1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48 
49 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
51 
52 /* Module parameters */
53 #define TX_TIMEO	5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57 
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61 
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65 
66 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
67 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
68 
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72 
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76 
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81 
82 #define	DEFAULT_BUFSIZE	1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86 
87 #define	STMMAC_RX_COPYBREAK	256
88 
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
91 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92 
93 #define STMMAC_DEFAULT_LPI_TIMER	1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
98 
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105 
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107 
108 #ifdef CONFIG_DEBUG_FS
109 static const struct net_device_ops stmmac_netdev_ops;
110 static void stmmac_init_fs(struct net_device *dev);
111 static void stmmac_exit_fs(struct net_device *dev);
112 #endif
113 
114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
115 
116 /**
117  * stmmac_verify_args - verify the driver parameters.
118  * Description: it checks the driver parameters and set a default in case of
119  * errors.
120  */
stmmac_verify_args(void)121 static void stmmac_verify_args(void)
122 {
123 	if (unlikely(watchdog < 0))
124 		watchdog = TX_TIMEO;
125 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
126 		buf_sz = DEFAULT_BUFSIZE;
127 	if (unlikely(flow_ctrl > 1))
128 		flow_ctrl = FLOW_AUTO;
129 	else if (likely(flow_ctrl < 0))
130 		flow_ctrl = FLOW_OFF;
131 	if (unlikely((pause < 0) || (pause > 0xffff)))
132 		pause = PAUSE_TIME;
133 	if (eee_timer < 0)
134 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
135 }
136 
137 /**
138  * stmmac_disable_all_queues - Disable all queues
139  * @priv: driver private structure
140  */
stmmac_disable_all_queues(struct stmmac_priv * priv)141 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
142 {
143 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
144 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
145 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
146 	u32 queue;
147 
148 	for (queue = 0; queue < maxq; queue++) {
149 		struct stmmac_channel *ch = &priv->channel[queue];
150 
151 		if (queue < rx_queues_cnt)
152 			napi_disable(&ch->rx_napi);
153 		if (queue < tx_queues_cnt)
154 			napi_disable(&ch->tx_napi);
155 	}
156 }
157 
158 /**
159  * stmmac_enable_all_queues - Enable all queues
160  * @priv: driver private structure
161  */
stmmac_enable_all_queues(struct stmmac_priv * priv)162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 {
164 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
166 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
167 	u32 queue;
168 
169 	for (queue = 0; queue < maxq; queue++) {
170 		struct stmmac_channel *ch = &priv->channel[queue];
171 
172 		if (queue < rx_queues_cnt)
173 			napi_enable(&ch->rx_napi);
174 		if (queue < tx_queues_cnt)
175 			napi_enable(&ch->tx_napi);
176 	}
177 }
178 
stmmac_service_event_schedule(struct stmmac_priv * priv)179 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
180 {
181 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
182 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
183 		queue_work(priv->wq, &priv->service_task);
184 }
185 
stmmac_global_err(struct stmmac_priv * priv)186 static void stmmac_global_err(struct stmmac_priv *priv)
187 {
188 	netif_carrier_off(priv->dev);
189 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
190 	stmmac_service_event_schedule(priv);
191 }
192 
193 /**
194  * stmmac_clk_csr_set - dynamically set the MDC clock
195  * @priv: driver private structure
196  * Description: this is to dynamically set the MDC clock according to the csr
197  * clock input.
198  * Note:
199  *	If a specific clk_csr value is passed from the platform
200  *	this means that the CSR Clock Range selection cannot be
201  *	changed at run-time and it is fixed (as reported in the driver
202  *	documentation). Viceversa the driver will try to set the MDC
203  *	clock dynamically according to the actual clock input.
204  */
stmmac_clk_csr_set(struct stmmac_priv * priv)205 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
206 {
207 	u32 clk_rate;
208 
209 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
210 
211 	/* Platform provided default clk_csr would be assumed valid
212 	 * for all other cases except for the below mentioned ones.
213 	 * For values higher than the IEEE 802.3 specified frequency
214 	 * we can not estimate the proper divider as it is not known
215 	 * the frequency of clk_csr_i. So we do not change the default
216 	 * divider.
217 	 */
218 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
219 		if (clk_rate < CSR_F_35M)
220 			priv->clk_csr = STMMAC_CSR_20_35M;
221 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
222 			priv->clk_csr = STMMAC_CSR_35_60M;
223 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
224 			priv->clk_csr = STMMAC_CSR_60_100M;
225 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
226 			priv->clk_csr = STMMAC_CSR_100_150M;
227 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
228 			priv->clk_csr = STMMAC_CSR_150_250M;
229 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
230 			priv->clk_csr = STMMAC_CSR_250_300M;
231 	}
232 
233 	if (priv->plat->has_sun8i) {
234 		if (clk_rate > 160000000)
235 			priv->clk_csr = 0x03;
236 		else if (clk_rate > 80000000)
237 			priv->clk_csr = 0x02;
238 		else if (clk_rate > 40000000)
239 			priv->clk_csr = 0x01;
240 		else
241 			priv->clk_csr = 0;
242 	}
243 
244 	if (priv->plat->has_xgmac) {
245 		if (clk_rate > 400000000)
246 			priv->clk_csr = 0x5;
247 		else if (clk_rate > 350000000)
248 			priv->clk_csr = 0x4;
249 		else if (clk_rate > 300000000)
250 			priv->clk_csr = 0x3;
251 		else if (clk_rate > 250000000)
252 			priv->clk_csr = 0x2;
253 		else if (clk_rate > 150000000)
254 			priv->clk_csr = 0x1;
255 		else
256 			priv->clk_csr = 0x0;
257 	}
258 }
259 
print_pkt(unsigned char * buf,int len)260 static void print_pkt(unsigned char *buf, int len)
261 {
262 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
263 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
264 }
265 
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)266 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
267 {
268 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
269 	u32 avail;
270 
271 	if (tx_q->dirty_tx > tx_q->cur_tx)
272 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
273 	else
274 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
275 
276 	return avail;
277 }
278 
279 /**
280  * stmmac_rx_dirty - Get RX queue dirty
281  * @priv: driver private structure
282  * @queue: RX queue index
283  */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)284 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
285 {
286 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
287 	u32 dirty;
288 
289 	if (rx_q->dirty_rx <= rx_q->cur_rx)
290 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
291 	else
292 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
293 
294 	return dirty;
295 }
296 
297 /**
298  * stmmac_enable_eee_mode - check and enter in LPI mode
299  * @priv: driver private structure
300  * Description: this function is to verify and enter in LPI mode in case of
301  * EEE.
302  */
stmmac_enable_eee_mode(struct stmmac_priv * priv)303 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
304 {
305 	u32 tx_cnt = priv->plat->tx_queues_to_use;
306 	u32 queue;
307 
308 	/* check if all TX queues have the work finished */
309 	for (queue = 0; queue < tx_cnt; queue++) {
310 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
311 
312 		if (tx_q->dirty_tx != tx_q->cur_tx)
313 			return; /* still unfinished work */
314 	}
315 
316 	/* Check and enter in LPI mode */
317 	if (!priv->tx_path_in_lpi_mode)
318 		stmmac_set_eee_mode(priv, priv->hw,
319 				priv->plat->en_tx_lpi_clockgating);
320 }
321 
322 /**
323  * stmmac_disable_eee_mode - disable and exit from LPI mode
324  * @priv: driver private structure
325  * Description: this function is to exit and disable EEE in case of
326  * LPI state is true. This is called by the xmit.
327  */
stmmac_disable_eee_mode(struct stmmac_priv * priv)328 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
329 {
330 	stmmac_reset_eee_mode(priv, priv->hw);
331 	del_timer_sync(&priv->eee_ctrl_timer);
332 	priv->tx_path_in_lpi_mode = false;
333 }
334 
335 /**
336  * stmmac_eee_ctrl_timer - EEE TX SW timer.
337  * @t:  timer_list struct containing private info
338  * Description:
339  *  if there is no data transfer and if we are not in LPI state,
340  *  then MAC Transmitter can be moved to LPI state.
341  */
stmmac_eee_ctrl_timer(struct timer_list * t)342 static void stmmac_eee_ctrl_timer(struct timer_list *t)
343 {
344 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
345 
346 	stmmac_enable_eee_mode(priv);
347 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
348 }
349 
350 /**
351  * stmmac_eee_init - init EEE
352  * @priv: driver private structure
353  * Description:
354  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
355  *  can also manage EEE, this function enable the LPI state and start related
356  *  timer.
357  */
stmmac_eee_init(struct stmmac_priv * priv)358 bool stmmac_eee_init(struct stmmac_priv *priv)
359 {
360 	int eee_tw_timer = priv->eee_tw_timer;
361 
362 	/* Using PCS we cannot dial with the phy registers at this stage
363 	 * so we do not support extra feature like EEE.
364 	 */
365 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
366 	    priv->hw->pcs == STMMAC_PCS_RTBI)
367 		return false;
368 
369 	/* Check if MAC core supports the EEE feature. */
370 	if (!priv->dma_cap.eee)
371 		return false;
372 
373 	mutex_lock(&priv->lock);
374 
375 	/* Check if it needs to be deactivated */
376 	if (!priv->eee_active) {
377 		if (priv->eee_enabled) {
378 			netdev_dbg(priv->dev, "disable EEE\n");
379 			del_timer_sync(&priv->eee_ctrl_timer);
380 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
381 		}
382 		mutex_unlock(&priv->lock);
383 		return false;
384 	}
385 
386 	if (priv->eee_active && !priv->eee_enabled) {
387 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
388 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
389 				     eee_tw_timer);
390 	}
391 
392 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
393 
394 	mutex_unlock(&priv->lock);
395 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
396 	return true;
397 }
398 
399 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
400  * @priv: driver private structure
401  * @p : descriptor pointer
402  * @skb : the socket buffer
403  * Description :
404  * This function will read timestamp from the descriptor & pass it to stack.
405  * and also perform some sanity checks.
406  */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)407 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
408 				   struct dma_desc *p, struct sk_buff *skb)
409 {
410 	struct skb_shared_hwtstamps shhwtstamp;
411 	bool found = false;
412 	u64 ns = 0;
413 
414 	if (!priv->hwts_tx_en)
415 		return;
416 
417 	/* exit if skb doesn't support hw tstamp */
418 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
419 		return;
420 
421 	/* check tx tstamp status */
422 	if (stmmac_get_tx_timestamp_status(priv, p)) {
423 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
424 		found = true;
425 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
426 		found = true;
427 	}
428 
429 	if (found) {
430 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
431 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
432 
433 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
434 		/* pass tstamp to stack */
435 		skb_tstamp_tx(skb, &shhwtstamp);
436 	}
437 }
438 
439 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
440  * @priv: driver private structure
441  * @p : descriptor pointer
442  * @np : next descriptor pointer
443  * @skb : the socket buffer
444  * Description :
445  * This function will read received packet's timestamp from the descriptor
446  * and pass it to stack. It also perform some sanity checks.
447  */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)448 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
449 				   struct dma_desc *np, struct sk_buff *skb)
450 {
451 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
452 	struct dma_desc *desc = p;
453 	u64 ns = 0;
454 
455 	if (!priv->hwts_rx_en)
456 		return;
457 	/* For GMAC4, the valid timestamp is from CTX next desc. */
458 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
459 		desc = np;
460 
461 	/* Check if timestamp is available */
462 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
463 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
464 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
465 		shhwtstamp = skb_hwtstamps(skb);
466 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
467 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
468 	} else  {
469 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
470 	}
471 }
472 
473 /**
474  *  stmmac_hwtstamp_set - control hardware timestamping.
475  *  @dev: device pointer.
476  *  @ifr: An IOCTL specific structure, that can contain a pointer to
477  *  a proprietary structure used to pass information to the driver.
478  *  Description:
479  *  This function configures the MAC to enable/disable both outgoing(TX)
480  *  and incoming(RX) packets time stamping based on user input.
481  *  Return Value:
482  *  0 on success and an appropriate -ve integer on failure.
483  */
stmmac_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)484 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
485 {
486 	struct stmmac_priv *priv = netdev_priv(dev);
487 	struct hwtstamp_config config;
488 	struct timespec64 now;
489 	u64 temp = 0;
490 	u32 ptp_v2 = 0;
491 	u32 tstamp_all = 0;
492 	u32 ptp_over_ipv4_udp = 0;
493 	u32 ptp_over_ipv6_udp = 0;
494 	u32 ptp_over_ethernet = 0;
495 	u32 snap_type_sel = 0;
496 	u32 ts_master_en = 0;
497 	u32 ts_event_en = 0;
498 	u32 sec_inc = 0;
499 	u32 value = 0;
500 	bool xmac;
501 
502 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
503 
504 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
505 		netdev_alert(priv->dev, "No support for HW time stamping\n");
506 		priv->hwts_tx_en = 0;
507 		priv->hwts_rx_en = 0;
508 
509 		return -EOPNOTSUPP;
510 	}
511 
512 	if (copy_from_user(&config, ifr->ifr_data,
513 			   sizeof(config)))
514 		return -EFAULT;
515 
516 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
517 		   __func__, config.flags, config.tx_type, config.rx_filter);
518 
519 	/* reserved for future extensions */
520 	if (config.flags)
521 		return -EINVAL;
522 
523 	if (config.tx_type != HWTSTAMP_TX_OFF &&
524 	    config.tx_type != HWTSTAMP_TX_ON)
525 		return -ERANGE;
526 
527 	if (priv->adv_ts) {
528 		switch (config.rx_filter) {
529 		case HWTSTAMP_FILTER_NONE:
530 			/* time stamp no incoming packet at all */
531 			config.rx_filter = HWTSTAMP_FILTER_NONE;
532 			break;
533 
534 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
535 			/* PTP v1, UDP, any kind of event packet */
536 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
537 			/* 'xmac' hardware can support Sync, Pdelay_Req and
538 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
539 			 * This leaves Delay_Req timestamps out.
540 			 * Enable all events *and* general purpose message
541 			 * timestamping
542 			 */
543 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
544 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
545 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
546 			break;
547 
548 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
549 			/* PTP v1, UDP, Sync packet */
550 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
551 			/* take time stamp for SYNC messages only */
552 			ts_event_en = PTP_TCR_TSEVNTENA;
553 
554 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
555 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
556 			break;
557 
558 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
559 			/* PTP v1, UDP, Delay_req packet */
560 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
561 			/* take time stamp for Delay_Req messages only */
562 			ts_master_en = PTP_TCR_TSMSTRENA;
563 			ts_event_en = PTP_TCR_TSEVNTENA;
564 
565 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567 			break;
568 
569 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
570 			/* PTP v2, UDP, any kind of event packet */
571 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
572 			ptp_v2 = PTP_TCR_TSVER2ENA;
573 			/* take time stamp for all event messages */
574 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
575 
576 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
577 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
578 			break;
579 
580 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
581 			/* PTP v2, UDP, Sync packet */
582 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
583 			ptp_v2 = PTP_TCR_TSVER2ENA;
584 			/* take time stamp for SYNC messages only */
585 			ts_event_en = PTP_TCR_TSEVNTENA;
586 
587 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
588 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
589 			break;
590 
591 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
592 			/* PTP v2, UDP, Delay_req packet */
593 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
594 			ptp_v2 = PTP_TCR_TSVER2ENA;
595 			/* take time stamp for Delay_Req messages only */
596 			ts_master_en = PTP_TCR_TSMSTRENA;
597 			ts_event_en = PTP_TCR_TSEVNTENA;
598 
599 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
600 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
601 			break;
602 
603 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
604 			/* PTP v2/802.AS1 any layer, any kind of event packet */
605 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
606 			ptp_v2 = PTP_TCR_TSVER2ENA;
607 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
608 			if (priv->synopsys_id != DWMAC_CORE_5_10)
609 				ts_event_en = PTP_TCR_TSEVNTENA;
610 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
611 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
612 			ptp_over_ethernet = PTP_TCR_TSIPENA;
613 			break;
614 
615 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
616 			/* PTP v2/802.AS1, any layer, Sync packet */
617 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
618 			ptp_v2 = PTP_TCR_TSVER2ENA;
619 			/* take time stamp for SYNC messages only */
620 			ts_event_en = PTP_TCR_TSEVNTENA;
621 
622 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
623 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
624 			ptp_over_ethernet = PTP_TCR_TSIPENA;
625 			break;
626 
627 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
628 			/* PTP v2/802.AS1, any layer, Delay_req packet */
629 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
630 			ptp_v2 = PTP_TCR_TSVER2ENA;
631 			/* take time stamp for Delay_Req messages only */
632 			ts_master_en = PTP_TCR_TSMSTRENA;
633 			ts_event_en = PTP_TCR_TSEVNTENA;
634 
635 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
636 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
637 			ptp_over_ethernet = PTP_TCR_TSIPENA;
638 			break;
639 
640 		case HWTSTAMP_FILTER_NTP_ALL:
641 		case HWTSTAMP_FILTER_ALL:
642 			/* time stamp any incoming packet */
643 			config.rx_filter = HWTSTAMP_FILTER_ALL;
644 			tstamp_all = PTP_TCR_TSENALL;
645 			break;
646 
647 		default:
648 			return -ERANGE;
649 		}
650 	} else {
651 		switch (config.rx_filter) {
652 		case HWTSTAMP_FILTER_NONE:
653 			config.rx_filter = HWTSTAMP_FILTER_NONE;
654 			break;
655 		default:
656 			/* PTP v1, UDP, any kind of event packet */
657 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
658 			break;
659 		}
660 	}
661 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
662 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
663 
664 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
665 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
666 	else {
667 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
668 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
669 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
670 			 ts_master_en | snap_type_sel);
671 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
672 
673 		/* program Sub Second Increment reg */
674 		stmmac_config_sub_second_increment(priv,
675 				priv->ptpaddr, priv->plat->clk_ptp_rate,
676 				xmac, &sec_inc);
677 		temp = div_u64(1000000000ULL, sec_inc);
678 
679 		/* Store sub second increment and flags for later use */
680 		priv->sub_second_inc = sec_inc;
681 		priv->systime_flags = value;
682 
683 		/* calculate default added value:
684 		 * formula is :
685 		 * addend = (2^32)/freq_div_ratio;
686 		 * where, freq_div_ratio = 1e9ns/sec_inc
687 		 */
688 		temp = (u64)(temp << 32);
689 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
690 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
691 
692 		/* initialize system time */
693 		ktime_get_real_ts64(&now);
694 
695 		/* lower 32 bits of tv_sec are safe until y2106 */
696 		stmmac_init_systime(priv, priv->ptpaddr,
697 				(u32)now.tv_sec, now.tv_nsec);
698 	}
699 
700 	memcpy(&priv->tstamp_config, &config, sizeof(config));
701 
702 	return copy_to_user(ifr->ifr_data, &config,
703 			    sizeof(config)) ? -EFAULT : 0;
704 }
705 
706 /**
707  *  stmmac_hwtstamp_get - read hardware timestamping.
708  *  @dev: device pointer.
709  *  @ifr: An IOCTL specific structure, that can contain a pointer to
710  *  a proprietary structure used to pass information to the driver.
711  *  Description:
712  *  This function obtain the current hardware timestamping settings
713  *  as requested.
714  */
stmmac_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)715 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
716 {
717 	struct stmmac_priv *priv = netdev_priv(dev);
718 	struct hwtstamp_config *config = &priv->tstamp_config;
719 
720 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
721 		return -EOPNOTSUPP;
722 
723 	return copy_to_user(ifr->ifr_data, config,
724 			    sizeof(*config)) ? -EFAULT : 0;
725 }
726 
727 /**
728  * stmmac_init_ptp - init PTP
729  * @priv: driver private structure
730  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
731  * This is done by looking at the HW cap. register.
732  * This function also registers the ptp driver.
