1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   The full GNU General Public License is included in this distribution in
17   the file called "COPYING".
18 
19   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
20 
21   Documentation available at:
22 	http://www.stlinux.com
23   Support available at:
24 	https://bugzilla.stlinux.com/
25 *******************************************************************************/
26 
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
30 #include <linux/ip.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include <net/pkt_cls.h>
49 #include "stmmac_ptp.h"
50 #include "stmmac.h"
51 #include <linux/reset.h>
52 #include <linux/of_mdio.h>
53 #include "dwmac1000.h"
54 #include "dwxgmac2.h"
55 #include "hwif.h"
56 
57 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
58 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
59 
60 /* Module parameters */
61 #define TX_TIMEO	5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65 
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69 
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73 
74 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
75 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
76 
77 static int flow_ctrl = FLOW_OFF;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80 
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84 
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89 
90 #define	DEFAULT_BUFSIZE	1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94 
95 #define	STMMAC_RX_COPYBREAK	256
96 
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100 
101 #define STMMAC_DEFAULT_LPI_TIMER	1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
106 
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108  * but allow user to force to use the chain instead of the ring
109  */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113 
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115 
116 #ifdef CONFIG_DEBUG_FS
117 static int stmmac_init_fs(struct net_device *dev);
118 static void stmmac_exit_fs(struct net_device *dev);
119 #endif
120 
121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
122 
123 /**
124  * stmmac_verify_args - verify the driver parameters.
125  * Description: it checks the driver parameters and set a default in case of
126  * errors.
127  */
stmmac_verify_args(void)128 static void stmmac_verify_args(void)
129 {
130 	if (unlikely(watchdog < 0))
131 		watchdog = TX_TIMEO;
132 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
133 		buf_sz = DEFAULT_BUFSIZE;
134 	if (unlikely(flow_ctrl > 1))
135 		flow_ctrl = FLOW_AUTO;
136 	else if (likely(flow_ctrl < 0))
137 		flow_ctrl = FLOW_OFF;
138 	if (unlikely((pause < 0) || (pause > 0xffff)))
139 		pause = PAUSE_TIME;
140 	if (eee_timer < 0)
141 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
142 }
143 
144 /**
145  * stmmac_disable_all_queues - Disable all queues
146  * @priv: driver private structure
147  */
stmmac_disable_all_queues(struct stmmac_priv * priv)148 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
149 {
150 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
151 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
152 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
153 	u32 queue;
154 
155 	for (queue = 0; queue < maxq; queue++) {
156 		struct stmmac_channel *ch = &priv->channel[queue];
157 
158 		napi_disable(&ch->napi);
159 	}
160 }
161 
162 /**
163  * stmmac_enable_all_queues - Enable all queues
164  * @priv: driver private structure
165  */
stmmac_enable_all_queues(struct stmmac_priv * priv)166 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
167 {
168 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
169 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
170 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
171 	u32 queue;
172 
173 	for (queue = 0; queue < maxq; queue++) {
174 		struct stmmac_channel *ch = &priv->channel[queue];
175 
176 		napi_enable(&ch->napi);
177 	}
178 }
179 
180 /**
181  * stmmac_stop_all_queues - Stop all queues
182  * @priv: driver private structure
183  */
stmmac_stop_all_queues(struct stmmac_priv * priv)184 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
185 {
186 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
187 	u32 queue;
188 
189 	for (queue = 0; queue < tx_queues_cnt; queue++)
190 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
191 }
192 
193 /**
194  * stmmac_start_all_queues - Start all queues
195  * @priv: driver private structure
196  */
stmmac_start_all_queues(struct stmmac_priv * priv)197 static void stmmac_start_all_queues(struct stmmac_priv *priv)
198 {
199 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
200 	u32 queue;
201 
202 	for (queue = 0; queue < tx_queues_cnt; queue++)
203 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
204 }
205 
stmmac_service_event_schedule(struct stmmac_priv * priv)206 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
207 {
208 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
209 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
210 		queue_work(priv->wq, &priv->service_task);
211 }
212 
stmmac_global_err(struct stmmac_priv * priv)213 static void stmmac_global_err(struct stmmac_priv *priv)
214 {
215 	netif_carrier_off(priv->dev);
216 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
217 	stmmac_service_event_schedule(priv);
218 }
219 
220 /**
221  * stmmac_clk_csr_set - dynamically set the MDC clock
222  * @priv: driver private structure
223  * Description: this is to dynamically set the MDC clock according to the csr
224  * clock input.
225  * Note:
226  *	If a specific clk_csr value is passed from the platform
227  *	this means that the CSR Clock Range selection cannot be
228  *	changed at run-time and it is fixed (as reported in the driver
229  *	documentation). Viceversa the driver will try to set the MDC
230  *	clock dynamically according to the actual clock input.
231  */
stmmac_clk_csr_set(struct stmmac_priv * priv)232 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
233 {
234 	u32 clk_rate;
235 
236 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
237 
238 	/* Platform provided default clk_csr would be assumed valid
239 	 * for all other cases except for the below mentioned ones.
240 	 * For values higher than the IEEE 802.3 specified frequency
241 	 * we can not estimate the proper divider as it is not known
242 	 * the frequency of clk_csr_i. So we do not change the default
243 	 * divider.
244 	 */
245 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
246 		if (clk_rate < CSR_F_35M)
247 			priv->clk_csr = STMMAC_CSR_20_35M;
248 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
249 			priv->clk_csr = STMMAC_CSR_35_60M;
250 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
251 			priv->clk_csr = STMMAC_CSR_60_100M;
252 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
253 			priv->clk_csr = STMMAC_CSR_100_150M;
254 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
255 			priv->clk_csr = STMMAC_CSR_150_250M;
256 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
257 			priv->clk_csr = STMMAC_CSR_250_300M;
258 	}
259 
260 	if (priv->plat->has_sun8i) {
261 		if (clk_rate > 160000000)
262 			priv->clk_csr = 0x03;
263 		else if (clk_rate > 80000000)
264 			priv->clk_csr = 0x02;
265 		else if (clk_rate > 40000000)
266 			priv->clk_csr = 0x01;
267 		else
268 			priv->clk_csr = 0;
269 	}
270 
271 	if (priv->plat->has_xgmac) {
272 		if (clk_rate > 400000000)
273 			priv->clk_csr = 0x5;
274 		else if (clk_rate > 350000000)
275 			priv->clk_csr = 0x4;
276 		else if (clk_rate > 300000000)
277 			priv->clk_csr = 0x3;
278 		else if (clk_rate > 250000000)
279 			priv->clk_csr = 0x2;
280 		else if (clk_rate > 150000000)
281 			priv->clk_csr = 0x1;
282 		else
283 			priv->clk_csr = 0x0;
284 	}
285 }
286 
print_pkt(unsigned char * buf,int len)287 static void print_pkt(unsigned char *buf, int len)
288 {
289 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
290 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
291 }
292 
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)293 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
294 {
295 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
296 	u32 avail;
297 
298 	if (tx_q->dirty_tx > tx_q->cur_tx)
299 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
300 	else
301 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
302 
303 	return avail;
304 }
305 
306 /**
307  * stmmac_rx_dirty - Get RX queue dirty
308  * @priv: driver private structure
309  * @queue: RX queue index
310  */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)311 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
312 {
313 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
314 	u32 dirty;
315 
316 	if (rx_q->dirty_rx <= rx_q->cur_rx)
317 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
318 	else
319 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
320 
321 	return dirty;
322 }
323 
324 /**
325  * stmmac_hw_fix_mac_speed - callback for speed selection
326  * @priv: driver private structure
327  * Description: on some platforms (e.g. ST), some HW system configuration
328  * registers have to be set according to the link speed negotiated.
329  */
stmmac_hw_fix_mac_speed(struct stmmac_priv * priv)330 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
331 {
332 	struct net_device *ndev = priv->dev;
333 	struct phy_device *phydev = ndev->phydev;
334 
335 	if (likely(priv->plat->fix_mac_speed))
336 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
337 }
338 
339 /**
340  * stmmac_enable_eee_mode - check and enter in LPI mode
341  * @priv: driver private structure
342  * Description: this function is to verify and enter in LPI mode in case of
343  * EEE.
344  */
stmmac_enable_eee_mode(struct stmmac_priv * priv)345 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
346 {
347 	u32 tx_cnt = priv->plat->tx_queues_to_use;
348 	u32 queue;
349 
350 	/* check if all TX queues have the work finished */
351 	for (queue = 0; queue < tx_cnt; queue++) {
352 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
353 
354 		if (tx_q->dirty_tx != tx_q->cur_tx)
355 			return; /* still unfinished work */
356 	}
357 
358 	/* Check and enter in LPI mode */
359 	if (!priv->tx_path_in_lpi_mode)
360 		stmmac_set_eee_mode(priv, priv->hw,
361 				priv->plat->en_tx_lpi_clockgating);
362 }
363 
364 /**
365  * stmmac_disable_eee_mode - disable and exit from LPI mode
366  * @priv: driver private structure
367  * Description: this function is to exit and disable EEE in case of
368  * LPI state is true. This is called by the xmit.
369  */
stmmac_disable_eee_mode(struct stmmac_priv * priv)370 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
371 {
372 	stmmac_reset_eee_mode(priv, priv->hw);
373 	del_timer_sync(&priv->eee_ctrl_timer);
374 	priv->tx_path_in_lpi_mode = false;
375 }
376 
377 /**
378  * stmmac_eee_ctrl_timer - EEE TX SW timer.
379  * @arg : data hook
380  * Description:
381  *  if there is no data transfer and if we are not in LPI state,
382  *  then MAC Transmitter can be moved to LPI state.
383  */
stmmac_eee_ctrl_timer(struct timer_list * t)384 static void stmmac_eee_ctrl_timer(struct timer_list *t)
385 {
386 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
387 
388 	stmmac_enable_eee_mode(priv);
389 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
390 }
391 
392 /**
393  * stmmac_eee_init - init EEE
394  * @priv: driver private structure
395  * Description:
396  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
397  *  can also manage EEE, this function enable the LPI state and start related
398  *  timer.
399  */
stmmac_eee_init(struct stmmac_priv * priv)400 bool stmmac_eee_init(struct stmmac_priv *priv)
401 {
402 	struct net_device *ndev = priv->dev;
403 	int interface = priv->plat->interface;
404 	bool ret = false;
405 
406 	if ((interface != PHY_INTERFACE_MODE_MII) &&
407 	    (interface != PHY_INTERFACE_MODE_GMII) &&
408 	    !phy_interface_mode_is_rgmii(interface))
409 		goto out;
410 
411 	/* Using PCS we cannot dial with the phy registers at this stage
412 	 * so we do not support extra feature like EEE.
413 	 */
414 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
415 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
416 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
417 		goto out;
418 
419 	/* MAC core supports the EEE feature. */
420 	if (priv->dma_cap.eee) {
421 		int tx_lpi_timer = priv->tx_lpi_timer;
422 
423 		/* Check if the PHY supports EEE */
424 		if (phy_init_eee(ndev->phydev, 1)) {
425 			/* To manage at run-time if the EEE cannot be supported
426 			 * anymore (for example because the lp caps have been
427 			 * changed).
428 			 * In that case the driver disable own timers.
429 			 */
430 			mutex_lock(&priv->lock);
431 			if (priv->eee_active) {
432 				netdev_dbg(priv->dev, "disable EEE\n");
433 				del_timer_sync(&priv->eee_ctrl_timer);
434 				stmmac_set_eee_timer(priv, priv->hw, 0,
435 						tx_lpi_timer);
436 			}
437 			priv->eee_active = 0;
438 			mutex_unlock(&priv->lock);
439 			goto out;
440 		}
441 		/* Activate the EEE and start timers */
442 		mutex_lock(&priv->lock);
443 		if (!priv->eee_active) {
444 			priv->eee_active = 1;
445 			timer_setup(&priv->eee_ctrl_timer,
446 				    stmmac_eee_ctrl_timer, 0);
447 			mod_timer(&priv->eee_ctrl_timer,
448 				  STMMAC_LPI_T(eee_timer));
449 
450 			stmmac_set_eee_timer(priv, priv->hw,
451 					STMMAC_DEFAULT_LIT_LS, tx_lpi_timer);
452 		}
453 		/* Set HW EEE according to the speed */
454 		stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link);
455 
456 		ret = true;
457 		mutex_unlock(&priv->lock);
458 
459 		netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
460 	}
461 out:
462 	return ret;
463 }
464 
465 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
466  * @priv: driver private structure
467  * @p : descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read timestamp from the descriptor & pass it to stack.
471  * and also perform some sanity checks.
472  */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)473 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
474 				   struct dma_desc *p, struct sk_buff *skb)
475 {
476 	struct skb_shared_hwtstamps shhwtstamp;
477 	u64 ns;
478 
479 	if (!priv->hwts_tx_en)
480 		return;
481 
482 	/* exit if skb doesn't support hw tstamp */
483 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
484 		return;
485 
486 	/* check tx tstamp status */
487 	if (stmmac_get_tx_timestamp_status(priv, p)) {
488 		/* get the valid tstamp */
489 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
490 
491 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
493 
494 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
495 		/* pass tstamp to stack */
496 		skb_tstamp_tx(skb, &shhwtstamp);
497 	}
498 
499 	return;
500 }
501 
502 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
503  * @priv: driver private structure
504  * @p : descriptor pointer
505  * @np : next descriptor pointer
506  * @skb : the socket buffer
507  * Description :
508  * This function will read received packet's timestamp from the descriptor
509  * and pass it to stack. It also perform some sanity checks.
510  */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)511 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
512 				   struct dma_desc *np, struct sk_buff *skb)
513 {
514 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
515 	struct dma_desc *desc = p;
516 	u64 ns;
517 
518 	if (!priv->hwts_rx_en)
519 		return;
520 	/* For GMAC4, the valid timestamp is from CTX next desc. */
521 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
522 		desc = np;
523 
524 	/* Check if timestamp is available */
525 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
526 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
527 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
528 		shhwtstamp = skb_hwtstamps(skb);
529 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
530 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
531 	} else  {
532 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
533 	}
534 }
535 
536 /**
537  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
538  *  @dev: device pointer.
539  *  @ifr: An IOCTL specific structure, that can contain a pointer to
540  *  a proprietary structure used to pass information to the driver.
541  *  Description:
542  *  This function configures the MAC to enable/disable both outgoing(TX)
543  *  and incoming(RX) packets time stamping based on user input.
544  *  Return Value:
545  *  0 on success and an appropriate -ve integer on failure.
546  */
stmmac_hwtstamp_ioctl(struct net_device * dev,struct ifreq * ifr)547 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
548 {
549 	struct stmmac_priv *priv = netdev_priv(dev);
550 	struct hwtstamp_config config;
551 	struct timespec64 now;
552 	u64 temp = 0;
553 	u32 ptp_v2 = 0;
554 	u32 tstamp_all = 0;
555 	u32 ptp_over_ipv4_udp = 0;
556 	u32 ptp_over_ipv6_udp = 0;
557 	u32 ptp_over_ethernet = 0;
558 	u32 snap_type_sel = 0;
559 	u32 ts_master_en = 0;
560 	u32 ts_event_en = 0;
561 	u32 value = 0;
562 	u32 sec_inc;
563 	bool xmac;
564 
565 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
566 
567 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
568 		netdev_alert(priv->dev, "No support for HW time stamping\n");
569 		priv->hwts_tx_en = 0;
570 		priv->hwts_rx_en = 0;
571 
572 		return -EOPNOTSUPP;
573 	}
574 
575 	if (copy_from_user(&config, ifr->ifr_data,
576 			   sizeof(struct hwtstamp_config)))
577 		return -EFAULT;
578 
579 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
580 		   __func__, config.flags, config.tx_type, config.rx_filter);
581 
582 	/* reserved for future extensions */
583 	if (config.flags)
584 		return -EINVAL;
585 
586 	if (config.tx_type != HWTSTAMP_TX_OFF &&
587 	    config.tx_type != HWTSTAMP_TX_ON)
588 		return -ERANGE;
589 
590 	if (priv->adv_ts) {
591 		switch (config.rx_filter) {
592 		case HWTSTAMP_FILTER_NONE:
593 			/* time stamp no incoming packet at all */
594 			config.rx_filter = HWTSTAMP_FILTER_NONE;
595 			break;
596 
597 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
598 			/* PTP v1, UDP, any kind of event packet */
599 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
600 			/* take time stamp for all event messages */
601 			if (xmac)
602 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
603 			else
604 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
605 
606 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
607 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
608 			break;
609 
610 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
611 			/* PTP v1, UDP, Sync packet */
612 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
613 			/* take time stamp for SYNC messages only */
614 			ts_event_en = PTP_TCR_TSEVNTENA;
615 
616 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
617 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
618 			break;
619 
620 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
621 			/* PTP v1, UDP, Delay_req packet */
622 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
623 			/* take time stamp for Delay_Req messages only */
624 			ts_master_en = PTP_TCR_TSMSTRENA;
625 			ts_event_en = PTP_TCR_TSEVNTENA;
626 
627 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
628 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
629 			break;
630 
631 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
632 			/* PTP v2, UDP, any kind of event packet */
633 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
634 			ptp_v2 = PTP_TCR_TSVER2ENA;
635 			/* take time stamp for all event messages */
636 			if (xmac)
637 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
638 			else
639 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
640 
641 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
642 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
643 			break;
644 
645 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
646 			/* PTP v2, UDP, Sync packet */
647 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
648 			ptp_v2 = PTP_TCR_TSVER2ENA;
649 			/* take time stamp for SYNC messages only */
650 			ts_event_en = PTP_TCR_TSEVNTENA;
651 
652 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
653 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
657 			/* PTP v2, UDP, Delay_req packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
659 			ptp_v2 = PTP_TCR_TSVER2ENA;
660 			/* take time stamp for Delay_Req messages only */
661 			ts_master_en = PTP_TCR_TSMSTRENA;
662 			ts_event_en = PTP_TCR_TSEVNTENA;
663 
664 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
665 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
666 			break;
667 
668 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
669 			/* PTP v2/802.AS1 any layer, any kind of event packet */
670 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
671 			ptp_v2 = PTP_TCR_TSVER2ENA;
672 			/* take time stamp for all event messages */
673 			if (xmac)
674 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
675 			else
676 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
677 
678 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
679 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
680 			ptp_over_ethernet = PTP_TCR_TSIPENA;
681 			break;
682 
683 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
684 			/* PTP v2/802.AS1, any layer, Sync packet */
685 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
686 			ptp_v2 = PTP_TCR_TSVER2ENA;
687 			/* take time stamp for SYNC messages only */
688 			ts_event_en = PTP_TCR_TSEVNTENA;
689 
690 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
691 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
692 			ptp_over_ethernet = PTP_TCR_TSIPENA;
693 			break;
694 
695 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
696 			/* PTP v2/802.AS1, any layer, Delay_req packet */
697 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
698 			ptp_v2 = PTP_TCR_TSVER2ENA;
699 			/* take time stamp for Delay_Req messages only */
700 			ts_master_en = PTP_TCR_TSMSTRENA;
701 			ts_event_en = PTP_TCR_TSEVNTENA;
702 
703 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
704 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
705 			ptp_over_ethernet = PTP_TCR_TSIPENA;
706 			break;
707 
708 		case HWTSTAMP_FILTER_NTP_ALL:
709 		case HWTSTAMP_FILTER_ALL:
710 			/* time stamp any incoming packet */
711 			config.rx_filter = HWTSTAMP_FILTER_ALL;
712 			tstamp_all = PTP_TCR_TSENALL;
713 			break;
714 
715 		default:
716 			return -ERANGE;
717 		}
718 	} else {
719 		switch (config.rx_filter) {
720 		case HWTSTAMP_FILTER_NONE:
721 			config.rx_filter = HWTSTAMP_FILTER_NONE;
722 			break;
723 		default:
724 			/* PTP v1, UDP, any kind of event packet */
725 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
726 			break;
727 		}
728 	}
729 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
730 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
731 
732 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
733 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
734 	else {
735 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
736 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
737 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
738 			 ts_master_en | snap_type_sel);
739 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
740 
741 		/* program Sub Second Increment reg */
742 		stmmac_config_sub_second_increment(priv,
743 				priv->ptpaddr, priv->plat->clk_ptp_rate,
744 				xmac, &sec_inc);
745 		temp = div_u64(1000000000ULL, sec_inc);
746 
747 		/* Store sub second increment and flags for later use */
748 		priv->sub_second_inc = sec_inc;
749 		priv->systime_flags = value;
750 
751 		/* calculate default added value:
752 		 * formula is :
753 		 * addend = (2^32)/freq_div_ratio;
754 		 * where, freq_div_ratio = 1e9ns/sec_inc
755 		 */
756 		temp = (u64)(temp << 32);
757 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
758 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
759 
760 		/* initialize system time */
761 		ktime_get_real_ts64(&now);
762 
763 		/* lower 32 bits of tv_sec are safe until y2106 */
764 		stmmac_init_systime(priv, priv->ptpaddr,
765 				(u32)now.tv_sec, now.tv_nsec);
766 	}
767 
768 	return copy_to_user(ifr->ifr_data, &config,
769 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
770 }
771 
772 /**
773  * stmmac_init_ptp - init PTP
774  * @priv: driver private structure
775  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
776  * This is done by looking at the HW cap. register.
