1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * STMicroelectronics accelerometers driver
4 *
5 * Copyright 2012-2013 STMicroelectronics Inc.
6 *
7 * Denis Ciocca <denis.ciocca@st.com>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/acpi.h>
14 #include <linux/errno.h>
15 #include <linux/types.h>
16 #include <linux/interrupt.h>
17 #include <linux/i2c.h>
18 #include <linux/irq.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/buffer.h>
23
24 #include <linux/iio/common/st_sensors.h>
25 #include "st_accel.h"
26
27 #define ST_ACCEL_NUMBER_DATA_CHANNELS 3
28
29 /* DEFAULT VALUE FOR SENSORS */
30 #define ST_ACCEL_DEFAULT_OUT_X_L_ADDR 0x28
31 #define ST_ACCEL_DEFAULT_OUT_Y_L_ADDR 0x2a
32 #define ST_ACCEL_DEFAULT_OUT_Z_L_ADDR 0x2c
33
34 /* FULLSCALE */
35 #define ST_ACCEL_FS_AVL_2G 2
36 #define ST_ACCEL_FS_AVL_4G 4
37 #define ST_ACCEL_FS_AVL_6G 6
38 #define ST_ACCEL_FS_AVL_8G 8
39 #define ST_ACCEL_FS_AVL_16G 16
40 #define ST_ACCEL_FS_AVL_100G 100
41 #define ST_ACCEL_FS_AVL_200G 200
42 #define ST_ACCEL_FS_AVL_400G 400
43
44 static const struct iio_chan_spec st_accel_8bit_channels[] = {
45 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
46 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
47 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 8, 8,
48 ST_ACCEL_DEFAULT_OUT_X_L_ADDR+1),
49 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
50 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
51 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 8, 8,
52 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR+1),
53 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
54 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
55 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 8, 8,
56 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR+1),
57 IIO_CHAN_SOFT_TIMESTAMP(3)
58 };
59
60 static const struct iio_chan_spec st_accel_12bit_channels[] = {
61 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
62 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
63 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 12, 16,
64 ST_ACCEL_DEFAULT_OUT_X_L_ADDR),
65 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
66 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
67 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 12, 16,
68 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR),
69 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
70 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
71 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 12, 16,
72 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR),
73 IIO_CHAN_SOFT_TIMESTAMP(3)
74 };
75
76 static const struct iio_chan_spec st_accel_16bit_channels[] = {
77 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
78 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
79 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16,
80 ST_ACCEL_DEFAULT_OUT_X_L_ADDR),
81 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
82 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
83 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16,
84 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR),
85 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
86 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
87 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16,
88 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR),
89 IIO_CHAN_SOFT_TIMESTAMP(3)
90 };
91
92 static const struct st_sensor_settings st_accel_sensors_settings[] = {
93 {
94 .wai = 0x33,
95 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
96 .sensors_supported = {
97 [0] = LIS3DH_ACCEL_DEV_NAME,
98 [1] = LSM303DLHC_ACCEL_DEV_NAME,
99 [2] = LSM330D_ACCEL_DEV_NAME,
100 [3] = LSM330DL_ACCEL_DEV_NAME,
101 [4] = LSM330DLC_ACCEL_DEV_NAME,
102 [5] = LSM303AGR_ACCEL_DEV_NAME,
103 [6] = LIS2DH12_ACCEL_DEV_NAME,
104 [7] = LIS3DE_ACCEL_DEV_NAME,
105 },
106 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
107 .odr = {
108 .addr = 0x20,
109 .mask = 0xf0,
110 .odr_avl = {
111 { .hz = 1, .value = 0x01, },
112 { .hz = 10, .value = 0x02, },
113 { .hz = 25, .value = 0x03, },
114 { .hz = 50, .value = 0x04, },
115 { .hz = 100, .value = 0x05, },
116 { .hz = 200, .value = 0x06, },
117 { .hz = 400, .value = 0x07, },
118 { .hz = 1600, .value = 0x08, },
119 },
120 },
121 .pw = {
