1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  prepare to run common code
4  *
5  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #define DISABLE_BRANCH_PROFILING
9 
10 /* cpu_feature_enabled() cannot be used this early */
11 #define USE_EARLY_PGTABLE_L5
12 
13 #include <linux/init.h>
14 #include <linux/linkage.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/percpu.h>
19 #include <linux/start_kernel.h>
20 #include <linux/io.h>
21 #include <linux/memblock.h>
22 #include <linux/cc_platform.h>
23 #include <linux/pgtable.h>
24 
25 #include <asm/processor.h>
26 #include <asm/proto.h>
27 #include <asm/smp.h>
28 #include <asm/setup.h>
29 #include <asm/desc.h>
30 #include <asm/tlbflush.h>
31 #include <asm/sections.h>
32 #include <asm/kdebug.h>
33 #include <asm/e820/api.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/bootparam_utils.h>
36 #include <asm/microcode.h>
37 #include <asm/kasan.h>
38 #include <asm/fixmap.h>
39 #include <asm/realmode.h>
40 #include <asm/extable.h>
41 #include <asm/trapnr.h>
42 #include <asm/sev.h>
43 #include <asm/tdx.h>
44 
45 /*
46  * Manage page tables very early on.
47  */
48 extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD];
49 static unsigned int __initdata next_early_pgt;
50 pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX);
51 
52 #ifdef CONFIG_X86_5LEVEL
53 unsigned int __pgtable_l5_enabled __ro_after_init;
54 unsigned int pgdir_shift __ro_after_init = 39;
55 EXPORT_SYMBOL(pgdir_shift);
56 unsigned int ptrs_per_p4d __ro_after_init = 1;
57 EXPORT_SYMBOL(ptrs_per_p4d);
58 #endif
59 
60 #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT
61 unsigned long page_offset_base __ro_after_init = __PAGE_OFFSET_BASE_L4;
62 EXPORT_SYMBOL(page_offset_base);
63 unsigned long vmalloc_base __ro_after_init = __VMALLOC_BASE_L4;
64 EXPORT_SYMBOL(vmalloc_base);
65 unsigned long vmemmap_base __ro_after_init = __VMEMMAP_BASE_L4;
66 EXPORT_SYMBOL(vmemmap_base);
67 #endif
68 
69 /*
70  * GDT used on the boot CPU before switching to virtual addresses.
71  */
72 static struct desc_struct startup_gdt[GDT_ENTRIES] = {
73 	[GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
74 	[GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
75 	[GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
76 };
77 
78 /*
79  * Address needs to be set at runtime because it references the startup_gdt
80  * while the kernel still uses a direct mapping.
81  */
82 static struct desc_ptr startup_gdt_descr = {
83 	.size = sizeof(startup_gdt),
84 	.address = 0,
85 };
86 
87 #define __head	__section(".head.text")
88 
fixup_pointer(void * ptr,unsigned long physaddr)89 static void __head *fixup_pointer(void *ptr, unsigned long physaddr)
90 {
91 	return ptr - (void *)_text + (void *)physaddr;
92 }
93 
fixup_long(void * ptr,unsigned long physaddr)94 static unsigned long __head *fixup_long(void *ptr, unsigned long physaddr)
95 {
96 	return fixup_pointer(ptr, physaddr);
97 }
98 
99 #ifdef CONFIG_X86_5LEVEL
fixup_int(void * ptr,unsigned long physaddr)100 static unsigned int __head *fixup_int(void *ptr, unsigned long physaddr)
101 {
102 	return fixup_pointer(ptr, physaddr);
103 }
104 
check_la57_support(unsigned long physaddr)105 static bool __head check_la57_support(unsigned long physaddr)
106 {
107 	/*
108 	 * 5-level paging is detected and enabled at kernel decompression
109 	 * stage. Only check if it has been enabled there.