777  * This function also registers the ptp driver.
778  */
stmmac_init_ptp(struct stmmac_priv * priv)779 static int stmmac_init_ptp(struct stmmac_priv *priv)
780 {
781 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
782 
783 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
784 		return -EOPNOTSUPP;
785 
786 	priv->adv_ts = 0;
787 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
788 	if (xmac && priv->dma_cap.atime_stamp)
789 		priv->adv_ts = 1;
790 	/* Dwmac 3.x core with extend_desc can support adv_ts */
791 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
792 		priv->adv_ts = 1;
793 
794 	if (priv->dma_cap.time_stamp)
795 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
796 
797 	if (priv->adv_ts)
798 		netdev_info(priv->dev,
799 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
800 
801 	priv->hwts_tx_en = 0;
802 	priv->hwts_rx_en = 0;
803 
804 	stmmac_ptp_register(priv);
805 
806 	return 0;
807 }
808 
stmmac_release_ptp(struct stmmac_priv * priv)809 static void stmmac_release_ptp(struct stmmac_priv *priv)
810 {
811 	if (priv->plat->clk_ptp_ref)
812 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
813 	stmmac_ptp_unregister(priv);
814 }
815 
816 /**
817  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
818  *  @priv: driver private structure
819  *  Description: It is used for configuring the flow control in all queues
820  */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)821 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
822 {
823 	u32 tx_cnt = priv->plat->tx_queues_to_use;
824 
825 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
826 			priv->pause, tx_cnt);
827 }
828 
829 /**
830  * stmmac_adjust_link - adjusts the link parameters
831  * @dev: net device structure
832  * Description: this is the helper called by the physical abstraction layer
833  * drivers to communicate the phy link status. According the speed and duplex
834  * this driver can invoke registered glue-logic as well.
835  * It also invoke the eee initialization because it could happen when switch
836  * on different networks (that are eee capable).
837  */
stmmac_adjust_link(struct net_device * dev)838 static void stmmac_adjust_link(struct net_device *dev)
839 {
840 	struct stmmac_priv *priv = netdev_priv(dev);
841 	struct phy_device *phydev = dev->phydev;
842 	bool new_state = false;
843 
844 	if (!phydev)
845 		return;
846 
847 	mutex_lock(&priv->lock);
848 
849 	if (phydev->link) {
850 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
851 
852 		/* Now we make sure that we can be in full duplex mode.
853 		 * If not, we operate in half-duplex mode. */
854 		if (phydev->duplex != priv->oldduplex) {
855 			new_state = true;
856 			if (!phydev->duplex)
857 				ctrl &= ~priv->hw->link.duplex;
858 			else
859 				ctrl |= priv->hw->link.duplex;
860 			priv->oldduplex = phydev->duplex;
861 		}
862 		/* Flow Control operation */
863 		if (phydev->pause)
864 			stmmac_mac_flow_ctrl(priv, phydev->duplex);
865 
866 		if (phydev->speed != priv->speed) {
867 			new_state = true;
868 			ctrl &= ~priv->hw->link.speed_mask;
869 			switch (phydev->speed) {
870 			case SPEED_1000:
871 				ctrl |= priv->hw->link.speed1000;
872 				break;
873 			case SPEED_100:
874 				ctrl |= priv->hw->link.speed100;
875 				break;
876 			case SPEED_10:
877 				ctrl |= priv->hw->link.speed10;
878 				break;
879 			default:
880 				netif_warn(priv, link, priv->dev,
881 					   "broken speed: %d\n", phydev->speed);
882 				phydev->speed = SPEED_UNKNOWN;
883 				break;
884 			}
885 			if (phydev->speed != SPEED_UNKNOWN)
886 				stmmac_hw_fix_mac_speed(priv);
887 			priv->speed = phydev->speed;
888 		}
889 
890 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
891 
892 		if (!priv->oldlink) {
893 			new_state = true;
894 			priv->oldlink = true;
895 		}
896 	} else if (priv->oldlink) {
897 		new_state = true;
898 		priv->oldlink = false;
899 		priv->speed = SPEED_UNKNOWN;
900 		priv->oldduplex = DUPLEX_UNKNOWN;
901 	}
902 
903 	if (new_state && netif_msg_link(priv))
904 		phy_print_status(phydev);
905 
906 	mutex_unlock(&priv->lock);
907 
908 	if (phydev->is_pseudo_fixed_link)
909 		/* Stop PHY layer to call the hook to adjust the link in case
910 		 * of a switch is attached to the stmmac driver.
911 		 */
912 		phydev->irq = PHY_IGNORE_INTERRUPT;
913 	else
914 		/* At this stage, init the EEE if supported.
915 		 * Never called in case of fixed_link.
916 		 */
917 		priv->eee_enabled = stmmac_eee_init(priv);
918 }
919 
920 /**
921  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
922  * @priv: driver private structure
923  * Description: this is to verify if the HW supports the PCS.
924  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
925  * configured for the TBI, RTBI, or SGMII PHY interface.
926  */
stmmac_check_pcs_mode(struct stmmac_priv * priv)927 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
928 {
929 	int interface = priv->plat->interface;
930 
931 	if (priv->dma_cap.pcs) {
932 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
933 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
934 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
935 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
936 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
937 			priv->hw->pcs = STMMAC_PCS_RGMII;
938 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
939 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
940 			priv->hw->pcs = STMMAC_PCS_SGMII;
941 		}
942 	}
943 }
944 
945 /**
946  * stmmac_init_phy - PHY initialization
947  * @dev: net device structure
948  * Description: it initializes the driver's PHY state, and attaches the PHY
949  * to the mac driver.
950  *  Return value:
951  *  0 on success
952  */
stmmac_init_phy(struct net_device * dev)953 static int stmmac_init_phy(struct net_device *dev)
954 {
955 	struct stmmac_priv *priv = netdev_priv(dev);
956 	u32 tx_cnt = priv->plat->tx_queues_to_use;
957 	struct phy_device *phydev;
958 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
959 	char bus_id[MII_BUS_ID_SIZE];
960 	int interface = priv->plat->interface;
961 	int max_speed = priv->plat->max_speed;
962 	priv->oldlink = false;
963 	priv->speed = SPEED_UNKNOWN;
964 	priv->oldduplex = DUPLEX_UNKNOWN;
965 
966 	if (priv->plat->phy_node) {
967 		phydev = of_phy_connect(dev, priv->plat->phy_node,
968 					&stmmac_adjust_link, 0, interface);
969 	} else {
970 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
971 			 priv->plat->bus_id);
972 
973 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
974 			 priv->plat->phy_addr);
975 		netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
976 			   phy_id_fmt);
977 
978 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
979 				     interface);
980 	}
981 
982 	if (IS_ERR_OR_NULL(phydev)) {
983 		netdev_err(priv->dev, "Could not attach to PHY\n");
984 		if (!phydev)
985 			return -ENODEV;
986 
987 		return PTR_ERR(phydev);
988 	}
989 
990 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
991 	if ((interface == PHY_INTERFACE_MODE_MII) ||
992 	    (interface == PHY_INTERFACE_MODE_RMII) ||
993 		(max_speed < 1000 && max_speed > 0))
994 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
995 					 SUPPORTED_1000baseT_Full);
996 
997 	/*
998 	 * Half-duplex mode not supported with multiqueue
999 	 * half-duplex can only works with single queue
1000 	 */
1001 	if (tx_cnt > 1)
1002 		phydev->supported &= ~(SUPPORTED_1000baseT_Half |
1003 				       SUPPORTED_100baseT_Half |
1004 				       SUPPORTED_10baseT_Half);
1005 
1006 	/*
1007 	 * Broken HW is sometimes missing the pull-up resistor on the
1008 	 * MDIO line, which results in reads to non-existent devices returning
1009 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
1010 	 * device as well.
1011 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
1012 	 */
1013 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
1014 		phy_disconnect(phydev);
1015 		return -ENODEV;
1016 	}
1017 
1018 	/* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
1019 	 * subsequent PHY polling, make sure we force a link transition if
1020 	 * we have a UP/DOWN/UP transition
1021 	 */
1022 	if (phydev->is_pseudo_fixed_link)
1023 		phydev->irq = PHY_POLL;
1024 
1025 	phy_attached_info(phydev);
1026 	return 0;
1027 }
1028 
stmmac_display_rx_rings(struct stmmac_priv * priv)1029 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1030 {
1031 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1032 	void *head_rx;
1033 	u32 queue;
1034 
1035 	/* Display RX rings */
1036 	for (queue = 0; queue < rx_cnt; queue++) {
1037 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1038 
1039 		pr_info("\tRX Queue %u rings\n", queue);
1040 
1041 		if (priv->extend_desc)
1042 			head_rx = (void *)rx_q->dma_erx;
1043 		else
1044 			head_rx = (void *)rx_q->dma_rx;
1045 
1046 		/* Display RX ring */
1047 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1048 	}
1049 }
1050 
stmmac_display_tx_rings(struct stmmac_priv * priv)1051 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1052 {
1053 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1054 	void *head_tx;
1055 	u32 queue;
1056 
1057 	/* Display TX rings */
1058 	for (queue = 0; queue < tx_cnt; queue++) {
1059 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1060 
1061 		pr_info("\tTX Queue %d rings\n", queue);
1062 
1063 		if (priv->extend_desc)
1064 			head_tx = (void *)tx_q->dma_etx;
1065 		else
1066 			head_tx = (void *)tx_q->dma_tx;
1067 
1068 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1069 	}
1070 }
1071 
stmmac_display_rings(struct stmmac_priv * priv)1072 static void stmmac_display_rings(struct stmmac_priv *priv)
1073 {
1074 	/* Display RX ring */
1075 	stmmac_display_rx_rings(priv);
1076 
1077 	/* Display TX ring */
1078 	stmmac_display_tx_rings(priv);
1079 }
1080 
stmmac_set_bfsize(int mtu,int bufsize)1081 static int stmmac_set_bfsize(int mtu, int bufsize)
1082 {
1083 	int ret = bufsize;
1084 
1085 	if (mtu >= BUF_SIZE_4KiB)
1086 		ret = BUF_SIZE_8KiB;
1087 	else if (mtu >= BUF_SIZE_2KiB)
1088 		ret = BUF_SIZE_4KiB;
1089 	else if (mtu > DEFAULT_BUFSIZE)
1090 		ret = BUF_SIZE_2KiB;
1091 	else
1092 		ret = DEFAULT_BUFSIZE;
1093 
1094 	return ret;
1095 }
1096 
1097 /**
1098  * stmmac_clear_rx_descriptors - clear RX descriptors
1099  * @priv: driver private structure
1100  * @queue: RX queue index
1101  * Description: this function is called to clear the RX descriptors
1102  * in case of both basic and extended descriptors are used.
1103  */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,u32 queue)1104 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1105 {
1106 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1107 	int i;
1108 
1109 	/* Clear the RX descriptors */
1110 	for (i = 0; i < DMA_RX_SIZE; i++)
1111 		if (priv->extend_desc)
1112 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1113 					priv->use_riwt, priv->mode,
1114 					(i == DMA_RX_SIZE - 1));
1115 		else
1116 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1117 					priv->use_riwt, priv->mode,
1118 					(i == DMA_RX_SIZE - 1));
1119 }
1120 
1121 /**
1122  * stmmac_clear_tx_descriptors - clear tx descriptors
1123  * @priv: driver private structure
1124  * @queue: TX queue index.
1125  * Description: this function is called to clear the TX descriptors
1126  * in case of both basic and extended descriptors are used.
1127  */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,u32 queue)1128 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1129 {
1130 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1131 	int i;
1132 
1133 	/* Clear the TX descriptors */
1134 	for (i = 0; i < DMA_TX_SIZE; i++)
1135 		if (priv->extend_desc)
1136 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1137 					priv->mode, (i == DMA_TX_SIZE - 1));
1138 		else
1139 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1140 					priv->mode, (i == DMA_TX_SIZE - 1));
1141 }
1142 
1143 /**
1144  * stmmac_clear_descriptors - clear descriptors
1145  * @priv: driver private structure
1146  * Description: this function is called to clear the TX and RX descriptors
1147  * in case of both basic and extended descriptors are used.
1148  */
stmmac_clear_descriptors(struct stmmac_priv * priv)1149 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1150 {
1151 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1152 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1153 	u32 queue;
1154 
1155 	/* Clear the RX descriptors */
1156 	for (queue = 0; queue < rx_queue_cnt; queue++)
1157 		stmmac_clear_rx_descriptors(priv, queue);
1158 
1159 	/* Clear the TX descriptors */
1160 	for (queue = 0; queue < tx_queue_cnt; queue++)
1161 		stmmac_clear_tx_descriptors(priv, queue);
1162 }
1163 
1164 /**
1165  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1166  * @priv: driver private structure
1167  * @p: descriptor pointer
1168  * @i: descriptor index
1169  * @flags: gfp flag
1170  * @queue: RX queue index
1171  * Description: this function is called to allocate a receive buffer, perform
1172  * the DMA mapping and init the descriptor.
1173  */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct dma_desc * p,int i,gfp_t flags,u32 queue)1174 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1175 				  int i, gfp_t flags, u32 queue)
1176 {
1177 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1178 	struct sk_buff *skb;
1179 
1180 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1181 	if (!skb) {
1182 		netdev_err(priv->dev,
1183 			   "%s: Rx init fails; skb is NULL\n", __func__);
1184 		return -ENOMEM;
1185 	}
1186 	rx_q->rx_skbuff[i] = skb;
1187 	rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1188 						priv->dma_buf_sz,
1189 						DMA_FROM_DEVICE);
1190 	if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1191 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1192 		dev_kfree_skb_any(skb);
1193 		return -EINVAL;
1194 	}
1195 
1196 	stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1197 
1198 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1199 		stmmac_init_desc3(priv, p);
1200 
1201 	return 0;
1202 }
1203 
1204 /**
1205  * stmmac_free_rx_buffer - free RX dma buffers
1206  * @priv: private structure
1207  * @queue: RX queue index
1208  * @i: buffer index.
1209  */
stmmac_free_rx_buffer(struct stmmac_priv * priv,u32 queue,int i)1210 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1211 {
1212 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1213 
1214 	if (rx_q->rx_skbuff[i]) {
1215 		dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1216 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1217 		dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1218 	}
1219 	rx_q->rx_skbuff[i] = NULL;
1220 }
1221 
1222 /**
1223  * stmmac_free_tx_buffer - free RX dma buffers
1224  * @priv: private structure
1225  * @queue: RX queue index
1226  * @i: buffer index.
1227  */
stmmac_free_tx_buffer(struct stmmac_priv * priv,u32 queue,int i)1228 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1229 {
1230 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1231 
1232 	if (tx_q->tx_skbuff_dma[i].buf) {
1233 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1234 			dma_unmap_page(priv->device,
1235 				       tx_q->tx_skbuff_dma[i].buf,
1236 				       tx_q->tx_skbuff_dma[i].len,
1237 				       DMA_TO_DEVICE);
1238 		else
1239 			dma_unmap_single(priv->device,
1240 					 tx_q->tx_skbuff_dma[i].buf,
1241 					 tx_q->tx_skbuff_dma[i].len,
1242 					 DMA_TO_DEVICE);
1243 	}
1244 
1245 	if (tx_q->tx_skbuff[i]) {
1246 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1247 		tx_q->tx_skbuff[i] = NULL;
1248 		tx_q->tx_skbuff_dma[i].buf = 0;
1249 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1250 	}
1251 }
1252 
1253 /**
1254  * init_dma_rx_desc_rings - init the RX descriptor rings
1255  * @dev: net device structure
1256  * @flags: gfp flag.
