	netdev_err(priv->dev, "Reset adapter.\n");
6761 
6762 	rtnl_lock();
6763 	netif_trans_update(priv->dev);
6764 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6765 		usleep_range(1000, 2000);
6766 
6767 	set_bit(STMMAC_DOWN, &priv->state);
6768 	dev_close(priv->dev);
6769 	dev_open(priv->dev, NULL);
6770 	clear_bit(STMMAC_DOWN, &priv->state);
6771 	clear_bit(STMMAC_RESETING, &priv->state);
6772 	rtnl_unlock();
6773 }
6774 
stmmac_service_task(struct work_struct * work)6775 static void stmmac_service_task(struct work_struct *work)
6776 {
6777 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6778 			service_task);
6779 
6780 	stmmac_reset_subtask(priv);
6781 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6782 }
6783 
6784 /**
6785  *  stmmac_hw_init - Init the MAC device
6786  *  @priv: driver private structure
6787  *  Description: this function is to configure the MAC device according to
6788  *  some platform parameters or the HW capability register. It prepares the
6789  *  driver to use either ring or chain modes and to setup either enhanced or
6790  *  normal descriptors.
6791  */
stmmac_hw_init(struct stmmac_priv * priv)6792 static int stmmac_hw_init(struct stmmac_priv *priv)
6793 {
6794 	int ret;
6795 
6796 	/* dwmac-sun8i only work in chain mode */
6797 	if (priv->plat->has_sun8i)
6798 		chain_mode = 1;
6799 	priv->chain_mode = chain_mode;
6800 
6801 	/* Initialize HW Interface */
6802 	ret = stmmac_hwif_init(priv);
6803 	if (ret)
6804 		return ret;
6805 
6806 	/* Get the HW capability (new GMAC newer than 3.50a) */
6807 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6808 	if (priv->hw_cap_support) {
6809 		dev_info(priv->device, "DMA HW capability register supported\n");
6810 
6811 		/* We can override some gmac/dma configuration fields: e.g.
6812 		 * enh_desc, tx_coe (e.g. that are passed through the
6813 		 * platform) with the values from the HW capability
6814 		 * register (if supported).
6815 		 */
6816 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6817 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6818 				!priv->plat->use_phy_wol;
6819 		priv->hw->pmt = priv->plat->pmt;
6820 		if (priv->dma_cap.hash_tb_sz) {
6821 			priv->hw->multicast_filter_bins =
6822 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6823 			priv->hw->mcast_bits_log2 =
6824 					ilog2(priv->hw->multicast_filter_bins);
6825 		}
6826 
6827 		/* TXCOE doesn't work in thresh DMA mode */
6828 		if (priv->plat->force_thresh_dma_mode)
6829 			priv->plat->tx_coe = 0;
6830 		else
6831 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6832 
6833 		/* In case of GMAC4 rx_coe is from HW cap register. */
6834 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6835 
6836 		if (priv->dma_cap.rx_coe_type2)
6837 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6838 		else if (priv->dma_cap.rx_coe_type1)
6839 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6840 
6841 	} else {
6842 		dev_info(priv->device, "No HW DMA feature register supported\n");
6843 	}
6844 
6845 	if (priv->plat->rx_coe) {
6846 		priv->hw->rx_csum = priv->plat->rx_coe;
6847 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6848 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6849 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6850 	}
6851 	if (priv->plat->tx_coe)
6852 		dev_info(priv->device, "TX Checksum insertion supported\n");
6853 
6854 	if (priv->plat->pmt) {
6855 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6856 		device_set_wakeup_capable(priv->device, 1);
6857 	}
6858 
6859 	if (priv->dma_cap.tsoen)
6860 		dev_info(priv->device, "TSO supported\n");
6861 
6862 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6863 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6864 
6865 	/* Run HW quirks, if any */
6866 	if (priv->hwif_quirks) {
6867 		ret = priv->hwif_quirks(priv);
6868 		if (ret)
6869 			return ret;
6870 	}
6871 
6872 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6873 	 * In some case, for example on bugged HW this feature
6874 	 * has to be disable and this can be done by passing the
6875 	 * riwt_off field from the platform.