110 	 */
111 	if (!(native_read_cr4() & X86_CR4_LA57))
112 		return false;
113 
114 	*fixup_int(&__pgtable_l5_enabled, physaddr) = 1;
115 	*fixup_int(&pgdir_shift, physaddr) = 48;
116 	*fixup_int(&ptrs_per_p4d, physaddr) = 512;
117 	*fixup_long(&page_offset_base, physaddr) = __PAGE_OFFSET_BASE_L5;
118 	*fixup_long(&vmalloc_base, physaddr) = __VMALLOC_BASE_L5;
119 	*fixup_long(&vmemmap_base, physaddr) = __VMEMMAP_BASE_L5;
120 
121 	return true;
122 }
123 #else
check_la57_support(unsigned long physaddr)124 static bool __head check_la57_support(unsigned long physaddr)
125 {
126 	return false;
127 }
128 #endif
129 
sme_postprocess_startup(struct boot_params * bp,pmdval_t * pmd)130 static unsigned long __head sme_postprocess_startup(struct boot_params *bp, pmdval_t *pmd)
131 {
132 	unsigned long vaddr, vaddr_end;
133 	int i;
134 
135 	/* Encrypt the kernel and related (if SME is active) */
136 	sme_encrypt_kernel(bp);
137 
138 	/*
139 	 * Clear the memory encryption mask from the .bss..decrypted section.
140 	 * The bss section will be memset to zero later in the initialization so
141 	 * there is no need to zero it after changing the memory encryption
142 	 * attribute.
143 	 */
144 	if (sme_get_me_mask()) {
145 		vaddr = (unsigned long)__start_bss_decrypted;
146 		vaddr_end = (unsigned long)__end_bss_decrypted;
147 
148 		for (; vaddr < vaddr_end; vaddr += PMD_SIZE) {
149 			/*
150 			 * On SNP, transition the page to shared in the RMP table so that
151 			 * it is consistent with the page table attribute change.
152 			 *
153 			 * __start_bss_decrypted has a virtual address in the high range
154 			 * mapping (kernel .text). PVALIDATE, by way of
155 			 * early_snp_set_memory_shared(), requires a valid virtual
156 			 * address but the kernel is currently running off of the identity
157 			 * mapping so use __pa() to get a *currently* valid virtual address.
158 			 */
159 			early_snp_set_memory_shared(__pa(vaddr), __pa(vaddr), PTRS_PER_PMD);
160 
161 			i = pmd_index(vaddr);
162 			pmd[i] -= sme_get_me_mask();
163 		}
164 	}
165 
166 	/*
167 	 * Return the SME encryption mask (if SME is active) to be used as a
168 	 * modifier for the initial pgdir entry programmed into CR3.
169 	 */
170 	return sme_get_me_mask();
171 }
172 
173 /* Code in __startup_64() can be relocated during execution, but the compiler
174  * doesn't have to generate PC-relative relocations when accessing globals from
175  * that function. Clang actually does not generate them, which leads to
176  * boot-time crashes. To work around this problem, every global pointer must
177  * be adjusted using fixup_pointer().
178  */
__startup_64(unsigned long physaddr,struct boot_params * bp)179 unsigned long __head __startup_64(unsigned long physaddr,
180 				  struct boot_params *bp)
181 {
182 	unsigned long load_delta, *p;
183 	unsigned long pgtable_flags;
184 	pgdval_t *pgd;
185 	p4dval_t *p4d;
186 	pudval_t *pud;
187 	pmdval_t *pmd, pmd_entry;
188 	pteval_t *mask_ptr;
189 	bool la57;
190 	int i;
191 	unsigned int *next_pgt_ptr;
192 
193 	la57 = check_la57_support(physaddr);
194 
195 	/* Is the address too large? */
196 	if (physaddr >> MAX_PHYSMEM_BITS)
197 		for (;;);
198 
199 	/*
200 	 * Compute the delta between the address I am compiled to run at
201 	 * and the address I am actually running at.