1257  * Description: this function initializes the DMA RX descriptors
1258  * and allocates the socket buffers. It supports the chained and ring
1259  * modes.
1260  */
init_dma_rx_desc_rings(struct net_device * dev,gfp_t flags)1261 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1262 {
1263 	struct stmmac_priv *priv = netdev_priv(dev);
1264 	u32 rx_count = priv->plat->rx_queues_to_use;
1265 	int ret = -ENOMEM;
1266 	int bfsize = 0;
1267 	int queue;
1268 	int i;
1269 
1270 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1271 	if (bfsize < 0)
1272 		bfsize = 0;
1273 
1274 	if (bfsize < BUF_SIZE_16KiB)
1275 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1276 
1277 	priv->dma_buf_sz = bfsize;
1278 
1279 	/* RX INITIALIZATION */
1280 	netif_dbg(priv, probe, priv->dev,
1281 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1282 
1283 	for (queue = 0; queue < rx_count; queue++) {
1284 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1285 
1286 		netif_dbg(priv, probe, priv->dev,
1287 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1288 			  (u32)rx_q->dma_rx_phy);
1289 
1290 		for (i = 0; i < DMA_RX_SIZE; i++) {
1291 			struct dma_desc *p;
1292 
1293 			if (priv->extend_desc)
1294 				p = &((rx_q->dma_erx + i)->basic);
1295 			else
1296 				p = rx_q->dma_rx + i;
1297 
1298 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1299 						     queue);
1300 			if (ret)
1301 				goto err_init_rx_buffers;
1302 
1303 			netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1304 				  rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1305 				  (unsigned int)rx_q->rx_skbuff_dma[i]);
1306 		}
1307 
1308 		rx_q->cur_rx = 0;
1309 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1310 
1311 		stmmac_clear_rx_descriptors(priv, queue);
1312 
1313 		/* Setup the chained descriptor addresses */
1314 		if (priv->mode == STMMAC_CHAIN_MODE) {
1315 			if (priv->extend_desc)
1316 				stmmac_mode_init(priv, rx_q->dma_erx,
1317 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1318 			else
1319 				stmmac_mode_init(priv, rx_q->dma_rx,
1320 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1321 		}
1322 	}
1323 
1324 	buf_sz = bfsize;
1325 
1326 	return 0;
1327 
1328 err_init_rx_buffers:
1329 	while (queue >= 0) {
1330 		while (--i >= 0)
1331 			stmmac_free_rx_buffer(priv, queue, i);
1332 
1333 		if (queue == 0)
1334 			break;
1335 
1336 		i = DMA_RX_SIZE;
1337 		queue--;
1338 	}
1339 
1340 	return ret;
1341 }
1342 
1343 /**
1344  * init_dma_tx_desc_rings - init the TX descriptor rings
1345  * @dev: net device structure.
1346  * Description: this function initializes the DMA TX descriptors
1347  * and allocates the socket buffers. It supports the chained and ring
1348  * modes.
1349  */
init_dma_tx_desc_rings(struct net_device * dev)1350 static int init_dma_tx_desc_rings(struct net_device *dev)
1351 {
1352 	struct stmmac_priv *priv = netdev_priv(dev);
1353 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1354 	u32 queue;
1355 	int i;
1356 
1357 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1358 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1359 
1360 		netif_dbg(priv, probe, priv->dev,
1361 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1362 			 (u32)tx_q->dma_tx_phy);
1363 
1364 		/* Setup the chained descriptor addresses */
1365 		if (priv->mode == STMMAC_CHAIN_MODE) {
1366 			if (priv->extend_desc)
1367 				stmmac_mode_init(priv, tx_q->dma_etx,
1368 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1369 			else
1370 				stmmac_mode_init(priv, tx_q->dma_tx,
1371 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1372 		}
1373 
1374 		for (i = 0; i < DMA_TX_SIZE; i++) {
1375 			struct dma_desc *p;
1376 			if (priv->extend_desc)
1377 				p = &((tx_q->dma_etx + i)->basic);
1378 			else
1379 				p = tx_q->dma_tx + i;
1380 
1381 			stmmac_clear_desc(priv, p);
1382 
1383 			tx_q->tx_skbuff_dma[i].buf = 0;
1384 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1385 			tx_q->tx_skbuff_dma[i].len = 0;
1386 			tx_q->tx_skbuff_dma[i].last_segment = false;
1387 			tx_q->tx_skbuff[i] = NULL;
1388 		}
1389 
1390 		tx_q->dirty_tx = 0;
1391 		tx_q->cur_tx = 0;
1392 		tx_q->mss = 0;
1393 
1394 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1395 	}
1396 
1397 	return 0;
1398 }
1399 
1400 /**
1401  * init_dma_desc_rings - init the RX/TX descriptor rings
1402  * @dev: net device structure
1403  * @flags: gfp flag.
1404  * Description: this function initializes the DMA RX/TX descriptors
1405  * and allocates the socket buffers. It supports the chained and ring
1406  * modes.
1407  */
init_dma_desc_rings(struct net_device * dev,gfp_t flags)1408 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1409 {
1410 	struct stmmac_priv *priv = netdev_priv(dev);
1411 	int ret;
1412 
1413 	ret = init_dma_rx_desc_rings(dev, flags);
1414 	if (ret)
1415 		return ret;
1416 
1417 	ret = init_dma_tx_desc_rings(dev);
1418 
1419 	stmmac_clear_descriptors(priv);
1420 
1421 	if (netif_msg_hw(priv))
1422 		stmmac_display_rings(priv);
1423 
1424 	return ret;
1425 }
1426 
1427 /**
1428  * dma_free_rx_skbufs - free RX dma buffers
1429  * @priv: private structure
1430  * @queue: RX queue index
1431  */
dma_free_rx_skbufs(struct stmmac_priv * priv,u32 queue)1432 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1433 {
1434 	int i;
1435 
1436 	for (i = 0; i < DMA_RX_SIZE; i++)
1437 		stmmac_free_rx_buffer(priv, queue, i);
1438 }
1439 
1440 /**
1441  * dma_free_tx_skbufs - free TX dma buffers
1442  * @priv: private structure
1443  * @queue: TX queue index
1444  */
dma_free_tx_skbufs(struct stmmac_priv * priv,u32 queue)1445 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1446 {
1447 	int i;
1448 
1449 	for (i = 0; i < DMA_TX_SIZE; i++)
1450 		stmmac_free_tx_buffer(priv, queue, i);
1451 }
1452 
1453 /**
1454  * free_dma_rx_desc_resources - free RX dma desc resources
1455  * @priv: private structure
1456  */
free_dma_rx_desc_resources(struct stmmac_priv * priv)1457 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1458 {
1459 	u32 rx_count = priv->plat->rx_queues_to_use;
1460 	u32 queue;
1461 
1462 	/* Free RX queue resources */
1463 	for (queue = 0; queue < rx_count; queue++) {
1464 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1465 
1466 		/* Release the DMA RX socket buffers */
1467 		dma_free_rx_skbufs(priv, queue);
1468 
1469 		/* Free DMA regions of consistent memory previously allocated */
1470 		if (!priv->extend_desc)
1471 			dma_free_coherent(priv->device,
1472 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1473 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1474 		else
1475 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1476 					  sizeof(struct dma_extended_desc),
1477 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1478 
1479 		kfree(rx_q->rx_skbuff_dma);
1480 		kfree(rx_q->rx_skbuff);
1481 	}
1482 }
1483 
1484 /**
1485  * free_dma_tx_desc_resources - free TX dma desc resources
1486  * @priv: private structure
1487  */
free_dma_tx_desc_resources(struct stmmac_priv * priv)1488 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1489 {
1490 	u32 tx_count = priv->plat->tx_queues_to_use;
1491 	u32 queue;
1492 
1493 	/* Free TX queue resources */
1494 	for (queue = 0; queue < tx_count; queue++) {
1495 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1496 
1497 		/* Release the DMA TX socket buffers */
1498 		dma_free_tx_skbufs(priv, queue);
1499 
1500 		/* Free DMA regions of consistent memory previously allocated */
1501 		if (!priv->extend_desc)
1502 			dma_free_coherent(priv->device,
1503 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1504 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1505 		else
1506 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1507 					  sizeof(struct dma_extended_desc),
1508 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1509 
1510 		kfree(tx_q->tx_skbuff_dma);
1511 		kfree(tx_q->tx_skbuff);
1512 	}
1513 }
1514 
1515 /**
1516  * alloc_dma_rx_desc_resources - alloc RX resources.
1517  * @priv: private structure
1518  * Description: according to which descriptor can be used (extend or basic)
1519  * this function allocates the resources for TX and RX paths. In case of
1520  * reception, for example, it pre-allocated the RX socket buffer in order to
1521  * allow zero-copy mechanism.
1522  */
alloc_dma_rx_desc_resources(struct stmmac_priv * priv)1523 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1524 {
1525 	u32 rx_count = priv->plat->rx_queues_to_use;
1526 	int ret = -ENOMEM;
1527 	u32 queue;
1528 
1529 	/* RX queues buffers and DMA */
1530 	for (queue = 0; queue < rx_count; queue++) {
1531 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1532 
1533 		rx_q->queue_index = queue;
1534 		rx_q->priv_data = priv;
1535 
1536 		rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1537 						    sizeof(dma_addr_t),
1538 						    GFP_KERNEL);
1539 		if (!rx_q->rx_skbuff_dma)
1540 			goto err_dma;
1541 
1542 		rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1543 						sizeof(struct sk_buff *),
1544 						GFP_KERNEL);
1545 		if (!rx_q->rx_skbuff)
1546 			goto err_dma;
1547 
1548 		if (priv->extend_desc) {
1549 			rx_q->dma_erx = dma_zalloc_coherent(priv->device,
1550 							    DMA_RX_SIZE *
1551 							    sizeof(struct
1552 							    dma_extended_desc),
1553 							    &rx_q->dma_rx_phy,
1554 							    GFP_KERNEL);
1555 			if (!rx_q->dma_erx)
1556 				goto err_dma;
1557 
1558 		} else {
1559 			rx_q->dma_rx = dma_zalloc_coherent(priv->device,
1560 							   DMA_RX_SIZE *
1561 							   sizeof(struct
1562 							   dma_desc),
1563 							   &rx_q->dma_rx_phy,
1564 							   GFP_KERNEL);
1565 			if (!rx_q->dma_rx)
1566 				goto err_dma;
1567 		}
1568 	}
1569 
1570 	return 0;
1571 
1572 err_dma:
1573 	free_dma_rx_desc_resources(priv);
1574 
1575 	return ret;
1576 }
1577 
1578 /**
1579  * alloc_dma_tx_desc_resources - alloc TX resources.
1580  * @priv: private structure
1581  * Description: according to which descriptor can be used (extend or basic)
1582  * this function allocates the resources for TX and RX paths. In case of
1583  * reception, for example, it pre-allocated the RX socket buffer in order to
1584  * allow zero-copy mechanism.
1585  */
alloc_dma_tx_desc_resources(struct stmmac_priv * priv)1586 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1587 {
1588 	u32 tx_count = priv->plat->tx_queues_to_use;
1589 	int ret = -ENOMEM;
1590 	u32 queue;
1591 
1592 	/* TX queues buffers and DMA */
1593 	for (queue = 0; queue < tx_count; queue++) {
1594 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1595 
1596 		tx_q->queue_index = queue;
1597 		tx_q->priv_data = priv;
1598 
1599 		tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1600 						    sizeof(*tx_q->tx_skbuff_dma),
1601 						    GFP_KERNEL);
1602 		if (!tx_q->tx_skbuff_dma)
1603 			goto err_dma;
1604 
1605 		tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1606 						sizeof(struct sk_buff *),
1607 						GFP_KERNEL);
1608 		if (!tx_q->tx_skbuff)
1609 			goto err_dma;
1610 
1611 		if (priv->extend_desc) {
1612 			tx_q->dma_etx = dma_zalloc_coherent(priv->device,
1613 							    DMA_TX_SIZE *
1614 							    sizeof(struct
1615 							    dma_extended_desc),
1616 							    &tx_q->dma_tx_phy,
1617 							    GFP_KERNEL);
1618 			if (!tx_q->dma_etx)
1619 				goto err_dma;
1620 		} else {
1621 			tx_q->dma_tx = dma_zalloc_coherent(priv->device,
1622 							   DMA_TX_SIZE *
1623 							   sizeof(struct
1624 								  dma_desc),
1625 							   &tx_q->dma_tx_phy,
1626 							   GFP_KERNEL);
1627 			if (!tx_q->dma_tx)
1628 				goto err_dma;
1629 		}
1630 	}
1631 
1632 	return 0;
1633 
1634 err_dma:
1635 	free_dma_tx_desc_resources(priv);
1636 
1637 	return ret;
1638 }
1639 
1640 /**
1641  * alloc_dma_desc_resources - alloc TX/RX resources.
1642  * @priv: private structure
1643  * Description: according to which descriptor can be used (extend or basic)
1644  * this function allocates the resources for TX and RX paths. In case of
1645  * reception, for example, it pre-allocated the RX socket buffer in order to
1646  * allow zero-copy mechanism.
1647  */
alloc_dma_desc_resources(struct stmmac_priv * priv)1648 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1649 {
1650 	/* RX Allocation */
1651 	int ret = alloc_dma_rx_desc_resources(priv);
1652 
1653 	if (ret)
1654 		return ret;
1655 
1656 	ret = alloc_dma_tx_desc_resources(priv);
1657 
1658 	return ret;
1659 }
1660 
1661 /**
1662  * free_dma_desc_resources - free dma desc resources
1663  * @priv: private structure
1664  */
free_dma_desc_resources(struct stmmac_priv * priv)1665 static void free_dma_desc_resources(struct stmmac_priv *priv)
1666 {
1667 	/* Release the DMA RX socket buffers */
1668 	free_dma_rx_desc_resources(priv);
1669 
1670 	/* Release the DMA TX socket buffers */
1671 	free_dma_tx_desc_resources(priv);
1672 }
1673 
1674 /**
1675  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1676  *  @priv: driver private structure
1677  *  Description: It is used for enabling the rx queues in the MAC
1678  */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)1679 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1680 {
1681 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1682 	int queue;
1683 	u8 mode;
1684 
1685 	for (queue = 0; queue < rx_queues_count; queue++) {
1686 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1687 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1688 	}
1689 }
1690 
1691 /**
1692  * stmmac_start_rx_dma - start RX DMA channel
1693  * @priv: driver private structure
1694  * @chan: RX channel index
1695  * Description:
1696  * This starts a RX DMA channel
1697  */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)1698 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1699 {
1700 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1701 	stmmac_start_rx(priv, priv->ioaddr, chan);
1702 }
1703 
1704 /**
1705  * stmmac_start_tx_dma - start TX DMA channel
1706  * @priv: driver private structure
1707  * @chan: TX channel index
1708  * Description:
1709  * This starts a TX DMA channel
1710  */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)1711 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1712 {
1713 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1714 	stmmac_start_tx(priv, priv->ioaddr, chan);
1715 }
1716 
1717 /**
1718  * stmmac_stop_rx_dma - stop RX DMA channel
1719  * @priv: driver private structure
1720  * @chan: RX channel index
1721  * Description:
1722  * This stops a RX DMA channel
1723  */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)1724 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1725 {
1726 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1727 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1728 }
1729 
1730 /**
1731  * stmmac_stop_tx_dma - stop TX DMA channel
1732  * @priv: driver private structure
1733  * @chan: TX channel index
1734  * Description:
1735  * This stops a TX DMA channel
1736  */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)1737 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1738 {
1739 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1740 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1741 }
1742 
1743 /**
1744  * stmmac_start_all_dma - start all RX and TX DMA channels
1745  * @priv: driver private structure
1746  * Description:
1747  * This starts all the RX and TX DMA channels
1748  */
stmmac_start_all_dma(struct stmmac_priv * priv)1749 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1750 {
1751 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1752 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1753 	u32 chan = 0;
1754 
1755 	for (chan = 0; chan < rx_channels_count; chan++)
1756 		stmmac_start_rx_dma(priv, chan);
1757 
1758 	for (chan = 0; chan < tx_channels_count; chan++)
1759 		stmmac_start_tx_dma(priv, chan);
1760 }
1761 
1762 /**
1763  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1764  * @priv: driver private structure
1765  * Description:
1766  * This stops the RX and TX DMA channels
1767  */
stmmac_stop_all_dma(struct stmmac_priv * priv)1768 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1769 {
1770 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1771 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1772 	u32 chan = 0;
1773 
1774 	for (chan = 0; chan < rx_channels_count; chan++)
1775 		stmmac_stop_rx_dma(priv, chan);
1776 
1777 	for (chan = 0; chan < tx_channels_count; chan++)
1778 		stmmac_stop_tx_dma(priv, chan);
1779 }
1780 
1781 /**
1782  *  stmmac_dma_operation_mode - HW DMA operation mode
1783  *  @priv: driver private structure
1784  *  Description: it is used for configuring the DMA operation mode register in
1785  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1786  */
stmmac_dma_operation_mode(struct stmmac_priv * priv)1787 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1788 {
1789 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1790 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1791 	int rxfifosz = priv->plat->rx_fifo_size;
1792 	int txfifosz = priv->plat->tx_fifo_size;
1793 	u32 txmode = 0;
1794 	u32 rxmode = 0;
1795 	u32 chan = 0;
1796 	u8 qmode = 0;
1797 
1798 	if (rxfifosz == 0)
1799 		rxfifosz = priv->dma_cap.rx_fifo_size;
1800 	if (txfifosz == 0)
1801 		txfifosz = priv->dma_cap.tx_fifo_size;
1802 
1803 	/* Adjust for real per queue fifo size */
1804 	rxfifosz /= rx_channels_count;
1805 	txfifosz /= tx_channels_count;
1806 
1807 	if (priv->plat->force_thresh_dma_mode) {
1808 		txmode = tc;
1809 		rxmode = tc;
1810 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1811 		/*
1812 		 * In case of GMAC, SF mode can be enabled
1813 		 * to perform the TX COE in HW. This depends on:
1814 		 * 1) TX COE if actually supported
1815 		 * 2) There is no bugged Jumbo frame support
1816 		 *    that needs to not insert csum in the TDES.