6876 	 */
6877 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6878 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6879 		priv->use_riwt = 1;
6880 		dev_info(priv->device,
6881 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6882 	}
6883 
6884 	return 0;
6885 }
6886 
stmmac_napi_add(struct net_device * dev)6887 static void stmmac_napi_add(struct net_device *dev)
6888 {
6889 	struct stmmac_priv *priv = netdev_priv(dev);
6890 	u32 queue, maxq;
6891 
6892 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6893 
6894 	for (queue = 0; queue < maxq; queue++) {
6895 		struct stmmac_channel *ch = &priv->channel[queue];
6896 
6897 		ch->priv_data = priv;
6898 		ch->index = queue;
6899 		spin_lock_init(&ch->lock);
6900 
6901 		if (queue < priv->plat->rx_queues_to_use) {
6902 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6903 		}
6904 		if (queue < priv->plat->tx_queues_to_use) {
6905 			netif_napi_add_tx(dev, &ch->tx_napi,
6906 					  stmmac_napi_poll_tx);
6907 		}
6908 		if (queue < priv->plat->rx_queues_to_use &&
6909 		    queue < priv->plat->tx_queues_to_use) {
6910 			netif_napi_add(dev, &ch->rxtx_napi,
6911 				       stmmac_napi_poll_rxtx);
6912 		}
6913 	}
6914 }
6915 
stmmac_napi_del(struct net_device * dev)6916 static void stmmac_napi_del(struct net_device *dev)
6917 {
6918 	struct stmmac_priv *priv = netdev_priv(dev);
6919 	u32 queue, maxq;
6920 
6921 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6922 
6923 	for (queue = 0; queue < maxq; queue++) {
6924 		struct stmmac_channel *ch = &priv->channel[queue];
6925 
6926 		if (queue < priv->plat->rx_queues_to_use)
6927 			netif_napi_del(&ch->rx_napi);
6928 		if (queue < priv->plat->tx_queues_to_use)
6929 			netif_napi_del(&ch->tx_napi);
6930 		if (queue < priv->plat->rx_queues_to_use &&
6931 		    queue < priv->plat->tx_queues_to_use) {
6932 			netif_napi_del(&ch->rxtx_napi);
6933 		}
6934 	}
6935 }
6936 
stmmac_reinit_queues(struct net_device * dev,u32 rx_cnt,u32 tx_cnt)6937 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6938 {
6939 	struct stmmac_priv *priv = netdev_priv(dev);
6940 	int ret = 0;
6941 
6942 	if (netif_running(dev))
6943 		stmmac_release(dev);
6944 
6945 	stmmac_napi_del(dev);
6946 
6947 	priv->plat->rx_queues_to_use = rx_cnt;
6948 	priv->plat->tx_queues_to_use = tx_cnt;
6949 
6950 	stmmac_napi_add(dev);
6951 
6952 	if (netif_running(dev))
6953 		ret = stmmac_open(dev);
6954 
6955 	return ret;
6956 }
6957 
stmmac_reinit_ringparam(struct net_device * dev,u32 rx_size,u32 tx_size)6958 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6959 {
6960 	struct stmmac_priv *priv = netdev_priv(dev);
6961 	int ret = 0;
6962 
6963 	if (netif_running(dev))
6964 		stmmac_release(dev);
6965 
6966 	priv->dma_conf.dma_rx_size = rx_size;
6967 	priv->dma_conf.dma_tx_size = tx_size;
6968 
6969 	if (netif_running(dev))
6970 		ret = stmmac_open(dev);
6971 
6972 	return ret;
6973 }
6974 
6975 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
stmmac_fpe_lp_task(struct work_struct * work)6976 static void stmmac_fpe_lp_task(struct work_struct *work)
6977 {
6978 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6979 						fpe_task);
6980 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6981 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6982 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6983 	bool *hs_enable = &fpe_cfg->hs_enable;
6984 	bool *enable = &fpe_cfg->enable;
6985 	int retries = 20;
6986 
6987 	while (retries-- > 0) {
6988 		/* Bail out immediately if FPE handshake is OFF */
6989 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6990 			break;
6991 
6992 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6993 		    *lp_state == FPE_STATE_ENTERING_ON) {
6994 			stmmac_fpe_configure(priv, priv->ioaddr,
6995 					     priv->plat->tx_queues_to_use,
6996 					     priv->plat->rx_queues_to_use,
6997 					     *enable);
6998 
6999 			netdev_info(priv->dev, "configured FPE\n");
7000 
7001 			*lo_state = FPE_STATE_ON;
7002 			*lp_state = FPE_STATE_ON;
7003 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7004 			break;
7005 		}
7006 
7007 		if ((*lo_state == FPE_STATE_CAPABLE ||
7008 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7009 		     *lp_state != FPE_STATE_ON) {
7010 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7011 				    *lo_state, *lp_state);
7012 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7013 						MPACKET_VERIFY);
7014 		}
7015 		/* Sleep then retry */
7016 		msleep(500);
7017 	}
7018 
7019 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7020 }
7021 
stmmac_fpe_handshake(struct stmmac_priv * priv,bool enable)7022 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7023 {
7024 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7025 		if (enable) {
7026 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7027 						MPACKET_VERIFY);
7028 		} else {
7029 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7030 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7031 		}
7032 
7033 		priv->plat->fpe_cfg->hs_enable = enable;
7034 	}
7035 }
7036 
7037 /**
7038  * stmmac_dvr_probe
7039  * @device: device pointer
7040  * @plat_dat: platform data pointer
7041  * @res: stmmac resource pointer
7042  * Description: this is the main probe function used to
7043  * call the alloc_etherdev, allocate the priv structure.