202 	 */
203 	load_delta = physaddr - (unsigned long)(_text - __START_KERNEL_map);
204 
205 	/* Is the address not 2M aligned? */
206 	if (load_delta & ~PMD_MASK)
207 		for (;;);
208 
209 	/* Include the SME encryption mask in the fixup value */
210 	load_delta += sme_get_me_mask();
211 
212 	/* Fixup the physical addresses in the page table */
213 
214 	pgd = fixup_pointer(&early_top_pgt, physaddr);
215 	p = pgd + pgd_index(__START_KERNEL_map);
216 	if (la57)
217 		*p = (unsigned long)level4_kernel_pgt;
218 	else
219 		*p = (unsigned long)level3_kernel_pgt;
220 	*p += _PAGE_TABLE_NOENC - __START_KERNEL_map + load_delta;
221 
222 	if (la57) {
223 		p4d = fixup_pointer(&level4_kernel_pgt, physaddr);
224 		p4d[511] += load_delta;
225 	}
226 
227 	pud = fixup_pointer(&level3_kernel_pgt, physaddr);
228 	pud[510] += load_delta;
229 	pud[511] += load_delta;
230 
231 	pmd = fixup_pointer(level2_fixmap_pgt, physaddr);
232 	for (i = FIXMAP_PMD_TOP; i > FIXMAP_PMD_TOP - FIXMAP_PMD_NUM; i--)
233 		pmd[i] += load_delta;
234 
235 	/*
236 	 * Set up the identity mapping for the switchover.  These
237 	 * entries should *NOT* have the global bit set!  This also
238 	 * creates a bunch of nonsense entries but that is fine --
239 	 * it avoids problems around wraparound.
240 	 */
241 
242 	next_pgt_ptr = fixup_pointer(&next_early_pgt, physaddr);
243 	pud = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
244 	pmd = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
245 
246 	pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask();
247 
248 	if (la57) {
249 		p4d = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++],
250 				    physaddr);
251 
252 		i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
253 		pgd[i + 0] = (pgdval_t)p4d + pgtable_flags;
254 		pgd[i + 1] = (pgdval_t)p4d + pgtable_flags;
255 
256 		i = physaddr >> P4D_SHIFT;
257 		p4d[(i + 0) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
258 		p4d[(i + 1) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
259 	} else {
260 		i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
261 		pgd[i + 0] = (pgdval_t)pud + pgtable_flags;
262 		pgd[i + 1] = (pgdval_t)pud + pgtable_flags;
263 	}
264 
265 	i = physaddr >> PUD_SHIFT;
266 	pud[(i + 0) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
267 	pud[(i + 1) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
268 
269 	pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL;
270 	/* Filter out unsupported __PAGE_KERNEL_* bits: */
271 	mask_ptr = fixup_pointer(&__supported_pte_mask, physaddr);
272 	pmd_entry &= *mask_ptr;
273 	pmd_entry += sme_get_me_mask();
274 	pmd_entry +=  physaddr;
275 
276 	for (i = 0; i < DIV_ROUND_UP(_end - _text, PMD_SIZE); i++) {
277 		int idx = i + (physaddr >> PMD_SHIFT);
278 
279 		pmd[idx % PTRS_PER_PMD] = pmd_entry + i * PMD_SIZE;
280 	}
281 
282 	/*
283 	 * Fixup the kernel text+data virtual addresses. Note that
284 	 * we might write invalid pmds, when the kernel is relocated
285 	 * cleanup_highmap() fixes this up along with the mappings
286 	 * beyond _end.
287 	 *
288 	 * Only the region occupied by the kernel image has so far
289 	 * been checked against the table of usable memory regions
290 	 * provided by the firmware, so invalidate pages outside that
291 	 * region. A page table entry that maps to a reserved area of
292 	 * memory would allow processor speculation into that area,
293 	 * and on some hardware (particularly the UV platform) even
294 	 * speculative access to some reserved areas is caught as an
295 	 * error, causing the BIOS to halt the system.