1817 		 */
1818 		txmode = SF_DMA_MODE;
1819 		rxmode = SF_DMA_MODE;
1820 		priv->xstats.threshold = SF_DMA_MODE;
1821 	} else {
1822 		txmode = tc;
1823 		rxmode = SF_DMA_MODE;
1824 	}
1825 
1826 	/* configure all channels */
1827 	for (chan = 0; chan < rx_channels_count; chan++) {
1828 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1829 
1830 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1831 				rxfifosz, qmode);
1832 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1833 				chan);
1834 	}
1835 
1836 	for (chan = 0; chan < tx_channels_count; chan++) {
1837 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1838 
1839 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1840 				txfifosz, qmode);
1841 	}
1842 }
1843 
1844 /**
1845  * stmmac_tx_clean - to manage the transmission completion
1846  * @priv: driver private structure
1847  * @queue: TX queue index
1848  * Description: it reclaims the transmit resources after transmission completes.
1849  */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)1850 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1851 {
1852 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1853 	unsigned int bytes_compl = 0, pkts_compl = 0;
1854 	unsigned int entry, count = 0;
1855 
1856 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1857 
1858 	priv->xstats.tx_clean++;
1859 
1860 	entry = tx_q->dirty_tx;
1861 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1862 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1863 		struct dma_desc *p;
1864 		int status;
1865 
1866 		if (priv->extend_desc)
1867 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1868 		else
1869 			p = tx_q->dma_tx + entry;
1870 
1871 		status = stmmac_tx_status(priv, &priv->dev->stats,
1872 				&priv->xstats, p, priv->ioaddr);
1873 		/* Check if the descriptor is owned by the DMA */
1874 		if (unlikely(status & tx_dma_own))
1875 			break;
1876 
1877 		count++;
1878 
1879 		/* Make sure descriptor fields are read after reading
1880 		 * the own bit.
1881 		 */
1882 		dma_rmb();
1883 
1884 		/* Just consider the last segment and ...*/
1885 		if (likely(!(status & tx_not_ls))) {
1886 			/* ... verify the status error condition */
1887 			if (unlikely(status & tx_err)) {
1888 				priv->dev->stats.tx_errors++;
1889 			} else {
1890 				priv->dev->stats.tx_packets++;
1891 				priv->xstats.tx_pkt_n++;
1892 			}
1893 			stmmac_get_tx_hwtstamp(priv, p, skb);
1894 		}
1895 
1896 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1897 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1898 				dma_unmap_page(priv->device,
1899 					       tx_q->tx_skbuff_dma[entry].buf,
1900 					       tx_q->tx_skbuff_dma[entry].len,
1901 					       DMA_TO_DEVICE);
1902 			else
1903 				dma_unmap_single(priv->device,
1904 						 tx_q->tx_skbuff_dma[entry].buf,
1905 						 tx_q->tx_skbuff_dma[entry].len,
1906 						 DMA_TO_DEVICE);
1907 			tx_q->tx_skbuff_dma[entry].buf = 0;
1908 			tx_q->tx_skbuff_dma[entry].len = 0;
1909 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1910 		}
1911 
1912 		stmmac_clean_desc3(priv, tx_q, p);
1913 
1914 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1915 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1916 
1917 		if (likely(skb != NULL)) {
1918 			pkts_compl++;
1919 			bytes_compl += skb->len;
1920 			dev_consume_skb_any(skb);
1921 			tx_q->tx_skbuff[entry] = NULL;
1922 		}
1923 
1924 		stmmac_release_tx_desc(priv, p, priv->mode);
1925 
1926 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1927 	}
1928 	tx_q->dirty_tx = entry;
1929 
1930 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1931 				  pkts_compl, bytes_compl);
1932 
1933 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1934 								queue))) &&
1935 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1936 
1937 		netif_dbg(priv, tx_done, priv->dev,
1938 			  "%s: restart transmit\n", __func__);
1939 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1940 	}
1941 
1942 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1943 		stmmac_enable_eee_mode(priv);
1944 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1945 	}
1946 
1947 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1948 
1949 	return count;
1950 }
1951 
1952 /**
1953  * stmmac_tx_err - to manage the tx error
1954  * @priv: driver private structure
1955  * @chan: channel index
1956  * Description: it cleans the descriptors and restarts the transmission
1957  * in case of transmission errors.
1958  */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)1959 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1960 {
1961 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1962 	int i;
1963 
1964 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1965 
1966 	stmmac_stop_tx_dma(priv, chan);
1967 	dma_free_tx_skbufs(priv, chan);
1968 	for (i = 0; i < DMA_TX_SIZE; i++)
1969 		if (priv->extend_desc)
1970 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1971 					priv->mode, (i == DMA_TX_SIZE - 1));
1972 		else
1973 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1974 					priv->mode, (i == DMA_TX_SIZE - 1));
1975 	tx_q->dirty_tx = 0;
1976 	tx_q->cur_tx = 0;
1977 	tx_q->mss = 0;
1978 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1979 	stmmac_start_tx_dma(priv, chan);
1980 
1981 	priv->dev->stats.tx_errors++;
1982 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1983 }
1984 
1985 /**
1986  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1987  *  @priv: driver private structure
1988  *  @txmode: TX operating mode
1989  *  @rxmode: RX operating mode
1990  *  @chan: channel index
1991  *  Description: it is used for configuring of the DMA operation mode in
1992  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1993  *  mode.
1994  */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)1995 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1996 					  u32 rxmode, u32 chan)
1997 {
1998 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1999 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2000 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2001 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2002 	int rxfifosz = priv->plat->rx_fifo_size;
2003 	int txfifosz = priv->plat->tx_fifo_size;
2004 
2005 	if (rxfifosz == 0)
2006 		rxfifosz = priv->dma_cap.rx_fifo_size;
2007 	if (txfifosz == 0)
2008 		txfifosz = priv->dma_cap.tx_fifo_size;
2009 
2010 	/* Adjust for real per queue fifo size */
2011 	rxfifosz /= rx_channels_count;
2012 	txfifosz /= tx_channels_count;
2013 
2014 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2015 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2016 }
2017 
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2018 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2019 {
2020 	int ret;
2021 
2022 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2023 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2024 	if (ret && (ret != -EINVAL)) {
2025 		stmmac_global_err(priv);
2026 		return true;
2027 	}
2028 
2029 	return false;
2030 }
2031 
stmmac_napi_check(struct stmmac_priv * priv,u32 chan)2032 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2033 {
2034 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2035 						 &priv->xstats, chan);
2036 	struct stmmac_channel *ch = &priv->channel[chan];
2037 	bool needs_work = false;
2038 
2039 	if ((status & handle_rx) && ch->has_rx) {
2040 		needs_work = true;
2041 	} else {
2042 		status &= ~handle_rx;
2043 	}
2044 
2045 	if ((status & handle_tx) && ch->has_tx) {
2046 		needs_work = true;
2047 	} else {
2048 		status &= ~handle_tx;
2049 	}
2050 
2051 	if (needs_work && napi_schedule_prep(&ch->napi)) {
2052 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2053 		__napi_schedule(&ch->napi);
2054 	}
2055 
2056 	return status;
2057 }
2058 
2059 /**
2060  * stmmac_dma_interrupt - DMA ISR
2061  * @priv: driver private structure
2062  * Description: this is the DMA ISR. It is called by the main ISR.
2063  * It calls the dwmac dma routine and schedule poll method in case of some
2064  * work can be done.
2065  */
stmmac_dma_interrupt(struct stmmac_priv * priv)2066 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2067 {
2068 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2069 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2070 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2071 				tx_channel_count : rx_channel_count;
2072 	u32 chan;
2073 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2074 
2075 	/* Make sure we never check beyond our status buffer. */
2076 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2077 		channels_to_check = ARRAY_SIZE(status);
2078 
2079 	for (chan = 0; chan < channels_to_check; chan++)
2080 		status[chan] = stmmac_napi_check(priv, chan);
2081 
2082 	for (chan = 0; chan < tx_channel_count; chan++) {
2083 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2084 			/* Try to bump up the dma threshold on this failure */
2085 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2086 			    (tc <= 256)) {
2087 				tc += 64;
2088 				if (priv->plat->force_thresh_dma_mode)
2089 					stmmac_set_dma_operation_mode(priv,
2090 								      tc,
2091 								      tc,
2092 								      chan);
2093 				else
2094 					stmmac_set_dma_operation_mode(priv,
2095 								    tc,
2096 								    SF_DMA_MODE,
2097 								    chan);
2098 				priv->xstats.threshold = tc;
2099 			}
2100 		} else if (unlikely(status[chan] == tx_hard_error)) {
2101 			stmmac_tx_err(priv, chan);
2102 		}
2103 	}
2104 }
2105 
2106 /**
2107  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2108  * @priv: driver private structure
2109  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2110  */
stmmac_mmc_setup(struct stmmac_priv * priv)2111 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2112 {
2113 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2114 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2115 
2116 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
2117 
2118 	if (priv->dma_cap.rmon) {
2119 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
2120 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2121 	} else
2122 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2123 }
2124 
2125 /**
2126  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2127  * @priv: driver private structure
2128  * Description:
2129  *  new GMAC chip generations have a new register to indicate the
2130  *  presence of the optional feature/functions.
2131  *  This can be also used to override the value passed through the
2132  *  platform and necessary for old MAC10/100 and GMAC chips.
2133  */
stmmac_get_hw_features(struct stmmac_priv * priv)2134 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2135 {
2136 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2137 }
2138 
2139 /**
2140  * stmmac_check_ether_addr - check if the MAC addr is valid
2141  * @priv: driver private structure
2142  * Description:
2143  * it is to verify if the MAC address is valid, in case of failures it
2144  * generates a random MAC address
2145  */
stmmac_check_ether_addr(struct stmmac_priv * priv)2146 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2147 {
2148 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2149 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2150 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2151 			eth_hw_addr_random(priv->dev);
2152 		netdev_info(priv->dev, "device MAC address %pM\n",
2153 			    priv->dev->dev_addr);
2154 	}
2155 }
2156 
2157 /**
2158  * stmmac_init_dma_engine - DMA init.
2159  * @priv: driver private structure
2160  * Description:
2161  * It inits the DMA invoking the specific MAC/GMAC callback.
2162  * Some DMA parameters can be passed from the platform;
2163  * in case of these are not passed a default is kept for the MAC or GMAC.
2164  */
stmmac_init_dma_engine(struct stmmac_priv * priv)2165 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2166 {
2167 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2168 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2169 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2170 	struct stmmac_rx_queue *rx_q;
2171 	struct stmmac_tx_queue *tx_q;
2172 	u32 chan = 0;
2173 	int atds = 0;
2174 	int ret = 0;
2175 
2176 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2177 		dev_err(priv->device, "Invalid DMA configuration\n");
2178 		return -EINVAL;
2179 	}
2180 
2181 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2182 		atds = 1;
2183 
2184 	ret = stmmac_reset(priv, priv->ioaddr);
2185 	if (ret) {
2186 		dev_err(priv->device, "Failed to reset the dma\n");
2187 		return ret;
2188 	}
2189 
2190 	/* DMA Configuration */
2191 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2192 
2193 	if (priv->plat->axi)
2194 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2195 
2196 	/* DMA RX Channel Configuration */
2197 	for (chan = 0; chan < rx_channels_count; chan++) {
2198 		rx_q = &priv->rx_queue[chan];
2199 
2200 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2201 				    rx_q->dma_rx_phy, chan);
2202 
2203 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2204 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2205 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2206 				       rx_q->rx_tail_addr, chan);
2207 	}
2208 
2209 	/* DMA TX Channel Configuration */
2210 	for (chan = 0; chan < tx_channels_count; chan++) {
2211 		tx_q = &priv->tx_queue[chan];
2212 
2213 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2214 				    tx_q->dma_tx_phy, chan);
2215 
2216 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2217 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2218 				       tx_q->tx_tail_addr, chan);
2219 	}
2220 
2221 	/* DMA CSR Channel configuration */
2222 	for (chan = 0; chan < dma_csr_ch; chan++)
2223 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2224 
2225 	return ret;
2226 }
2227 
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2228 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2229 {
2230 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2231 
2232 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2233 }
2234 
2235 /**
2236  * stmmac_tx_timer - mitigation sw timer for tx.
2237  * @data: data pointer
2238  * Description:
2239  * This is the timer handler to directly invoke the stmmac_tx_clean.
2240  */
stmmac_tx_timer(struct timer_list * t)2241 static void stmmac_tx_timer(struct timer_list *t)
2242 {
2243 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2244 	struct stmmac_priv *priv = tx_q->priv_data;
2245 	struct stmmac_channel *ch;
2246 
2247 	ch = &priv->channel[tx_q->queue_index];
2248 
2249 	if (likely(napi_schedule_prep(&ch->napi)))
2250 		__napi_schedule(&ch->napi);
2251 }
2252 
2253 /**
2254  * stmmac_init_tx_coalesce - init tx mitigation options.
2255  * @priv: driver private structure
2256  * Description:
2257  * This inits the transmit coalesce parameters: i.e. timer rate,
2258  * timer handler and default threshold used for enabling the
2259  * interrupt on completion bit.
2260  */
stmmac_init_tx_coalesce(struct stmmac_priv * priv)2261 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2262 {
2263 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2264 	u32 chan;
2265 
2266 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2267 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2268 
2269 	for (chan = 0; chan < tx_channel_count; chan++) {
2270 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2271 
2272 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2273 	}
2274 }
2275 
stmmac_set_rings_length(struct stmmac_priv * priv)2276 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2277 {
2278 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2279 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2280 	u32 chan;
2281 
2282 	/* set TX ring length */
2283 	for (chan = 0; chan < tx_channels_count; chan++)
2284 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2285 				(DMA_TX_SIZE - 1), chan);
2286 
2287 	/* set RX ring length */
2288 	for (chan = 0; chan < rx_channels_count; chan++)
2289 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2290 				(DMA_RX_SIZE - 1), chan);
2291 }
2292 
2293 /**
2294  *  stmmac_set_tx_queue_weight - Set TX queue weight
2295  *  @priv: driver private structure
2296  *  Description: It is used for setting TX queues weight
2297  */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)2298 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2299 {
2300 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2301 	u32 weight;
2302 	u32 queue;
2303 
2304 	for (queue = 0; queue < tx_queues_count; queue++) {
2305 		weight = priv->plat->tx_queues_cfg[queue].weight;
2306 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2307 	}
2308 }
2309 
2310 /**
2311  *  stmmac_configure_cbs - Configure CBS in TX queue
2312  *  @priv: driver private structure
2313  *  Description: It is used for configuring CBS in AVB TX queues
2314  */
stmmac_configure_cbs(struct stmmac_priv * priv)2315 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2316 {
2317 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2318 	u32 mode_to_use;
2319 	u32 queue;
2320 
2321 	/* queue 0 is reserved for legacy traffic */
2322 	for (queue = 1; queue < tx_queues_count; queue++) {
2323 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2324 		if (mode_to_use == MTL_QUEUE_DCB)
2325 			continue;
2326 
2327 		stmmac_config_cbs(priv, priv->hw,
2328 				priv->plat->tx_queues_cfg[queue].send_slope,
2329 				priv->plat->tx_queues_cfg[queue].idle_slope,
2330 				priv->plat->tx_queues_cfg[queue].high_credit,
2331 				priv->plat->tx_queues_cfg[queue].low_credit,
2332 				queue);
2333 	}
2334 }
2335 
2336 /**
2337  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2338  *  @priv: driver private structure
2339  *  Description: It is used for mapping RX queues to RX dma channels
2340  */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)2341 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2342 {
2343 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2344 	u32 queue;
2345 	u32 chan;
2346 
2347 	for (queue = 0; queue < rx_queues_count; queue++) {
2348 		chan = priv->plat->rx_queues_cfg[queue].chan;
2349 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2350 	}
2351 }
2352 
2353 /**
2354  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2355  *  @priv: driver private structure
2356  *  Description: It is used for configuring the RX Queue Priority
2357  */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)2358 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2359 {
2360 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2361 	u32 queue;
2362 	u32 prio;
2363 
2364 	for (queue = 0; queue < rx_queues_count; queue++) {
2365 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2366 			continue;
2367 
2368 		prio = priv->plat->rx_queues_cfg[queue].prio;
2369 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2370 	}
2371 }
2372 
2373 /**
2374  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2375  *  @priv: driver private structure
2376  *  Description: It is used for configuring the TX Queue Priority
2377  */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)2378 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2379 {
2380 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2381 	u32 queue;
2382 	u32 prio;
2383 
2384 	for (queue = 0; queue < tx_queues_count; queue++) {
2385 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2386 			continue;
2387 
2388 		prio = priv->plat->tx_queues_cfg[queue].prio;
2389 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2390 	}
2391 }
2392 
2393 /**
2394  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2395  *  @priv: driver private structure
2396  *  Description: It is used for configuring the RX queue routing
2397  */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)2398 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2399 {
2400 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2401 	u32 queue;
2402 	u8 packet;
2403 
2404 	for (queue = 0; queue < rx_queues_count; queue++) {
2405 		/* no specific packet type routing specified for the queue */
2406 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2407 			continue;
2408 
2409 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2410 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2411 	}
2412 }
2413 
2414 /**
2415  *  stmmac_mtl_configuration - Configure MTL
2416  *  @priv: driver private structure
2417  *  Description: It is used for configurring MTL
2418  */
stmmac_mtl_configuration(struct stmmac_priv * priv)2419 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2420 {
2421 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2422 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2423 
2424 	if (tx_queues_count > 1)
2425 		stmmac_set_tx_queue_weight(priv);
2426 
2427 	/* Configure MTL RX algorithms */
2428 	if (rx_queues_count > 1)
2429 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2430 				priv->plat->rx_sched_algorithm);
2431 
2432 	/* Configure MTL TX algorithms */
2433 	if (tx_queues_count > 1)
2434 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2435 				priv->plat->tx_sched_algorithm);
2436 
2437 	/* Configure CBS in AVB TX queues */
2438 	if (tx_queues_count > 1)
2439 		stmmac_configure_cbs(priv);
2440 
2441 	/* Map RX MTL to DMA channels */
2442 	stmmac_rx_queue_dma_chan_map(priv);
2443 
2444 	/* Enable MAC RX Queues */
2445 	stmmac_mac_enable_rx_queues(priv);
2446 
2447 	/* Set RX priorities */
2448 	if (rx_queues_count > 1)
2449 		stmmac_mac_config_rx_queues_prio(priv);
2450 
2451 	/* Set TX priorities */
2452 	if (tx_queues_count > 1)
2453 		stmmac_mac_config_tx_queues_prio(priv);
2454 
2455 	/* Set RX routing */
2456 	if (rx_queues_count > 1)
2457 		stmmac_mac_config_rx_queues_routing(priv);
2458 }
2459 
stmmac_safety_feat_configuration(struct stmmac_priv * priv)2460 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2461 {
2462 	if (priv->dma_cap.asp) {
2463 		netdev_info(priv->dev, "Enabling Safety Features\n");
2464 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2465 	} else {
2466 		netdev_info(priv->dev, "No Safety Features support found\n");
2467 	}
2468 }
2469 
2470 /**
2471  * stmmac_hw_setup - setup mac in a usable state.
