1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
5
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11 Documentation available at:
12 http://www.stlinux.com
13 Support available at:
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47
48 #define STMMAC_ALIGN(x) __ALIGN_KERNEL(x, SMP_CACHE_BYTES)
49 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
50
51 /* Module parameters */
52 #define TX_TIMEO 5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64
65 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
67
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80
81 #define DEFAULT_BUFSIZE 1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85
86 #define STMMAC_RX_COPYBREAK 256
87
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89 NETIF_MSG_LINK | NETIF_MSG_IFUP |
90 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91
92 #define STMMAC_DEFAULT_LPI_TIMER 1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99 * but allow user to force to use the chain instead of the ring
100 */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106
107 #ifdef CONFIG_DEBUG_FS
108 static void stmmac_init_fs(struct net_device *dev);
109 static void stmmac_exit_fs(struct net_device *dev);
110 #endif
111
112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
113
114 /**
115 * stmmac_verify_args - verify the driver parameters.
116 * Description: it checks the driver parameters and set a default in case of
117 * errors.
118 */
stmmac_verify_args(void)119 static void stmmac_verify_args(void)
120 {
121 if (unlikely(watchdog < 0))
122 watchdog = TX_TIMEO;
123 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
124 buf_sz = DEFAULT_BUFSIZE;
125 if (unlikely(flow_ctrl > 1))
126 flow_ctrl = FLOW_AUTO;
127 else if (likely(flow_ctrl < 0))
128 flow_ctrl = FLOW_OFF;
129 if (unlikely((pause < 0) || (pause > 0xffff)))
130 pause = PAUSE_TIME;
131 if (eee_timer < 0)
132 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
133 }
134
135 /**
136 * stmmac_disable_all_queues - Disable all queues
137 * @priv: driver private structure
138 */
stmmac_disable_all_queues(struct stmmac_priv * priv)139 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
140 {
141 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
142 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
143 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
144 u32 queue;
145
146 for (queue = 0; queue < maxq; queue++) {
147 struct stmmac_channel *ch = &priv->channel[queue];
148
149 if (queue < rx_queues_cnt)
150 napi_disable(&ch->rx_napi);
151 if (queue < tx_queues_cnt)
152 napi_disable(&ch->tx_napi);
153 }
154 }
155
156 /**
157 * stmmac_enable_all_queues - Enable all queues
158 * @priv: driver private structure
159 */
stmmac_enable_all_queues(struct stmmac_priv * priv)160 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
161 {
162 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
163 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
164 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
165 u32 queue;
166
167 for (queue = 0; queue < maxq; queue++) {
168 struct stmmac_channel *ch = &priv->channel[queue];
169
170 if (queue < rx_queues_cnt)
171 napi_enable(&ch->rx_napi);
172 if (queue < tx_queues_cnt)
173 napi_enable(&ch->tx_napi);
174 }
175 }
176
177 /**
178 * stmmac_stop_all_queues - Stop all queues
179 * @priv: driver private structure
180 */
stmmac_stop_all_queues(struct stmmac_priv * priv)181 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
182 {
183 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
184 u32 queue;
185
186 for (queue = 0; queue < tx_queues_cnt; queue++)
187 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
188 }
189
190 /**
191 * stmmac_start_all_queues - Start all queues
192 * @priv: driver private structure
193 */
stmmac_start_all_queues(struct stmmac_priv * priv)194 static void stmmac_start_all_queues(struct stmmac_priv *priv)
195 {
196 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
197 u32 queue;
198
199 for (queue = 0; queue < tx_queues_cnt; queue++)
200 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
201 }
202
stmmac_service_event_schedule(struct stmmac_priv * priv)203 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
204 {
205 if (!test_bit(STMMAC_DOWN, &priv->state) &&
206 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
207 queue_work(priv->wq, &priv->service_task);
208 }
209
stmmac_global_err(struct stmmac_priv * priv)210 static void stmmac_global_err(struct stmmac_priv *priv)
211 {
212 netif_carrier_off(priv->dev);
213 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
214 stmmac_service_event_schedule(priv);
215 }
216
217 /**
218 * stmmac_clk_csr_set - dynamically set the MDC clock
219 * @priv: driver private structure
220 * Description: this is to dynamically set the MDC clock according to the csr
221 * clock input.
222 * Note:
223 * If a specific clk_csr value is passed from the platform
224 * this means that the CSR Clock Range selection cannot be
225 * changed at run-time and it is fixed (as reported in the driver
226 * documentation). Viceversa the driver will try to set the MDC
227 * clock dynamically according to the actual clock input.
228 */
stmmac_clk_csr_set(struct stmmac_priv * priv)229 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
230 {
231 u32 clk_rate;
232
233 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
234
235 /* Platform provided default clk_csr would be assumed valid
236 * for all other cases except for the below mentioned ones.
237 * For values higher than the IEEE 802.3 specified frequency
238 * we can not estimate the proper divider as it is not known
239 * the frequency of clk_csr_i. So we do not change the default
240 * divider.
241 */
242 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
243 if (clk_rate < CSR_F_35M)
244 priv->clk_csr = STMMAC_CSR_20_35M;
245 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
246 priv->clk_csr = STMMAC_CSR_35_60M;
247 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
248 priv->clk_csr = STMMAC_CSR_60_100M;
249 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
250 priv->clk_csr = STMMAC_CSR_100_150M;
251 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
252 priv->clk_csr = STMMAC_CSR_150_250M;
253 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
254 priv->clk_csr = STMMAC_CSR_250_300M;
255 }
256
257 if (priv->plat->has_sun8i) {
258 if (clk_rate > 160000000)
259 priv->clk_csr = 0x03;
260 else if (clk_rate > 80000000)
261 priv->clk_csr = 0x02;
262 else if (clk_rate > 40000000)
263 priv->clk_csr = 0x01;
264 else
265 priv->clk_csr = 0;
266 }
267
268 if (priv->plat->has_xgmac) {
269 if (clk_rate > 400000000)
270 priv->clk_csr = 0x5;
271 else if (clk_rate > 350000000)
272 priv->clk_csr = 0x4;
273 else if (clk_rate > 300000000)
274 priv->clk_csr = 0x3;
275 else if (clk_rate > 250000000)
276 priv->clk_csr = 0x2;
277 else if (clk_rate > 150000000)
278 priv->clk_csr = 0x1;
279 else
280 priv->clk_csr = 0x0;
281 }
282 }
283
print_pkt(unsigned char * buf,int len)284 static void print_pkt(unsigned char *buf, int len)
285 {
286 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
287 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
288 }
289
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
291 {
292 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
293 u32 avail;
294
295 if (tx_q->dirty_tx > tx_q->cur_tx)
296 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
297 else
298 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
299
300 return avail;
301 }
302
303 /**
304 * stmmac_rx_dirty - Get RX queue dirty
305 * @priv: driver private structure
306 * @queue: RX queue index
307 */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
309 {
310 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
311 u32 dirty;
312
313 if (rx_q->dirty_rx <= rx_q->cur_rx)
314 dirty = rx_q->cur_rx - rx_q->dirty_rx;
315 else
316 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
317
318 return dirty;
319 }
320
321 /**
322 * stmmac_enable_eee_mode - check and enter in LPI mode
323 * @priv: driver private structure
324 * Description: this function is to verify and enter in LPI mode in case of
325 * EEE.
326 */
stmmac_enable_eee_mode(struct stmmac_priv * priv)327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
328 {
329 u32 tx_cnt = priv->plat->tx_queues_to_use;
330 u32 queue;
331
332 /* check if all TX queues have the work finished */
333 for (queue = 0; queue < tx_cnt; queue++) {
334 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
335
336 if (tx_q->dirty_tx != tx_q->cur_tx)
337 return; /* still unfinished work */
338 }
339
340 /* Check and enter in LPI mode */
341 if (!priv->tx_path_in_lpi_mode)
342 stmmac_set_eee_mode(priv, priv->hw,
343 priv->plat->en_tx_lpi_clockgating);
344 }
345
346 /**
347 * stmmac_disable_eee_mode - disable and exit from LPI mode
348 * @priv: driver private structure
349 * Description: this function is to exit and disable EEE in case of
350 * LPI state is true. This is called by the xmit.
351 */
stmmac_disable_eee_mode(struct stmmac_priv * priv)352 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
353 {
354 stmmac_reset_eee_mode(priv, priv->hw);
355 del_timer_sync(&priv->eee_ctrl_timer);
356 priv->tx_path_in_lpi_mode = false;
357 }
358
359 /**
360 * stmmac_eee_ctrl_timer - EEE TX SW timer.
361 * @arg : data hook
362 * Description:
363 * if there is no data transfer and if we are not in LPI state,
364 * then MAC Transmitter can be moved to LPI state.
365 */
stmmac_eee_ctrl_timer(struct timer_list * t)366 static void stmmac_eee_ctrl_timer(struct timer_list *t)
367 {
368 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
369
370 stmmac_enable_eee_mode(priv);
371 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
372 }
373
374 /**
375 * stmmac_eee_init - init EEE
376 * @priv: driver private structure
377 * Description:
378 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
379 * can also manage EEE, this function enable the LPI state and start related
380 * timer.
381 */
stmmac_eee_init(struct stmmac_priv * priv)382 bool stmmac_eee_init(struct stmmac_priv *priv)
383 {
384 int tx_lpi_timer = priv->tx_lpi_timer;
385
386 /* Using PCS we cannot dial with the phy registers at this stage
387 * so we do not support extra feature like EEE.
388 */
389 if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
390 (priv->hw->pcs == STMMAC_PCS_TBI) ||
391 (priv->hw->pcs == STMMAC_PCS_RTBI))
392 return false;
393
394 /* Check if MAC core supports the EEE feature. */
395 if (!priv->dma_cap.eee)
396 return false;
397
398 mutex_lock(&priv->lock);
399
400 /* Check if it needs to be deactivated */
401 if (!priv->eee_active) {
402 if (priv->eee_enabled) {
403 netdev_dbg(priv->dev, "disable EEE\n");
404 del_timer_sync(&priv->eee_ctrl_timer);
405 stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
406 }
407 mutex_unlock(&priv->lock);
408 return false;
409 }
410
411 if (priv->eee_active && !priv->eee_enabled) {
412 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
413 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
414 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
415 tx_lpi_timer);
416 }
417
418 mutex_unlock(&priv->lock);
419 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
420 return true;
421 }
422
423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
424 * @priv: driver private structure
425 * @p : descriptor pointer
426 * @skb : the socket buffer
427 * Description :
428 * This function will read timestamp from the descriptor & pass it to stack.
429 * and also perform some sanity checks.
430 */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
432 struct dma_desc *p, struct sk_buff *skb)
433 {
434 struct skb_shared_hwtstamps shhwtstamp;
435 bool found = false;
436 u64 ns = 0;
437
438 if (!priv->hwts_tx_en)
439 return;
440
441 /* exit if skb doesn't support hw tstamp */
442 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
443 return;
444
445 /* check tx tstamp status */
446 if (stmmac_get_tx_timestamp_status(priv, p)) {
447 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
448 found = true;
449 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
450 found = true;
451 }
452
453 if (found) {
454 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
455 shhwtstamp.hwtstamp = ns_to_ktime(ns);
456
457 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
458 /* pass tstamp to stack */
459 skb_tstamp_tx(skb, &shhwtstamp);
460 }
461 }
462
463 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
464 * @priv: driver private structure
465 * @p : descriptor pointer
466 * @np : next descriptor pointer
467 * @skb : the socket buffer
468 * Description :
469 * This function will read received packet's timestamp from the descriptor
470 * and pass it to stack. It also perform some sanity checks.
471 */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)472 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
473 struct dma_desc *np, struct sk_buff *skb)
474 {
475 struct skb_shared_hwtstamps *shhwtstamp = NULL;
476 struct dma_desc *desc = p;
477 u64 ns = 0;
478
479 if (!priv->hwts_rx_en)
480 return;
481 /* For GMAC4, the valid timestamp is from CTX next desc. */
482 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
483 desc = np;
484
485 /* Check if timestamp is available */
486 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
487 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
488 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
489 shhwtstamp = skb_hwtstamps(skb);
490 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
491 shhwtstamp->hwtstamp = ns_to_ktime(ns);
492 } else {
493 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
494 }
495 }
496
497 /**
498 * stmmac_hwtstamp_set - control hardware timestamping.
499 * @dev: device pointer.
500 * @ifr: An IOCTL specific structure, that can contain a pointer to
501 * a proprietary structure used to pass information to the driver.
502 * Description:
503 * This function configures the MAC to enable/disable both outgoing(TX)
504 * and incoming(RX) packets time stamping based on user input.
505 * Return Value:
506 * 0 on success and an appropriate -ve integer on failure.
507 */
stmmac_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)508 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
509 {
510 struct stmmac_priv *priv = netdev_priv(dev);
511 struct hwtstamp_config config;
512 struct timespec64 now;
513 u64 temp = 0;
514 u32 ptp_v2 = 0;
515 u32 tstamp_all = 0;
516 u32 ptp_over_ipv4_udp = 0;
517 u32 ptp_over_ipv6_udp = 0;
518 u32 ptp_over_ethernet = 0;
519 u32 snap_type_sel = 0;
520 u32 ts_master_en = 0;
521 u32 ts_event_en = 0;
522 u32 sec_inc = 0;
523 u32 value = 0;
524 bool xmac;
525
526 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
527
528 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
529 netdev_alert(priv->dev, "No support for HW time stamping\n");
530 priv->hwts_tx_en = 0;
531 priv->hwts_rx_en = 0;
532
533 return -EOPNOTSUPP;
534 }
535
536 if (copy_from_user(&config, ifr->ifr_data,
537 sizeof(config)))
538 return -EFAULT;
539
540 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
541 __func__, config.flags, config.tx_type, config.rx_filter);
542
543 /* reserved for future extensions */
544 if (config.flags)
545 return -EINVAL;
546
547 if (config.tx_type != HWTSTAMP_TX_OFF &&
548 config.tx_type != HWTSTAMP_TX_ON)
549 return -ERANGE;
550
551 if (priv->adv_ts) {
552 switch (config.rx_filter) {
553 case HWTSTAMP_FILTER_NONE:
554 /* time stamp no incoming packet at all */
555 config.rx_filter = HWTSTAMP_FILTER_NONE;
556 break;
557
558 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
559 /* PTP v1, UDP, any kind of event packet */
560 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
561 /* 'xmac' hardware can support Sync, Pdelay_Req and
562 * Pdelay_resp by setting bit14 and bits17/16 to 01
563 * This leaves Delay_Req timestamps out.
564 * Enable all events *and* general purpose message
565 * timestamping
566 */
567 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
568 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
569 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
570 break;
571
572 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
573 /* PTP v1, UDP, Sync packet */
574 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
575 /* take time stamp for SYNC messages only */
576 ts_event_en = PTP_TCR_TSEVNTENA;
577
578 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
579 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
580 break;
581
582 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
583 /* PTP v1, UDP, Delay_req packet */
584 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
585 /* take time stamp for Delay_Req messages only */
586 ts_master_en = PTP_TCR_TSMSTRENA;
587 ts_event_en = PTP_TCR_TSEVNTENA;
588
589 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
590 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
591 break;
592
593 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
594 /* PTP v2, UDP, any kind of event packet */
595 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
596 ptp_v2 = PTP_TCR_TSVER2ENA;
597 /* take time stamp for all event messages */
598 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
599
600 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
601 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
602 break;
603
604 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
605 /* PTP v2, UDP, Sync packet */
606 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
607 ptp_v2 = PTP_TCR_TSVER2ENA;
608 /* take time stamp for SYNC messages only */
609 ts_event_en = PTP_TCR_TSEVNTENA;
610
611 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
612 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
613 break;
614
615 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
616 /* PTP v2, UDP, Delay_req packet */
617 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
618 ptp_v2 = PTP_TCR_TSVER2ENA;
619 /* take time stamp for Delay_Req messages only */
620 ts_master_en = PTP_TCR_TSMSTRENA;
621 ts_event_en = PTP_TCR_TSEVNTENA;
622
623 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
624 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
625 break;
626
627 case HWTSTAMP_FILTER_PTP_V2_EVENT:
628 /* PTP v2/802.AS1 any layer, any kind of event packet */
629 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
630 ptp_v2 = PTP_TCR_TSVER2ENA;
631 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
632 ts_event_en = PTP_TCR_TSEVNTENA;
633 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
634 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
635 ptp_over_ethernet = PTP_TCR_TSIPENA;
636 break;
637
638 case HWTSTAMP_FILTER_PTP_V2_SYNC:
639 /* PTP v2/802.AS1, any layer, Sync packet */
640 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
641 ptp_v2 = PTP_TCR_TSVER2ENA;
642 /* take time stamp for SYNC messages only */
643 ts_event_en = PTP_TCR_TSEVNTENA;
644
645 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
646 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
647 ptp_over_ethernet = PTP_TCR_TSIPENA;
648 break;
649
650 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
651 /* PTP v2/802.AS1, any layer, Delay_req packet */
652 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
653 ptp_v2 = PTP_TCR_TSVER2ENA;
654 /* take time stamp for Delay_Req messages only */
655 ts_master_en = PTP_TCR_TSMSTRENA;
656 ts_event_en = PTP_TCR_TSEVNTENA;
657
658 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
659 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
660 ptp_over_ethernet = PTP_TCR_TSIPENA;
661 break;
662
663 case HWTSTAMP_FILTER_NTP_ALL:
664 case HWTSTAMP_FILTER_ALL:
665 /* time stamp any incoming packet */
666 config.rx_filter = HWTSTAMP_FILTER_ALL;
667 tstamp_all = PTP_TCR_TSENALL;
668 break;
669
670 default:
671 return -ERANGE;
672 }
673 } else {
674 switch (config.rx_filter) {
675 case HWTSTAMP_FILTER_NONE:
676 config.rx_filter = HWTSTAMP_FILTER_NONE;
677 break;
678 default:
679 /* PTP v1, UDP, any kind of event packet */
680 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
681 break;
682 }
683 }
684 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
685 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
686
687 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
688 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
689 else {
690 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
691 tstamp_all | ptp_v2 | ptp_over_ethernet |
692 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
693 ts_master_en | snap_type_sel);
694 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
695
696 /* program Sub Second Increment reg */
697 stmmac_config_sub_second_increment(priv,
698 priv->ptpaddr, priv->plat->clk_ptp_rate,
699 xmac, &sec_inc);
700 temp = div_u64(1000000000ULL, sec_inc);
701
702 /* Store sub second increment and flags for later use */
703 priv->sub_second_inc = sec_inc;
704 priv->systime_flags = value;
705
706 /* calculate default added value:
707 * formula is :
708 * addend = (2^32)/freq_div_ratio;
709 * where, freq_div_ratio = 1e9ns/sec_inc
710 */
711 temp = (u64)(temp << 32);
712 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
713 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
714
715 /* initialize system time */
716 ktime_get_real_ts64(&now);
717
718 /* lower 32 bits of tv_sec are safe until y2106 */
719 stmmac_init_systime(priv, priv->ptpaddr,
720 (u32)now.tv_sec, now.tv_nsec);
721 }
722
723 memcpy(&priv->tstamp_config, &config, sizeof(config));
724
725 return copy_to_user(ifr->ifr_data, &config,
726 sizeof(config)) ? -EFAULT : 0;
727 }
728
729 /**
730 * stmmac_hwtstamp_get - read hardware timestamping.