7044  * Return:
7045  * returns 0 on success, otherwise errno.
7046  */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)7047 int stmmac_dvr_probe(struct device *device,
7048 		     struct plat_stmmacenet_data *plat_dat,
7049 		     struct stmmac_resources *res)
7050 {
7051 	struct net_device *ndev = NULL;
7052 	struct stmmac_priv *priv;
7053 	u32 rxq;
7054 	int i, ret = 0;
7055 
7056 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7057 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7058 	if (!ndev)
7059 		return -ENOMEM;
7060 
7061 	SET_NETDEV_DEV(ndev, device);
7062 
7063 	priv = netdev_priv(ndev);
7064 	priv->device = device;
7065 	priv->dev = ndev;
7066 
7067 	stmmac_set_ethtool_ops(ndev);
7068 	priv->pause = pause;
7069 	priv->plat = plat_dat;
7070 	priv->ioaddr = res->addr;
7071 	priv->dev->base_addr = (unsigned long)res->addr;
7072 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7073 
7074 	priv->dev->irq = res->irq;
7075 	priv->wol_irq = res->wol_irq;
7076 	priv->lpi_irq = res->lpi_irq;
7077 	priv->sfty_ce_irq = res->sfty_ce_irq;
7078 	priv->sfty_ue_irq = res->sfty_ue_irq;
7079 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7080 		priv->rx_irq[i] = res->rx_irq[i];
7081 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7082 		priv->tx_irq[i] = res->tx_irq[i];
7083 
7084 	if (!is_zero_ether_addr(res->mac))
7085 		eth_hw_addr_set(priv->dev, res->mac);
7086 
7087 	dev_set_drvdata(device, priv->dev);
7088 
7089 	/* Verify driver arguments */
7090 	stmmac_verify_args();
7091 
7092 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7093 	if (!priv->af_xdp_zc_qps)
7094 		return -ENOMEM;
7095 
7096 	/* Allocate workqueue */
7097 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7098 	if (!priv->wq) {
7099 		dev_err(priv->device, "failed to create workqueue\n");
7100 		return -ENOMEM;
7101 	}
7102 
7103 	INIT_WORK(&priv->service_task, stmmac_service_task);
7104 
7105 	/* Initialize Link Partner FPE workqueue */
7106 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7107 
7108 	/* Override with kernel parameters if supplied XXX CRS XXX
7109 	 * this needs to have multiple instances
7110 	 */
7111 	if ((phyaddr >= 0) && (phyaddr <= 31))
7112 		priv->plat->phy_addr = phyaddr;
7113 
7114 	if (priv->plat->stmmac_rst) {
7115 		ret = reset_control_assert(priv->plat->stmmac_rst);
7116 		reset_control_deassert(priv->plat->stmmac_rst);
7117 		/* Some reset controllers have only reset callback instead of
7118 		 * assert + deassert callbacks pair.