2472  *  @dev : pointer to the device structure.
2473  *  Description:
2474  *  this is the main function to setup the HW in a usable state because the
2475  *  dma engine is reset, the core registers are configured (e.g. AXI,
2476  *  Checksum features, timers). The DMA is ready to start receiving and
2477  *  transmitting.
2478  *  Return value:
2479  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2480  *  file on failure.
2481  */
stmmac_hw_setup(struct net_device * dev,bool init_ptp)2482 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2483 {
2484 	struct stmmac_priv *priv = netdev_priv(dev);
2485 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2486 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2487 	u32 chan;
2488 	int ret;
2489 
2490 	/* DMA initialization and SW reset */
2491 	ret = stmmac_init_dma_engine(priv);
2492 	if (ret < 0) {
2493 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2494 			   __func__);
2495 		return ret;
2496 	}
2497 
2498 	/* Copy the MAC addr into the HW  */
2499 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2500 
2501 	/* PS and related bits will be programmed according to the speed */
2502 	if (priv->hw->pcs) {
2503 		int speed = priv->plat->mac_port_sel_speed;
2504 
2505 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2506 		    (speed == SPEED_1000)) {
2507 			priv->hw->ps = speed;
2508 		} else {
2509 			dev_warn(priv->device, "invalid port speed\n");
2510 			priv->hw->ps = 0;
2511 		}
2512 	}
2513 
2514 	/* Initialize the MAC Core */
2515 	stmmac_core_init(priv, priv->hw, dev);
2516 
2517 	/* Initialize MTL*/
2518 	stmmac_mtl_configuration(priv);
2519 
2520 	/* Initialize Safety Features */
2521 	stmmac_safety_feat_configuration(priv);
2522 
2523 	ret = stmmac_rx_ipc(priv, priv->hw);
2524 	if (!ret) {
2525 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2526 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2527 		priv->hw->rx_csum = 0;
2528 	}
2529 
2530 	/* Enable the MAC Rx/Tx */
2531 	stmmac_mac_set(priv, priv->ioaddr, true);
2532 
2533 	/* Set the HW DMA mode and the COE */
2534 	stmmac_dma_operation_mode(priv);
2535 
2536 	stmmac_mmc_setup(priv);
2537 
2538 	if (init_ptp) {
2539 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2540 		if (ret < 0)
2541 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2542 
2543 		ret = stmmac_init_ptp(priv);
2544 		if (ret == -EOPNOTSUPP)
2545 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2546 		else if (ret)
2547 			netdev_warn(priv->dev, "PTP init failed\n");
2548 	}
2549 
2550 #ifdef CONFIG_DEBUG_FS
2551 	ret = stmmac_init_fs(dev);
2552 	if (ret < 0)
2553 		netdev_warn(priv->dev, "%s: failed debugFS registration\n",
2554 			    __func__);
2555 #endif
2556 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2557 
2558 	if (priv->use_riwt) {
2559 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2560 		if (!ret)
2561 			priv->rx_riwt = MAX_DMA_RIWT;
2562 	}
2563 
2564 	if (priv->hw->pcs)
2565 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2566 
2567 	/* set TX and RX rings length */
2568 	stmmac_set_rings_length(priv);
2569 
2570 	/* Enable TSO */
2571 	if (priv->tso) {
2572 		for (chan = 0; chan < tx_cnt; chan++)
2573 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2574 	}
2575 
2576 	/* Start the ball rolling... */
2577 	stmmac_start_all_dma(priv);
2578 
2579 	return 0;
2580 }
2581 
stmmac_hw_teardown(struct net_device * dev)2582 static void stmmac_hw_teardown(struct net_device *dev)
2583 {
2584 	struct stmmac_priv *priv = netdev_priv(dev);
2585 
2586 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2587 }
2588 
2589 /**
2590  *  stmmac_open - open entry point of the driver
2591  *  @dev : pointer to the device structure.
2592  *  Description:
2593  *  This function is the open entry point of the driver.
2594  *  Return value:
2595  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2596  *  file on failure.
2597  */
stmmac_open(struct net_device * dev)2598 static int stmmac_open(struct net_device *dev)
2599 {
2600 	struct stmmac_priv *priv = netdev_priv(dev);
2601 	u32 chan;
2602 	int ret;
2603 
2604 	stmmac_check_ether_addr(priv);
2605 
2606 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2607 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2608 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2609 		ret = stmmac_init_phy(dev);
2610 		if (ret) {
2611 			netdev_err(priv->dev,
2612 				   "%s: Cannot attach to PHY (error: %d)\n",
2613 				   __func__, ret);
2614 			return ret;
2615 		}
2616 	}
2617 
2618 	/* Extra statistics */
2619 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2620 	priv->xstats.threshold = tc;
2621 
2622 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2623 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2624 
2625 	ret = alloc_dma_desc_resources(priv);
2626 	if (ret < 0) {
2627 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2628 			   __func__);
2629 		goto dma_desc_error;
2630 	}
2631 
2632 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2633 	if (ret < 0) {
2634 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2635 			   __func__);
2636 		goto init_error;
2637 	}
2638 
2639 	ret = stmmac_hw_setup(dev, true);
2640 	if (ret < 0) {
2641 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2642 		goto init_error;
2643 	}
2644 
2645 	stmmac_init_tx_coalesce(priv);
2646 
2647 	if (dev->phydev)
2648 		phy_start(dev->phydev);
2649 
2650 	/* Request the IRQ lines */
2651 	ret = request_irq(dev->irq, stmmac_interrupt,
2652 			  IRQF_SHARED, dev->name, dev);
2653 	if (unlikely(ret < 0)) {
2654 		netdev_err(priv->dev,
2655 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2656 			   __func__, dev->irq, ret);
2657 		goto irq_error;
2658 	}
2659 
2660 	/* Request the Wake IRQ in case of another line is used for WoL */
2661 	if (priv->wol_irq != dev->irq) {
2662 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2663 				  IRQF_SHARED, dev->name, dev);
2664 		if (unlikely(ret < 0)) {
2665 			netdev_err(priv->dev,
2666 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2667 				   __func__, priv->wol_irq, ret);
2668 			goto wolirq_error;
2669 		}
2670 	}
2671 
2672 	/* Request the IRQ lines */
2673 	if (priv->lpi_irq > 0) {
2674 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2675 				  dev->name, dev);
2676 		if (unlikely(ret < 0)) {
2677 			netdev_err(priv->dev,
2678 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2679 				   __func__, priv->lpi_irq, ret);
2680 			goto lpiirq_error;
2681 		}
2682 	}
2683 
2684 	stmmac_enable_all_queues(priv);
2685 	stmmac_start_all_queues(priv);
2686 
2687 	return 0;
2688 
2689 lpiirq_error:
2690 	if (priv->wol_irq != dev->irq)
2691 		free_irq(priv->wol_irq, dev);
2692 wolirq_error:
2693 	free_irq(dev->irq, dev);
2694 irq_error:
2695 	if (dev->phydev)
2696 		phy_stop(dev->phydev);
2697 
2698 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2699 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2700 
2701 	stmmac_hw_teardown(dev);
2702 init_error:
2703 	free_dma_desc_resources(priv);
2704 dma_desc_error:
2705 	if (dev->phydev)
2706 		phy_disconnect(dev->phydev);
2707 
2708 	return ret;
2709 }
2710 
2711 /**
2712  *  stmmac_release - close entry point of the driver
2713  *  @dev : device pointer.
2714  *  Description:
2715  *  This is the stop entry point of the driver.
2716  */
stmmac_release(struct net_device * dev)2717 static int stmmac_release(struct net_device *dev)
2718 {
2719 	struct stmmac_priv *priv = netdev_priv(dev);
2720 	u32 chan;
2721 
2722 	if (priv->eee_enabled)
2723 		del_timer_sync(&priv->eee_ctrl_timer);
2724 
2725 	/* Stop and disconnect the PHY */
2726 	if (dev->phydev) {
2727 		phy_stop(dev->phydev);
2728 		phy_disconnect(dev->phydev);
2729 	}
2730 
2731 	stmmac_stop_all_queues(priv);
2732 
2733 	stmmac_disable_all_queues(priv);
2734 
2735 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2736 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2737 
2738 	/* Free the IRQ lines */
2739 	free_irq(dev->irq, dev);
2740 	if (priv->wol_irq != dev->irq)
2741 		free_irq(priv->wol_irq, dev);
2742 	if (priv->lpi_irq > 0)
2743 		free_irq(priv->lpi_irq, dev);
2744 
2745 	/* Stop TX/RX DMA and clear the descriptors */
2746 	stmmac_stop_all_dma(priv);
2747 
2748 	/* Release and free the Rx/Tx resources */
2749 	free_dma_desc_resources(priv);
2750 
2751 	/* Disable the MAC Rx/Tx */
2752 	stmmac_mac_set(priv, priv->ioaddr, false);
2753 
2754 	netif_carrier_off(dev);
2755 
2756 #ifdef CONFIG_DEBUG_FS
2757 	stmmac_exit_fs(dev);
2758 #endif
2759 
2760 	stmmac_release_ptp(priv);
2761 
2762 	return 0;
2763 }
2764 
2765 /**
2766  *  stmmac_tso_allocator - close entry point of the driver
2767  *  @priv: driver private structure
2768  *  @des: buffer start address
2769  *  @total_len: total length to fill in descriptors
2770  *  @last_segmant: condition for the last descriptor
2771  *  @queue: TX queue index
2772  *  Description:
2773  *  This function fills descriptor and request new descriptors according to
2774  *  buffer length to fill
2775  */
stmmac_tso_allocator(struct stmmac_priv * priv,unsigned int des,int total_len,bool last_segment,u32 queue)2776 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2777 				 int total_len, bool last_segment, u32 queue)
2778 {
2779 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2780 	struct dma_desc *desc;
2781 	u32 buff_size;
2782 	int tmp_len;
2783 
2784 	tmp_len = total_len;
2785 
2786 	while (tmp_len > 0) {
2787 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2788 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2789 		desc = tx_q->dma_tx + tx_q->cur_tx;
2790 
2791 		desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2792 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2793 			    TSO_MAX_BUFF_SIZE : tmp_len;
2794 
2795 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2796 				0, 1,
2797 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2798 				0, 0);
2799 
2800 		tmp_len -= TSO_MAX_BUFF_SIZE;
2801 	}
2802 }
2803 
2804 /**
2805  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2806  *  @skb : the socket buffer
2807  *  @dev : device pointer
2808  *  Description: this is the transmit function that is called on TSO frames
2809  *  (support available on GMAC4 and newer chips).
2810  *  Diagram below show the ring programming in case of TSO frames:
2811  *
2812  *  First Descriptor
2813  *   --------
2814  *   | DES0 |---> buffer1 = L2/L3/L4 header
2815  *   | DES1 |---> TCP Payload (can continue on next descr...)
2816  *   | DES2 |---> buffer 1 and 2 len
2817  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2818  *   --------
2819  *	|
2820  *     ...
2821  *	|
2822  *   --------
2823  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2824  *   | DES1 | --|
2825  *   | DES2 | --> buffer 1 and 2 len
2826  *   | DES3 |
2827  *   --------
2828  *
2829  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2830  */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)2831 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2832 {
2833 	struct dma_desc *desc, *first, *mss_desc = NULL;
2834 	struct stmmac_priv *priv = netdev_priv(dev);
2835 	int nfrags = skb_shinfo(skb)->nr_frags;
2836 	u32 queue = skb_get_queue_mapping(skb);
2837 	unsigned int first_entry, des;
2838 	struct stmmac_tx_queue *tx_q;
2839 	int tmp_pay_len = 0;
2840 	u32 pay_len, mss;
2841 	u8 proto_hdr_len;
2842 	int i;
2843 
2844 	tx_q = &priv->tx_queue[queue];
2845 
2846 	/* Compute header lengths */
2847 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2848 
2849 	/* Desc availability based on threshold should be enough safe */
2850 	if (unlikely(stmmac_tx_avail(priv, queue) <
2851 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2852 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2853 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2854 								queue));
2855 			/* This is a hard error, log it. */
2856 			netdev_err(priv->dev,
2857 				   "%s: Tx Ring full when queue awake\n",
2858 				   __func__);
2859 		}
2860 		return NETDEV_TX_BUSY;
2861 	}
2862 
2863 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2864 
2865 	mss = skb_shinfo(skb)->gso_size;
2866 
2867 	/* set new MSS value if needed */
2868 	if (mss != tx_q->mss) {
2869 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2870 		stmmac_set_mss(priv, mss_desc, mss);
2871 		tx_q->mss = mss;
2872 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2873 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2874 	}
2875 
2876 	if (netif_msg_tx_queued(priv)) {
2877 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2878 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2879 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2880 			skb->data_len);
2881 	}
2882 
2883 	first_entry = tx_q->cur_tx;
2884 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2885 
2886 	desc = tx_q->dma_tx + first_entry;
2887 	first = desc;
2888 
2889 	/* first descriptor: fill Headers on Buf1 */
2890 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2891 			     DMA_TO_DEVICE);
2892 	if (dma_mapping_error(priv->device, des))
2893 		goto dma_map_err;
2894 
2895 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2896 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2897 
2898 	first->des0 = cpu_to_le32(des);
2899 
2900 	/* Fill start of payload in buff2 of first descriptor */
2901 	if (pay_len)
2902 		first->des1 = cpu_to_le32(des + proto_hdr_len);
2903 
2904 	/* If needed take extra descriptors to fill the remaining payload */
2905 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2906 
2907 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2908 
2909 	/* Prepare fragments */
2910 	for (i = 0; i < nfrags; i++) {
2911 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2912 
2913 		des = skb_frag_dma_map(priv->device, frag, 0,
2914 				       skb_frag_size(frag),
2915 				       DMA_TO_DEVICE);
2916 		if (dma_mapping_error(priv->device, des))
2917 			goto dma_map_err;
2918 
2919 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2920 				     (i == nfrags - 1), queue);
2921 
2922 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2923 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2924 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2925 	}
2926 
2927 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2928 
2929 	/* Only the last descriptor gets to point to the skb. */
2930 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2931 
2932 	/* We've used all descriptors we need for this skb, however,
2933 	 * advance cur_tx so that it references a fresh descriptor.
2934 	 * ndo_start_xmit will fill this descriptor the next time it's
2935 	 * called and stmmac_tx_clean may clean up to this descriptor.
2936 	 */
2937 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2938 
2939 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2940 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2941 			  __func__);
2942 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2943 	}
2944 
2945 	dev->stats.tx_bytes += skb->len;
2946 	priv->xstats.tx_tso_frames++;
2947 	priv->xstats.tx_tso_nfrags += nfrags;
2948 
2949 	/* Manage tx mitigation */
2950 	tx_q->tx_count_frames += nfrags + 1;
2951 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
2952 		stmmac_set_tx_ic(priv, desc);
2953 		priv->xstats.tx_set_ic_bit++;
2954 		tx_q->tx_count_frames = 0;
2955 	} else {
2956 		stmmac_tx_timer_arm(priv, queue);
2957 	}
2958 
2959 	skb_tx_timestamp(skb);
2960 
2961 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2962 		     priv->hwts_tx_en)) {
2963 		/* declare that device is doing timestamping */
2964 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2965 		stmmac_enable_tx_timestamp(priv, first);
2966 	}
2967 
2968 	/* Complete the first descriptor before granting the DMA */
2969 	stmmac_prepare_tso_tx_desc(priv, first, 1,
2970 			proto_hdr_len,
2971 			pay_len,
2972 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2973 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2974 
2975 	/* If context desc is used to change MSS */
2976 	if (mss_desc) {
2977 		/* Make sure that first descriptor has been completely
2978 		 * written, including its own bit. This is because MSS is
2979 		 * actually before first descriptor, so we need to make
2980 		 * sure that MSS's own bit is the last thing written.
2981 		 */
2982 		dma_wmb();
2983 		stmmac_set_tx_owner(priv, mss_desc);
2984 	}
2985 
2986 	/* The own bit must be the latest setting done when prepare the
2987 	 * descriptor and then barrier is needed to make sure that
2988 	 * all is coherent before granting the DMA engine.
2989 	 */
2990 	wmb();
2991 
2992 	if (netif_msg_pktdata(priv)) {
2993 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2994 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2995 			tx_q->cur_tx, first, nfrags);
2996 
2997 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
2998 
2999 		pr_info(">>> frame to be transmitted: ");
3000 		print_pkt(skb->data, skb_headlen(skb));
3001 	}
3002 
3003 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3004 
3005 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3006 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3007 
3008 	return NETDEV_TX_OK;
3009 
3010 dma_map_err:
3011 	dev_err(priv->device, "Tx dma map failed\n");
3012 	dev_kfree_skb(skb);
3013 	priv->dev->stats.tx_dropped++;
3014 	return NETDEV_TX_OK;
3015 }
3016 
3017 /**
3018  *  stmmac_xmit - Tx entry point of the driver
3019  *  @skb : the socket buffer
3020  *  @dev : device pointer
3021  *  Description : this is the tx entry point of the driver.