731 * @dev: device pointer.
732 * @ifr: An IOCTL specific structure, that can contain a pointer to
733 * a proprietary structure used to pass information to the driver.
734 * Description:
735 * This function obtain the current hardware timestamping settings
736 as requested.
737 */
stmmac_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)738 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
739 {
740 struct stmmac_priv *priv = netdev_priv(dev);
741 struct hwtstamp_config *config = &priv->tstamp_config;
742
743 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
744 return -EOPNOTSUPP;
745
746 return copy_to_user(ifr->ifr_data, config,
747 sizeof(*config)) ? -EFAULT : 0;
748 }
749
750 /**
751 * stmmac_init_ptp - init PTP
752 * @priv: driver private structure
753 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
754 * This is done by looking at the HW cap. register.
755 * This function also registers the ptp driver.
756 */
stmmac_init_ptp(struct stmmac_priv * priv)757 static int stmmac_init_ptp(struct stmmac_priv *priv)
758 {
759 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
760
761 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
762 return -EOPNOTSUPP;
763
764 priv->adv_ts = 0;
765 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
766 if (xmac && priv->dma_cap.atime_stamp)
767 priv->adv_ts = 1;
768 /* Dwmac 3.x core with extend_desc can support adv_ts */
769 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
770 priv->adv_ts = 1;
771
772 if (priv->dma_cap.time_stamp)
773 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
774
775 if (priv->adv_ts)
776 netdev_info(priv->dev,
777 "IEEE 1588-2008 Advanced Timestamp supported\n");
778
779 priv->hwts_tx_en = 0;
780 priv->hwts_rx_en = 0;
781
782 stmmac_ptp_register(priv);
783
784 return 0;
785 }
786
stmmac_release_ptp(struct stmmac_priv * priv)787 static void stmmac_release_ptp(struct stmmac_priv *priv)
788 {
789 if (priv->plat->clk_ptp_ref)
790 clk_disable_unprepare(priv->plat->clk_ptp_ref);
791 stmmac_ptp_unregister(priv);
792 }
793
794 /**
795 * stmmac_mac_flow_ctrl - Configure flow control in all queues
796 * @priv: driver private structure
797 * Description: It is used for configuring the flow control in all queues
798 */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)799 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
800 {
801 u32 tx_cnt = priv->plat->tx_queues_to_use;
802
803 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
804 priv->pause, tx_cnt);
805 }
806
stmmac_validate(struct phylink_config * config,unsigned long * supported,struct phylink_link_state * state)807 static void stmmac_validate(struct phylink_config *config,
808 unsigned long *supported,
809 struct phylink_link_state *state)
810 {
811 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
812 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
813 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
814 int tx_cnt = priv->plat->tx_queues_to_use;
815 int max_speed = priv->plat->max_speed;
816
817 phylink_set(mac_supported, 10baseT_Half);
818 phylink_set(mac_supported, 10baseT_Full);
819 phylink_set(mac_supported, 100baseT_Half);
820 phylink_set(mac_supported, 100baseT_Full);
821 phylink_set(mac_supported, 1000baseT_Half);
822 phylink_set(mac_supported, 1000baseT_Full);
823 phylink_set(mac_supported, 1000baseKX_Full);
824
825 phylink_set(mac_supported, Autoneg);
826 phylink_set(mac_supported, Pause);
827 phylink_set(mac_supported, Asym_Pause);
828 phylink_set_port_modes(mac_supported);
829
830 /* Cut down 1G if asked to */
831 if ((max_speed > 0) && (max_speed < 1000)) {
832 phylink_set(mask, 1000baseT_Full);
833 phylink_set(mask, 1000baseX_Full);
834 } else if (priv->plat->has_xgmac) {
835 if (!max_speed || (max_speed >= 2500)) {
836 phylink_set(mac_supported, 2500baseT_Full);
837 phylink_set(mac_supported, 2500baseX_Full);
838 }
839 if (!max_speed || (max_speed >= 5000)) {
840 phylink_set(mac_supported, 5000baseT_Full);
841 }
842 if (!max_speed || (max_speed >= 10000)) {
843 phylink_set(mac_supported, 10000baseSR_Full);
844 phylink_set(mac_supported, 10000baseLR_Full);
845 phylink_set(mac_supported, 10000baseER_Full);
846 phylink_set(mac_supported, 10000baseLRM_Full);
847 phylink_set(mac_supported, 10000baseT_Full);
848 phylink_set(mac_supported, 10000baseKX4_Full);
849 phylink_set(mac_supported, 10000baseKR_Full);
850 }
851 }
852
853 /* Half-Duplex can only work with single queue */
854 if (tx_cnt > 1) {
855 phylink_set(mask, 10baseT_Half);
856 phylink_set(mask, 100baseT_Half);
857 phylink_set(mask, 1000baseT_Half);
858 }
859
860 bitmap_and(supported, supported, mac_supported,
861 __ETHTOOL_LINK_MODE_MASK_NBITS);
862 bitmap_andnot(supported, supported, mask,
863 __ETHTOOL_LINK_MODE_MASK_NBITS);
864 bitmap_and(state->advertising, state->advertising, mac_supported,
865 __ETHTOOL_LINK_MODE_MASK_NBITS);
866 bitmap_andnot(state->advertising, state->advertising, mask,
867 __ETHTOOL_LINK_MODE_MASK_NBITS);
868 }
869
stmmac_mac_link_state(struct phylink_config * config,struct phylink_link_state * state)870 static int stmmac_mac_link_state(struct phylink_config *config,
871 struct phylink_link_state *state)
872 {
873 return -EOPNOTSUPP;
874 }
875
stmmac_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)876 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
877 const struct phylink_link_state *state)
878 {
879 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
880 u32 ctrl;
881
882 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
883 ctrl &= ~priv->hw->link.speed_mask;
884
885 if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
886 switch (state->speed) {
887 case SPEED_10000:
888 ctrl |= priv->hw->link.xgmii.speed10000;
889 break;
890 case SPEED_5000:
891 ctrl |= priv->hw->link.xgmii.speed5000;
892 break;
893 case SPEED_2500:
894 ctrl |= priv->hw->link.xgmii.speed2500;
895 break;
896 default:
897 return;
898 }
899 } else {
900 switch (state->speed) {
901 case SPEED_2500:
902 ctrl |= priv->hw->link.speed2500;
903 break;
904 case SPEED_1000:
905 ctrl |= priv->hw->link.speed1000;
906 break;
907 case SPEED_100:
908 ctrl |= priv->hw->link.speed100;
909 break;
910 case SPEED_10:
911 ctrl |= priv->hw->link.speed10;
912 break;
913 default:
914 return;
915 }
916 }
917
918 priv->speed = state->speed;
919
920 if (priv->plat->fix_mac_speed)
921 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
922
923 if (!state->duplex)
924 ctrl &= ~priv->hw->link.duplex;
925 else
926 ctrl |= priv->hw->link.duplex;
927
928 /* Flow Control operation */
929 if (state->pause)
930 stmmac_mac_flow_ctrl(priv, state->duplex);
931
932 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
933 }
934
stmmac_mac_an_restart(struct phylink_config * config)935 static void stmmac_mac_an_restart(struct phylink_config *config)
936 {
937 /* Not Supported */
938 }
939
stmmac_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)940 static void stmmac_mac_link_down(struct phylink_config *config,
941 unsigned int mode, phy_interface_t interface)
942 {
943 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
944
945 stmmac_mac_set(priv, priv->ioaddr, false);
946 priv->eee_active = false;
947 stmmac_eee_init(priv);
948 stmmac_set_eee_pls(priv, priv->hw, false);
949 }
950
stmmac_mac_link_up(struct phylink_config * config,unsigned int mode,phy_interface_t interface,struct phy_device * phy)951 static void stmmac_mac_link_up(struct phylink_config *config,
952 unsigned int mode, phy_interface_t interface,
953 struct phy_device *phy)
954 {
955 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
956
957 stmmac_mac_set(priv, priv->ioaddr, true);
958 if (phy && priv->dma_cap.eee) {
959 priv->eee_active = phy_init_eee(phy, 1) >= 0;
960 priv->eee_enabled = stmmac_eee_init(priv);
961 stmmac_set_eee_pls(priv, priv->hw, true);
962 }
963 }
964
965 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
966 .validate = stmmac_validate,
967 .mac_link_state = stmmac_mac_link_state,
968 .mac_config = stmmac_mac_config,
969 .mac_an_restart = stmmac_mac_an_restart,
970 .mac_link_down = stmmac_mac_link_down,
971 .mac_link_up = stmmac_mac_link_up,
972 };
973
974 /**
975 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
976 * @priv: driver private structure
977 * Description: this is to verify if the HW supports the PCS.
978 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
979 * configured for the TBI, RTBI, or SGMII PHY interface.
980 */
stmmac_check_pcs_mode(struct stmmac_priv * priv)981 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
982 {
983 int interface = priv->plat->interface;
984
985 if (priv->dma_cap.pcs) {
986 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
987 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
988 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
989 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
990 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
991 priv->hw->pcs = STMMAC_PCS_RGMII;
992 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
993 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
994 priv->hw->pcs = STMMAC_PCS_SGMII;
995 }
996 }
997 }
998
999 /**
1000 * stmmac_init_phy - PHY initialization
1001 * @dev: net device structure
1002 * Description: it initializes the driver's PHY state, and attaches the PHY
1003 * to the mac driver.
1004 * Return value:
1005 * 0 on success
1006 */
stmmac_init_phy(struct net_device * dev)1007 static int stmmac_init_phy(struct net_device *dev)
1008 {
1009 struct stmmac_priv *priv = netdev_priv(dev);
1010 struct device_node *node;
1011 int ret;
1012
1013 node = priv->plat->phylink_node;
1014
1015 if (node)
1016 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1017
1018 /* Some DT bindings do not set-up the PHY handle. Let's try to
1019 * manually parse it
1020 */
1021 if (!node || ret) {
1022 int addr = priv->plat->phy_addr;
1023 struct phy_device *phydev;
1024
1025 phydev = mdiobus_get_phy(priv->mii, addr);
1026 if (!phydev) {
1027 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1028 return -ENODEV;
1029 }
1030
1031 ret = phylink_connect_phy(priv->phylink, phydev);
1032 }
1033
1034 return ret;
1035 }
1036
stmmac_phy_setup(struct stmmac_priv * priv)1037 static int stmmac_phy_setup(struct stmmac_priv *priv)
1038 {
1039 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1040 int mode = priv->plat->phy_interface;
1041 struct phylink *phylink;
1042
1043 priv->phylink_config.dev = &priv->dev->dev;
1044 priv->phylink_config.type = PHYLINK_NETDEV;
1045
1046 phylink = phylink_create(&priv->phylink_config, fwnode,
1047 mode, &stmmac_phylink_mac_ops);
1048 if (IS_ERR(phylink))
1049 return PTR_ERR(phylink);
1050
1051 priv->phylink = phylink;
1052 return 0;
1053 }
1054
stmmac_display_rx_rings(struct stmmac_priv * priv)1055 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1056 {
1057 u32 rx_cnt = priv->plat->rx_queues_to_use;
1058 void *head_rx;
1059 u32 queue;
1060
1061 /* Display RX rings */
1062 for (queue = 0; queue < rx_cnt; queue++) {
1063 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1064
1065 pr_info("\tRX Queue %u rings\n", queue);
1066
1067 if (priv->extend_desc)
1068 head_rx = (void *)rx_q->dma_erx;
1069 else
1070 head_rx = (void *)rx_q->dma_rx;
1071
1072 /* Display RX ring */
1073 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1074 }
1075 }
1076
stmmac_display_tx_rings(struct stmmac_priv * priv)1077 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1078 {
1079 u32 tx_cnt = priv->plat->tx_queues_to_use;
1080 void *head_tx;
1081 u32 queue;
1082
1083 /* Display TX rings */
1084 for (queue = 0; queue < tx_cnt; queue++) {
1085 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1086
1087 pr_info("\tTX Queue %d rings\n", queue);
1088
1089 if (priv->extend_desc)
1090 head_tx = (void *)tx_q->dma_etx;
1091 else
1092 head_tx = (void *)tx_q->dma_tx;
1093
1094 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1095 }
1096 }
1097
stmmac_display_rings(struct stmmac_priv * priv)1098 static void stmmac_display_rings(struct stmmac_priv *priv)
1099 {
1100 /* Display RX ring */
1101 stmmac_display_rx_rings(priv);
1102
1103 /* Display TX ring */
1104 stmmac_display_tx_rings(priv);
1105 }
1106
stmmac_set_bfsize(int mtu,int bufsize)1107 static int stmmac_set_bfsize(int mtu, int bufsize)
1108 {
1109 int ret = bufsize;
1110
1111 if (mtu >= BUF_SIZE_4KiB)
1112 ret = BUF_SIZE_8KiB;
1113 else if (mtu >= BUF_SIZE_2KiB)
1114 ret = BUF_SIZE_4KiB;
1115 else if (mtu > DEFAULT_BUFSIZE)
1116 ret = BUF_SIZE_2KiB;
1117 else
1118 ret = DEFAULT_BUFSIZE;
1119
1120 return ret;
1121 }
1122
1123 /**
1124 * stmmac_clear_rx_descriptors - clear RX descriptors
1125 * @priv: driver private structure
1126 * @queue: RX queue index
1127 * Description: this function is called to clear the RX descriptors
1128 * in case of both basic and extended descriptors are used.
1129 */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,u32 queue)1130 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1131 {
1132 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1133 int i;
1134
1135 /* Clear the RX descriptors */
1136 for (i = 0; i < DMA_RX_SIZE; i++)
1137 if (priv->extend_desc)
1138 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1139 priv->use_riwt, priv->mode,
1140 (i == DMA_RX_SIZE - 1),
1141 priv->dma_buf_sz);
1142 else
1143 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1144 priv->use_riwt, priv->mode,
1145 (i == DMA_RX_SIZE - 1),
1146 priv->dma_buf_sz);
1147 }
1148
1149 /**
1150 * stmmac_clear_tx_descriptors - clear tx descriptors
1151 * @priv: driver private structure
1152 * @queue: TX queue index.
1153 * Description: this function is called to clear the TX descriptors
1154 * in case of both basic and extended descriptors are used.
1155 */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,u32 queue)1156 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1157 {
1158 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1159 int i;
1160
1161 /* Clear the TX descriptors */
1162 for (i = 0; i < DMA_TX_SIZE; i++)
1163 if (priv->extend_desc)
1164 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1165 priv->mode, (i == DMA_TX_SIZE - 1));
1166 else
1167 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1168 priv->mode, (i == DMA_TX_SIZE - 1));
1169 }
1170
1171 /**
1172 * stmmac_clear_descriptors - clear descriptors
1173 * @priv: driver private structure
1174 * Description: this function is called to clear the TX and RX descriptors
1175 * in case of both basic and extended descriptors are used.
1176 */
stmmac_clear_descriptors(struct stmmac_priv * priv)1177 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1178 {
1179 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1180 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1181 u32 queue;
1182
1183 /* Clear the RX descriptors */
1184 for (queue = 0; queue < rx_queue_cnt; queue++)
1185 stmmac_clear_rx_descriptors(priv, queue);
1186
1187 /* Clear the TX descriptors */
1188 for (queue = 0; queue < tx_queue_cnt; queue++)
1189 stmmac_clear_tx_descriptors(priv, queue);
1190 }
1191
1192 /**
1193 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1194 * @priv: driver private structure
1195 * @p: descriptor pointer
1196 * @i: descriptor index
1197 * @flags: gfp flag
1198 * @queue: RX queue index
1199 * Description: this function is called to allocate a receive buffer, perform
1200 * the DMA mapping and init the descriptor.
1201 */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct dma_desc * p,int i,gfp_t flags,u32 queue)1202 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1203 int i, gfp_t flags, u32 queue)
1204 {
1205 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1206 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1207
1208 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1209 if (!buf->page)
1210 return -ENOMEM;
1211
1212 if (priv->sph) {
1213 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1214 if (!buf->sec_page)
1215 return -ENOMEM;
1216
1217 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1218 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1219 } else {
1220 buf->sec_page = NULL;
1221 }
1222
1223 buf->addr = page_pool_get_dma_addr(buf->page);
1224 stmmac_set_desc_addr(priv, p, buf->addr);
1225 if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1226 stmmac_init_desc3(priv, p);
1227
1228 return 0;
1229 }
1230
1231 /**
1232 * stmmac_free_rx_buffer - free RX dma buffers
1233 * @priv: private structure
1234 * @queue: RX queue index
1235 * @i: buffer index.
1236 */
stmmac_free_rx_buffer(struct stmmac_priv * priv,u32 queue,int i)1237 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1238 {
1239 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1240 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1241
1242 if (buf->page)
1243 page_pool_put_page(rx_q->page_pool, buf->page, false);
1244 buf->page = NULL;
1245
1246 if (buf->sec_page)
1247 page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1248 buf->sec_page = NULL;
1249 }
1250
1251 /**
1252 * stmmac_free_tx_buffer - free RX dma buffers
1253 * @priv: private structure
1254 * @queue: RX queue index
1255 * @i: buffer index.
1256 */
stmmac_free_tx_buffer(struct stmmac_priv * priv,u32 queue,int i)1257 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1258 {
1259 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1260
1261 if (tx_q->tx_skbuff_dma[i].buf) {
1262 if (tx_q->tx_skbuff_dma[i].map_as_page)
1263 dma_unmap_page(priv->device,
1264 tx_q->tx_skbuff_dma[i].buf,
1265 tx_q->tx_skbuff_dma[i].len,
1266 DMA_TO_DEVICE);
1267 else
1268 dma_unmap_single(priv->device,
1269 tx_q->tx_skbuff_dma[i].buf,
1270 tx_q->tx_skbuff_dma[i].len,
1271 DMA_TO_DEVICE);
1272 }
1273
1274 if (tx_q->tx_skbuff[i]) {
1275 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1276 tx_q->tx_skbuff[i] = NULL;
1277 tx_q->tx_skbuff_dma[i].buf = 0;
1278 tx_q->tx_skbuff_dma[i].map_as_page = false;
1279 }
1280 }
1281
1282 /**
1283 * init_dma_rx_desc_rings - init the RX descriptor rings
1284 * @dev: net device structure
1285 * @flags: gfp flag.
1286 * Description: this function initializes the DMA RX descriptors
1287 * and allocates the socket buffers. It supports the chained and ring
1288 * modes.
