1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Low-level SPU handling
4 *
5 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 *
7 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 */
9
10 #undef DEBUG
11
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/init.h>
15 #include <linux/ptrace.h>
16 #include <linux/slab.h>
17 #include <linux/wait.h>
18 #include <linux/mm.h>
19 #include <linux/io.h>
20 #include <linux/mutex.h>
21 #include <linux/linux_logo.h>
22 #include <linux/syscore_ops.h>
23 #include <asm/spu.h>
24 #include <asm/spu_priv1.h>
25 #include <asm/spu_csa.h>
26 #include <asm/xmon.h>
27 #include <asm/prom.h>
28 #include <asm/kexec.h>
29
30 const struct spu_management_ops *spu_management_ops;
31 EXPORT_SYMBOL_GPL(spu_management_ops);
32
33 const struct spu_priv1_ops *spu_priv1_ops;
34 EXPORT_SYMBOL_GPL(spu_priv1_ops);
35
36 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
37 EXPORT_SYMBOL_GPL(cbe_spu_info);
38
39 /*
40 * The spufs fault-handling code needs to call force_sig_fault to raise signals
41 * on DMA errors. Export it here to avoid general kernel-wide access to this
42 * function
43 */
44 EXPORT_SYMBOL_GPL(force_sig_fault);
45
46 /*
47 * Protects cbe_spu_info and spu->number.
48 */
49 static DEFINE_SPINLOCK(spu_lock);
50
51 /*
52 * List of all spus in the system.
53 *
54 * This list is iterated by callers from irq context and callers that
55 * want to sleep. Thus modifications need to be done with both
56 * spu_full_list_lock and spu_full_list_mutex held, while iterating
57 * through it requires either of these locks.
58 *
59 * In addition spu_full_list_lock protects all assignments to
60 * spu->mm.
61 */
62 static LIST_HEAD(spu_full_list);
63 static DEFINE_SPINLOCK(spu_full_list_lock);
64 static DEFINE_MUTEX(spu_full_list_mutex);
65
spu_invalidate_slbs(struct spu * spu)66 void spu_invalidate_slbs(struct spu *spu)
67 {
68 struct spu_priv2 __iomem *priv2 = spu->priv2;
69 unsigned long flags;
70
71 spin_lock_irqsave(&spu->register_lock, flags);
72 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
73 out_be64(&priv2->slb_invalidate_all_W, 0UL);
74 spin_unlock_irqrestore(&spu->register_lock, flags);
75 }
76 EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
77
78 /* This is called by the MM core when a segment size is changed, to
79 * request a flush of all the SPEs using a given mm
80 */
spu_flush_all_slbs(struct mm_struct * mm)81 void spu_flush_all_slbs(struct mm_struct *mm)
82 {
83 struct spu *spu;
84 unsigned long flags;
85
86 spin_lock_irqsave(&spu_full_list_lock, flags);
87 list_for_each_entry(spu, &spu_full_list, full_list) {
88 if (spu->mm == mm)
89 spu_invalidate_slbs(spu);
90 }
91 spin_unlock_irqrestore(&spu_full_list_lock, flags);
92 }
93
94 /* The hack below stinks... try to do something better one of
95 * these days... Does it even work properly with NR_CPUS == 1 ?