733  */
stmmac_init_ptp(struct stmmac_priv * priv)734 static int stmmac_init_ptp(struct stmmac_priv *priv)
735 {
736 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
737 
738 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
739 		return -EOPNOTSUPP;
740 
741 	priv->adv_ts = 0;
742 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
743 	if (xmac && priv->dma_cap.atime_stamp)
744 		priv->adv_ts = 1;
745 	/* Dwmac 3.x core with extend_desc can support adv_ts */
746 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
747 		priv->adv_ts = 1;
748 
749 	if (priv->dma_cap.time_stamp)
750 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
751 
752 	if (priv->adv_ts)
753 		netdev_info(priv->dev,
754 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
755 
756 	priv->hwts_tx_en = 0;
757 	priv->hwts_rx_en = 0;
758 
759 	stmmac_ptp_register(priv);
760 
761 	return 0;
762 }
763 
stmmac_release_ptp(struct stmmac_priv * priv)764 static void stmmac_release_ptp(struct stmmac_priv *priv)
765 {
766 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
767 	stmmac_ptp_unregister(priv);
768 }
769 
770 /**
771  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
772  *  @priv: driver private structure
773  *  @duplex: duplex passed to the next function
774  *  Description: It is used for configuring the flow control in all queues
775  */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)776 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
777 {
778 	u32 tx_cnt = priv->plat->tx_queues_to_use;
779 
780 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
781 			priv->pause, tx_cnt);
782 }
783 
stmmac_validate(struct phylink_config * config,unsigned long * supported,struct phylink_link_state * state)784 static void stmmac_validate(struct phylink_config *config,
785 			    unsigned long *supported,
786 			    struct phylink_link_state *state)
787 {
788 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
789 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
790 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
791 	int tx_cnt = priv->plat->tx_queues_to_use;
792 	int max_speed = priv->plat->max_speed;
793 
794 	phylink_set(mac_supported, 10baseT_Half);
795 	phylink_set(mac_supported, 10baseT_Full);
796 	phylink_set(mac_supported, 100baseT_Half);
797 	phylink_set(mac_supported, 100baseT_Full);
798 	phylink_set(mac_supported, 1000baseT_Half);
799 	phylink_set(mac_supported, 1000baseT_Full);
800 	phylink_set(mac_supported, 1000baseKX_Full);
801 
802 	phylink_set(mac_supported, Autoneg);
803 	phylink_set(mac_supported, Pause);
804 	phylink_set(mac_supported, Asym_Pause);
805 	phylink_set_port_modes(mac_supported);
806 
807 	/* Cut down 1G if asked to */
808 	if ((max_speed > 0) && (max_speed < 1000)) {
809 		phylink_set(mask, 1000baseT_Full);
810 		phylink_set(mask, 1000baseX_Full);
811 	} else if (priv->plat->has_xgmac) {
812 		if (!max_speed || (max_speed >= 2500)) {
813 			phylink_set(mac_supported, 2500baseT_Full);
814 			phylink_set(mac_supported, 2500baseX_Full);
815 		}
816 		if (!max_speed || (max_speed >= 5000)) {
817 			phylink_set(mac_supported, 5000baseT_Full);
818 		}
819 		if (!max_speed || (max_speed >= 10000)) {
820 			phylink_set(mac_supported, 10000baseSR_Full);
821 			phylink_set(mac_supported, 10000baseLR_Full);
822 			phylink_set(mac_supported, 10000baseER_Full);
823 			phylink_set(mac_supported, 10000baseLRM_Full);
824 			phylink_set(mac_supported, 10000baseT_Full);
825 			phylink_set(mac_supported, 10000baseKX4_Full);
826 			phylink_set(mac_supported, 10000baseKR_Full);
827 		}
828 		if (!max_speed || (max_speed >= 25000)) {
829 			phylink_set(mac_supported, 25000baseCR_Full);
830 			phylink_set(mac_supported, 25000baseKR_Full);
831 			phylink_set(mac_supported, 25000baseSR_Full);
832 		}
833 		if (!max_speed || (max_speed >= 40000)) {
834 			phylink_set(mac_supported, 40000baseKR4_Full);
835 			phylink_set(mac_supported, 40000baseCR4_Full);
836 			phylink_set(mac_supported, 40000baseSR4_Full);
837 			phylink_set(mac_supported, 40000baseLR4_Full);
838 		}
839 		if (!max_speed || (max_speed >= 50000)) {
840 			phylink_set(mac_supported, 50000baseCR2_Full);
841 			phylink_set(mac_supported, 50000baseKR2_Full);
842 			phylink_set(mac_supported, 50000baseSR2_Full);
843 			phylink_set(mac_supported, 50000baseKR_Full);
844 			phylink_set(mac_supported, 50000baseSR_Full);
845 			phylink_set(mac_supported, 50000baseCR_Full);
846 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
847 			phylink_set(mac_supported, 50000baseDR_Full);
848 		}
849 		if (!max_speed || (max_speed >= 100000)) {
850 			phylink_set(mac_supported, 100000baseKR4_Full);
851 			phylink_set(mac_supported, 100000baseSR4_Full);
852 			phylink_set(mac_supported, 100000baseCR4_Full);
853 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
854 			phylink_set(mac_supported, 100000baseKR2_Full);
855 			phylink_set(mac_supported, 100000baseSR2_Full);
856 			phylink_set(mac_supported, 100000baseCR2_Full);
857 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
858 			phylink_set(mac_supported, 100000baseDR2_Full);
859 		}
860 	}
861 
862 	/* Half-Duplex can only work with single queue */
863 	if (tx_cnt > 1) {
864 		phylink_set(mask, 10baseT_Half);
865 		phylink_set(mask, 100baseT_Half);
866 		phylink_set(mask, 1000baseT_Half);
867 	}
868 
869 	linkmode_and(supported, supported, mac_supported);
870 	linkmode_andnot(supported, supported, mask);
871 
872 	linkmode_and(state->advertising, state->advertising, mac_supported);
873 	linkmode_andnot(state->advertising, state->advertising, mask);
874 
875 	/* If PCS is supported, check which modes it supports. */
876 	stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
877 }
878 
stmmac_mac_pcs_get_state(struct phylink_config * config,struct phylink_link_state * state)879 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
880 				     struct phylink_link_state *state)
881 {
882 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
883 
884 	state->link = 0;
885 	stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
886 }
887 
stmmac_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)888 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
889 			      const struct phylink_link_state *state)
890 {
891 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
892 
893 	stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
894 }
895 
stmmac_mac_an_restart(struct phylink_config * config)896 static void stmmac_mac_an_restart(struct phylink_config *config)
897 {
898 	/* Not Supported */
899 }
900 
stmmac_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)901 static void stmmac_mac_link_down(struct phylink_config *config,
902 				 unsigned int mode, phy_interface_t interface)
903 {
904 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
905 
906 	stmmac_mac_set(priv, priv->ioaddr, false);
907 	priv->eee_active = false;
908 	priv->tx_lpi_enabled = false;
909 	stmmac_eee_init(priv);
910 	stmmac_set_eee_pls(priv, priv->hw, false);
911 }
912 
stmmac_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)913 static void stmmac_mac_link_up(struct phylink_config *config,
914 			       struct phy_device *phy,
915 			       unsigned int mode, phy_interface_t interface,
916 			       int speed, int duplex,
917 			       bool tx_pause, bool rx_pause)
918 {
919 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
920 	u32 ctrl;
921 
922 	stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
923 
924 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
925 	ctrl &= ~priv->hw->link.speed_mask;
926 
927 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
928 		switch (speed) {
929 		case SPEED_10000:
930 			ctrl |= priv->hw->link.xgmii.speed10000;
931 			break;
932 		case SPEED_5000:
933 			ctrl |= priv->hw->link.xgmii.speed5000;
934 			break;
935 		case SPEED_2500:
936 			ctrl |= priv->hw->link.xgmii.speed2500;
937 			break;
938 		default:
939 			return;
940 		}
941 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
942 		switch (speed) {
943 		case SPEED_100000:
944 			ctrl |= priv->hw->link.xlgmii.speed100000;
945 			break;
946 		case SPEED_50000:
947 			ctrl |= priv->hw->link.xlgmii.speed50000;
948 			break;
949 		case SPEED_40000:
950 			ctrl |= priv->hw->link.xlgmii.speed40000;
951 			break;
952 		case SPEED_25000:
953 			ctrl |= priv->hw->link.xlgmii.speed25000;
954 			break;
955 		case SPEED_10000:
956 			ctrl |= priv->hw->link.xgmii.speed10000;
957 			break;
958 		case SPEED_2500:
959 			ctrl |= priv->hw->link.speed2500;
960 			break;
961 		case SPEED_1000:
962 			ctrl |= priv->hw->link.speed1000;
963 			break;
964 		default:
965 			return;
966 		}
967 	} else {
968 		switch (speed) {
969 		case SPEED_2500:
970 			ctrl |= priv->hw->link.speed2500;
971 			break;
972 		case SPEED_1000:
973 			ctrl |= priv->hw->link.speed1000;
974 			break;
975 		case SPEED_100:
976 			ctrl |= priv->hw->link.speed100;
977 			break;
978 		case SPEED_10:
979 			ctrl |= priv->hw->link.speed10;
980 			break;
981 		default:
982 			return;
983 		}
984 	}
985 
986 	priv->speed = speed;
987 
988 	if (priv->plat->fix_mac_speed)
989 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
990 
991 	if (!duplex)
992 		ctrl &= ~priv->hw->link.duplex;
993 	else
994 		ctrl |= priv->hw->link.duplex;
995 
996 	/* Flow Control operation */
997 	if (tx_pause && rx_pause)
998 		stmmac_mac_flow_ctrl(priv, duplex);
999 
1000 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1001 
1002 	stmmac_mac_set(priv, priv->ioaddr, true);
1003 	if (phy && priv->dma_cap.eee) {
1004 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1005 		priv->eee_enabled = stmmac_eee_init(priv);
1006 		priv->tx_lpi_enabled = priv->eee_enabled;
1007 		stmmac_set_eee_pls(priv, priv->hw, true);
1008 	}
1009 }
1010 
1011 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1012 	.validate = stmmac_validate,
1013 	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
1014 	.mac_config = stmmac_mac_config,
1015 	.mac_an_restart = stmmac_mac_an_restart,
1016 	.mac_link_down = stmmac_mac_link_down,
1017 	.mac_link_up = stmmac_mac_link_up,
1018 };
1019 
1020 /**
1021  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1022  * @priv: driver private structure
1023  * Description: this is to verify if the HW supports the PCS.
1024  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1025  * configured for the TBI, RTBI, or SGMII PHY interface.
1026  */
stmmac_check_pcs_mode(struct stmmac_priv * priv)1027 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1028 {
1029 	int interface = priv->plat->interface;
1030 
1031 	if (priv->dma_cap.pcs) {
1032 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1033 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1034 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1035 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1036 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1037 			priv->hw->pcs = STMMAC_PCS_RGMII;
1038 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1039 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1040 			priv->hw->pcs = STMMAC_PCS_SGMII;
1041 		}
1042 	}
1043 }
1044 
1045 /**
1046  * stmmac_init_phy - PHY initialization
1047  * @dev: net device structure
1048  * Description: it initializes the driver's PHY state, and attaches the PHY
1049  * to the mac driver.
1050  *  Return value:
1051  *  0 on success
1052  */
stmmac_init_phy(struct net_device * dev)1053 static int stmmac_init_phy(struct net_device *dev)
1054 {
1055 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1056 	struct stmmac_priv *priv = netdev_priv(dev);
1057 	struct device_node *node;
1058 	int ret;
1059 
1060 	node = priv->plat->phylink_node;
1061 
1062 	if (node)
1063 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1064 
1065 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1066 	 * manually parse it
1067 	 */
1068 	if (!node || ret) {
1069 		int addr = priv->plat->phy_addr;
1070 		struct phy_device *phydev;
1071 
1072 		phydev = mdiobus_get_phy(priv->mii, addr);
1073 		if (!phydev) {
1074 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1075 			return -ENODEV;
1076 		}
1077 
1078 		ret = phylink_connect_phy(priv->phylink, phydev);
1079 	}
1080 
1081 	phylink_ethtool_get_wol(priv->phylink, &wol);
1082 	device_set_wakeup_capable(priv->device, !!wol.supported);
1083 
1084 	return ret;
1085 }
1086 
stmmac_phy_setup(struct stmmac_priv * priv)1087 static int stmmac_phy_setup(struct stmmac_priv *priv)
1088 {
1089 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1090 	int mode = priv->plat->phy_interface;
1091 	struct phylink *phylink;
1092 
1093 	priv->phylink_config.dev = &priv->dev->dev;
1094 	priv->phylink_config.type = PHYLINK_NETDEV;
1095 	priv->phylink_config.pcs_poll = true;
1096 
1097 	if (!fwnode)
1098 		fwnode = dev_fwnode(priv->device);
1099 
1100 	phylink = phylink_create(&priv->phylink_config, fwnode,
1101 				 mode, &stmmac_phylink_mac_ops);
1102 	if (IS_ERR(phylink))
1103 		return PTR_ERR(phylink);
1104 
1105 	priv->phylink = phylink;
1106 	return 0;
1107 }
1108 
stmmac_display_rx_rings(struct stmmac_priv * priv)1109 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1110 {
1111 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1112 	void *head_rx;
1113 	u32 queue;
1114 
1115 	/* Display RX rings */
1116 	for (queue = 0; queue < rx_cnt; queue++) {
1117 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1118 
1119 		pr_info("\tRX Queue %u rings\n", queue);
1120 
1121 		if (priv->extend_desc)
1122 			head_rx = (void *)rx_q->dma_erx;
1123 		else
1124 			head_rx = (void *)rx_q->dma_rx;
1125 
1126 		/* Display RX ring */
1127 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true);
1128 	}
1129 }
1130 
stmmac_display_tx_rings(struct stmmac_priv * priv)1131 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1132 {
1133 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1134 	void *head_tx;
1135 	u32 queue;
1136 
1137 	/* Display TX rings */
1138 	for (queue = 0; queue < tx_cnt; queue++) {
1139 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1140 
1141 		pr_info("\tTX Queue %d rings\n", queue);
1142 
1143 		if (priv->extend_desc)
1144 			head_tx = (void *)tx_q->dma_etx;
1145 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1146 			head_tx = (void *)tx_q->dma_entx;
1147 		else
1148 			head_tx = (void *)tx_q->dma_tx;
1149 
1150 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false);
1151 	}
1152 }
1153 
stmmac_display_rings(struct stmmac_priv * priv)1154 static void stmmac_display_rings(struct stmmac_priv *priv)
1155 {
1156 	/* Display RX ring */
1157 	stmmac_display_rx_rings(priv);
1158 
1159 	/* Display TX ring */
1160 	stmmac_display_tx_rings(priv);
1161 }
1162 
stmmac_set_bfsize(int mtu,int bufsize)1163 static int stmmac_set_bfsize(int mtu, int bufsize)
1164 {
1165 	int ret = bufsize;
1166 
1167 	if (mtu >= BUF_SIZE_8KiB)
1168 		ret = BUF_SIZE_16KiB;
1169 	else if (mtu >= BUF_SIZE_4KiB)
1170 		ret = BUF_SIZE_8KiB;
1171 	else if (mtu >= BUF_SIZE_2KiB)
1172 		ret = BUF_SIZE_4KiB;
1173 	else if (mtu > DEFAULT_BUFSIZE)
1174 		ret = BUF_SIZE_2KiB;
1175 	else
1176 		ret = DEFAULT_BUFSIZE;
1177 
1178 	return ret;
1179 }
1180 
1181 /**
1182  * stmmac_clear_rx_descriptors - clear RX descriptors
1183  * @priv: driver private structure
1184  * @queue: RX queue index
1185  * Description: this function is called to clear the RX descriptors
1186  * in case of both basic and extended descriptors are used.
1187  */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,u32 queue)1188 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1189 {
1190 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1191 	int i;
1192 
1193 	/* Clear the RX descriptors */
1194 	for (i = 0; i < priv->dma_rx_size; i++)
1195 		if (priv->extend_desc)
1196 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1197 					priv->use_riwt, priv->mode,
1198 					(i == priv->dma_rx_size - 1),
1199 					priv->dma_buf_sz);
1200 		else
1201 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1202 					priv->use_riwt, priv->mode,
1203 					(i == priv->dma_rx_size - 1),
1204 					priv->dma_buf_sz);
1205 }
1206 
1207 /**
1208  * stmmac_clear_tx_descriptors - clear tx descriptors
1209  * @priv: driver private structure
1210  * @queue: TX queue index.
1211  * Description: this function is called to clear the TX descriptors
1212  * in case of both basic and extended descriptors are used.
1213  */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,u32 queue)1214 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1215 {
1216 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1217 	int i;
1218 
1219 	/* Clear the TX descriptors */
1220 	for (i = 0; i < priv->dma_tx_size; i++) {
1221 		int last = (i == (priv->dma_tx_size - 1));
1222 		struct dma_desc *p;
1223 
1224 		if (priv->extend_desc)
1225 			p = &tx_q->dma_etx[i].basic;
1226 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1227 			p = &tx_q->dma_entx[i].basic;
1228 		else
1229 			p = &tx_q->dma_tx[i];
1230 
1231 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1232 	}
1233 }
1234 
1235 /**
1236  * stmmac_clear_descriptors - clear descriptors
1237  * @priv: driver private structure
1238  * Description: this function is called to clear the TX and RX descriptors
1239  * in case of both basic and extended descriptors are used.
1240  */
stmmac_clear_descriptors(struct stmmac_priv * priv)1241 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1242 {
1243 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1244 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1245 	u32 queue;
1246 
1247 	/* Clear the RX descriptors */
1248 	for (queue = 0; queue < rx_queue_cnt; queue++)
1249 		stmmac_clear_rx_descriptors(priv, queue);
1250 
1251 	/* Clear the TX descriptors */
1252 	for (queue = 0; queue < tx_queue_cnt; queue++)
1253 		stmmac_clear_tx_descriptors(priv, queue);
1254 }
1255 
1256 /**
1257  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1258  * @priv: driver private structure
1259  * @p: descriptor pointer
1260  * @i: descriptor index
1261  * @flags: gfp flag
1262  * @queue: RX queue index
1263  * Description: this function is called to allocate a receive buffer, perform
1264  * the DMA mapping and init the descriptor.
1265  */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct dma_desc * p,int i,gfp_t flags,u32 queue)1266 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1267 				  int i, gfp_t flags, u32 queue)
1268 {
1269 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1270 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1271 
1272 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1273 	if (!buf->page)
1274 		return -ENOMEM;
1275 
1276 	if (priv->sph) {
1277 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1278 		if (!buf->sec_page)
1279 			return -ENOMEM;
1280 
1281 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1282 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1283 	} else {
1284 		buf->sec_page = NULL;
1285 	}
1286 
1287 	buf->addr = page_pool_get_dma_addr(buf->page);
1288 	stmmac_set_desc_addr(priv, p, buf->addr);
1289 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1290 		stmmac_init_desc3(priv, p);
1291 
1292 	return 0;
1293 }
1294 
1295 /**
1296  * stmmac_free_rx_buffer - free RX dma buffers
1297  * @priv: private structure
1298  * @queue: RX queue index
1299  * @i: buffer index.
1300  */
stmmac_free_rx_buffer(struct stmmac_priv * priv,u32 queue,int i)1301 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1302 {
1303 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1304 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1305 
1306 	if (buf->page)
1307 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1308 	buf->page = NULL;
1309 
1310 	if (buf->sec_page)
1311 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1312 	buf->sec_page = NULL;
1313 }
1314 
1315 /**
1316  * stmmac_free_tx_buffer - free RX dma buffers
1317  * @priv: private structure
1318  * @queue: RX queue index
1319  * @i: buffer index.
1320  */
stmmac_free_tx_buffer(struct stmmac_priv * priv,u32 queue,int i)1321 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1322 {
1323 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1324 
1325 	if (tx_q->tx_skbuff_dma[i].buf) {
1326 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1327 			dma_unmap_page(priv->device,
1328 				       tx_q->tx_skbuff_dma[i].buf,
1329 				       tx_q->tx_skbuff_dma[i].len,
1330 				       DMA_TO_DEVICE);
1331 		else
1332 			dma_unmap_single(priv->device,
1333 					 tx_q->tx_skbuff_dma[i].buf,
1334 					 tx_q->tx_skbuff_dma[i].len,
1335 					 DMA_TO_DEVICE);
1336 	}
1337 
1338 	if (tx_q->tx_skbuff[i]) {
1339 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1340 		tx_q->tx_skbuff[i] = NULL;
1341 		tx_q->tx_skbuff_dma[i].buf = 0;
1342 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1343 	}
1344 }
1345 
1346 /**
1347  * init_dma_rx_desc_rings - init the RX descriptor rings
1348  * @dev: net device structure
1349  * @flags: gfp flag.
1350  * Description: this function initializes the DMA RX descriptors
1351  * and allocates the socket buffers. It supports the chained and ring
1352  * modes.
1353  */
init_dma_rx_desc_rings(struct net_device * dev,gfp_t flags)1354 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1355 {
1356 	struct stmmac_priv *priv = netdev_priv(dev);
1357 	u32 rx_count = priv->plat->rx_queues_to_use;
1358 	int ret = -ENOMEM;
1359 	int queue;
1360 	int i;
1361 
1362 	/* RX INITIALIZATION */
1363 	netif_dbg(priv, probe, priv->dev,
1364 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1365 
1366 	for (queue = 0; queue < rx_count; queue++) {
1367 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1368 
1369 		netif_dbg(priv, probe, priv->dev,
1370 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1371 			  (u32)rx_q->dma_rx_phy);
1372 
1373 		stmmac_clear_rx_descriptors(priv, queue);
1374 
1375 		for (i = 0; i < priv->dma_rx_size; i++) {
1376 			struct dma_desc *p;
1377 
1378 			if (priv->extend_desc)
1379 				p = &((rx_q->dma_erx + i)->basic);
1380 			else
1381 				p = rx_q->dma_rx + i;
1382 
1383 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1384 						     queue);
1385 			if (ret)
1386 				goto err_init_rx_buffers;
1387 		}
1388 
1389 		rx_q->cur_rx = 0;
1390 		rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size);
1391 
1392 		/* Setup the chained descriptor addresses */
1393 		if (priv->mode == STMMAC_CHAIN_MODE) {
1394 			if (priv->extend_desc)
1395 				stmmac_mode_init(priv, rx_q->dma_erx,
1396 						 rx_q->dma_rx_phy,
1397 						 priv->dma_rx_size, 1);
1398 			else
1399 				stmmac_mode_init(priv, rx_q->dma_rx,
1400 						 rx_q->dma_rx_phy,
1401 						 priv->dma_rx_size, 0);
1402 		}
1403 	}
1404 
1405 	return 0;
1406 
1407 err_init_rx_buffers:
1408 	while (queue >= 0) {
1409 		while (--i >= 0)
1410 			stmmac_free_rx_buffer(priv, queue, i);
1411 
1412 		if (queue == 0)
1413 			break;
1414 
1415 		i = priv->dma_rx_size;
1416 		queue--;
1417 	}
1418 
1419 	return ret;
1420 }
1421 
1422 /**
1423  * init_dma_tx_desc_rings - init the TX descriptor rings
1424  * @dev: net device structure.