1289 */
init_dma_rx_desc_rings(struct net_device * dev,gfp_t flags)1290 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1291 {
1292 struct stmmac_priv *priv = netdev_priv(dev);
1293 u32 rx_count = priv->plat->rx_queues_to_use;
1294 int ret = -ENOMEM;
1295 int bfsize = 0;
1296 int queue;
1297 int i;
1298
1299 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1300 if (bfsize < 0)
1301 bfsize = 0;
1302
1303 if (bfsize < BUF_SIZE_16KiB)
1304 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1305
1306 priv->dma_buf_sz = bfsize;
1307
1308 /* RX INITIALIZATION */
1309 netif_dbg(priv, probe, priv->dev,
1310 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1311
1312 for (queue = 0; queue < rx_count; queue++) {
1313 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1314
1315 netif_dbg(priv, probe, priv->dev,
1316 "(%s) dma_rx_phy=0x%08x\n", __func__,
1317 (u32)rx_q->dma_rx_phy);
1318
1319 stmmac_clear_rx_descriptors(priv, queue);
1320
1321 for (i = 0; i < DMA_RX_SIZE; i++) {
1322 struct dma_desc *p;
1323
1324 if (priv->extend_desc)
1325 p = &((rx_q->dma_erx + i)->basic);
1326 else
1327 p = rx_q->dma_rx + i;
1328
1329 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1330 queue);
1331 if (ret)
1332 goto err_init_rx_buffers;
1333 }
1334
1335 rx_q->cur_rx = 0;
1336 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1337
1338 /* Setup the chained descriptor addresses */
1339 if (priv->mode == STMMAC_CHAIN_MODE) {
1340 if (priv->extend_desc)
1341 stmmac_mode_init(priv, rx_q->dma_erx,
1342 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1343 else
1344 stmmac_mode_init(priv, rx_q->dma_rx,
1345 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1346 }
1347 }
1348
1349 buf_sz = bfsize;
1350
1351 return 0;
1352
1353 err_init_rx_buffers:
1354 while (queue >= 0) {
1355 while (--i >= 0)
1356 stmmac_free_rx_buffer(priv, queue, i);
1357
1358 if (queue == 0)
1359 break;
1360
1361 i = DMA_RX_SIZE;
1362 queue--;
1363 }
1364
1365 return ret;
1366 }
1367
1368 /**
1369 * init_dma_tx_desc_rings - init the TX descriptor rings
1370 * @dev: net device structure.
1371 * Description: this function initializes the DMA TX descriptors
1372 * and allocates the socket buffers. It supports the chained and ring
1373 * modes.
1374 */
init_dma_tx_desc_rings(struct net_device * dev)1375 static int init_dma_tx_desc_rings(struct net_device *dev)
1376 {
1377 struct stmmac_priv *priv = netdev_priv(dev);
1378 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1379 u32 queue;
1380 int i;
1381
1382 for (queue = 0; queue < tx_queue_cnt; queue++) {
1383 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1384
1385 netif_dbg(priv, probe, priv->dev,
1386 "(%s) dma_tx_phy=0x%08x\n", __func__,
1387 (u32)tx_q->dma_tx_phy);
1388
1389 /* Setup the chained descriptor addresses */
1390 if (priv->mode == STMMAC_CHAIN_MODE) {
1391 if (priv->extend_desc)
1392 stmmac_mode_init(priv, tx_q->dma_etx,
1393 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1394 else
1395 stmmac_mode_init(priv, tx_q->dma_tx,
1396 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1397 }
1398
1399 for (i = 0; i < DMA_TX_SIZE; i++) {
1400 struct dma_desc *p;
1401 if (priv->extend_desc)
1402 p = &((tx_q->dma_etx + i)->basic);
1403 else
1404 p = tx_q->dma_tx + i;
1405
1406 stmmac_clear_desc(priv, p);
1407
1408 tx_q->tx_skbuff_dma[i].buf = 0;
1409 tx_q->tx_skbuff_dma[i].map_as_page = false;
1410 tx_q->tx_skbuff_dma[i].len = 0;
1411 tx_q->tx_skbuff_dma[i].last_segment = false;
1412 tx_q->tx_skbuff[i] = NULL;
1413 }
1414
1415 tx_q->dirty_tx = 0;
1416 tx_q->cur_tx = 0;
1417 tx_q->mss = 0;
1418
1419 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1420 }
1421
1422 return 0;
1423 }
1424
1425 /**
1426 * init_dma_desc_rings - init the RX/TX descriptor rings
1427 * @dev: net device structure
1428 * @flags: gfp flag.
1429 * Description: this function initializes the DMA RX/TX descriptors
1430 * and allocates the socket buffers. It supports the chained and ring
1431 * modes.
1432 */
init_dma_desc_rings(struct net_device * dev,gfp_t flags)1433 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1434 {
1435 struct stmmac_priv *priv = netdev_priv(dev);
1436 int ret;
1437
1438 ret = init_dma_rx_desc_rings(dev, flags);
1439 if (ret)
1440 return ret;
1441
1442 ret = init_dma_tx_desc_rings(dev);
1443
1444 stmmac_clear_descriptors(priv);
1445
1446 if (netif_msg_hw(priv))
1447 stmmac_display_rings(priv);
1448
1449 return ret;
1450 }
1451
1452 /**
1453 * dma_free_rx_skbufs - free RX dma buffers
1454 * @priv: private structure
1455 * @queue: RX queue index
1456 */
dma_free_rx_skbufs(struct stmmac_priv * priv,u32 queue)1457 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1458 {
1459 int i;
1460
1461 for (i = 0; i < DMA_RX_SIZE; i++)
1462 stmmac_free_rx_buffer(priv, queue, i);
1463 }
1464
1465 /**
1466 * dma_free_tx_skbufs - free TX dma buffers
1467 * @priv: private structure
1468 * @queue: TX queue index
1469 */
dma_free_tx_skbufs(struct stmmac_priv * priv,u32 queue)1470 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1471 {
1472 int i;
1473
1474 for (i = 0; i < DMA_TX_SIZE; i++)
1475 stmmac_free_tx_buffer(priv, queue, i);
1476 }
1477
1478 /**
1479 * free_dma_rx_desc_resources - free RX dma desc resources
1480 * @priv: private structure
1481 */
free_dma_rx_desc_resources(struct stmmac_priv * priv)1482 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1483 {
1484 u32 rx_count = priv->plat->rx_queues_to_use;
1485 u32 queue;
1486
1487 /* Free RX queue resources */
1488 for (queue = 0; queue < rx_count; queue++) {
1489 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1490
1491 /* Release the DMA RX socket buffers */
1492 dma_free_rx_skbufs(priv, queue);
1493
1494 /* Free DMA regions of consistent memory previously allocated */
1495 if (!priv->extend_desc)
1496 dma_free_coherent(priv->device,
1497 DMA_RX_SIZE * sizeof(struct dma_desc),
1498 rx_q->dma_rx, rx_q->dma_rx_phy);
1499 else
1500 dma_free_coherent(priv->device, DMA_RX_SIZE *
1501 sizeof(struct dma_extended_desc),
1502 rx_q->dma_erx, rx_q->dma_rx_phy);
1503
1504 kfree(rx_q->buf_pool);
1505 if (rx_q->page_pool) {
1506 page_pool_request_shutdown(rx_q->page_pool);
1507 page_pool_destroy(rx_q->page_pool);
1508 }
1509 }
1510 }
1511
1512 /**
1513 * free_dma_tx_desc_resources - free TX dma desc resources
1514 * @priv: private structure
1515 */
free_dma_tx_desc_resources(struct stmmac_priv * priv)1516 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1517 {
1518 u32 tx_count = priv->plat->tx_queues_to_use;
1519 u32 queue;
1520
1521 /* Free TX queue resources */
1522 for (queue = 0; queue < tx_count; queue++) {
1523 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1524
1525 /* Release the DMA TX socket buffers */
1526 dma_free_tx_skbufs(priv, queue);
1527
1528 /* Free DMA regions of consistent memory previously allocated */
1529 if (!priv->extend_desc)
1530 dma_free_coherent(priv->device,
1531 DMA_TX_SIZE * sizeof(struct dma_desc),
1532 tx_q->dma_tx, tx_q->dma_tx_phy);
1533 else
1534 dma_free_coherent(priv->device, DMA_TX_SIZE *
1535 sizeof(struct dma_extended_desc),
1536 tx_q->dma_etx, tx_q->dma_tx_phy);
1537
1538 kfree(tx_q->tx_skbuff_dma);
1539 kfree(tx_q->tx_skbuff);
1540 }
1541 }
1542
1543 /**
1544 * alloc_dma_rx_desc_resources - alloc RX resources.
1545 * @priv: private structure
1546 * Description: according to which descriptor can be used (extend or basic)
1547 * this function allocates the resources for TX and RX paths. In case of
1548 * reception, for example, it pre-allocated the RX socket buffer in order to
1549 * allow zero-copy mechanism.
1550 */
alloc_dma_rx_desc_resources(struct stmmac_priv * priv)1551 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1552 {
1553 u32 rx_count = priv->plat->rx_queues_to_use;
1554 int ret = -ENOMEM;
1555 u32 queue;
1556
1557 /* RX queues buffers and DMA */
1558 for (queue = 0; queue < rx_count; queue++) {
1559 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1560 struct page_pool_params pp_params = { 0 };
1561 unsigned int num_pages;
1562
1563 rx_q->queue_index = queue;
1564 rx_q->priv_data = priv;
1565
1566 pp_params.flags = PP_FLAG_DMA_MAP;
1567 pp_params.pool_size = DMA_RX_SIZE;
1568 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1569 pp_params.order = ilog2(num_pages);
1570 pp_params.nid = dev_to_node(priv->device);
1571 pp_params.dev = priv->device;
1572 pp_params.dma_dir = DMA_FROM_DEVICE;
1573
1574 rx_q->page_pool = page_pool_create(&pp_params);
1575 if (IS_ERR(rx_q->page_pool)) {
1576 ret = PTR_ERR(rx_q->page_pool);
1577 rx_q->page_pool = NULL;
1578 goto err_dma;
1579 }
1580
1581 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1582 GFP_KERNEL);
1583 if (!rx_q->buf_pool)
1584 goto err_dma;
1585
1586 if (priv->extend_desc) {
1587 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1588 DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1589 &rx_q->dma_rx_phy,
1590 GFP_KERNEL);
1591 if (!rx_q->dma_erx)
1592 goto err_dma;
1593
1594 } else {
1595 rx_q->dma_rx = dma_alloc_coherent(priv->device,
1596 DMA_RX_SIZE * sizeof(struct dma_desc),
1597 &rx_q->dma_rx_phy,
1598 GFP_KERNEL);
1599 if (!rx_q->dma_rx)
1600 goto err_dma;
1601 }
1602 }
1603
1604 return 0;
1605
1606 err_dma:
1607 free_dma_rx_desc_resources(priv);
1608
1609 return ret;
1610 }
1611
1612 /**
1613 * alloc_dma_tx_desc_resources - alloc TX resources.
1614 * @priv: private structure
1615 * Description: according to which descriptor can be used (extend or basic)
1616 * this function allocates the resources for TX and RX paths. In case of
1617 * reception, for example, it pre-allocated the RX socket buffer in order to
1618 * allow zero-copy mechanism.
1619 */
alloc_dma_tx_desc_resources(struct stmmac_priv * priv)1620 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1621 {
1622 u32 tx_count = priv->plat->tx_queues_to_use;
1623 int ret = -ENOMEM;
1624 u32 queue;
1625
1626 /* TX queues buffers and DMA */
1627 for (queue = 0; queue < tx_count; queue++) {
1628 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1629
1630 tx_q->queue_index = queue;
1631 tx_q->priv_data = priv;
1632
1633 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1634 sizeof(*tx_q->tx_skbuff_dma),
1635 GFP_KERNEL);
1636 if (!tx_q->tx_skbuff_dma)
1637 goto err_dma;
1638
1639 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1640 sizeof(struct sk_buff *),
1641 GFP_KERNEL);
1642 if (!tx_q->tx_skbuff)
1643 goto err_dma;
1644
1645 if (priv->extend_desc) {
1646 tx_q->dma_etx = dma_alloc_coherent(priv->device,
1647 DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1648 &tx_q->dma_tx_phy,
1649 GFP_KERNEL);
1650 if (!tx_q->dma_etx)
1651 goto err_dma;
1652 } else {
1653 tx_q->dma_tx = dma_alloc_coherent(priv->device,
1654 DMA_TX_SIZE * sizeof(struct dma_desc),
1655 &tx_q->dma_tx_phy,
1656 GFP_KERNEL);
1657 if (!tx_q->dma_tx)
1658 goto err_dma;
1659 }
1660 }
1661
1662 return 0;
1663
1664 err_dma:
1665 free_dma_tx_desc_resources(priv);
1666
1667 return ret;
1668 }
1669
1670 /**
1671 * alloc_dma_desc_resources - alloc TX/RX resources.
1672 * @priv: private structure
1673 * Description: according to which descriptor can be used (extend or basic)
1674 * this function allocates the resources for TX and RX paths. In case of
1675 * reception, for example, it pre-allocated the RX socket buffer in order to
1676 * allow zero-copy mechanism.
1677 */
alloc_dma_desc_resources(struct stmmac_priv * priv)1678 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1679 {
1680 /* RX Allocation */
1681 int ret = alloc_dma_rx_desc_resources(priv);
1682
1683 if (ret)
1684 return ret;
1685
1686 ret = alloc_dma_tx_desc_resources(priv);
1687
1688 return ret;
1689 }
1690
1691 /**
1692 * free_dma_desc_resources - free dma desc resources
1693 * @priv: private structure
1694 */
free_dma_desc_resources(struct stmmac_priv * priv)1695 static void free_dma_desc_resources(struct stmmac_priv *priv)
1696 {
1697 /* Release the DMA RX socket buffers */
1698 free_dma_rx_desc_resources(priv);
1699
1700 /* Release the DMA TX socket buffers */
1701 free_dma_tx_desc_resources(priv);
1702 }
1703
1704 /**
1705 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
1706 * @priv: driver private structure
1707 * Description: It is used for enabling the rx queues in the MAC
1708 */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)1709 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1710 {
1711 u32 rx_queues_count = priv->plat->rx_queues_to_use;
1712 int queue;
1713 u8 mode;
1714
1715 for (queue = 0; queue < rx_queues_count; queue++) {
1716 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1717 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1718 }
1719 }
1720
1721 /**
1722 * stmmac_start_rx_dma - start RX DMA channel
1723 * @priv: driver private structure
1724 * @chan: RX channel index
1725 * Description:
1726 * This starts a RX DMA channel
1727 */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)1728 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1729 {
1730 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1731 stmmac_start_rx(priv, priv->ioaddr, chan);
1732 }
1733
1734 /**
1735 * stmmac_start_tx_dma - start TX DMA channel
1736 * @priv: driver private structure
1737 * @chan: TX channel index
1738 * Description:
1739 * This starts a TX DMA channel
1740 */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)1741 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1742 {
1743 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1744 stmmac_start_tx(priv, priv->ioaddr, chan);
1745 }
1746
1747 /**
1748 * stmmac_stop_rx_dma - stop RX DMA channel
1749 * @priv: driver private structure
1750 * @chan: RX channel index
1751 * Description:
1752 * This stops a RX DMA channel
1753 */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)1754 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1755 {
1756 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1757 stmmac_stop_rx(priv, priv->ioaddr, chan);
1758 }
1759
1760 /**
1761 * stmmac_stop_tx_dma - stop TX DMA channel
1762 * @priv: driver private structure
1763 * @chan: TX channel index
1764 * Description:
1765 * This stops a TX DMA channel
1766 */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)1767 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1768 {
1769 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1770 stmmac_stop_tx(priv, priv->ioaddr, chan);
1771 }
1772
1773 /**
1774 * stmmac_start_all_dma - start all RX and TX DMA channels
1775 * @priv: driver private structure
1776 * Description:
1777 * This starts all the RX and TX DMA channels
1778 */
stmmac_start_all_dma(struct stmmac_priv * priv)1779 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1780 {
1781 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1782 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1783 u32 chan = 0;
1784
1785 for (chan = 0; chan < rx_channels_count; chan++)
1786 stmmac_start_rx_dma(priv, chan);
1787
1788 for (chan = 0; chan < tx_channels_count; chan++)
1789 stmmac_start_tx_dma(priv, chan);
1790 }
1791
1792 /**
1793 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1794 * @priv: driver private structure
1795 * Description:
1796 * This stops the RX and TX DMA channels
1797 */
stmmac_stop_all_dma(struct stmmac_priv * priv)1798 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1799 {
1800 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1801 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1802 u32 chan = 0;
1803
1804 for (chan = 0; chan < rx_channels_count; chan++)
1805 stmmac_stop_rx_dma(priv, chan);
1806
1807 for (chan = 0; chan < tx_channels_count; chan++)
1808 stmmac_stop_tx_dma(priv, chan);
1809 }
1810
1811 /**
1812 * stmmac_dma_operation_mode - HW DMA operation mode
1813 * @priv: driver private structure
1814 * Description: it is used for configuring the DMA operation mode register in
1815 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1816 */
stmmac_dma_operation_mode(struct stmmac_priv * priv)1817 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1818 {
1819 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1820 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1821 int rxfifosz = priv->plat->rx_fifo_size;
1822 int txfifosz = priv->plat->tx_fifo_size;
1823 u32 txmode = 0;
1824 u32 rxmode = 0;
1825 u32 chan = 0;
1826 u8 qmode = 0;
1827
1828 if (rxfifosz == 0)
1829 rxfifosz = priv->dma_cap.rx_fifo_size;
1830 if (txfifosz == 0)
1831 txfifosz = priv->dma_cap.tx_fifo_size;
1832
1833 /* Adjust for real per queue fifo size */
1834 rxfifosz /= rx_channels_count;
1835 txfifosz /= tx_channels_count;
1836
1837 if (priv->plat->force_thresh_dma_mode) {
1838 txmode = tc;
1839 rxmode = tc;
1840 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1841 /*
1842 * In case of GMAC, SF mode can be enabled
1843 * to perform the TX COE in HW. This depends on:
1844 * 1) TX COE if actually supported
1845 * 2) There is no bugged Jumbo frame support
1846 * that needs to not insert csum in the TDES.
1847 */
1848 txmode = SF_DMA_MODE;
1849 rxmode = SF_DMA_MODE;
1850 priv->xstats.threshold = SF_DMA_MODE;
1851 } else {
1852 txmode = tc;
1853 rxmode = SF_DMA_MODE;
1854 }
1855
1856 /* configure all channels */
1857 for (chan = 0; chan < rx_channels_count; chan++) {
1858 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1859
1860 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1861 rxfifosz, qmode);
1862 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1863 chan);
1864 }
1865
1866 for (chan = 0; chan < tx_channels_count; chan++) {
1867 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1868
1869 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1870 txfifosz, qmode);
1871 }
1872 }
1873
1874 /**
1875 * stmmac_tx_clean - to manage the transmission completion
1876 * @priv: driver private structure
1877 * @queue: TX queue index
1878 * Description: it reclaims the transmit resources after transmission completes.