96 */
mm_needs_global_tlbie(struct mm_struct * mm)97 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
98 {
99 int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
100
101 /* Global TLBIE broadcast required with SPEs. */
102 bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
103 }
104
spu_associate_mm(struct spu * spu,struct mm_struct * mm)105 void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
106 {
107 unsigned long flags;
108
109 spin_lock_irqsave(&spu_full_list_lock, flags);
110 spu->mm = mm;
111 spin_unlock_irqrestore(&spu_full_list_lock, flags);
112 if (mm)
113 mm_needs_global_tlbie(mm);
114 }
115 EXPORT_SYMBOL_GPL(spu_associate_mm);
116
spu_64k_pages_available(void)117 int spu_64k_pages_available(void)
118 {
119 return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
120 }
121 EXPORT_SYMBOL_GPL(spu_64k_pages_available);
122
spu_restart_dma(struct spu * spu)123 static void spu_restart_dma(struct spu *spu)
124 {
125 struct spu_priv2 __iomem *priv2 = spu->priv2;
126
127 if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
128 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
129 else {
130 set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
131 mb();
132 }
133 }
134
spu_load_slb(struct spu * spu,int slbe,struct copro_slb * slb)135 static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb)
136 {
137 struct spu_priv2 __iomem *priv2 = spu->priv2;
138
139 pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
140 __func__, slbe, slb->vsid, slb->esid);
141
142 out_be64(&priv2->slb_index_W, slbe);
143 /* set invalid before writing vsid */
144 out_be64(&priv2->slb_esid_RW, 0);
145 /* now it's safe to write the vsid */
146 out_be64(&priv2->slb_vsid_RW, slb->vsid);
147 /* setting the new esid makes the entry valid again */
148 out_be64(&priv2->slb_esid_RW, slb->esid);
149 }
150
__spu_trap_data_seg(struct spu * spu,unsigned long ea)151 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
152 {
153 struct copro_slb slb;
154 int ret;
155
156 ret = copro_calculate_slb(spu->mm, ea, &slb);
157 if (ret)
158 return ret;
159
160 spu_load_slb(spu, spu->slb_replace, &slb);
161
162 spu->slb_replace++;
163 if (spu->slb_replace >= 8)
164 spu->slb_replace = 0;
165
166 spu_restart_dma(spu);
167 spu->stats.slb_flt++;
168 return 0;
169 }
170
171 extern int hash_page(unsigned long ea, unsigned long access,
172 unsigned long trap, unsigned long dsisr); //XXX
__spu_trap_data_map(struct spu * spu,unsigned long ea,u64 dsisr)173 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
174 {
175 int ret;
176
177 pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
178
179 /*
180 * Handle kernel space hash faults immediately. User hash
181 * faults need to be deferred to process context.
182 */
183 if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
184 (get_region_id(ea) != USER_REGION_ID)) {
185
186 spin_unlock(&spu->register_lock);
187 ret = hash_page(ea,
188 _PAGE_PRESENT | _PAGE_READ | _PAGE_PRIVILEGED,
189 0x300, dsisr);
190 spin_lock(&spu->register_lock);
191
192 if (!ret) {
193 spu_restart_dma(spu);
194 return 0;
195 }
196 }
197
198 spu->class_1_dar = ea;
199 spu->class_1_dsisr = dsisr;
200
201 spu->stop_callback(spu, 1);
202
203 spu->class_1_dar = 0;
204 spu->class_1_dsisr = 0;
205
206 return 0;
207 }
208
__spu_kernel_slb(void * addr,struct copro_slb * slb)209 static void __spu_kernel_slb(void *addr, struct copro_slb *slb)
210 {
211 unsigned long ea = (unsigned long)addr;
212 u64 llp;
213
214 if (get_region_id(ea) == LINEAR_MAP_REGION_ID)
215 llp = mmu_psize_defs[mmu_linear_psize].sllp;
216 else
217 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
218
219 slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
220 SLB_VSID_KERNEL | llp;
221 slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
222 }
223
224 /**
225 * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
226 * address @new_addr is present.
227 */
__slb_present(struct copro_slb * slbs,int nr_slbs,void * new_addr)228 static inline int __slb_present(struct copro_slb *slbs, int nr_slbs,
229 void *new_addr)
230 {
231 unsigned long ea = (unsigned long)new_addr;
232 int i;
233
234 for (i = 0; i < nr_slbs; i++)
235 if (!((slbs[i].esid ^ ea) & ESID_MASK))
236 return 1;
237
238 return 0;
239 }
240
241 /**
242 * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
243 * need to map both the context save area, and the save/restore code.
244 *
245 * Because the lscsa and code may cross segment boundaries, we check to see
246 * if mappings are required for the start and end of each range. We currently
247 * assume that the mappings are smaller that one segment - if not, something
248 * is seriously wrong.