1425  * Description: this function initializes the DMA TX descriptors
1426  * and allocates the socket buffers. It supports the chained and ring
1427  * modes.
1428  */
init_dma_tx_desc_rings(struct net_device * dev)1429 static int init_dma_tx_desc_rings(struct net_device *dev)
1430 {
1431 	struct stmmac_priv *priv = netdev_priv(dev);
1432 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1433 	u32 queue;
1434 	int i;
1435 
1436 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1437 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1438 
1439 		netif_dbg(priv, probe, priv->dev,
1440 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1441 			 (u32)tx_q->dma_tx_phy);
1442 
1443 		/* Setup the chained descriptor addresses */
1444 		if (priv->mode == STMMAC_CHAIN_MODE) {
1445 			if (priv->extend_desc)
1446 				stmmac_mode_init(priv, tx_q->dma_etx,
1447 						 tx_q->dma_tx_phy,
1448 						 priv->dma_tx_size, 1);
1449 			else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1450 				stmmac_mode_init(priv, tx_q->dma_tx,
1451 						 tx_q->dma_tx_phy,
1452 						 priv->dma_tx_size, 0);
1453 		}
1454 
1455 		for (i = 0; i < priv->dma_tx_size; i++) {
1456 			struct dma_desc *p;
1457 			if (priv->extend_desc)
1458 				p = &((tx_q->dma_etx + i)->basic);
1459 			else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1460 				p = &((tx_q->dma_entx + i)->basic);
1461 			else
1462 				p = tx_q->dma_tx + i;
1463 
1464 			stmmac_clear_desc(priv, p);
1465 
1466 			tx_q->tx_skbuff_dma[i].buf = 0;
1467 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1468 			tx_q->tx_skbuff_dma[i].len = 0;
1469 			tx_q->tx_skbuff_dma[i].last_segment = false;
1470 			tx_q->tx_skbuff[i] = NULL;
1471 		}
1472 
1473 		tx_q->dirty_tx = 0;
1474 		tx_q->cur_tx = 0;
1475 		tx_q->mss = 0;
1476 
1477 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1478 	}
1479 
1480 	return 0;
1481 }
1482 
1483 /**
1484  * init_dma_desc_rings - init the RX/TX descriptor rings
1485  * @dev: net device structure
1486  * @flags: gfp flag.
1487  * Description: this function initializes the DMA RX/TX descriptors
1488  * and allocates the socket buffers. It supports the chained and ring
1489  * modes.
1490  */
init_dma_desc_rings(struct net_device * dev,gfp_t flags)1491 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1492 {
1493 	struct stmmac_priv *priv = netdev_priv(dev);
1494 	int ret;
1495 
1496 	ret = init_dma_rx_desc_rings(dev, flags);
1497 	if (ret)
1498 		return ret;
1499 
1500 	ret = init_dma_tx_desc_rings(dev);
1501 
1502 	stmmac_clear_descriptors(priv);
1503 
1504 	if (netif_msg_hw(priv))
1505 		stmmac_display_rings(priv);
1506 
1507 	return ret;
1508 }
1509 
1510 /**
1511  * dma_free_rx_skbufs - free RX dma buffers
1512  * @priv: private structure
1513  * @queue: RX queue index
1514  */
dma_free_rx_skbufs(struct stmmac_priv * priv,u32 queue)1515 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1516 {
1517 	int i;
1518 
1519 	for (i = 0; i < priv->dma_rx_size; i++)
1520 		stmmac_free_rx_buffer(priv, queue, i);
1521 }
1522 
1523 /**
1524  * dma_free_tx_skbufs - free TX dma buffers
1525  * @priv: private structure
1526  * @queue: TX queue index
1527  */
dma_free_tx_skbufs(struct stmmac_priv * priv,u32 queue)1528 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1529 {
1530 	int i;
1531 
1532 	for (i = 0; i < priv->dma_tx_size; i++)
1533 		stmmac_free_tx_buffer(priv, queue, i);
1534 }
1535 
1536 /**
1537  * stmmac_free_tx_skbufs - free TX skb buffers
1538  * @priv: private structure
1539  */
stmmac_free_tx_skbufs(struct stmmac_priv * priv)1540 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1541 {
1542 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1543 	u32 queue;
1544 
1545 	for (queue = 0; queue < tx_queue_cnt; queue++)
1546 		dma_free_tx_skbufs(priv, queue);
1547 }
1548 
1549 /**
1550  * free_dma_rx_desc_resources - free RX dma desc resources
1551  * @priv: private structure
1552  */
free_dma_rx_desc_resources(struct stmmac_priv * priv)1553 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1554 {
1555 	u32 rx_count = priv->plat->rx_queues_to_use;
1556 	u32 queue;
1557 
1558 	/* Free RX queue resources */
1559 	for (queue = 0; queue < rx_count; queue++) {
1560 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1561 
1562 		/* Release the DMA RX socket buffers */
1563 		dma_free_rx_skbufs(priv, queue);
1564 
1565 		/* Free DMA regions of consistent memory previously allocated */
1566 		if (!priv->extend_desc)
1567 			dma_free_coherent(priv->device, priv->dma_rx_size *
1568 					  sizeof(struct dma_desc),
1569 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1570 		else
1571 			dma_free_coherent(priv->device, priv->dma_rx_size *
1572 					  sizeof(struct dma_extended_desc),
1573 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1574 
1575 		kfree(rx_q->buf_pool);
1576 		if (rx_q->page_pool)
1577 			page_pool_destroy(rx_q->page_pool);
1578 	}
1579 }
1580 
1581 /**
1582  * free_dma_tx_desc_resources - free TX dma desc resources
1583  * @priv: private structure
1584  */
free_dma_tx_desc_resources(struct stmmac_priv * priv)1585 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1586 {
1587 	u32 tx_count = priv->plat->tx_queues_to_use;
1588 	u32 queue;
1589 
1590 	/* Free TX queue resources */
1591 	for (queue = 0; queue < tx_count; queue++) {
1592 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1593 		size_t size;
1594 		void *addr;
1595 
1596 		/* Release the DMA TX socket buffers */
1597 		dma_free_tx_skbufs(priv, queue);
1598 
1599 		if (priv->extend_desc) {
1600 			size = sizeof(struct dma_extended_desc);
1601 			addr = tx_q->dma_etx;
1602 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1603 			size = sizeof(struct dma_edesc);
1604 			addr = tx_q->dma_entx;
1605 		} else {
1606 			size = sizeof(struct dma_desc);
1607 			addr = tx_q->dma_tx;
1608 		}
1609 
1610 		size *= priv->dma_tx_size;
1611 
1612 		dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1613 
1614 		kfree(tx_q->tx_skbuff_dma);
1615 		kfree(tx_q->tx_skbuff);
1616 	}
1617 }
1618 
1619 /**
1620  * alloc_dma_rx_desc_resources - alloc RX resources.
1621  * @priv: private structure
1622  * Description: according to which descriptor can be used (extend or basic)
1623  * this function allocates the resources for TX and RX paths. In case of
1624  * reception, for example, it pre-allocated the RX socket buffer in order to
1625  * allow zero-copy mechanism.
1626  */
alloc_dma_rx_desc_resources(struct stmmac_priv * priv)1627 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1628 {
1629 	u32 rx_count = priv->plat->rx_queues_to_use;
1630 	int ret = -ENOMEM;
1631 	u32 queue;
1632 
1633 	/* RX queues buffers and DMA */
1634 	for (queue = 0; queue < rx_count; queue++) {
1635 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1636 		struct page_pool_params pp_params = { 0 };
1637 		unsigned int num_pages;
1638 
1639 		rx_q->queue_index = queue;
1640 		rx_q->priv_data = priv;
1641 
1642 		pp_params.flags = PP_FLAG_DMA_MAP;
1643 		pp_params.pool_size = priv->dma_rx_size;
1644 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1645 		pp_params.order = ilog2(num_pages);
1646 		pp_params.nid = dev_to_node(priv->device);
1647 		pp_params.dev = priv->device;
1648 		pp_params.dma_dir = DMA_FROM_DEVICE;
1649 
1650 		rx_q->page_pool = page_pool_create(&pp_params);
1651 		if (IS_ERR(rx_q->page_pool)) {
1652 			ret = PTR_ERR(rx_q->page_pool);
1653 			rx_q->page_pool = NULL;
1654 			goto err_dma;
1655 		}
1656 
1657 		rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1658 					 sizeof(*rx_q->buf_pool),
1659 					 GFP_KERNEL);
1660 		if (!rx_q->buf_pool)
1661 			goto err_dma;
1662 
1663 		if (priv->extend_desc) {
1664 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1665 							   priv->dma_rx_size *
1666 							   sizeof(struct dma_extended_desc),
1667 							   &rx_q->dma_rx_phy,
1668 							   GFP_KERNEL);
1669 			if (!rx_q->dma_erx)
1670 				goto err_dma;
1671 
1672 		} else {
1673 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1674 							  priv->dma_rx_size *
1675 							  sizeof(struct dma_desc),
1676 							  &rx_q->dma_rx_phy,
1677 							  GFP_KERNEL);
1678 			if (!rx_q->dma_rx)
1679 				goto err_dma;
1680 		}
1681 	}
1682 
1683 	return 0;
1684 
1685 err_dma:
1686 	free_dma_rx_desc_resources(priv);
1687 
1688 	return ret;
1689 }
1690 
1691 /**
1692  * alloc_dma_tx_desc_resources - alloc TX resources.
1693  * @priv: private structure
1694  * Description: according to which descriptor can be used (extend or basic)
1695  * this function allocates the resources for TX and RX paths. In case of
1696  * reception, for example, it pre-allocated the RX socket buffer in order to
1697  * allow zero-copy mechanism.
1698  */
alloc_dma_tx_desc_resources(struct stmmac_priv * priv)1699 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1700 {
1701 	u32 tx_count = priv->plat->tx_queues_to_use;
1702 	int ret = -ENOMEM;
1703 	u32 queue;
1704 
1705 	/* TX queues buffers and DMA */
1706 	for (queue = 0; queue < tx_count; queue++) {
1707 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1708 		size_t size;
1709 		void *addr;
1710 
1711 		tx_q->queue_index = queue;
1712 		tx_q->priv_data = priv;
1713 
1714 		tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
1715 					      sizeof(*tx_q->tx_skbuff_dma),
1716 					      GFP_KERNEL);
1717 		if (!tx_q->tx_skbuff_dma)
1718 			goto err_dma;
1719 
1720 		tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
1721 					  sizeof(struct sk_buff *),
1722 					  GFP_KERNEL);
1723 		if (!tx_q->tx_skbuff)
1724 			goto err_dma;
1725 
1726 		if (priv->extend_desc)
1727 			size = sizeof(struct dma_extended_desc);
1728 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1729 			size = sizeof(struct dma_edesc);
1730 		else
1731 			size = sizeof(struct dma_desc);
1732 
1733 		size *= priv->dma_tx_size;
1734 
1735 		addr = dma_alloc_coherent(priv->device, size,
1736 					  &tx_q->dma_tx_phy, GFP_KERNEL);
1737 		if (!addr)
1738 			goto err_dma;
1739 
1740 		if (priv->extend_desc)
1741 			tx_q->dma_etx = addr;
1742 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1743 			tx_q->dma_entx = addr;
1744 		else
1745 			tx_q->dma_tx = addr;
1746 	}
1747 
1748 	return 0;
1749 
1750 err_dma:
1751 	free_dma_tx_desc_resources(priv);
1752 	return ret;
1753 }
1754 
1755 /**
1756  * alloc_dma_desc_resources - alloc TX/RX resources.
1757  * @priv: private structure
1758  * Description: according to which descriptor can be used (extend or basic)
1759  * this function allocates the resources for TX and RX paths. In case of
1760  * reception, for example, it pre-allocated the RX socket buffer in order to
1761  * allow zero-copy mechanism.
1762  */
alloc_dma_desc_resources(struct stmmac_priv * priv)1763 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1764 {
1765 	/* RX Allocation */
1766 	int ret = alloc_dma_rx_desc_resources(priv);
1767 
1768 	if (ret)
1769 		return ret;
1770 
1771 	ret = alloc_dma_tx_desc_resources(priv);
1772 
1773 	return ret;
1774 }
1775 
1776 /**
1777  * free_dma_desc_resources - free dma desc resources
1778  * @priv: private structure
1779  */
free_dma_desc_resources(struct stmmac_priv * priv)1780 static void free_dma_desc_resources(struct stmmac_priv *priv)
1781 {
1782 	/* Release the DMA RX socket buffers */
1783 	free_dma_rx_desc_resources(priv);
1784 
1785 	/* Release the DMA TX socket buffers */
1786 	free_dma_tx_desc_resources(priv);
1787 }
1788 
1789 /**
1790  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1791  *  @priv: driver private structure
1792  *  Description: It is used for enabling the rx queues in the MAC
1793  */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)1794 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1795 {
1796 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1797 	int queue;
1798 	u8 mode;
1799 
1800 	for (queue = 0; queue < rx_queues_count; queue++) {
1801 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1802 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1803 	}
1804 }
1805 
1806 /**
1807  * stmmac_start_rx_dma - start RX DMA channel
1808  * @priv: driver private structure
1809  * @chan: RX channel index
1810  * Description:
1811  * This starts a RX DMA channel
1812  */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)1813 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1814 {
1815 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1816 	stmmac_start_rx(priv, priv->ioaddr, chan);
1817 }
1818 
1819 /**
1820  * stmmac_start_tx_dma - start TX DMA channel
1821  * @priv: driver private structure
1822  * @chan: TX channel index
1823  * Description:
1824  * This starts a TX DMA channel
1825  */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)1826 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1827 {
1828 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1829 	stmmac_start_tx(priv, priv->ioaddr, chan);
1830 }
1831 
1832 /**
1833  * stmmac_stop_rx_dma - stop RX DMA channel
1834  * @priv: driver private structure
1835  * @chan: RX channel index
1836  * Description:
1837  * This stops a RX DMA channel
1838  */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)1839 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1840 {
1841 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1842 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1843 }
1844 
1845 /**
1846  * stmmac_stop_tx_dma - stop TX DMA channel
1847  * @priv: driver private structure
1848  * @chan: TX channel index
1849  * Description:
1850  * This stops a TX DMA channel
1851  */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)1852 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1853 {
1854 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1855 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1856 }
1857 
1858 /**
1859  * stmmac_start_all_dma - start all RX and TX DMA channels
1860  * @priv: driver private structure
1861  * Description:
1862  * This starts all the RX and TX DMA channels
1863  */
stmmac_start_all_dma(struct stmmac_priv * priv)1864 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1865 {
1866 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1867 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1868 	u32 chan = 0;
1869 
1870 	for (chan = 0; chan < rx_channels_count; chan++)
1871 		stmmac_start_rx_dma(priv, chan);
1872 
1873 	for (chan = 0; chan < tx_channels_count; chan++)
1874 		stmmac_start_tx_dma(priv, chan);
1875 }
1876 
1877 /**
1878  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1879  * @priv: driver private structure
1880  * Description:
1881  * This stops the RX and TX DMA channels
1882  */
stmmac_stop_all_dma(struct stmmac_priv * priv)1883 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1884 {
1885 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1886 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1887 	u32 chan = 0;
1888 
1889 	for (chan = 0; chan < rx_channels_count; chan++)
1890 		stmmac_stop_rx_dma(priv, chan);
1891 
1892 	for (chan = 0; chan < tx_channels_count; chan++)
1893 		stmmac_stop_tx_dma(priv, chan);
1894 }
1895 
1896 /**
1897  *  stmmac_dma_operation_mode - HW DMA operation mode
1898  *  @priv: driver private structure
1899  *  Description: it is used for configuring the DMA operation mode register in
1900  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1901  */
stmmac_dma_operation_mode(struct stmmac_priv * priv)1902 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1903 {
1904 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1905 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1906 	int rxfifosz = priv->plat->rx_fifo_size;
1907 	int txfifosz = priv->plat->tx_fifo_size;
1908 	u32 txmode = 0;
1909 	u32 rxmode = 0;
1910 	u32 chan = 0;
1911 	u8 qmode = 0;
1912 
1913 	if (rxfifosz == 0)
1914 		rxfifosz = priv->dma_cap.rx_fifo_size;
1915 	if (txfifosz == 0)
1916 		txfifosz = priv->dma_cap.tx_fifo_size;
1917 
1918 	/* Adjust for real per queue fifo size */
1919 	rxfifosz /= rx_channels_count;
1920 	txfifosz /= tx_channels_count;
1921 
1922 	if (priv->plat->force_thresh_dma_mode) {
1923 		txmode = tc;
1924 		rxmode = tc;
1925 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1926 		/*
1927 		 * In case of GMAC, SF mode can be enabled
1928 		 * to perform the TX COE in HW. This depends on:
1929 		 * 1) TX COE if actually supported
1930 		 * 2) There is no bugged Jumbo frame support
1931 		 *    that needs to not insert csum in the TDES.
1932 		 */
1933 		txmode = SF_DMA_MODE;
1934 		rxmode = SF_DMA_MODE;
1935 		priv->xstats.threshold = SF_DMA_MODE;
1936 	} else {
1937 		txmode = tc;
1938 		rxmode = SF_DMA_MODE;
1939 	}
1940 
1941 	/* configure all channels */
1942 	for (chan = 0; chan < rx_channels_count; chan++) {
1943 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1944 
1945 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1946 				rxfifosz, qmode);
1947 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1948 				chan);
1949 	}
1950 
1951 	for (chan = 0; chan < tx_channels_count; chan++) {
1952 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1953 
1954 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1955 				txfifosz, qmode);
1956 	}
1957 }
1958 
1959 /**
1960  * stmmac_tx_clean - to manage the transmission completion
1961  * @priv: driver private structure
1962  * @budget: napi budget limiting this functions packet handling
1963  * @queue: TX queue index
1964  * Description: it reclaims the transmit resources after transmission completes.
1965  */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)1966 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1967 {
1968 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1969 	unsigned int bytes_compl = 0, pkts_compl = 0;
1970 	unsigned int entry, count = 0;
1971 
1972 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1973 
1974 	priv->xstats.tx_clean++;
1975 
1976 	entry = tx_q->dirty_tx;
1977 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1978 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1979 		struct dma_desc *p;
1980 		int status;
1981 
1982 		if (priv->extend_desc)
1983 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1984 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1985 			p = &tx_q->dma_entx[entry].basic;
1986 		else
1987 			p = tx_q->dma_tx + entry;
1988 
1989 		status = stmmac_tx_status(priv, &priv->dev->stats,
1990 				&priv->xstats, p, priv->ioaddr);
1991 		/* Check if the descriptor is owned by the DMA */
1992 		if (unlikely(status & tx_dma_own))
1993 			break;
1994 
1995 		count++;
1996 
1997 		/* Make sure descriptor fields are read after reading
1998 		 * the own bit.
1999 		 */
2000 		dma_rmb();
2001 
2002 		/* Just consider the last segment and ...*/
2003 		if (likely(!(status & tx_not_ls))) {
2004 			/* ... verify the status error condition */
2005 			if (unlikely(status & tx_err)) {
2006 				priv->dev->stats.tx_errors++;
2007 			} else {
2008 				priv->dev->stats.tx_packets++;
2009 				priv->xstats.tx_pkt_n++;
2010 			}
2011 			stmmac_get_tx_hwtstamp(priv, p, skb);
2012 		}
2013 
2014 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2015 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2016 				dma_unmap_page(priv->device,
2017 					       tx_q->tx_skbuff_dma[entry].buf,
2018 					       tx_q->tx_skbuff_dma[entry].len,
2019 					       DMA_TO_DEVICE);
2020 			else
2021 				dma_unmap_single(priv->device,
2022 						 tx_q->tx_skbuff_dma[entry].buf,
2023 						 tx_q->tx_skbuff_dma[entry].len,
2024 						 DMA_TO_DEVICE);
2025 			tx_q->tx_skbuff_dma[entry].buf = 0;
2026 			tx_q->tx_skbuff_dma[entry].len = 0;
2027 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2028 		}
2029 
2030 		stmmac_clean_desc3(priv, tx_q, p);
2031 
2032 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2033 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2034 
2035 		if (likely(skb != NULL)) {
2036 			pkts_compl++;
2037 			bytes_compl += skb->len;
2038 			dev_consume_skb_any(skb);
2039 			tx_q->tx_skbuff[entry] = NULL;
2040 		}
2041 
2042 		stmmac_release_tx_desc(priv, p, priv->mode);
2043 
2044 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2045 	}
2046 	tx_q->dirty_tx = entry;
2047 
2048 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2049 				  pkts_compl, bytes_compl);
2050 
2051 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2052 								queue))) &&
2053 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2054 
2055 		netif_dbg(priv, tx_done, priv->dev,
2056 			  "%s: restart transmit\n", __func__);
2057 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2058 	}
2059 
2060 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2061 		stmmac_enable_eee_mode(priv);
2062 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2063 	}
2064 
2065 	/* We still have pending packets, let's call for a new scheduling */
2066 	if (tx_q->dirty_tx != tx_q->cur_tx)
2067 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2068 
2069 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2070 
2071 	return count;
2072 }
2073 
2074 /**
2075  * stmmac_tx_err - to manage the tx error
2076  * @priv: driver private structure
2077  * @chan: channel index
2078  * Description: it cleans the descriptors and restarts the transmission
2079  * in case of transmission errors.