1879 */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)1880 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1881 {
1882 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1883 unsigned int bytes_compl = 0, pkts_compl = 0;
1884 unsigned int entry, count = 0;
1885
1886 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1887
1888 priv->xstats.tx_clean++;
1889
1890 entry = tx_q->dirty_tx;
1891 while ((entry != tx_q->cur_tx) && (count < budget)) {
1892 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1893 struct dma_desc *p;
1894 int status;
1895
1896 if (priv->extend_desc)
1897 p = (struct dma_desc *)(tx_q->dma_etx + entry);
1898 else
1899 p = tx_q->dma_tx + entry;
1900
1901 status = stmmac_tx_status(priv, &priv->dev->stats,
1902 &priv->xstats, p, priv->ioaddr);
1903 /* Check if the descriptor is owned by the DMA */
1904 if (unlikely(status & tx_dma_own))
1905 break;
1906
1907 count++;
1908
1909 /* Make sure descriptor fields are read after reading
1910 * the own bit.
1911 */
1912 dma_rmb();
1913
1914 /* Just consider the last segment and ...*/
1915 if (likely(!(status & tx_not_ls))) {
1916 /* ... verify the status error condition */
1917 if (unlikely(status & tx_err)) {
1918 priv->dev->stats.tx_errors++;
1919 } else {
1920 priv->dev->stats.tx_packets++;
1921 priv->xstats.tx_pkt_n++;
1922 }
1923 stmmac_get_tx_hwtstamp(priv, p, skb);
1924 }
1925
1926 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1927 if (tx_q->tx_skbuff_dma[entry].map_as_page)
1928 dma_unmap_page(priv->device,
1929 tx_q->tx_skbuff_dma[entry].buf,
1930 tx_q->tx_skbuff_dma[entry].len,
1931 DMA_TO_DEVICE);
1932 else
1933 dma_unmap_single(priv->device,
1934 tx_q->tx_skbuff_dma[entry].buf,
1935 tx_q->tx_skbuff_dma[entry].len,
1936 DMA_TO_DEVICE);
1937 tx_q->tx_skbuff_dma[entry].buf = 0;
1938 tx_q->tx_skbuff_dma[entry].len = 0;
1939 tx_q->tx_skbuff_dma[entry].map_as_page = false;
1940 }
1941
1942 stmmac_clean_desc3(priv, tx_q, p);
1943
1944 tx_q->tx_skbuff_dma[entry].last_segment = false;
1945 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1946
1947 if (likely(skb != NULL)) {
1948 pkts_compl++;
1949 bytes_compl += skb->len;
1950 dev_consume_skb_any(skb);
1951 tx_q->tx_skbuff[entry] = NULL;
1952 }
1953
1954 stmmac_release_tx_desc(priv, p, priv->mode);
1955
1956 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1957 }
1958 tx_q->dirty_tx = entry;
1959
1960 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1961 pkts_compl, bytes_compl);
1962
1963 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1964 queue))) &&
1965 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1966
1967 netif_dbg(priv, tx_done, priv->dev,
1968 "%s: restart transmit\n", __func__);
1969 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1970 }
1971
1972 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1973 stmmac_enable_eee_mode(priv);
1974 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1975 }
1976
1977 /* We still have pending packets, let's call for a new scheduling */
1978 if (tx_q->dirty_tx != tx_q->cur_tx)
1979 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1980
1981 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1982
1983 return count;
1984 }
1985
1986 /**
1987 * stmmac_tx_err - to manage the tx error
1988 * @priv: driver private structure
1989 * @chan: channel index
1990 * Description: it cleans the descriptors and restarts the transmission
1991 * in case of transmission errors.
1992 */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)1993 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1994 {
1995 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1996 int i;
1997
1998 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1999
2000 stmmac_stop_tx_dma(priv, chan);
2001 dma_free_tx_skbufs(priv, chan);
2002 for (i = 0; i < DMA_TX_SIZE; i++)
2003 if (priv->extend_desc)
2004 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
2005 priv->mode, (i == DMA_TX_SIZE - 1));
2006 else
2007 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
2008 priv->mode, (i == DMA_TX_SIZE - 1));
2009 tx_q->dirty_tx = 0;
2010 tx_q->cur_tx = 0;
2011 tx_q->mss = 0;
2012 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2013 stmmac_start_tx_dma(priv, chan);
2014
2015 priv->dev->stats.tx_errors++;
2016 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2017 }
2018
2019 /**
2020 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2021 * @priv: driver private structure
2022 * @txmode: TX operating mode
2023 * @rxmode: RX operating mode
2024 * @chan: channel index
2025 * Description: it is used for configuring of the DMA operation mode in
2026 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2027 * mode.
2028 */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)2029 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2030 u32 rxmode, u32 chan)
2031 {
2032 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2033 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2034 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2035 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2036 int rxfifosz = priv->plat->rx_fifo_size;
2037 int txfifosz = priv->plat->tx_fifo_size;
2038
2039 if (rxfifosz == 0)
2040 rxfifosz = priv->dma_cap.rx_fifo_size;
2041 if (txfifosz == 0)
2042 txfifosz = priv->dma_cap.tx_fifo_size;
2043
2044 /* Adjust for real per queue fifo size */
2045 rxfifosz /= rx_channels_count;
2046 txfifosz /= tx_channels_count;
2047
2048 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2049 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2050 }
2051
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2052 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2053 {
2054 int ret;
2055
2056 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2057 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2058 if (ret && (ret != -EINVAL)) {
2059 stmmac_global_err(priv);
2060 return true;
2061 }
2062
2063 return false;
2064 }
2065
stmmac_napi_check(struct stmmac_priv * priv,u32 chan)2066 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2067 {
2068 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2069 &priv->xstats, chan);
2070 struct stmmac_channel *ch = &priv->channel[chan];
2071
2072 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2073 if (napi_schedule_prep(&ch->rx_napi)) {
2074 stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2075 __napi_schedule_irqoff(&ch->rx_napi);
2076 status |= handle_tx;
2077 }
2078 }
2079
2080 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2081 napi_schedule_irqoff(&ch->tx_napi);
2082
2083 return status;
2084 }
2085
2086 /**
2087 * stmmac_dma_interrupt - DMA ISR
2088 * @priv: driver private structure
2089 * Description: this is the DMA ISR. It is called by the main ISR.
2090 * It calls the dwmac dma routine and schedule poll method in case of some
2091 * work can be done.
2092 */
stmmac_dma_interrupt(struct stmmac_priv * priv)2093 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2094 {
2095 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2096 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2097 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2098 tx_channel_count : rx_channel_count;
2099 u32 chan;
2100 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2101
2102 /* Make sure we never check beyond our status buffer. */
2103 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2104 channels_to_check = ARRAY_SIZE(status);
2105
2106 for (chan = 0; chan < channels_to_check; chan++)
2107 status[chan] = stmmac_napi_check(priv, chan);
2108
2109 for (chan = 0; chan < tx_channel_count; chan++) {
2110 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2111 /* Try to bump up the dma threshold on this failure */
2112 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2113 (tc <= 256)) {
2114 tc += 64;
2115 if (priv->plat->force_thresh_dma_mode)
2116 stmmac_set_dma_operation_mode(priv,
2117 tc,
2118 tc,
2119 chan);
2120 else
2121 stmmac_set_dma_operation_mode(priv,
2122 tc,
2123 SF_DMA_MODE,
2124 chan);
2125 priv->xstats.threshold = tc;
2126 }
2127 } else if (unlikely(status[chan] == tx_hard_error)) {
2128 stmmac_tx_err(priv, chan);
2129 }
2130 }
2131 }
2132
2133 /**
2134 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2135 * @priv: driver private structure
2136 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2137 */
stmmac_mmc_setup(struct stmmac_priv * priv)2138 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2139 {
2140 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2141 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2142
2143 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2144
2145 if (priv->dma_cap.rmon) {
2146 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2147 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2148 } else
2149 netdev_info(priv->dev, "No MAC Management Counters available\n");
2150 }
2151
2152 /**
2153 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2154 * @priv: driver private structure
2155 * Description:
2156 * new GMAC chip generations have a new register to indicate the
2157 * presence of the optional feature/functions.
2158 * This can be also used to override the value passed through the
2159 * platform and necessary for old MAC10/100 and GMAC chips.
2160 */
stmmac_get_hw_features(struct stmmac_priv * priv)2161 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2162 {
2163 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2164 }
2165
2166 /**
2167 * stmmac_check_ether_addr - check if the MAC addr is valid
2168 * @priv: driver private structure
2169 * Description:
2170 * it is to verify if the MAC address is valid, in case of failures it
2171 * generates a random MAC address
2172 */
stmmac_check_ether_addr(struct stmmac_priv * priv)2173 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2174 {
2175 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2176 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2177 if (!is_valid_ether_addr(priv->dev->dev_addr))
2178 eth_hw_addr_random(priv->dev);
2179 dev_info(priv->device, "device MAC address %pM\n",
2180 priv->dev->dev_addr);
2181 }
2182 }
2183
2184 /**
2185 * stmmac_init_dma_engine - DMA init.
2186 * @priv: driver private structure
2187 * Description:
2188 * It inits the DMA invoking the specific MAC/GMAC callback.
2189 * Some DMA parameters can be passed from the platform;
2190 * in case of these are not passed a default is kept for the MAC or GMAC.
2191 */
stmmac_init_dma_engine(struct stmmac_priv * priv)2192 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2193 {
2194 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2195 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2196 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2197 struct stmmac_rx_queue *rx_q;
2198 struct stmmac_tx_queue *tx_q;
2199 u32 chan = 0;
2200 int atds = 0;
2201 int ret = 0;
2202
2203 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2204 dev_err(priv->device, "Invalid DMA configuration\n");
2205 return -EINVAL;
2206 }
2207
2208 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2209 atds = 1;
2210
2211 ret = stmmac_reset(priv, priv->ioaddr);
2212 if (ret) {
2213 dev_err(priv->device, "Failed to reset the dma\n");
2214 return ret;
2215 }
2216
2217 /* DMA Configuration */
2218 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2219
2220 if (priv->plat->axi)
2221 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2222
2223 /* DMA CSR Channel configuration */
2224 for (chan = 0; chan < dma_csr_ch; chan++)
2225 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2226
2227 /* DMA RX Channel Configuration */
2228 for (chan = 0; chan < rx_channels_count; chan++) {
2229 rx_q = &priv->rx_queue[chan];
2230
2231 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2232 rx_q->dma_rx_phy, chan);
2233
2234 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2235 (DMA_RX_SIZE * sizeof(struct dma_desc));
2236 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2237 rx_q->rx_tail_addr, chan);
2238 }
2239
2240 /* DMA TX Channel Configuration */
2241 for (chan = 0; chan < tx_channels_count; chan++) {
2242 tx_q = &priv->tx_queue[chan];
2243
2244 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2245 tx_q->dma_tx_phy, chan);
2246
2247 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2248 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2249 tx_q->tx_tail_addr, chan);
2250 }
2251
2252 return ret;
2253 }
2254
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2255 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2256 {
2257 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2258
2259 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2260 }
2261
2262 /**
2263 * stmmac_tx_timer - mitigation sw timer for tx.
2264 * @data: data pointer
2265 * Description:
2266 * This is the timer handler to directly invoke the stmmac_tx_clean.
2267 */
stmmac_tx_timer(struct timer_list * t)2268 static void stmmac_tx_timer(struct timer_list *t)
2269 {
2270 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2271 struct stmmac_priv *priv = tx_q->priv_data;
2272 struct stmmac_channel *ch;
2273
2274 ch = &priv->channel[tx_q->queue_index];
2275
2276 /*
2277 * If NAPI is already running we can miss some events. Let's rearm
2278 * the timer and try again.
2279 */
2280 if (likely(napi_schedule_prep(&ch->tx_napi)))
2281 __napi_schedule(&ch->tx_napi);
2282 else
2283 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2284 }
2285
2286 /**
2287 * stmmac_init_coalesce - init mitigation options.
2288 * @priv: driver private structure
2289 * Description:
2290 * This inits the coalesce parameters: i.e. timer rate,
2291 * timer handler and default threshold used for enabling the
2292 * interrupt on completion bit.
2293 */
stmmac_init_coalesce(struct stmmac_priv * priv)2294 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2295 {
2296 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2297 u32 chan;
2298
2299 priv->tx_coal_frames = STMMAC_TX_FRAMES;
2300 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2301 priv->rx_coal_frames = STMMAC_RX_FRAMES;
2302
2303 for (chan = 0; chan < tx_channel_count; chan++) {
2304 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2305
2306 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2307 }
2308 }
2309
stmmac_set_rings_length(struct stmmac_priv * priv)2310 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2311 {
2312 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2313 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2314 u32 chan;
2315
2316 /* set TX ring length */
2317 for (chan = 0; chan < tx_channels_count; chan++)
2318 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2319 (DMA_TX_SIZE - 1), chan);
2320
2321 /* set RX ring length */
2322 for (chan = 0; chan < rx_channels_count; chan++)
2323 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2324 (DMA_RX_SIZE - 1), chan);
2325 }
2326
2327 /**
2328 * stmmac_set_tx_queue_weight - Set TX queue weight
2329 * @priv: driver private structure
2330 * Description: It is used for setting TX queues weight
2331 */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)2332 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2333 {
2334 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2335 u32 weight;
2336 u32 queue;
2337
2338 for (queue = 0; queue < tx_queues_count; queue++) {
2339 weight = priv->plat->tx_queues_cfg[queue].weight;
2340 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2341 }
2342 }
2343
2344 /**
2345 * stmmac_configure_cbs - Configure CBS in TX queue
2346 * @priv: driver private structure
2347 * Description: It is used for configuring CBS in AVB TX queues
2348 */
stmmac_configure_cbs(struct stmmac_priv * priv)2349 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2350 {
2351 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2352 u32 mode_to_use;
2353 u32 queue;
2354
2355 /* queue 0 is reserved for legacy traffic */
2356 for (queue = 1; queue < tx_queues_count; queue++) {
2357 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2358 if (mode_to_use == MTL_QUEUE_DCB)
2359 continue;
2360
2361 stmmac_config_cbs(priv, priv->hw,
2362 priv->plat->tx_queues_cfg[queue].send_slope,
2363 priv->plat->tx_queues_cfg[queue].idle_slope,
2364 priv->plat->tx_queues_cfg[queue].high_credit,
2365 priv->plat->tx_queues_cfg[queue].low_credit,
2366 queue);
2367 }
2368 }
2369
2370 /**
2371 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2372 * @priv: driver private structure
2373 * Description: It is used for mapping RX queues to RX dma channels
2374 */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)2375 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2376 {
2377 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2378 u32 queue;
2379 u32 chan;
2380
2381 for (queue = 0; queue < rx_queues_count; queue++) {
2382 chan = priv->plat->rx_queues_cfg[queue].chan;
2383 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2384 }
2385 }
2386
2387 /**
2388 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2389 * @priv: driver private structure
2390 * Description: It is used for configuring the RX Queue Priority
2391 */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)2392 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2393 {
2394 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2395 u32 queue;
2396 u32 prio;
2397
2398 for (queue = 0; queue < rx_queues_count; queue++) {
2399 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2400 continue;
2401
2402 prio = priv->plat->rx_queues_cfg[queue].prio;
2403 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2404 }
2405 }
2406
2407 /**
2408 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2409 * @priv: driver private structure
2410 * Description: It is used for configuring the TX Queue Priority
2411 */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)2412 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2413 {
2414 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2415 u32 queue;
2416 u32 prio;
2417
2418 for (queue = 0; queue < tx_queues_count; queue++) {
2419 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2420 continue;
2421
2422 prio = priv->plat->tx_queues_cfg[queue].prio;
2423 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2424 }
2425 }
2426
2427 /**
2428 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2429 * @priv: driver private structure
2430 * Description: It is used for configuring the RX queue routing
2431 */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)2432 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2433 {
2434 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2435 u32 queue;
2436 u8 packet;
2437
2438 for (queue = 0; queue < rx_queues_count; queue++) {
2439 /* no specific packet type routing specified for the queue */
2440 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2441 continue;
2442
2443 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2444 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2445 }
2446 }
2447
stmmac_mac_config_rss(struct stmmac_priv * priv)2448 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2449 {
2450 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2451 priv->rss.enable = false;
2452 return;
2453 }
2454
2455 if (priv->dev->features & NETIF_F_RXHASH)
2456 priv->rss.enable = true;
2457 else
2458 priv->rss.enable = false;
2459
2460 stmmac_rss_configure(priv, priv->hw, &priv->rss,
2461 priv->plat->rx_queues_to_use);
2462 }
2463
2464 /**
2465 * stmmac_mtl_configuration - Configure MTL
2466 * @priv: driver private structure
2467 * Description: It is used for configurring MTL
2468 */
stmmac_mtl_configuration(struct stmmac_priv * priv)2469 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2470 {
2471 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2472 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2473
2474 if (tx_queues_count > 1)
2475 stmmac_set_tx_queue_weight(priv);
2476
2477 /* Configure MTL RX algorithms */
2478 if (rx_queues_count > 1)
2479 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2480 priv->plat->rx_sched_algorithm);
2481
2482 /* Configure MTL TX algorithms */
2483 if (tx_queues_count > 1)
2484 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2485 priv->plat->tx_sched_algorithm);
2486
2487 /* Configure CBS in AVB TX queues */
2488 if (tx_queues_count > 1)
2489 stmmac_configure_cbs(priv);
2490
2491 /* Map RX MTL to DMA channels */
2492 stmmac_rx_queue_dma_chan_map(priv);
2493
2494 /* Enable MAC RX Queues */
2495 stmmac_mac_enable_rx_queues(priv);
2496
2497 /* Set RX priorities */
2498 if (rx_queues_count > 1)
2499 stmmac_mac_config_rx_queues_prio(priv);
2500
2501 /* Set TX priorities */
2502 if (tx_queues_count > 1)
2503 stmmac_mac_config_tx_queues_prio(priv);
2504
2505 /* Set RX routing */
2506 if (rx_queues_count > 1)
2507 stmmac_mac_config_rx_queues_routing(priv);
2508
2509 /* Receive Side Scaling */
2510 if (rx_queues_count > 1)
2511 stmmac_mac_config_rss(priv);
2512 }
2513
stmmac_safety_feat_configuration(struct stmmac_priv * priv)2514 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2515 {
2516 if (priv->dma_cap.asp) {
2517 netdev_info(priv->dev, "Enabling Safety Features\n");
2518 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2519 } else {
2520 netdev_info(priv->dev, "No Safety Features support found\n");
2521 }
2522 }
2523
2524 /**
2525 * stmmac_hw_setup - setup mac in a usable state.
2526 * @dev : pointer to the device structure.
2527 * Description:
2528 * this is the main function to setup the HW in a usable state because the
2529 * dma engine is reset, the core registers are configured (e.g. AXI,
2530 * Checksum features, timers). The DMA is ready to start receiving and
2531 * transmitting.
2532 * Return value:
2533 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2534 * file on failure.