249 */
spu_setup_kernel_slbs(struct spu * spu,struct spu_lscsa * lscsa,void * code,int code_size)250 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
251 void *code, int code_size)
252 {
253 struct copro_slb slbs[4];
254 int i, nr_slbs = 0;
255 /* start and end addresses of both mappings */
256 void *addrs[] = {
257 lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
258 code, code + code_size - 1
259 };
260
261 /* check the set of addresses, and create a new entry in the slbs array
262 * if there isn't already a SLB for that address */
263 for (i = 0; i < ARRAY_SIZE(addrs); i++) {
264 if (__slb_present(slbs, nr_slbs, addrs[i]))
265 continue;
266
267 __spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
268 nr_slbs++;
269 }
270
271 spin_lock_irq(&spu->register_lock);
272 /* Add the set of SLBs */
273 for (i = 0; i < nr_slbs; i++)
274 spu_load_slb(spu, i, &slbs[i]);
275 spin_unlock_irq(&spu->register_lock);
276 }
277 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
278
279 static irqreturn_t
spu_irq_class_0(int irq,void * data)280 spu_irq_class_0(int irq, void *data)
281 {
282 struct spu *spu;
283 unsigned long stat, mask;
284
285 spu = data;
286
287 spin_lock(&spu->register_lock);
288 mask = spu_int_mask_get(spu, 0);
289 stat = spu_int_stat_get(spu, 0) & mask;
290
291 spu->class_0_pending |= stat;
292 spu->class_0_dar = spu_mfc_dar_get(spu);
293 spu->stop_callback(spu, 0);
294 spu->class_0_pending = 0;
295 spu->class_0_dar = 0;
296
297 spu_int_stat_clear(spu, 0, stat);
298 spin_unlock(&spu->register_lock);
299
300 return IRQ_HANDLED;
301 }
302
303 static irqreturn_t
spu_irq_class_1(int irq,void * data)304 spu_irq_class_1(int irq, void *data)
305 {
306 struct spu *spu;
307 unsigned long stat, mask, dar, dsisr;
308
309 spu = data;
310
311 /* atomically read & clear class1 status. */
312 spin_lock(&spu->register_lock);
313 mask = spu_int_mask_get(spu, 1);
314 stat = spu_int_stat_get(spu, 1) & mask;
315 dar = spu_mfc_dar_get(spu);
316 dsisr = spu_mfc_dsisr_get(spu);
317 if (stat & CLASS1_STORAGE_FAULT_INTR)
318 spu_mfc_dsisr_set(spu, 0ul);
319 spu_int_stat_clear(spu, 1, stat);
320
321 pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
322 dar, dsisr);
323
324 if (stat & CLASS1_SEGMENT_FAULT_INTR)
325 __spu_trap_data_seg(spu, dar);
326
327 if (stat & CLASS1_STORAGE_FAULT_INTR)
328 __spu_trap_data_map(spu, dar, dsisr);
329
330 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR)
331 ;
332
333 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR)
334 ;
335
336 spu->class_1_dsisr = 0;
337 spu->class_1_dar = 0;
338
339 spin_unlock(&spu->register_lock);
340
341 return stat ? IRQ_HANDLED : IRQ_NONE;
342 }
343
344 static irqreturn_t
spu_irq_class_2(int irq,void * data)345 spu_irq_class_2(int irq, void *data)
346 {
347 struct spu *spu;
348 unsigned long stat;
349 unsigned long mask;
350 const int mailbox_intrs =
351 CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
352
353 spu = data;
354 spin_lock(&spu->register_lock);
355 stat = spu_int_stat_get(spu, 2);
356 mask = spu_int_mask_get(spu, 2);
357 /* ignore interrupts we're not waiting for */
358 stat &= mask;
359 /* mailbox interrupts are level triggered. mask them now before
360 * acknowledging */
361 if (stat & mailbox_intrs)
362 spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
363 /* acknowledge all interrupts before the callbacks */
364 spu_int_stat_clear(spu, 2, stat);
365
366 pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
367
368 if (stat & CLASS2_MAILBOX_INTR)
369 spu->ibox_callback(spu);
370
371 if (stat & CLASS2_SPU_STOP_INTR)