2080  */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)2081 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2082 {
2083 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2084 
2085 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2086 
2087 	stmmac_stop_tx_dma(priv, chan);
2088 	dma_free_tx_skbufs(priv, chan);
2089 	stmmac_clear_tx_descriptors(priv, chan);
2090 	tx_q->dirty_tx = 0;
2091 	tx_q->cur_tx = 0;
2092 	tx_q->mss = 0;
2093 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2094 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2095 			    tx_q->dma_tx_phy, chan);
2096 	stmmac_start_tx_dma(priv, chan);
2097 
2098 	priv->dev->stats.tx_errors++;
2099 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2100 }
2101 
2102 /**
2103  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2104  *  @priv: driver private structure
2105  *  @txmode: TX operating mode
2106  *  @rxmode: RX operating mode
2107  *  @chan: channel index
2108  *  Description: it is used for configuring of the DMA operation mode in
2109  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2110  *  mode.
2111  */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)2112 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2113 					  u32 rxmode, u32 chan)
2114 {
2115 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2116 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2117 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2118 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2119 	int rxfifosz = priv->plat->rx_fifo_size;
2120 	int txfifosz = priv->plat->tx_fifo_size;
2121 
2122 	if (rxfifosz == 0)
2123 		rxfifosz = priv->dma_cap.rx_fifo_size;
2124 	if (txfifosz == 0)
2125 		txfifosz = priv->dma_cap.tx_fifo_size;
2126 
2127 	/* Adjust for real per queue fifo size */
2128 	rxfifosz /= rx_channels_count;
2129 	txfifosz /= tx_channels_count;
2130 
2131 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2132 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2133 }
2134 
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2135 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2136 {
2137 	int ret;
2138 
2139 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2140 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2141 	if (ret && (ret != -EINVAL)) {
2142 		stmmac_global_err(priv);
2143 		return true;
2144 	}
2145 
2146 	return false;
2147 }
2148 
stmmac_napi_check(struct stmmac_priv * priv,u32 chan)2149 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2150 {
2151 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2152 						 &priv->xstats, chan);
2153 	struct stmmac_channel *ch = &priv->channel[chan];
2154 	unsigned long flags;
2155 
2156 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2157 		if (napi_schedule_prep(&ch->rx_napi)) {
2158 			spin_lock_irqsave(&ch->lock, flags);
2159 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2160 			spin_unlock_irqrestore(&ch->lock, flags);
2161 			__napi_schedule_irqoff(&ch->rx_napi);
2162 		}
2163 	}
2164 
2165 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2166 		if (napi_schedule_prep(&ch->tx_napi)) {
2167 			spin_lock_irqsave(&ch->lock, flags);
2168 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2169 			spin_unlock_irqrestore(&ch->lock, flags);
2170 			__napi_schedule_irqoff(&ch->tx_napi);
2171 		}
2172 	}
2173 
2174 	return status;
2175 }
2176 
2177 /**
2178  * stmmac_dma_interrupt - DMA ISR
2179  * @priv: driver private structure
2180  * Description: this is the DMA ISR. It is called by the main ISR.
2181  * It calls the dwmac dma routine and schedule poll method in case of some
2182  * work can be done.
2183  */
stmmac_dma_interrupt(struct stmmac_priv * priv)2184 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2185 {
2186 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2187 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2188 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2189 				tx_channel_count : rx_channel_count;
2190 	u32 chan;
2191 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2192 
2193 	/* Make sure we never check beyond our status buffer. */
2194 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2195 		channels_to_check = ARRAY_SIZE(status);
2196 
2197 	for (chan = 0; chan < channels_to_check; chan++)
2198 		status[chan] = stmmac_napi_check(priv, chan);
2199 
2200 	for (chan = 0; chan < tx_channel_count; chan++) {
2201 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2202 			/* Try to bump up the dma threshold on this failure */
2203 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2204 			    (tc <= 256)) {
2205 				tc += 64;
2206 				if (priv->plat->force_thresh_dma_mode)
2207 					stmmac_set_dma_operation_mode(priv,
2208 								      tc,
2209 								      tc,
2210 								      chan);
2211 				else
2212 					stmmac_set_dma_operation_mode(priv,
2213 								    tc,
2214 								    SF_DMA_MODE,
2215 								    chan);
2216 				priv->xstats.threshold = tc;
2217 			}
2218 		} else if (unlikely(status[chan] == tx_hard_error)) {
2219 			stmmac_tx_err(priv, chan);
2220 		}
2221 	}
2222 }
2223 
2224 /**
2225  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2226  * @priv: driver private structure
2227  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2228  */
stmmac_mmc_setup(struct stmmac_priv * priv)2229 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2230 {
2231 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2232 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2233 
2234 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2235 
2236 	if (priv->dma_cap.rmon) {
2237 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2238 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2239 	} else
2240 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2241 }
2242 
2243 /**
2244  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2245  * @priv: driver private structure
2246  * Description:
2247  *  new GMAC chip generations have a new register to indicate the
2248  *  presence of the optional feature/functions.
2249  *  This can be also used to override the value passed through the
2250  *  platform and necessary for old MAC10/100 and GMAC chips.
2251  */
stmmac_get_hw_features(struct stmmac_priv * priv)2252 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2253 {
2254 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2255 }
2256 
2257 /**
2258  * stmmac_check_ether_addr - check if the MAC addr is valid
2259  * @priv: driver private structure
2260  * Description:
2261  * it is to verify if the MAC address is valid, in case of failures it
2262  * generates a random MAC address
2263  */
stmmac_check_ether_addr(struct stmmac_priv * priv)2264 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2265 {
2266 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2267 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2268 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2269 			eth_hw_addr_random(priv->dev);
2270 		dev_info(priv->device, "device MAC address %pM\n",
2271 			 priv->dev->dev_addr);
2272 	}
2273 }
2274 
2275 /**
2276  * stmmac_init_dma_engine - DMA init.
2277  * @priv: driver private structure
2278  * Description:
2279  * It inits the DMA invoking the specific MAC/GMAC callback.
2280  * Some DMA parameters can be passed from the platform;
2281  * in case of these are not passed a default is kept for the MAC or GMAC.
2282  */
stmmac_init_dma_engine(struct stmmac_priv * priv)2283 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2284 {
2285 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2286 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2287 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2288 	struct stmmac_rx_queue *rx_q;
2289 	struct stmmac_tx_queue *tx_q;
2290 	u32 chan = 0;
2291 	int atds = 0;
2292 	int ret = 0;
2293 
2294 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2295 		dev_err(priv->device, "Invalid DMA configuration\n");
2296 		return -EINVAL;
2297 	}
2298 
2299 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2300 		atds = 1;
2301 
2302 	ret = stmmac_reset(priv, priv->ioaddr);
2303 	if (ret) {
2304 		dev_err(priv->device, "Failed to reset the dma\n");
2305 		return ret;
2306 	}
2307 
2308 	/* DMA Configuration */
2309 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2310 
2311 	if (priv->plat->axi)
2312 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2313 
2314 	/* DMA CSR Channel configuration */
2315 	for (chan = 0; chan < dma_csr_ch; chan++)
2316 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2317 
2318 	/* DMA RX Channel Configuration */
2319 	for (chan = 0; chan < rx_channels_count; chan++) {
2320 		rx_q = &priv->rx_queue[chan];
2321 
2322 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2323 				    rx_q->dma_rx_phy, chan);
2324 
2325 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2326 				     (priv->dma_rx_size *
2327 				      sizeof(struct dma_desc));
2328 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2329 				       rx_q->rx_tail_addr, chan);
2330 	}
2331 
2332 	/* DMA TX Channel Configuration */
2333 	for (chan = 0; chan < tx_channels_count; chan++) {
2334 		tx_q = &priv->tx_queue[chan];
2335 
2336 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2337 				    tx_q->dma_tx_phy, chan);
2338 
2339 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2340 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2341 				       tx_q->tx_tail_addr, chan);
2342 	}
2343 
2344 	return ret;
2345 }
2346 
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2347 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2348 {
2349 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2350 
2351 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2352 }
2353 
2354 /**
2355  * stmmac_tx_timer - mitigation sw timer for tx.
2356  * @t: data pointer
2357  * Description:
2358  * This is the timer handler to directly invoke the stmmac_tx_clean.
2359  */
stmmac_tx_timer(struct timer_list * t)2360 static void stmmac_tx_timer(struct timer_list *t)
2361 {
2362 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2363 	struct stmmac_priv *priv = tx_q->priv_data;
2364 	struct stmmac_channel *ch;
2365 
2366 	ch = &priv->channel[tx_q->queue_index];
2367 
2368 	if (likely(napi_schedule_prep(&ch->tx_napi))) {
2369 		unsigned long flags;
2370 
2371 		spin_lock_irqsave(&ch->lock, flags);
2372 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2373 		spin_unlock_irqrestore(&ch->lock, flags);
2374 		__napi_schedule(&ch->tx_napi);
2375 	}
2376 }
2377 
2378 /**
2379  * stmmac_init_coalesce - init mitigation options.
2380  * @priv: driver private structure
2381  * Description:
2382  * This inits the coalesce parameters: i.e. timer rate,
2383  * timer handler and default threshold used for enabling the
2384  * interrupt on completion bit.
2385  */
stmmac_init_coalesce(struct stmmac_priv * priv)2386 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2387 {
2388 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2389 	u32 chan;
2390 
2391 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2392 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2393 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2394 
2395 	for (chan = 0; chan < tx_channel_count; chan++) {
2396 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2397 
2398 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2399 	}
2400 }
2401 
stmmac_set_rings_length(struct stmmac_priv * priv)2402 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2403 {
2404 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2405 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2406 	u32 chan;
2407 
2408 	/* set TX ring length */
2409 	for (chan = 0; chan < tx_channels_count; chan++)
2410 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2411 				       (priv->dma_tx_size - 1), chan);
2412 
2413 	/* set RX ring length */
2414 	for (chan = 0; chan < rx_channels_count; chan++)
2415 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2416 				       (priv->dma_rx_size - 1), chan);
2417 }
2418 
2419 /**
2420  *  stmmac_set_tx_queue_weight - Set TX queue weight
2421  *  @priv: driver private structure
2422  *  Description: It is used for setting TX queues weight
2423  */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)2424 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2425 {
2426 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2427 	u32 weight;
2428 	u32 queue;
2429 
2430 	for (queue = 0; queue < tx_queues_count; queue++) {
2431 		weight = priv->plat->tx_queues_cfg[queue].weight;
2432 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2433 	}
2434 }
2435 
2436 /**
2437  *  stmmac_configure_cbs - Configure CBS in TX queue
2438  *  @priv: driver private structure
2439  *  Description: It is used for configuring CBS in AVB TX queues
2440  */
stmmac_configure_cbs(struct stmmac_priv * priv)2441 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2442 {
2443 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2444 	u32 mode_to_use;
2445 	u32 queue;
2446 
2447 	/* queue 0 is reserved for legacy traffic */
2448 	for (queue = 1; queue < tx_queues_count; queue++) {
2449 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2450 		if (mode_to_use == MTL_QUEUE_DCB)
2451 			continue;
2452 
2453 		stmmac_config_cbs(priv, priv->hw,
2454 				priv->plat->tx_queues_cfg[queue].send_slope,
2455 				priv->plat->tx_queues_cfg[queue].idle_slope,
2456 				priv->plat->tx_queues_cfg[queue].high_credit,
2457 				priv->plat->tx_queues_cfg[queue].low_credit,
2458 				queue);
2459 	}
2460 }
2461 
2462 /**
2463  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2464  *  @priv: driver private structure
2465  *  Description: It is used for mapping RX queues to RX dma channels
2466  */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)2467 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2468 {
2469 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2470 	u32 queue;
2471 	u32 chan;
2472 
2473 	for (queue = 0; queue < rx_queues_count; queue++) {
2474 		chan = priv->plat->rx_queues_cfg[queue].chan;
2475 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2476 	}
2477 }
2478 
2479 /**
2480  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2481  *  @priv: driver private structure
2482  *  Description: It is used for configuring the RX Queue Priority
2483  */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)2484 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2485 {
2486 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2487 	u32 queue;
2488 	u32 prio;
2489 
2490 	for (queue = 0; queue < rx_queues_count; queue++) {
2491 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2492 			continue;
2493 
2494 		prio = priv->plat->rx_queues_cfg[queue].prio;
2495 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2496 	}
2497 }
2498 
2499 /**
2500  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2501  *  @priv: driver private structure
2502  *  Description: It is used for configuring the TX Queue Priority
2503  */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)2504 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2505 {
2506 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2507 	u32 queue;
2508 	u32 prio;
2509 
2510 	for (queue = 0; queue < tx_queues_count; queue++) {
2511 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2512 			continue;
2513 
2514 		prio = priv->plat->tx_queues_cfg[queue].prio;
2515 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2516 	}
2517 }
2518 
2519 /**
2520  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2521  *  @priv: driver private structure
2522  *  Description: It is used for configuring the RX queue routing
2523  */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)2524 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2525 {
2526 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2527 	u32 queue;
2528 	u8 packet;
2529 
2530 	for (queue = 0; queue < rx_queues_count; queue++) {
2531 		/* no specific packet type routing specified for the queue */
2532 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2533 			continue;
2534 
2535 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2536 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2537 	}
2538 }
2539 
stmmac_mac_config_rss(struct stmmac_priv * priv)2540 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2541 {
2542 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2543 		priv->rss.enable = false;
2544 		return;
2545 	}
2546 
2547 	if (priv->dev->features & NETIF_F_RXHASH)
2548 		priv->rss.enable = true;
2549 	else
2550 		priv->rss.enable = false;
2551 
2552 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2553 			     priv->plat->rx_queues_to_use);
2554 }
2555 
2556 /**
2557  *  stmmac_mtl_configuration - Configure MTL
2558  *  @priv: driver private structure
2559  *  Description: It is used for configurring MTL
2560  */
stmmac_mtl_configuration(struct stmmac_priv * priv)2561 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2562 {
2563 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2564 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2565 
2566 	if (tx_queues_count > 1)
2567 		stmmac_set_tx_queue_weight(priv);
2568 
2569 	/* Configure MTL RX algorithms */
2570 	if (rx_queues_count > 1)
2571 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2572 				priv->plat->rx_sched_algorithm);
2573 
2574 	/* Configure MTL TX algorithms */
2575 	if (tx_queues_count > 1)
2576 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2577 				priv->plat->tx_sched_algorithm);
2578 
2579 	/* Configure CBS in AVB TX queues */
2580 	if (tx_queues_count > 1)
2581 		stmmac_configure_cbs(priv);
2582 
2583 	/* Map RX MTL to DMA channels */
2584 	stmmac_rx_queue_dma_chan_map(priv);
2585 
2586 	/* Enable MAC RX Queues */
2587 	stmmac_mac_enable_rx_queues(priv);
2588 
2589 	/* Set RX priorities */
2590 	if (rx_queues_count > 1)
2591 		stmmac_mac_config_rx_queues_prio(priv);
2592 
2593 	/* Set TX priorities */
2594 	if (tx_queues_count > 1)
2595 		stmmac_mac_config_tx_queues_prio(priv);
2596 
2597 	/* Set RX routing */
2598 	if (rx_queues_count > 1)
2599 		stmmac_mac_config_rx_queues_routing(priv);
2600 
2601 	/* Receive Side Scaling */
2602 	if (rx_queues_count > 1)
2603 		stmmac_mac_config_rss(priv);
2604 }
2605 
stmmac_safety_feat_configuration(struct stmmac_priv * priv)2606 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2607 {
2608 	if (priv->dma_cap.asp) {
2609 		netdev_info(priv->dev, "Enabling Safety Features\n");
2610 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2611 	} else {
2612 		netdev_info(priv->dev, "No Safety Features support found\n");
2613 	}
2614 }
2615 
2616 /**
2617  * stmmac_hw_setup - setup mac in a usable state.
2618  *  @dev : pointer to the device structure.
2619  *  @init_ptp: initialize PTP if set
2620  *  Description:
2621  *  this is the main function to setup the HW in a usable state because the
2622  *  dma engine is reset, the core registers are configured (e.g. AXI,
2623  *  Checksum features, timers). The DMA is ready to start receiving and
2624  *  transmitting.
2625  *  Return value:
2626  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2627  *  file on failure.
2628  */
stmmac_hw_setup(struct net_device * dev,bool init_ptp)2629 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2630 {
2631 	struct stmmac_priv *priv = netdev_priv(dev);
2632 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2633 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2634 	u32 chan;
2635 	int ret;
2636 
2637 	/* DMA initialization and SW reset */
2638 	ret = stmmac_init_dma_engine(priv);
2639 	if (ret < 0) {
2640 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2641 			   __func__);
2642 		return ret;
2643 	}
2644 
2645 	/* Copy the MAC addr into the HW  */
2646 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2647 
2648 	/* PS and related bits will be programmed according to the speed */
2649 	if (priv->hw->pcs) {
2650 		int speed = priv->plat->mac_port_sel_speed;
2651 
2652 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2653 		    (speed == SPEED_1000)) {
2654 			priv->hw->ps = speed;
2655 		} else {
2656 			dev_warn(priv->device, "invalid port speed\n");
2657 			priv->hw->ps = 0;
2658 		}
2659 	}
2660 
2661 	/* Initialize the MAC Core */
2662 	stmmac_core_init(priv, priv->hw, dev);
2663 
2664 	/* Initialize MTL*/
2665 	stmmac_mtl_configuration(priv);
2666 
2667 	/* Initialize Safety Features */
2668 	stmmac_safety_feat_configuration(priv);
2669 
2670 	ret = stmmac_rx_ipc(priv, priv->hw);
2671 	if (!ret) {
2672 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2673 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2674 		priv->hw->rx_csum = 0;
2675 	}
2676 
2677 	/* Enable the MAC Rx/Tx */
2678 	stmmac_mac_set(priv, priv->ioaddr, true);
2679 
2680 	/* Set the HW DMA mode and the COE */
2681 	stmmac_dma_operation_mode(priv);
2682 
2683 	stmmac_mmc_setup(priv);
2684 
2685 	if (init_ptp) {
2686 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2687 		if (ret < 0)
2688 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2689 
2690 		ret = stmmac_init_ptp(priv);
2691 		if (ret == -EOPNOTSUPP)
2692 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2693 		else if (ret)
2694 			netdev_warn(priv->dev, "PTP init failed\n");
2695 	}
2696 
2697 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
2698 
2699 	/* Convert the timer from msec to usec */
2700 	if (!priv->tx_lpi_timer)
2701 		priv->tx_lpi_timer = eee_timer * 1000;
2702 
2703 	if (priv->use_riwt) {
2704 		if (!priv->rx_riwt)
2705 			priv->rx_riwt = DEF_DMA_RIWT;
2706 
2707 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2708 	}
2709 
2710 	if (priv->hw->pcs)
2711 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2712 
2713 	/* set TX and RX rings length */
2714 	stmmac_set_rings_length(priv);
2715 
2716 	/* Enable TSO */
2717 	if (priv->tso) {
2718 		for (chan = 0; chan < tx_cnt; chan++)
2719 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2720 	}
2721 
2722 	/* Enable Split Header */
2723 	if (priv->sph && priv->hw->rx_csum) {
2724 		for (chan = 0; chan < rx_cnt; chan++)
2725 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2726 	}
2727 
2728 	/* VLAN Tag Insertion */
2729 	if (priv->dma_cap.vlins)
2730 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2731 
2732 	/* TBS */
2733 	for (chan = 0; chan < tx_cnt; chan++) {
2734 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2735 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2736 
2737 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2738 	}
2739 
2740 	/* Configure real RX and TX queues */
2741 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
2742 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
2743 
2744 	/* Start the ball rolling... */
2745 	stmmac_start_all_dma(priv);
2746 
2747 	return 0;
2748 }
2749 
stmmac_hw_teardown(struct net_device * dev)2750 static void stmmac_hw_teardown(struct net_device *dev)
2751 {
2752 	struct stmmac_priv *priv = netdev_priv(dev);
2753 
2754 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2755 }
2756 
2757 /**
2758  *  stmmac_open - open entry point of the driver
2759  *  @dev : pointer to the device structure.
2760  *  Description:
2761  *  This function is the open entry point of the driver.
2762  *  Return value:
2763  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2764  *  file on failure.