2535 */
stmmac_hw_setup(struct net_device * dev,bool init_ptp)2536 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2537 {
2538 struct stmmac_priv *priv = netdev_priv(dev);
2539 u32 rx_cnt = priv->plat->rx_queues_to_use;
2540 u32 tx_cnt = priv->plat->tx_queues_to_use;
2541 u32 chan;
2542 int ret;
2543
2544 /* DMA initialization and SW reset */
2545 ret = stmmac_init_dma_engine(priv);
2546 if (ret < 0) {
2547 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2548 __func__);
2549 return ret;
2550 }
2551
2552 /* Copy the MAC addr into the HW */
2553 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2554
2555 /* PS and related bits will be programmed according to the speed */
2556 if (priv->hw->pcs) {
2557 int speed = priv->plat->mac_port_sel_speed;
2558
2559 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2560 (speed == SPEED_1000)) {
2561 priv->hw->ps = speed;
2562 } else {
2563 dev_warn(priv->device, "invalid port speed\n");
2564 priv->hw->ps = 0;
2565 }
2566 }
2567
2568 /* Initialize the MAC Core */
2569 stmmac_core_init(priv, priv->hw, dev);
2570
2571 /* Initialize MTL*/
2572 stmmac_mtl_configuration(priv);
2573
2574 /* Initialize Safety Features */
2575 stmmac_safety_feat_configuration(priv);
2576
2577 ret = stmmac_rx_ipc(priv, priv->hw);
2578 if (!ret) {
2579 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2580 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2581 priv->hw->rx_csum = 0;
2582 }
2583
2584 /* Enable the MAC Rx/Tx */
2585 stmmac_mac_set(priv, priv->ioaddr, true);
2586
2587 /* Set the HW DMA mode and the COE */
2588 stmmac_dma_operation_mode(priv);
2589
2590 stmmac_mmc_setup(priv);
2591
2592 if (init_ptp) {
2593 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2594 if (ret < 0)
2595 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2596
2597 ret = stmmac_init_ptp(priv);
2598 if (ret == -EOPNOTSUPP)
2599 netdev_warn(priv->dev, "PTP not supported by HW\n");
2600 else if (ret)
2601 netdev_warn(priv->dev, "PTP init failed\n");
2602 }
2603
2604 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2605
2606 if (priv->use_riwt) {
2607 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt);
2608 if (!ret)
2609 priv->rx_riwt = MIN_DMA_RIWT;
2610 }
2611
2612 if (priv->hw->pcs)
2613 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2614
2615 /* set TX and RX rings length */
2616 stmmac_set_rings_length(priv);
2617
2618 /* Enable TSO */
2619 if (priv->tso) {
2620 for (chan = 0; chan < tx_cnt; chan++)
2621 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2622 }
2623
2624 /* Enable Split Header */
2625 if (priv->sph && priv->hw->rx_csum) {
2626 for (chan = 0; chan < rx_cnt; chan++)
2627 stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2628 }
2629
2630 /* VLAN Tag Insertion */
2631 if (priv->dma_cap.vlins)
2632 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2633
2634 /* Start the ball rolling... */
2635 stmmac_start_all_dma(priv);
2636
2637 return 0;
2638 }
2639
stmmac_hw_teardown(struct net_device * dev)2640 static void stmmac_hw_teardown(struct net_device *dev)
2641 {
2642 struct stmmac_priv *priv = netdev_priv(dev);
2643
2644 clk_disable_unprepare(priv->plat->clk_ptp_ref);
2645 }
2646
2647 /**
2648 * stmmac_open - open entry point of the driver
2649 * @dev : pointer to the device structure.
2650 * Description:
2651 * This function is the open entry point of the driver.
2652 * Return value:
2653 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2654 * file on failure.
2655 */
stmmac_open(struct net_device * dev)2656 static int stmmac_open(struct net_device *dev)
2657 {
2658 struct stmmac_priv *priv = netdev_priv(dev);
2659 u32 chan;
2660 int ret;
2661
2662 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2663 priv->hw->pcs != STMMAC_PCS_TBI &&
2664 priv->hw->pcs != STMMAC_PCS_RTBI) {
2665 ret = stmmac_init_phy(dev);
2666 if (ret) {
2667 netdev_err(priv->dev,
2668 "%s: Cannot attach to PHY (error: %d)\n",
2669 __func__, ret);
2670 return ret;
2671 }
2672 }
2673
2674 /* Extra statistics */
2675 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2676 priv->xstats.threshold = tc;
2677
2678 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2679 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2680
2681 ret = alloc_dma_desc_resources(priv);
2682 if (ret < 0) {
2683 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2684 __func__);
2685 goto dma_desc_error;
2686 }
2687
2688 ret = init_dma_desc_rings(dev, GFP_KERNEL);
2689 if (ret < 0) {
2690 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2691 __func__);
2692 goto init_error;
2693 }
2694
2695 ret = stmmac_hw_setup(dev, true);
2696 if (ret < 0) {
2697 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2698 goto init_error;
2699 }
2700
2701 stmmac_init_coalesce(priv);
2702
2703 phylink_start(priv->phylink);
2704
2705 /* Request the IRQ lines */
2706 ret = request_irq(dev->irq, stmmac_interrupt,
2707 IRQF_SHARED, dev->name, dev);
2708 if (unlikely(ret < 0)) {
2709 netdev_err(priv->dev,
2710 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2711 __func__, dev->irq, ret);
2712 goto irq_error;
2713 }
2714
2715 /* Request the Wake IRQ in case of another line is used for WoL */
2716 if (priv->wol_irq != dev->irq) {
2717 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2718 IRQF_SHARED, dev->name, dev);
2719 if (unlikely(ret < 0)) {
2720 netdev_err(priv->dev,
2721 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2722 __func__, priv->wol_irq, ret);
2723 goto wolirq_error;
2724 }
2725 }
2726
2727 /* Request the IRQ lines */
2728 if (priv->lpi_irq > 0) {
2729 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2730 dev->name, dev);
2731 if (unlikely(ret < 0)) {
2732 netdev_err(priv->dev,
2733 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2734 __func__, priv->lpi_irq, ret);
2735 goto lpiirq_error;
2736 }
2737 }
2738
2739 stmmac_enable_all_queues(priv);
2740 stmmac_start_all_queues(priv);
2741
2742 return 0;
2743
2744 lpiirq_error:
2745 if (priv->wol_irq != dev->irq)
2746 free_irq(priv->wol_irq, dev);
2747 wolirq_error:
2748 free_irq(dev->irq, dev);
2749 irq_error:
2750 phylink_stop(priv->phylink);
2751
2752 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2753 del_timer_sync(&priv->tx_queue[chan].txtimer);
2754
2755 stmmac_hw_teardown(dev);
2756 init_error:
2757 free_dma_desc_resources(priv);
2758 dma_desc_error:
2759 phylink_disconnect_phy(priv->phylink);
2760 return ret;
2761 }
2762
2763 /**
2764 * stmmac_release - close entry point of the driver
2765 * @dev : device pointer.
2766 * Description:
2767 * This is the stop entry point of the driver.
2768 */
stmmac_release(struct net_device * dev)2769 static int stmmac_release(struct net_device *dev)
2770 {
2771 struct stmmac_priv *priv = netdev_priv(dev);
2772 u32 chan;
2773
2774 if (priv->eee_enabled)
2775 del_timer_sync(&priv->eee_ctrl_timer);
2776
2777 /* Stop and disconnect the PHY */
2778 phylink_stop(priv->phylink);
2779 phylink_disconnect_phy(priv->phylink);
2780
2781 stmmac_stop_all_queues(priv);
2782
2783 stmmac_disable_all_queues(priv);
2784
2785 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2786 del_timer_sync(&priv->tx_queue[chan].txtimer);
2787
2788 /* Free the IRQ lines */
2789 free_irq(dev->irq, dev);
2790 if (priv->wol_irq != dev->irq)
2791 free_irq(priv->wol_irq, dev);
2792 if (priv->lpi_irq > 0)
2793 free_irq(priv->lpi_irq, dev);
2794
2795 /* Stop TX/RX DMA and clear the descriptors */
2796 stmmac_stop_all_dma(priv);
2797
2798 /* Release and free the Rx/Tx resources */
2799 free_dma_desc_resources(priv);
2800
2801 /* Disable the MAC Rx/Tx */
2802 stmmac_mac_set(priv, priv->ioaddr, false);
2803
2804 netif_carrier_off(dev);
2805
2806 stmmac_release_ptp(priv);
2807
2808 return 0;
2809 }
2810
stmmac_vlan_insert(struct stmmac_priv * priv,struct sk_buff * skb,struct stmmac_tx_queue * tx_q)2811 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2812 struct stmmac_tx_queue *tx_q)
2813 {
2814 u16 tag = 0x0, inner_tag = 0x0;
2815 u32 inner_type = 0x0;
2816 struct dma_desc *p;
2817
2818 if (!priv->dma_cap.vlins)
2819 return false;
2820 if (!skb_vlan_tag_present(skb))
2821 return false;
2822 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2823 inner_tag = skb_vlan_tag_get(skb);
2824 inner_type = STMMAC_VLAN_INSERT;
2825 }
2826
2827 tag = skb_vlan_tag_get(skb);
2828
2829 p = tx_q->dma_tx + tx_q->cur_tx;
2830 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2831 return false;
2832
2833 stmmac_set_tx_owner(priv, p);
2834 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2835 return true;
2836 }
2837
2838 /**
2839 * stmmac_tso_allocator - close entry point of the driver
2840 * @priv: driver private structure
2841 * @des: buffer start address
2842 * @total_len: total length to fill in descriptors
2843 * @last_segmant: condition for the last descriptor
2844 * @queue: TX queue index
2845 * Description:
2846 * This function fills descriptor and request new descriptors according to
2847 * buffer length to fill
2848 */
stmmac_tso_allocator(struct stmmac_priv * priv,dma_addr_t des,int total_len,bool last_segment,u32 queue)2849 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2850 int total_len, bool last_segment, u32 queue)
2851 {
2852 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2853 struct dma_desc *desc;
2854 u32 buff_size;
2855 int tmp_len;
2856
2857 tmp_len = total_len;
2858
2859 while (tmp_len > 0) {
2860 dma_addr_t curr_addr;
2861
2862 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2863 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2864 desc = tx_q->dma_tx + tx_q->cur_tx;
2865
2866 curr_addr = des + (total_len - tmp_len);
2867 if (priv->dma_cap.addr64 <= 32)
2868 desc->des0 = cpu_to_le32(curr_addr);
2869 else
2870 stmmac_set_desc_addr(priv, desc, curr_addr);
2871
2872 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2873 TSO_MAX_BUFF_SIZE : tmp_len;
2874
2875 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2876 0, 1,
2877 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2878 0, 0);
2879
2880 tmp_len -= TSO_MAX_BUFF_SIZE;
2881 }
2882 }
2883
2884 /**
2885 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2886 * @skb : the socket buffer
2887 * @dev : device pointer
2888 * Description: this is the transmit function that is called on TSO frames
2889 * (support available on GMAC4 and newer chips).
2890 * Diagram below show the ring programming in case of TSO frames:
2891 *
2892 * First Descriptor
2893 * --------
2894 * | DES0 |---> buffer1 = L2/L3/L4 header
2895 * | DES1 |---> TCP Payload (can continue on next descr...)
2896 * | DES2 |---> buffer 1 and 2 len
2897 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2898 * --------
2899 * |
2900 * ...
2901 * |
2902 * --------
2903 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
2904 * | DES1 | --|
2905 * | DES2 | --> buffer 1 and 2 len
2906 * | DES3 |
2907 * --------
2908 *
2909 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2910 */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)2911 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2912 {
2913 struct dma_desc *desc, *first, *mss_desc = NULL;
2914 struct stmmac_priv *priv = netdev_priv(dev);
2915 int nfrags = skb_shinfo(skb)->nr_frags;
2916 u32 queue = skb_get_queue_mapping(skb);
2917 struct stmmac_tx_queue *tx_q;
2918 unsigned int first_entry;
2919 int tmp_pay_len = 0;
2920 u32 pay_len, mss;
2921 u8 proto_hdr_len;
2922 dma_addr_t des;
2923 bool has_vlan;
2924 int i;
2925
2926 tx_q = &priv->tx_queue[queue];
2927
2928 /* Compute header lengths */
2929 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2930
2931 /* Desc availability based on threshold should be enough safe */
2932 if (unlikely(stmmac_tx_avail(priv, queue) <
2933 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2934 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2935 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2936 queue));
2937 /* This is a hard error, log it. */
2938 netdev_err(priv->dev,
2939 "%s: Tx Ring full when queue awake\n",
2940 __func__);
2941 }
2942 return NETDEV_TX_BUSY;
2943 }
2944
2945 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2946
2947 mss = skb_shinfo(skb)->gso_size;
2948
2949 /* set new MSS value if needed */
2950 if (mss != tx_q->mss) {
2951 mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2952 stmmac_set_mss(priv, mss_desc, mss);
2953 tx_q->mss = mss;
2954 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2955 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2956 }
2957
2958 if (netif_msg_tx_queued(priv)) {
2959 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2960 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2961 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2962 skb->data_len);
2963 }
2964
2965 /* Check if VLAN can be inserted by HW */
2966 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2967
2968 first_entry = tx_q->cur_tx;
2969 WARN_ON(tx_q->tx_skbuff[first_entry]);
2970
2971 desc = tx_q->dma_tx + first_entry;
2972 first = desc;
2973
2974 if (has_vlan)
2975 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2976
2977 /* first descriptor: fill Headers on Buf1 */
2978 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2979 DMA_TO_DEVICE);
2980 if (dma_mapping_error(priv->device, des))
2981 goto dma_map_err;
2982
2983 tx_q->tx_skbuff_dma[first_entry].buf = des;
2984 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2985
2986 if (priv->dma_cap.addr64 <= 32) {
2987 first->des0 = cpu_to_le32(des);
2988
2989 /* Fill start of payload in buff2 of first descriptor */
2990 if (pay_len)
2991 first->des1 = cpu_to_le32(des + proto_hdr_len);
2992
2993 /* If needed take extra descriptors to fill the remaining payload */
2994 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2995 } else {
2996 stmmac_set_desc_addr(priv, first, des);
2997 tmp_pay_len = pay_len;
2998 des += proto_hdr_len;
2999 pay_len = 0;
3000 }
3001
3002 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3003
3004 /* Prepare fragments */
3005 for (i = 0; i < nfrags; i++) {
3006 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3007
3008 des = skb_frag_dma_map(priv->device, frag, 0,
3009 skb_frag_size(frag),
3010 DMA_TO_DEVICE);
3011 if (dma_mapping_error(priv->device, des))
3012 goto dma_map_err;
3013
3014 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3015 (i == nfrags - 1), queue);
3016
3017 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3018 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3019 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3020 }
3021
3022 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3023
3024 /* Only the last descriptor gets to point to the skb. */
3025 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3026
3027 /* Manage tx mitigation */
3028 tx_q->tx_count_frames += nfrags + 1;
3029 if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3030 !((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3031 priv->hwts_tx_en)) {
3032 stmmac_tx_timer_arm(priv, queue);
3033 } else {
3034 desc = &tx_q->dma_tx[tx_q->cur_tx];
3035 tx_q->tx_count_frames = 0;
3036 stmmac_set_tx_ic(priv, desc);
3037 priv->xstats.tx_set_ic_bit++;
3038 }
3039
3040 /* We've used all descriptors we need for this skb, however,
3041 * advance cur_tx so that it references a fresh descriptor.
3042 * ndo_start_xmit will fill this descriptor the next time it's
3043 * called and stmmac_tx_clean may clean up to this descriptor.
3044 */
3045 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3046
3047 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3048 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3049 __func__);
3050 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3051 }
3052
3053 dev->stats.tx_bytes += skb->len;
3054 priv->xstats.tx_tso_frames++;
3055 priv->xstats.tx_tso_nfrags += nfrags;
3056
3057 if (priv->sarc_type)
3058 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3059
3060 skb_tx_timestamp(skb);
3061
3062 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3063 priv->hwts_tx_en)) {
3064 /* declare that device is doing timestamping */
3065 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3066 stmmac_enable_tx_timestamp(priv, first);
3067 }
3068
3069 /* Complete the first descriptor before granting the DMA */
3070 stmmac_prepare_tso_tx_desc(priv, first, 1,
3071 proto_hdr_len,
3072 pay_len,
3073 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3074 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
3075
3076 /* If context desc is used to change MSS */
3077 if (mss_desc) {
3078 /* Make sure that first descriptor has been completely
3079 * written, including its own bit. This is because MSS is
3080 * actually before first descriptor, so we need to make
3081 * sure that MSS's own bit is the last thing written.
3082 */
3083 dma_wmb();
3084 stmmac_set_tx_owner(priv, mss_desc);
3085 }
3086
3087 /* The own bit must be the latest setting done when prepare the
3088 * descriptor and then barrier is needed to make sure that
3089 * all is coherent before granting the DMA engine.
3090 */
3091 wmb();
3092
3093 if (netif_msg_pktdata(priv)) {
3094 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3095 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3096 tx_q->cur_tx, first, nfrags);
3097
3098 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3099
3100 pr_info(">>> frame to be transmitted: ");
3101 print_pkt(skb->data, skb_headlen(skb));
3102 }
3103
3104 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3105
3106 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3107 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3108
3109 return NETDEV_TX_OK;
3110
3111 dma_map_err:
3112 dev_err(priv->device, "Tx dma map failed\n");
3113 dev_kfree_skb(skb);
3114 priv->dev->stats.tx_dropped++;
3115 return NETDEV_TX_OK;
3116 }
3117
3118 /**
3119 * stmmac_xmit - Tx entry point of the driver
3120 * @skb : the socket buffer
3121 * @dev : device pointer
3122 * Description : this is the tx entry point of the driver.
3123 * It programs the chain or the ring and supports oversized frames
3124 * and SG feature.
3125 */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)3126 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3127 {
3128 struct stmmac_priv *priv = netdev_priv(dev);
3129 unsigned int nopaged_len = skb_headlen(skb);
3130 int i, csum_insertion = 0, is_jumbo = 0;
3131 u32 queue = skb_get_queue_mapping(skb);
3132 int nfrags = skb_shinfo(skb)->nr_frags;
3133 struct dma_desc *desc, *first;
3134 struct stmmac_tx_queue *tx_q;
3135 unsigned int first_entry;
3136 unsigned int enh_desc;
3137 dma_addr_t des;
3138 bool has_vlan;
3139 int entry;
3140
3141 tx_q = &priv->tx_queue[queue];
3142
3143 if (priv->tx_path_in_lpi_mode)
3144 stmmac_disable_eee_mode(priv);
3145
3146 /* Manage oversized TCP frames for GMAC4 device */
3147 if (skb_is_gso(skb) && priv->tso) {
3148 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3149 return stmmac_tso_xmit(skb, dev);
3150 }
3151
3152 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3153 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3154 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3155 queue));
3156 /* This is a hard error, log it. */
3157 netdev_err(priv->dev,
3158 "%s: Tx Ring full when queue awake\n",
3159 __func__);
3160 }
3161 return NETDEV_TX_BUSY;
3162 }
3163
3164 /* Check if VLAN can be inserted by HW */
3165 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3166
3167 entry = tx_q->cur_tx;
3168 first_entry = entry;
3169 WARN_ON(tx_q->tx_skbuff[first_entry]);
3170
3171 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3172
3173 if (likely(priv->extend_desc))
3174 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3175 else
3176 desc = tx_q->dma_tx + entry;
3177
3178 first = desc;
3179
3180 if (has_vlan)
3181 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3182
3183 enh_desc = priv->plat->enh_desc;
3184 /* To program the descriptors according to the size of the frame */
3185 if (enh_desc)
3186 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3187
3188 if (unlikely(is_jumbo)) {
3189 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3190 if (unlikely(entry < 0) && (entry != -EINVAL))
3191 goto dma_map_err;
3192 }
3193
3194 for (i = 0; i < nfrags; i++) {
3195 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3196 int len = skb_frag_size(frag);
3197 bool last_segment = (i == (nfrags - 1));
3198
3199 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3200 WARN_ON(tx_q->tx_skbuff[entry]);
3201
3202 if (likely(priv->extend_desc))
3203 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3204 else
3205 desc = tx_q->dma_tx + entry;
3206
3207 des = skb_frag_dma_map(priv->device, frag, 0, len,
3208 DMA_TO_DEVICE);
3209 if (dma_mapping_error(priv->device, des))
3210 goto dma_map_err; /* should reuse desc w/o issues */
3211
3212 tx_q->tx_skbuff_dma[entry].buf = des;
3213
3214 stmmac_set_desc_addr(priv, desc, des);
3215
3216 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3217 tx_q->tx_skbuff_dma[entry].len = len;
3218 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3219
3220 /* Prepare the descriptor and set the own bit too */
3221 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3222 priv->mode, 1, last_segment, skb->len);
3223 }
3224
3225 /* Only the last descriptor gets to point to the skb. */
3226 tx_q->tx_skbuff[entry] = skb;
3227
3228 /* According to the coalesce parameter the IC bit for the latest
3229 * segment is reset and the timer re-started to clean the tx status.