372 spu->stop_callback(spu, 2);
373
374 if (stat & CLASS2_SPU_HALT_INTR)
375 spu->stop_callback(spu, 2);
376
377 if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
378 spu->mfc_callback(spu);
379
380 if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
381 spu->wbox_callback(spu);
382
383 spu->stats.class2_intr++;
384
385 spin_unlock(&spu->register_lock);
386
387 return stat ? IRQ_HANDLED : IRQ_NONE;
388 }
389
spu_request_irqs(struct spu * spu)390 static int spu_request_irqs(struct spu *spu)
391 {
392 int ret = 0;
393
394 if (spu->irqs[0]) {
395 snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
396 spu->number);
397 ret = request_irq(spu->irqs[0], spu_irq_class_0,
398 0, spu->irq_c0, spu);
399 if (ret)
400 goto bail0;
401 }
402 if (spu->irqs[1]) {
403 snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
404 spu->number);
405 ret = request_irq(spu->irqs[1], spu_irq_class_1,
406 0, spu->irq_c1, spu);
407 if (ret)
408 goto bail1;
409 }
410 if (spu->irqs[2]) {
411 snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
412 spu->number);
413 ret = request_irq(spu->irqs[2], spu_irq_class_2,
414 0, spu->irq_c2, spu);
415 if (ret)
416 goto bail2;
417 }
418 return 0;
419
420 bail2:
421 if (spu->irqs[1])
422 free_irq(spu->irqs[1], spu);
423 bail1:
424 if (spu->irqs[0])
425 free_irq(spu->irqs[0], spu);
426 bail0:
427 return ret;
428 }
429
spu_free_irqs(struct spu * spu)430 static void spu_free_irqs(struct spu *spu)
431 {
432 if (spu->irqs[0])
433 free_irq(spu->irqs[0], spu);
434 if (spu->irqs[1])
435 free_irq(spu->irqs[1], spu);
436 if (spu->irqs[2])
437 free_irq(spu->irqs[2], spu);
438 }
439
spu_init_channels(struct spu * spu)440 void spu_init_channels(struct spu *spu)
441 {
442 static const struct {
443 unsigned channel;
444 unsigned count;
445 } zero_list[] = {
446 { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
447 { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
448 }, count_list[] = {
449 { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
450 { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
451 { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
452 };
453 struct spu_priv2 __iomem *priv2;
454 int i;
455
456 priv2 = spu->priv2;
457
458 /* initialize all channel data to zero */
459 for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
460 int count;
461
462 out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
463 for (count = 0; count < zero_list[i].count; count++)
464 out_be64(&priv2->spu_chnldata_RW, 0);
465 }
466
467 /* initialize channel counts to meaningful values */
468 for (i = 0; i < ARRAY_SIZE(count_list); i++) {
469 out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
470 out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
471 }
472 }
473 EXPORT_SYMBOL_GPL(spu_init_channels);
474
475 static struct bus_type spu_subsys = {
476 .name = "spu",
477 .dev_name = "spu",
478 };
479
spu_add_dev_attr(struct device_attribute * attr)480 int spu_add_dev_attr(struct device_attribute *attr)
481 {
482 struct spu *spu;
483
484 mutex_lock(&spu_full_list_mutex);
485 list_for_each_entry(spu, &spu_full_list, full_list)
486 device_create_file(&spu->dev, attr);
487 mutex_unlock(&spu_full_list_mutex);
488
489 return 0;
490 }
491 EXPORT_SYMBOL_GPL(spu_add_dev_attr);
492
spu_add_dev_attr_group(struct attribute_group * attrs)493 int spu_add_dev_attr_group(struct attribute_group *attrs)
494 {
495 struct spu *spu;
496 int rc = 0;
497
498 mutex_lock(&spu_full_list_mutex);
499 list_for_each_entry(spu, &spu_full_list, full_list) {
500 rc = sysfs_create_group(&spu->dev.kobj, attrs);
501