2765  */
stmmac_open(struct net_device * dev)2766 static int stmmac_open(struct net_device *dev)
2767 {
2768 	struct stmmac_priv *priv = netdev_priv(dev);
2769 	int bfsize = 0;
2770 	u32 chan;
2771 	int ret;
2772 
2773 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
2774 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
2775 	    priv->hw->xpcs == NULL) {
2776 		ret = stmmac_init_phy(dev);
2777 		if (ret) {
2778 			netdev_err(priv->dev,
2779 				   "%s: Cannot attach to PHY (error: %d)\n",
2780 				   __func__, ret);
2781 			return ret;
2782 		}
2783 	}
2784 
2785 	/* Extra statistics */
2786 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2787 	priv->xstats.threshold = tc;
2788 
2789 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2790 	if (bfsize < 0)
2791 		bfsize = 0;
2792 
2793 	if (bfsize < BUF_SIZE_16KiB)
2794 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2795 
2796 	priv->dma_buf_sz = bfsize;
2797 	buf_sz = bfsize;
2798 
2799 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2800 
2801 	if (!priv->dma_tx_size)
2802 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
2803 	if (!priv->dma_rx_size)
2804 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
2805 
2806 	/* Earlier check for TBS */
2807 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2808 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2809 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2810 
2811 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2812 		if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan))
2813 			tx_q->tbs &= ~STMMAC_TBS_AVAIL;
2814 	}
2815 
2816 	ret = alloc_dma_desc_resources(priv);
2817 	if (ret < 0) {
2818 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2819 			   __func__);
2820 		goto dma_desc_error;
2821 	}
2822 
2823 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2824 	if (ret < 0) {
2825 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2826 			   __func__);
2827 		goto init_error;
2828 	}
2829 
2830 	ret = stmmac_hw_setup(dev, true);
2831 	if (ret < 0) {
2832 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2833 		goto init_error;
2834 	}
2835 
2836 	stmmac_init_coalesce(priv);
2837 
2838 	phylink_start(priv->phylink);
2839 	/* We may have called phylink_speed_down before */
2840 	phylink_speed_up(priv->phylink);
2841 
2842 	/* Request the IRQ lines */
2843 	ret = request_irq(dev->irq, stmmac_interrupt,
2844 			  IRQF_SHARED, dev->name, dev);
2845 	if (unlikely(ret < 0)) {
2846 		netdev_err(priv->dev,
2847 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2848 			   __func__, dev->irq, ret);
2849 		goto irq_error;
2850 	}
2851 
2852 	/* Request the Wake IRQ in case of another line is used for WoL */
2853 	if (priv->wol_irq != dev->irq) {
2854 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2855 				  IRQF_SHARED, dev->name, dev);
2856 		if (unlikely(ret < 0)) {
2857 			netdev_err(priv->dev,
2858 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2859 				   __func__, priv->wol_irq, ret);
2860 			goto wolirq_error;
2861 		}
2862 	}
2863 
2864 	/* Request the IRQ lines */
2865 	if (priv->lpi_irq > 0) {
2866 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2867 				  dev->name, dev);
2868 		if (unlikely(ret < 0)) {
2869 			netdev_err(priv->dev,
2870 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2871 				   __func__, priv->lpi_irq, ret);
2872 			goto lpiirq_error;
2873 		}
2874 	}
2875 
2876 	stmmac_enable_all_queues(priv);
2877 	netif_tx_start_all_queues(priv->dev);
2878 
2879 	return 0;
2880 
2881 lpiirq_error:
2882 	if (priv->wol_irq != dev->irq)
2883 		free_irq(priv->wol_irq, dev);
2884 wolirq_error:
2885 	free_irq(dev->irq, dev);
2886 irq_error:
2887 	phylink_stop(priv->phylink);
2888 
2889 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2890 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2891 
2892 	stmmac_hw_teardown(dev);
2893 init_error:
2894 	free_dma_desc_resources(priv);
2895 dma_desc_error:
2896 	phylink_disconnect_phy(priv->phylink);
2897 	return ret;
2898 }
2899 
2900 /**
2901  *  stmmac_release - close entry point of the driver
2902  *  @dev : device pointer.
2903  *  Description:
2904  *  This is the stop entry point of the driver.
2905  */
stmmac_release(struct net_device * dev)2906 static int stmmac_release(struct net_device *dev)
2907 {
2908 	struct stmmac_priv *priv = netdev_priv(dev);
2909 	u32 chan;
2910 
2911 	if (device_may_wakeup(priv->device))
2912 		phylink_speed_down(priv->phylink, false);
2913 	/* Stop and disconnect the PHY */
2914 	phylink_stop(priv->phylink);
2915 	phylink_disconnect_phy(priv->phylink);
2916 
2917 	stmmac_disable_all_queues(priv);
2918 
2919 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2920 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2921 
2922 	/* Free the IRQ lines */
2923 	free_irq(dev->irq, dev);
2924 	if (priv->wol_irq != dev->irq)
2925 		free_irq(priv->wol_irq, dev);
2926 	if (priv->lpi_irq > 0)
2927 		free_irq(priv->lpi_irq, dev);
2928 
2929 	if (priv->eee_enabled) {
2930 		priv->tx_path_in_lpi_mode = false;
2931 		del_timer_sync(&priv->eee_ctrl_timer);
2932 	}
2933 
2934 	/* Stop TX/RX DMA and clear the descriptors */
2935 	stmmac_stop_all_dma(priv);
2936 
2937 	/* Release and free the Rx/Tx resources */
2938 	free_dma_desc_resources(priv);
2939 
2940 	/* Disable the MAC Rx/Tx */
2941 	stmmac_mac_set(priv, priv->ioaddr, false);
2942 
2943 	netif_carrier_off(dev);
2944 
2945 	stmmac_release_ptp(priv);
2946 
2947 	return 0;
2948 }
2949 
stmmac_vlan_insert(struct stmmac_priv * priv,struct sk_buff * skb,struct stmmac_tx_queue * tx_q)2950 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2951 			       struct stmmac_tx_queue *tx_q)
2952 {
2953 	u16 tag = 0x0, inner_tag = 0x0;
2954 	u32 inner_type = 0x0;
2955 	struct dma_desc *p;
2956 
2957 	if (!priv->dma_cap.vlins)
2958 		return false;
2959 	if (!skb_vlan_tag_present(skb))
2960 		return false;
2961 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2962 		inner_tag = skb_vlan_tag_get(skb);
2963 		inner_type = STMMAC_VLAN_INSERT;
2964 	}
2965 
2966 	tag = skb_vlan_tag_get(skb);
2967 
2968 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
2969 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
2970 	else
2971 		p = &tx_q->dma_tx[tx_q->cur_tx];
2972 
2973 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2974 		return false;
2975 
2976 	stmmac_set_tx_owner(priv, p);
2977 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2978 	return true;
2979 }
2980 
2981 /**
2982  *  stmmac_tso_allocator - close entry point of the driver
2983  *  @priv: driver private structure
2984  *  @des: buffer start address
2985  *  @total_len: total length to fill in descriptors
2986  *  @last_segment: condition for the last descriptor
2987  *  @queue: TX queue index
2988  *  Description:
2989  *  This function fills descriptor and request new descriptors according to
2990  *  buffer length to fill
2991  */
stmmac_tso_allocator(struct stmmac_priv * priv,dma_addr_t des,int total_len,bool last_segment,u32 queue)2992 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2993 				 int total_len, bool last_segment, u32 queue)
2994 {
2995 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2996 	struct dma_desc *desc;
2997 	u32 buff_size;
2998 	int tmp_len;
2999 
3000 	tmp_len = total_len;
3001 
3002 	while (tmp_len > 0) {
3003 		dma_addr_t curr_addr;
3004 
3005 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3006 						priv->dma_tx_size);
3007 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3008 
3009 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3010 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3011 		else
3012 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3013 
3014 		curr_addr = des + (total_len - tmp_len);
3015 		if (priv->dma_cap.addr64 <= 32)
3016 			desc->des0 = cpu_to_le32(curr_addr);
3017 		else
3018 			stmmac_set_desc_addr(priv, desc, curr_addr);
3019 
3020 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3021 			    TSO_MAX_BUFF_SIZE : tmp_len;
3022 
3023 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3024 				0, 1,
3025 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3026 				0, 0);
3027 
3028 		tmp_len -= TSO_MAX_BUFF_SIZE;
3029 	}
3030 }
3031 
3032 /**
3033  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3034  *  @skb : the socket buffer
3035  *  @dev : device pointer
3036  *  Description: this is the transmit function that is called on TSO frames
3037  *  (support available on GMAC4 and newer chips).
3038  *  Diagram below show the ring programming in case of TSO frames:
3039  *
3040  *  First Descriptor
3041  *   --------
3042  *   | DES0 |---> buffer1 = L2/L3/L4 header
3043  *   | DES1 |---> TCP Payload (can continue on next descr...)
3044  *   | DES2 |---> buffer 1 and 2 len
3045  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3046  *   --------
3047  *	|
3048  *     ...
3049  *	|
3050  *   --------
3051  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3052  *   | DES1 | --|
3053  *   | DES2 | --> buffer 1 and 2 len
3054  *   | DES3 |
3055  *   --------
3056  *
3057  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3058  */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)3059 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3060 {
3061 	struct dma_desc *desc, *first, *mss_desc = NULL;
3062 	struct stmmac_priv *priv = netdev_priv(dev);
3063 	int desc_size, tmp_pay_len = 0, first_tx;
3064 	int nfrags = skb_shinfo(skb)->nr_frags;
3065 	u32 queue = skb_get_queue_mapping(skb);
3066 	unsigned int first_entry, tx_packets;
3067 	struct stmmac_tx_queue *tx_q;
3068 	bool has_vlan, set_ic;
3069 	u8 proto_hdr_len, hdr;
3070 	u32 pay_len, mss;
3071 	dma_addr_t des;
3072 	int i;
3073 
3074 	tx_q = &priv->tx_queue[queue];
3075 	first_tx = tx_q->cur_tx;
3076 
3077 	/* Compute header lengths */
3078 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3079 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3080 		hdr = sizeof(struct udphdr);
3081 	} else {
3082 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3083 		hdr = tcp_hdrlen(skb);
3084 	}
3085 
3086 	/* Desc availability based on threshold should be enough safe */
3087 	if (unlikely(stmmac_tx_avail(priv, queue) <
3088 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3089 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3090 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3091 								queue));
3092 			/* This is a hard error, log it. */
3093 			netdev_err(priv->dev,
3094 				   "%s: Tx Ring full when queue awake\n",
3095 				   __func__);
3096 		}
3097 		return NETDEV_TX_BUSY;
3098 	}
3099 
3100 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3101 
3102 	mss = skb_shinfo(skb)->gso_size;
3103 
3104 	/* set new MSS value if needed */
3105 	if (mss != tx_q->mss) {
3106 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3107 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3108 		else
3109 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3110 
3111 		stmmac_set_mss(priv, mss_desc, mss);
3112 		tx_q->mss = mss;
3113 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3114 						priv->dma_tx_size);
3115 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3116 	}
3117 
3118 	if (netif_msg_tx_queued(priv)) {
3119 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3120 			__func__, hdr, proto_hdr_len, pay_len, mss);
3121 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3122 			skb->data_len);
3123 	}
3124 
3125 	/* Check if VLAN can be inserted by HW */
3126 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3127 
3128 	first_entry = tx_q->cur_tx;
3129 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3130 
3131 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3132 		desc = &tx_q->dma_entx[first_entry].basic;
3133 	else
3134 		desc = &tx_q->dma_tx[first_entry];
3135 	first = desc;
3136 
3137 	if (has_vlan)
3138 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3139 
3140 	/* first descriptor: fill Headers on Buf1 */
3141 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3142 			     DMA_TO_DEVICE);
3143 	if (dma_mapping_error(priv->device, des))
3144 		goto dma_map_err;
3145 
3146 	tx_q->tx_skbuff_dma[first_entry].buf = des;
3147 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3148 
3149 	if (priv->dma_cap.addr64 <= 32) {
3150 		first->des0 = cpu_to_le32(des);
3151 
3152 		/* Fill start of payload in buff2 of first descriptor */
3153 		if (pay_len)
3154 			first->des1 = cpu_to_le32(des + proto_hdr_len);
3155 
3156 		/* If needed take extra descriptors to fill the remaining payload */
3157 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3158 	} else {
3159 		stmmac_set_desc_addr(priv, first, des);
3160 		tmp_pay_len = pay_len;
3161 		des += proto_hdr_len;
3162 		pay_len = 0;
3163 	}
3164 
3165 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3166 
3167 	/* Prepare fragments */
3168 	for (i = 0; i < nfrags; i++) {
3169 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3170 
3171 		des = skb_frag_dma_map(priv->device, frag, 0,
3172 				       skb_frag_size(frag),
3173 				       DMA_TO_DEVICE);
3174 		if (dma_mapping_error(priv->device, des))
3175 			goto dma_map_err;
3176 
3177 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3178 				     (i == nfrags - 1), queue);
3179 
3180 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3181 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3182 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3183 	}
3184 
3185 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3186 
3187 	/* Only the last descriptor gets to point to the skb. */
3188 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3189 
3190 	/* Manage tx mitigation */
3191 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
3192 	tx_q->tx_count_frames += tx_packets;
3193 
3194 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3195 		set_ic = true;
3196 	else if (!priv->tx_coal_frames)
3197 		set_ic = false;
3198 	else if (tx_packets > priv->tx_coal_frames)
3199 		set_ic = true;
3200 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3201 		set_ic = true;
3202 	else
3203 		set_ic = false;
3204 
3205 	if (set_ic) {
3206 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3207 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3208 		else
3209 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3210 
3211 		tx_q->tx_count_frames = 0;
3212 		stmmac_set_tx_ic(priv, desc);
3213 		priv->xstats.tx_set_ic_bit++;
3214 	}
3215 
3216 	/* We've used all descriptors we need for this skb, however,
3217 	 * advance cur_tx so that it references a fresh descriptor.
3218 	 * ndo_start_xmit will fill this descriptor the next time it's
3219 	 * called and stmmac_tx_clean may clean up to this descriptor.
3220 	 */
3221 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3222 
3223 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3224 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3225 			  __func__);
3226 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3227 	}
3228 
3229 	dev->stats.tx_bytes += skb->len;
3230 	priv->xstats.tx_tso_frames++;
3231 	priv->xstats.tx_tso_nfrags += nfrags;
3232 
3233 	if (priv->sarc_type)
3234 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3235 
3236 	skb_tx_timestamp(skb);
3237 
3238 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3239 		     priv->hwts_tx_en)) {
3240 		/* declare that device is doing timestamping */
3241 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3242 		stmmac_enable_tx_timestamp(priv, first);
3243 	}
3244 
3245 	/* Complete the first descriptor before granting the DMA */
3246 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3247 			proto_hdr_len,
3248 			pay_len,
3249 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3250 			hdr / 4, (skb->len - proto_hdr_len));
3251 
3252 	/* If context desc is used to change MSS */
3253 	if (mss_desc) {
3254 		/* Make sure that first descriptor has been completely
3255 		 * written, including its own bit. This is because MSS is
3256 		 * actually before first descriptor, so we need to make
3257 		 * sure that MSS's own bit is the last thing written.
3258 		 */
3259 		dma_wmb();
3260 		stmmac_set_tx_owner(priv, mss_desc);
3261 	}
3262 
3263 	/* The own bit must be the latest setting done when prepare the
3264 	 * descriptor and then barrier is needed to make sure that
3265 	 * all is coherent before granting the DMA engine.
3266 	 */
3267 	wmb();
3268 
3269 	if (netif_msg_pktdata(priv)) {
3270 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3271 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3272 			tx_q->cur_tx, first, nfrags);
3273 		pr_info(">>> frame to be transmitted: ");
3274 		print_pkt(skb->data, skb_headlen(skb));
3275 	}
3276 
3277 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3278 
3279 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3280 		desc_size = sizeof(struct dma_edesc);
3281 	else
3282 		desc_size = sizeof(struct dma_desc);
3283 
3284 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3285 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3286 	stmmac_tx_timer_arm(priv, queue);
3287 
3288 	return NETDEV_TX_OK;
3289 
3290 dma_map_err:
3291 	dev_err(priv->device, "Tx dma map failed\n");
3292 	dev_kfree_skb(skb);
3293 	priv->dev->stats.tx_dropped++;
3294 	return NETDEV_TX_OK;
3295 }
3296 
3297 /**
3298  *  stmmac_xmit - Tx entry point of the driver
3299  *  @skb : the socket buffer
3300  *  @dev : device pointer
3301  *  Description : this is the tx entry point of the driver.
3302  *  It programs the chain or the ring and supports oversized frames
3303  *  and SG feature.
3304  */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)3305 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3306 {
3307 	unsigned int first_entry, tx_packets, enh_desc;
3308 	struct stmmac_priv *priv = netdev_priv(dev);
3309 	unsigned int nopaged_len = skb_headlen(skb);
3310 	int i, csum_insertion = 0, is_jumbo = 0;
3311 	u32 queue = skb_get_queue_mapping(skb);
3312 	int nfrags = skb_shinfo(skb)->nr_frags;
3313 	int gso = skb_shinfo(skb)->gso_type;
3314 	struct dma_edesc *tbs_desc = NULL;
3315 	int entry, desc_size, first_tx;
3316 	struct dma_desc *desc, *first;
3317 	struct stmmac_tx_queue *tx_q;
3318 	bool has_vlan, set_ic;
3319 	dma_addr_t des;
3320 
3321 	tx_q = &priv->tx_queue[queue];
3322 	first_tx = tx_q->cur_tx;
3323 
3324 	if (priv->tx_path_in_lpi_mode)
3325 		stmmac_disable_eee_mode(priv);
3326 
3327 	/* Manage oversized TCP frames for GMAC4 device */
3328 	if (skb_is_gso(skb) && priv->tso) {
3329 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3330 			return stmmac_tso_xmit(skb, dev);
3331 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3332 			return stmmac_tso_xmit(skb, dev);
3333 	}
3334 
3335 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3336 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3337 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3338 								queue));
3339 			/* This is a hard error, log it. */
3340 			netdev_err(priv->dev,
3341 				   "%s: Tx Ring full when queue awake\n",
3342 				   __func__);
3343 		}
3344 		return NETDEV_TX_BUSY;
3345 	}
3346 
3347 	/* Check if VLAN can be inserted by HW */
3348 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3349 
3350 	entry = tx_q->cur_tx;
3351 	first_entry = entry;
3352 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3353 
3354 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3355 
3356 	if (likely(priv->extend_desc))
3357 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3358 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3359 		desc = &tx_q->dma_entx[entry].basic;
3360 	else
3361 		desc = tx_q->dma_tx + entry;
3362 
3363 	first = desc;
3364 
3365 	if (has_vlan)
3366 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3367 
3368 	enh_desc = priv->plat->enh_desc;
3369 	/* To program the descriptors according to the size of the frame */
3370 	if (enh_desc)
3371 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3372 
3373 	if (unlikely(is_jumbo)) {
3374 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3375 		if (unlikely(entry < 0) && (entry != -EINVAL))
3376 			goto dma_map_err;
3377 	}
3378 
3379 	for (i = 0; i < nfrags; i++) {
3380 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3381 		int len = skb_frag_size(frag);
3382 		bool last_segment = (i == (nfrags - 1));
3383 
3384 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3385 		WARN_ON(tx_q->tx_skbuff[entry]);
3386 
3387 		if (likely(priv->extend_desc))
3388 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3389 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3390 			desc = &tx_q->dma_entx[entry].basic;
3391 		else
3392 			desc = tx_q->dma_tx + entry;
3393 
3394 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3395 				       DMA_TO_DEVICE);
3396 		if (dma_mapping_error(priv->device, des))
3397 			goto dma_map_err; /* should reuse desc w/o issues */
3398 
3399 		tx_q->tx_skbuff_dma[entry].buf = des;
3400 
3401 		stmmac_set_desc_addr(priv, desc, des);
3402 
3403 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3404 		tx_q->tx_skbuff_dma[entry].len = len;
3405 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3406 
3407 		/* Prepare the descriptor and set the own bit too */
3408 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3409 				priv->mode, 1, last_segment, skb->len);
3410 	}
3411 
3412 	/* Only the last descriptor gets to point to the skb. */
3413 	tx_q->tx_skbuff[entry] = skb;
3414 
3415 	/* According to the coalesce parameter the IC bit for the latest
3416 	 * segment is reset and the timer re-started to clean the tx status.
3417 	 * This approach takes care about the fragments: desc is the first
3418 	 * element in case of no SG.
3419 	 */
3420 	tx_packets = (entry + 1) - first_tx;
3421 	tx_q->tx_count_frames += tx_packets;
3422 
3423 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3424 		set_ic = true;
3425 	else if (!priv->tx_coal_frames)
3426 		set_ic = false;
3427 	else if (tx_packets > priv->tx_coal_frames)
3428 		set_ic = true;
3429 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3430 		set_ic = true;
3431 	else
3432 		set_ic = false;
3433 
3434 	if (set_ic) {
3435 		if (likely(priv->extend_desc))
3436 			desc = &tx_q->dma_etx[entry].basic;
3437 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3438 			desc = &tx_q->dma_entx[entry].basic;
3439 		else
3440 			desc = &tx_q->dma_tx[entry];
3441 
3442 		tx_q->tx_count_frames = 0;
3443 		stmmac_set_tx_ic(priv, desc);
3444 		priv->xstats.tx_set_ic_bit++;
3445 	}
3446 
3447 	/* We've used all descriptors we need for this skb, however,
3448 	 * advance cur_tx so that it references a fresh descriptor.