7119 		 */
7120 		if (ret == -ENOTSUPP)
7121 			reset_control_reset(priv->plat->stmmac_rst);
7122 	}
7123 
7124 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7125 	if (ret == -ENOTSUPP)
7126 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7127 			ERR_PTR(ret));
7128 
7129 	/* Init MAC and get the capabilities */
7130 	ret = stmmac_hw_init(priv);
7131 	if (ret)
7132 		goto error_hw_init;
7133 
7134 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7135 	 */
7136 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7137 		priv->plat->dma_cfg->dche = false;
7138 
7139 	stmmac_check_ether_addr(priv);
7140 
7141 	ndev->netdev_ops = &stmmac_netdev_ops;
7142 
7143 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7144 			    NETIF_F_RXCSUM;
7145 
7146 	ret = stmmac_tc_init(priv, priv);
7147 	if (!ret) {
7148 		ndev->hw_features |= NETIF_F_HW_TC;
7149 	}
7150 
7151 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7152 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7153 		if (priv->plat->has_gmac4)
7154 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7155 		priv->tso = true;
7156 		dev_info(priv->device, "TSO feature enabled\n");
7157 	}
7158 
7159 	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7160 		ndev->hw_features |= NETIF_F_GRO;
7161 		priv->sph_cap = true;
7162 		priv->sph = priv->sph_cap;
7163 		dev_info(priv->device, "SPH feature enabled\n");
7164 	}
7165 
7166 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
7167 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7168 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7169 	 * So overwrite dma_cap.addr64 according to HW real design.
7170 	 */
7171 	if (priv->plat->addr64)
7172 		priv->dma_cap.addr64 = priv->plat->addr64;
7173 
7174 	if (priv->dma_cap.addr64) {
7175 		ret = dma_set_mask_and_coherent(device,
7176 				DMA_BIT_MASK(priv->dma_cap.addr64));
7177 		if (!ret) {
7178 			dev_info(priv->device, "Using %d bits DMA width\n",
7179 				 priv->dma_cap.addr64);
7180 
7181 			/*
7182 			 * If more than 32 bits can be addressed, make sure to
7183 			 * enable enhanced addressing mode.
7184 			 */
7185 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7186 				priv->plat->dma_cfg->eame = true;
7187 		} else {
7188 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7189 			if (ret) {
7190 				dev_err(priv->device, "Failed to set DMA Mask\n");
7191 				goto error_hw_init;
7192 			}
7193 
7194 			priv->dma_cap.addr64 = 32;
7195 		}
7196 	}
7197 
7198 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7199 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7200 #ifdef STMMAC_VLAN_TAG_USED
7201 	/* Both mac100 and gmac support receive VLAN tag detection */
7202 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7203 	if (priv->dma_cap.vlhash) {
7204 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7205 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7206 	}
7207 	if (priv->dma_cap.vlins) {
7208 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7209 		if (priv->dma_cap.dvlan)
7210 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7211 	}
7212 #endif
7213 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7214 
7215 	/* Initialize RSS */
7216 	rxq = priv->plat->rx_queues_to_use;
7217 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7218 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7219 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7220 
7221 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7222 		ndev->features |= NETIF_F_RXHASH;
7223 
7224 	/* MTU range: 46 - hw-specific max */
7225 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7226 	if (priv->plat->has_xgmac)
7227 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7228 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7229 		ndev->max_mtu = JUMBO_LEN;
7230 	else
7231 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7232 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7233 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7234 	 */
7235 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7236 	    (priv->plat->maxmtu >= ndev->min_mtu))
7237 		ndev->max_mtu = priv->plat->maxmtu;
7238 	else if (priv->plat->maxmtu < ndev->min_mtu)
7239 		dev_warn(priv->device,
7240 			 "%s: warning: maxmtu having invalid value (%d)\n",
7241 			 __func__, priv->plat->maxmtu);
7242 
7243 	if (flow_ctrl)
7244 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7245 
7246 	/* Setup channels NAPI */
7247 	stmmac_napi_add(ndev);
7248 
7249 	mutex_init(&priv->lock);
7250 
7251 	/* If a specific clk_csr value is passed from the platform
7252 	 * this means that the CSR Clock Range selection cannot be
7253 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7254 	 * set the MDC clock dynamically according to the csr actual
7255 	 * clock input.