502 /* we're in trouble here, but try unwinding anyway */
503 if (rc) {
504 printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
505 __func__, attrs->name);
506
507 list_for_each_entry_continue_reverse(spu,
508 &spu_full_list, full_list)
509 sysfs_remove_group(&spu->dev.kobj, attrs);
510 break;
511 }
512 }
513
514 mutex_unlock(&spu_full_list_mutex);
515
516 return rc;
517 }
518 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group);
519
520
spu_remove_dev_attr(struct device_attribute * attr)521 void spu_remove_dev_attr(struct device_attribute *attr)
522 {
523 struct spu *spu;
524
525 mutex_lock(&spu_full_list_mutex);
526 list_for_each_entry(spu, &spu_full_list, full_list)
527 device_remove_file(&spu->dev, attr);
528 mutex_unlock(&spu_full_list_mutex);
529 }
530 EXPORT_SYMBOL_GPL(spu_remove_dev_attr);
531
spu_remove_dev_attr_group(struct attribute_group * attrs)532 void spu_remove_dev_attr_group(struct attribute_group *attrs)
533 {
534 struct spu *spu;
535
536 mutex_lock(&spu_full_list_mutex);
537 list_for_each_entry(spu, &spu_full_list, full_list)
538 sysfs_remove_group(&spu->dev.kobj, attrs);
539 mutex_unlock(&spu_full_list_mutex);
540 }
541 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group);
542
spu_create_dev(struct spu * spu)543 static int spu_create_dev(struct spu *spu)
544 {
545 int ret;
546
547 spu->dev.id = spu->number;
548 spu->dev.bus = &spu_subsys;
549 ret = device_register(&spu->dev);
550 if (ret) {
551 printk(KERN_ERR "Can't register SPU %d with sysfs\n",
552 spu->number);
553 return ret;
554 }
555
556 sysfs_add_device_to_node(&spu->dev, spu->node);
557
558 return 0;
559 }
560
create_spu(void * data)561 static int __init create_spu(void *data)
562 {
563 struct spu *spu;
564 int ret;
565 static int number;
566 unsigned long flags;
567
568 ret = -ENOMEM;
569 spu = kzalloc(sizeof (*spu), GFP_KERNEL);
570 if (!spu)
571 goto out;
572
573 spu->alloc_state = SPU_FREE;
574
575 spin_lock_init(&spu->register_lock);
576 spin_lock(&spu_lock);
577 spu->number = number++;
578 spin_unlock(&spu_lock);
579
580 ret = spu_create_spu(spu, data);
581
582 if (ret)
583 goto out_free;
584
585 spu_mfc_sdr_setup(spu);
586 spu_mfc_sr1_set(spu, 0x33);
587 ret = spu_request_irqs(spu);
588 if (ret)
589 goto out_destroy;
590
591 ret = spu_create_dev(spu);
592 if (ret)
593 goto out_free_irqs;
594
595 mutex_lock(&cbe_spu_info[spu->node].list_mutex);
596 list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
597 cbe_spu_info[spu->node].n_spus++;
598 mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
599
600 mutex_lock(&spu_full_list_mutex);
601 spin_lock_irqsave(&spu_full_list_lock, flags);
602 list_add(&spu->full_list, &spu_full_list);
603 spin_unlock_irqrestore(&spu_full_list_lock, flags);
604 mutex_unlock(&spu_full_list_mutex);
605
606 spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
607 spu->stats.tstamp = ktime_get_ns();
608
609 INIT_LIST_HEAD(&spu->aff_list);
610
611 goto out;
612
613 out_free_irqs:
614 spu_free_irqs(spu);
615 out_destroy:
616 spu_destroy_spu(spu);
617 out_free:
618 kfree(spu);
619 out:
620 return ret;
621 }
622
623 static const char *spu_state_names[] = {
624 "user", "system", "iowait", "idle"
625 };
626
spu_acct_time(struct spu * spu,enum spu_utilization_state state)627 static unsigned long long spu_acct_time(struct spu *spu,
628 enum spu_utilization_state state)
629 {
630 unsigned long long time = spu->stats.times[state];
631
632 /*
633 * If the spu is idle or the context is stopped, utilization
634 * statistics are not updated. Apply the time delta from the
635 * last recorded state of the spu.