122 .addr = 0x20,
123 .mask = 0xf0,
124 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
125 },
126 .enable_axis = {
127 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
128 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
129 },
130 .fs = {
131 .addr = 0x23,
132 .mask = 0x30,
133 .fs_avl = {
134 [0] = {
135 .num = ST_ACCEL_FS_AVL_2G,
136 .value = 0x00,
137 .gain = IIO_G_TO_M_S_2(1000),
138 },
139 [1] = {
140 .num = ST_ACCEL_FS_AVL_4G,
141 .value = 0x01,
142 .gain = IIO_G_TO_M_S_2(2000),
143 },
144 [2] = {
145 .num = ST_ACCEL_FS_AVL_8G,
146 .value = 0x02,
147 .gain = IIO_G_TO_M_S_2(4000),
148 },
149 [3] = {
150 .num = ST_ACCEL_FS_AVL_16G,
151 .value = 0x03,
152 .gain = IIO_G_TO_M_S_2(12000),
153 },
154 },
155 },
156 .bdu = {
157 .addr = 0x23,
158 .mask = 0x80,
159 },
160 .drdy_irq = {
161 .int1 = {
162 .addr = 0x22,
163 .mask = 0x10,
164 },
165 .addr_ihl = 0x25,
166 .mask_ihl = 0x02,
167 .stat_drdy = {
168 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
169 .mask = 0x07,
170 },
171 },
172 .sim = {
173 .addr = 0x23,
174 .value = BIT(0),
175 },
176 .multi_read_bit = true,
177 .bootime = 2,
178 },
179 {
180 .wai = 0x32,
181 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
182 .sensors_supported = {
183 [0] = LIS331DLH_ACCEL_DEV_NAME,
184 [1] = LSM303DL_ACCEL_DEV_NAME,
185 [2] = LSM303DLH_ACCEL_DEV_NAME,
186 [3] = LSM303DLM_ACCEL_DEV_NAME,
187 },
188 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
189 .odr = {
190 .addr = 0x20,
191 .mask = 0x18,
192 .odr_avl = {
193 { .hz = 50, .value = 0x00, },
194 { .hz = 100, .value = 0x01, },
195 { .hz = 400, .value = 0x02, },
196 { .hz = 1000, .value = 0x03, },
197 },
198 },
199 .pw = {
200 .addr = 0x20,
201 .mask = 0xe0,
202 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
203 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
204 },
205 .enable_axis = {
206 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
207 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
208 },
209 .fs = {
210 .addr = 0x23,
211 .mask = 0x30,
212 .fs_avl = {
213 [0] = {
214 .num = ST_ACCEL_FS_AVL_2G,
215 .value = 0x00,
216 .gain = IIO_G_TO_M_S_2(1000),
217 },
218 [1] = {
219 .num = ST_ACCEL_FS_AVL_4G,
220 .value = 0x01,
221 .gain = IIO_G_TO_M_S_2(2000),
222 },
223 [2] = {
224 .num = ST_ACCEL_FS_AVL_8G,
225 .value = 0x03,
226 .gain = IIO_G_TO_M_S_2(3900),
227 },
228 },
229 },
230 .bdu = {
231 .addr = 0x23,
232 .mask = 0x80,
233 },
234 .drdy_irq = {
235 .int1 = {
236 .addr = 0x22,
237 .mask = 0x02,
238 .addr_od = 0x22,
239 .mask_od = 0x40,
240 },
241 .int2 = {
242 .addr = 0x22,
243 .mask = 0x10,
244 .addr_od = 0x22,
245 .mask_od = 0x40,
246 },
247 .addr_ihl = 0x22,
248 .mask_ihl = 0x80,
249 .stat_drdy = {
250 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
251 .mask = 0x07,
252 },
253 },
254 .sim = {
255 .addr = 0x23,
256 .value = BIT(0),
257 },
258 .multi_read_bit = true,
259 .bootime = 2,
260 },
261 {
262 .wai = 0x40,
263 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
264 .sensors_supported = {
265 [0] = LSM330_ACCEL_DEV_NAME,
266 },
267 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
268 .odr = {
269 .addr = 0x20,
270 .mask = 0xf0,
271 .odr_avl = {
272 { .hz = 3, .value = 0x01, },
273 { .hz = 6, .value = 0x02, },
274 { .hz = 12, .value = 0x03, },
275 { .hz = 25, .value = 0x04, },
276 { .hz = 50, .value = 0x05, },
277 { .hz = 100, .value = 0x06, },
278 { .hz = 200, .value = 0x07, },
279 { .hz = 400, .value = 0x08, },
280 { .hz = 800, .value = 0x09, },
281 { .hz = 1600, .value = 0x0a, },
282 },
283 },
284 .pw = {
285 .addr = 0x20,
286 .mask = 0xf0,
287 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
288 },
289 .enable_axis = {
290 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
291 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
292 },
293 .fs = {
294 .addr = 0x24,
295 .mask = 0x38,
296 .fs_avl = {
297 [0] = {
298 .num = ST_ACCEL_FS_AVL_2G,
299 .value = 0x00,
300 .gain = IIO_G_TO_M_S_2(61),
301 },
302 [1] = {
303 .num = ST_ACCEL_FS_AVL_4G,
304 .value = 0x01,
305 .gain = IIO_G_TO_M_S_2(122),
306 },
307 [2] = {
308 .num = ST_ACCEL_FS_AVL_6G,
309 .value = 0x02,
310 .gain = IIO_G_TO_M_S_2(183),
311 },
312 [3] = {
313 .num = ST_ACCEL_FS_AVL_8G,
314 .value = 0x03,
315 .gain = IIO_G_TO_M_S_2(244),
316 },
317 [4] = {
318 .num = ST_ACCEL_FS_AVL_16G,