296 	 */
297 
298 	pmd = fixup_pointer(level2_kernel_pgt, physaddr);
299 
300 	/* invalidate pages before the kernel image */
301 	for (i = 0; i < pmd_index((unsigned long)_text); i++)
302 		pmd[i] &= ~_PAGE_PRESENT;
303 
304 	/* fixup pages that are part of the kernel image */
305 	for (; i <= pmd_index((unsigned long)_end); i++)
306 		if (pmd[i] & _PAGE_PRESENT)
307 			pmd[i] += load_delta;
308 
309 	/* invalidate pages after the kernel image */
310 	for (; i < PTRS_PER_PMD; i++)
311 		pmd[i] &= ~_PAGE_PRESENT;
312 
313 	/*
314 	 * Fixup phys_base - remove the memory encryption mask to obtain
315 	 * the true physical address.
316 	 */
317 	*fixup_long(&phys_base, physaddr) += load_delta - sme_get_me_mask();
318 
319 	return sme_postprocess_startup(bp, pmd);
320 }
321 
322 /* Wipe all early page tables except for the kernel symbol map */
reset_early_page_tables(void)323 static void __init reset_early_page_tables(void)
324 {
325 	memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1));
326 	next_early_pgt = 0;
327 	write_cr3(__sme_pa_nodebug(early_top_pgt));
328 }
329 
330 /* Create a new PMD entry */
__early_make_pgtable(unsigned long address,pmdval_t pmd)331 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd)
332 {
333 	unsigned long physaddr = address - __PAGE_OFFSET;
334 	pgdval_t pgd, *pgd_p;
335 	p4dval_t p4d, *p4d_p;
336 	pudval_t pud, *pud_p;
337 	pmdval_t *pmd_p;
338 
339 	/* Invalid address or early pgt is done ?  */
340 	if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt))
341 		return false;
342 
343 again:
344 	pgd_p = &early_top_pgt[pgd_index(address)].pgd;
345 	pgd = *pgd_p;
346 
347 	/*
348 	 * The use of __START_KERNEL_map rather than __PAGE_OFFSET here is
349 	 * critical -- __PAGE_OFFSET would point us back into the dynamic
350 	 * range and we might end up looping forever...
351 	 */
352 	if (!pgtable_l5_enabled())
353 		p4d_p = pgd_p;
354 	else if (pgd)
355 		p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
356 	else {
357 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
358 			reset_early_page_tables();
359 			goto again;
360 		}
361 
362 		p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++];
363 		memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
364 		*pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
365 	}
366 	p4d_p += p4d_index(address);
367 	p4d = *p4d_p;
368 
369 	if (p4d)
370 		pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
371 	else {
372 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
373 			reset_early_page_tables();
374 			goto again;
375 		}
376 
377 		pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];
378 		memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
379 		*p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
380 	}
381 	pud_p += pud_index(address);
382 	pud = *pud_p;
383 
384 	if (pud)
385 		pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
386 	else {
387 		if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
388 			reset_early_page_tables();
389 			goto again;
390 		}
391 
392 		pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++];
393 		memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
394 		*pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
395 	}
396 	pmd_p[pmd_index(address)] = pmd;
397 
398 	return true;
399 }
400 
early_make_pgtable(unsigned long address)401 static bool __init early_make_pgtable(unsigned long address)
402 {
403 	unsigned long physaddr = address - __PAGE_OFFSET;
404 	pmdval_t pmd;
405 
406 	pmd = (physaddr & PMD_MASK) + early_pmd_flags;
407 
408 	return __early_make_pgtable(address, pmd);
409 }
410 
do_early_exception(struct pt_regs * regs,int trapnr)411 void __init do_early_exception(struct pt_regs *regs, int trapnr)
412 {
413 	if (trapnr == X86_TRAP_PF &&
414 	    early_make_pgtable(native_read_cr2()))
415 		return;
416 
417 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT) &&
418 	    trapnr == X86_TRAP_VC && handle_vc_boot_ghcb(regs))
419 		return;
420 
421 	if (trapnr == X86_TRAP_VE && tdx_early_handle_ve(regs))
422 		return;
423 
424 	early_fixup_exception(regs, trapnr);
425 }
426 
427 /* Don't add a printk in there. printk relies on the PDA which is not initialized
428    yet. */
clear_bss(void)429 void __init clear_bss(void)
430 {
431 	memset(__bss_start, 0,
432 	       (unsigned long) __bss_stop - (unsigned long) __bss_start);
433 	memset(__brk_base, 0,
434 	       (unsigned long) __brk_limit - (unsigned long) __brk_base);
435 }
436 
get_cmd_line_ptr(void)437 static unsigned long get_cmd_line_ptr(void)
438 {
439 	unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
440 
441 	cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32;
442 
443 	return cmd_line_ptr;
444 }
445 
copy_bootdata(char * real_mode_data)446 static void __init copy_bootdata(char *real_mode_data)
447 {
448 	char * command_line;
449 	unsigned long cmd_line_ptr;
450 
451 	/*
452 	 * If SME is active, this will create decrypted mappings of the
453 	 * boot data in advance of the copy operations.