3449 	 * ndo_start_xmit will fill this descriptor the next time it's
3450 	 * called and stmmac_tx_clean may clean up to this descriptor.
3451 	 */
3452 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3453 	tx_q->cur_tx = entry;
3454 
3455 	if (netif_msg_pktdata(priv)) {
3456 		netdev_dbg(priv->dev,
3457 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3458 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3459 			   entry, first, nfrags);
3460 
3461 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3462 		print_pkt(skb->data, skb->len);
3463 	}
3464 
3465 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3466 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3467 			  __func__);
3468 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3469 	}
3470 
3471 	dev->stats.tx_bytes += skb->len;
3472 
3473 	if (priv->sarc_type)
3474 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3475 
3476 	skb_tx_timestamp(skb);
3477 
3478 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3479 	 * problems because all the descriptors are actually ready to be
3480 	 * passed to the DMA engine.
3481 	 */
3482 	if (likely(!is_jumbo)) {
3483 		bool last_segment = (nfrags == 0);
3484 
3485 		des = dma_map_single(priv->device, skb->data,
3486 				     nopaged_len, DMA_TO_DEVICE);
3487 		if (dma_mapping_error(priv->device, des))
3488 			goto dma_map_err;
3489 
3490 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3491 
3492 		stmmac_set_desc_addr(priv, first, des);
3493 
3494 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3495 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3496 
3497 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3498 			     priv->hwts_tx_en)) {
3499 			/* declare that device is doing timestamping */
3500 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3501 			stmmac_enable_tx_timestamp(priv, first);
3502 		}
3503 
3504 		/* Prepare the first descriptor setting the OWN bit too */
3505 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3506 				csum_insertion, priv->mode, 0, last_segment,
3507 				skb->len);
3508 	}
3509 
3510 	if (tx_q->tbs & STMMAC_TBS_EN) {
3511 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3512 
3513 		tbs_desc = &tx_q->dma_entx[first_entry];
3514 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3515 	}
3516 
3517 	stmmac_set_tx_owner(priv, first);
3518 
3519 	/* The own bit must be the latest setting done when prepare the
3520 	 * descriptor and then barrier is needed to make sure that
3521 	 * all is coherent before granting the DMA engine.
3522 	 */
3523 	wmb();
3524 
3525 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3526 
3527 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3528 
3529 	if (likely(priv->extend_desc))
3530 		desc_size = sizeof(struct dma_extended_desc);
3531 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3532 		desc_size = sizeof(struct dma_edesc);
3533 	else
3534 		desc_size = sizeof(struct dma_desc);
3535 
3536 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3537 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3538 	stmmac_tx_timer_arm(priv, queue);
3539 
3540 	return NETDEV_TX_OK;
3541 
3542 dma_map_err:
3543 	netdev_err(priv->dev, "Tx DMA map failed\n");
3544 	dev_kfree_skb(skb);
3545 	priv->dev->stats.tx_dropped++;
3546 	return NETDEV_TX_OK;
3547 }
3548 
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)3549 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3550 {
3551 	struct vlan_ethhdr *veth;
3552 	__be16 vlan_proto;
3553 	u16 vlanid;
3554 
3555 	veth = (struct vlan_ethhdr *)skb->data;
3556 	vlan_proto = veth->h_vlan_proto;
3557 
3558 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3559 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3560 	    (vlan_proto == htons(ETH_P_8021AD) &&
3561 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3562 		/* pop the vlan tag */
3563 		vlanid = ntohs(veth->h_vlan_TCI);
3564 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3565 		skb_pull(skb, VLAN_HLEN);
3566 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3567 	}
3568 }
3569 
3570 /**
3571  * stmmac_rx_refill - refill used skb preallocated buffers
3572  * @priv: driver private structure
3573  * @queue: RX queue index
3574  * Description : this is to reallocate the skb for the reception process
3575  * that is based on zero-copy.
3576  */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)3577 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3578 {
3579 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3580 	int len, dirty = stmmac_rx_dirty(priv, queue);
3581 	unsigned int entry = rx_q->dirty_rx;
3582 
3583 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3584 
3585 	while (dirty-- > 0) {
3586 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3587 		struct dma_desc *p;
3588 		bool use_rx_wd;
3589 
3590 		if (priv->extend_desc)
3591 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3592 		else
3593 			p = rx_q->dma_rx + entry;
3594 
3595 		if (!buf->page) {
3596 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3597 			if (!buf->page)
3598 				break;
3599 		}
3600 
3601 		if (priv->sph && !buf->sec_page) {
3602 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3603 			if (!buf->sec_page)
3604 				break;
3605 
3606 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3607 
3608 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3609 						   len, DMA_FROM_DEVICE);
3610 		}
3611 
3612 		buf->addr = page_pool_get_dma_addr(buf->page);
3613 
3614 		/* Sync whole allocation to device. This will invalidate old
3615 		 * data.
3616 		 */
3617 		dma_sync_single_for_device(priv->device, buf->addr, len,
3618 					   DMA_FROM_DEVICE);
3619 
3620 		stmmac_set_desc_addr(priv, p, buf->addr);
3621 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3622 		stmmac_refill_desc3(priv, rx_q, p);
3623 
3624 		rx_q->rx_count_frames++;
3625 		rx_q->rx_count_frames += priv->rx_coal_frames;
3626 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3627 			rx_q->rx_count_frames = 0;
3628 
3629 		use_rx_wd = !priv->rx_coal_frames;
3630 		use_rx_wd |= rx_q->rx_count_frames > 0;
3631 		if (!priv->use_riwt)
3632 			use_rx_wd = false;
3633 
3634 		dma_wmb();
3635 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3636 
3637 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
3638 	}
3639 	rx_q->dirty_rx = entry;
3640 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3641 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3642 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3643 }
3644 
stmmac_rx_buf1_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3645 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3646 				       struct dma_desc *p,
3647 				       int status, unsigned int len)
3648 {
3649 	unsigned int plen = 0, hlen = 0;
3650 	int coe = priv->hw->rx_csum;
3651 
3652 	/* Not first descriptor, buffer is always zero */
3653 	if (priv->sph && len)
3654 		return 0;
3655 
3656 	/* First descriptor, get split header length */
3657 	stmmac_get_rx_header_len(priv, p, &hlen);
3658 	if (priv->sph && hlen) {
3659 		priv->xstats.rx_split_hdr_pkt_n++;
3660 		return hlen;
3661 	}
3662 
3663 	/* First descriptor, not last descriptor and not split header */
3664 	if (status & rx_not_ls)
3665 		return priv->dma_buf_sz;
3666 
3667 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3668 
3669 	/* First descriptor and last descriptor and not split header */
3670 	return min_t(unsigned int, priv->dma_buf_sz, plen);
3671 }
3672 
stmmac_rx_buf2_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)3673 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3674 				       struct dma_desc *p,
3675 				       int status, unsigned int len)
3676 {
3677 	int coe = priv->hw->rx_csum;
3678 	unsigned int plen = 0;
3679 
3680 	/* Not split header, buffer is not available */
3681 	if (!priv->sph)
3682 		return 0;
3683 
3684 	/* Not last descriptor */
3685 	if (status & rx_not_ls)
3686 		return priv->dma_buf_sz;
3687 
3688 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3689 
3690 	/* Last descriptor */
3691 	return plen - len;
3692 }
3693 
3694 /**
3695  * stmmac_rx - manage the receive process
3696  * @priv: driver private structure
3697  * @limit: napi bugget
3698  * @queue: RX queue index.
3699  * Description :  this the function called by the napi poll method.
3700  * It gets all the frames inside the ring.
3701  */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)3702 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3703 {
3704 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3705 	struct stmmac_channel *ch = &priv->channel[queue];
3706 	unsigned int count = 0, error = 0, len = 0;
3707 	int status = 0, coe = priv->hw->rx_csum;
3708 	unsigned int next_entry = rx_q->cur_rx;
3709 	struct sk_buff *skb = NULL;
3710 
3711 	if (netif_msg_rx_status(priv)) {
3712 		void *rx_head;
3713 
3714 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3715 		if (priv->extend_desc)
3716 			rx_head = (void *)rx_q->dma_erx;
3717 		else
3718 			rx_head = (void *)rx_q->dma_rx;
3719 
3720 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true);
3721 	}
3722 	while (count < limit) {
3723 		unsigned int buf1_len = 0, buf2_len = 0;
3724 		enum pkt_hash_types hash_type;
3725 		struct stmmac_rx_buffer *buf;
3726 		struct dma_desc *np, *p;
3727 		int entry;
3728 		u32 hash;
3729 
3730 		if (!count && rx_q->state_saved) {
3731 			skb = rx_q->state.skb;
3732 			error = rx_q->state.error;
3733 			len = rx_q->state.len;
3734 		} else {
3735 			rx_q->state_saved = false;
3736 			skb = NULL;
3737 			error = 0;
3738 			len = 0;
3739 		}
3740 
3741 		if (count >= limit)
3742 			break;
3743 
3744 read_again:
3745 		buf1_len = 0;
3746 		buf2_len = 0;
3747 		entry = next_entry;
3748 		buf = &rx_q->buf_pool[entry];
3749 
3750 		if (priv->extend_desc)
3751 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3752 		else
3753 			p = rx_q->dma_rx + entry;
3754 
3755 		/* read the status of the incoming frame */
3756 		status = stmmac_rx_status(priv, &priv->dev->stats,
3757 				&priv->xstats, p);
3758 		/* check if managed by the DMA otherwise go ahead */
3759 		if (unlikely(status & dma_own))
3760 			break;
3761 
3762 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
3763 						priv->dma_rx_size);
3764 		next_entry = rx_q->cur_rx;
3765 
3766 		if (priv->extend_desc)
3767 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3768 		else
3769 			np = rx_q->dma_rx + next_entry;
3770 
3771 		prefetch(np);
3772 
3773 		if (priv->extend_desc)
3774 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3775 					&priv->xstats, rx_q->dma_erx + entry);
3776 		if (unlikely(status == discard_frame)) {
3777 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3778 			buf->page = NULL;
3779 			error = 1;
3780 			if (!priv->hwts_rx_en)
3781 				priv->dev->stats.rx_errors++;
3782 		}
3783 
3784 		if (unlikely(error && (status & rx_not_ls)))
3785 			goto read_again;
3786 		if (unlikely(error)) {
3787 			dev_kfree_skb(skb);
3788 			skb = NULL;
3789 			count++;
3790 			continue;
3791 		}
3792 
3793 		/* Buffer is good. Go on. */
3794 
3795 		prefetch(page_address(buf->page));
3796 		if (buf->sec_page)
3797 			prefetch(page_address(buf->sec_page));
3798 
3799 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3800 		len += buf1_len;
3801 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3802 		len += buf2_len;
3803 
3804 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3805 		 * Type frames (LLC/LLC-SNAP)
3806 		 *
3807 		 * llc_snap is never checked in GMAC >= 4, so this ACS
3808 		 * feature is always disabled and packets need to be
3809 		 * stripped manually.
3810 		 */
3811 		if (likely(!(status & rx_not_ls)) &&
3812 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3813 		     unlikely(status != llc_snap))) {
3814 			if (buf2_len)
3815 				buf2_len -= ETH_FCS_LEN;
3816 			else
3817 				buf1_len -= ETH_FCS_LEN;
3818 
3819 			len -= ETH_FCS_LEN;
3820 		}
3821 
3822 		if (!skb) {
3823 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3824 			if (!skb) {
3825 				priv->dev->stats.rx_dropped++;
3826 				count++;
3827 				goto drain_data;
3828 			}
3829 
3830 			dma_sync_single_for_cpu(priv->device, buf->addr,
3831 						buf1_len, DMA_FROM_DEVICE);
3832 			skb_copy_to_linear_data(skb, page_address(buf->page),
3833 						buf1_len);
3834 			skb_put(skb, buf1_len);
3835 
3836 			/* Data payload copied into SKB, page ready for recycle */
3837 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3838 			buf->page = NULL;
3839 		} else if (buf1_len) {
3840 			dma_sync_single_for_cpu(priv->device, buf->addr,
3841 						buf1_len, DMA_FROM_DEVICE);
3842 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3843 					buf->page, 0, buf1_len,
3844 					priv->dma_buf_sz);
3845 
3846 			/* Data payload appended into SKB */
3847 			page_pool_release_page(rx_q->page_pool, buf->page);
3848 			buf->page = NULL;
3849 		}
3850 
3851 		if (buf2_len) {
3852 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3853 						buf2_len, DMA_FROM_DEVICE);
3854 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3855 					buf->sec_page, 0, buf2_len,
3856 					priv->dma_buf_sz);
3857 
3858 			/* Data payload appended into SKB */
3859 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3860 			buf->sec_page = NULL;
3861 		}
3862 
3863 drain_data:
3864 		if (likely(status & rx_not_ls))
3865 			goto read_again;
3866 		if (!skb)
3867 			continue;
3868 
3869 		/* Got entire packet into SKB. Finish it. */
3870 
3871 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3872 		stmmac_rx_vlan(priv->dev, skb);
3873 		skb->protocol = eth_type_trans(skb, priv->dev);
3874 
3875 		if (unlikely(!coe))
3876 			skb_checksum_none_assert(skb);
3877 		else
3878 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3879 
3880 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3881 			skb_set_hash(skb, hash, hash_type);
3882 
3883 		skb_record_rx_queue(skb, queue);
3884 		napi_gro_receive(&ch->rx_napi, skb);
3885 		skb = NULL;
3886 
3887 		priv->dev->stats.rx_packets++;
3888 		priv->dev->stats.rx_bytes += len;
3889 		count++;
3890 	}
3891 
3892 	if (status & rx_not_ls || skb) {
3893 		rx_q->state_saved = true;
3894 		rx_q->state.skb = skb;
3895 		rx_q->state.error = error;
3896 		rx_q->state.len = len;
3897 	}
3898 
3899 	stmmac_rx_refill(priv, queue);
3900 
3901 	priv->xstats.rx_pkt_n += count;
3902 
3903 	return count;
3904 }
3905 
stmmac_napi_poll_rx(struct napi_struct * napi,int budget)3906 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3907 {
3908 	struct stmmac_channel *ch =
3909 		container_of(napi, struct stmmac_channel, rx_napi);
3910 	struct stmmac_priv *priv = ch->priv_data;
3911 	u32 chan = ch->index;
3912 	int work_done;
3913 
3914 	priv->xstats.napi_poll++;
3915 
3916 	work_done = stmmac_rx(priv, budget, chan);
3917 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3918 		unsigned long flags;
3919 
3920 		spin_lock_irqsave(&ch->lock, flags);
3921 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
3922 		spin_unlock_irqrestore(&ch->lock, flags);
3923 	}
3924 
3925 	return work_done;
3926 }
3927 
stmmac_napi_poll_tx(struct napi_struct * napi,int budget)3928 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3929 {
3930 	struct stmmac_channel *ch =
3931 		container_of(napi, struct stmmac_channel, tx_napi);
3932 	struct stmmac_priv *priv = ch->priv_data;
3933 	u32 chan = ch->index;
3934 	int work_done;
3935 
3936 	priv->xstats.napi_poll++;
3937 
3938 	work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan);
3939 	work_done = min(work_done, budget);
3940 
3941 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3942 		unsigned long flags;
3943 
3944 		spin_lock_irqsave(&ch->lock, flags);
3945 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
3946 		spin_unlock_irqrestore(&ch->lock, flags);
3947 	}
3948 
3949 	return work_done;
3950 }
3951 
3952 /**
3953  *  stmmac_tx_timeout
3954  *  @dev : Pointer to net device structure
3955  *  @txqueue: the index of the hanging transmit queue
3956  *  Description: this function is called when a packet transmission fails to
3957  *   complete within a reasonable time. The driver will mark the error in the
3958  *   netdev structure and arrange for the device to be reset to a sane state
3959  *   in order to transmit a new packet.
3960  */
stmmac_tx_timeout(struct net_device * dev,unsigned int txqueue)3961 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
3962 {
3963 	struct stmmac_priv *priv = netdev_priv(dev);
3964 
3965 	stmmac_global_err(priv);
3966 }
3967 
3968 /**
3969  *  stmmac_set_rx_mode - entry point for multicast addressing
3970  *  @dev : pointer to the device structure
3971  *  Description:
3972  *  This function is a driver entry point which gets called by the kernel
3973  *  whenever multicast addresses must be enabled/disabled.
3974  *  Return value:
3975  *  void.
3976  */
stmmac_set_rx_mode(struct net_device * dev)3977 static void stmmac_set_rx_mode(struct net_device *dev)
3978 {
3979 	struct stmmac_priv *priv = netdev_priv(dev);
3980 
3981 	stmmac_set_filter(priv, priv->hw, dev);
3982 }
3983 
3984 /**
3985  *  stmmac_change_mtu - entry point to change MTU size for the device.
3986  *  @dev : device pointer.
3987  *  @new_mtu : the new MTU size for the device.
3988  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3989  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3990  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3991  *  Return value:
3992  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3993  *  file on failure.
3994  */
stmmac_change_mtu(struct net_device * dev,int new_mtu)3995 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3996 {
3997 	struct stmmac_priv *priv = netdev_priv(dev);
3998 	int txfifosz = priv->plat->tx_fifo_size;
3999 
4000 	if (txfifosz == 0)
4001 		txfifosz = priv->dma_cap.tx_fifo_size;
4002 
4003 	txfifosz /= priv->plat->tx_queues_to_use;
4004 
4005 	if (netif_running(dev)) {
4006 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
4007 		return -EBUSY;
4008 	}
4009 
4010 	new_mtu = STMMAC_ALIGN(new_mtu);
4011 
4012 	/* If condition true, FIFO is too small or MTU too large */
4013 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
4014 		return -EINVAL;
4015 
4016 	dev->mtu = new_mtu;
4017 
4018 	netdev_update_features(dev);
4019 
4020 	return 0;
4021 }
4022 
stmmac_fix_features(struct net_device * dev,netdev_features_t features)4023 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4024 					     netdev_features_t features)
4025 {
4026 	struct stmmac_priv *priv = netdev_priv(dev);
4027 
4028 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4029 		features &= ~NETIF_F_RXCSUM;
4030 
4031 	if (!priv->plat->tx_coe)
4032 		features &= ~NETIF_F_CSUM_MASK;
4033 
4034 	/* Some GMAC devices have a bugged Jumbo frame support that
4035 	 * needs to have the Tx COE disabled for oversized frames
4036 	 * (due to limited buffer sizes). In this case we disable
4037 	 * the TX csum insertion in the TDES and not use SF.
4038 	 */
4039 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4040 		features &= ~NETIF_F_CSUM_MASK;
4041 
4042 	/* Disable tso if asked by ethtool */
4043 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4044 		if (features & NETIF_F_TSO)
4045 			priv->tso = true;
4046 		else
4047 			priv->tso = false;
4048 	}
4049 
4050 	return features;
4051 }
4052 
stmmac_set_features(struct net_device * netdev,netdev_features_t features)4053 static int stmmac_set_features(struct net_device *netdev,
4054 			       netdev_features_t features)
4055 {
4056 	struct stmmac_priv *priv = netdev_priv(netdev);
4057 	bool sph_en;
4058 	u32 chan;
4059 
4060 	/* Keep the COE Type in case of csum is supporting */
4061 	if (features & NETIF_F_RXCSUM)
4062 		priv->hw->rx_csum = priv->plat->rx_coe;
4063 	else
4064 		priv->hw->rx_csum = 0;
4065 	/* No check needed because rx_coe has been set before and it will be
4066 	 * fixed in case of issue.
4067 	 */
4068 	stmmac_rx_ipc(priv, priv->hw);
4069 
4070 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4071 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4072 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4073 
4074 	return 0;
4075 }
4076 
4077 /**
4078  *  stmmac_interrupt - main ISR
4079  *  @irq: interrupt number.
4080  *  @dev_id: to pass the net device pointer (must be valid).
4081  *  Description: this is the main driver interrupt service routine.
4082  *  It can call:
4083  *  o DMA service routine (to manage incoming frame reception and transmission
4084  *    status)
4085  *  o Core interrupts to manage: remote wake-up, management counter, LPI
4086  *    interrupts.