3230 * This approach takes care about the fragments: desc is the first
3231 * element in case of no SG.
3232 */
3233 tx_q->tx_count_frames += nfrags + 1;
3234 if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3235 !((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3236 priv->hwts_tx_en)) {
3237 stmmac_tx_timer_arm(priv, queue);
3238 } else {
3239 if (likely(priv->extend_desc))
3240 desc = &tx_q->dma_etx[entry].basic;
3241 else
3242 desc = &tx_q->dma_tx[entry];
3243
3244 tx_q->tx_count_frames = 0;
3245 stmmac_set_tx_ic(priv, desc);
3246 priv->xstats.tx_set_ic_bit++;
3247 }
3248
3249 /* We've used all descriptors we need for this skb, however,
3250 * advance cur_tx so that it references a fresh descriptor.
3251 * ndo_start_xmit will fill this descriptor the next time it's
3252 * called and stmmac_tx_clean may clean up to this descriptor.
3253 */
3254 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3255 tx_q->cur_tx = entry;
3256
3257 if (netif_msg_pktdata(priv)) {
3258 void *tx_head;
3259
3260 netdev_dbg(priv->dev,
3261 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3262 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3263 entry, first, nfrags);
3264
3265 if (priv->extend_desc)
3266 tx_head = (void *)tx_q->dma_etx;
3267 else
3268 tx_head = (void *)tx_q->dma_tx;
3269
3270 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3271
3272 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3273 print_pkt(skb->data, skb->len);
3274 }
3275
3276 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3277 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3278 __func__);
3279 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3280 }
3281
3282 dev->stats.tx_bytes += skb->len;
3283
3284 if (priv->sarc_type)
3285 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3286
3287 skb_tx_timestamp(skb);
3288
3289 /* Ready to fill the first descriptor and set the OWN bit w/o any
3290 * problems because all the descriptors are actually ready to be
3291 * passed to the DMA engine.
3292 */
3293 if (likely(!is_jumbo)) {
3294 bool last_segment = (nfrags == 0);
3295
3296 des = dma_map_single(priv->device, skb->data,
3297 nopaged_len, DMA_TO_DEVICE);
3298 if (dma_mapping_error(priv->device, des))
3299 goto dma_map_err;
3300
3301 tx_q->tx_skbuff_dma[first_entry].buf = des;
3302
3303 stmmac_set_desc_addr(priv, first, des);
3304
3305 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3306 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3307
3308 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3309 priv->hwts_tx_en)) {
3310 /* declare that device is doing timestamping */
3311 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3312 stmmac_enable_tx_timestamp(priv, first);
3313 }
3314
3315 /* Prepare the first descriptor setting the OWN bit too */
3316 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3317 csum_insertion, priv->mode, 1, last_segment,
3318 skb->len);
3319 } else {
3320 stmmac_set_tx_owner(priv, first);
3321 }
3322
3323 /* The own bit must be the latest setting done when prepare the
3324 * descriptor and then barrier is needed to make sure that
3325 * all is coherent before granting the DMA engine.
3326 */
3327 wmb();
3328
3329 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3330
3331 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3332
3333 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3334 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3335
3336 return NETDEV_TX_OK;
3337
3338 dma_map_err:
3339 netdev_err(priv->dev, "Tx DMA map failed\n");
3340 dev_kfree_skb(skb);
3341 priv->dev->stats.tx_dropped++;
3342 return NETDEV_TX_OK;
3343 }
3344
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)3345 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3346 {
3347 struct vlan_ethhdr *veth;
3348 __be16 vlan_proto;
3349 u16 vlanid;
3350
3351 veth = (struct vlan_ethhdr *)skb->data;
3352 vlan_proto = veth->h_vlan_proto;
3353
3354 if ((vlan_proto == htons(ETH_P_8021Q) &&
3355 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3356 (vlan_proto == htons(ETH_P_8021AD) &&
3357 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3358 /* pop the vlan tag */
3359 vlanid = ntohs(veth->h_vlan_TCI);
3360 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3361 skb_pull(skb, VLAN_HLEN);
3362 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3363 }
3364 }
3365
3366
stmmac_rx_threshold_count(struct stmmac_rx_queue * rx_q)3367 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3368 {
3369 if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3370 return 0;
3371
3372 return 1;
3373 }
3374
3375 /**
3376 * stmmac_rx_refill - refill used skb preallocated buffers
3377 * @priv: driver private structure
3378 * @queue: RX queue index
3379 * Description : this is to reallocate the skb for the reception process
3380 * that is based on zero-copy.
3381 */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)3382 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3383 {
3384 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3385 int len, dirty = stmmac_rx_dirty(priv, queue);
3386 unsigned int entry = rx_q->dirty_rx;
3387
3388 len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3389
3390 while (dirty-- > 0) {
3391 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3392 struct dma_desc *p;
3393 bool use_rx_wd;
3394
3395 if (priv->extend_desc)
3396 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3397 else
3398 p = rx_q->dma_rx + entry;
3399
3400 if (!buf->page) {
3401 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3402 if (!buf->page)
3403 break;
3404 }
3405
3406 if (priv->sph && !buf->sec_page) {
3407 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3408 if (!buf->sec_page)
3409 break;
3410
3411 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3412
3413 dma_sync_single_for_device(priv->device, buf->sec_addr,
3414 len, DMA_FROM_DEVICE);
3415 }
3416
3417 buf->addr = page_pool_get_dma_addr(buf->page);
3418
3419 /* Sync whole allocation to device. This will invalidate old
3420 * data.
3421 */
3422 dma_sync_single_for_device(priv->device, buf->addr, len,
3423 DMA_FROM_DEVICE);
3424
3425 stmmac_set_desc_addr(priv, p, buf->addr);
3426 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3427 stmmac_refill_desc3(priv, rx_q, p);
3428
3429 rx_q->rx_count_frames++;
3430 rx_q->rx_count_frames += priv->rx_coal_frames;
3431 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3432 rx_q->rx_count_frames = 0;
3433 use_rx_wd = priv->use_riwt && rx_q->rx_count_frames;
3434
3435 dma_wmb();
3436 stmmac_set_rx_owner(priv, p, use_rx_wd);
3437
3438 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3439 }
3440 rx_q->dirty_rx = entry;
3441 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3442 (rx_q->dirty_rx * sizeof(struct dma_desc));
3443 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3444 }
3445
3446 /**
3447 * stmmac_rx - manage the receive process
3448 * @priv: driver private structure
3449 * @limit: napi bugget
3450 * @queue: RX queue index.
3451 * Description : this the function called by the napi poll method.
3452 * It gets all the frames inside the ring.
3453 */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)3454 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3455 {
3456 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3457 struct stmmac_channel *ch = &priv->channel[queue];
3458 unsigned int count = 0, error = 0, len = 0;
3459 int status = 0, coe = priv->hw->rx_csum;
3460 unsigned int next_entry = rx_q->cur_rx;
3461 struct sk_buff *skb = NULL;
3462
3463 if (netif_msg_rx_status(priv)) {
3464 void *rx_head;
3465
3466 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3467 if (priv->extend_desc)
3468 rx_head = (void *)rx_q->dma_erx;
3469 else
3470 rx_head = (void *)rx_q->dma_rx;
3471
3472 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3473 }
3474 while (count < limit) {
3475 unsigned int hlen = 0, prev_len = 0;
3476 enum pkt_hash_types hash_type;
3477 struct stmmac_rx_buffer *buf;
3478 struct dma_desc *np, *p;
3479 unsigned int sec_len;
3480 int entry;
3481 u32 hash;
3482
3483 if (!count && rx_q->state_saved) {
3484 skb = rx_q->state.skb;
3485 error = rx_q->state.error;
3486 len = rx_q->state.len;
3487 } else {
3488 rx_q->state_saved = false;
3489 skb = NULL;
3490 error = 0;
3491 len = 0;
3492 }
3493
3494 if (count >= limit)
3495 break;
3496
3497 read_again:
3498 sec_len = 0;
3499 entry = next_entry;
3500 buf = &rx_q->buf_pool[entry];
3501
3502 if (priv->extend_desc)
3503 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3504 else
3505 p = rx_q->dma_rx + entry;
3506
3507 /* read the status of the incoming frame */
3508 status = stmmac_rx_status(priv, &priv->dev->stats,
3509 &priv->xstats, p);
3510 /* check if managed by the DMA otherwise go ahead */
3511 if (unlikely(status & dma_own))
3512 break;
3513
3514 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3515 next_entry = rx_q->cur_rx;
3516
3517 if (priv->extend_desc)
3518 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3519 else
3520 np = rx_q->dma_rx + next_entry;
3521
3522 prefetch(np);
3523 prefetch(page_address(buf->page));
3524
3525 if (priv->extend_desc)
3526 stmmac_rx_extended_status(priv, &priv->dev->stats,
3527 &priv->xstats, rx_q->dma_erx + entry);
3528 if (unlikely(status == discard_frame)) {
3529 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3530 buf->page = NULL;
3531 error = 1;
3532 if (!priv->hwts_rx_en)
3533 priv->dev->stats.rx_errors++;
3534 }
3535
3536 if (unlikely(error && (status & rx_not_ls)))
3537 goto read_again;
3538 if (unlikely(error)) {
3539 dev_kfree_skb(skb);
3540 count++;
3541 continue;
3542 }
3543
3544 /* Buffer is good. Go on. */
3545
3546 if (likely(status & rx_not_ls)) {
3547 len += priv->dma_buf_sz;
3548 } else {
3549 prev_len = len;
3550 len = stmmac_get_rx_frame_len(priv, p, coe);
3551
3552 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3553 * Type frames (LLC/LLC-SNAP)
3554 *
3555 * llc_snap is never checked in GMAC >= 4, so this ACS
3556 * feature is always disabled and packets need to be
3557 * stripped manually.
3558 */
3559 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3560 unlikely(status != llc_snap))
3561 len -= ETH_FCS_LEN;
3562 }
3563
3564 if (!skb) {
3565 int ret = stmmac_get_rx_header_len(priv, p, &hlen);
3566
3567 if (priv->sph && !ret && (hlen > 0)) {
3568 sec_len = len;
3569 if (!(status & rx_not_ls))
3570 sec_len = sec_len - hlen;
3571 len = hlen;
3572
3573 prefetch(page_address(buf->sec_page));
3574 priv->xstats.rx_split_hdr_pkt_n++;
3575 }
3576
3577 skb = napi_alloc_skb(&ch->rx_napi, len);
3578 if (!skb) {
3579 priv->dev->stats.rx_dropped++;
3580 count++;
3581 continue;
3582 }
3583
3584 dma_sync_single_for_cpu(priv->device, buf->addr, len,
3585 DMA_FROM_DEVICE);
3586 skb_copy_to_linear_data(skb, page_address(buf->page),
3587 len);
3588 skb_put(skb, len);
3589
3590 /* Data payload copied into SKB, page ready for recycle */
3591 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3592 buf->page = NULL;
3593 } else {
3594 unsigned int buf_len = len - prev_len;
3595
3596 if (likely(status & rx_not_ls))
3597 buf_len = priv->dma_buf_sz;
3598
3599 dma_sync_single_for_cpu(priv->device, buf->addr,
3600 buf_len, DMA_FROM_DEVICE);
3601 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3602 buf->page, 0, buf_len,
3603 priv->dma_buf_sz);
3604
3605 /* Data payload appended into SKB */
3606 page_pool_release_page(rx_q->page_pool, buf->page);
3607 buf->page = NULL;
3608 }
3609
3610 if (sec_len > 0) {
3611 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3612 sec_len, DMA_FROM_DEVICE);
3613 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3614 buf->sec_page, 0, sec_len,
3615 priv->dma_buf_sz);
3616
3617 len += sec_len;
3618
3619 /* Data payload appended into SKB */
3620 page_pool_release_page(rx_q->page_pool, buf->sec_page);
3621 buf->sec_page = NULL;
3622 }
3623
3624 if (likely(status & rx_not_ls))
3625 goto read_again;
3626
3627 /* Got entire packet into SKB. Finish it. */
3628
3629 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3630 stmmac_rx_vlan(priv->dev, skb);
3631 skb->protocol = eth_type_trans(skb, priv->dev);
3632
3633 if (unlikely(!coe))
3634 skb_checksum_none_assert(skb);
3635 else
3636 skb->ip_summed = CHECKSUM_UNNECESSARY;
3637
3638 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3639 skb_set_hash(skb, hash, hash_type);
3640
3641 skb_record_rx_queue(skb, queue);
3642 napi_gro_receive(&ch->rx_napi, skb);
3643
3644 priv->dev->stats.rx_packets++;
3645 priv->dev->stats.rx_bytes += len;
3646 count++;
3647 }
3648
3649 if (status & rx_not_ls) {
3650 rx_q->state_saved = true;
3651 rx_q->state.skb = skb;
3652 rx_q->state.error = error;
3653 rx_q->state.len = len;
3654 }
3655
3656 stmmac_rx_refill(priv, queue);
3657
3658 priv->xstats.rx_pkt_n += count;
3659
3660 return count;
3661 }
3662
stmmac_napi_poll_rx(struct napi_struct * napi,int budget)3663 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3664 {
3665 struct stmmac_channel *ch =
3666 container_of(napi, struct stmmac_channel, rx_napi);
3667 struct stmmac_priv *priv = ch->priv_data;
3668 u32 chan = ch->index;
3669 int work_done;
3670
3671 priv->xstats.napi_poll++;
3672
3673 work_done = stmmac_rx(priv, budget, chan);
3674 if (work_done < budget && napi_complete_done(napi, work_done))
3675 stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3676 return work_done;
3677 }
3678
stmmac_napi_poll_tx(struct napi_struct * napi,int budget)3679 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3680 {
3681 struct stmmac_channel *ch =
3682 container_of(napi, struct stmmac_channel, tx_napi);
3683 struct stmmac_priv *priv = ch->priv_data;
3684 struct stmmac_tx_queue *tx_q;
3685 u32 chan = ch->index;
3686 int work_done;
3687
3688 priv->xstats.napi_poll++;
3689
3690 work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3691 work_done = min(work_done, budget);
3692
3693 if (work_done < budget)
3694 napi_complete_done(napi, work_done);
3695
3696 /* Force transmission restart */
3697 tx_q = &priv->tx_queue[chan];
3698 if (tx_q->cur_tx != tx_q->dirty_tx) {
3699 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3700 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3701 chan);
3702 }
3703
3704 return work_done;
3705 }
3706
3707 /**
3708 * stmmac_tx_timeout
3709 * @dev : Pointer to net device structure
3710 * Description: this function is called when a packet transmission fails to
3711 * complete within a reasonable time. The driver will mark the error in the
3712 * netdev structure and arrange for the device to be reset to a sane state
3713 * in order to transmit a new packet.
3714 */
stmmac_tx_timeout(struct net_device * dev)3715 static void stmmac_tx_timeout(struct net_device *dev)
3716 {
3717 struct stmmac_priv *priv = netdev_priv(dev);
3718
3719 stmmac_global_err(priv);
3720 }
3721
3722 /**
3723 * stmmac_set_rx_mode - entry point for multicast addressing
3724 * @dev : pointer to the device structure
3725 * Description:
3726 * This function is a driver entry point which gets called by the kernel
3727 * whenever multicast addresses must be enabled/disabled.
3728 * Return value:
3729 * void.
3730 */
stmmac_set_rx_mode(struct net_device * dev)3731 static void stmmac_set_rx_mode(struct net_device *dev)
3732 {
3733 struct stmmac_priv *priv = netdev_priv(dev);
3734
3735 stmmac_set_filter(priv, priv->hw, dev);
3736 }
3737
3738 /**
3739 * stmmac_change_mtu - entry point to change MTU size for the device.
3740 * @dev : device pointer.
3741 * @new_mtu : the new MTU size for the device.
3742 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
3743 * to drive packet transmission. Ethernet has an MTU of 1500 octets
3744 * (ETH_DATA_LEN). This value can be changed with ifconfig.
3745 * Return value:
3746 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3747 * file on failure.
3748 */
stmmac_change_mtu(struct net_device * dev,int new_mtu)3749 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3750 {
3751 struct stmmac_priv *priv = netdev_priv(dev);
3752
3753 if (netif_running(dev)) {
3754 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3755 return -EBUSY;
3756 }
3757
3758 dev->mtu = new_mtu;
3759
3760 netdev_update_features(dev);
3761
3762 return 0;
3763 }
3764
stmmac_fix_features(struct net_device * dev,netdev_features_t features)3765 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3766 netdev_features_t features)
3767 {
3768 struct stmmac_priv *priv = netdev_priv(dev);
3769
3770 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3771 features &= ~NETIF_F_RXCSUM;
3772
3773 if (!priv->plat->tx_coe)
3774 features &= ~NETIF_F_CSUM_MASK;
3775
3776 /* Some GMAC devices have a bugged Jumbo frame support that
3777 * needs to have the Tx COE disabled for oversized frames
3778 * (due to limited buffer sizes). In this case we disable
3779 * the TX csum insertion in the TDES and not use SF.
3780 */
3781 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3782 features &= ~NETIF_F_CSUM_MASK;
3783
3784 /* Disable tso if asked by ethtool */
3785 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3786 if (features & NETIF_F_TSO)
3787 priv->tso = true;
3788 else
3789 priv->tso = false;
3790 }
3791
3792 return features;
3793 }
3794
stmmac_set_features(struct net_device * netdev,netdev_features_t features)3795 static int stmmac_set_features(struct net_device *netdev,
3796 netdev_features_t features)
3797 {
3798 struct stmmac_priv *priv = netdev_priv(netdev);
3799 bool sph_en;
3800 u32 chan;
3801
3802 /* Keep the COE Type in case of csum is supporting */
3803 if (features & NETIF_F_RXCSUM)
3804 priv->hw->rx_csum = priv->plat->rx_coe;
3805 else
3806 priv->hw->rx_csum = 0;
3807 /* No check needed because rx_coe has been set before and it will be
3808 * fixed in case of issue.