3022  *  It programs the chain or the ring and supports oversized frames
3023  *  and SG feature.
3024  */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)3025 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3026 {
3027 	struct stmmac_priv *priv = netdev_priv(dev);
3028 	unsigned int nopaged_len = skb_headlen(skb);
3029 	int i, csum_insertion = 0, is_jumbo = 0;
3030 	u32 queue = skb_get_queue_mapping(skb);
3031 	int nfrags = skb_shinfo(skb)->nr_frags;
3032 	int entry;
3033 	unsigned int first_entry;
3034 	struct dma_desc *desc, *first;
3035 	struct stmmac_tx_queue *tx_q;
3036 	unsigned int enh_desc;
3037 	unsigned int des;
3038 
3039 	tx_q = &priv->tx_queue[queue];
3040 
3041 	/* Manage oversized TCP frames for GMAC4 device */
3042 	if (skb_is_gso(skb) && priv->tso) {
3043 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3044 			return stmmac_tso_xmit(skb, dev);
3045 	}
3046 
3047 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3048 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3049 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3050 								queue));
3051 			/* This is a hard error, log it. */
3052 			netdev_err(priv->dev,
3053 				   "%s: Tx Ring full when queue awake\n",
3054 				   __func__);
3055 		}
3056 		return NETDEV_TX_BUSY;
3057 	}
3058 
3059 	if (priv->tx_path_in_lpi_mode)
3060 		stmmac_disable_eee_mode(priv);
3061 
3062 	entry = tx_q->cur_tx;
3063 	first_entry = entry;
3064 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3065 
3066 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3067 
3068 	if (likely(priv->extend_desc))
3069 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3070 	else
3071 		desc = tx_q->dma_tx + entry;
3072 
3073 	first = desc;
3074 
3075 	enh_desc = priv->plat->enh_desc;
3076 	/* To program the descriptors according to the size of the frame */
3077 	if (enh_desc)
3078 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3079 
3080 	if (unlikely(is_jumbo)) {
3081 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3082 		if (unlikely(entry < 0) && (entry != -EINVAL))
3083 			goto dma_map_err;
3084 	}
3085 
3086 	for (i = 0; i < nfrags; i++) {
3087 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3088 		int len = skb_frag_size(frag);
3089 		bool last_segment = (i == (nfrags - 1));
3090 
3091 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3092 		WARN_ON(tx_q->tx_skbuff[entry]);
3093 
3094 		if (likely(priv->extend_desc))
3095 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3096 		else
3097 			desc = tx_q->dma_tx + entry;
3098 
3099 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3100 				       DMA_TO_DEVICE);
3101 		if (dma_mapping_error(priv->device, des))
3102 			goto dma_map_err; /* should reuse desc w/o issues */
3103 
3104 		tx_q->tx_skbuff_dma[entry].buf = des;
3105 
3106 		stmmac_set_desc_addr(priv, desc, des);
3107 
3108 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3109 		tx_q->tx_skbuff_dma[entry].len = len;
3110 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3111 
3112 		/* Prepare the descriptor and set the own bit too */
3113 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3114 				priv->mode, 1, last_segment, skb->len);
3115 	}
3116 
3117 	/* Only the last descriptor gets to point to the skb. */
3118 	tx_q->tx_skbuff[entry] = skb;
3119 
3120 	/* We've used all descriptors we need for this skb, however,
3121 	 * advance cur_tx so that it references a fresh descriptor.
3122 	 * ndo_start_xmit will fill this descriptor the next time it's
3123 	 * called and stmmac_tx_clean may clean up to this descriptor.
3124 	 */
3125 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3126 	tx_q->cur_tx = entry;
3127 
3128 	if (netif_msg_pktdata(priv)) {
3129 		void *tx_head;
3130 
3131 		netdev_dbg(priv->dev,
3132 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3133 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3134 			   entry, first, nfrags);
3135 
3136 		if (priv->extend_desc)
3137 			tx_head = (void *)tx_q->dma_etx;
3138 		else
3139 			tx_head = (void *)tx_q->dma_tx;
3140 
3141 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3142 
3143 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3144 		print_pkt(skb->data, skb->len);
3145 	}
3146 
3147 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3148 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3149 			  __func__);
3150 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3151 	}
3152 
3153 	dev->stats.tx_bytes += skb->len;
3154 
3155 	/* According to the coalesce parameter the IC bit for the latest
3156 	 * segment is reset and the timer re-started to clean the tx status.
3157 	 * This approach takes care about the fragments: desc is the first
3158 	 * element in case of no SG.
3159 	 */
3160 	tx_q->tx_count_frames += nfrags + 1;
3161 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
3162 		stmmac_set_tx_ic(priv, desc);
3163 		priv->xstats.tx_set_ic_bit++;
3164 		tx_q->tx_count_frames = 0;
3165 	} else {
3166 		stmmac_tx_timer_arm(priv, queue);
3167 	}
3168 
3169 	skb_tx_timestamp(skb);
3170 
3171 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3172 	 * problems because all the descriptors are actually ready to be
3173 	 * passed to the DMA engine.
3174 	 */
3175 	if (likely(!is_jumbo)) {
3176 		bool last_segment = (nfrags == 0);
3177 
3178 		des = dma_map_single(priv->device, skb->data,
3179 				     nopaged_len, DMA_TO_DEVICE);
3180 		if (dma_mapping_error(priv->device, des))
3181 			goto dma_map_err;
3182 
3183 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3184 
3185 		stmmac_set_desc_addr(priv, first, des);
3186 
3187 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3188 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3189 
3190 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3191 			     priv->hwts_tx_en)) {
3192 			/* declare that device is doing timestamping */
3193 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3194 			stmmac_enable_tx_timestamp(priv, first);
3195 		}
3196 
3197 		/* Prepare the first descriptor setting the OWN bit too */
3198 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3199 				csum_insertion, priv->mode, 1, last_segment,
3200 				skb->len);
3201 
3202 		/* The own bit must be the latest setting done when prepare the
3203 		 * descriptor and then barrier is needed to make sure that
3204 		 * all is coherent before granting the DMA engine.
3205 		 */
3206 		wmb();
3207 	}
3208 
3209 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3210 
3211 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3212 
3213 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3214 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3215 
3216 	return NETDEV_TX_OK;
3217 
3218 dma_map_err:
3219 	netdev_err(priv->dev, "Tx DMA map failed\n");
3220 	dev_kfree_skb(skb);
3221 	priv->dev->stats.tx_dropped++;
3222 	return NETDEV_TX_OK;
3223 }
3224 
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)3225 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3226 {
3227 	struct vlan_ethhdr *veth;
3228 	__be16 vlan_proto;
3229 	u16 vlanid;
3230 
3231 	veth = (struct vlan_ethhdr *)skb->data;
3232 	vlan_proto = veth->h_vlan_proto;
3233 
3234 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3235 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3236 	    (vlan_proto == htons(ETH_P_8021AD) &&
3237 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3238 		/* pop the vlan tag */
3239 		vlanid = ntohs(veth->h_vlan_TCI);
3240 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3241 		skb_pull(skb, VLAN_HLEN);
3242 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3243 	}
3244 }
3245 
3246 
stmmac_rx_threshold_count(struct stmmac_rx_queue * rx_q)3247 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3248 {
3249 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3250 		return 0;
3251 
3252 	return 1;
3253 }
3254 
3255 /**
3256  * stmmac_rx_refill - refill used skb preallocated buffers
3257  * @priv: driver private structure
3258  * @queue: RX queue index
3259  * Description : this is to reallocate the skb for the reception process
3260  * that is based on zero-copy.
3261  */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)3262 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3263 {
3264 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3265 	int dirty = stmmac_rx_dirty(priv, queue);
3266 	unsigned int entry = rx_q->dirty_rx;
3267 
3268 	int bfsize = priv->dma_buf_sz;
3269 
3270 	while (dirty-- > 0) {
3271 		struct dma_desc *p;
3272 
3273 		if (priv->extend_desc)
3274 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3275 		else
3276 			p = rx_q->dma_rx + entry;
3277 
3278 		if (likely(!rx_q->rx_skbuff[entry])) {
3279 			struct sk_buff *skb;
3280 
3281 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3282 			if (unlikely(!skb)) {
3283 				/* so for a while no zero-copy! */
3284 				rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3285 				if (unlikely(net_ratelimit()))
3286 					dev_err(priv->device,
3287 						"fail to alloc skb entry %d\n",
3288 						entry);
3289 				break;
3290 			}
3291 
3292 			rx_q->rx_skbuff[entry] = skb;
3293 			rx_q->rx_skbuff_dma[entry] =
3294 			    dma_map_single(priv->device, skb->data, bfsize,
3295 					   DMA_FROM_DEVICE);
3296 			if (dma_mapping_error(priv->device,
3297 					      rx_q->rx_skbuff_dma[entry])) {
3298 				netdev_err(priv->dev, "Rx DMA map failed\n");
3299 				dev_kfree_skb(skb);
3300 				break;
3301 			}
3302 
3303 			stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3304 			stmmac_refill_desc3(priv, rx_q, p);
3305 
3306 			if (rx_q->rx_zeroc_thresh > 0)
3307 				rx_q->rx_zeroc_thresh--;
3308 
3309 			netif_dbg(priv, rx_status, priv->dev,
3310 				  "refill entry #%d\n", entry);
3311 		}
3312 		dma_wmb();
3313 
3314 		stmmac_set_rx_owner(priv, p, priv->use_riwt);
3315 
3316 		dma_wmb();
3317 
3318 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3319 	}
3320 	rx_q->dirty_rx = entry;
3321 }
3322 
3323 /**
3324  * stmmac_rx - manage the receive process
3325  * @priv: driver private structure
3326  * @limit: napi bugget
3327  * @queue: RX queue index.
3328  * Description :  this the function called by the napi poll method.
3329  * It gets all the frames inside the ring.
3330  */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)3331 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3332 {
3333 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3334 	struct stmmac_channel *ch = &priv->channel[queue];
3335 	unsigned int entry = rx_q->cur_rx;
3336 	int coe = priv->hw->rx_csum;
3337 	unsigned int next_entry;
3338 	unsigned int count = 0;
3339 	bool xmac;
3340 
3341 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3342 
3343 	if (netif_msg_rx_status(priv)) {
3344 		void *rx_head;
3345 
3346 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3347 		if (priv->extend_desc)
3348 			rx_head = (void *)rx_q->dma_erx;
3349 		else
3350 			rx_head = (void *)rx_q->dma_rx;
3351 
3352 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3353 	}
3354 	while (count < limit) {
3355 		int status;
3356 		struct dma_desc *p;
3357 		struct dma_desc *np;
3358 
3359 		if (priv->extend_desc)
3360 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3361 		else
3362 			p = rx_q->dma_rx + entry;
3363 
3364 		/* read the status of the incoming frame */
3365 		status = stmmac_rx_status(priv, &priv->dev->stats,
3366 				&priv->xstats, p);
3367 		/* check if managed by the DMA otherwise go ahead */
3368 		if (unlikely(status & dma_own))
3369 			break;
3370 
3371 		count++;
3372 
3373 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3374 		next_entry = rx_q->cur_rx;
3375 
3376 		if (priv->extend_desc)
3377 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3378 		else
3379 			np = rx_q->dma_rx + next_entry;
3380 
3381 		prefetch(np);
3382 
3383 		if (priv->extend_desc)
3384 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3385 					&priv->xstats, rx_q->dma_erx + entry);
3386 		if (unlikely(status == discard_frame)) {
3387 			priv->dev->stats.rx_errors++;
3388 			if (priv->hwts_rx_en && !priv->extend_desc) {
3389 				/* DESC2 & DESC3 will be overwritten by device
3390 				 * with timestamp value, hence reinitialize
3391 				 * them in stmmac_rx_refill() function so that
3392 				 * device can reuse it.
3393 				 */
3394 				dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3395 				rx_q->rx_skbuff[entry] = NULL;
3396 				dma_unmap_single(priv->device,
3397 						 rx_q->rx_skbuff_dma[entry],
3398 						 priv->dma_buf_sz,
3399 						 DMA_FROM_DEVICE);
3400 			}
3401 		} else {
3402 			struct sk_buff *skb;
3403 			int frame_len;
3404 			unsigned int des;
3405 
3406 			stmmac_get_desc_addr(priv, p, &des);
3407 			frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3408 
3409 			/*  If frame length is greater than skb buffer size
3410 			 *  (preallocated during init) then the packet is
3411 			 *  ignored
3412 			 */
3413 			if (frame_len > priv->dma_buf_sz) {
3414 				netdev_err(priv->dev,
3415 					   "len %d larger than size (%d)\n",
3416 					   frame_len, priv->dma_buf_sz);
3417 				priv->dev->stats.rx_length_errors++;
3418 				break;
3419 			}
3420 
3421 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3422 			 * Type frames (LLC/LLC-SNAP)
3423 			 *
3424 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3425 			 * feature is always disabled and packets need to be
3426 			 * stripped manually.
3427 			 */
3428 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3429 			    unlikely(status != llc_snap))
3430 				frame_len -= ETH_FCS_LEN;
3431 
3432 			if (netif_msg_rx_status(priv)) {
3433 				netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3434 					   p, entry, des);
3435 				netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3436 					   frame_len, status);
3437 			}
3438 
3439 			/* The zero-copy is always used for all the sizes
3440 			 * in case of GMAC4 because it needs
3441 			 * to refill the used descriptors, always.
3442 			 */
3443 			if (unlikely(!xmac &&
3444 				     ((frame_len < priv->rx_copybreak) ||
3445 				     stmmac_rx_threshold_count(rx_q)))) {
3446 				skb = netdev_alloc_skb_ip_align(priv->dev,
3447 								frame_len);
3448 				if (unlikely(!skb)) {
3449 					if (net_ratelimit())
3450 						dev_warn(priv->device,
3451 							 "packet dropped\n");
3452 					priv->dev->stats.rx_dropped++;
3453 					break;
3454 				}
3455 
3456 				dma_sync_single_for_cpu(priv->device,
3457 							rx_q->rx_skbuff_dma
3458 							[entry], frame_len,
3459 							DMA_FROM_DEVICE);
3460 				skb_copy_to_linear_data(skb,
3461 							rx_q->
3462 							rx_skbuff[entry]->data,
3463 							frame_len);
3464 
3465 				skb_put(skb, frame_len);
3466 				dma_sync_single_for_device(priv->device,
3467 							   rx_q->rx_skbuff_dma
3468 							   [entry], frame_len,
3469 							   DMA_FROM_DEVICE);
3470 			} else {
3471 				skb = rx_q->rx_skbuff[entry];
3472 				if (unlikely(!skb)) {
3473 					netdev_err(priv->dev,
3474 						   "%s: Inconsistent Rx chain\n",
3475 						   priv->dev->name);
3476 					priv->dev->stats.rx_dropped++;
3477 					break;
3478 				}
3479 				prefetch(skb->data - NET_IP_ALIGN);
3480 				rx_q->rx_skbuff[entry] = NULL;
3481 				rx_q->rx_zeroc_thresh++;
3482 
3483 				skb_put(skb, frame_len);
3484 				dma_unmap_single(priv->device,
3485 						 rx_q->rx_skbuff_dma[entry],
3486 						 priv->dma_buf_sz,
3487 						 DMA_FROM_DEVICE);
3488 			}
3489 
3490 			if (netif_msg_pktdata(priv)) {
3491 				netdev_dbg(priv->dev, "frame received (%dbytes)",
3492 					   frame_len);
3493 				print_pkt(skb->data, frame_len);
3494 			}
3495 
3496 			stmmac_get_rx_hwtstamp(priv, p, np, skb);
3497 
3498 			stmmac_rx_vlan(priv->dev, skb);
3499 
3500 			skb->protocol = eth_type_trans(skb, priv->dev);
3501 
3502 			if (unlikely(!coe))
3503 				skb_checksum_none_assert(skb);
3504 			else
3505 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3506 
3507 			napi_gro_receive(&ch->napi, skb);
3508 
3509 			priv->dev->stats.rx_packets++;
3510 			priv->dev->stats.rx_bytes += frame_len;
3511 		}
3512 		entry = next_entry;
3513 	}
3514 
3515 	stmmac_rx_refill(priv, queue);
3516 
3517 	priv->xstats.rx_pkt_n += count;
3518 
3519 	return count;
3520 }
3521 
3522 /**
3523  *  stmmac_poll - stmmac poll method (NAPI)
3524  *  @napi : pointer to the napi structure.
3525  *  @budget : maximum number of packets that the current CPU can receive from
3526  *	      all interfaces.
3527  *  Description :
3528  *  To look at the incoming frames and clear the tx resources.
3529  */
stmmac_napi_poll(struct napi_struct * napi,int budget)3530 static int stmmac_napi_poll(struct napi_struct *napi, int budget)
3531 {
3532 	struct stmmac_channel *ch =
3533 		container_of(napi, struct stmmac_channel, napi);
3534 	struct stmmac_priv *priv = ch->priv_data;
3535 	int work_done = 0, work_rem = budget;
3536 	u32 chan = ch->index;
3537 
3538 	priv->xstats.napi_poll++;
3539 
3540 	if (ch->has_tx) {
3541 		int done = stmmac_tx_clean(priv, work_rem, chan);
3542 
3543 		work_done += done;
3544 		work_rem -= done;
3545 	}
3546 
3547 	if (ch->has_rx) {
3548 		int done = stmmac_rx(priv, work_rem, chan);
3549 
3550 		work_done += done;
3551 		work_rem -= done;
3552 	}
3553 
3554 	if (work_done < budget && napi_complete_done(napi, work_done))
3555 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3556 
3557 	return work_done;
3558 }
3559 
3560 /**
3561  *  stmmac_tx_timeout
3562  *  @dev : Pointer to net device structure
3563  *  Description: this function is called when a packet transmission fails to
3564  *   complete within a reasonable time. The driver will mark the error in the
3565  *   netdev structure and arrange for the device to be reset to a sane state
3566  *   in order to transmit a new packet.