7256 	 */
7257 	if (priv->plat->clk_csr >= 0)
7258 		priv->clk_csr = priv->plat->clk_csr;
7259 	else
7260 		stmmac_clk_csr_set(priv);
7261 
7262 	stmmac_check_pcs_mode(priv);
7263 
7264 	pm_runtime_get_noresume(device);
7265 	pm_runtime_set_active(device);
7266 	if (!pm_runtime_enabled(device))
7267 		pm_runtime_enable(device);
7268 
7269 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7270 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7271 		/* MDIO bus Registration */
7272 		ret = stmmac_mdio_register(ndev);
7273 		if (ret < 0) {
7274 			dev_err_probe(priv->device, ret,
7275 				      "%s: MDIO bus (id: %d) registration failed\n",
7276 				      __func__, priv->plat->bus_id);
7277 			goto error_mdio_register;
7278 		}
7279 	}
7280 
7281 	if (priv->plat->speed_mode_2500)
7282 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7283 
7284 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7285 		ret = stmmac_xpcs_setup(priv->mii);
7286 		if (ret)
7287 			goto error_xpcs_setup;
7288 	}
7289 
7290 	ret = stmmac_phy_setup(priv);
7291 	if (ret) {
7292 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7293 		goto error_phy_setup;
7294 	}
7295 
7296 	ret = register_netdev(ndev);
7297 	if (ret) {
7298 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7299 			__func__, ret);
7300 		goto error_netdev_register;
7301 	}
7302 
7303 #ifdef CONFIG_DEBUG_FS
7304 	stmmac_init_fs(ndev);
7305 #endif
7306 
7307 	if (priv->plat->dump_debug_regs)
7308 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7309 
7310 	/* Let pm_runtime_put() disable the clocks.
7311 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7312 	 */
7313 	pm_runtime_put(device);
7314 
7315 	return ret;
7316 
7317 error_netdev_register:
7318 	phylink_destroy(priv->phylink);
7319 error_xpcs_setup:
7320 error_phy_setup:
7321 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7322 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7323 		stmmac_mdio_unregister(ndev);
7324 error_mdio_register:
7325 	stmmac_napi_del(ndev);
7326 error_hw_init:
7327 	destroy_workqueue(priv->wq);
7328 	bitmap_free(priv->af_xdp_zc_qps);
7329 
7330 	return ret;
7331 }
7332 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7333 
7334 /**
7335  * stmmac_dvr_remove
7336  * @dev: device pointer
7337  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7338  * changes the link status, releases the DMA descriptor rings.
7339  */
stmmac_dvr_remove(struct device * dev)7340 int stmmac_dvr_remove(struct device *dev)
7341 {
7342 	struct net_device *ndev = dev_get_drvdata(dev);
7343 	struct stmmac_priv *priv = netdev_priv(ndev);
7344 
7345 	netdev_info(priv->dev, "%s: removing driver", __func__);
7346 
7347 	pm_runtime_get_sync(dev);
7348 
7349 	stmmac_stop_all_dma(priv);
7350 	stmmac_mac_set(priv, priv->ioaddr, false);
7351 	netif_carrier_off(ndev);
7352 	unregister_netdev(ndev);
7353 
7354 	/* Serdes power down needs to happen after VLAN filter
7355 	 * is deleted that is triggered by unregister_netdev().
7356 	 */
7357 	if (priv->plat->serdes_powerdown)
7358 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7359 
7360 #ifdef CONFIG_DEBUG_FS
7361 	stmmac_exit_fs(ndev);
7362 #endif
7363 	phylink_destroy(priv->phylink);
7364 	if (priv->plat->stmmac_rst)
7365 		reset_control_assert(priv->plat->stmmac_rst);
7366 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7367 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7368 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7369 		stmmac_mdio_unregister(ndev);
7370 	destroy_workqueue(priv->wq);
7371 	mutex_destroy(&priv->lock);
7372 	bitmap_free(priv->af_xdp_zc_qps);
7373 
7374 	pm_runtime_disable(dev);
7375 	pm_runtime_put_noidle(dev);
7376 
7377 	return 0;
7378 }
7379 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7380 
7381 /**
7382  * stmmac_suspend - suspend callback
7383  * @dev: device pointer
7384  * Description: this is the function to suspend the device and it is called
7385  * by the platform driver to stop the network queue, release the resources,
7386  * program the PMT register (for WoL), clean and release driver resources.