319 .value = 0x04,
320 .gain = IIO_G_TO_M_S_2(732),
321 },
322 },
323 },
324 .bdu = {
325 .addr = 0x20,
326 .mask = 0x08,
327 },
328 .drdy_irq = {
329 .int1 = {
330 .addr = 0x23,
331 .mask = 0x80,
332 },
333 .addr_ihl = 0x23,
334 .mask_ihl = 0x40,
335 .stat_drdy = {
336 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
337 .mask = 0x07,
338 },
339 .ig1 = {
340 .en_addr = 0x23,
341 .en_mask = 0x08,
342 },
343 },
344 .sim = {
345 .addr = 0x24,
346 .value = BIT(0),
347 },
348 .multi_read_bit = false,
349 .bootime = 2,
350 },
351 {
352 .wai = 0x3a,
353 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
354 .sensors_supported = {
355 [0] = LIS3LV02DL_ACCEL_DEV_NAME,
356 },
357 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
358 .odr = {
359 .addr = 0x20,
360 .mask = 0x30, /* DF1 and DF0 */
361 .odr_avl = {
362 { .hz = 40, .value = 0x00, },
363 { .hz = 160, .value = 0x01, },
364 { .hz = 640, .value = 0x02, },
365 { .hz = 2560, .value = 0x03, },
366 },
367 },
368 .pw = {
369 .addr = 0x20,
370 .mask = 0xc0,
371 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
372 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
373 },
374 .enable_axis = {
375 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
376 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
377 },
378 .fs = {
379 .addr = 0x21,
380 .mask = 0x80,
381 .fs_avl = {
382 [0] = {
383 .num = ST_ACCEL_FS_AVL_2G,
384 .value = 0x00,
385 .gain = IIO_G_TO_M_S_2(1000),
386 },
387 [1] = {
388 .num = ST_ACCEL_FS_AVL_6G,
389 .value = 0x01,
390 .gain = IIO_G_TO_M_S_2(3000),
391 },
392 },
393 },
394 .bdu = {
395 .addr = 0x21,
396 .mask = 0x40,
397 },
398 /*
399 * Data Alignment Setting - needs to be set to get
400 * left-justified data like all other sensors.
401 */
402 .das = {
403 .addr = 0x21,
404 .mask = 0x01,
405 },
406 .drdy_irq = {
407 .int1 = {
408 .addr = 0x21,
409 .mask = 0x04,
410 },
411 .stat_drdy = {
412 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
413 .mask = 0x07,
414 },
415 },
416 .sim = {
417 .addr = 0x21,
418 .value = BIT(1),
419 },
420 .multi_read_bit = true,
421 .bootime = 2, /* guess */
422 },
423 {
424 .wai = 0x3b,
425 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
426 .sensors_supported = {
427 [0] = LIS331DL_ACCEL_DEV_NAME,
428 },
429 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
430 .odr = {
431 .addr = 0x20,
432 .mask = 0x80,
433 .odr_avl = {
434 { .hz = 100, .value = 0x00, },
435 { .hz = 400, .value = 0x01, },
436 },
437 },
438 .pw = {
439 .addr = 0x20,
440 .mask = 0x40,
441 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
442 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
443 },
444 .enable_axis = {
445 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
446 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
447 },
448 .fs = {
449 .addr = 0x20,
450 .mask = 0x20,
451 /*
452 * TODO: check these resulting gain settings, these are
453 * not in the datsheet
454 */
455 .fs_avl = {
456 [0] = {
457 .num = ST_ACCEL_FS_AVL_2G,
458 .value = 0x00,
459 .gain = IIO_G_TO_M_S_2(18000),
460 },
461 [1] = {
462 .num = ST_ACCEL_FS_AVL_8G,
463 .value = 0x01,
464 .gain = IIO_G_TO_M_S_2(72000),
465 },
466 },
467 },
468 .drdy_irq = {
469 .int1 = {
470 .addr = 0x22,
471 .mask = 0x04,
472 .addr_od = 0x22,
473 .mask_od = 0x40,
474 },
475 .int2 = {
476 .addr = 0x22,
477 .mask = 0x20,
478 .addr_od = 0x22,
479 .mask_od = 0x40,
480 },
481 .addr_ihl = 0x22,
482 .mask_ihl = 0x80,
483 .stat_drdy = {
484 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
485 .mask = 0x07,
486 },
487 },
488 .sim = {
489 .addr = 0x21,
490 .value = BIT(7),
491 },
492 .multi_read_bit = false,
493 .bootime = 2, /* guess */
494 },
495 {
496 .wai = 0x32,
497 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
498 .sensors_supported = {
499 [0] = H3LIS331DL_ACCEL_DEV_NAME,
500 },
501 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
502 .odr = {
503 .addr = 0x20,
504 .mask = 0x18,
505 .odr_avl = {
506 { .hz = 50, .value = 0x00, },
507 { .hz = 100, .value = 0x01, },
508 { .hz = 400, .value = 0x02, },
509 { .hz = 1000, .value = 0x03, },
510 },
511 },
512 .pw = {
513 .addr = 0x20,
514 .mask = 0x20,
515 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
516 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
517 },
518 .enable_axis = {
519 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