3567  */
stmmac_tx_timeout(struct net_device * dev)3568 static void stmmac_tx_timeout(struct net_device *dev)
3569 {
3570 	struct stmmac_priv *priv = netdev_priv(dev);
3571 
3572 	stmmac_global_err(priv);
3573 }
3574 
3575 /**
3576  *  stmmac_set_rx_mode - entry point for multicast addressing
3577  *  @dev : pointer to the device structure
3578  *  Description:
3579  *  This function is a driver entry point which gets called by the kernel
3580  *  whenever multicast addresses must be enabled/disabled.
3581  *  Return value:
3582  *  void.
3583  */
stmmac_set_rx_mode(struct net_device * dev)3584 static void stmmac_set_rx_mode(struct net_device *dev)
3585 {
3586 	struct stmmac_priv *priv = netdev_priv(dev);
3587 
3588 	stmmac_set_filter(priv, priv->hw, dev);
3589 }
3590 
3591 /**
3592  *  stmmac_change_mtu - entry point to change MTU size for the device.
3593  *  @dev : device pointer.
3594  *  @new_mtu : the new MTU size for the device.
3595  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3596  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3597  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3598  *  Return value:
3599  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3600  *  file on failure.
3601  */
stmmac_change_mtu(struct net_device * dev,int new_mtu)3602 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3603 {
3604 	struct stmmac_priv *priv = netdev_priv(dev);
3605 
3606 	if (netif_running(dev)) {
3607 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3608 		return -EBUSY;
3609 	}
3610 
3611 	dev->mtu = new_mtu;
3612 
3613 	netdev_update_features(dev);
3614 
3615 	return 0;
3616 }
3617 
stmmac_fix_features(struct net_device * dev,netdev_features_t features)3618 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3619 					     netdev_features_t features)
3620 {
3621 	struct stmmac_priv *priv = netdev_priv(dev);
3622 
3623 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3624 		features &= ~NETIF_F_RXCSUM;
3625 
3626 	if (!priv->plat->tx_coe)
3627 		features &= ~NETIF_F_CSUM_MASK;
3628 
3629 	/* Some GMAC devices have a bugged Jumbo frame support that
3630 	 * needs to have the Tx COE disabled for oversized frames
3631 	 * (due to limited buffer sizes). In this case we disable
3632 	 * the TX csum insertion in the TDES and not use SF.
3633 	 */
3634 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3635 		features &= ~NETIF_F_CSUM_MASK;
3636 
3637 	/* Disable tso if asked by ethtool */
3638 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3639 		if (features & NETIF_F_TSO)
3640 			priv->tso = true;
3641 		else
3642 			priv->tso = false;
3643 	}
3644 
3645 	return features;
3646 }
3647 
stmmac_set_features(struct net_device * netdev,netdev_features_t features)3648 static int stmmac_set_features(struct net_device *netdev,
3649 			       netdev_features_t features)
3650 {
3651 	struct stmmac_priv *priv = netdev_priv(netdev);
3652 
3653 	/* Keep the COE Type in case of csum is supporting */
3654 	if (features & NETIF_F_RXCSUM)
3655 		priv->hw->rx_csum = priv->plat->rx_coe;
3656 	else
3657 		priv->hw->rx_csum = 0;
3658 	/* No check needed because rx_coe has been set before and it will be
3659 	 * fixed in case of issue.
3660 	 */
3661 	stmmac_rx_ipc(priv, priv->hw);
3662 
3663 	return 0;
3664 }
3665 
3666 /**
3667  *  stmmac_interrupt - main ISR
3668  *  @irq: interrupt number.
3669  *  @dev_id: to pass the net device pointer.
3670  *  Description: this is the main driver interrupt service routine.
3671  *  It can call:
3672  *  o DMA service routine (to manage incoming frame reception and transmission
3673  *    status)
3674  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3675  *    interrupts.
3676  */
stmmac_interrupt(int irq,void * dev_id)3677 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3678 {
3679 	struct net_device *dev = (struct net_device *)dev_id;
3680 	struct stmmac_priv *priv = netdev_priv(dev);
3681 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3682 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3683 	u32 queues_count;
3684 	u32 queue;
3685 	bool xmac;
3686 
3687 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3688 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3689 
3690 	if (priv->irq_wake)
3691 		pm_wakeup_event(priv->device, 0);
3692 
3693 	if (unlikely(!dev)) {
3694 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3695 		return IRQ_NONE;
3696 	}
3697 
3698 	/* Check if adapter is up */
3699 	if (test_bit(STMMAC_DOWN, &priv->state))
3700 		return IRQ_HANDLED;
3701 	/* Check if a fatal error happened */
3702 	if (stmmac_safety_feat_interrupt(priv))
3703 		return IRQ_HANDLED;
3704 
3705 	/* To handle GMAC own interrupts */
3706 	if ((priv->plat->has_gmac) || xmac) {
3707 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3708 		int mtl_status;
3709 
3710 		if (unlikely(status)) {
3711 			/* For LPI we need to save the tx status */
3712 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3713 				priv->tx_path_in_lpi_mode = true;
3714 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3715 				priv->tx_path_in_lpi_mode = false;
3716 		}
3717 
3718 		for (queue = 0; queue < queues_count; queue++) {
3719 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3720 
3721 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3722 								queue);
3723 			if (mtl_status != -EINVAL)
3724 				status |= mtl_status;
3725 
3726 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3727 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3728 						       rx_q->rx_tail_addr,
3729 						       queue);
3730 		}
3731 
3732 		/* PCS link status */
3733 		if (priv->hw->pcs) {
3734 			if (priv->xstats.pcs_link)
3735 				netif_carrier_on(dev);
3736 			else
3737 				netif_carrier_off(dev);
3738 		}
3739 	}
3740 
3741 	/* To handle DMA interrupts */
3742 	stmmac_dma_interrupt(priv);
3743 
3744 	return IRQ_HANDLED;
3745 }
3746 
3747 #ifdef CONFIG_NET_POLL_CONTROLLER
3748 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3749  * to allow network I/O with interrupts disabled.
3750  */
stmmac_poll_controller(struct net_device * dev)3751 static void stmmac_poll_controller(struct net_device *dev)
3752 {
3753 	disable_irq(dev->irq);
3754 	stmmac_interrupt(dev->irq, dev);
3755 	enable_irq(dev->irq);
3756 }
3757 #endif
3758 
3759 /**
3760  *  stmmac_ioctl - Entry point for the Ioctl
3761  *  @dev: Device pointer.
3762  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3763  *  a proprietary structure used to pass information to the driver.
3764  *  @cmd: IOCTL command
3765  *  Description:
3766  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3767  */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)3768 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3769 {
3770 	int ret = -EOPNOTSUPP;
3771 
3772 	if (!netif_running(dev))
3773 		return -EINVAL;
3774 
3775 	switch (cmd) {
3776 	case SIOCGMIIPHY:
3777 	case SIOCGMIIREG:
3778 	case SIOCSMIIREG:
3779 		if (!dev->phydev)
3780 			return -EINVAL;
3781 		ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3782 		break;
3783 	case SIOCSHWTSTAMP:
3784 		ret = stmmac_hwtstamp_ioctl(dev, rq);
3785 		break;
3786 	default:
3787 		break;
3788 	}
3789 
3790 	return ret;
3791 }
3792 
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)3793 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3794 				    void *cb_priv)
3795 {
3796 	struct stmmac_priv *priv = cb_priv;
3797 	int ret = -EOPNOTSUPP;
3798 
3799 	stmmac_disable_all_queues(priv);
3800 
3801 	switch (type) {
3802 	case TC_SETUP_CLSU32:
3803 		if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3804 			ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3805 		break;
3806 	default:
3807 		break;
3808 	}
3809 
3810 	stmmac_enable_all_queues(priv);
3811 	return ret;
3812 }
3813 
stmmac_setup_tc_block(struct stmmac_priv * priv,struct tc_block_offload * f)3814 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3815 				 struct tc_block_offload *f)
3816 {
3817 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3818 		return -EOPNOTSUPP;
3819 
3820 	switch (f->command) {
3821 	case TC_BLOCK_BIND:
3822 		return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3823 				priv, priv, f->extack);
3824 	case TC_BLOCK_UNBIND:
3825 		tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3826 		return 0;
3827 	default:
3828 		return -EOPNOTSUPP;
3829 	}
3830 }
3831 
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)3832 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3833 			   void *type_data)
3834 {
3835 	struct stmmac_priv *priv = netdev_priv(ndev);
3836 
3837 	switch (type) {
3838 	case TC_SETUP_BLOCK:
3839 		return stmmac_setup_tc_block(priv, type_data);
3840 	case TC_SETUP_QDISC_CBS:
3841 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3842 	default:
3843 		return -EOPNOTSUPP;
3844 	}
3845 }
3846 
stmmac_set_mac_address(struct net_device * ndev,void * addr)3847 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3848 {
3849 	struct stmmac_priv *priv = netdev_priv(ndev);
3850 	int ret = 0;
3851 
3852 	ret = eth_mac_addr(ndev, addr);
3853 	if (ret)
3854 		return ret;
3855 
3856 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3857 
3858 	return ret;
3859 }
3860 
3861 #ifdef CONFIG_DEBUG_FS
3862 static struct dentry *stmmac_fs_dir;
3863 
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq)3864 static void sysfs_display_ring(void *head, int size, int extend_desc,
3865 			       struct seq_file *seq)
3866 {
3867 	int i;
3868 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3869 	struct dma_desc *p = (struct dma_desc *)head;
3870 
3871 	for (i = 0; i < size; i++) {
3872 		if (extend_desc) {
3873 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3874 				   i, (unsigned int)virt_to_phys(ep),
3875 				   le32_to_cpu(ep->basic.des0),
3876 				   le32_to_cpu(ep->basic.des1),
3877 				   le32_to_cpu(ep->basic.des2),
3878 				   le32_to_cpu(ep->basic.des3));
3879 			ep++;
3880 		} else {
3881 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3882 				   i, (unsigned int)virt_to_phys(p),
3883 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3884 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3885 			p++;
3886 		}
3887 		seq_printf(seq, "\n");
3888 	}
3889 }
3890 
stmmac_sysfs_ring_read(struct seq_file * seq,void * v)3891 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
3892 {
3893 	struct net_device *dev = seq->private;
3894 	struct stmmac_priv *priv = netdev_priv(dev);
3895 	u32 rx_count = priv->plat->rx_queues_to_use;
3896 	u32 tx_count = priv->plat->tx_queues_to_use;
3897 	u32 queue;
3898 
3899 	for (queue = 0; queue < rx_count; queue++) {
3900 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3901 
3902 		seq_printf(seq, "RX Queue %d:\n", queue);
3903 
3904 		if (priv->extend_desc) {
3905 			seq_printf(seq, "Extended descriptor ring:\n");
3906 			sysfs_display_ring((void *)rx_q->dma_erx,
3907 					   DMA_RX_SIZE, 1, seq);
3908 		} else {
3909 			seq_printf(seq, "Descriptor ring:\n");
3910 			sysfs_display_ring((void *)rx_q->dma_rx,
3911 					   DMA_RX_SIZE, 0, seq);
3912 		}
3913 	}
3914 
3915 	for (queue = 0; queue < tx_count; queue++) {
3916 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3917 
3918 		seq_printf(seq, "TX Queue %d:\n", queue);
3919 
3920 		if (priv->extend_desc) {
3921 			seq_printf(seq, "Extended descriptor ring:\n");
3922 			sysfs_display_ring((void *)tx_q->dma_etx,
3923 					   DMA_TX_SIZE, 1, seq);
3924 		} else {
3925 			seq_printf(seq, "Descriptor ring:\n");
3926 			sysfs_display_ring((void *)tx_q->dma_tx,
3927 					   DMA_TX_SIZE, 0, seq);
3928 		}
3929 	}
3930 
3931 	return 0;
3932 }
3933 
stmmac_sysfs_ring_open(struct inode * inode,struct file * file)3934 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
3935 {
3936 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
3937 }
3938 
3939 /* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */
3940 
3941 static const struct file_operations stmmac_rings_status_fops = {
3942 	.owner = THIS_MODULE,
3943 	.open = stmmac_sysfs_ring_open,
3944 	.read = seq_read,
3945 	.llseek = seq_lseek,
3946 	.release = single_release,
3947 };
3948 
stmmac_sysfs_dma_cap_read(struct seq_file * seq,void * v)3949 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
3950 {
3951 	struct net_device *dev = seq->private;
3952 	struct stmmac_priv *priv = netdev_priv(dev);
3953 
3954 	if (!priv->hw_cap_support) {
3955 		seq_printf(seq, "DMA HW features not supported\n");
3956 		return 0;
3957 	}
3958 
3959 	seq_printf(seq, "==============================\n");
3960 	seq_printf(seq, "\tDMA HW features\n");
3961 	seq_printf(seq, "==============================\n");
3962 
3963 	seq_printf(seq, "\t10/100 Mbps: %s\n",
3964 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3965 	seq_printf(seq, "\t1000 Mbps: %s\n",
3966 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
3967 	seq_printf(seq, "\tHalf duplex: %s\n",
3968 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
3969 	seq_printf(seq, "\tHash Filter: %s\n",
3970 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
3971 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3972 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
3973 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3974 		   (priv->dma_cap.pcs) ? "Y" : "N");
3975 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3976 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
3977 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
3978 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3979 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
3980 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3981 	seq_printf(seq, "\tRMON module: %s\n",
3982 		   (priv->dma_cap.rmon) ? "Y" : "N");
3983 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3984 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
3985 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3986 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
3987 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3988 		   (priv->dma_cap.eee) ? "Y" : "N");
3989 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3990 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3991 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
3992 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3993 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3994 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
3995 	} else {
3996 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3997 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3998 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3999 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4000 	}
4001 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4002 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4003 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4004 		   priv->dma_cap.number_rx_channel);
4005 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4006 		   priv->dma_cap.number_tx_channel);
4007 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4008 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4009 
4010 	return 0;
4011 }
4012 
stmmac_sysfs_dma_cap_open(struct inode * inode,struct file * file)4013 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
4014 {
4015 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
4016 }
4017 
4018 static const struct file_operations stmmac_dma_cap_fops = {
4019 	.owner = THIS_MODULE,
4020 	.open = stmmac_sysfs_dma_cap_open,
4021 	.read = seq_read,
4022 	.llseek = seq_lseek,
4023 	.release = single_release,
4024 };
4025 
stmmac_init_fs(struct net_device * dev)4026 static int stmmac_init_fs(struct net_device *dev)
4027 {
4028 	struct stmmac_priv *priv = netdev_priv(dev);
4029 
4030 	/* Create per netdev entries */
4031 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4032 
4033 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
4034 		netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
4035 
4036 		return -ENOMEM;
4037 	}
4038 
4039 	/* Entry to report DMA RX/TX rings */
4040 	priv->dbgfs_rings_status =
4041 		debugfs_create_file("descriptors_status", 0444,
4042 				    priv->dbgfs_dir, dev,
4043 				    &stmmac_rings_status_fops);
4044 
4045 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
4046 		netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
4047 		debugfs_remove_recursive(priv->dbgfs_dir);
4048 
4049 		return -ENOMEM;
4050 	}
4051 
4052 	/* Entry to report the DMA HW features */
4053 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
4054 						  priv->dbgfs_dir,
4055 						  dev, &stmmac_dma_cap_fops);
4056 
4057 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4058 		netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4059 		debugfs_remove_recursive(priv->dbgfs_dir);
4060 
4061 		return -ENOMEM;
4062 	}
4063 
4064 	return 0;
4065 }
4066 
stmmac_exit_fs(struct net_device * dev)4067 static void stmmac_exit_fs(struct net_device *dev)
4068 {
4069 	struct stmmac_priv *priv = netdev_priv(dev);
4070 
4071 	debugfs_remove_recursive(priv->dbgfs_dir);
4072 }
4073 #endif /* CONFIG_DEBUG_FS */
4074 
4075 static const struct net_device_ops stmmac_netdev_ops = {
4076 	.ndo_open = stmmac_open,
4077 	.ndo_start_xmit = stmmac_xmit,
4078 	.ndo_stop = stmmac_release,
4079 	.ndo_change_mtu = stmmac_change_mtu,
4080 	.ndo_fix_features = stmmac_fix_features,
4081 	.ndo_set_features = stmmac_set_features,
4082 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4083 	.ndo_tx_timeout = stmmac_tx_timeout,
4084 	.ndo_do_ioctl = stmmac_ioctl,
4085 	.ndo_setup_tc = stmmac_setup_tc,
4086 #ifdef CONFIG_NET_POLL_CONTROLLER
4087 	.ndo_poll_controller = stmmac_poll_controller,
4088 #endif
4089 	.ndo_set_mac_address = stmmac_set_mac_address,
4090 };
4091 
stmmac_reset_subtask(struct stmmac_priv * priv)4092 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4093 {
4094 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4095 		return;
4096 	if (test_bit(STMMAC_DOWN, &priv->state))
4097 		return;
4098 
4099 	netdev_err(priv->dev, "Reset adapter.\n");
4100 
4101 	rtnl_lock();
4102 	netif_trans_update(priv->dev);
4103 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4104 		usleep_range(1000, 2000);
4105 
4106 	set_bit(STMMAC_DOWN, &priv->state);
4107 	dev_close(priv->dev);
4108 	dev_open(priv->dev);
4109 	clear_bit(STMMAC_DOWN, &priv->state);
4110 	clear_bit(STMMAC_RESETING, &priv->state);
4111 	rtnl_unlock();
4112 }
4113 
stmmac_service_task(struct work_struct * work)4114 static void stmmac_service_task(struct work_struct *work)
4115 {
4116 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4117 			service_task);
4118 
4119 	stmmac_reset_subtask(priv);
4120 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4121 }
4122 
4123 /**
4124  *  stmmac_hw_init - Init the MAC device
4125  *  @priv: driver private structure
4126  *  Description: this function is to configure the MAC device according to
4127  *  some platform parameters or the HW capability register. It prepares the
4128  *  driver to use either ring or chain modes and to setup either enhanced or
4129  *  normal descriptors.