4087  */
stmmac_interrupt(int irq,void * dev_id)4088 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4089 {
4090 	struct net_device *dev = (struct net_device *)dev_id;
4091 	struct stmmac_priv *priv = netdev_priv(dev);
4092 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4093 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4094 	u32 queues_count;
4095 	u32 queue;
4096 	bool xmac;
4097 
4098 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4099 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4100 
4101 	if (priv->irq_wake)
4102 		pm_wakeup_event(priv->device, 0);
4103 
4104 	/* Check if adapter is up */
4105 	if (test_bit(STMMAC_DOWN, &priv->state))
4106 		return IRQ_HANDLED;
4107 	/* Check if a fatal error happened */
4108 	if (stmmac_safety_feat_interrupt(priv))
4109 		return IRQ_HANDLED;
4110 
4111 	/* To handle GMAC own interrupts */
4112 	if ((priv->plat->has_gmac) || xmac) {
4113 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4114 		int mtl_status;
4115 
4116 		if (unlikely(status)) {
4117 			/* For LPI we need to save the tx status */
4118 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4119 				priv->tx_path_in_lpi_mode = true;
4120 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4121 				priv->tx_path_in_lpi_mode = false;
4122 		}
4123 
4124 		for (queue = 0; queue < queues_count; queue++) {
4125 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4126 
4127 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
4128 								queue);
4129 			if (mtl_status != -EINVAL)
4130 				status |= mtl_status;
4131 
4132 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
4133 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
4134 						       rx_q->rx_tail_addr,
4135 						       queue);
4136 		}
4137 
4138 		/* PCS link status */
4139 		if (priv->hw->pcs) {
4140 			if (priv->xstats.pcs_link)
4141 				netif_carrier_on(dev);
4142 			else
4143 				netif_carrier_off(dev);
4144 		}
4145 	}
4146 
4147 	/* To handle DMA interrupts */
4148 	stmmac_dma_interrupt(priv);
4149 
4150 	return IRQ_HANDLED;
4151 }
4152 
4153 #ifdef CONFIG_NET_POLL_CONTROLLER
4154 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4155  * to allow network I/O with interrupts disabled.
4156  */
stmmac_poll_controller(struct net_device * dev)4157 static void stmmac_poll_controller(struct net_device *dev)
4158 {
4159 	disable_irq(dev->irq);
4160 	stmmac_interrupt(dev->irq, dev);
4161 	enable_irq(dev->irq);
4162 }
4163 #endif
4164 
4165 /**
4166  *  stmmac_ioctl - Entry point for the Ioctl
4167  *  @dev: Device pointer.
4168  *  @rq: An IOCTL specefic structure, that can contain a pointer to
4169  *  a proprietary structure used to pass information to the driver.
4170  *  @cmd: IOCTL command
4171  *  Description:
4172  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4173  */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)4174 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4175 {
4176 	struct stmmac_priv *priv = netdev_priv (dev);
4177 	int ret = -EOPNOTSUPP;
4178 
4179 	if (!netif_running(dev))
4180 		return -EINVAL;
4181 
4182 	switch (cmd) {
4183 	case SIOCGMIIPHY:
4184 	case SIOCGMIIREG:
4185 	case SIOCSMIIREG:
4186 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4187 		break;
4188 	case SIOCSHWTSTAMP:
4189 		ret = stmmac_hwtstamp_set(dev, rq);
4190 		break;
4191 	case SIOCGHWTSTAMP:
4192 		ret = stmmac_hwtstamp_get(dev, rq);
4193 		break;
4194 	default:
4195 		break;
4196 	}
4197 
4198 	return ret;
4199 }
4200 
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)4201 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4202 				    void *cb_priv)
4203 {
4204 	struct stmmac_priv *priv = cb_priv;
4205 	int ret = -EOPNOTSUPP;
4206 
4207 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4208 		return ret;
4209 
4210 	stmmac_disable_all_queues(priv);
4211 
4212 	switch (type) {
4213 	case TC_SETUP_CLSU32:
4214 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4215 		break;
4216 	case TC_SETUP_CLSFLOWER:
4217 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
4218 		break;
4219 	default:
4220 		break;
4221 	}
4222 
4223 	stmmac_enable_all_queues(priv);
4224 	return ret;
4225 }
4226 
4227 static LIST_HEAD(stmmac_block_cb_list);
4228 
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)4229 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4230 			   void *type_data)
4231 {
4232 	struct stmmac_priv *priv = netdev_priv(ndev);
4233 
4234 	switch (type) {
4235 	case TC_SETUP_BLOCK:
4236 		return flow_block_cb_setup_simple(type_data,
4237 						  &stmmac_block_cb_list,
4238 						  stmmac_setup_tc_block_cb,
4239 						  priv, priv, true);
4240 	case TC_SETUP_QDISC_CBS:
4241 		return stmmac_tc_setup_cbs(priv, priv, type_data);
4242 	case TC_SETUP_QDISC_TAPRIO:
4243 		return stmmac_tc_setup_taprio(priv, priv, type_data);
4244 	case TC_SETUP_QDISC_ETF:
4245 		return stmmac_tc_setup_etf(priv, priv, type_data);
4246 	default:
4247 		return -EOPNOTSUPP;
4248 	}
4249 }
4250 
stmmac_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4251 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4252 			       struct net_device *sb_dev)
4253 {
4254 	int gso = skb_shinfo(skb)->gso_type;
4255 
4256 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4257 		/*
4258 		 * There is no way to determine the number of TSO/USO
4259 		 * capable Queues. Let's use always the Queue 0
4260 		 * because if TSO/USO is supported then at least this
4261 		 * one will be capable.
4262 		 */
4263 		return 0;
4264 	}
4265 
4266 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4267 }
4268 
stmmac_set_mac_address(struct net_device * ndev,void * addr)4269 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4270 {
4271 	struct stmmac_priv *priv = netdev_priv(ndev);
4272 	int ret = 0;
4273 
4274 	ret = eth_mac_addr(ndev, addr);
4275 	if (ret)
4276 		return ret;
4277 
4278 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4279 
4280 	return ret;
4281 }
4282 
4283 #ifdef CONFIG_DEBUG_FS
4284 static struct dentry *stmmac_fs_dir;
4285 
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq)4286 static void sysfs_display_ring(void *head, int size, int extend_desc,
4287 			       struct seq_file *seq)
4288 {
4289 	int i;
4290 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4291 	struct dma_desc *p = (struct dma_desc *)head;
4292 
4293 	for (i = 0; i < size; i++) {
4294 		if (extend_desc) {
4295 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4296 				   i, (unsigned int)virt_to_phys(ep),
4297 				   le32_to_cpu(ep->basic.des0),
4298 				   le32_to_cpu(ep->basic.des1),
4299 				   le32_to_cpu(ep->basic.des2),
4300 				   le32_to_cpu(ep->basic.des3));
4301 			ep++;
4302 		} else {
4303 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4304 				   i, (unsigned int)virt_to_phys(p),
4305 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4306 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4307 			p++;
4308 		}
4309 		seq_printf(seq, "\n");
4310 	}
4311 }
4312 
stmmac_rings_status_show(struct seq_file * seq,void * v)4313 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4314 {
4315 	struct net_device *dev = seq->private;
4316 	struct stmmac_priv *priv = netdev_priv(dev);
4317 	u32 rx_count = priv->plat->rx_queues_to_use;
4318 	u32 tx_count = priv->plat->tx_queues_to_use;
4319 	u32 queue;
4320 
4321 	if ((dev->flags & IFF_UP) == 0)
4322 		return 0;
4323 
4324 	for (queue = 0; queue < rx_count; queue++) {
4325 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4326 
4327 		seq_printf(seq, "RX Queue %d:\n", queue);
4328 
4329 		if (priv->extend_desc) {
4330 			seq_printf(seq, "Extended descriptor ring:\n");
4331 			sysfs_display_ring((void *)rx_q->dma_erx,
4332 					   priv->dma_rx_size, 1, seq);
4333 		} else {
4334 			seq_printf(seq, "Descriptor ring:\n");
4335 			sysfs_display_ring((void *)rx_q->dma_rx,
4336 					   priv->dma_rx_size, 0, seq);
4337 		}
4338 	}
4339 
4340 	for (queue = 0; queue < tx_count; queue++) {
4341 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4342 
4343 		seq_printf(seq, "TX Queue %d:\n", queue);
4344 
4345 		if (priv->extend_desc) {
4346 			seq_printf(seq, "Extended descriptor ring:\n");
4347 			sysfs_display_ring((void *)tx_q->dma_etx,
4348 					   priv->dma_tx_size, 1, seq);
4349 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4350 			seq_printf(seq, "Descriptor ring:\n");
4351 			sysfs_display_ring((void *)tx_q->dma_tx,
4352 					   priv->dma_tx_size, 0, seq);
4353 		}
4354 	}
4355 
4356 	return 0;
4357 }
4358 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4359 
stmmac_dma_cap_show(struct seq_file * seq,void * v)4360 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4361 {
4362 	struct net_device *dev = seq->private;
4363 	struct stmmac_priv *priv = netdev_priv(dev);
4364 
4365 	if (!priv->hw_cap_support) {
4366 		seq_printf(seq, "DMA HW features not supported\n");
4367 		return 0;
4368 	}
4369 
4370 	seq_printf(seq, "==============================\n");
4371 	seq_printf(seq, "\tDMA HW features\n");
4372 	seq_printf(seq, "==============================\n");
4373 
4374 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4375 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4376 	seq_printf(seq, "\t1000 Mbps: %s\n",
4377 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4378 	seq_printf(seq, "\tHalf duplex: %s\n",
4379 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4380 	seq_printf(seq, "\tHash Filter: %s\n",
4381 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4382 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4383 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4384 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4385 		   (priv->dma_cap.pcs) ? "Y" : "N");
4386 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4387 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4388 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4389 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4390 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4391 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4392 	seq_printf(seq, "\tRMON module: %s\n",
4393 		   (priv->dma_cap.rmon) ? "Y" : "N");
4394 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4395 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4396 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4397 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4398 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4399 		   (priv->dma_cap.eee) ? "Y" : "N");
4400 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4401 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4402 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4403 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4404 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4405 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4406 	} else {
4407 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4408 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4409 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4410 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4411 	}
4412 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4413 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4414 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4415 		   priv->dma_cap.number_rx_channel);
4416 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4417 		   priv->dma_cap.number_tx_channel);
4418 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4419 		   priv->dma_cap.number_rx_queues);
4420 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4421 		   priv->dma_cap.number_tx_queues);
4422 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4423 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4424 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4425 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4426 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4427 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4428 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4429 		   priv->dma_cap.pps_out_num);
4430 	seq_printf(seq, "\tSafety Features: %s\n",
4431 		   priv->dma_cap.asp ? "Y" : "N");
4432 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
4433 		   priv->dma_cap.frpsel ? "Y" : "N");
4434 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
4435 		   priv->dma_cap.addr64);
4436 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
4437 		   priv->dma_cap.rssen ? "Y" : "N");
4438 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4439 		   priv->dma_cap.vlhash ? "Y" : "N");
4440 	seq_printf(seq, "\tSplit Header: %s\n",
4441 		   priv->dma_cap.sphen ? "Y" : "N");
4442 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4443 		   priv->dma_cap.vlins ? "Y" : "N");
4444 	seq_printf(seq, "\tDouble VLAN: %s\n",
4445 		   priv->dma_cap.dvlan ? "Y" : "N");
4446 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4447 		   priv->dma_cap.l3l4fnum);
4448 	seq_printf(seq, "\tARP Offloading: %s\n",
4449 		   priv->dma_cap.arpoffsel ? "Y" : "N");
4450 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4451 		   priv->dma_cap.estsel ? "Y" : "N");
4452 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4453 		   priv->dma_cap.fpesel ? "Y" : "N");
4454 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4455 		   priv->dma_cap.tbssel ? "Y" : "N");
4456 	return 0;
4457 }
4458 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4459 
4460 /* Use network device events to rename debugfs file entries.
4461  */
stmmac_device_event(struct notifier_block * unused,unsigned long event,void * ptr)4462 static int stmmac_device_event(struct notifier_block *unused,
4463 			       unsigned long event, void *ptr)
4464 {
4465 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4466 	struct stmmac_priv *priv = netdev_priv(dev);
4467 
4468 	if (dev->netdev_ops != &stmmac_netdev_ops)
4469 		goto done;
4470 
4471 	switch (event) {
4472 	case NETDEV_CHANGENAME:
4473 		if (priv->dbgfs_dir)
4474 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4475 							 priv->dbgfs_dir,
4476 							 stmmac_fs_dir,
4477 							 dev->name);
4478 		break;
4479 	}
4480 done:
4481 	return NOTIFY_DONE;
4482 }
4483 
4484 static struct notifier_block stmmac_notifier = {
4485 	.notifier_call = stmmac_device_event,
4486 };
4487 
stmmac_init_fs(struct net_device * dev)4488 static void stmmac_init_fs(struct net_device *dev)
4489 {
4490 	struct stmmac_priv *priv = netdev_priv(dev);
4491 
4492 	rtnl_lock();
4493 
4494 	/* Create per netdev entries */
4495 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4496 
4497 	/* Entry to report DMA RX/TX rings */
4498 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4499 			    &stmmac_rings_status_fops);
4500 
4501 	/* Entry to report the DMA HW features */
4502 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4503 			    &stmmac_dma_cap_fops);
4504 
4505 	rtnl_unlock();
4506 }
4507 
stmmac_exit_fs(struct net_device * dev)4508 static void stmmac_exit_fs(struct net_device *dev)
4509 {
4510 	struct stmmac_priv *priv = netdev_priv(dev);
4511 
4512 	debugfs_remove_recursive(priv->dbgfs_dir);
4513 }
4514 #endif /* CONFIG_DEBUG_FS */
4515 
stmmac_vid_crc32_le(__le16 vid_le)4516 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4517 {
4518 	unsigned char *data = (unsigned char *)&vid_le;
4519 	unsigned char data_byte = 0;
4520 	u32 crc = ~0x0;
4521 	u32 temp = 0;
4522 	int i, bits;
4523 
4524 	bits = get_bitmask_order(VLAN_VID_MASK);
4525 	for (i = 0; i < bits; i++) {
4526 		if ((i % 8) == 0)
4527 			data_byte = data[i / 8];
4528 
4529 		temp = ((crc & 1) ^ data_byte) & 1;
4530 		crc >>= 1;
4531 		data_byte >>= 1;
4532 
4533 		if (temp)
4534 			crc ^= 0xedb88320;
4535 	}
4536 
4537 	return crc;
4538 }
4539 
stmmac_vlan_update(struct stmmac_priv * priv,bool is_double)4540 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4541 {
4542 	u32 crc, hash = 0;
4543 	__le16 pmatch = 0;
4544 	int count = 0;
4545 	u16 vid = 0;
4546 
4547 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4548 		__le16 vid_le = cpu_to_le16(vid);
4549 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4550 		hash |= (1 << crc);
4551 		count++;
4552 	}
4553 
4554 	if (!priv->dma_cap.vlhash) {
4555 		if (count > 2) /* VID = 0 always passes filter */
4556 			return -EOPNOTSUPP;
4557 
4558 		pmatch = cpu_to_le16(vid);
4559 		hash = 0;
4560 	}
4561 
4562 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4563 }
4564 
stmmac_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)4565 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4566 {
4567 	struct stmmac_priv *priv = netdev_priv(ndev);
4568 	bool is_double = false;
4569 	int ret;
4570 
4571 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4572 		is_double = true;
4573 
4574 	set_bit(vid, priv->active_vlans);
4575 	ret = stmmac_vlan_update(priv, is_double);
4576 	if (ret) {
4577 		clear_bit(vid, priv->active_vlans);
4578 		return ret;
4579 	}
4580 
4581 	if (priv->hw->num_vlan) {
4582 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4583 		if (ret)
4584 			return ret;
4585 	}
4586 
4587 	return 0;
4588 }
4589 
stmmac_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)4590 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4591 {
4592 	struct stmmac_priv *priv = netdev_priv(ndev);
4593 	bool is_double = false;
4594 	int ret;
4595 
4596 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4597 		is_double = true;
4598 
4599 	clear_bit(vid, priv->active_vlans);
4600 
4601 	if (priv->hw->num_vlan) {
4602 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4603 		if (ret)
4604 			return ret;
4605 	}
4606 
4607 	return stmmac_vlan_update(priv, is_double);
4608 }
4609 
4610 static const struct net_device_ops stmmac_netdev_ops = {
4611 	.ndo_open = stmmac_open,
4612 	.ndo_start_xmit = stmmac_xmit,
4613 	.ndo_stop = stmmac_release,
4614 	.ndo_change_mtu = stmmac_change_mtu,
4615 	.ndo_fix_features = stmmac_fix_features,
4616 	.ndo_set_features = stmmac_set_features,
4617 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4618 	.ndo_tx_timeout = stmmac_tx_timeout,
4619 	.ndo_do_ioctl = stmmac_ioctl,
4620 	.ndo_setup_tc = stmmac_setup_tc,
4621 	.ndo_select_queue = stmmac_select_queue,
4622 #ifdef CONFIG_NET_POLL_CONTROLLER
4623 	.ndo_poll_controller = stmmac_poll_controller,
4624 #endif
4625 	.ndo_set_mac_address = stmmac_set_mac_address,
4626 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4627 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4628 };
4629 
stmmac_reset_subtask(struct stmmac_priv * priv)4630 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4631 {
4632 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4633 		return;
4634 	if (test_bit(STMMAC_DOWN, &priv->state))
4635 		return;
4636 
4637 	netdev_err(priv->dev, "Reset adapter.\n");
4638 
4639 	rtnl_lock();
4640 	netif_trans_update(priv->dev);
4641 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4642 		usleep_range(1000, 2000);
4643 
4644 	set_bit(STMMAC_DOWN, &priv->state);
4645 	dev_close(priv->dev);
4646 	dev_open(priv->dev, NULL);
4647 	clear_bit(STMMAC_DOWN, &priv->state);
4648 	clear_bit(STMMAC_RESETING, &priv->state);
4649 	rtnl_unlock();
4650 }
4651 
stmmac_service_task(struct work_struct * work)4652 static void stmmac_service_task(struct work_struct *work)
4653 {
4654 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4655 			service_task);
4656 
4657 	stmmac_reset_subtask(priv);
4658 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4659 }
4660 
4661 /**
4662  *  stmmac_hw_init - Init the MAC device
4663  *  @priv: driver private structure
4664  *  Description: this function is to configure the MAC device according to
4665  *  some platform parameters or the HW capability register. It prepares the
4666  *  driver to use either ring or chain modes and to setup either enhanced or
4667  *  normal descriptors.
4668  */
stmmac_hw_init(struct stmmac_priv * priv)4669 static int stmmac_hw_init(struct stmmac_priv *priv)
4670 {
4671 	int ret;
4672 
4673 	/* dwmac-sun8i only work in chain mode */
4674 	if (priv->plat->has_sun8i)
4675 		chain_mode = 1;
4676 	priv->chain_mode = chain_mode;
4677 
4678 	/* Initialize HW Interface */
4679 	ret = stmmac_hwif_init(priv);
4680 	if (ret)
4681 		return ret;
4682 
4683 	/* Get the HW capability (new GMAC newer than 3.50a) */
4684 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4685 	if (priv->hw_cap_support) {
4686 		dev_info(priv->device, "DMA HW capability register supported\n");
4687 
4688 		/* We can override some gmac/dma configuration fields: e.g.
4689 		 * enh_desc, tx_coe (e.g. that are passed through the
4690 		 * platform) with the values from the HW capability
4691 		 * register (if supported).
4692 		 */
4693 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4694 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4695 		priv->hw->pmt = priv->plat->pmt;
4696 		if (priv->dma_cap.hash_tb_sz) {
4697 			priv->hw->multicast_filter_bins =
4698 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4699 			priv->hw->mcast_bits_log2 =
4700 					ilog2(priv->hw->multicast_filter_bins);
4701 		}
4702 
4703 		/* TXCOE doesn't work in thresh DMA mode */
4704 		if (priv->plat->force_thresh_dma_mode)
4705 			priv->plat->tx_coe = 0;
4706 		else
4707 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4708 
4709 		/* In case of GMAC4 rx_coe is from HW cap register. */
4710 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4711 
4712 		if (priv->dma_cap.rx_coe_type2)
4713 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4714 		else if (priv->dma_cap.rx_coe_type1)
4715 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4716 
4717 	} else {
4718 		dev_info(priv->device, "No HW DMA feature register supported\n");
4719 	}
4720 
4721 	if (priv->plat->rx_coe) {
4722 		priv->hw->rx_csum = priv->plat->rx_coe;
4723 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4724 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4725 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4726 	}
4727 	if (priv->plat->tx_coe)
4728 		dev_info(priv->device, "TX Checksum insertion supported\n");
4729 
4730 	if (priv->plat->pmt) {
4731 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4732 		device_set_wakeup_capable(priv->device, 1);
4733 	}
4734 
4735 	if (priv->dma_cap.tsoen)
4736 		dev_info(priv->device, "TSO supported\n");
4737 
4738 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
4739 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
4740 
4741 	/* Run HW quirks, if any */
4742 	if (priv->hwif_quirks) {
4743 		ret = priv->hwif_quirks(priv);
4744 		if (ret)
4745 			return ret;
4746 	}
4747 
4748 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4749 	 * In some case, for example on bugged HW this feature
4750 	 * has to be disable and this can be done by passing the
4751 	 * riwt_off field from the platform.