520 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
521 },
522 .fs = {
523 .addr = 0x23,
524 .mask = 0x30,
525 .fs_avl = {
526 [0] = {
527 .num = ST_ACCEL_FS_AVL_100G,
528 .value = 0x00,
529 .gain = IIO_G_TO_M_S_2(49000),
530 },
531 [1] = {
532 .num = ST_ACCEL_FS_AVL_200G,
533 .value = 0x01,
534 .gain = IIO_G_TO_M_S_2(98000),
535 },
536 [2] = {
537 .num = ST_ACCEL_FS_AVL_400G,
538 .value = 0x03,
539 .gain = IIO_G_TO_M_S_2(195000),
540 },
541 },
542 },
543 .bdu = {
544 .addr = 0x23,
545 .mask = 0x80,
546 },
547 .drdy_irq = {
548 .int1 = {
549 .addr = 0x22,
550 .mask = 0x02,
551 },
552 .int2 = {
553 .addr = 0x22,
554 .mask = 0x10,
555 },
556 .addr_ihl = 0x22,
557 .mask_ihl = 0x80,
558 },
559 .sim = {
560 .addr = 0x23,
561 .value = BIT(0),
562 },
563 .multi_read_bit = true,
564 .bootime = 2,
565 },
566 {
567 /* No WAI register present */
568 .sensors_supported = {
569 [0] = LIS3L02DQ_ACCEL_DEV_NAME,
570 },
571 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
572 .odr = {
573 .addr = 0x20,
574 .mask = 0x30,
575 .odr_avl = {
576 { .hz = 280, .value = 0x00, },
577 { .hz = 560, .value = 0x01, },
578 { .hz = 1120, .value = 0x02, },
579 { .hz = 4480, .value = 0x03, },
580 },
581 },
582 .pw = {
583 .addr = 0x20,
584 .mask = 0xc0,
585 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
586 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
587 },
588 .enable_axis = {
589 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
590 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
591 },
592 .fs = {
593 .fs_avl = {
594 [0] = {
595 .num = ST_ACCEL_FS_AVL_2G,
596 .gain = IIO_G_TO_M_S_2(488),
597 },
598 },
599 },
600 /*
601 * The part has a BDU bit but if set the data is never
602 * updated so don't set it.
603 */
604 .bdu = {
605 },
606 .drdy_irq = {
607 .int1 = {
608 .addr = 0x21,
609 .mask = 0x04,
610 },
611 .stat_drdy = {
612 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
613 .mask = 0x07,
614 },
615 },
616 .sim = {
617 .addr = 0x21,
618 .value = BIT(1),
619 },
620 .multi_read_bit = false,
621 .bootime = 2,
622 },
623 {
624 .wai = 0x33,
625 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
626 .sensors_supported = {
627 [0] = LNG2DM_ACCEL_DEV_NAME,
628 },
629 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
630 .odr = {
631 .addr = 0x20,
632 .mask = 0xf0,
633 .odr_avl = {
634 { .hz = 1, .value = 0x01, },
635 { .hz = 10, .value = 0x02, },
636 { .hz = 25, .value = 0x03, },
637 { .hz = 50, .value = 0x04, },
638 { .hz = 100, .value = 0x05, },
639 { .hz = 200, .value = 0x06, },
640 { .hz = 400, .value = 0x07, },
641 { .hz = 1600, .value = 0x08, },
642 },
643 },
644 .pw = {
645 .addr = 0x20,
646 .mask = 0xf0,
647 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
648 },
649 .enable_axis = {
650 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
651 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
652 },
653 .fs = {
654 .addr = 0x23,
655 .mask = 0x30,
656 .fs_avl = {
657 [0] = {
658 .num = ST_ACCEL_FS_AVL_2G,
659 .value = 0x00,
660 .gain = IIO_G_TO_M_S_2(15600),
661 },
662 [1] = {
663 .num = ST_ACCEL_FS_AVL_4G,
664 .value = 0x01,
665 .gain = IIO_G_TO_M_S_2(31200),
666 },
667 [2] = {
668 .num = ST_ACCEL_FS_AVL_8G,
669 .value = 0x02,
670 .gain = IIO_G_TO_M_S_2(62500),
671 },
672 [3] = {
673 .num = ST_ACCEL_FS_AVL_16G,
674 .value = 0x03,
675 .gain = IIO_G_TO_M_S_2(187500),
676 },
677 },
678 },
679 .drdy_irq = {
680 .int1 = {
681 .addr = 0x22,
682 .mask = 0x10,
683 },
684 .addr_ihl = 0x25,
685 .mask_ihl = 0x02,
686 .stat_drdy = {
687 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
688 .mask = 0x07,
689 },
690 },
691 .sim = {
692 .addr = 0x23,
693 .value = BIT(0),
694 },
695 .multi_read_bit = true,
696 .bootime = 2,
697 },
698 {
699 .wai = 0x44,
700 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
701 .sensors_supported = {
702 [0] = LIS2DW12_ACCEL_DEV_NAME,
703 },
704 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
705 .odr = {
706 .addr = 0x20,
707 .mask = 0xf0,
708 .odr_avl = {
709 { .hz = 1, .value = 0x01, },
710 { .hz = 12, .value = 0x02, },
711 { .hz = 25, .value = 0x03, },
712 { .hz = 50, .value = 0x04, },
713 { .hz = 100, .value = 0x05, },
714 { .hz = 200, .value = 0x06, },
715 },
716 },
717 .pw = {
718 .addr = 0x20,
719 .mask = 0xf0,