3809 */
3810 stmmac_rx_ipc(priv, priv->hw);
3811
3812 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3813 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3814 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3815
3816 return 0;
3817 }
3818
3819 /**
3820 * stmmac_interrupt - main ISR
3821 * @irq: interrupt number.
3822 * @dev_id: to pass the net device pointer.
3823 * Description: this is the main driver interrupt service routine.
3824 * It can call:
3825 * o DMA service routine (to manage incoming frame reception and transmission
3826 * status)
3827 * o Core interrupts to manage: remote wake-up, management counter, LPI
3828 * interrupts.
3829 */
stmmac_interrupt(int irq,void * dev_id)3830 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3831 {
3832 struct net_device *dev = (struct net_device *)dev_id;
3833 struct stmmac_priv *priv = netdev_priv(dev);
3834 u32 rx_cnt = priv->plat->rx_queues_to_use;
3835 u32 tx_cnt = priv->plat->tx_queues_to_use;
3836 u32 queues_count;
3837 u32 queue;
3838 bool xmac;
3839
3840 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3841 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3842
3843 if (priv->irq_wake)
3844 pm_wakeup_event(priv->device, 0);
3845
3846 if (unlikely(!dev)) {
3847 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3848 return IRQ_NONE;
3849 }
3850
3851 /* Check if adapter is up */
3852 if (test_bit(STMMAC_DOWN, &priv->state))
3853 return IRQ_HANDLED;
3854 /* Check if a fatal error happened */
3855 if (stmmac_safety_feat_interrupt(priv))
3856 return IRQ_HANDLED;
3857
3858 /* To handle GMAC own interrupts */
3859 if ((priv->plat->has_gmac) || xmac) {
3860 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3861 int mtl_status;
3862
3863 if (unlikely(status)) {
3864 /* For LPI we need to save the tx status */
3865 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3866 priv->tx_path_in_lpi_mode = true;
3867 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3868 priv->tx_path_in_lpi_mode = false;
3869 }
3870
3871 for (queue = 0; queue < queues_count; queue++) {
3872 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3873
3874 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3875 queue);
3876 if (mtl_status != -EINVAL)
3877 status |= mtl_status;
3878
3879 if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3880 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3881 rx_q->rx_tail_addr,
3882 queue);
3883 }
3884
3885 /* PCS link status */
3886 if (priv->hw->pcs) {
3887 if (priv->xstats.pcs_link)
3888 netif_carrier_on(dev);
3889 else
3890 netif_carrier_off(dev);
3891 }
3892 }
3893
3894 /* To handle DMA interrupts */
3895 stmmac_dma_interrupt(priv);
3896
3897 return IRQ_HANDLED;
3898 }
3899
3900 #ifdef CONFIG_NET_POLL_CONTROLLER
3901 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3902 * to allow network I/O with interrupts disabled.
3903 */
stmmac_poll_controller(struct net_device * dev)3904 static void stmmac_poll_controller(struct net_device *dev)
3905 {
3906 disable_irq(dev->irq);
3907 stmmac_interrupt(dev->irq, dev);
3908 enable_irq(dev->irq);
3909 }
3910 #endif
3911
3912 /**
3913 * stmmac_ioctl - Entry point for the Ioctl
3914 * @dev: Device pointer.
3915 * @rq: An IOCTL specefic structure, that can contain a pointer to
3916 * a proprietary structure used to pass information to the driver.
3917 * @cmd: IOCTL command
3918 * Description:
3919 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3920 */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3921 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3922 {
3923 struct stmmac_priv *priv = netdev_priv (dev);
3924 int ret = -EOPNOTSUPP;
3925
3926 if (!netif_running(dev))
3927 return -EINVAL;
3928
3929 switch (cmd) {
3930 case SIOCGMIIPHY:
3931 case SIOCGMIIREG:
3932 case SIOCSMIIREG:
3933 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3934 break;
3935 case SIOCSHWTSTAMP:
3936 ret = stmmac_hwtstamp_set(dev, rq);
3937 break;
3938 case SIOCGHWTSTAMP:
3939 ret = stmmac_hwtstamp_get(dev, rq);
3940 break;
3941 default:
3942 break;
3943 }
3944
3945 return ret;
3946 }
3947
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3948 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3949 void *cb_priv)
3950 {
3951 struct stmmac_priv *priv = cb_priv;
3952 int ret = -EOPNOTSUPP;
3953
3954 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
3955 return ret;
3956
3957 stmmac_disable_all_queues(priv);
3958
3959 switch (type) {
3960 case TC_SETUP_CLSU32:
3961 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3962 break;
3963 case TC_SETUP_CLSFLOWER:
3964 ret = stmmac_tc_setup_cls(priv, priv, type_data);
3965 break;
3966 default:
3967 break;
3968 }
3969
3970 stmmac_enable_all_queues(priv);
3971 return ret;
3972 }
3973
3974 static LIST_HEAD(stmmac_block_cb_list);
3975
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)3976 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3977 void *type_data)
3978 {
3979 struct stmmac_priv *priv = netdev_priv(ndev);
3980
3981 switch (type) {
3982 case TC_SETUP_BLOCK:
3983 return flow_block_cb_setup_simple(type_data,
3984 &stmmac_block_cb_list,
3985 stmmac_setup_tc_block_cb,
3986 priv, priv, true);
3987 case TC_SETUP_QDISC_CBS:
3988 return stmmac_tc_setup_cbs(priv, priv, type_data);
3989 default:
3990 return -EOPNOTSUPP;
3991 }
3992 }
3993
stmmac_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)3994 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
3995 struct net_device *sb_dev)
3996 {
3997 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3998 /*
3999 * There is no way to determine the number of TSO
4000 * capable Queues. Let's use always the Queue 0
4001 * because if TSO is supported then at least this
4002 * one will be capable.
4003 */
4004 return 0;
4005 }
4006
4007 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4008 }
4009
stmmac_set_mac_address(struct net_device * ndev,void * addr)4010 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4011 {
4012 struct stmmac_priv *priv = netdev_priv(ndev);
4013 int ret = 0;
4014
4015 ret = eth_mac_addr(ndev, addr);
4016 if (ret)
4017 return ret;
4018
4019 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4020
4021 return ret;
4022 }
4023
4024 #ifdef CONFIG_DEBUG_FS
4025 static struct dentry *stmmac_fs_dir;
4026
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq)4027 static void sysfs_display_ring(void *head, int size, int extend_desc,
4028 struct seq_file *seq)
4029 {
4030 int i;
4031 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4032 struct dma_desc *p = (struct dma_desc *)head;
4033
4034 for (i = 0; i < size; i++) {
4035 if (extend_desc) {
4036 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4037 i, (unsigned int)virt_to_phys(ep),
4038 le32_to_cpu(ep->basic.des0),
4039 le32_to_cpu(ep->basic.des1),
4040 le32_to_cpu(ep->basic.des2),
4041 le32_to_cpu(ep->basic.des3));
4042 ep++;
4043 } else {
4044 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4045 i, (unsigned int)virt_to_phys(p),
4046 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4047 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4048 p++;
4049 }
4050 seq_printf(seq, "\n");
4051 }
4052 }
4053
stmmac_rings_status_show(struct seq_file * seq,void * v)4054 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4055 {
4056 struct net_device *dev = seq->private;
4057 struct stmmac_priv *priv = netdev_priv(dev);
4058 u32 rx_count = priv->plat->rx_queues_to_use;
4059 u32 tx_count = priv->plat->tx_queues_to_use;
4060 u32 queue;
4061
4062 if ((dev->flags & IFF_UP) == 0)
4063 return 0;
4064
4065 for (queue = 0; queue < rx_count; queue++) {
4066 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4067
4068 seq_printf(seq, "RX Queue %d:\n", queue);
4069
4070 if (priv->extend_desc) {
4071 seq_printf(seq, "Extended descriptor ring:\n");
4072 sysfs_display_ring((void *)rx_q->dma_erx,
4073 DMA_RX_SIZE, 1, seq);
4074 } else {
4075 seq_printf(seq, "Descriptor ring:\n");
4076 sysfs_display_ring((void *)rx_q->dma_rx,
4077 DMA_RX_SIZE, 0, seq);
4078 }
4079 }
4080
4081 for (queue = 0; queue < tx_count; queue++) {
4082 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4083
4084 seq_printf(seq, "TX Queue %d:\n", queue);
4085
4086 if (priv->extend_desc) {
4087 seq_printf(seq, "Extended descriptor ring:\n");
4088 sysfs_display_ring((void *)tx_q->dma_etx,
4089 DMA_TX_SIZE, 1, seq);
4090 } else {
4091 seq_printf(seq, "Descriptor ring:\n");
4092 sysfs_display_ring((void *)tx_q->dma_tx,
4093 DMA_TX_SIZE, 0, seq);
4094 }
4095 }
4096
4097 return 0;
4098 }
4099 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4100
stmmac_dma_cap_show(struct seq_file * seq,void * v)4101 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4102 {
4103 struct net_device *dev = seq->private;
4104 struct stmmac_priv *priv = netdev_priv(dev);
4105
4106 if (!priv->hw_cap_support) {
4107 seq_printf(seq, "DMA HW features not supported\n");
4108 return 0;
4109 }
4110
4111 seq_printf(seq, "==============================\n");
4112 seq_printf(seq, "\tDMA HW features\n");
4113 seq_printf(seq, "==============================\n");
4114
4115 seq_printf(seq, "\t10/100 Mbps: %s\n",
4116 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4117 seq_printf(seq, "\t1000 Mbps: %s\n",
4118 (priv->dma_cap.mbps_1000) ? "Y" : "N");
4119 seq_printf(seq, "\tHalf duplex: %s\n",
4120 (priv->dma_cap.half_duplex) ? "Y" : "N");
4121 seq_printf(seq, "\tHash Filter: %s\n",
4122 (priv->dma_cap.hash_filter) ? "Y" : "N");
4123 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4124 (priv->dma_cap.multi_addr) ? "Y" : "N");
4125 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4126 (priv->dma_cap.pcs) ? "Y" : "N");
4127 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4128 (priv->dma_cap.sma_mdio) ? "Y" : "N");
4129 seq_printf(seq, "\tPMT Remote wake up: %s\n",
4130 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4131 seq_printf(seq, "\tPMT Magic Frame: %s\n",
4132 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4133 seq_printf(seq, "\tRMON module: %s\n",
4134 (priv->dma_cap.rmon) ? "Y" : "N");
4135 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4136 (priv->dma_cap.time_stamp) ? "Y" : "N");
4137 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4138 (priv->dma_cap.atime_stamp) ? "Y" : "N");
4139 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4140 (priv->dma_cap.eee) ? "Y" : "N");
4141 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4142 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4143 (priv->dma_cap.tx_coe) ? "Y" : "N");
4144 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4145 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4146 (priv->dma_cap.rx_coe) ? "Y" : "N");
4147 } else {
4148 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4149 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4150 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4151 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4152 }
4153 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4154 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4155 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4156 priv->dma_cap.number_rx_channel);
4157 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4158 priv->dma_cap.number_tx_channel);
4159 seq_printf(seq, "\tEnhanced descriptors: %s\n",
4160 (priv->dma_cap.enh_desc) ? "Y" : "N");
4161
4162 return 0;
4163 }
4164 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4165
stmmac_init_fs(struct net_device * dev)4166 static void stmmac_init_fs(struct net_device *dev)
4167 {
4168 struct stmmac_priv *priv = netdev_priv(dev);
4169
4170 /* Create per netdev entries */
4171 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4172
4173 /* Entry to report DMA RX/TX rings */
4174 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4175 &stmmac_rings_status_fops);
4176
4177 /* Entry to report the DMA HW features */
4178 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4179 &stmmac_dma_cap_fops);
4180 }
4181
stmmac_exit_fs(struct net_device * dev)4182 static void stmmac_exit_fs(struct net_device *dev)
4183 {
4184 struct stmmac_priv *priv = netdev_priv(dev);
4185
4186 debugfs_remove_recursive(priv->dbgfs_dir);
4187 }
4188 #endif /* CONFIG_DEBUG_FS */
4189
stmmac_vid_crc32_le(__le16 vid_le)4190 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4191 {
4192 unsigned char *data = (unsigned char *)&vid_le;
4193 unsigned char data_byte = 0;
4194 u32 crc = ~0x0;
4195 u32 temp = 0;
4196 int i, bits;
4197
4198 bits = get_bitmask_order(VLAN_VID_MASK);
4199 for (i = 0; i < bits; i++) {
4200 if ((i % 8) == 0)
4201 data_byte = data[i / 8];
4202
4203 temp = ((crc & 1) ^ data_byte) & 1;
4204 crc >>= 1;
4205 data_byte >>= 1;
4206
4207 if (temp)
4208 crc ^= 0xedb88320;
4209 }
4210
4211 return crc;
4212 }
4213
stmmac_vlan_update(struct stmmac_priv * priv,bool is_double)4214 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4215 {
4216 u32 crc, hash = 0;
4217 u16 vid;
4218
4219 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4220 __le16 vid_le = cpu_to_le16(vid);
4221 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4222 hash |= (1 << crc);
4223 }
4224
4225 return stmmac_update_vlan_hash(priv, priv->hw, hash, is_double);
4226 }
4227
stmmac_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)4228 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4229 {
4230 struct stmmac_priv *priv = netdev_priv(ndev);
4231 bool is_double = false;
4232 int ret;
4233
4234 if (!priv->dma_cap.vlhash)
4235 return -EOPNOTSUPP;
4236 if (be16_to_cpu(proto) == ETH_P_8021AD)
4237 is_double = true;
4238
4239 set_bit(vid, priv->active_vlans);
4240 ret = stmmac_vlan_update(priv, is_double);
4241 if (ret) {
4242 clear_bit(vid, priv->active_vlans);
4243 return ret;
4244 }
4245
4246 return ret;
4247 }
4248
stmmac_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)4249 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4250 {
4251 struct stmmac_priv *priv = netdev_priv(ndev);
4252 bool is_double = false;
4253
4254 if (!priv->dma_cap.vlhash)
4255 return -EOPNOTSUPP;
4256 if (be16_to_cpu(proto) == ETH_P_8021AD)
4257 is_double = true;
4258
4259 clear_bit(vid, priv->active_vlans);
4260 return stmmac_vlan_update(priv, is_double);
4261 }
4262
4263 static const struct net_device_ops stmmac_netdev_ops = {
4264 .ndo_open = stmmac_open,
4265 .ndo_start_xmit = stmmac_xmit,
4266 .ndo_stop = stmmac_release,
4267 .ndo_change_mtu = stmmac_change_mtu,
4268 .ndo_fix_features = stmmac_fix_features,
4269 .ndo_set_features = stmmac_set_features,
4270 .ndo_set_rx_mode = stmmac_set_rx_mode,
4271 .ndo_tx_timeout = stmmac_tx_timeout,
4272 .ndo_do_ioctl = stmmac_ioctl,
4273 .ndo_setup_tc = stmmac_setup_tc,
4274 .ndo_select_queue = stmmac_select_queue,
4275 #ifdef CONFIG_NET_POLL_CONTROLLER
4276 .ndo_poll_controller = stmmac_poll_controller,
4277 #endif
4278 .ndo_set_mac_address = stmmac_set_mac_address,
4279 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4280 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4281 };
4282
stmmac_reset_subtask(struct stmmac_priv * priv)4283 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4284 {
4285 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4286 return;
4287 if (test_bit(STMMAC_DOWN, &priv->state))
4288 return;
4289
4290 netdev_err(priv->dev, "Reset adapter.\n");
4291
4292 rtnl_lock();
4293 netif_trans_update(priv->dev);
4294 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4295 usleep_range(1000, 2000);
4296
4297 set_bit(STMMAC_DOWN, &priv->state);
4298 dev_close(priv->dev);
4299 dev_open(priv->dev, NULL);
4300 clear_bit(STMMAC_DOWN, &priv->state);
4301 clear_bit(STMMAC_RESETING, &priv->state);
4302 rtnl_unlock();
4303 }
4304
stmmac_service_task(struct work_struct * work)4305 static void stmmac_service_task(struct work_struct *work)
4306 {
4307 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4308 service_task);
4309
4310 stmmac_reset_subtask(priv);
4311 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4312 }
4313
4314 /**
4315 * stmmac_hw_init - Init the MAC device
4316 * @priv: driver private structure
4317 * Description: this function is to configure the MAC device according to
4318 * some platform parameters or the HW capability register. It prepares the
4319 * driver to use either ring or chain modes and to setup either enhanced or
4320 * normal descriptors.
4321 */
stmmac_hw_init(struct stmmac_priv * priv)4322 static int stmmac_hw_init(struct stmmac_priv *priv)
4323 {
4324 int ret;
4325
4326 /* dwmac-sun8i only work in chain mode */
4327 if (priv->plat->has_sun8i)
4328 chain_mode = 1;
4329 priv->chain_mode = chain_mode;
4330
4331 /* Initialize HW Interface */
4332 ret = stmmac_hwif_init(priv);
4333 if (ret)
4334 return ret;
4335
4336 /* Get the HW capability (new GMAC newer than 3.50a) */
4337 priv->hw_cap_support = stmmac_get_hw_features(priv);
4338 if (priv->hw_cap_support) {
4339 dev_info(priv->device, "DMA HW capability register supported\n");
4340
4341 /* We can override some gmac/dma configuration fields: e.g.
4342 * enh_desc, tx_coe (e.g. that are passed through the
4343 * platform) with the values from the HW capability
4344 * register (if supported).
4345 */
4346 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4347 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4348 priv->hw->pmt = priv->plat->pmt;
4349 if (priv->dma_cap.hash_tb_sz) {
4350 priv->hw->multicast_filter_bins =
4351 (BIT(priv->dma_cap.hash_tb_sz) << 5);
4352 priv->hw->mcast_bits_log2 =
4353 ilog2(priv->hw->multicast_filter_bins);
4354 }
4355
4356 /* TXCOE doesn't work in thresh DMA mode */
4357 if (priv->plat->force_thresh_dma_mode)
4358 priv->plat->tx_coe = 0;
4359 else
4360 priv->plat->tx_coe = priv->dma_cap.tx_coe;
4361
4362 /* In case of GMAC4 rx_coe is from HW cap register. */
4363 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4364
4365 if (priv->dma_cap.rx_coe_type2)
4366 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4367 else if (priv->dma_cap.rx_coe_type1)
4368 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4369
4370 } else {
4371 dev_info(priv->device, "No HW DMA feature register supported\n");
4372 }
4373
4374 if (priv->plat->rx_coe) {
4375 priv->hw->rx_csum = priv->plat->rx_coe;
4376 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4377 if (priv->synopsys_id < DWMAC_CORE_4_00)
4378 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4379 }
4380 if (priv->plat->tx_coe)
4381 dev_info(priv->device, "TX Checksum insertion supported\n");
4382
4383 if (priv->plat->pmt) {
4384 dev_info(priv->device, "Wake-Up On Lan supported\n");
4385 device_set_wakeup_capable(priv->device, 1);
4386 }
4387
4388 if (priv->dma_cap.tsoen)
4389 dev_info(priv->device, "TSO supported\n");
4390
4391 /* Run HW quirks, if any */
4392 if (priv->hwif_quirks) {
4393 ret = priv->hwif_quirks(priv);
4394 if (ret)
4395 return ret;
4396 }
4397
4398 /* Rx Watchdog is available in the COREs newer than the 3.40.