4752 	 */
4753 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4754 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4755 		priv->use_riwt = 1;
4756 		dev_info(priv->device,
4757 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4758 	}
4759 
4760 	return 0;
4761 }
4762 
stmmac_napi_add(struct net_device * dev)4763 static void stmmac_napi_add(struct net_device *dev)
4764 {
4765 	struct stmmac_priv *priv = netdev_priv(dev);
4766 	u32 queue, maxq;
4767 
4768 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4769 
4770 	for (queue = 0; queue < maxq; queue++) {
4771 		struct stmmac_channel *ch = &priv->channel[queue];
4772 
4773 		ch->priv_data = priv;
4774 		ch->index = queue;
4775 		spin_lock_init(&ch->lock);
4776 
4777 		if (queue < priv->plat->rx_queues_to_use) {
4778 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
4779 				       NAPI_POLL_WEIGHT);
4780 		}
4781 		if (queue < priv->plat->tx_queues_to_use) {
4782 			netif_tx_napi_add(dev, &ch->tx_napi,
4783 					  stmmac_napi_poll_tx,
4784 					  NAPI_POLL_WEIGHT);
4785 		}
4786 	}
4787 }
4788 
stmmac_napi_del(struct net_device * dev)4789 static void stmmac_napi_del(struct net_device *dev)
4790 {
4791 	struct stmmac_priv *priv = netdev_priv(dev);
4792 	u32 queue, maxq;
4793 
4794 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4795 
4796 	for (queue = 0; queue < maxq; queue++) {
4797 		struct stmmac_channel *ch = &priv->channel[queue];
4798 
4799 		if (queue < priv->plat->rx_queues_to_use)
4800 			netif_napi_del(&ch->rx_napi);
4801 		if (queue < priv->plat->tx_queues_to_use)
4802 			netif_napi_del(&ch->tx_napi);
4803 	}
4804 }
4805 
stmmac_reinit_queues(struct net_device * dev,u32 rx_cnt,u32 tx_cnt)4806 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
4807 {
4808 	struct stmmac_priv *priv = netdev_priv(dev);
4809 	int ret = 0;
4810 
4811 	if (netif_running(dev))
4812 		stmmac_release(dev);
4813 
4814 	stmmac_napi_del(dev);
4815 
4816 	priv->plat->rx_queues_to_use = rx_cnt;
4817 	priv->plat->tx_queues_to_use = tx_cnt;
4818 
4819 	stmmac_napi_add(dev);
4820 
4821 	if (netif_running(dev))
4822 		ret = stmmac_open(dev);
4823 
4824 	return ret;
4825 }
4826 
stmmac_reinit_ringparam(struct net_device * dev,u32 rx_size,u32 tx_size)4827 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
4828 {
4829 	struct stmmac_priv *priv = netdev_priv(dev);
4830 	int ret = 0;
4831 
4832 	if (netif_running(dev))
4833 		stmmac_release(dev);
4834 
4835 	priv->dma_rx_size = rx_size;
4836 	priv->dma_tx_size = tx_size;
4837 
4838 	if (netif_running(dev))
4839 		ret = stmmac_open(dev);
4840 
4841 	return ret;
4842 }
4843 
4844 /**
4845  * stmmac_dvr_probe
4846  * @device: device pointer
4847  * @plat_dat: platform data pointer
4848  * @res: stmmac resource pointer
4849  * Description: this is the main probe function used to
4850  * call the alloc_etherdev, allocate the priv structure.
4851  * Return:
4852  * returns 0 on success, otherwise errno.
4853  */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)4854 int stmmac_dvr_probe(struct device *device,
4855 		     struct plat_stmmacenet_data *plat_dat,
4856 		     struct stmmac_resources *res)
4857 {
4858 	struct net_device *ndev = NULL;
4859 	struct stmmac_priv *priv;
4860 	u32 rxq;
4861 	int i, ret = 0;
4862 
4863 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4864 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4865 	if (!ndev)
4866 		return -ENOMEM;
4867 
4868 	SET_NETDEV_DEV(ndev, device);
4869 
4870 	priv = netdev_priv(ndev);
4871 	priv->device = device;
4872 	priv->dev = ndev;
4873 
4874 	stmmac_set_ethtool_ops(ndev);
4875 	priv->pause = pause;
4876 	priv->plat = plat_dat;
4877 	priv->ioaddr = res->addr;
4878 	priv->dev->base_addr = (unsigned long)res->addr;
4879 
4880 	priv->dev->irq = res->irq;
4881 	priv->wol_irq = res->wol_irq;
4882 	priv->lpi_irq = res->lpi_irq;
4883 
4884 	if (!IS_ERR_OR_NULL(res->mac))
4885 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4886 
4887 	dev_set_drvdata(device, priv->dev);
4888 
4889 	/* Verify driver arguments */
4890 	stmmac_verify_args();
4891 
4892 	/* Allocate workqueue */
4893 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4894 	if (!priv->wq) {
4895 		dev_err(priv->device, "failed to create workqueue\n");
4896 		return -ENOMEM;
4897 	}
4898 
4899 	INIT_WORK(&priv->service_task, stmmac_service_task);
4900 
4901 	/* Override with kernel parameters if supplied XXX CRS XXX
4902 	 * this needs to have multiple instances
4903 	 */
4904 	if ((phyaddr >= 0) && (phyaddr <= 31))
4905 		priv->plat->phy_addr = phyaddr;
4906 
4907 	if (priv->plat->stmmac_rst) {
4908 		ret = reset_control_assert(priv->plat->stmmac_rst);
4909 		reset_control_deassert(priv->plat->stmmac_rst);
4910 		/* Some reset controllers have only reset callback instead of
4911 		 * assert + deassert callbacks pair.
4912 		 */
4913 		if (ret == -ENOTSUPP)
4914 			reset_control_reset(priv->plat->stmmac_rst);
4915 	}
4916 
4917 	/* Init MAC and get the capabilities */
4918 	ret = stmmac_hw_init(priv);
4919 	if (ret)
4920 		goto error_hw_init;
4921 
4922 	stmmac_check_ether_addr(priv);
4923 
4924 	ndev->netdev_ops = &stmmac_netdev_ops;
4925 
4926 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4927 			    NETIF_F_RXCSUM;
4928 
4929 	ret = stmmac_tc_init(priv, priv);
4930 	if (!ret) {
4931 		ndev->hw_features |= NETIF_F_HW_TC;
4932 	}
4933 
4934 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4935 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4936 		if (priv->plat->has_gmac4)
4937 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4938 		priv->tso = true;
4939 		dev_info(priv->device, "TSO feature enabled\n");
4940 	}
4941 
4942 	if (priv->dma_cap.sphen) {
4943 		ndev->hw_features |= NETIF_F_GRO;
4944 		priv->sph = true;
4945 		dev_info(priv->device, "SPH feature enabled\n");
4946 	}
4947 
4948 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
4949 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
4950 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
4951 	 * So overwrite dma_cap.addr64 according to HW real design.
4952 	 */
4953 	if (priv->plat->addr64)
4954 		priv->dma_cap.addr64 = priv->plat->addr64;
4955 
4956 	if (priv->dma_cap.addr64) {
4957 		ret = dma_set_mask_and_coherent(device,
4958 				DMA_BIT_MASK(priv->dma_cap.addr64));
4959 		if (!ret) {
4960 			dev_info(priv->device, "Using %d bits DMA width\n",
4961 				 priv->dma_cap.addr64);
4962 
4963 			/*
4964 			 * If more than 32 bits can be addressed, make sure to
4965 			 * enable enhanced addressing mode.
4966 			 */
4967 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4968 				priv->plat->dma_cfg->eame = true;
4969 		} else {
4970 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4971 			if (ret) {
4972 				dev_err(priv->device, "Failed to set DMA Mask\n");
4973 				goto error_hw_init;
4974 			}
4975 
4976 			priv->dma_cap.addr64 = 32;
4977 		}
4978 	}
4979 
4980 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4981 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4982 #ifdef STMMAC_VLAN_TAG_USED
4983 	/* Both mac100 and gmac support receive VLAN tag detection */
4984 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4985 	if (priv->dma_cap.vlhash) {
4986 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4987 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4988 	}
4989 	if (priv->dma_cap.vlins) {
4990 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4991 		if (priv->dma_cap.dvlan)
4992 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4993 	}
4994 #endif
4995 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4996 
4997 	/* Initialize RSS */
4998 	rxq = priv->plat->rx_queues_to_use;
4999 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
5000 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
5001 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
5002 
5003 	if (priv->dma_cap.rssen && priv->plat->rss_en)
5004 		ndev->features |= NETIF_F_RXHASH;
5005 
5006 	/* MTU range: 46 - hw-specific max */
5007 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
5008 	if (priv->plat->has_xgmac)
5009 		ndev->max_mtu = XGMAC_JUMBO_LEN;
5010 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
5011 		ndev->max_mtu = JUMBO_LEN;
5012 	else
5013 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
5014 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
5015 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
5016 	 */
5017 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
5018 	    (priv->plat->maxmtu >= ndev->min_mtu))
5019 		ndev->max_mtu = priv->plat->maxmtu;
5020 	else if (priv->plat->maxmtu < ndev->min_mtu)
5021 		dev_warn(priv->device,
5022 			 "%s: warning: maxmtu having invalid value (%d)\n",
5023 			 __func__, priv->plat->maxmtu);
5024 
5025 	if (flow_ctrl)
5026 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
5027 
5028 	/* Setup channels NAPI */
5029 	stmmac_napi_add(ndev);
5030 
5031 	mutex_init(&priv->lock);
5032 
5033 	/* If a specific clk_csr value is passed from the platform
5034 	 * this means that the CSR Clock Range selection cannot be
5035 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
5036 	 * set the MDC clock dynamically according to the csr actual
5037 	 * clock input.
5038 	 */
5039 	if (priv->plat->clk_csr >= 0)
5040 		priv->clk_csr = priv->plat->clk_csr;
5041 	else
5042 		stmmac_clk_csr_set(priv);
5043 
5044 	stmmac_check_pcs_mode(priv);
5045 
5046 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5047 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
5048 		/* MDIO bus Registration */
5049 		ret = stmmac_mdio_register(ndev);
5050 		if (ret < 0) {
5051 			dev_err(priv->device,
5052 				"%s: MDIO bus (id: %d) registration failed",
5053 				__func__, priv->plat->bus_id);
5054 			goto error_mdio_register;
5055 		}
5056 	}
5057 
5058 	ret = stmmac_phy_setup(priv);
5059 	if (ret) {
5060 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
5061 		goto error_phy_setup;
5062 	}
5063 
5064 	ret = register_netdev(ndev);
5065 	if (ret) {
5066 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
5067 			__func__, ret);
5068 		goto error_netdev_register;
5069 	}
5070 
5071 	if (priv->plat->serdes_powerup) {
5072 		ret = priv->plat->serdes_powerup(ndev,
5073 						 priv->plat->bsp_priv);
5074 
5075 		if (ret < 0)
5076 			goto error_serdes_powerup;
5077 	}
5078 
5079 #ifdef CONFIG_DEBUG_FS
5080 	stmmac_init_fs(ndev);
5081 #endif
5082 
5083 	return ret;
5084 
5085 error_serdes_powerup:
5086 	unregister_netdev(ndev);
5087 error_netdev_register:
5088 	phylink_destroy(priv->phylink);
5089 error_phy_setup:
5090 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5091 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5092 		stmmac_mdio_unregister(ndev);
5093 error_mdio_register:
5094 	stmmac_napi_del(ndev);
5095 error_hw_init:
5096 	destroy_workqueue(priv->wq);
5097 
5098 	return ret;
5099 }
5100 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5101 
5102 /**
5103  * stmmac_dvr_remove
5104  * @dev: device pointer
5105  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5106  * changes the link status, releases the DMA descriptor rings.
5107  */
stmmac_dvr_remove(struct device * dev)5108 int stmmac_dvr_remove(struct device *dev)
5109 {
5110 	struct net_device *ndev = dev_get_drvdata(dev);
5111 	struct stmmac_priv *priv = netdev_priv(ndev);
5112 
5113 	netdev_info(priv->dev, "%s: removing driver", __func__);
5114 
5115 	stmmac_stop_all_dma(priv);
5116 
5117 	if (priv->plat->serdes_powerdown)
5118 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5119 
5120 	stmmac_mac_set(priv, priv->ioaddr, false);
5121 	netif_carrier_off(ndev);
5122 	unregister_netdev(ndev);
5123 #ifdef CONFIG_DEBUG_FS
5124 	stmmac_exit_fs(ndev);
5125 #endif
5126 	phylink_destroy(priv->phylink);
5127 	if (priv->plat->stmmac_rst)
5128 		reset_control_assert(priv->plat->stmmac_rst);
5129 	clk_disable_unprepare(priv->plat->pclk);
5130 	clk_disable_unprepare(priv->plat->stmmac_clk);
5131 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5132 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5133 		stmmac_mdio_unregister(ndev);
5134 	destroy_workqueue(priv->wq);
5135 	mutex_destroy(&priv->lock);
5136 
5137 	return 0;
5138 }
5139 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5140 
5141 /**
5142  * stmmac_suspend - suspend callback
5143  * @dev: device pointer
5144  * Description: this is the function to suspend the device and it is called
5145  * by the platform driver to stop the network queue, release the resources,
5146  * program the PMT register (for WoL), clean and release driver resources.
5147  */
stmmac_suspend(struct device * dev)5148 int stmmac_suspend(struct device *dev)
5149 {
5150 	struct net_device *ndev = dev_get_drvdata(dev);
5151 	struct stmmac_priv *priv = netdev_priv(ndev);
5152 	u32 chan;
5153 
5154 	if (!ndev || !netif_running(ndev))
5155 		return 0;
5156 
5157 	phylink_mac_change(priv->phylink, false);
5158 
5159 	mutex_lock(&priv->lock);
5160 
5161 	netif_device_detach(ndev);
5162 
5163 	stmmac_disable_all_queues(priv);
5164 
5165 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5166 		del_timer_sync(&priv->tx_queue[chan].txtimer);
5167 
5168 	if (priv->eee_enabled) {
5169 		priv->tx_path_in_lpi_mode = false;
5170 		del_timer_sync(&priv->eee_ctrl_timer);
5171 	}
5172 
5173 	/* Stop TX/RX DMA */
5174 	stmmac_stop_all_dma(priv);
5175 
5176 	if (priv->plat->serdes_powerdown)
5177 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5178 
5179 	/* Enable Power down mode by programming the PMT regs */
5180 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5181 		stmmac_pmt(priv, priv->hw, priv->wolopts);
5182 		priv->irq_wake = 1;
5183 	} else {
5184 		mutex_unlock(&priv->lock);
5185 		rtnl_lock();
5186 		if (device_may_wakeup(priv->device))
5187 			phylink_speed_down(priv->phylink, false);
5188 		phylink_stop(priv->phylink);
5189 		rtnl_unlock();
5190 		mutex_lock(&priv->lock);
5191 
5192 		stmmac_mac_set(priv, priv->ioaddr, false);
5193 		pinctrl_pm_select_sleep_state(priv->device);
5194 		/* Disable clock in case of PWM is off */
5195 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
5196 		clk_disable_unprepare(priv->plat->pclk);
5197 		clk_disable_unprepare(priv->plat->stmmac_clk);
5198 	}
5199 	mutex_unlock(&priv->lock);
5200 
5201 	priv->speed = SPEED_UNKNOWN;
5202 	return 0;
5203 }
5204 EXPORT_SYMBOL_GPL(stmmac_suspend);
5205 
5206 /**
5207  * stmmac_reset_queues_param - reset queue parameters
5208  * @priv: device pointer
5209  */
stmmac_reset_queues_param(struct stmmac_priv * priv)5210 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5211 {
5212 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5213 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5214 	u32 queue;
5215 
5216 	for (queue = 0; queue < rx_cnt; queue++) {
5217 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5218 
5219 		rx_q->cur_rx = 0;
5220 		rx_q->dirty_rx = 0;
5221 	}
5222 
5223 	for (queue = 0; queue < tx_cnt; queue++) {
5224 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5225 
5226 		tx_q->cur_tx = 0;
5227 		tx_q->dirty_tx = 0;
5228 		tx_q->mss = 0;
5229 	}
5230 }
5231 
5232 /**
5233  * stmmac_resume - resume callback
5234  * @dev: device pointer
5235  * Description: when resume this function is invoked to setup the DMA and CORE
5236  * in a usable state.
5237  */
stmmac_resume(struct device * dev)5238 int stmmac_resume(struct device *dev)
5239 {
5240 	struct net_device *ndev = dev_get_drvdata(dev);
5241 	struct stmmac_priv *priv = netdev_priv(ndev);
5242 	int ret;
5243 
5244 	if (!netif_running(ndev))
5245 		return 0;
5246 
5247 	/* Power Down bit, into the PM register, is cleared
5248 	 * automatically as soon as a magic packet or a Wake-up frame
5249 	 * is received. Anyway, it's better to manually clear
5250 	 * this bit because it can generate problems while resuming
5251 	 * from another devices (e.g. serial console).
5252 	 */
5253 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5254 		mutex_lock(&priv->lock);
5255 		stmmac_pmt(priv, priv->hw, 0);
5256 		mutex_unlock(&priv->lock);
5257 		priv->irq_wake = 0;
5258 	} else {
5259 		pinctrl_pm_select_default_state(priv->device);
5260 		/* enable the clk previously disabled */
5261 		clk_prepare_enable(priv->plat->stmmac_clk);
5262 		clk_prepare_enable(priv->plat->pclk);
5263 		if (priv->plat->clk_ptp_ref)
5264 			clk_prepare_enable(priv->plat->clk_ptp_ref);
5265 		/* reset the phy so that it's ready */
5266 		if (priv->mii)
5267 			stmmac_mdio_reset(priv->mii);
5268 	}
5269 
5270 	if (priv->plat->serdes_powerup) {
5271 		ret = priv->plat->serdes_powerup(ndev,
5272 						 priv->plat->bsp_priv);
5273 
5274 		if (ret < 0)
5275 			return ret;
5276 	}
5277 
5278 	if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5279 		rtnl_lock();
5280 		phylink_start(priv->phylink);
5281 		/* We may have called phylink_speed_down before */
5282 		phylink_speed_up(priv->phylink);
5283 		rtnl_unlock();
5284 	}
5285 
5286 	rtnl_lock();
5287 	mutex_lock(&priv->lock);
5288 
5289 	stmmac_reset_queues_param(priv);
5290 
5291 	stmmac_free_tx_skbufs(priv);
5292 	stmmac_clear_descriptors(priv);
5293 
5294 	stmmac_hw_setup(ndev, false);
5295 	stmmac_init_coalesce(priv);
5296 	stmmac_set_rx_mode(ndev);
5297 
5298 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5299 
5300 	stmmac_enable_all_queues(priv);
5301 
5302 	mutex_unlock(&priv->lock);
5303 	rtnl_unlock();
5304 
5305 	phylink_mac_change(priv->phylink, true);
5306 
5307 	netif_device_attach(ndev);
5308 
5309 	return 0;
5310 }
5311 EXPORT_SYMBOL_GPL(stmmac_resume);
5312 
5313 #ifndef MODULE
stmmac_cmdline_opt(char * str)5314 static int __init stmmac_cmdline_opt(char *str)
5315 {
5316 	char *opt;
5317 
5318 	if (!str || !*str)
5319 		return -EINVAL;
5320 	while ((opt = strsep(&str, ",")) != NULL) {
5321 		if (!strncmp(opt, "debug:", 6)) {
5322 			if (kstrtoint(opt + 6, 0, &debug))
5323 				goto err;
5324 		} else if (!strncmp(opt, "phyaddr:", 8)) {
5325 			if (kstrtoint(opt + 8, 0, &phyaddr))
5326 				goto err;
5327 		} else if (!strncmp(opt, "buf_sz:", 7)) {
5328 			if (kstrtoint(opt + 7, 0, &buf_sz))
5329 				goto err;
5330 		} else if (!strncmp(opt, "tc:", 3)) {
5331 			if (kstrtoint(opt + 3, 0, &tc))
5332 				goto err;
5333 		} else if (!strncmp(opt, "watchdog:", 9)) {
5334 			if (kstrtoint(opt + 9, 0, &watchdog))
5335 				goto err;
5336 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
5337 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
5338 				goto err;
5339 		} else if (!strncmp(opt, "pause:", 6)) {
5340 			if (kstrtoint(opt + 6, 0, &pause))
5341 				goto err;
5342 		} else if (!strncmp(opt, "eee_timer:", 10)) {
5343 			if (kstrtoint(opt + 10, 0, &eee_timer))
5344 				goto err;
5345 		} else if (!strncmp(opt, "chain_mode:", 11)) {
5346 			if (kstrtoint(opt + 11, 0, &chain_mode))
5347 				goto err;
5348 		}
5349 	}
5350 	return 0;
5351 
5352 err:
5353 	pr_err("%s: ERROR broken module parameter conversion", __func__);
5354 	return -EINVAL;
5355 }
5356 
5357 __setup("stmmaceth=", stmmac_cmdline_opt);
5358 #endif /* MODULE */
5359 
stmmac_init(void)5360 static int __init stmmac_init(void)
5361 {
5362 #ifdef CONFIG_DEBUG_FS
5363 	/* Create debugfs main directory if it doesn't exist yet */
5364 	if (!stmmac_fs_dir)
5365 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5366 	register_netdevice_notifier(&stmmac_notifier);
5367 #endif
5368 
5369 	return 0;
5370 }
5371 
stmmac_exit(void)5372 static void __exit stmmac_exit(void)
5373 {
5374 #ifdef CONFIG_DEBUG_FS
5375 	unregister_netdevice_notifier(&stmmac_notifier);
5376 	debugfs_remove_recursive(stmmac_fs_dir);
5377 #endif
5378 }
5379 
5380 module_init(stmmac_init)
5381 module_exit(stmmac_exit)
5382 
5383 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5384 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5385 MODULE_LICENSE("GPL");
5386