720 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
721 },
722 .fs = {
723 .addr = 0x25,
724 .mask = 0x30,
725 .fs_avl = {
726 [0] = {
727 .num = ST_ACCEL_FS_AVL_2G,
728 .value = 0x00,
729 .gain = IIO_G_TO_M_S_2(976),
730 },
731 [1] = {
732 .num = ST_ACCEL_FS_AVL_4G,
733 .value = 0x01,
734 .gain = IIO_G_TO_M_S_2(1952),
735 },
736 [2] = {
737 .num = ST_ACCEL_FS_AVL_8G,
738 .value = 0x02,
739 .gain = IIO_G_TO_M_S_2(3904),
740 },
741 [3] = {
742 .num = ST_ACCEL_FS_AVL_16G,
743 .value = 0x03,
744 .gain = IIO_G_TO_M_S_2(7808),
745 },
746 },
747 },
748 .bdu = {
749 .addr = 0x21,
750 .mask = 0x08,
751 },
752 .drdy_irq = {
753 .int1 = {
754 .addr = 0x23,
755 .mask = 0x01,
756 .addr_od = 0x22,
757 .mask_od = 0x20,
758 },
759 .int2 = {
760 .addr = 0x24,
761 .mask = 0x01,
762 .addr_od = 0x22,
763 .mask_od = 0x20,
764 },
765 .addr_ihl = 0x22,
766 .mask_ihl = 0x08,
767 .stat_drdy = {
768 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
769 .mask = 0x01,
770 },
771 },
772 .sim = {
773 .addr = 0x21,
774 .value = BIT(0),
775 },
776 .multi_read_bit = false,
777 .bootime = 2,
778 },
779 {
780 .wai = 0x11,
781 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
782 .sensors_supported = {
783 [0] = LIS3DHH_ACCEL_DEV_NAME,
784 },
785 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
786 .odr = {
787 /* just ODR = 1100Hz available */
788 .odr_avl = {
789 { .hz = 1100, .value = 0x00, },
790 },
791 },
792 .pw = {
793 .addr = 0x20,
794 .mask = 0x80,
795 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
796 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
797 },
798 .fs = {
799 .fs_avl = {
800 [0] = {
801 .num = ST_ACCEL_FS_AVL_2G,
802 .gain = IIO_G_TO_M_S_2(76),
803 },
804 },
805 },
806 .bdu = {
807 .addr = 0x20,
808 .mask = 0x01,
809 },
810 .drdy_irq = {
811 .int1 = {
812 .addr = 0x21,
813 .mask = 0x80,
814 .addr_od = 0x23,
815 .mask_od = 0x04,
816 },
817 .int2 = {
818 .addr = 0x22,
819 .mask = 0x80,
820 .addr_od = 0x23,
821 .mask_od = 0x08,
822 },
823 .stat_drdy = {
824 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
825 .mask = 0x07,
826 },
827 },
828 .multi_read_bit = false,
829 .bootime = 2,
830 },
831 {
832 .wai = 0x33,
833 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
834 .sensors_supported = {
835 [0] = LIS2DE12_ACCEL_DEV_NAME,
836 },
837 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
838 .odr = {
839 .addr = 0x20,
840 .mask = 0xf0,
841 .odr_avl = {
842 { .hz = 1, .value = 0x01, },
843 { .hz = 10, .value = 0x02, },
844 { .hz = 25, .value = 0x03, },
845 { .hz = 50, .value = 0x04, },
846 { .hz = 100, .value = 0x05, },
847 { .hz = 200, .value = 0x06, },
848 { .hz = 400, .value = 0x07, },
849 { .hz = 1620, .value = 0x08, },
850 { .hz = 5376, .value = 0x09, },
851 },
852 },
853 .pw = {
854 .addr = 0x20,
855 .mask = 0xf0,
856 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
857 },
858 .enable_axis = {
859 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
860 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
861 },
862 .fs = {
863 .addr = 0x23,
864 .mask = 0x30,
865 .fs_avl = {
866 [0] = {
867 .num = ST_ACCEL_FS_AVL_2G,
868 .value = 0x00,
869 .gain = IIO_G_TO_M_S_2(15600),
870 },
871 [1] = {
872 .num = ST_ACCEL_FS_AVL_4G,
873 .value = 0x01,
874 .gain = IIO_G_TO_M_S_2(31200),
875 },
876 [2] = {
877 .num = ST_ACCEL_FS_AVL_8G,
878 .value = 0x02,
879 .gain = IIO_G_TO_M_S_2(62500),
880 },
881 [3] = {
882 .num = ST_ACCEL_FS_AVL_16G,
883 .value = 0x03,
884 .gain = IIO_G_TO_M_S_2(187500),
885 },
886 },
887 },
888 .drdy_irq = {
889 .int1 = {
890 .addr = 0x22,
891 .mask = 0x10,
892 },
893 .addr_ihl = 0x25,
894 .mask_ihl = 0x02,
895 .stat_drdy = {
896 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
897 .mask = 0x07,
898 },
899 },
900 .sim = {
901 .addr = 0x23,
902 .value = BIT(0),
903 },
904 .multi_read_bit = true,
905 .bootime = 2,
906 },
907 {
908 .wai = 0x41,
909 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
910 .sensors_supported = {
911 [0] = LIS2HH12_ACCEL_DEV_NAME,
912 },
913 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
914 .odr = {
915 .addr = 0x20,
916 .mask = 0x70,
917 .odr_avl = {
918 { .hz = 10, .value = 0x01, },
919 { .hz = 50, .value = 0x02, },
920 { .hz = 100, .value = 0x03, },
921 { .hz = 200, .value = 0x04, },
922 { .hz = 400, .value = 0x05, },
923 { .hz = 800, .value = 0x06, },
924 },
925 },