4399 * In some case, for example on bugged HW this feature
4400 * has to be disable and this can be done by passing the
4401 * riwt_off field from the platform.
4402 */
4403 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4404 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4405 priv->use_riwt = 1;
4406 dev_info(priv->device,
4407 "Enable RX Mitigation via HW Watchdog Timer\n");
4408 }
4409
4410 return 0;
4411 }
4412
4413 /**
4414 * stmmac_dvr_probe
4415 * @device: device pointer
4416 * @plat_dat: platform data pointer
4417 * @res: stmmac resource pointer
4418 * Description: this is the main probe function used to
4419 * call the alloc_etherdev, allocate the priv structure.
4420 * Return:
4421 * returns 0 on success, otherwise errno.
4422 */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)4423 int stmmac_dvr_probe(struct device *device,
4424 struct plat_stmmacenet_data *plat_dat,
4425 struct stmmac_resources *res)
4426 {
4427 struct net_device *ndev = NULL;
4428 struct stmmac_priv *priv;
4429 u32 queue, rxq, maxq;
4430 int i, ret = 0;
4431
4432 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4433 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4434 if (!ndev)
4435 return -ENOMEM;
4436
4437 SET_NETDEV_DEV(ndev, device);
4438
4439 priv = netdev_priv(ndev);
4440 priv->device = device;
4441 priv->dev = ndev;
4442
4443 stmmac_set_ethtool_ops(ndev);
4444 priv->pause = pause;
4445 priv->plat = plat_dat;
4446 priv->ioaddr = res->addr;
4447 priv->dev->base_addr = (unsigned long)res->addr;
4448
4449 priv->dev->irq = res->irq;
4450 priv->wol_irq = res->wol_irq;
4451 priv->lpi_irq = res->lpi_irq;
4452
4453 if (!IS_ERR_OR_NULL(res->mac))
4454 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4455
4456 dev_set_drvdata(device, priv->dev);
4457
4458 /* Verify driver arguments */
4459 stmmac_verify_args();
4460
4461 /* Allocate workqueue */
4462 priv->wq = create_singlethread_workqueue("stmmac_wq");
4463 if (!priv->wq) {
4464 dev_err(priv->device, "failed to create workqueue\n");
4465 return -ENOMEM;
4466 }
4467
4468 INIT_WORK(&priv->service_task, stmmac_service_task);
4469
4470 /* Override with kernel parameters if supplied XXX CRS XXX
4471 * this needs to have multiple instances
4472 */
4473 if ((phyaddr >= 0) && (phyaddr <= 31))
4474 priv->plat->phy_addr = phyaddr;
4475
4476 if (priv->plat->stmmac_rst) {
4477 ret = reset_control_assert(priv->plat->stmmac_rst);
4478 reset_control_deassert(priv->plat->stmmac_rst);
4479 /* Some reset controllers have only reset callback instead of
4480 * assert + deassert callbacks pair.
4481 */
4482 if (ret == -ENOTSUPP)
4483 reset_control_reset(priv->plat->stmmac_rst);
4484 }
4485
4486 /* Init MAC and get the capabilities */
4487 ret = stmmac_hw_init(priv);
4488 if (ret)
4489 goto error_hw_init;
4490
4491 stmmac_check_ether_addr(priv);
4492
4493 /* Configure real RX and TX queues */
4494 netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4495 netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4496
4497 ndev->netdev_ops = &stmmac_netdev_ops;
4498
4499 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4500 NETIF_F_RXCSUM;
4501
4502 ret = stmmac_tc_init(priv, priv);
4503 if (!ret) {
4504 ndev->hw_features |= NETIF_F_HW_TC;
4505 }
4506
4507 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4508 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4509 priv->tso = true;
4510 dev_info(priv->device, "TSO feature enabled\n");
4511 }
4512
4513 if (priv->dma_cap.sphen) {
4514 ndev->hw_features |= NETIF_F_GRO;
4515 priv->sph = true;
4516 dev_info(priv->device, "SPH feature enabled\n");
4517 }
4518
4519 if (priv->dma_cap.addr64) {
4520 ret = dma_set_mask_and_coherent(device,
4521 DMA_BIT_MASK(priv->dma_cap.addr64));
4522 if (!ret) {
4523 dev_info(priv->device, "Using %d bits DMA width\n",
4524 priv->dma_cap.addr64);
4525 } else {
4526 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4527 if (ret) {
4528 dev_err(priv->device, "Failed to set DMA Mask\n");
4529 goto error_hw_init;
4530 }
4531
4532 priv->dma_cap.addr64 = 32;
4533 }
4534 }
4535
4536 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4537 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4538 #ifdef STMMAC_VLAN_TAG_USED
4539 /* Both mac100 and gmac support receive VLAN tag detection */
4540 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4541 if (priv->dma_cap.vlhash) {
4542 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4543 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4544 }
4545 if (priv->dma_cap.vlins) {
4546 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4547 if (priv->dma_cap.dvlan)
4548 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4549 }
4550 #endif
4551 priv->msg_enable = netif_msg_init(debug, default_msg_level);
4552
4553 /* Initialize RSS */
4554 rxq = priv->plat->rx_queues_to_use;
4555 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4556 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4557 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4558
4559 if (priv->dma_cap.rssen && priv->plat->rss_en)
4560 ndev->features |= NETIF_F_RXHASH;
4561
4562 /* MTU range: 46 - hw-specific max */
4563 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4564 if (priv->plat->has_xgmac)
4565 ndev->max_mtu = XGMAC_JUMBO_LEN;
4566 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4567 ndev->max_mtu = JUMBO_LEN;
4568 else
4569 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4570 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4571 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4572 */
4573 if ((priv->plat->maxmtu < ndev->max_mtu) &&
4574 (priv->plat->maxmtu >= ndev->min_mtu))
4575 ndev->max_mtu = priv->plat->maxmtu;
4576 else if (priv->plat->maxmtu < ndev->min_mtu)
4577 dev_warn(priv->device,
4578 "%s: warning: maxmtu having invalid value (%d)\n",
4579 __func__, priv->plat->maxmtu);
4580
4581 if (flow_ctrl)
4582 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
4583
4584 /* Setup channels NAPI */
4585 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4586
4587 for (queue = 0; queue < maxq; queue++) {
4588 struct stmmac_channel *ch = &priv->channel[queue];
4589
4590 ch->priv_data = priv;
4591 ch->index = queue;
4592
4593 if (queue < priv->plat->rx_queues_to_use) {
4594 netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4595 NAPI_POLL_WEIGHT);
4596 }
4597 if (queue < priv->plat->tx_queues_to_use) {
4598 netif_tx_napi_add(ndev, &ch->tx_napi,
4599 stmmac_napi_poll_tx,
4600 NAPI_POLL_WEIGHT);
4601 }
4602 }
4603
4604 mutex_init(&priv->lock);
4605
4606 /* If a specific clk_csr value is passed from the platform
4607 * this means that the CSR Clock Range selection cannot be
4608 * changed at run-time and it is fixed. Viceversa the driver'll try to
4609 * set the MDC clock dynamically according to the csr actual
4610 * clock input.
4611 */
4612 if (priv->plat->clk_csr >= 0)
4613 priv->clk_csr = priv->plat->clk_csr;
4614 else
4615 stmmac_clk_csr_set(priv);
4616
4617 stmmac_check_pcs_mode(priv);
4618
4619 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4620 priv->hw->pcs != STMMAC_PCS_TBI &&
4621 priv->hw->pcs != STMMAC_PCS_RTBI) {
4622 /* MDIO bus Registration */
4623 ret = stmmac_mdio_register(ndev);
4624 if (ret < 0) {
4625 dev_err(priv->device,
4626 "%s: MDIO bus (id: %d) registration failed",
4627 __func__, priv->plat->bus_id);
4628 goto error_mdio_register;
4629 }
4630 }
4631
4632 ret = stmmac_phy_setup(priv);
4633 if (ret) {
4634 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4635 goto error_phy_setup;
4636 }
4637
4638 ret = register_netdev(ndev);
4639 if (ret) {
4640 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4641 __func__, ret);
4642 goto error_netdev_register;
4643 }
4644
4645 #ifdef CONFIG_DEBUG_FS
4646 stmmac_init_fs(ndev);
4647 #endif
4648
4649 return ret;
4650
4651 error_netdev_register:
4652 phylink_destroy(priv->phylink);
4653 error_phy_setup:
4654 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4655 priv->hw->pcs != STMMAC_PCS_TBI &&
4656 priv->hw->pcs != STMMAC_PCS_RTBI)
4657 stmmac_mdio_unregister(ndev);
4658 error_mdio_register:
4659 for (queue = 0; queue < maxq; queue++) {
4660 struct stmmac_channel *ch = &priv->channel[queue];
4661
4662 if (queue < priv->plat->rx_queues_to_use)
4663 netif_napi_del(&ch->rx_napi);
4664 if (queue < priv->plat->tx_queues_to_use)
4665 netif_napi_del(&ch->tx_napi);
4666 }
4667 error_hw_init:
4668 destroy_workqueue(priv->wq);
4669
4670 return ret;
4671 }
4672 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4673
4674 /**
4675 * stmmac_dvr_remove
4676 * @dev: device pointer
4677 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4678 * changes the link status, releases the DMA descriptor rings.
4679 */
stmmac_dvr_remove(struct device * dev)4680 int stmmac_dvr_remove(struct device *dev)
4681 {
4682 struct net_device *ndev = dev_get_drvdata(dev);
4683 struct stmmac_priv *priv = netdev_priv(ndev);
4684
4685 netdev_info(priv->dev, "%s: removing driver", __func__);
4686
4687 #ifdef CONFIG_DEBUG_FS
4688 stmmac_exit_fs(ndev);
4689 #endif
4690 stmmac_stop_all_dma(priv);
4691
4692 stmmac_mac_set(priv, priv->ioaddr, false);
4693 netif_carrier_off(ndev);
4694 unregister_netdev(ndev);
4695 phylink_destroy(priv->phylink);
4696 if (priv->plat->stmmac_rst)
4697 reset_control_assert(priv->plat->stmmac_rst);
4698 clk_disable_unprepare(priv->plat->pclk);
4699 clk_disable_unprepare(priv->plat->stmmac_clk);
4700 if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4701 priv->hw->pcs != STMMAC_PCS_TBI &&
4702 priv->hw->pcs != STMMAC_PCS_RTBI)
4703 stmmac_mdio_unregister(ndev);
4704 destroy_workqueue(priv->wq);
4705 mutex_destroy(&priv->lock);
4706
4707 return 0;
4708 }
4709 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4710
4711 /**
4712 * stmmac_suspend - suspend callback
4713 * @dev: device pointer
4714 * Description: this is the function to suspend the device and it is called
4715 * by the platform driver to stop the network queue, release the resources,
4716 * program the PMT register (for WoL), clean and release driver resources.
4717 */
stmmac_suspend(struct device * dev)4718 int stmmac_suspend(struct device *dev)
4719 {
4720 struct net_device *ndev = dev_get_drvdata(dev);
4721 struct stmmac_priv *priv = netdev_priv(ndev);
4722
4723 if (!ndev || !netif_running(ndev))
4724 return 0;
4725
4726 phylink_mac_change(priv->phylink, false);
4727
4728 mutex_lock(&priv->lock);
4729
4730 netif_device_detach(ndev);
4731 stmmac_stop_all_queues(priv);
4732
4733 stmmac_disable_all_queues(priv);
4734
4735 /* Stop TX/RX DMA */
4736 stmmac_stop_all_dma(priv);
4737
4738 /* Enable Power down mode by programming the PMT regs */
4739 if (device_may_wakeup(priv->device)) {
4740 stmmac_pmt(priv, priv->hw, priv->wolopts);
4741 priv->irq_wake = 1;
4742 } else {
4743 mutex_unlock(&priv->lock);
4744 rtnl_lock();
4745 phylink_stop(priv->phylink);
4746 rtnl_unlock();
4747 mutex_lock(&priv->lock);
4748
4749 stmmac_mac_set(priv, priv->ioaddr, false);
4750 pinctrl_pm_select_sleep_state(priv->device);
4751 /* Disable clock in case of PWM is off */
4752 if (priv->plat->clk_ptp_ref)
4753 clk_disable_unprepare(priv->plat->clk_ptp_ref);
4754 clk_disable_unprepare(priv->plat->pclk);
4755 clk_disable_unprepare(priv->plat->stmmac_clk);
4756 }
4757 mutex_unlock(&priv->lock);
4758
4759 priv->speed = SPEED_UNKNOWN;
4760 return 0;
4761 }
4762 EXPORT_SYMBOL_GPL(stmmac_suspend);
4763
4764 /**
4765 * stmmac_reset_queues_param - reset queue parameters
4766 * @dev: device pointer
4767 */
stmmac_reset_queues_param(struct stmmac_priv * priv)4768 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4769 {
4770 u32 rx_cnt = priv->plat->rx_queues_to_use;
4771 u32 tx_cnt = priv->plat->tx_queues_to_use;
4772 u32 queue;
4773
4774 for (queue = 0; queue < rx_cnt; queue++) {
4775 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4776
4777 rx_q->cur_rx = 0;
4778 rx_q->dirty_rx = 0;
4779 }
4780
4781 for (queue = 0; queue < tx_cnt; queue++) {
4782 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4783
4784 tx_q->cur_tx = 0;
4785 tx_q->dirty_tx = 0;
4786 tx_q->mss = 0;
4787 }
4788 }
4789
4790 /**
4791 * stmmac_resume - resume callback
4792 * @dev: device pointer
4793 * Description: when resume this function is invoked to setup the DMA and CORE
4794 * in a usable state.
4795 */
stmmac_resume(struct device * dev)4796 int stmmac_resume(struct device *dev)
4797 {
4798 struct net_device *ndev = dev_get_drvdata(dev);
4799 struct stmmac_priv *priv = netdev_priv(ndev);
4800
4801 if (!netif_running(ndev))
4802 return 0;
4803
4804 /* Power Down bit, into the PM register, is cleared
4805 * automatically as soon as a magic packet or a Wake-up frame
4806 * is received. Anyway, it's better to manually clear
4807 * this bit because it can generate problems while resuming
4808 * from another devices (e.g. serial console).
4809 */
4810 if (device_may_wakeup(priv->device)) {
4811 mutex_lock(&priv->lock);
4812 stmmac_pmt(priv, priv->hw, 0);
4813 mutex_unlock(&priv->lock);
4814 priv->irq_wake = 0;
4815 } else {
4816 pinctrl_pm_select_default_state(priv->device);
4817 /* enable the clk previously disabled */
4818 clk_prepare_enable(priv->plat->stmmac_clk);
4819 clk_prepare_enable(priv->plat->pclk);
4820 if (priv->plat->clk_ptp_ref)
4821 clk_prepare_enable(priv->plat->clk_ptp_ref);
4822 /* reset the phy so that it's ready */
4823 if (priv->mii)
4824 stmmac_mdio_reset(priv->mii);
4825 }
4826
4827 netif_device_attach(ndev);
4828
4829 mutex_lock(&priv->lock);
4830
4831 stmmac_reset_queues_param(priv);
4832
4833 stmmac_clear_descriptors(priv);
4834
4835 stmmac_hw_setup(ndev, false);
4836 stmmac_init_coalesce(priv);
4837 stmmac_set_rx_mode(ndev);
4838
4839 stmmac_enable_all_queues(priv);
4840
4841 stmmac_start_all_queues(priv);
4842
4843 mutex_unlock(&priv->lock);
4844
4845 if (!device_may_wakeup(priv->device)) {
4846 rtnl_lock();
4847 phylink_start(priv->phylink);
4848 rtnl_unlock();
4849 }
4850
4851 phylink_mac_change(priv->phylink, true);
4852
4853 return 0;
4854 }
4855 EXPORT_SYMBOL_GPL(stmmac_resume);
4856
4857 #ifndef MODULE
stmmac_cmdline_opt(char * str)4858 static int __init stmmac_cmdline_opt(char *str)
4859 {
4860 char *opt;
4861
4862 if (!str || !*str)
4863 return -EINVAL;
4864 while ((opt = strsep(&str, ",")) != NULL) {
4865 if (!strncmp(opt, "debug:", 6)) {
4866 if (kstrtoint(opt + 6, 0, &debug))
4867 goto err;
4868 } else if (!strncmp(opt, "phyaddr:", 8)) {
4869 if (kstrtoint(opt + 8, 0, &phyaddr))
4870 goto err;
4871 } else if (!strncmp(opt, "buf_sz:", 7)) {
4872 if (kstrtoint(opt + 7, 0, &buf_sz))
4873 goto err;
4874 } else if (!strncmp(opt, "tc:", 3)) {
4875 if (kstrtoint(opt + 3, 0, &tc))
4876 goto err;
4877 } else if (!strncmp(opt, "watchdog:", 9)) {
4878 if (kstrtoint(opt + 9, 0, &watchdog))
4879 goto err;
4880 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
4881 if (kstrtoint(opt + 10, 0, &flow_ctrl))
4882 goto err;
4883 } else if (!strncmp(opt, "pause:", 6)) {
4884 if (kstrtoint(opt + 6, 0, &pause))
4885 goto err;
4886 } else if (!strncmp(opt, "eee_timer:", 10)) {
4887 if (kstrtoint(opt + 10, 0, &eee_timer))
4888 goto err;
4889 } else if (!strncmp(opt, "chain_mode:", 11)) {
4890 if (kstrtoint(opt + 11, 0, &chain_mode))
4891 goto err;
4892 }
4893 }
4894 return 0;
4895
4896 err:
4897 pr_err("%s: ERROR broken module parameter conversion", __func__);
4898 return -EINVAL;
4899 }
4900
4901 __setup("stmmaceth=", stmmac_cmdline_opt);
4902 #endif /* MODULE */
4903
stmmac_init(void)4904 static int __init stmmac_init(void)
4905 {
4906 #ifdef CONFIG_DEBUG_FS
4907 /* Create debugfs main directory if it doesn't exist yet */
4908 if (!stmmac_fs_dir)
4909 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4910 #endif
4911
4912 return 0;
4913 }
4914
stmmac_exit(void)4915 static void __exit stmmac_exit(void)
4916 {
4917 #ifdef CONFIG_DEBUG_FS
4918 debugfs_remove_recursive(stmmac_fs_dir);
4919 #endif
4920 }
4921
4922 module_init(stmmac_init)
4923 module_exit(stmmac_exit)
4924
4925 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4926 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4927 MODULE_LICENSE("GPL");
4928