454 	 */
455 	sme_map_bootdata(real_mode_data);
456 
457 	memcpy(&boot_params, real_mode_data, sizeof(boot_params));
458 	sanitize_boot_params(&boot_params);
459 	cmd_line_ptr = get_cmd_line_ptr();
460 	if (cmd_line_ptr) {
461 		command_line = __va(cmd_line_ptr);
462 		memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
463 	}
464 
465 	/*
466 	 * The old boot data is no longer needed and won't be reserved,
467 	 * freeing up that memory for use by the system. If SME is active,
468 	 * we need to remove the mappings that were created so that the
469 	 * memory doesn't remain mapped as decrypted.
470 	 */
471 	sme_unmap_bootdata(real_mode_data);
472 }
473 
x86_64_start_kernel(char * real_mode_data)474 asmlinkage __visible void __init __noreturn x86_64_start_kernel(char * real_mode_data)
475 {
476 	/*
477 	 * Build-time sanity checks on the kernel image and module
478 	 * area mappings. (these are purely build-time and produce no code)
479 	 */
480 	BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map);
481 	BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);
482 	BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE);
483 	BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0);
484 	BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);
485 	BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
486 	MAYBE_BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
487 				(__START_KERNEL & PGDIR_MASK)));
488 	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);
489 
490 	cr4_init_shadow();
491 
492 	/* Kill off the identity-map trampoline */
493 	reset_early_page_tables();
494 
495 	clear_bss();
496 
497 	/*
498 	 * This needs to happen *before* kasan_early_init() because latter maps stuff
499 	 * into that page.
500 	 */
501 	clear_page(init_top_pgt);
502 
503 	/*
504 	 * SME support may update early_pmd_flags to include the memory
505 	 * encryption mask, so it needs to be called before anything
506 	 * that may generate a page fault.
507 	 */
508 	sme_early_init();
509 
510 	kasan_early_init();
511 
512 	/*
513 	 * Flush global TLB entries which could be left over from the trampoline page
514 	 * table.
515 	 *
516 	 * This needs to happen *after* kasan_early_init() as KASAN-enabled .configs
517 	 * instrument native_write_cr4() so KASAN must be initialized for that
518 	 * instrumentation to work.
519 	 */
520 	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
521 
522 	idt_setup_early_handler();
523 
524 	/* Needed before cc_platform_has() can be used for TDX */
525 	tdx_early_init();
526 
527 	copy_bootdata(__va(real_mode_data));
528 
529 	/*
530 	 * Load microcode early on BSP.