926 .pw = {
927 .addr = 0x20,
928 .mask = 0x70,
929 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
930 },
931 .enable_axis = {
932 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
933 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
934 },
935 .fs = {
936 .addr = 0x23,
937 .mask = 0x30,
938 .fs_avl = {
939 [0] = {
940 .num = ST_ACCEL_FS_AVL_2G,
941 .value = 0x00,
942 .gain = IIO_G_TO_M_S_2(61),
943 },
944 [1] = {
945 .num = ST_ACCEL_FS_AVL_4G,
946 .value = 0x02,
947 .gain = IIO_G_TO_M_S_2(122),
948 },
949 [2] = {
950 .num = ST_ACCEL_FS_AVL_8G,
951 .value = 0x03,
952 .gain = IIO_G_TO_M_S_2(244),
953 },
954 },
955 },
956 .bdu = {
957 .addr = 0x20,
958 .mask = 0x08,
959 },
960 .drdy_irq = {
961 .int1 = {
962 .addr = 0x22,
963 .mask = 0x01,
964 },
965 .int2 = {
966 .addr = 0x25,
967 .mask = 0x01,
968 },
969 .addr_ihl = 0x24,
970 .mask_ihl = 0x02,
971 .stat_drdy = {
972 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
973 .mask = 0x07,
974 },
975 },
976 .sim = {
977 .addr = 0x23,
978 .value = BIT(0),
979 },
980 .multi_read_bit = true,
981 .bootime = 2,
982 },
983
984 };
985
st_accel_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * ch,int * val,int * val2,long mask)986 static int st_accel_read_raw(struct iio_dev *indio_dev,
987 struct iio_chan_spec const *ch, int *val,
988 int *val2, long mask)
989 {
990 int err;
991 struct st_sensor_data *adata = iio_priv(indio_dev);
992
993 switch (mask) {
994 case IIO_CHAN_INFO_RAW:
995 err = st_sensors_read_info_raw(indio_dev, ch, val);
996 if (err < 0)
997 goto read_error;
998
999 return IIO_VAL_INT;
1000 case IIO_CHAN_INFO_SCALE:
1001 *val = adata->current_fullscale->gain / 1000000;
1002 *val2 = adata->current_fullscale->gain % 1000000;
1003 return IIO_VAL_INT_PLUS_MICRO;
1004 case IIO_CHAN_INFO_SAMP_FREQ:
1005 *val = adata->odr;
1006 return IIO_VAL_INT;
1007 default:
1008 return -EINVAL;
1009 }
1010
1011 read_error:
1012 return err;
1013 }
1014
st_accel_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)1015 static int st_accel_write_raw(struct iio_dev *indio_dev,
1016 struct iio_chan_spec const *chan, int val, int val2, long mask)
1017 {
1018 int err;
1019
1020 switch (mask) {
1021 case IIO_CHAN_INFO_SCALE: {
1022 int gain;
1023
1024 gain = val * 1000000 + val2;
1025 err = st_sensors_set_fullscale_by_gain(indio_dev, gain);
1026 break;
1027 }
1028 case IIO_CHAN_INFO_SAMP_FREQ:
1029 if (val2)
1030 return -EINVAL;
1031 mutex_lock(&indio_dev->mlock);
1032 err = st_sensors_set_odr(indio_dev, val);
1033 mutex_unlock(&indio_dev->mlock);
1034 return err;
1035 default:
1036 return -EINVAL;
1037 }
1038
1039 return err;
1040 }
1041
1042 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
1043 static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_accel_scale_available);
1044
1045 static struct attribute *st_accel_attributes[] = {
1046 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
1047 &iio_dev_attr_in_accel_scale_available.dev_attr.attr,
1048 NULL,
1049 };
1050
1051 static const struct attribute_group st_accel_attribute_group = {
1052 .attrs = st_accel_attributes,
1053 };
1054
1055 static const struct iio_info accel_info = {
1056 .attrs = &st_accel_attribute_group,
1057 .read_raw = &st_accel_read_raw,
1058 .write_raw = &st_accel_write_raw,
1059 .debugfs_reg_access = &st_sensors_debugfs_reg_access,
1060 };
1061
1062 #ifdef CONFIG_IIO_TRIGGER
1063 static const struct iio_trigger_ops st_accel_trigger_ops = {
1064 .set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE,
1065 .validate_device = st_sensors_validate_device,
1066 };
1067 #define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops)
1068 #else
1069 #define ST_ACCEL_TRIGGER_OPS NULL
1070 #endif
1071
1072 #ifdef CONFIG_ACPI
1073 static const struct iio_mount_matrix *
get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)1074 get_mount_matrix(const struct iio_dev *indio_dev,
1075 const struct iio_chan_spec *chan)
1076 {
1077 struct st_sensor_data *adata = iio_priv(indio_dev);
1078
1079 return adata->mount_matrix;
1080 }
1081
1082 static const struct iio_chan_spec_ext_info mount_matrix_ext_info[] = {
1083 IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, get_mount_matrix),
1084 { },
1085 };
1086
1087 /* Read ST-specific _ONT orientation data from ACPI and generate an
1088 * appropriate mount matrix.