636 */
637 if (spu->stats.util_state == state)
638 time += ktime_get_ns() - spu->stats.tstamp;
639
640 return time / NSEC_PER_MSEC;
641 }
642
643
spu_stat_show(struct device * dev,struct device_attribute * attr,char * buf)644 static ssize_t spu_stat_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
646 {
647 struct spu *spu = container_of(dev, struct spu, dev);
648
649 return sprintf(buf, "%s %llu %llu %llu %llu "
650 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
651 spu_state_names[spu->stats.util_state],
652 spu_acct_time(spu, SPU_UTIL_USER),
653 spu_acct_time(spu, SPU_UTIL_SYSTEM),
654 spu_acct_time(spu, SPU_UTIL_IOWAIT),
655 spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
656 spu->stats.vol_ctx_switch,
657 spu->stats.invol_ctx_switch,
658 spu->stats.slb_flt,
659 spu->stats.hash_flt,
660 spu->stats.min_flt,
661 spu->stats.maj_flt,
662 spu->stats.class2_intr,
663 spu->stats.libassist);
664 }
665
666 static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL);
667
668 #ifdef CONFIG_KEXEC_CORE
669
670 struct crash_spu_info {
671 struct spu *spu;
672 u32 saved_spu_runcntl_RW;
673 u32 saved_spu_status_R;
674 u32 saved_spu_npc_RW;
675 u64 saved_mfc_sr1_RW;
676 u64 saved_mfc_dar;
677 u64 saved_mfc_dsisr;
678 };
679
680 #define CRASH_NUM_SPUS 16 /* Enough for current hardware */
681 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
682
crash_kexec_stop_spus(void)683 static void crash_kexec_stop_spus(void)
684 {
685 struct spu *spu;
686 int i;
687 u64 tmp;
688
689 for (i = 0; i < CRASH_NUM_SPUS; i++) {
690 if (!crash_spu_info[i].spu)
691 continue;
692
693 spu = crash_spu_info[i].spu;
694
695 crash_spu_info[i].saved_spu_runcntl_RW =
696 in_be32(&spu->problem->spu_runcntl_RW);
697 crash_spu_info[i].saved_spu_status_R =
698 in_be32(&spu->problem->spu_status_R);
699 crash_spu_info[i].saved_spu_npc_RW =
700 in_be32(&spu->problem->spu_npc_RW);
701
702 crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu);
703 crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu);
704 tmp = spu_mfc_sr1_get(spu);
705 crash_spu_info[i].saved_mfc_sr1_RW = tmp;
706
707 tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
708 spu_mfc_sr1_set(spu, tmp);
709
710 __delay(200);
711 }
712 }
713
crash_register_spus(struct list_head * list)714 static void crash_register_spus(struct list_head *list)
715 {
716 struct spu *spu;
717 int ret;
718
719 list_for_each_entry(spu, list, full_list) {
720 if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
721 continue;
722
723 crash_spu_info[spu->number].spu = spu;
724 }
725
726 ret = crash_shutdown_register(&crash_kexec_stop_spus);
727 if (ret)
728 printk(KERN_ERR "Could not register SPU crash handler");
729 }
730
731 #else
crash_register_spus(struct list_head * list)732 static inline void crash_register_spus(struct list_head *list)
733 {
734 }
735 #endif
736
spu_shutdown(void)737 static void spu_shutdown(void)
738 {
739 struct spu *spu;
740
741 mutex_lock(&spu_full_list_mutex);
742 list_for_each_entry(spu, &spu_full_list, full_list) {
743 spu_free_irqs(spu);
744 spu_destroy_spu(spu);
745 }
746 mutex_unlock(&spu_full_list_mutex);
747 }
748
749 static struct syscore_ops spu_syscore_ops = {
750 .shutdown = spu_shutdown,
751 };
752
init_spu_base(void)753 static int __init init_spu_base(void)
754 {
755 int i, ret = 0;
756
757 for (i = 0; i < MAX_NUMNODES; i++) {
758 mutex_init(&cbe_spu_info[i].list_mutex);
759 INIT_LIST_HEAD(&cbe_spu_info[i].spus);
760 }
761
762 if (!spu_management_ops)
763 goto out;
764
765 /* create system subsystem for spus */
766 ret = subsys_system_register(&spu_subsys, NULL);
767 if (ret)
768 goto out;
769
770 ret = spu_enumerate_spus(create_spu);
771
772 if (ret < 0) {
773 printk(KERN_WARNING "%s: Error initializing spus\n",
774 __func__);
775 goto out_unregister_subsys;
776 }
777
778 if (ret > 0)
779 fb_append_extra_logo(&logo_spe_clut224, ret);
780
781 mutex_lock(&spu_full_list_mutex);
782 xmon_register_spus(&spu_full_list);
783 crash_register_spus(&spu_full_list);
784 mutex_unlock(&spu_full_list_mutex);
785 spu_add_dev_attr(&dev_attr_stat);
786 register_syscore_ops(&spu_syscore_ops);
787
788 spu_init_affinity();
789
790 return 0;
791
792 out_unregister_subsys:
793 bus_unregister(&spu_subsys);
794 out:
795 return ret;
796 }
797 device_initcall(init_spu_base);
798