531 	 */
532 	load_ucode_bsp();
533 
534 	/* set init_top_pgt kernel high mapping*/
535 	init_top_pgt[511] = early_top_pgt[511];
536 
537 	x86_64_start_reservations(real_mode_data);
538 }
539 
x86_64_start_reservations(char * real_mode_data)540 void __init __noreturn x86_64_start_reservations(char *real_mode_data)
541 {
542 	/* version is always not zero if it is copied */
543 	if (!boot_params.hdr.version)
544 		copy_bootdata(__va(real_mode_data));
545 
546 	x86_early_init_platform_quirks();
547 
548 	switch (boot_params.hdr.hardware_subarch) {
549 	case X86_SUBARCH_INTEL_MID:
550 		x86_intel_mid_early_setup();
551 		break;
552 	default:
553 		break;
554 	}
555 
556 	start_kernel();
557 }
558 
559 /*
560  * Data structures and code used for IDT setup in head_64.S. The bringup-IDT is
561  * used until the idt_table takes over. On the boot CPU this happens in
562  * x86_64_start_kernel(), on secondary CPUs in start_secondary(). In both cases
563  * this happens in the functions called from head_64.S.
564  *
565  * The idt_table can't be used that early because all the code modifying it is
566  * in idt.c and can be instrumented by tracing or KASAN, which both don't work
567  * during early CPU bringup. Also the idt_table has the runtime vectors
568  * configured which require certain CPU state to be setup already (like TSS),
569  * which also hasn't happened yet in early CPU bringup.
570  */
571 static gate_desc bringup_idt_table[NUM_EXCEPTION_VECTORS] __page_aligned_data;
572 
573 static struct desc_ptr bringup_idt_descr = {
574 	.size		= (NUM_EXCEPTION_VECTORS * sizeof(gate_desc)) - 1,
575 	.address	= 0, /* Set at runtime */
576 };
577 
set_bringup_idt_handler(gate_desc * idt,int n,void * handler)578 static void set_bringup_idt_handler(gate_desc *idt, int n, void *handler)
579 {
580 #ifdef CONFIG_AMD_MEM_ENCRYPT
581 	struct idt_data data;
582 	gate_desc desc;
583 
584 	init_idt_data(&data, n, handler);
585 	idt_init_desc(&desc, &data);
586 	native_write_idt_entry(idt, n, &desc);
587 #endif
588 }
589 
590 /* This runs while still in the direct mapping */
startup_64_load_idt(unsigned long physbase)591 static void startup_64_load_idt(unsigned long physbase)
592 {
593 	struct desc_ptr *desc = fixup_pointer(&bringup_idt_descr, physbase);
594 	gate_desc *idt = fixup_pointer(bringup_idt_table, physbase);
595 
596 
597 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
598 		void *handler;
599 
600 		/* VMM Communication Exception */
601 		handler = fixup_pointer(vc_no_ghcb, physbase);
602 		set_bringup_idt_handler(idt, X86_TRAP_VC, handler);
603 	}
604 
605 	desc->address = (unsigned long)idt;
606 	native_load_idt(desc);
607 }
608 
609 /* This is used when running on kernel addresses */
early_setup_idt(void)610 void early_setup_idt(void)
611 {
612 	/* VMM Communication Exception */
613 	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
614 		setup_ghcb();
615 		set_bringup_idt_handler(bringup_idt_table, X86_TRAP_VC, vc_boot_ghcb);
616 	}
617 
618 	bringup_idt_descr.address = (unsigned long)bringup_idt_table;
619 	native_load_idt(&bringup_idt_descr);
620 }
621 
622 /*
623  * Setup boot CPU state needed before kernel switches to virtual addresses.
624  */
startup_64_setup_env(unsigned long physbase)625 void __head startup_64_setup_env(unsigned long physbase)
626 {
627 	/* Load GDT */
628 	startup_gdt_descr.address = (unsigned long)fixup_pointer(startup_gdt, physbase);
629 	native_load_gdt(&startup_gdt_descr);
630 
631 	/* New GDT is live - reload data segment registers */
632 	asm volatile("movl %%eax, %%ds\n"
633 		     "movl %%eax, %%ss\n"
634 		     "movl %%eax, %%es\n" : : "a"(__KERNEL_DS) : "memory");
635 
636 	startup_64_load_idt(physbase);
637 }
638