1089 */
apply_acpi_orientation(struct iio_dev * indio_dev,struct iio_chan_spec * channels)1090 static int apply_acpi_orientation(struct iio_dev *indio_dev,
1091 struct iio_chan_spec *channels)
1092 {
1093 struct st_sensor_data *adata = iio_priv(indio_dev);
1094 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
1095 struct acpi_device *adev;
1096 union acpi_object *ont;
1097 union acpi_object *elements;
1098 acpi_status status;
1099 int ret = -EINVAL;
1100 unsigned int val;
1101 int i, j;
1102 int final_ont[3][3] = { { 0 }, };
1103
1104 /* For some reason, ST's _ONT translation does not apply directly
1105 * to the data read from the sensor. Another translation must be
1106 * performed first, as described by the matrix below. Perhaps
1107 * ST required this specific translation for the first product
1108 * where the device was mounted?
1109 */
1110 const int default_ont[3][3] = {
1111 { 0, 1, 0 },
1112 { -1, 0, 0 },
1113 { 0, 0, -1 },
1114 };
1115
1116
1117 adev = ACPI_COMPANION(adata->dev);
1118 if (!adev)
1119 return 0;
1120
1121 /* Read _ONT data, which should be a package of 6 integers. */
1122 status = acpi_evaluate_object(adev->handle, "_ONT", NULL, &buffer);
1123 if (status == AE_NOT_FOUND) {
1124 return 0;
1125 } else if (ACPI_FAILURE(status)) {
1126 dev_warn(&indio_dev->dev, "failed to execute _ONT: %d\n",
1127 status);
1128 return status;
1129 }
1130
1131 ont = buffer.pointer;
1132 if (ont->type != ACPI_TYPE_PACKAGE || ont->package.count != 6)
1133 goto out;
1134
1135 /* The first 3 integers provide axis order information.
1136 * e.g. 0 1 2 would indicate normal X,Y,Z ordering.
1137 * e.g. 1 0 2 indicates that data arrives in order Y,X,Z.
1138 */
1139 elements = ont->package.elements;
1140 for (i = 0; i < 3; i++) {
1141 if (elements[i].type != ACPI_TYPE_INTEGER)
1142 goto out;
1143
1144 val = elements[i].integer.value;
1145 if (val > 2)
1146 goto out;
1147
1148 /* Avoiding full matrix multiplication, we simply reorder the
1149 * columns in the default_ont matrix according to the
1150 * ordering provided by _ONT.
1151 */
1152 final_ont[0][i] = default_ont[0][val];
1153 final_ont[1][i] = default_ont[1][val];
1154 final_ont[2][i] = default_ont[2][val];
1155 }
1156
1157 /* The final 3 integers provide sign flip information.
1158 * 0 means no change, 1 means flip.
1159 * e.g. 0 0 1 means that Z data should be sign-flipped.
1160 * This is applied after the axis reordering from above.
1161 */
1162 elements += 3;
1163 for (i = 0; i < 3; i++) {
1164 if (elements[i].type != ACPI_TYPE_INTEGER)
1165 goto out;
1166
1167 val = elements[i].integer.value;
1168 if (val != 0 && val != 1)
1169 goto out;
1170 if (!val)
1171 continue;
1172
1173 /* Flip the values in the indicated column */
1174 final_ont[0][i] *= -1;
1175 final_ont[1][i] *= -1;
1176 final_ont[2][i] *= -1;
1177 }
1178
1179 /* Convert our integer matrix to a string-based iio_mount_matrix */
1180 adata->mount_matrix = devm_kmalloc(&indio_dev->dev,
1181 sizeof(*adata->mount_matrix),
1182 GFP_KERNEL);
1183 if (!adata->mount_matrix) {
1184 ret = -ENOMEM;
1185 goto out;
1186 }
1187
1188 for (i = 0; i < 3; i++) {
1189 for (j = 0; j < 3; j++) {
1190 int matrix_val = final_ont[i][j];
1191 char *str_value;
1192
1193 switch (matrix_val) {
1194 case -1:
1195 str_value = "-1";
1196 break;
1197 case 0:
1198 str_value = "0";
1199 break;
1200 case 1:
1201 str_value = "1";
1202 break;
1203 default:
1204 goto out;
1205 }
1206 adata->mount_matrix->rotation[i * 3 + j] = str_value;
1207 }
1208 }
1209
1210 /* Expose the mount matrix via ext_info */
1211 for (i = 0; i < indio_dev->num_channels; i++)
1212 channels[i].ext_info = mount_matrix_ext_info;
1213
1214 ret = 0;
1215 dev_info(&indio_dev->dev, "computed mount matrix from ACPI\n");
1216
1217 out:
1218 kfree(buffer.pointer);
1219 return ret;
1220 }
1221 #else /* !CONFIG_ACPI */
apply_acpi_orientation(struct iio_dev * indio_dev,struct iio_chan_spec * channels)1222 static int apply_acpi_orientation(struct iio_dev *indio_dev,
1223 struct iio_chan_spec *channels)
1224 {
1225 return 0;
1226 }
1227 #endif
1228
1229 /*
1230 * st_accel_get_settings() - get sensor settings from device name
1231 * @name: device name buffer reference.