7387  */
stmmac_suspend(struct device * dev)7388 int stmmac_suspend(struct device *dev)
7389 {
7390 	struct net_device *ndev = dev_get_drvdata(dev);
7391 	struct stmmac_priv *priv = netdev_priv(ndev);
7392 	u32 chan;
7393 
7394 	if (!ndev || !netif_running(ndev))
7395 		return 0;
7396 
7397 	mutex_lock(&priv->lock);
7398 
7399 	netif_device_detach(ndev);
7400 
7401 	stmmac_disable_all_queues(priv);
7402 
7403 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7404 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7405 
7406 	if (priv->eee_enabled) {
7407 		priv->tx_path_in_lpi_mode = false;
7408 		del_timer_sync(&priv->eee_ctrl_timer);
7409 	}
7410 
7411 	/* Stop TX/RX DMA */
7412 	stmmac_stop_all_dma(priv);
7413 
7414 	if (priv->plat->serdes_powerdown)
7415 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7416 
7417 	/* Enable Power down mode by programming the PMT regs */
7418 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7419 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7420 		priv->irq_wake = 1;
7421 	} else {
7422 		stmmac_mac_set(priv, priv->ioaddr, false);
7423 		pinctrl_pm_select_sleep_state(priv->device);
7424 	}
7425 
7426 	mutex_unlock(&priv->lock);
7427 
7428 	rtnl_lock();
7429 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7430 		phylink_suspend(priv->phylink, true);
7431 	} else {
7432 		if (device_may_wakeup(priv->device))
7433 			phylink_speed_down(priv->phylink, false);
7434 		phylink_suspend(priv->phylink, false);
7435 	}
7436 	rtnl_unlock();
7437 
7438 	if (priv->dma_cap.fpesel) {
7439 		/* Disable FPE */
7440 		stmmac_fpe_configure(priv, priv->ioaddr,
7441 				     priv->plat->tx_queues_to_use,
7442 				     priv->plat->rx_queues_to_use, false);
7443 
7444 		stmmac_fpe_handshake(priv, false);
7445 		stmmac_fpe_stop_wq(priv);
7446 	}
7447 
7448 	priv->speed = SPEED_UNKNOWN;
7449 	return 0;
7450 }
7451 EXPORT_SYMBOL_GPL(stmmac_suspend);
7452 
stmmac_reset_rx_queue(struct stmmac_priv * priv,u32 queue)7453 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7454 {
7455 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7456 
7457 	rx_q->cur_rx = 0;
7458 	rx_q->dirty_rx = 0;
7459 }
7460 
stmmac_reset_tx_queue(struct stmmac_priv * priv,u32 queue)7461 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7462 {
7463 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7464 
7465 	tx_q->cur_tx = 0;
7466 	tx_q->dirty_tx = 0;
7467 	tx_q->mss = 0;
7468 
7469 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7470 }
7471 
7472 /**
7473  * stmmac_reset_queues_param - reset queue parameters
7474  * @priv: device pointer
7475  */
stmmac_reset_queues_param(struct stmmac_priv * priv)7476 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7477 {
7478 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7479 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7480 	u32 queue;
7481 
7482 	for (queue = 0; queue < rx_cnt; queue++)
7483 		stmmac_reset_rx_queue(priv, queue);
7484 
7485 	for (queue = 0; queue < tx_cnt; queue++)
7486 		stmmac_reset_tx_queue(priv, queue);
7487 }
7488 
7489 /**
7490  * stmmac_resume - resume callback
7491  * @dev: device pointer
7492  * Description: when resume this function is invoked to setup the DMA and CORE
7493  * in a usable state.
7494  */
stmmac_resume(struct device * dev)7495 int stmmac_resume(struct device *dev)
7496 {
7497 	struct net_device *ndev = dev_get_drvdata(dev);
7498 	struct stmmac_priv *priv = netdev_priv(ndev);
7499 	int ret;
7500 
7501 	if (!netif_running(ndev))
7502 		return 0;
7503 
7504 	/* Power Down bit, into the PM register, is cleared
7505 	 * automatically as soon as a magic packet or a Wake-up frame
7506 	 * is received. Anyway, it's better to manually clear
7507 	 * this bit because it can generate problems while resuming
7508 	 * from another devices (e.g. serial console).