4130  */
stmmac_hw_init(struct stmmac_priv * priv)4131 static int stmmac_hw_init(struct stmmac_priv *priv)
4132 {
4133 	int ret;
4134 
4135 	/* dwmac-sun8i only work in chain mode */
4136 	if (priv->plat->has_sun8i)
4137 		chain_mode = 1;
4138 	priv->chain_mode = chain_mode;
4139 
4140 	/* Initialize HW Interface */
4141 	ret = stmmac_hwif_init(priv);
4142 	if (ret)
4143 		return ret;
4144 
4145 	/* Get the HW capability (new GMAC newer than 3.50a) */
4146 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4147 	if (priv->hw_cap_support) {
4148 		dev_info(priv->device, "DMA HW capability register supported\n");
4149 
4150 		/* We can override some gmac/dma configuration fields: e.g.
4151 		 * enh_desc, tx_coe (e.g. that are passed through the
4152 		 * platform) with the values from the HW capability
4153 		 * register (if supported).
4154 		 */
4155 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4156 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4157 		priv->hw->pmt = priv->plat->pmt;
4158 
4159 		/* TXCOE doesn't work in thresh DMA mode */
4160 		if (priv->plat->force_thresh_dma_mode)
4161 			priv->plat->tx_coe = 0;
4162 		else
4163 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4164 
4165 		/* In case of GMAC4 rx_coe is from HW cap register. */
4166 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4167 
4168 		if (priv->dma_cap.rx_coe_type2)
4169 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4170 		else if (priv->dma_cap.rx_coe_type1)
4171 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4172 
4173 	} else {
4174 		dev_info(priv->device, "No HW DMA feature register supported\n");
4175 	}
4176 
4177 	if (priv->plat->rx_coe) {
4178 		priv->hw->rx_csum = priv->plat->rx_coe;
4179 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4180 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4181 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4182 	}
4183 	if (priv->plat->tx_coe)
4184 		dev_info(priv->device, "TX Checksum insertion supported\n");
4185 
4186 	if (priv->plat->pmt) {
4187 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4188 		device_set_wakeup_capable(priv->device, 1);
4189 	}
4190 
4191 	if (priv->dma_cap.tsoen)
4192 		dev_info(priv->device, "TSO supported\n");
4193 
4194 	/* Run HW quirks, if any */
4195 	if (priv->hwif_quirks) {
4196 		ret = priv->hwif_quirks(priv);
4197 		if (ret)
4198 			return ret;
4199 	}
4200 
4201 	return 0;
4202 }
4203 
4204 /**
4205  * stmmac_dvr_probe
4206  * @device: device pointer
4207  * @plat_dat: platform data pointer
4208  * @res: stmmac resource pointer
4209  * Description: this is the main probe function used to
4210  * call the alloc_etherdev, allocate the priv structure.
4211  * Return:
4212  * returns 0 on success, otherwise errno.
4213  */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)4214 int stmmac_dvr_probe(struct device *device,
4215 		     struct plat_stmmacenet_data *plat_dat,
4216 		     struct stmmac_resources *res)
4217 {
4218 	struct net_device *ndev = NULL;
4219 	struct stmmac_priv *priv;
4220 	u32 queue, maxq;
4221 	int ret = 0;
4222 
4223 	ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
4224 				  MTL_MAX_TX_QUEUES,
4225 				  MTL_MAX_RX_QUEUES);
4226 	if (!ndev)
4227 		return -ENOMEM;
4228 
4229 	SET_NETDEV_DEV(ndev, device);
4230 
4231 	priv = netdev_priv(ndev);
4232 	priv->device = device;
4233 	priv->dev = ndev;
4234 
4235 	stmmac_set_ethtool_ops(ndev);
4236 	priv->pause = pause;
4237 	priv->plat = plat_dat;
4238 	priv->ioaddr = res->addr;
4239 	priv->dev->base_addr = (unsigned long)res->addr;
4240 
4241 	priv->dev->irq = res->irq;
4242 	priv->wol_irq = res->wol_irq;
4243 	priv->lpi_irq = res->lpi_irq;
4244 
4245 	if (res->mac)
4246 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4247 
4248 	dev_set_drvdata(device, priv->dev);
4249 
4250 	/* Verify driver arguments */
4251 	stmmac_verify_args();
4252 
4253 	/* Allocate workqueue */
4254 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4255 	if (!priv->wq) {
4256 		dev_err(priv->device, "failed to create workqueue\n");
4257 		goto error_wq;
4258 	}
4259 
4260 	INIT_WORK(&priv->service_task, stmmac_service_task);
4261 
4262 	/* Override with kernel parameters if supplied XXX CRS XXX
4263 	 * this needs to have multiple instances
4264 	 */
4265 	if ((phyaddr >= 0) && (phyaddr <= 31))
4266 		priv->plat->phy_addr = phyaddr;
4267 
4268 	if (priv->plat->stmmac_rst) {
4269 		ret = reset_control_assert(priv->plat->stmmac_rst);
4270 		reset_control_deassert(priv->plat->stmmac_rst);
4271 		/* Some reset controllers have only reset callback instead of
4272 		 * assert + deassert callbacks pair.
4273 		 */
4274 		if (ret == -ENOTSUPP)
4275 			reset_control_reset(priv->plat->stmmac_rst);
4276 	}
4277 
4278 	/* Init MAC and get the capabilities */
4279 	ret = stmmac_hw_init(priv);
4280 	if (ret)
4281 		goto error_hw_init;
4282 
4283 	/* Configure real RX and TX queues */
4284 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4285 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4286 
4287 	ndev->netdev_ops = &stmmac_netdev_ops;
4288 
4289 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4290 			    NETIF_F_RXCSUM;
4291 
4292 	ret = stmmac_tc_init(priv, priv);
4293 	if (!ret) {
4294 		ndev->hw_features |= NETIF_F_HW_TC;
4295 	}
4296 
4297 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4298 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4299 		priv->tso = true;
4300 		dev_info(priv->device, "TSO feature enabled\n");
4301 	}
4302 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4303 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4304 #ifdef STMMAC_VLAN_TAG_USED
4305 	/* Both mac100 and gmac support receive VLAN tag detection */
4306 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4307 #endif
4308 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4309 
4310 	/* MTU range: 46 - hw-specific max */
4311 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4312 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4313 		ndev->max_mtu = JUMBO_LEN;
4314 	else if (priv->plat->has_xgmac)
4315 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4316 	else
4317 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4318 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4319 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4320 	 */
4321 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4322 	    (priv->plat->maxmtu >= ndev->min_mtu))
4323 		ndev->max_mtu = priv->plat->maxmtu;
4324 	else if (priv->plat->maxmtu < ndev->min_mtu)
4325 		dev_warn(priv->device,
4326 			 "%s: warning: maxmtu having invalid value (%d)\n",
4327 			 __func__, priv->plat->maxmtu);
4328 
4329 	if (flow_ctrl)
4330 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4331 
4332 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4333 	 * In some case, for example on bugged HW this feature
4334 	 * has to be disable and this can be done by passing the
4335 	 * riwt_off field from the platform.
4336 	 */
4337 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4338 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4339 		priv->use_riwt = 1;
4340 		dev_info(priv->device,
4341 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4342 	}
4343 
4344 	/* Setup channels NAPI */
4345 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4346 
4347 	for (queue = 0; queue < maxq; queue++) {
4348 		struct stmmac_channel *ch = &priv->channel[queue];
4349 
4350 		ch->priv_data = priv;
4351 		ch->index = queue;
4352 
4353 		if (queue < priv->plat->rx_queues_to_use)
4354 			ch->has_rx = true;
4355 		if (queue < priv->plat->tx_queues_to_use)
4356 			ch->has_tx = true;
4357 
4358 		netif_napi_add(ndev, &ch->napi, stmmac_napi_poll,
4359 			       NAPI_POLL_WEIGHT);
4360 	}
4361 
4362 	mutex_init(&priv->lock);
4363 
4364 	/* If a specific clk_csr value is passed from the platform
4365 	 * this means that the CSR Clock Range selection cannot be
4366 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4367 	 * set the MDC clock dynamically according to the csr actual
4368 	 * clock input.
4369 	 */
4370 	if (!priv->plat->clk_csr)
4371 		stmmac_clk_csr_set(priv);
4372 	else
4373 		priv->clk_csr = priv->plat->clk_csr;
4374 
4375 	stmmac_check_pcs_mode(priv);
4376 
4377 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4378 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4379 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4380 		/* MDIO bus Registration */
4381 		ret = stmmac_mdio_register(ndev);
4382 		if (ret < 0) {
4383 			dev_err(priv->device,
4384 				"%s: MDIO bus (id: %d) registration failed",
4385 				__func__, priv->plat->bus_id);
4386 			goto error_mdio_register;
4387 		}
4388 	}
4389 
4390 	ret = register_netdev(ndev);
4391 	if (ret) {
4392 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4393 			__func__, ret);
4394 		goto error_netdev_register;
4395 	}
4396 
4397 	return ret;
4398 
4399 error_netdev_register:
4400 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4401 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4402 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4403 		stmmac_mdio_unregister(ndev);
4404 error_mdio_register:
4405 	for (queue = 0; queue < maxq; queue++) {
4406 		struct stmmac_channel *ch = &priv->channel[queue];
4407 
4408 		netif_napi_del(&ch->napi);
4409 	}
4410 error_hw_init:
4411 	destroy_workqueue(priv->wq);
4412 error_wq:
4413 	free_netdev(ndev);
4414 
4415 	return ret;
4416 }
4417 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4418 
4419 /**
4420  * stmmac_dvr_remove
4421  * @dev: device pointer
4422  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4423  * changes the link status, releases the DMA descriptor rings.
4424  */
stmmac_dvr_remove(struct device * dev)4425 int stmmac_dvr_remove(struct device *dev)
4426 {
4427 	struct net_device *ndev = dev_get_drvdata(dev);
4428 	struct stmmac_priv *priv = netdev_priv(ndev);
4429 
4430 	netdev_info(priv->dev, "%s: removing driver", __func__);
4431 
4432 	stmmac_stop_all_dma(priv);
4433 
4434 	stmmac_mac_set(priv, priv->ioaddr, false);
4435 	netif_carrier_off(ndev);
4436 	unregister_netdev(ndev);
4437 	if (priv->plat->stmmac_rst)
4438 		reset_control_assert(priv->plat->stmmac_rst);
4439 	clk_disable_unprepare(priv->plat->pclk);
4440 	clk_disable_unprepare(priv->plat->stmmac_clk);
4441 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4442 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4443 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4444 		stmmac_mdio_unregister(ndev);
4445 	destroy_workqueue(priv->wq);
4446 	mutex_destroy(&priv->lock);
4447 	free_netdev(ndev);
4448 
4449 	return 0;
4450 }
4451 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4452 
4453 /**
4454  * stmmac_suspend - suspend callback
4455  * @dev: device pointer
4456  * Description: this is the function to suspend the device and it is called
4457  * by the platform driver to stop the network queue, release the resources,
4458  * program the PMT register (for WoL), clean and release driver resources.
4459  */
stmmac_suspend(struct device * dev)4460 int stmmac_suspend(struct device *dev)
4461 {
4462 	struct net_device *ndev = dev_get_drvdata(dev);
4463 	struct stmmac_priv *priv = netdev_priv(ndev);
4464 
4465 	if (!ndev || !netif_running(ndev))
4466 		return 0;
4467 
4468 	if (ndev->phydev)
4469 		phy_stop(ndev->phydev);
4470 
4471 	mutex_lock(&priv->lock);
4472 
4473 	netif_device_detach(ndev);
4474 	stmmac_stop_all_queues(priv);
4475 
4476 	stmmac_disable_all_queues(priv);
4477 
4478 	/* Stop TX/RX DMA */
4479 	stmmac_stop_all_dma(priv);
4480 
4481 	/* Enable Power down mode by programming the PMT regs */
4482 	if (device_may_wakeup(priv->device)) {
4483 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4484 		priv->irq_wake = 1;
4485 	} else {
4486 		stmmac_mac_set(priv, priv->ioaddr, false);
4487 		pinctrl_pm_select_sleep_state(priv->device);
4488 		/* Disable clock in case of PWM is off */
4489 		clk_disable(priv->plat->pclk);
4490 		clk_disable(priv->plat->stmmac_clk);
4491 	}
4492 	mutex_unlock(&priv->lock);
4493 
4494 	priv->oldlink = false;
4495 	priv->speed = SPEED_UNKNOWN;
4496 	priv->oldduplex = DUPLEX_UNKNOWN;
4497 	return 0;
4498 }
4499 EXPORT_SYMBOL_GPL(stmmac_suspend);
4500 
4501 /**
4502  * stmmac_reset_queues_param - reset queue parameters
4503  * @dev: device pointer
4504  */
stmmac_reset_queues_param(struct stmmac_priv * priv)4505 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4506 {
4507 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4508 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4509 	u32 queue;
4510 
4511 	for (queue = 0; queue < rx_cnt; queue++) {
4512 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4513 
4514 		rx_q->cur_rx = 0;
4515 		rx_q->dirty_rx = 0;
4516 	}
4517 
4518 	for (queue = 0; queue < tx_cnt; queue++) {
4519 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4520 
4521 		tx_q->cur_tx = 0;
4522 		tx_q->dirty_tx = 0;
4523 		tx_q->mss = 0;
4524 	}
4525 }
4526 
4527 /**
4528  * stmmac_resume - resume callback
4529  * @dev: device pointer
4530  * Description: when resume this function is invoked to setup the DMA and CORE
4531  * in a usable state.
4532  */
stmmac_resume(struct device * dev)4533 int stmmac_resume(struct device *dev)
4534 {
4535 	struct net_device *ndev = dev_get_drvdata(dev);
4536 	struct stmmac_priv *priv = netdev_priv(ndev);
4537 
4538 	if (!netif_running(ndev))
4539 		return 0;
4540 
4541 	/* Power Down bit, into the PM register, is cleared
4542 	 * automatically as soon as a magic packet or a Wake-up frame
4543 	 * is received. Anyway, it's better to manually clear
4544 	 * this bit because it can generate problems while resuming
4545 	 * from another devices (e.g. serial console).
4546 	 */
4547 	if (device_may_wakeup(priv->device)) {
4548 		mutex_lock(&priv->lock);
4549 		stmmac_pmt(priv, priv->hw, 0);
4550 		mutex_unlock(&priv->lock);
4551 		priv->irq_wake = 0;
4552 	} else {
4553 		pinctrl_pm_select_default_state(priv->device);
4554 		/* enable the clk previously disabled */
4555 		clk_enable(priv->plat->stmmac_clk);
4556 		clk_enable(priv->plat->pclk);
4557 		/* reset the phy so that it's ready */
4558 		if (priv->mii)
4559 			stmmac_mdio_reset(priv->mii);
4560 	}
4561 
4562 	netif_device_attach(ndev);
4563 
4564 	mutex_lock(&priv->lock);
4565 
4566 	stmmac_reset_queues_param(priv);
4567 
4568 	stmmac_clear_descriptors(priv);
4569 
4570 	stmmac_hw_setup(ndev, false);
4571 	stmmac_init_tx_coalesce(priv);
4572 	stmmac_set_rx_mode(ndev);
4573 
4574 	stmmac_enable_all_queues(priv);
4575 
4576 	stmmac_start_all_queues(priv);
4577 
4578 	mutex_unlock(&priv->lock);
4579 
4580 	if (ndev->phydev)
4581 		phy_start(ndev->phydev);
4582 
4583 	return 0;
4584 }
4585 EXPORT_SYMBOL_GPL(stmmac_resume);
4586 
4587 #ifndef MODULE
stmmac_cmdline_opt(char * str)4588 static int __init stmmac_cmdline_opt(char *str)
4589 {
4590 	char *opt;
4591 
4592 	if (!str || !*str)
4593 		return -EINVAL;
4594 	while ((opt = strsep(&str, ",")) != NULL) {
4595 		if (!strncmp(opt, "debug:", 6)) {
4596 			if (kstrtoint(opt + 6, 0, &debug))
4597 				goto err;
4598 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4599 			if (kstrtoint(opt + 8, 0, &phyaddr))
4600 				goto err;
4601 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4602 			if (kstrtoint(opt + 7, 0, &buf_sz))
4603 				goto err;
4604 		} else if (!strncmp(opt, "tc:", 3)) {
4605 			if (kstrtoint(opt + 3, 0, &tc))
4606 				goto err;
4607 		} else if (!strncmp(opt, "watchdog:", 9)) {
4608 			if (kstrtoint(opt + 9, 0, &watchdog))
4609 				goto err;
4610 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4611 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4612 				goto err;
4613 		} else if (!strncmp(opt, "pause:", 6)) {
4614 			if (kstrtoint(opt + 6, 0, &pause))
4615 				goto err;
4616 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4617 			if (kstrtoint(opt + 10, 0, &eee_timer))
4618 				goto err;
4619 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4620 			if (kstrtoint(opt + 11, 0, &chain_mode))
4621 				goto err;
4622 		}
4623 	}
4624 	return 0;
4625 
4626 err:
4627 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4628 	return -EINVAL;
4629 }
4630 
4631 __setup("stmmaceth=", stmmac_cmdline_opt);
4632 #endif /* MODULE */
4633 
stmmac_init(void)4634 static int __init stmmac_init(void)
4635 {
4636 #ifdef CONFIG_DEBUG_FS
4637 	/* Create debugfs main directory if it doesn't exist yet */
4638 	if (!stmmac_fs_dir) {
4639 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4640 
4641 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4642 			pr_err("ERROR %s, debugfs create directory failed\n",
4643 			       STMMAC_RESOURCE_NAME);
4644 
4645 			return -ENOMEM;
4646 		}
4647 	}
4648 #endif
4649 
4650 	return 0;
4651 }
4652 
stmmac_exit(void)4653 static void __exit stmmac_exit(void)
4654 {
4655 #ifdef CONFIG_DEBUG_FS
4656 	debugfs_remove_recursive(stmmac_fs_dir);
4657 #endif
4658 }
4659 
4660 module_init(stmmac_init)
4661 module_exit(stmmac_exit)
4662 
4663 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4664 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4665 MODULE_LICENSE("GPL");
4666