1232 *
1233 * Return: valid reference on success, NULL otherwise.
1234 */
st_accel_get_settings(const char * name)1235 const struct st_sensor_settings *st_accel_get_settings(const char *name)
1236 {
1237 int index = st_sensors_get_settings_index(name,
1238 st_accel_sensors_settings,
1239 ARRAY_SIZE(st_accel_sensors_settings));
1240 if (index < 0)
1241 return NULL;
1242
1243 return &st_accel_sensors_settings[index];
1244 }
1245 EXPORT_SYMBOL(st_accel_get_settings);
1246
st_accel_common_probe(struct iio_dev * indio_dev)1247 int st_accel_common_probe(struct iio_dev *indio_dev)
1248 {
1249 struct st_sensor_data *adata = iio_priv(indio_dev);
1250 struct st_sensors_platform_data *pdata = dev_get_platdata(adata->dev);
1251 struct iio_chan_spec *channels;
1252 size_t channels_size;
1253 int err;
1254
1255 indio_dev->modes = INDIO_DIRECT_MODE;
1256 indio_dev->info = &accel_info;
1257
1258 err = st_sensors_power_enable(indio_dev);
1259 if (err)
1260 return err;
1261
1262 err = st_sensors_verify_id(indio_dev);
1263 if (err < 0)
1264 goto st_accel_power_off;
1265
1266 adata->num_data_channels = ST_ACCEL_NUMBER_DATA_CHANNELS;
1267 indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS;
1268
1269 channels_size = indio_dev->num_channels * sizeof(struct iio_chan_spec);
1270 channels = devm_kmemdup(&indio_dev->dev,
1271 adata->sensor_settings->ch,
1272 channels_size, GFP_KERNEL);
1273 if (!channels) {
1274 err = -ENOMEM;
1275 goto st_accel_power_off;
1276 }
1277
1278 if (apply_acpi_orientation(indio_dev, channels))
1279 dev_warn(&indio_dev->dev,
1280 "failed to apply ACPI orientation data: %d\n", err);
1281
1282 indio_dev->channels = channels;
1283 adata->current_fullscale = &adata->sensor_settings->fs.fs_avl[0];
1284 adata->odr = adata->sensor_settings->odr.odr_avl[0].hz;
1285
1286 if (!pdata)
1287 pdata = (struct st_sensors_platform_data *)&default_accel_pdata;
1288
1289 err = st_sensors_init_sensor(indio_dev, pdata);
1290 if (err < 0)
1291 goto st_accel_power_off;
1292
1293 err = st_accel_allocate_ring(indio_dev);
1294 if (err < 0)
1295 goto st_accel_power_off;
1296
1297 if (adata->irq > 0) {
1298 err = st_sensors_allocate_trigger(indio_dev,
1299 ST_ACCEL_TRIGGER_OPS);
1300 if (err < 0)
1301 goto st_accel_probe_trigger_error;
1302 }
1303
1304 err = iio_device_register(indio_dev);
1305 if (err)
1306 goto st_accel_device_register_error;
1307
1308 dev_info(&indio_dev->dev, "registered accelerometer %s\n",
1309 indio_dev->name);
1310
1311 return 0;
1312
1313 st_accel_device_register_error:
1314 if (adata->irq > 0)
1315 st_sensors_deallocate_trigger(indio_dev);
1316 st_accel_probe_trigger_error:
1317 st_accel_deallocate_ring(indio_dev);
1318 st_accel_power_off:
1319 st_sensors_power_disable(indio_dev);
1320
1321 return err;
1322 }
1323 EXPORT_SYMBOL(st_accel_common_probe);
1324
st_accel_common_remove(struct iio_dev * indio_dev)1325 void st_accel_common_remove(struct iio_dev *indio_dev)
1326 {
1327 struct st_sensor_data *adata = iio_priv(indio_dev);
1328
1329 st_sensors_power_disable(indio_dev);
1330
1331 iio_device_unregister(indio_dev);
1332 if (adata->irq > 0)
1333 st_sensors_deallocate_trigger(indio_dev);
1334
1335 st_accel_deallocate_ring(indio_dev);
1336 }
1337 EXPORT_SYMBOL(st_accel_common_remove);
1338
1339 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
1340 MODULE_DESCRIPTION("STMicroelectronics accelerometers driver");
1341 MODULE_LICENSE("GPL v2");
1342