7509 	 */
7510 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7511 		mutex_lock(&priv->lock);
7512 		stmmac_pmt(priv, priv->hw, 0);
7513 		mutex_unlock(&priv->lock);
7514 		priv->irq_wake = 0;
7515 	} else {
7516 		pinctrl_pm_select_default_state(priv->device);
7517 		/* reset the phy so that it's ready */
7518 		if (priv->mii)
7519 			stmmac_mdio_reset(priv->mii);
7520 	}
7521 
7522 	if (priv->plat->serdes_powerup) {
7523 		ret = priv->plat->serdes_powerup(ndev,
7524 						 priv->plat->bsp_priv);
7525 
7526 		if (ret < 0)
7527 			return ret;
7528 	}
7529 
7530 	rtnl_lock();
7531 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7532 		phylink_resume(priv->phylink);
7533 	} else {
7534 		phylink_resume(priv->phylink);
7535 		if (device_may_wakeup(priv->device))
7536 			phylink_speed_up(priv->phylink);
7537 	}
7538 	rtnl_unlock();
7539 
7540 	rtnl_lock();
7541 	mutex_lock(&priv->lock);
7542 
7543 	stmmac_reset_queues_param(priv);
7544 
7545 	stmmac_free_tx_skbufs(priv);
7546 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7547 
7548 	stmmac_hw_setup(ndev, false);
7549 	stmmac_init_coalesce(priv);
7550 	stmmac_set_rx_mode(ndev);
7551 
7552 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7553 
7554 	stmmac_enable_all_queues(priv);
7555 	stmmac_enable_all_dma_irq(priv);
7556 
7557 	mutex_unlock(&priv->lock);
7558 	rtnl_unlock();
7559 
7560 	netif_device_attach(ndev);
7561 
7562 	return 0;
7563 }
7564 EXPORT_SYMBOL_GPL(stmmac_resume);
7565 
7566 #ifndef MODULE
stmmac_cmdline_opt(char * str)7567 static int __init stmmac_cmdline_opt(char *str)
7568 {
7569 	char *opt;
7570 
7571 	if (!str || !*str)
7572 		return 1;
7573 	while ((opt = strsep(&str, ",")) != NULL) {
7574 		if (!strncmp(opt, "debug:", 6)) {
7575 			if (kstrtoint(opt + 6, 0, &debug))
7576 				goto err;
7577 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7578 			if (kstrtoint(opt + 8, 0, &phyaddr))
7579 				goto err;
7580 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7581 			if (kstrtoint(opt + 7, 0, &buf_sz))
7582 				goto err;
7583 		} else if (!strncmp(opt, "tc:", 3)) {
7584 			if (kstrtoint(opt + 3, 0, &tc))
7585 				goto err;
7586 		} else if (!strncmp(opt, "watchdog:", 9)) {
7587 			if (kstrtoint(opt + 9, 0, &watchdog))
7588 				goto err;
7589 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7590 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7591 				goto err;
7592 		} else if (!strncmp(opt, "pause:", 6)) {
7593 			if (kstrtoint(opt + 6, 0, &pause))
7594 				goto err;
7595 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7596 			if (kstrtoint(opt + 10, 0, &eee_timer))
7597 				goto err;
7598 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7599 			if (kstrtoint(opt + 11, 0, &chain_mode))
7600 				goto err;
7601 		}
7602 	}
7603 	return 1;
7604 
7605 err:
7606 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7607 	return 1;
7608 }
7609 
7610 __setup("stmmaceth=", stmmac_cmdline_opt);
7611 #endif /* MODULE */
7612 
stmmac_init(void)7613 static int __init stmmac_init(void)
7614 {
7615 #ifdef CONFIG_DEBUG_FS
7616 	/* Create debugfs main directory if it doesn't exist yet */
7617 	if (!stmmac_fs_dir)
7618 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7619 	register_netdevice_notifier(&stmmac_notifier);
7620 #endif
7621 
7622 	return 0;
7623 }
7624 
stmmac_exit(void)7625 static void __exit stmmac_exit(void)
7626 {
7627 #ifdef CONFIG_DEBUG_FS
7628 	unregister_netdevice_notifier(&stmmac_notifier);
7629 	debugfs_remove_recursive(stmmac_fs_dir);
7630 #endif
7631 }
7632 
7633 module_init(stmmac_init)
7634 module_exit(stmmac_exit)
7635 
7636 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7637 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7638 MODULE_LICENSE("GPL");
7639